
Quantifying the Semantic Gap Between Serial
and Parallel Programming

Xiaochun Zhang*
Huawei

dennis.zh@live.com

Timothy M. Jones
University of Cambridge

timothy.jones@cl.cam.ac.uk

Simone Campanoni
Northwestern University

simone.campanoni@northwestern.edu

Abstract—Automatic parallelizing compilers are often con-
strained in their transformations because they must conserva-
tively respect data dependences within the program. Developers,
on the other hand, often take advantage of domain-specific
knowledge to apply transformations that modify data depen-
dences but respect the application’s semantics. This creates a
semantic gap between the parallelism extracted automatically by
compilers and manually by developers. Although prior work has
proposed programming language extensions to close this semantic
gap, their relative contribution is unclear and it is uncertain
whether compilers can actually achieve the same performance
as manually parallelized code when using them. We quantify
this semantic gap in a set of sequential and parallel programs
and leverage these existing programming-language extensions to
empirically measure the impact of closing it for an automatic
parallelizing compiler. This lets us achieve an average speedup of
12.6× on an Intel-based 28-core machine, matching the speedup
obtained by the manually parallelized code. Further, we apply
these extensions to widely used sequential system tools, obtaining
7.1× speedup on the same system.

I. INTRODUCTION

One reason that automatic parallelization is still an open
research problem, despite decades of research and impressive
recent performance demonstrations [1]–[16], is that developers
extract parallelism in different ways to compilers. Often de-
velopers can take advantage of their knowledge of a program’s
semantics to understand the transformations that can be legally
applied, given the application’s domain. These may result in
minor differences in the program’s output or subtlely different
techniques to perform the same algorithm. In effect, there
exists a semantic gap between how the developer extracts
parallelism and what a compiler can achieve that limits the
performance of automatic parallelization. Because of this,
several programming language extensions have been proposed
to close this semantic gap, but they only have been evaluated in
isolation, leaving uncertainty about their relative contribution.
Moreover, no study has shown that compilers can actually
generate the same manually parallelized code when these
language extensions are used for irregular programs.

To shed light on this open problem, we have studied
sequential and parallel versions of a range of applications
written in C and C++ to determine how much parallelism
compilers and developers are able to extract. To this end, we
measure both manually defined and automatically generated

*Work performed whilst at the University of Cambridge.

thread-level parallelism (TLP) through both limit studies and
measurements in a real system. Both studies show that for
some applications, this gap is significant, severely hindering
the speedups achievable through automatic parallelization. We
show that this gap is composed of four common techniques
in our workloads, termed the semantic-gap components, that
developers use to incorporate semantic knowledge into their
applications when parallelizing. We explore how each com-
ponent contributes to the difference between automatic and
manual parallelization at the limit by modeling an idealized
multicore system. Our results show that, at the extreme,
closing the semantic gap converts a 2× speedup into a 3,463×
speedup and that often developers need to consider two or
more semantic-gap components to realize the majority of the
speedups available.

We then bridge the semantic gap by augmenting our appli-
cations with programming-language extensions, all previously
proposed for other scenarios. Doing so allows us to empirically
measure the impact of these extensions for unblocking paral-
lelism within an automatic parallelizing compiler, achieving an
average speedup of 12.6× on an Intel-based 28-core machine
matching the speedup obtained by the manually parallelized
code. We then consider a range of system tools, which are
a compelling use-case for our extensions, being codes that
are widely available, have existed for many years, and yet
remain sequential. Closing the semantic gap through the same
extensions brings an average speedup of 7.1× on the same
system.

In summary, this paper makes the following research con-
tributions.

• It evaluates the semantic gap between serial and parallel
programming in widely-used benchmarks.

• It characterizes this gap highlighting its components and
the contribution each makes to closing the gap.

• It empirically measures the impact of existing, unob-
trusive language extensions to bridge the semantic gap
between manual and automatic parallelization.

• It evaluates the performance a parallelizing compiler
could achieve when the semantic gap is closed with oracle
data-dependence information.

Next we describe how we model parallelism. Then, we
describe the semantic gap we found on the benchmarks we
have analyzed and its components.

p = p->next

while(p)

work(p)

(a) Original code

p = p->next

while(p)

work(p)

SCC2

SCC1

DDG

CDG

(b) PDG

 core 1

SCC1 x1

 core 2

SCC2 x1

 core 3

SCC1 x2

SCC2 x2 SCC1 x3

SCC2 x3

…

…

(c) DoAcross

 core 1

SCC1 x1

…

 core 2

SCC2 x1SCC1 x2

SCC2 x2SCC1 x3

SCC2 x3

…

(d) DSWP

Fig. 1: Parallelizing compilers split sequential code into SCCs. The function work(p) produces an internal data dependence on
itself. Two SCCs are identified in this example using the program dependence graph (PDG) made up of the control dependence
graph (CDG) and data dependence graph (DDG). We evaluate DSWP and DoAcross by using SCCs as an unbreakable unit.

II. MODELING METHODOLOGY

To understand why the TLP that developers currently extract
manually is not within the reach of automatic parallelizing
compilers, this paper measures both manually parallelized
code as well as the largest amount of parallelism that can
be extracted automatically. The former can be achieved using
similar techniques to those in the literature [17]. The latter,
instead, requires modeling because many parallelizing com-
pilers have been proposed for automatically extracting TLP
from a sequentially designed codebase. To model their limit,
we focus on their common feature, which splitting sequential
code into strongly-connected components (SCCs) [3], [5], [18]
within the program dependence graph (PDG) [19]. Therefore,
we model the parallelism extracted by parallelizing compilers
by using SCCs of the original code as units of execution. This
measures the TLP limit of both cyclic multithreading (CMT)
(e.g., DoAcross [20], HELIX [3]) and pipeline multithreading
(PMT) (e.g., DSWP [5], PS-DSWP [8]).

The observation that the code generated by parallelizing
compilers can be modeled using SCCs sets this analysis apart
from prior TLP and instruction level parallelism (ILP) analy-
ses. We call our evaluation an SCC analysis. A TLP analysis
measures the amount of coarse-grained parallelism expressed
in the code and an ILP analysis measures the amount of fine-
grained parallelism extractable from a sequential execution,
whereas an SCC analysis, introduced in this paper, measures
the amount of coarse-grained parallelism extractable from a
sequential execution.

A. Using SCCs as a Unit of Parallelism

To understand how compilers extract parallelism, we use
an example of sequentially-designed code, shown in figure 1.
The original C-like code is shown figure 1(a) as a control-
flow graph (CGF), split into basic blocks. This is a linked-
list traversal, where each iteration processes one element of
the list, pointed to by p. Figure 1(b) shows the PDG of
this program using the basic blocks as vertices, made up
from the control dependence graph (CDG) on the left and
data dependence graph (DDG) on the right, conservatively
generated by LLVM’s alias analysis. Two SCCs are created
from this graph, as shown. The first (in blue) is due to the
control dependence that the bottom vertex has on the top

(since the while(p) vertex determines whether p = p->next
gets executed), combined with the data dependence the top
vertex has on the bottom, through the p variable. The second
(in orange) is due to the compiler identifying an internal data
dependence within the work function, meaning it has a data
dependence with itself.

We can classify parallelizing compilers to a first approxi-
mation according to how SCCs are scheduled between cores.
CMT techniques schedule invocations of an SCC across cores
(figure 1(c)). PMT techniques schedule them within the same
core and schedule different SCCs on different cores (fig-
ure 1(d)). While these techniques are fundamentally different,
their commonality is that all invocations of a single SCC are
executed sequentially (within or across cores). Hence, we can
measure the limit of all parallelization techniques by using an
SCC as unbreakable unit of parallelism.

B. SCC Limit Study

The performance of the code generated by parallelizing
compilers is limited by the SCCs identified at compile-time.
The conservativeness of dependence analysis (e.g., alias anal-
ysis) means some SCCs identified at compile time are unnec-
essary. For example, SCC2 in figure 1(b) is unnecessary when
all elements of the list are unique because there is no internal
data dependence in the work() function. Hence, state-of-
the-art parallelizing compilers rely on speculative execution
to overcome this limitation.

To model these latest compilers and at the same time
make our analysis independent of the accuracy of a given
dependence analysis, we identify SCCs based only on dynamic
data dependences. To this end, we built a tool called oracle-
extractor, which automatically computes the oracle informa-
tion for data dependences that occur at run-time for a given
input. We use these oracles to identify the minimum set of data
dependences that must be satisfied to preserve the original pro-
gram semantics. Oracle-extractor outputs these dependences as
a dependence graph, which we call minDDG, which represents
the best possible output of a data dependence analysis (i.e.,
only true dependences). Therefore, minDDG enables us to
empirically measure the highest amount of parallelism that any
compiler could extract starting from the sequentially-designed
code. We use the SCCs found in minDDG to compute our
SCC analyses.

We rely on minDDG to understand the difference between
code generated by developers and parallelizing compilers,
the semantic gap. Another gap that has been studied in the
past to understand how to evolve programming languages is
the analysis gap [21], [22]. This refers to the complexity
of identifying a code property automatically (e.g., pointer
aliasing) and it does not compare sequential and parallel
programming. Hence, it cannot be used to answer our research
question, so we focus on the semantic gap to compare the
limits of parallelizing compilers with parallel programming.

C. Measuring the Parallelism

We designed a tool called parallelism-measurer to measure
both SCC and TLP limits. The former is performed by
constraining all invocations of a given SCC to run sequentially.
Instructions that do not belong to any SCC are modeled in
the same way ILP and TLP limit studies [17] model all
instructions: using a data-flow model constrained by dynamic
data dependences. Finally, the execution between different
SCCs and instructions that do not belong to any SCC is emu-
lated using the same data-flow model: only data dependences
identified at run-time serialize them.

Parallelism-measurer models the TLP limit of the manually-
parallelized version of a benchmark. To do so, we have
manually defined the DDG by studying the parallelization
performed by developers of the target benchmark. We call it
manualDDG and we use it as input to parallelism-measurer
when we emulate the parallelized version of the code.

D. Instrumentation Framework

Both of our tools are built on a modeling framework we
designed around the LLVM IR. Our framework first compiles
an application’s source files to LLVM bitcode and combines
them into a single monolithic bitcode file. We then perform
function inlining so as to mimic the optimizations that an
automatic parallelizing compiler would perform to provide
more opportunities for transformation and optimize at level
O3. From here we add instrumentation code and compile down
to a native binary.

We developed an LLVM pass to insert instrumentation
callbacks at key points in the code. IR instructions are stored
alongside the binary in segments according to the callback
points. We also create a mapping between the two, so that
we can consult the IR whenever a callback is triggered. The
callbacks are compiled down to machine code along with
the rest of the program. When running the application, these
statically-determined instrumentation points enable a runtime
handler to examine the execution state of the application to
gather profile information about instructions and data, and
model different forms of execution.

The instrumentation points allow us to selectively track
the data and control flows that we are concerned with. To
profile the application and model parallelism, we instrument:
(i) Loop boundaries, adding callbacks at the start of a new loop
invocation, the end of a loop invocation, and the start of each
loop iteration. This means that during execution we can track

 1

 10

 100

 1000

freqm
ine
fluida

nima
te
swap

tions
stream

cluste
r

black
schol

es
canne

al
dedu

pP
ar
al
le
li
za
ti
on

 s
pe
ed
up AutoPar ManualPar

1 1

64
35

162

6
2

7

43 64 81
162

730

3463

Fig. 2: Speedups of PARSEC benchmarks when performing
automatic and manual parallelization (log-scale y axis).

exactly which loop nest any dynamic instruction is currently
within; (ii) Memory accesses, adding callbacks to track data
dependences through memory. Dependences through LLVM
SSA names can be tracked statically; (iii) Library function
calls, placing callbacks beforehand so as to correctly handle
data dependences when they are invoked.

III. SEMANTIC GAP

To understand why parallelizing compilers cannot extract
the same amount of TLP as a programmer, we consider
workloads from PARSEC [23] using simlarge inputs.

We studied their hot loops, in particular the way in which
they have been parallelized manually by developers. Com-
paring that parallelism with the TLP extracted by compil-
ers in an ideal situation (when relying on perfect run-time
knowledge of dependences between instructions) allows us
to understand how the TLP expressed by developers can be
brought within a compiler’s reach. We then identified the
required semantic concepts to bridge this gap and previously
proposed programming-language extensions to achieve this.
We only consider a subset of applications from PARSEC as our
tool-chain cannot compile all benchmarks (for more details,
see section IV-A).

A. Automatic versus Manual Parallelization

We performed a limit study to measure the difference
between manual and automatic TLP extraction. To this end, we
emulated an ideal machine with an infinite number of cores,
no core-to-core communication latency, and infinite inter-core
bandwidth. Section V relaxes these assumptions.

Figure 2 shows that only a fraction of the manually defined
parallelism can be extracted automatically by compilers using
the simlarge inputs to PARSEC, to keep emulation times
manageable. Here, for ManualPar we used the manually
parallelized version of each PARSEC benchmark; for AutoPar
we either used the existing sequential versions (if present) or
we compiled using a thread count of 1 to create a sequential
version ourselves. Benchmarks such as blackscholes and swap-
tions represent the ideal case for compilers: they contain highly
parallel loops where all of their iterations are independent of
each other. However, for other applications there are clear
differences. At the extreme, dedup has a speedup of 3,463×
for the manually parallelized application, but only 2× using
automatic parallelization.

Freqmine has the lowest speedup for manual parallelization
of just 7.2×. This is partly due to the use of the simlarge
inputs, with speedup rising to 24× with the larger, native
inputs. However, it is still smaller than for other workloads
stemming from unbalanced loop iterations due to its recursive
tree traversals that are the core of the application.

These results show that although there is bountiful per-
formance available in many of these workloads, automatic
parallelization is unable to take advantage of it. Since data
dependences place a limit on the parallelism available, these
results show that the developers have managed to break
certain dependences, yet the compiler is unable to replicate
this. To understand why, we performed an in-depth study on
these PARSEC benchmarks to identify situations where the
developers have taken advantage of semantic knowledge about
the application or algorithm to transform the code. Current
compilers would never be able to apply these techniques,
since the dependences are real. We call these techniques
the semantic-gap components between the compiler’s and
programmer’s understanding of the program and describe each
one in the following section. As figure 2 shows there is no
semantic gap in blackscholes and swaptions, we do not analyze
them further. Although that only leaves five benchmarks to
analyze, section V demonstrates that these are sufficient to
capture the semantic-gap components across a wide range of
workloads.

B. Semantic Gap Breakdown

We discuss each semantic-gap component individually, il-
lustrating them through code examples taken from our work-
loads and describing how they can be closed through previ-
ously proposed programming-language extensions.

1) Algorithmic Options: canneal, dedup
This component encompasses techniques that programmers
use to extract parallelism by exploiting their knowledge of
how the application works. In essence, this means that they
break data dependences in a manner that preserves the overall
intent of the algorithm while possibly sacrificing accuracy.

Figure 3 shows the algorithmic options semantic gaps for
depup and canneal. In canneal (figure 3(a)) the loop at line 68
repeatedly selects an element at random, evaluates it against an
existing element, and potentially swaps them. Therefore each
iteration depends on the previous, since one of the elements
remains the same between consecutive iterations. This creates
an SCC that limits the parallelism of any automatic paralleliz-
ing compiler. In the parallel version, instead, this dependence
is broken to avoid the related SCC: each thread starts with
different random elements. Only the programmer knows that
the algorithm does not depend on the preservation of this
dependence because this information is not encoded in the
source code. In fact, this dependence (and SCC), due to the
reuse of an element, is an optimization added by the developer
to improve cache behavior.

In dedup (figure 3(b)) input is split into variable-sized
chunks based on Rabin fingerprints [24]. In the sequential

68 for (int i = 0; i < _moves_per_thread_temp; i++){
...

70 a = b;
71 a_id = b_id;
72 b = _netlist->get_random_element(&b_id,a_id,&rng);

...
87 }

(a) canneal (annealer thread.cpp)

// Sequential and parallel versions
667 int offset = rabinseg(chunk->uncompressed_data.ptr,

chunk->uncompressed_data.n, rf_win, rabintab,
rabinwintab);

...
// Parallel version

1108 int offset = rabinseg(
chunk->uncompressed_data.ptr+ANCHOR_JUMP,
chunk->uncompressed_data.n-ANCHOR_JUMP,
rf_win_dataprocess, rabintab, rabinwintab);

(b) dedup (encoder.c)

class Dedup_chunkSize:Tradeoff_options{
int64_t getMaxIndex(){ return 100; }
auto getValue(int64_t i){ return 64 * i; }
int64_t getDefaultIndex() { return 0; }

};
tradeoff DedupAlgorithmicOption_chunkSize {
{Dedup_chunkSize};

};

(c) Programming-language extension used in dedup [13]

1107 auto chunkSize = DedupAlgorithmicOption_chunkSize;
1108 int offset = rabinseg(

chunk->uncompressed_data.ptr+chunkSize,
chunk->uncompressed_data.n-chunkSize,
rf_win_dataprocess, rabintab, rabinwintab);

(d) Closing the algorithmic option semantic gap in dedup

Fig. 3: Algorithmic options.

version, input is read into a large buffer and chunks iden-
tified starting at its first byte, with each subsequent chunk
starting at the byte following the previous. If the end of the
buffer is reached without finding a fingerprint, unallocated
data is moved to the start of the buffer and more input is
read. Fingerprinting then restarts from the beginning of the
buffer. This process causes a cross-iteration dependence, and
therefore an SCC, in the loop that splits the input into chunks.
Unfortunately, this SCC sequentializes the chunking.

The parallel version, however, avoids this SCC by breaking
the related loop-carried dependence. This alters the output of
the program but still creating a valid compressed file. Here the
input is first split into coarse-grained fragments by searching
for a fingerprint at a fixed offset (ANCHOR_JUMP) from the
start of the input buffer. Each large fragment is passed to
a different thread for chunking in the same manner as the
sequential version of the program. Even though a fingerprint
may not be found at the end of each fragment, the remaining

960 long bsize = points->num/nproc;
961 long k1 = bsize * pid;
962 long k2 = k1 + bsize;

...
1039 //my *lower* fields
1040 double* lower = &work_mem[pid*stride];
1041 //global *lower* fields
1042 double* gl_lower = &work_mem[nproc*stride];

...
1044 for (i = k1; i < k2; i++) {

...
1067 int assign = points->p[i].assign;
1068 lower[center_table[assign]] +=

current_cost - x_cost;
...

1070 }
...

1079 for (int i = k1; i < k2; i++) {
1080 if(is_center[i]) {

...
1083 for(int p = 0; p < nproc; p++) {
1084 low += work_mem[center_table[i]+p*stride];
1085 }
1086 gl_lower[center_table[i]] = low;

...
1095 }
1096 }

(a) streamcluster (streamcluster.cpp)

1042 reassoc double* gl_lower = &work_mem[nproc*stride];

(b) Programming-language extension used in streamcluster

Fig. 4: Reassociativity.

bytes are treated as a chunk and sent to the next stage for
processing. Therefore, the algorithm for input splitting is
slightly different in the serial and parallel versions, leading to
occasional changes in how the input is handled and different,
but correct, outputs.

Programming-language extension: We leverage the trade-
off interface described in [13], which makes algorithmic-
specific trade-offs visible to a compiler tool-chain. For ex-
ample, figure 3(c) shows the additional code to add to the
original codebase to express that the chunk size of dedup can
be changed if compilers have the need for it. Moreover, the
original code needs to be changed to specify where the chunk
size option is used (shown in figure 3(d)). Our parallelizing
compiler uses the information encoded by the trade-off inter-
face as a degree of freedom to remove dependences.

2) Reassociation: streamcluster
When developers parallelize a loop by means of a reduction,
they break a read-after-write dependence by exploiting an
associative operation. Reductions exploit the commutative
properties of mathematical operations, such as calculating a
running sum during execution of the loop. Reductions on
scalars are automatically handled by many parallelizing com-
pilers. The semantic-gap component of reassociation enables
a reduction for types where it is unsafe—that is, reordering
the operations may change the program’s output.

Figure 4(a) shows reassociativity used in streamcluster.
Each element of the gl_lower array is a sum of the cost

of moving a point in the stream from one center to another,
but its type is a double, which is unsafe to use in reductions.
However, the developer has parallelized this code through a
reduction by using an intermediate array, lower, for each
thread (partial results collated in line 1068) and combining
them in line 1086, accepting the imprecision that may result.

In fact, this example demonstrates not only the reassocia-
tivity semantic-gap component, but also an analysis-gap com-
ponent too. Parallelizing compilers will automatically handle
reductions on safe scalar values, but this example shows an
array, where each element can be reduced.

Programming-language extension: We introduce a new
type modifier, reassoc, which enables compilers to real-
ize that they can change the associativity of the annotated
variables of that type. For example, streamcluster’s array
gl_lower, shown in figure 4(a), can be declared using this
new modifier. The resulting code is shown in figure 4(b). The
compile then knows it can change the associativity of the
elements of the array gl_lower, allowing them to close and
reduce each array element.

Our modifier reassoc is different from the LLVM option
introduced in clang 6 “--reassoc”. This option enables
the compiler to consider reassociation for all floating point
variables, but is unfortunately not useful for parallelizing
compilers because it is both too strict and too loose. It is
too strict because we need reassociation for complex data
structures like arrays rather than just scalar variables. It is too
loose because enabling reassociation for all variables often
leads to a change in output quality. Compiling streamcluster
with this flag reduced output quality by 2% but using our
reassoc modifier only for gl_lower (as performed by
the parallel version of the benchmark) preserves the output
quality.

3) Data-Structure Duplication: canneal, freqmine
Programmers often duplicate intermediate data structures to
privatize the writes to them, allowing threads to run without
synchronization. Knowing when this transformation is safe
to apply and how to perform a deep copy of an object is
something that existing compilers cannot infer. Data-structure
duplication captures this semantic-gap component, whereby
read-after-write dependences are broken without affecting the
underlying algorithm.

In figure 5(a), for canneal, each thread executes the Run
function and creates its own local copy of a pseudo random
number generator (PRVG) (an Rng object). This PRVG con-
tains a cross-iteration read-after-write dependence when it is
used in a later loop, because it calculates the next random
number as a function of the previous. The programmer breaks
this dependence by duplicating and privatizing the object in
each thread. The PRVG duplicate is generated by resetting its
seed. This is a safe operation only because of the randomness
of the implemented algorithm.

Freqmine (figure 5(b)) creates thread-local copies of struc-
tures used for memory management (local_fp_tree_buf
and local_fp_buf), as well as those used when performing
tree traversal during data mining (i.e., local_list and

50 void annealer_thread::Run(){
...

55 Rng rng; //store of randomness
...

93 }

(a) canneal (annealer thread.cpp)

1343 #pragma omp parallel for schedule(dynamic,1)
1344 for(sequence=upperbound - 1; sequence>=lowerbound;

sequence--)
...

1349 int thread = omp_get_thread_num();
...

1351 memory *local_fp_tree_buf = fp_tree_buf[thread];
1352 memory *local_fp_buf = fp_buf[thread];
1353 stack *local_list = list[thread];
1354 int *local_ITlen = ITlen[thread];

...
1424 }

(b) freqmine (fp tree.cpp)

41 class Rng : public Duplicable {
public:
Rng duplicate () override {

auto newCopy = new Rng(time(NULL));
return newCopy;

}
...

}

(c) Programming-language extension used in canneal

Fig. 5: Data-structure duplication.

local_ITlen). For the memory-management structures, the
read-after write dependence occurs due to keeping track of free
memory objects, which is obviously unnecessary in support
structures such as these. The other two objects have read-after-
write dependences due to increasing and decreasing the pointer
to the top of the stack. This dependence must exist within
a thread, but not across threads, which perform independent
traversals of a tree, beginning from the same starting point.

Programming-language extension: We create a new inter-
face understood by compilers called Duplicable. Objects
that implement this interface must implement duplicate(),
which performs a class-specific deep copy of an object. The
modified code for canneal is shown in figure 5(c).

Compilers can use the static type of objects to check
which implement the Duplicate interface. Then, a compiler
can duplicate objects (one per thread) by injecting code at
compile-time to invoke the duplicate() method at run-
time whenever it is safe to do so. Compilers can prove this
transformation is safe by analyzing the PDG at compile time:
an object used within a loop body that is always written in a
given iteration before it is read within the same iteration can
be safely duplicated across the generated threads. This test
is sufficient to recognize this opportunity for all benchmarks
considered by this paper.

127 do {
128 val = Get();
129 } while(!atomic_cmpset_ptr((ATOMIC_TYPE *)&p,

(ATOMIC_TYPE)val, (ATOMIC_TYPE)x));

(a) canneal (AtomicPtr.h)

485 pthread_mutex_t *ht_lock = hashtable_getlock(cache,
(void *)(chunk->sha1));

486 pthread_mutex_lock(ht_lock);
...

498 if (hashtable_insert(cache, (void *)(chunk->sha1),
(void *)chunk) == 0) {

...
500 }

...
507 pthread_mutex_unlock(ht_lock);

(b) dedup (encoder.c)

732 pthread_mutex_lock(&mutex[index]
[ipar % MUTEXES_PER_CELL]);

733 cell->density[ipar % PARTICLES_PER_CELL] += tc;
734 pthread_mutex_unlock(&mutex[index]

[ipar % MUTEXES_PER_CELL]);

(c) fluidanimate (pthreads.cpp)

1257 #pragma omp critical
1258 {
1259 if (current < released_pos) {
1260 released_pos = current;
1261 fp_node_sub_buf->freebuf(MR_nodes[current],

MC_nodes[current], MB_nodes[current]);
1262 }
1263 }

(d) freqmine (fp tree.cpp)

1257 commutative
1258 {
1259 if (current < released_pos) {
1260 released_pos = current;
1261 fp_node_sub_buf->freebuf(MR_nodes[current],

MC_nodes[current], MB_nodes[current]);
1262 }
1263 }

(e) Programming-language extension used in freqmine [25]

Fig. 6: Commutative dependences.

4) Commutative Dependences: canneal, dedup, fluidani-
mate, freqmine
Programs often contain dependent operations that can be
applied in any order while preserving program semantics. In
other words, the operations are commutative and their relative
execution order is not important.

Figure 6 shows the commutative dependences semantic-gap
components we found in canneal, dedup, fluidanimate, and
freqmine. In each, critical sections are defined that allow only
one thread at a time to complete the enclosed operation. This

provides atomic update of state, to avoid data corruption, but
commutativity of the operations since there is no ordering
defined on thread access to the critical sections.

In canneal (figure 6(a)) two elements are swapped when
profitable using an atomic operation to avoid data corruption.
The algorithm is designed to allow multiple threads to swap
the same elements multiple times. Dedup inserts chunks of
data to compress into a global hash table (figure 6(b)), where
ordering within the hash table is unimportant. In fluidanimate,
in figure 6(c), particles that are close enough in the simulated
3D space influence each other’s position and velocity, which
is a symmetric operation, making the order in which they are
accessed unimportant. Finally, in freqmine, after performing
mining for each item, the algorithm frees auxiliary data
structures (figure 6(d)), also able to be performed in any order.

The semantic-gap component of reassociation is similar to
commutativity, but differs in that it applies to a particular
instance of a variable, whereas the commutative-dependences
semantic-gap component applies to a region of code that can
be executed in any order.

Programming-language extension: This is closed by the
attribute commutative attached to single-entry-single-exit
code regions (SESE) [26] (e.g., functions, loops) [25]. Com-
pilers can use this information in the same way that has been
previously proposed [25] but generalizing its applicability to
all SESE code regions rather than only functions. For example,
figure 6(e) shows the modified code of freqmine using this
programming language extension to close its semantic gap.

C. Compiler Extension

The programming language extensions described alongside
each of the semantic-gap components are used by parallelizing
compilers either to remove or to annotate dependences in the
program’s PDG. Figure 7 shows the algorithm to implement
in a parallelizing compiler to modify a PDG. The function
modifyCodeAndGeneratePDG is invoked when a paral-
lelizing compiler’s IR is generated and before the SCCs of the
PDG are computed. This function takes the whole program
IR and it modifies the code to generate a PDG without the
dependences that can be removed and with the annotations to
the remaining dependences.

For example, let us consider the loop-carried data depen-
dence from dedup created by reading the input buffer se-
quentially across loop iterations (figure 3(b)). This dependence
has distance 1 (i.e., the dependence is between adjacent loop
iterations), which sequentializes all instances of the related
SCC. When this dependence is considered by the algorithm,
it checks whether it can be removed (line 4). Because this
dependence cannot be removed, the algorithm tries to annotate
this dependence by altering the code (line 6). Given the
algorithmic-option extension (figure 3(c)), the compiler is free
to choose an alternative chunk size, increasing the dependence
distance, and enabling some iterations of the dedup loop
to be run in parallel. This is a degree of freedom that the
compiler now controls and it is used to generate the same
TLP as developers have described manually in dedup.

1 PDG modifyCodeAndGeneratePDG(Code program)
2 pdg = generatePDG()
3 for (auto dep : pdg->edges()){
4 if (alterCodeToRemoveDep(program, pdg, dep))
5 continue
6 annotateDependence(program, pdg, dep)
7 }
8 return pdg

Fig. 7: Algorithm to modify the PDG by using the proposed
programming-language extensions.

IV. LIMIT STUDY

Next we empirically evaluate the performance implications
of the four semantic-gap components.

A. Experimental Setup

Platform: Oracle-extractor and parallelism-measurer are
built on LLVM 3.7.1 [27]. Our evaluations were performed
using a dual socket Dell PowerEdge R730 server with two Intel
Xeon E5-2695 v3 Haswell processors running at 2.3GHz and
capable of 9.60GT/s on the QPI interface. Each processor has
14 cores with 2-way hyperthreading, and a 35MB of last-level
cache. The cores are supported by 256GB of main memory in
16 dual rank RDIMMs at 2133MHz. Finally, the OS is Red
Hat Enterprise Linux Server 6.7.

Benchmarks: We evaluated the applications included in
the latest PARSEC benchmark suite, version 3.0, represent-
ing a wide range of modern workloads. We chose PAR-
SEC because each benchmark has been implemented twice:
sequentially and manually parallelized, targeting multicore
architectures. Unfortunately, we could not consider vips and
bodytrack because they did not compile using the vanilla
clang compiler and the binary generated by clang for ferret
produced incorrect outputs. Moreover, we could not generate
a single whole-program bitcode file for facesim, raytracer, or
x264; therefore, we could not analyze them with our tools.
Unless otherwise stated, simlarge inputs were used, although
section IV-D shows that these are big enough for limit studies.

Measuring the impact of a semantic-gap component:
We model the impact of programming language extensions
to measure the importance of each semantic-gap component
by manually identifying the SCCs included in minDDG (sec-
tion II) that have been affected by it. To do so, we compare
SCCs of minDDG with the manually parallelized code (e.g.,
its critical sections) then tag them with the list of semantic-
gap components used for their counterparts in the manually
parallelized code. Parallelism-measurer parses these SCC tags
and emulates the parallelism model we found in the manually
parallelized version of the benchmark. For example, consider
freqmine, shown in figure 6(d). The minDDG generated by
oracle-extractor contains an SCC between the code in lines
1259–1262. The code generated by any parallelizing compiler
will preserve the execution order of the identified SCC, but
the manually parallelized version of the benchmark does not.

0.1%

1%

10%

100%

can
nea
l 1
can
nea
l 2
can
nea
l 3
can
nea
l 4
can
nea
l 5
can
nea
l 6
ded
up 1
ded
up 2

freq
min
e 1

freq
min
e 2

fui
dan
ima
te

stre
am
clu
ster

S
pe
ed
u
p
no
rm
al
iz
ed

to

M
an
u
al
P
ar C D A R AutoPar

Fig. 8: Breakdown of extracted parallelism when closing
semantic-gap components. Horizontal separation of a bar indi-
cates the increasingly closed components. Vertical separation
indicates components closed together. Abbreviations are C:
Commutative dependences, D: Data duplication, A: Algorith-
mic options, and R: Reassociation, also used in following
figures.

Therefore we tagged this SCC as a commutativity semantic-
gap component. Parallelism-measurer parses this tag and
emulates the parallel execution of the related code without
preserving the execution order between the invocations of this
tagged SCC. We use this solution to turn on and off each
semantic-gap component.

Permutations of semantic-gap components: We need to
consider all possible permutations of semantic-gap compo-
nents to understand the importance of a given component.
This is because the impact of closing a given semantic-gap
component with a programming-language extension depends
on the baseline code we start from (i.e., which other semantic-
gap components have been closed already before the current
one). Our empirical evaluations found that this is important in
most of the benchmarks we studied.

B. Semantic-Gap Breakdown

Most parallelism expressed by developers is out of reach
for compilers. Figure 8 shows the obtained speedups relative
to the manually parallelized version of the code for whole-
program execution, but only running loops parallelized manu-
ally by developers in parallel. Closing the algorithmic options
component (i.e., A) is necessary for dedup: not closing it
will block the adoption of parallelizing compilers for this
workload. Similarly, closing the data structure duplication
component (i.e., D) is necessary for canneal. Notice that for
this benchmark closing A alone is not enough. Furthermore,
closing the reassociation component (i.e., R) makes automatic
parallelization of streamcluster possible even if a need for it is
not as pronounced as for the other components. Finally, notice
that for canneal A and D work well together, but show little
impact when closed alone.

C. Sensitivity Analysis

Multicores are used in different domains, from low-end
(mobiles and laptops with 8–16 cores) to high-end (HPC
with thousands of cores across nodes) domains. Moreover,
different architectures (Intel, ARM, IBM Power chips with

 0.1

 1

 10

 100

 1000

1000 100 10 0

P
ar
al
le
li
za
ti
on

 s
pe
ed
u
p

Cycles of communication

C + D + A = ManualPar
C + D
C
AutoPar

(a) canneal

 0.1

 1

 10

 100

 1000

1000 100 10 0

P
ar
al
le
li
za
ti
on

 s
pe
ed
u
p

Cycles of communication

C + A + D = ManualPar
C + A
C
AutoPar

(b) canneal

 1

 10

 100

 1000

 10000

1000 100 10 0

P
ar
al
le
li
za
ti
on

 s
pe
ed
u
p

Cycles of communication

C + A = ManualPar
C
AutoPar

(c) dedup

 1

 10

 100

1000 100 10 0

P
ar
al
le
li
za
ti
on

 s
pe
ed
up

Cycles of communication

C = ManualPar
AutoPar

(d) fluidanimate

 1

 10

1000 100 10 0

P
ar
al
le
li
za
ti
on

 s
pe
ed
u
p

Cycles of communication

C + D = ManualPar
C
AutoPar

(e) freqmine

 0.1

 1

 10

 100

1000 100 10 0

P
ar
al
le
li
za
ti
on

 s
pe
ed
up

Cycles of communication

R = ManualPar
AutoPar

(f) streamcluster

Fig. 9: Sensitivity analysis for the inter-core latency.

or without scalar operand networks [28]) and system config-
urations (single-node single-socket, single-node multi-socket,
multi-node multi-socket) have significantly different latencies
to communicate between cores. To study how the impact of the
semantic gap changes through this heterogeneous computing
spectrum, we extend our analysis, sweeping the number of
cores and inter-core latencies.

Inter-core latency: To understand how the impact of
the semantic gap changes with the inter-core latency, we
performed a sensitivity analysis while keeping an unbounded
number of cores. Figure 9 shows this analysis. We considered
four situations with related inter-core latencies: 1,000 cycles
for emulating inter-server parallelization, 100 cycles for multi-
core parallelization within the same commodity CPU, 10
cycles for multi-core parallelization in specialized architec-
tures with scalar operand networks (e.g., TRIPS [29], HELIX-
RC [1]), and 0 cycles to measure the limits.

Some benchmarks (e.g., canneal and streamcluster) lose
all of the automatic parallelization benefits when the inter-
core latency is 1,000 cycles. However, they tolerate high
latencies when the whole semantic gap is closed. Closing the
semantic gap reduces inter-core communication, making it so
infrequent that these benchmarks become latency insensitive.
The only benchmark that remains sensitive to latency when
the semantic gap is closed is dedup, where threads require
frequent communication even when manually parallelized.

Closing the semantic gap becomes even more essential when
today’s inter-core latencies are assumed. Streamcluster is the
empirical evidence of this. For this benchmark, AutoPar is
close to ManualPar when 0 latency is assumed (see figures 8
and 9(f)). However, when the latency increases, AutoPar
degrades dramatically leading to single digit speedups for
today’s commodity multicore latencies.

 1

 10

 100

 1000

2 16 64 256 2048 ∞

P
ar
al
le
li
za
ti
on

 s
pe
ed
u
p

Number of CPU cores

C + D + A = ManualPar
C + D
C
AutoPar

(a) canneal

 1

 10

 100

 1000

2 16 64 256 2048 ∞
P
ar
al
le
li
za
ti
on

 s
pe
ed
u
p

Number of CPU cores

C + A + D = ManualPar
C + A
C
AutoPar

(b) canneal

 1

 10

 100

 1000

 10000

2 16 64 256 2048 ∞

P
ar
al
le
li
za
ti
on

 s
pe
ed
u
p

Number of CPU cores

C + A = ManualPar
C
AutoPar

(c) dedup

 1

 10

 100

2 16 64 256 2048 ∞

P
ar
al
le
li
za
ti
on

 s
pe
ed
up

Number of CPU cores

C = ManualPar
AutoPar

(d) fluidanimate

 1

 10

2 16 64 256 2048 ∞

P
ar
al
le
li
za
ti
on

 s
pe
ed
u
p

Number of CPU cores

C + D = ManualPar
C
AutoPar

(e) freqmine

 1

 10

 100

2 16 64 256 2048 ∞

P
ar
al
le
li
za
ti
on

 s
pe
ed
up

Number of CPU cores

R = ManualPar
AutoPar

(f) streamcluster

Fig. 10: Sensitivity analysis for the core count.

 1
 10

 100
 1000

freqminefluidanimatestreamcluster canneal dedup

P
ar
al
le
li
za
ti
o
n
sp
ee
d
up

AutoPar simlarge
AutoPar native

ManualPar simlarge
ManualPar native

1 1

35

6
2

1 1

43

8
2

7

43
81

730

3463

24
52 58

827
3209

Fig. 11: Parallelism using different sizes of input, comparing
large-scale simulation and realistic application input.

Number of cores: Figure 10 shows how the semantic
gap changes with the number of cores. We considered six
situations: 2 cores to model mobile phones, 16 cores for single
socket servers, 64 cores to model four socket servers, 256 and
2,048 cores for small and large clusters, and an infinite number
of cores to measure the parallelization limits. The semantic
gap constrains parallelizing compilers to target only low-end
devices (e.g., a couple of cores) for most benchmarks. This
highlights the importance of closing the semantic gap to go
beyond a few cores for automatic parallelization. Benchmarks
canneal, fluidanimate, dedup, and freqmine highlight this
constraint. On the other hand, streamcluster shows important
scalability even without closing the semantic gap. However,
as previously mentioned (see figure 9), this benchmark still
requires the semantic gap to be closed to handle typical inter-
core latencies.

D. Altering Input Size

To ensure that the parallelism analyses shown in this paper
are independent with the input size, we computed the per-
formance limits of our benchmarks for much larger inputs
than those used in previous sections. (Native inputs require

 0

 4

 8

 12

 16

 20

canneal dedup fuidanimate freqmine streamcluster geomean

P
ar
al
le
li
za
ti
o
n
sp
ee
d
u
p

ManualPar AutoCloseGap AutoWholeProg

12.4
10.8

8.6

12.1
11.2 10.9

12.2

9.1
8.1

12.1

10.1 10.2

18.2

12.1

9.7

12.1 12.5 12.6

Fig. 12: Performance obtained by closing the semantic gap in
PARSEC on a 28-core machine.

between 130× and 3,000× more instructions than simlarge.)
Figure 11 shows that the performance limits of both AutoPar
and ManualPar remain almost identical when the input size
increases significantly.

V. REAL-SYSTEM EXPERIMENTS

This section evaluates the performance obtained when us-
ing the programming-language extensions described in sec-
tion III, running on a real multicore machine, described in
section IV-A.

1) The extended HELIX parallelizing compiler: We ex-
tended the HELIX parallelization [3] to measure the impact
of the programming language extensions from section III
to parallelizing compilers. First, we replaced the program
dependence analysis with the use of minDDG (only true data
dependences, see section II-B). This was necessary because
applying a parallelization technique automatically requires
closing the analysis gap (section II-B), which is outside the
scope of this paper. Second, we rely on the algorithm in
figure 7 to modify the PDG generated from minDDG.

We applied the extended HELIX to the original codebase
modified using the programming language extensions shown
in section III. The extended HELIX parallelization generates
OpenMP code, which is then compiled with the original clang
(version 7) compiler.

2) PARSEC benchmarks: We applied the extended HELIX
to the modified PARSEC benchmarks to generate two parallel
binaries. The first one is generated by constraining the paral-
lelizing compiler to consider parallelizing only the loops that
have been manually parallelized by the PARSEC developers.
We call it AutoCloseGap. We use the AutoCloseGap binary to
compare the parallelism generated by parallelizing compilers
and the one defined by developers. The second binary, instead,
is generated by allowing the parallelizing compiler to consider
parallelizing all loops of the original codebase. We call it
AutoWholeProg. Here we used the programming-language
extensions only for the loops that the developers had already
parallelized (as in AutoCloseGap), but then additionally al-
lowed our parallelizing compiler to parallelize other loops
(but without use of programming-language extensions). This
binary highlights the true value of enabling a parallelizing
compiler to define parallelism instead of requiring a developer
to do it: parallelizing compilers can parallelize all loops if

beneficial, developers cannot do it due to strict development-
time constraints.

Parallelizing compilers can generate an equivalent amount
of parallelism that developers define manually today. Fig-
ure 12 shows that the speedups obtained by AutoCloseGap
and ManualPar are similar, almost identical. This is because
closing the semantic gap allowed the automatic generation
of the parallelism defined by developers. The differences
come from the way parallelism is extracted. For example,
for streamcluster, AutoCloseGap obtains a speedup of 10.1×
compared to 11.2× for ManualPar. In every loop invocation
in AutoCloseGap, the code wakes up the threads used in the
OpenMP parallel loop, which requires a kernel call. However,
in ManualPar, threads are always awake, so this overhead does
not exist. In fact, this overhead is not inherent in the techniques
we have described for closing the semantic gap, just in the
way we have transformed the serial code to extract parallelism
for AutoCloseGap. In particular, it is due to the choice of
generating OpenMP code rather than generating threads that
stay awake. The OpenMP runtime does not keep threads awake
between parallelized loops and, therefore, AutoCloseGap pays
extra overhead.

Closing the gap for parallelizing compilers enables the
generation of more scalable parallel code than the one defined
manually by developers. Figure 12 shows that the speedups
obtained by AutoWholeProg (12.6× average) are significantly
higher than ManualPar (10.9×). There are two reasons for
this. First, ManualPar includes several loops that are kept
sequential; AutoWholeProg does not. Second, ManualPar in-
cludes many loops that are executed sequentially within a
single thread reducing the amount of nested parallelism;
AutoWholeProg does not.

3) System tools codebase: This paper identified semantic-
gap components only in five benchmarks, but these findings
generalize across a wide range of applications. To demonstrate
this, we applied the extended HELIX to the codebase of
several frequently used system tools from the Linux/Unix
environment, yielding an additional 16 workloads. These code-
bases have been sequentially designed and developed decades
ago. They run sequentially despite their daily use in most
systems and despite us having been in the multicore era for
more than a decade. This suggests that it is unlikely that
system tools will be redesigned only to use the many cores
we now have in a single chip. Rather, it is more realistic to
add only a few lines of code to the original codebase and
then rely on an automatic parallelizing compiler to extract the
necessary TLP. This is what we have done. We have modified
recent stable versions of the programs shown in figure 13 to
use the programming language extensions from section III.
Finally, we applied the extended HELIX to generate their
parallel binaries. We chose custom inputs for each application
to ensure an execution time of at least five minutes for the
sequential baseline.

Programming-language extensions of section III are nec-
essary to enable parallelizing compilers to extract significant
TLP from many system tools most of us use daily. Figure 13

shows the performance obtained on our platform by the
parallel binaries generated with (AutoWholeProg, 7.1×) and
without (AutoPar, 1.2×) the programming-language exten-
sions. These language extensions are necessary to parallelize
the considered programs, and each extension was used at least
once across all system tools. We only added a few tens of
lines of code for each of these programs, which include those
containing several thousand to over sixty thousand lines of
code in their original codebase (maximum 60,384 in gawk —
GNU AWK version 4.2.1), typically taking around 30 minutes
for each application.

Although we used all programming-language extensions
across the suite of tools, they were not all equally useful for
each workload. For example, closing the algorithmic options
semantic-gap component yielded 71% of the total performance
improvement in sort, but could not be applied to cat, cp, grep,
or sum. Closing the data duplication semantic-gap compo-
nent resulted in 90% of the performance improvements for
grep, the final 10% coming from identifying commutative
dependences. For this application, only two semantic-gap
components needed to be closed, whereas for programs such as
chmod, chgrp, and chown, all four semantic-gap components
needed to be closed to achieve maximum performance.

VI. RELATED WORK

From the beginning of the multi-core era, the research
community has discussed the role of compilers for TLP
extraction, a debate still ongoing [30]. This paper studied
the limits of compilers to highlight the semantic gap between
what developers exploit to parallelize their code manually and
what can be encoded and extracted from sequential codebases
from compilers. To the best of our knowledge, only the
commutative-dependences semantic-gap component has been
exploited by existing work in the literature [25], [31], [32].

Multi-threaded programming is still a great challenge for
most developers. Although being widely used, Pthread [33]
makes programmers spend significant effort on organizing
the work-flow of threads. To ease the burden of accu-
rate thread configuration, models, such as OpenMP [34],
MPI [35], TBB [36], Cilk [37], Cilk++ [38], have been
proposed. Some emphasize synchronization and others loop-
level task construction. Other approaches like CUDA [39] and
OpenCL [40] emphasize novel hardware interfaces, whereas
Prabhu et al. [32] propose language constructs for speculation.
However, none make parallel programming as simple as serial
programming.

Automatic TLP extraction from sequential programs has a
rich history. Some techniques distribute the dynamic invoca-
tions of a loop dependence SCC across parallel processing
units (e.g., cores, servers) [1], [3], [4], [20], [41]–[47]. Other
techniques keep all invocations of a single SCC within the
same processing unit and distribute different SCCs across
units (e.g., cores) [5], [6], [8], [18], [48], [49]. In all of
these approaches, parallelism is limited by the SCCs extracted
from the dependence graph. This paper studies the limits
of an SCC-based approach to highlight the limitations that

 0

 4

 8

 12

 16

 20

base
64
base

nam
e
cat chgr

p
chm

od
chow

n
chow

ncor
e

chro
ot
cksu

m
com

m cp gaw
k
grep sort sum tsor

t
geom

ean
P
ar
al
le
li
za
ti
on

 s
p
ee
d
u
p

AutoPar AutoWholeProg

1.5 1.0 1.1 1.1 1.0 1.1 1.0 1.0
2.2

1.0 1.2 1.1 1.5 1.2 1.1 1.0 1.2

14.2

1.3

6.2
5.1 5.1

4.2 3.5
4.5

12.4

18.2

7.5
9.2 8.5

11.3
12.5 12.5

7.1

Fig. 13: Performance obtained by closing the semantic gap in systems tools on a 28-core machine.

compilers have with the current expressiveness available in
today’s programming languages, like C++.

Some of the limitations of automatically extracting TLP
from sequential code, created by lack of expressiveness in
programming languages, have been recently studied, in par-
ticular the impact of the commutativity component [25], [50],
[51]. This paper studies all components of the semantic gap
we found in modern workloads. Others considered satisfying
dependences in alternative ways [13], [52]. These latest ap-
proaches, however, focus only on specific classes of work-
loads, allowing them to use domain-specific knowledge. This
paper aims for a broader set of workloads and, therefore, it
does not make this assumption and it does not rely on domain-
specific knowledge.

Finally, several studies have been performed to identify
(manual or automatic) parallelization opportunities [31], [53]–
[58] or to measure the limits of their parallelism [17], [59]–
[63]. None of these studies, however, studies why dependences
exist and they did not compare the detected parallelism with
that exposed by developers in manually parallelized versions
of the considered workloads. This paper is the first one to
perform this study.

VII. CONCLUSIONS

Using a novel SCC analysis, based on measuring the
amount of coarse-grained parallelism that is extractable from
a sequential execution, we have identified four techniques
that developers use to break data dependences when manually
parallelizing their applications, using semantic knowledge. We
take advantage of previously proposed, simple programming
language extensions to convey this information to a compiler,
allowing automatic parallelization to surpass the performance
of manual parallelization. Our work shines a light on the
limitations of today’s parallelizing compilers and points firmly
towards further research into programming language design to
capture program semantics for the benefit of tomorrow’s tools.

ACKNOWLEDGMENTS

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC), through grant references
EP/K026399/1 and EP/P020011/1. This work was also made
possible by support from the National Science Foundation

via the awards CCF-1908488, CCF-2107042, CCF-2118708,
CNS-1763743, PPoSS-2119069, and PPoSS-2028851. Addi-
tional data related to this publication is available in the data
repository at https://doi.org/10.17863/CAM.76224.

REFERENCES

[1] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y. Wei, and
D. Brooks, “Helix-rc: an architecture-compiler co-design for automatic
parallelization of irregular programs,” in ISCA, 2014.

[2] S. Campanoni, G. Holloway, G.-Y. Wei, and D. Brooks, “Helix-up:
Relaxing program semantics to unleash parallelization,” in CGO, 2015.

[3] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and
D. Brooks, “Helix: automatic parallelization of irregular programs for
chip multiprocessing,” in CGO, 2012.

[4] S. Campanoni, T. M. Jones, G. Holloway, G.-Y. Wei, and D. Brooks,
“Helix: Making the extraction of thread-level parallelism mainstream,”
IEEE Micro, vol. 32, no. 4, pp. 8–18, 2012.

[5] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread
extraction with decoupled software pipelining,” in MICRO, 2005.

[6] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and D. I.
August, “Decoupled software pipelining creates parallelization opportu-
nities,” in CGO, 2010.

[7] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke, “Parallelizing sequential
applications on commodity hardware using a low-cost software trans-
actional memory,” ACM Sigplan Notices, vol. 44, no. 6, pp. 166–176,
2009.

[8] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August,
“Parallel-stage decoupled software pipelining,” in CGO, 2008.

[9] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards a
holistic approach to auto-parallelization: integrating profile-driven par-
allelism detection and machine-learning based mapping,” ACM Sigplan
Notices, vol. 44, no. 6, pp. 177–187, 2009.

[10] D. Liu, Z. Shao, M. Wang, M. Guo, and J. Xue, “Optimal loop
parallelization for maximizing iteration-level parallelism,” in CASES,
2009.

[11] A. Matni, E. A. Deiana, Y. Su, L. Gross, S. Ghosh, S. Apostolakis, Z. Xu,
Z. Tan, I. Chaturvedi, D. I. August, and S. Campanoni, “NOELLE Offers
Empowering LLvm Extensions,” 2021.

[12] S. Apostolakis, Z. Xu, G. Chan, S. Campanoni, and D. I. August, “Per-
spective: A sensible approach to speculative automatic parallelization,”
in ASPLOS, 2020.

[13] E. A. Deiana, V. St-Amour, P. A. Dinda, N. Hardavellas, and S. Cam-
panoni, “Unconventional parallelization of nondeterministic applica-
tions,” in ASPLOS, 2018.

[14] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August,
“Parallel-stage decoupled software pipelining,” in CGO, 2008.

[15] T. Oh, S. R. Beard, N. P. Johnson, S. Popovych, and D. I. August, “A
generalized framework for automatic scripting language parallelization,”
in PACT, 2017.

[16] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas,
“Posh: a tls compiler that exploits program structure,” in PPoPP, 2006.

[17] E. Fatehi and P. Gratz, “Ilp and tlp in shared memory applications: A
limit study,” in PACT, 2014.

https://doi.org/10.17863/CAM.76224

[18] A. Aiken and A. Nicolau, “Perfect pipelining: A new loop parallelization
technique,” in ESOP, 1988.

[19] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM TOPLAS, vol. 9, no. 3, pp. 319–
349, 1987.

[20] A. R. Hurson, J. T. Lim, K. Kavi, and K. Lee, “Parallelization of doall
and doacross loops-a survey,” Advances in Computers, vol. 45, pp. 53–
103, 12 1997.

[21] B. Guo, M. J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D. I.
August, “Practical and accurate low-level pointer analysis,” in CGO,
2005.

[22] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers, “A limit study of
javascript parallelism,” in IISWC, 2010.

[23] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, 2011.

[24] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM Journal of Research and Development, vol. 31, no. 2,
1987.

[25] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August, “Re-
visiting the sequential programming model for multi-core,” in MICRO,
2007.

[26] R. Johnson, D. Pearson, and K. Pingali, “The program structure tree:
Computing control regions in linear time,” in PLDI, 1994.

[27] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in CGO, 2004.

[28] M. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal, “Scalar operand
networks,” IEEE Transactions on Parallel and Distributed Systems,
2005.

[29] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, N. Ran-
ganathan, D. Burger, S. W. Keckler, R. G. McDonald, and C. R. Moore,
“TRIPS: A polymorphous architecture for exploiting ILP, TLP, and
DLP,” in ACM TACO, 2004.

[30] D. August, K. Pingali, D. Chiou, R. Sendag, J. Y. Joshua et al.,
“Programming multicores: Do applications programmers need to write
explicitly parallel programs?” IEEE Micro, vol. 30, no. 3, pp. 19–33,
2010.

[31] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval, “How
much parallelism is there in irregular applications?” in PPoPP, 2009.

[32] P. Prabhu, G. Ramalingam, and K. Vaswani, “Safe programmable
speculative parallelism,” in PPoPP, 2010.

[33] IEEE and T. O. Group, IEEE Std 1003.1-2017, The Open Group Base
Specifications Issue 7, 2018.

[34] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[35] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI-
The Complete Reference, Volume 1: The MPI Core, 1998.

[36] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism, 2007.

[37] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
Journal of parallel and distributed computing, vol. 37, no. 1, pp. 55–69,
1996.

[38] C. E. Leiserson, “The cilk++ concurrency platform,” in DAC, 2009.
[39] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel

programming with cuda,” in SIGGRAPH, 2008.
[40] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming

standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, pp. 66–73, 2010.

[41] C.-Z. Xu and V. Chaudhary, “Time stamp algorithms for runtime
parallelization of doacross loops with dynamic dependences,” in TPDS,
2001.

[42] D.-K. Chen and P.-C. Yew, “On effective execution of nonuniform
doacross loops,” in TPDS, 1996.

[43] ——, “Redundant synchronization elimination for doacross loops,” in
TPDS, 1999.

[44] K. Ebcioglu and A. Nicolau, “A global resource-constrained paralleliza-
tion technique,” in ICS, 1989.

[45] K. S. McKinley, “Evaluating automatic parallelization for efficient
execution on shared-memory multiprocessors,” in ICS, 1994.

[46] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August,
“Automatic speculative doall for clusters,” in CGO, 2012.

[47] S. Campanoni, T. Jones, G. Holloway, G. Y. Wei, and D. Brooks, “The
helix project: Overview and directions,” in DAC, 2012.

[48] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August,
“Speculative parallelization using software multi-threaded transactions,”
in ASPLOS, 2010.

[49] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August, “Speculative decoupled software pipelining,” in PACT,
2007.

[50] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,” in
PLDI, 2011.

[51] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew, “Optimistic parallelism requires abstractions,” in PLDI,
2007.

[52] Z. Zhao, B. Wu, and X. Shen, “Challenging the ”embarrassingly se-
quential”: Parallelizing finite state machine-based computations through
principled speculation,” SIGPLAN Not., vol. 49, no. 4, pp. 543–558,
2014.

[53] M. Kumar, “Measuring parallelism in computation-intensive sci-
entific/engineering applications,” IEEE Transactions on Computers,
vol. 37, no. 9, pp. 1088–1098, 1988.

[54] X. Zhang, A. Navabi, and S. Jagannathan, “Alchemist: A transparent
dependence distance profiling infrastructure,” in CGO, 2009.

[55] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: rethinking
and rebooting gprof for the multicore age,” ACM SIGPLAN Notices,
vol. 46, no. 6, pp. 458–469, 2011.

[56] G. Tournavitis and B. Franke, “Semi-automatic extraction and exploita-
tion of hierarchical pipeline parallelism using profiling information,” in
PACT, 2010.

[57] W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A practical approach
to exploiting coarse-grained pipeline parallelism in c programs,” in
Micro, 2007.

[58] R. Eigenmann, J. Hoeflinger, and D. Padua, “On the automatic paral-
lelization of the perfect benchmarks (r),” IEEE Transactions on Parallel
and Distributed Systems, vol. 9, no. 1, pp. 5–23, 1998.

[59] M. A. Postiff, D. A. Greene, G. S. Tyson, and T. N. Mudge, “The
limits of instruction level parallelism in spec95 applications,” SIGARCH
Comput. Archit. News, vol. 27, no. 1, pp. 31–34, 1999.

[60] D. W. Wall, “Limits of instruction-level parallelism,” in ASPLOS, 1991.
[61] K. B. Theobald, G. R. Gao, and L. J. Hendren, “On the limits of program

parallelism and its smoothability,” SIGMICRO Newsl., vol. 23, no. 1-2,
pp. 10–19, 1992.

[62] N. Vachharajani, M. Iyer, C. Ashok, M. Vachharajani, D. I. August,
and D. Connors, “Chip multi-processor scalability for single-threaded
applications,” SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 44–
53, 2005.

[63] N. Murphy, T. Jones, R. Mullins, and S. Campanoni, “Performance
implications of transient loop-carried data dependences in automatically
parallelized loops,” in CC, 2016.

