
Nonlinearities in Cross-Country Growth

Regressions: A Bayesian Averaging of Thresholds

(BAT) Approach∗

Jesus Crespo Cuaresma†

University of Innsbruck

Gernot Doppelhofer‡

University of Cambridge

Revised version, February 2007

Abstract

We propose a Bayesian Averaging of Thresholds (BAT) approach for as-
sessing the existence and quantifying the effect of threshold effects in cross-
country growth regressions in the presence of model uncertainty. The BAT
method extends the Bayesian Averaging of Classical Estimates (BACE) ap-
proach proposed by Sala-i-Martin, Doppelhofer, and Miller (2004) by allowing
for uncertainty over nonlinear threshold effects. We apply our method to a
set of determinants of long-term economic growth in a cross section of 88
countries. Our results suggest that when model uncertainty is taken into ac-
count there is no evidence for robust threshold effects caused by the Initial
Income, measured by GDP per capita in 1960, but that the Number of Years
an Economy Has Been Open is an important source of nonlinear effects on
growth.

Keywords: Model Uncertainty, Model Averaging, Threshold Estimation,
Non-Linearities, Determinants of Economic Growth

JEL Classifications: C11, C15, O20, O50
∗We thank an anonymous referee, Theo Eicher, Chris Papageorgiou, Hashem Pesaran and

participants at the Econometric Research Seminar of the Institute for Advanced Studies, Vienna,
for helpful comments and discussions. All errors are our own.

†Department of Economics, University of Innsbruck, Universitätsstrasse 15, 6020 Innsbruck,
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1 Introduction

Following the influential contributions of Kormendi and Meguire (1985) and Barro

(1991), the empirical growth literature has used cross-country regressions to identify

variables that are robustly (partially) correlated to growth of per capita GDP. Many

different economic, social and political variables have been proposed as important

determinants of economic growth. Durlauf and Quah (1999), for instance, name

more than eighty variables that have been included at least once in a cross-country

growth regression. Brock and Durlauf (2001) refer to this problem also as “open-

endedness” of theories of economic growth.

Levine and Renelt (1992) gave a first assessment of the robustness of growth determi-

nants by applying a version of Leamer (1983)’s extreme bounds analysis. Levine and

Renelt checked for robustness when changing the set of conditioning variables and

concluded that almost no variable used by Kormendi and Meguire (1985) and Barro

(1991) is robustly correlated with average GDP per capita growth. Sala-i-Martin

(1997) criticizes the extreme bounds test as too strong for any variable to pass it

in the framework of empirical growth research. Instead Sala-i-Martin proposes to

analyze the entire distribution of coefficients of interest when changing the set of

explanatory variables. For computational reasons, both Levine and Renelt (1992)

and Sala-i-Martin (1997) restrict models to a particular size and fix a number of

regressors.

Bayesian model averaging (BMA) addresses model uncertainty over several dimen-

sions of the model space, such as the choice of explanatory variables and estimation

of associated parameters of interest or size of the model. The basic idea of model

averaging is essentially an application of Bayes rule, and can at least be traced back

to Jeffreys (1961). Leamer (1978, chapter 4) discusses model averaging in detail

in an important contribution and shows how to use either standard (conjugate)

Bayesian methods or limiting Bayesian cases, such as diffuse priors and sample-

dominated (Classical) priors. Following Leamer (1978), Sala-i-Martin, Doppelhofer

and Miller (2004) - henceforth SDM (2004) - introduce an approach which they call

Bayesian Averaging of Classical Estimates (BACE) which introduces minimal prior

information by using sample-dominated Bayesian priors and least-squares (Classical)

estimates. The resulting posterior model weights are proportional to the Bayesian

Information Criterion (BIC).1 Raftery (1995) also proposes to combine BIC model

1Wasserman (2000) contains a nice dicussion of BMA with Bayesian, limiting Bayesian (BIC)
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weights and maximum likelihood (OLS) estimates for model selection. SDM (2004)

differ from Raftery (1995) in the specification of prior probability over the model

space and sampling method. Our proposed BAT approach uses BACE to estimate

the posterior distribution of the parameter of interest. In particular, the prior over

the model space introduced in section 2.1 of this paper builds on the idea of spec-

ifying relatively parsimonious models a priori (see also Mitchell and Beauchamp,

1988, and SDM ,2004).

Several studies have applied model averaging techniques to growth empirics. Using

cross-country data, Fernandez, Ley and Steel (2001) and SDM (2004) find a sizeable

group of variables that are important determinants of long-term economic growth,

supporting Sala-i-Martin’s (1997) findings. However, all the methods mentioned

above approach the issue of model uncertainty in growth regressions under the as-

sumption that the relationship between the explanatory variables and the growth

rate is linear. This essentially implies that the effect associated with a particular

variable is constant across subsamples of the data used. Various deviations from

the linear paradigm have been tested in the empirical literature and there is ample

evidence of parameter heterogeneity, multiple regimes and threshold nonlinearities

in cross country growth regressions (see e.g. Durlauf and Johnson, 1995, Durlauf,

Kourtellos and Minkin, 2001, Masanjala and Papageorgiou, 2004, or Papageorgiou,

2002).2

Many theoretical growth models deliver multiple steady states (e.g. Azariadis and

Drazen, 1990). Masanjala and Papageorgiou (2004) explicitly model nonlinearities in

the aggregate production function. Easterly (2006) critically investigates the impor-

tance of “poverty traps” that have been very influential in economic policy-making,

motivating for example some of the “Millenium Goals” proposed by the United Na-

tions. The existence and economic importance of nonlinearities and threshold effects

among determinants of economic growth plays thus a major role in the present pol-

icy discussion on global development strategies.

In this paper we propose a Bayesian Averaging of Thresholds (BAT) approach that

explicitly allows for non-linearities in the form of level-dependent parameter hetero-

and alternative weights based on information criteria. For a further introduction to model averaging
see Hoeting, Madigan, Raftery and Volinsky (1999) or Doppelhofer and Durlauf (2007).

2Crespo Cuaresma (2002) presents a robustness exercise where threshold nonlinearity is explic-
itly accounted for but model size uncertainty is not dealt with.
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geneity as usually specified by threshold models (see Hansen, 1996, 2000). We allow

for uncertainty over possible threshold effects and associated threshold observations

by extending the BACE method of SDM (2004) and estimating the posterior dis-

tribution of these quantities of interest. Our proposed method estimates threshold

values under model uncertainty based on the inspection of the posterior inclusion

probability of the threshold parameter. Note that the distribution of threshold ef-

fects and interactions are calculated by averaging over many possible specifications

and are therefore not conditional on a particular model. The resulting inference and

policy analysis is therefore taking into account uncertainty over models, including

nonlinear effects.

The paper contributes to the literature on the empirics of economic growth nonlin-

earities as follows: First, our proposed BAT method estimates the entire posterior

distribution of thresholds and associated nonlinear effects. We only need to spec-

ify a set of candidate threshold variables (motivated by the literature on growth

nonlinearities discussed above) and prior parameters for the expected number of ex-

planatory and threshold variables being present in the model. Second, we show that

there is a relatively small set of robust nonlinear effects once we allow for uncertainty

over the number of threshold variables and threshold observations. In particular,

conditioning on the Number of Years an Economy Has Been Open affects the size

and significance of the effect of some other determinants of growth, whereas Initial

Income appears to play a much less prominent role as a threshold variable when

allowing for uncertainty over the number of variables causing nonlinearities. This

result can be contrasted with the vast evidence of (model specific) nonlinearities

found in earlier studies. Third, a technical contribution of the paper is to extend

the BACE sampling method to the estimation of the distribution of nonlinear ef-

fects and associated thresholds. A key role is played by the specification of priors of

inclusion of threshold variables and thresholds. We choose a relatively modest prior

model size, implying a preference for more parsimonious models a priori.

Our method is closely related to Bayesian methods of model-based clustering using

Bayes factors (see for example Fraley and Raftery, 2002, Handcock, Raftery and

Tantrum, 2007) and can be reinterpreted as a parametric cluster building proce-

dure such as that put forward in Raftery and Dean (2006). Although our proposal

differs from the recent literature in its implementation, it also makes use of model

averaging through Bayes factors and retains the modelling spirit of the Bayesian

model-based clustering literature. The BAT method is also closely related to the
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integrated BMA (or IBMA) approach used by Eicher, Papageorgiou and Roehn (this

issue). The main difference between BAT and this approach is the prior over the

model space and the sampling method discussed in section 2 below.

The paper is organized as follows. Section 2 presents the methodology proposed to

account for threshold nonlinearity in cross-country growth regressions in the pres-

ence of model uncertainty, which we call Bayesian Averaging of Thresholds (BAT).

Section 3 reports the results of the robustness analysis for a dataset formed by the 21

variables that SDM (2004) find robust in their analysis and two potential threshold

variables: Initial Income measured by the level of GDP per capita in 1960 and the

Number of Years an Economy Has Been Open. Section 4 concludes and presents

further paths of research.

2 Bayesian Averaging of Thresholds (BAT)

2.1 Thresholds and model uncertainty: BAT

The BAT approach is aimed at evaluating the existence and robustness of nonlin-

earities in regressions with model uncertainty. It is a generalization of the BACE

approach in SDM (2004) which allows for threshold effects of certain variables on

the regression parameters.

Consider a set of variables that are potentially related to growth, X, and a set of

variables that are potentially causing threshold-nonlinearity in the growth regres-

sion, Z. Z may or may not be a subset of X. The stylized nonlinear model we are

considering is

γ = α +
n∑

k=1

βkxk +
m∑

j=1

[
(α∗j +

n∑

k=1

β∗jkxk)I(zj ≤ τj)

]
+ ε, (1)

where γ is a vector of T observations of growth rates of GDP per capita, x1, . . . , xn

∈ X, z1, . . . , zp ∈ Z, I(·) is the indicator function, taking value one if the argu-

ment is true and zero otherwise and ε is an error term assumed uncorrelated across

cross-sectional units and with constant variance σ2. There are therefore m variables

inducing nonlinearity in equation (1). For simplicity we assume that the nonlin-

earity which is induced by variable zi is independent from the regime in which an

observation is according to another threshold variable zj, for i 6= j. Although the

BAT method can be generalized in a straightforward manner to the setting with
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dependent nonlinearities, this assumption avoids having to use cross-products of

indicator functions in (1), which would increase the computational time of the pro-

cedure significantly.

Since we are explicitly dealing with model uncertainty, n and m are not assumed to

be known. In the spirit of SDM (2004), we assume prior inclusion probabilities for

the elements of X and Z. In particular, we assume a prior inclusion probability of

n̄/N for the variables in X and a prior inclusion probability of m̄/M for the variables

in Z, where N = card(X) and M = card(Z). This choice of prior inclusion probabil-

ity implies a prior preference for relatively parsimonious models.3 This implies that

the prior expected number of included X-variables in the regression (excluding the

constant) is n̄ and the prior expected number of variables inducing nonlinearities is

m̄, leading to an expected model size of (n̄ + 1)(m̄ + 1). Figure 1 shows the implied

prior distributions of our benchmark case with prior model sizes n̄ = 5, m̄ = 1, as

well as the uniform prior case with n̄ = 10.5, m̄ = 1. Notice that we use a uniform

prior of including threshold variables in Z, implying prior inclusion probability equal

to 0.25, 0.5 and 0.25 for including no threshold, one threshold and two threshold

variables, respectively.

Given the choice of regressors from X and threshold variable from Z we proceed as

follows to choose a threshold value zj. We assign a diffuse prior to values of zj ac-

tually observed in the sample after trimming 100×θ% of the observations from each

extreme of the empirical distribution. We impose this trimming of the distribution

to avoid that one of the resulting regimes contains too few observations which could

lead to unreliable estimation results. Therefore, the prior inclusion probability of

zj,i (observation i in threshold variable zj) as a threshold in (1) conditional on the

inclusion of zj as a threshold variable is uniform and given by 1/[T (1− 2θ)].4

It should be noted that this prior specification for the threshold values uses sample

information and could thus be controversial if the Bayesian approach is to be taken

3For a discussion of a prior with a mass at zero corresponding to the prior probability of
exclusion see Mitchell and Beauchamp (1988). The choice of prior model size can be contrasted
with a uniform prior probability over the space of models which implies a prior inclusion probability
equal to 1/2 for variables in X and Z.

4For two consecutive ordered observations zj,i and zj,i+1, any threshold value τj in the interval
[zj,i, zj,i+1) leads to the same variable I(zj ≤ τj). This implies that we only need to define a discrete
prior probability for each realized value of zj , instead of a continuous prior density on the support
of zj .
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Figure 1: Prior Probabilities by Model Size: Benchmark BAT Case with Prior Model

Sizes n̄ = 5, m̄ = 1 and Uniform Prior with n̄ = 10.5, m̄ = 1.
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literally. A related issue is the ordering of variables in the cross-sectional context,

which is straightforward in the time-series context.5 We proceed in the estimation

by assuming a “natural ordering” of threshold variables Z from smallest to largest

realized value and applying the trimming and selection of threshold to the ordered

observations. Given the obvious difficulties involved in setting bounds to the prior

distribution of the threshold values without observing the realized sample of the

threshold variable and since using sample information for the prior specification is

standard in the Bayesian literature of threshold estimation (see, for example, Koop

and Potter, 1999), we decided to use this mixed approach to threshold estimation

(see Phillips (1991) for a reference to this controversy).

Given the setting put forward above, the prior probability attached to a model

5We thank Hashem Pesaran for raising this point in discussions with us.
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containing n X-variables and m threshold variables with thresholds {τ1, . . . , τm} is6

P (Mn,m,τ1,...,τm) = (n̄/N)n(1− n̄/N)N−n(m̄/M)m(1− m̄/M)M−m[1/[T (1− 2θ)]]m.

(2)

With this diffuse prior specification and further assuming a diffuse prior with respect

to σ, the odds ratio for two models can be approximated (see Leamer, 1978, and

Schwarz, 1978) as

P (M0|Y )

P (M1|Y )
=

P (M0)

P (M1)
T (k0−k1)/2

(
SSE0

SSE1

)−T/2

, (3)

where ki is the size of model i, P (·|Y ) refers to posterior probabilities and SSEi is

the sum of squared residuals from the estimation of model i. Therefore, given our

model space M the posterior probability of model i can be computed as

P (Mi|Y ) =
P (Mi)T

−ki/2SSE
−T/2
i∑card(M)

j=1 P (Mj)T−kj/2SSE
−T/2
j

. (4)

The posterior model probabilities allow us to easily compute the first and second

moment of the posterior densities of the α, β and τ parameters in (1), given by

E(ξ|Y ) =

card(M)∑

l=1

P (Ml|Y )E(ξ|Y, Ml) (5)

and

var(ξ|Y ) =

card(M)∑

l=1

P (Ml|Y )var(ξ|Y, Ml) +

+

card(M)∑

l=1

P (Ml|Y )(E(ξ|Y, Ml)− E(ξ|Y ))2 (6)

where ξ is the parameter of interest and E(ξ|Y, Ml) is the OLS estimator of ξ for

the constellation of X- variables, Z-variables and threshold values implied by model

l. The posterior probability that a given X-variable, Z-variable or threshold value is

part of the regression can be computed as the sum of posterior model probabilities

of those models containing the variable or threshold value of interest.

6This is the prior model probability assuming that there are no repeated observations in the
central 100(1-2θ)% of the empirical distribution of the variables in the Z group. If an observation
for variable zj repeated r times, its prior inclusion probability as a threshold value conditional on
the inclusion of zj as a threshold variable would be r/[T (1 − 2θ)], and P (Mn,m,τ1,...,τm) could be
adjusted conveniently.
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2.2 Random sampling in the BAT framework

For reasonable sizes of X and Z the number of possible regressions is enormous.7 We

are therefore estimating the posterior model probabilities (4) and posterior moments

(5), (6) of the parameter of interest ξ by drawing directly from its posterior distribu-

tion. The results presented below are calculated using a random sampling procedure

proposed by SDM (2004).8 The random sampler (RS) uses prior inclusion proba-

bilities of variables in X and Z and the uniform prior over threshold values zj to

obtain (5), (6) and the posterior inclusion probabilities for X- variables, Z-variables

and threshold values. The sampling design is as follows.

1. We sample nj variables from X and mj variables from Z. Each variable in

these sets has an inclusion probability of n̄/N and m̄/M for the set X and Z

respectively.

2. For each one of the mj Z-variables sampled, we independently sample a thresh-

old value from the empirical distribution of realized values after trimming

100× θ% of the observations from the extremes.

3. Equation (1) is estimated for the constellation of variables and threshold val-

ues which has been sampled. The information necessary in order to obtain

equations (4), (5) and (6) are saved for the model sampled.

4. Steps 1.-3. are replicated R (a large number of) times and (4), (5) and (6)

are computed using the replicated models, replacing card(M) by R. Changes

in parameters of interest are monitored to ensure convergence of averages of

sampling distributions to the posterior distribuition9.

The procedure allows us to obtain the posterior inclusion probability of all possible

interactions of variables in X with indicator functions for a given variable of Z and

a threshold value zj. This posterior inclusion probability is computed as the sum

of posterior model probabilities for models including that threshold variable and

7Notice that for a given Z-variable, T (1− 2θ) threshold values are possible, and each threshold
value defines a different model in our setting. This implies that, for a given group of X variables
and two threshold variables, [T (1−2θ)]2 models are possible. For example, if T=90, θ=0.15, N=20
and M=2, M contains more than 4200 million models.

8For details see the Technical Appendix to SDM (2004), which is available at:
www.econ.cam.ac.uk/doppelhofer.

9See Doppelhofer and Durlauf (2007) for a discussion of model averaging techniques.
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threshold value and allows us to obtain an estimate for the threshold value corre-

sponding, for instance, to the mode of the posterior inclusion probability. Compar-

isons with the prior inclusion probabilities enable us to identify the threshold values

whose inclusion probability increases or decreases after observing the data. In a

similar fashion, the nonlinear effect can be evaluated by computing the posterior

expected value and posterior variance of the parameter of the interaction for the

corresponding threshold value.

3 Nonlinearities and growth: Empirical applica-

tion

In this section we apply the BAT procedure to a reduced set of growth determinants

in order to evaluate the existence and nature of nonlinearities in growth regressions.

We choose the 21 variables that SDM (2004) find to be robustly related to growth

using the (linear) BACE approach as the set X. The variables are presented in a

table in the Data Appendix,10 For this application, we will use a relatively small

group of variables as Z, formed by two variables that have often been reported

to cause threshold-nonlinearity in growth regressions: the initial level of GDP per

capita and the proportion of years an economy has been open between 1950-1994

according to the criteria in Sachs and Warner (1995). Durlauf and Johnson (1995),

Hansen (2000), Masanjala and Papageorgiou (2004) and Crespo Cuaresma (2002)

report evidence on nonlinearity induced by initial GDP per capita levels. Papageor-

giou (2002) finds evidence that sets of countries with different openness levels tend to

differ in the statistical model relating economic growth to other economic variables.11

The results presented below were obtained with ten million replications of the BAT

procedure with random sampling setting n̄=5, m̄=1 and θ = 0.15. We also ran

the BAT procedure with other parameter constellations and the results concerning

the existence and nature of nonlinearities appear robust to sensible changes in the

expected number of included variables in the X group, n̄, the expected number of

10The first 18 variables are robustly related to growth meaning that, in the linear BACE setting,
the posterior inclusion probability is higher than the prior inclusion probability. The other three
variables used as part of X (DENS60, RERD and OTHFRAC) are marginally related to growth:
the posterior inclusion probability is slightly smaller than the prior inclusion probabilities, but
their corresponding effect is estimated with high precision when they are included in the growth
regression. The full set of countries included in the analysis can be found in SDM (2004).

11See also Huang and Chang (2006) and Papageorgiou (2006).
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Figure 2: Posterior and prior inclusion probability, threshold value in Initial GDP

per capita
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included variables from the Z group, m̄ and the trimming parameter.

Figure 2 and Figure 3 present the posterior inclusion probabilities for the thresh-

old value in all possible interactions of the X group variables with each one of the

threshold variable (initial GDP per capita in 1960 in Figure 2 and number of years

an economy has been open in Figure 3). The prior inclusion probability for each

realized value is also plotted in the figures.12 While in the case of initial income

the prior inclusion probability is the same for all threshold values, in the case of

the openness variable the repetition of identical values in the sample leads to dif-

ferent prior inclusion probabilities for each potential threshold value. The most

remarkable feature of the posterior inclusion probabilities of the threshold values

12For a given interaction and a threshold value, the prior inclusion probability is given by the
product of the prior inclusion variable of the corresponding X variable (n̄/N), the corresponding
Z variable (m̄/M) and the corresponding threshold value (r/[T (1− 2θ)], where r is the number of
times the threshold value is repeated in the range of potential threshold values of the Z variable).
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Figure 3: Posterior and prior inclusion probability, threshold value in proportion of

Years Open
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for initial GDP per capita is that they systematically fall below the prior inclusion

probability, therefore lending little evidence to the existence of threshold nonlinear-

ities caused by initial development levels once that model uncertainty is explicitly

taken into account. The bigger bulk of posterior inclusion probability appears for

many interactions in the interval between 7.26 (corresponding to the initial GDP

per capita of Malaysia) and 7.45 (corresponding to the initial GDP per capita of

Algeria). It should be noted that for simulations run setting m̄=2 (that is, consid-

ering only nonlinear threshold models with both threshold variables as the relevant

class), posterior inclusion probabilities in this range appeared greater than the prior

inclusion probabilities, but as long as model uncertainty with respect the existence

of nonlinearities is taken into account (that is, for parameter constellations with

m̄ < 2 such as the one reported here), the evidence of threshold effects caused by

initial income disappears.

The importance of model uncertainty in this setting appears even more evident if

the results are compared with those in Crespo Cuaresma (2002), who performs a

similar analysis without taking into account uncertainty in model size and in the

nature of the threshold variable. Crespo Cuaresma (2002) obtains model averaged

estimates from specifications with a given number of regressors and a fixed thresh-

old variable, but uncertainty about the threshold value. With these assumptions,

Crespo Cuaresma finds strong evidence of nonlinearities induced by the initial level

of GDP per capita. The results in our BAT analysis, however, imply that initial

income is no longer a robust threshold variable once uncertainty about the number

of threshold variables and implied model size is taken into account. Our findings

therefore shed new light on the results in Crespo Cuaresma (2002) and other con-

tributions referred to above.

In Figure 3 the posterior inclusion probabilities for the threshold value correspond-

ing to the openness variable are presented. In the case of this threshold variable

posterior inclusion probabilities are higher than prior inclusion probabilities in the

range delimited by 0.22 (corresponding to the openness experience of Gambia and

Ghana in our sample) and 0.33 (the proportion of years open for Nicaragua and

Syria in our data) for the interactions with the following variables: the regression

intercept, East Asian dummy, primary schooling 1960, investment price, fraction

of tropical area, malaria prevalence, life expectancy in 1960, African dummy, Latin

American dummy and Spanish colony. For these variables, Table 1 presents the

posterior mean and standard deviation of β and β∗ in (1) conditional on inclusion

12



Variable β: Posterior mean β: Posterior s.d. β∗: Posterior mean β∗: Posterior s.d.
Intercept 0.060352 0.022257 -0.009038 0.014481
East Asian dummy 0.019399 0.006475 -0.038349 0.010120
Primary schooling 1960 0.025717 0.010226 0.017526 0.015585
Investment price -0.000083 0.000027 0.000011 0.000085
Fraction tropical area -0.013797 0.004492 0.008528 0.008710
Malaria prevalence -0.011639 0.008979 -0.018294 0.019087
Life expectancy 1960 0.000708 0.000351 -0.000719 0.000653
African dummy -0.008482 0.011845 -0.031641 0.009293
Latin American dummy -0.012638 0.005627 0.008361 0.007484
Spanish colony -0.009723 0.005534 0.010712 0.007640

Values obtained with ten million replications of the BAT procedure for the group of robust variables

in SDM (2004) (first 21 variables in the Data Appendix), for n̄=5, m̄=1 and θ = 0.15. Posterior

mean and standard deviation of β∗ evaluated at the threshold value of openness corresponding to

the mode of the posterior inclusion probability of each interaction reported.

Table 1: Posterior mean and standard deviations of β and β∗ conditional on inclusion

for openness as a threshold variable

of the respective variables, evaluated at the threshold value of the openness variable

corresponding to the mode of the posterior inclusion probability for each interac-

tion. In this case, similar results concerning the importance of trade openness as a

threshold variable are obtained if model size and threshold variable uncertainty is

not taken into account. Crespo Cuaresma (2002) reports strong evidence of nonlin-

ear effects induced by this openness variable, and the analysis in this study reinforces

this result and proves that the threshold effects reported in the literature tend to

be robust to broader definitions of model uncertainty such as the one employed here.

The interaction effect is very well estimated for the case of the East Asian and

African dummies, and the results shed an interesting light on the effects which are

picked up by these variables in cross country growth regressions. The posterior mean

of the East Asian dummy parameter (conditional on inclusion) corresponding to the

regime of “open countries” (defined by a threshold parameter of 0.22 in the variable

“Years open”, which corresponds to the mode of the posterior inclusion parameter)

is very similar to the result obtained in SDM (2004)13 for the linear setting and is

13In SDM (2004)’s results, the East Asian dummy is found to be the most robust variable of a
set of 67 growth determinants. Conditional on inclusion of this variable in the linear setting, the
posterior mean of the parameter attached to the dummy in SDM (2004) is 0.022, with posterior

13



estimated very precisely. The posterior mean of the additive effect for observations

in the regime of “closed countries” is -0.038, with a posterior standard deviation of

0.010, which deems the positive effect of the East Asian dummy inexistent for this

subsample. This result implies that the positive and robust coefficient found for the

East Asian dummy in other studies is driven exclusively by a group of East Asian

countries which were relatively open (as defined by the threshold estimate) in the

period under analysis. If the East Asian dummy was to be interpreted in a geo-

graphical sense, our results indicate that it is trade institutions and economic policy

that make a difference in the growth experience of East Asia. A similar conclusion is

reached for the case of the African dummy: when the interaction effects with open-

ness are taken into account, this variable appears only robust and estimated with a

high degree of precision in the regime corresponding to the subsample of relatively

closed countries. Furthermore, the quantitative effect in this regime is estimated to

be higher in absolute value than the linear elasticity obtained in SDM (2004).14

These results suggest that these regional dummies are basically picking up the effect

of subsamples of countries with a differential openness experience in the period under

consideration. Our results, thus, call for care in the interpretation of the parameters

associated to such regional dummies, since they appear to be mainly picking the

effect of trade policy on economic growth. The result is of particular importance

since the East Asian and African dummy tend to appear systematically robust in

linear growth regression settings and are routinely included as control variables in

the empirical implementation of models of economic growth.

4 Conclusions and further research

In this paper we have proposed a Bayesian Averaging of Thresholds (BAT) approach

that jointly investigates uncertainty over explanatory variables and threshold effects.

Our methodology makes use of Bayesian model averaging in the spirit of SDM (2004)

and puts forward a method for estimating thresholds in the presence of model un-

certainty based on the evaluation of the posterior inclusion probability of potential

threshold values. We apply our BAT method to a set of explanatory variables that

were found to be robustly related to long-term growth in the linear setting by SDM

standard deviation of 0.006.
14The posterior mean conditional on inclusion for the African dummy in SDM (2004) is -0.015,

with a posterior standard deviation of 0.007.
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(2004) and two threshold variables that have been suggested by the literature on non

linearities and growth, initial GDP per capita and the number of years an economy

has been open.

The results suggest that the nonlinear growth effect that the initial level of income

has been shown to have in other empirical studies (see for instance Durlauf and

Johnson, 1995, and Hansen, 2000) is not robust when model uncertainty (in the

sense of uncertainty about the size of the model, the threshold values and the na-

ture of the interactions) is explicitly taken into account. On the other hand, we

find evidence for robust interaction effects of several variables with the number of

years an economy has been open since 1950. In particular, our results imply that

the widely used East Asian dummy and African dummy are basically picking up the

effect of subsamples of countries with a high and low degree of openness, respectively.

We are working on extending our approach in several ways. The combination of un-

certainty on the existence of nonlinearities and the structure of the covariance matrix

of the error term in our BAT framework can be a fruitful avenue of future research

in this topic. This method can be embedded in methods of Bayesian model-based

clustering. Finally, our BAT approach can be readily extended to more complex

models with a larger number of nonlinearities. Stratified sampling (see SDM, 2004)

and Markov-Chain Monte Carlo model composite methods may prove to be useful

in the implementation of our model averaging methodology for larger models.
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A Data Appendix

Rank Short Name Variable Description PIP Mean S.D.

Dep. GROWTH Growth of GDP per capita – 0.0182 0.019
Var. at PPP between 1960–1996. 1

1 EAST East Asian Dummy 0.82 0.11364 0.31919
2 P60 Primary Schooling Enrollment 0.80 0.72614 0.29321
3 IPRICE1 Investment Price 0.77 92.47 53.68
4 GDPCH60L Log GDP in 1960 0.68 7.35494 0.90108
5 TROPICAR Fraction of Tropical Area 0.56 0.57024 0.47160
6 DENS65C Population Coastal Density 0.43 146.87 509.83
7 MALFAL66 Malaria Prevalence 0.25 0.33943 0.43089
8 LIFE060 Life Expectancy 0.21 53.72 12.06
9 CONFUC Fraction Confucian 0.21 0.01557 0.07932
10 SAFRICA Sub-Saharan Africa Dummy 0.15 0.30682 0.46382
11 LAAM Latin American Dummy 0.15 0.22727 0.42147
12 MINING Fraction GDP in Mining 0.12 0.05068 0.07694
13 SPAIN Spanish Colony Dummy 0.12 0.17045 0.37819
14 YRSOPEN Years Open 1950-94 0.12 0.35545 0.34445
15 MUSLIM00 Fraction Muslim 0.11 0.14935 0.29616
16 BUDDHA Fraction Buddhist 0.11 0.04659 0.16760
17 AVELF Ethnolinguistic Fractionalization 0.10 0.34761 0.30163
18 GVR61 Gov’t Consumption Share 0.10 0.11610 0.07454
19 DENS60 Population Density 0.09 108.07 201.44
20 RERD Real Exchange Rate Distortions 0.08 125.03 41.71
21 OTHFRAC Fraction Speaking Foreign Language 0.08 0.32092 0.41363

Explanatory variables are ranked by Posterior Inclusion Probability P (ξj 6= 0|Y ) (PIP) using the

BACE method (SDM, 2004). The set of regressors X is given by variables 1 to 21. The threshold

variables Z are ranked 4 (Log GDP in 1960) and 14 (Years Open 1950-94), respectively, but this is

not necessarily informative of their role as threshold variable. Variables ranked 22 to 67 by SDM

(2004) were not included in the results presented but are available at

http://www.econ.cam.ac.uk/faculty/doppelhofer/research/bace.htm.
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