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Abstract 

Steering feel, or steering torque feedback, is an important aspect of a vehicle’s dynamic behaviour and 

may become more significant in the transition between conventional and automated control. However, 

there is very little theoretical understanding of its role. The evaluation of steering feel mainly relies on 

subjective-objective correlation, which turns the subjective ratings of steering feel into objectively 

measurable metrics. Consequently, this aspect of vehicle development is time consuming, expensive, 

and probably suboptimal. Therefore, the aim of the research is to improve theoretical understanding of 

steering feel by measuring, understanding, and modelling a driver’s subjective and objective responses 

to steering torque feedback. This work builds upon and complements earlier work that investigated the 

role of vestibular feedback in car driving.  

A new driver-steering-vehicle model incorporating steering torque feedback is developed for both linear 

and nonlinear steering dynamics. The underlying hypothesis is that a human driver obtains an internal 

mental model of the steering and vehicle dynamics, the neuromuscular dynamics, and the sensory 

systems, which plays a significant role in sensory perception, cognitive control, and neuromuscular 

action. The effects of the model parameters on the dynamic behaviour of the driver-steering-vehicle 

system are demonstrated through a comprehensive parameter study.  

Experiments are devised and performed on a fixed-base driving simulator to identify the unknown 

parameters of the model so that the driver model is enabled to represent realistic driving behaviours. 

The objective and subjective experimental data are analysed using rigorous statistical methods to obtain 

a fundamental understanding of the driver’s steering control behaviour with different steering properties 

and driving conditions. In general, it is found that with an increase in steering system friction level, the 

driver’s steering control performance deteriorates, and the subjective evaluation of steering feel is 

perceived as worse.  

An identification procedure is initially developed to fit the linear model predictions to measured steering 

responses in the linear phase of the experiments. The model is found to fit the measured results well 

under a wide range of conditions, and the identified parameter values are found to be physically 

plausible. The validity of the identification procedure to find accurate model parameters and the validity 



of the model structure to describe realistic driver steering control behaviours are checked against 

experimental and simulation results.  

The identification and validation procedures are then adjusted to account for challenges of finding 

parameter values for the nonlinear model. The model structure is found to accurately predict the 

deterministic component of a driver’ steering control of a vehicle with nonlinear steering system friction. 

The identified process noise level is found to increase with the increase in steering system friction. 

However, the possibility that drivers may use an intermittent and threshold-driven control strategy 

which might explains the identified increasing trend is not examined. A series of simulations is used to 

investigate the correlations between the model and the driver’s subjective assessment of the vehicle 

steering quality. It is shown that the model has the potential to explain and predict the driver’s subjective 

and objective responses to steering torque feedback.  
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Chapter 1 

Introduction 

 

Steering feel, or steering torque feedback, is important aspect of dynamic properties of vehicles and has 

been devoted significant attention to by vehicle manufacturers. The vehicle steering system mainly 

serves two functions: enabling the tracking and road holding abilities of the vehicle through a steering 

effort from the driver and informing the driver about the driving environment and vehicle response. 

During vehicle steering, lateral forces generated by the tyres on the front axle are communicated to the 

driver through torque at the steering wheel, and this can give the driver useful information about the 

vehicle states. Steering feel, resulting from the interaction between the driver and the vehicle through 

the steering wheel, not only influences the ability of the driver to control the vehicle accurately and 

safely, but also affects the driver’s subjective assessment of the vehicle’s dynamic qualities upon 

steering through sensation of steering control, vehicle response and haptic feedback [1].  

Although autonomous steering control is a maturing technology, the dynamic interaction between the 

human occupants and the vehicle is still important because the human driver is likely to retain a role in 

controlling the vehicle for at least part of its operating cycle. In fact, steering torque feedback may play 

a more significant role in the transition between conventional and automated vehicles [2]. Advanced 

Driver Assistance Systems (ADAS) with partial level of automation have been widely implemented to 

improve driving safety over the years [3]. However, the automated steering system always leads to 

unsatisfactory steering feel in the human-automation haptic shared steering control driving scenario as 

the behaviour of the driving assist system is difficult to be captured by the human driver [4]. In addition, 

driving a vehicle equipped ADAS normally requires transition between full automated control and full 

human control. During this transition, the human driver must undergo a period of adaptation to become 

familiar with the dynamics of the vehicle and settle on a stable control strategy, and this adaptation 

process is significantly affected by the human driver’s subjective steering feel [5].  



                                                                                  2     

 

Despite the importance of steering feel, or steering torque feedback, the subjective nature makes it 

difficult to be quantified. The subjective-objective correlation method is the most established technique 

used to evaluate steering feel in the automotive industry. Objective metrics are normally extracted from 

the results of objective assessments based on standard manoeuvres. Subjective ratings are typically 

gained from expert drivers according to questionnaires. The recorded objective metrics are then 

correlated with the subjective ratings by using linear regression or nonlinear analysis to provide a 

method of predicting the human driver’s subjective assessment of steering feel. Typical examples of 

this technique are seen in [6] [7] [8] [9] [10] etc. Although some strong correlations were found between 

subjective ratings and objective metrics, they are limited to the range of experimental conditions and 

there is lack of theoretical understanding of these correlations. In addition, the wide range of objective 

parameters, subjective parameters and test conditions make the studies difficult to be evaluated. Sharp 

[11] criticized the subjective-objective correlation technique by listing noticeable difficulties and 

warned that the findings from these studies can subsequently been proven unreliable. In addition, Cole 

[2] pointed out that continual vehicle chassis technology development is expanding the vehicle 

performance envelope to a range where the extrapolation of current correlation models are inaccurate. 

Consequently, this aspect of vehicle development is time consuming, expensive and suboptimal. The 

on-centre regime of operation is experienced by most drivers most of the time, and therefore contributes 

significantly to the human driver’s subjective assessment of feel. 

Based on the background information, the main aim of the research is: 

to improve theoretical understanding of the subjective assessment of steering feel, or steering torque 

feedback by measuring, understanding and modelling a driver’s subjective and objective responses to 

steering torque feedback, especially for on-centre steering.  

It is advocated that a driver model capable of representing the driver’s cognitive and physiological 

processes can potentially provide insight into subjective assessment of steering feel [2]. With such a 

model, the unreliability of subjective-objective correlation method can be avoided, and the present or 

future chassis technology can be optimized mathematically in the design phase. In this research, a 

mathematical closed-loop driver-vehicle model incorporating steering torque feedback is developed 

based on previous work on developing physiologically-based models of the driver to predict the driver-

vehicle closed loop system behaviour such as [12] [13] [14] [15] [16] [17] [18] [19] [20] etc. The 

underlying hypothesis of the research is that a human driver obtains an internal mental model of the 

steering and vehicle dynamics with the driver’s neuromuscular dynamics and sensory systems, which 

is used in sensory perception, cognitive control, and neuromuscular action.  

Based on the aim of this research, the reminder of the thesis is organised as follows: 

Chapter 2 reviews the relevant literature regarding current methods for evaluating the human driver’s 

perception of steering feel, including the objective assessment, the subjective assessment and the 
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correlations between the subjective and objective data, and the techniques for modelling the steering 

system and the driver for developing the closed-loop physiologically-based driver-steering-vehicle 

model. The objectives of the research are defined based on the literature review. 

Chapter 3 presents the novel mathematical driver-steering-vehicle model incorporating steering feel 

with a comprehensive parameter study to confirm correct operation of the developed model. Initially, a 

linear model for the linear steering and vehicle dynamics is developed by taking all the essential parts 

into account. The model is then extended to account for nonlinear steering dynamics, especially 

nonlinear steering system friction.  

Chapter 4 describes the development of a fixed-base driving simulator and a series of driving 

experiments performed on the simulator. The results of the driving simulator experiments are analysed 

by using rigorous statistical methods to investigate the effects of steering torque feedback and the 

nonlinear steering dynamics on the human driver’s steering control performance and the subjective 

evaluation of steering properties of the vehicle. 

Chapter 5 presents an identification procedure used to find the unknown parameter values for the linear 

driver model by fitting the driver-steering-vehicle model predictions to the results of the linear phase of 

the driving simulator experiments. The validity of the identified linear driver model in replicating 

realistic driver steering control behaviours and the validity of the identification procedure in converging 

to the correct model parameter values are also examined. 

Chapter 6 presents the identification of the driver model structure controlling a vehicle with nonlinear 

steering dynamics and demonstrates the ability of the model to predict the human drover’s objective 

and subjective responses of steering torque feedback. Limitations of the model are also pointed out. 

Chapter 7 summarises the main findings and conclusions and presents future work. 

 



2.1 Introduction                                                                                   4     

 

 

 

 

Chapter 2 

Literature Review  

 

2.1 Introduction  

In this chapter, published literature relevant to the human driver’s perception of the steering quality of 

the vehicle is reviewed, mainly regarding but not limited to the on-centre regime of operation. On-

centre steering is associated with the vehicle travelling in a nominally straight line, and steering inputs 

are such that lateral accelerations of the vehicle are normally no greater than about 2ms-2. This regime 

of operation is perhaps experienced by most drivers most of the time in daily life and thus may 

contribute significantly to the human driver’s assessment of the steering and vehicle quality. Outside of 

this regime, the steering operates in the off-centre and limit handling regimes. The steering system has 

been considered a much more significant factor in the on-centre region than the other operating 

conditions due to the high-steering system compliance because of the small amount of power assistance.  

This review focuses on literature that considers the conventionally mechanical steering system, 

normally consisting of a steering hand wheel connected via a shaft (column) to a rack and pinion, 

usually with power assist elements (hydraulic or electric). Nowadays, the exponential growth of the 

development of advanced steering technologies such as steer-by-wire (SBW) and four-wheel steer has 

allowed the vehicle responses to the steering inputs to be adjusted with more freedom. However, the 

limited theoretical understanding of the interaction between the steering and vehicle system and the 

steering torque feedback has prevented high-quality design of these systems.  

Section 2.2 describes the methods for the objective assessment of steering feel, or steering quality of 

the vehicle. The methods for the subjective assessment of steering feel and the correlation between the 

objective and subjective data are reviewed in Section 2.3 and Section 2.4, respectively. The method 

combining the analytical steering system model and the vehicle dynamics for the investigation of the 

steering quality at low acceleration has been appreciated by many researchers. Therefore, a 
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comprehensive review of the use of mathematical models in predicting steering characteristics has been 

carried out in Section 2.5. Mathematical models representing the human driver’s physiological 

behaviour are summarised in Section 2.6. Finally, conclusions along with shortcomings of current 

approaches and objectives for this research are presented in Section 2.7. The aim of this chapter is to 

critically review the most relevant published literature and summarise existing knowledge in order to 

provide a basis for further study into the objective and subjective assessments of steering feel, or 

steering torque feedback under on-centre steering regime. 

 

2.2 Objective Assessment  

In this section, objective methods for the evaluation of steering quality are reviewed. Specifically, this 

section concerns both on-centre steering and off-centre steering of passenger cars. Some studies about 

other vehicle types and research purposes, such as heavy vehicles or handling properties, are also 

included. Although they are not within the scope of the research, it is helpful to identify the vehicle 

manoeuvres employed, the measurements recorded, and the performance metrics derived in the general 

field of the research.  

 

2.2.1 Test Vehicles 

Different vehicle types and the numbers of test vehicles employed in the investigation contribute to the 

diversity of previous studies. For example, Jaksch [21] and Farrer [22] only used two passenger cars in 

their studies. However, adjustments were made to provide a wide range of on-centre handling properties. 

By contrast, Harrer’s study [8] involved over twenty passenger cars, instead of using a small number of 

vehicles with various configurations, concentrating on vehicle handling and steering feel. Additionally, 

a wide range of test vehicles varying from heavy trucks to driving simulators is covered, although 

passenger cars are the most common test vehicles. Rothhämel [23] [24] investigated the steering feel 

and vehicle handling characteristics of trucks by using a moving-base driving simulator, to test sixteen 

steering systems with variation in the inertia, stiffness, damping and friction. He justified the use of a 

driving simulator as a practical solution to investigating large variations in vehicle and steering 

parameters. However, he also admitted that a simulator (even a moving-base simulator) never feels 

exactly like an actual vehicle because there are always limitations to the reproduced motions. A similar 

conclusion was drawn by Aurell [25]. Even within the type of passenger cars, some researchers also 

distinguished different vehicles classes (e.g., the C-, D-, E- and SUV-classes and the sport cars), by 

considering that different vehicle dynamic behaviours are expected, such as Kim [26] and Nybacka [9] 

[27].  
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2.2.2 Test Manoeuvres 

Objective testing manoeuvres were normally well defined by standards from vehicle dynamics 

communities. This section summarises several representative examples from previous studies. However, 

there is a lack of clarity with respect to interpreting the results, and it is also necessary to note that a 

number of studies have not explained the objective testing manoeuvres used. 

Segel [28] performed one of the earliest studies of driver-vehicle interaction in steering activities, and 

he employed a steady turn of 0.2g lateral acceleration and fast passing manoeuvres on narrow (8-feet 

wide) lanes. Jaksch [21] of Volvo reported extensively on several experimental and theoretical studies 

to understand steering control quality in a transient steering manoeuvre. The manoeuvre consisted of 

an ISO lane change with maximum lateral accelerations higher than 2ms-2. Therefore, the steering was 

not limited to the on-centre region, but this work is referenced by many later studies of on-centre 

steering quality. 

Norman [29] of General Motors identified on-centre steering behaviour as requiring special attention, 

and he described a weave test that is widely used today. The test involves driving at a fixed speed of 

100km/h along a nominal straight line and then applying a sinusoidal steering wheel angle at a specified 

frequency (0.2Hz) and an amplitude (2ms-2). A weave test is now defined in an ISO standard [30]. Farrer 

[22] and Somerville [31] also performed a weave test with a steering frequency of 0.2Hz. Maximum 

lateral acceleration of 1ms-2 was chosen to keep the hysteresis end-effects away from the on-centre 

region of interest (0.5ms-2). (Farrer’s definition of the on-centre region (0.5ms-2) differs considerably 

from that of Norman (2ms-2). The use of weave tests was also reported in Sato et al [32], Harnett [33], 

Harrer [8], Rothhämel [24], Dang [34]’s work, and a series of papers by engineers from Honda [35] 

[36] [37] [38], although the frequencies and amplitudes of the steering inputs may differ from each 

other.  

In addition to a weave test, Farrer [22] and Somerville [31] also performed a transition test that involved 

turning the steering wheel slowly away from the straight-ahead position until the rate of change of 

steering hand wheel torque and the vehicle response had stabilised with respect to steering hand wheel 

angle, typically 2Nm and 2degree/s. Both tests were performed at a vehicle speed of 100km/h. Farrer 

[22] argued that the transition test allowed features of on-centre steering quality that could not be 

identified from the weave test to be identified. A transient test was also incorporated into an ISO 

standard [39]. Harnett [33] included the transition tests defined in ISO standard to exam the off-centre 

region of vehicle handling. 

Siegler [40] included four tests: steady-state circle test, ramp steer test, and on-centre and off-centre 

sinusoidal steering hand wheel angle input tests. In more recent studies, Nybacka [9] [27] and Gil 

Gomez [10] performed a combination of a great number of ISO standardised tests and classified them 
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into several groups: straight-ahead controllability tests, cornering controllability tests, and low-speed 

manoeuvring tests. 

It is important to note that there are two classifications of the manoeuvres: open-loop and closed-loop 

manoeuvres. Harrer [8] argued that closed-loop manoeuvres such as lane-changes are unsuitable for the 

objective assessment of steering quality, since the human driver’s mental compensation significantly 

affects the measured results, and therefore used a steering robot and demonstrated much better 

consistency and accuracy than achievable by a test driver. Siegler [40], Nybacka [9] [27] and Gil Gomez 

[10] also reported having used steering robots in their objective steering quality assessment 

investigation. Obviously, not every researcher has access to this technology, and closed-loop tests have 

been used for these objective tests by researchers other than those specifically mentioned above. 

However, it is also possible for human drivers to perform an open-loop test in principle, such as by 

shutting the eyes. 

 

2.2.3 Objective Measurements and Metrics 

Not all the published literature clearly stated which data or how the data were measured/recorded. 

However, this is understandable due to the large amount of data to be gathered from the tests. The 

following measurements form a basic set of data reported in most of the previous literature: vehicle 

lateral velocity, vehicle lateral acceleration, vehicle yaw rate, vehicle side slip angle, vehicle roll angle 

and/or roll rate, steering wheel angle and angular velocity, and steering wheel torque. 

Once the data have been collected or calculated from measurements, a variety of describing parameters 

or say metrics are created to be correlated with subjective assessment results such as the averaged values, 

the gradients, the peak values with the corresponding positions, the overshoot values and the 

corresponding positions, the delays and the rising times from various plots of the data. 

Segel [28] noted that the objective metric of the steering behaviour was the gradient of steering torque 

to lateral acceleration in a steady turn. Jaksch [21] realised the importance of steering torque and 

calculated steering hand wheel angle gradient (angle/lateral acceleration) and steering hand wheel 

torque gradient (torque/lateral acceleration). Steering effort was defined as the product of these two 

quantities. He also found that steering effort and response time of yaw velocity to hand wheel angle are 

the most significant response variables in determining subjective steering quality. 

In Norman’s study [29], objective metrics of steering performance were determined from ‘cross-plots’ 

of the measured responses. The four plots used were: steering hand wheel angle vs. vehicle lateral 

acceleration, steering hand wheel torque vs. vehicle lateral acceleration, steering hand wheel torque vs. 

steering hand wheel angle, and steering work vs. vehicle lateral acceleration. Each plot was 

approximately a closed curve exhibiting hysteresis characteristics. About thirteen performance metrics 
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were derived from these plots. For example, the steering torque gradient at 0ms-2 was obtained from the 

steering hand wheel torque vs. lateral acceleration plot. Although Norman [29] just focused on using 

these performance metrics to identify differences in steering behaviour between classes of vehicle rather 

than to correlate the metrics with subjective assessments of steering quality, these cross-plots techniques 

have been widely used alongside his weave tests by many studies such as [32] [22] [31] [25] [33] [8] 

[23] [34] etc. In Harrer’s study [8], forty-five objective metrics were determined from the results of the 

weave tests, from six different cross-plots of torque, angle, yaw velocity, lateral acceleration, and 

sideslip and then were used to correlate with subjective criteria. 

Misaji et al. [35] argued that the established practice of determining discrete values of hysteresis, 

gradients and intercepts from the multiple cross-plots of measured responses results in too many 

parameters, such that the correlation with subjective assessment results is complicated. Extension of the 

method to higher frequency steering inputs (the importance of which was recognised earlier in [41]) 

compounds the problems. To address these problems, the authors instead fitted equivalent linear 

stiffness and damping values to the cross-plot of steering hand wheel torque vs. steering wheel angle, 

using a method previously utilised to model the hysteresis behaviour of rubber vibration isolators. 

Tokunaga et al. [36] [37] extended the method by calculating the ratio of equivalent damping to stiffness. 

These parameters were then correlated with subjective criteria. In addition, in Aurell’s study [25], it 

was found that many of the objective metrics were strongly correlated with each other, and five were 

selected as being independent, which are yaw rate mean gain, yaw rate phase time at 0.5Hz, maximum 

steering wheel torque gradient, steering wheel torque gradient at 1ms-2 and steering wheel torque 

hysteresis.  

Koide and Kawakami [41] measured the frequency response (steering torque, yaw velocity, and lateral 

acceleration in response to steering wheel angle up to a frequency of about 2.5Hz). The frequency 

response measurement recognises that steering feel cannot be fully characterised by measurements 

made only at low frequency (0.2Hz). Peppler [42] used the measured data to fit a simple nonlinear 

model of steering hand wheel torque, consisting of linear stiffness and damping elements and a 

Coulomb friction element, all in parallel. The identified stiffness, damping, and friction terms were used 

as objective metrics to correlate with subjective criteria. 

In more recent studies, Nybacka [9] [27] employed 28 objective metrics and Gil Gomez [10] employed 

27 objective metrics classified into several groups based on the tests performed: straight-head 

controllability, cornering controllability, and first impression. The definitions of these objective metrics 

are corresponding to SAE and ISO standards. 
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2.3 Subjective Assessment 

In the previous section, published literature regarding objective methods for assessing the steering 

quality of the vehicle is reviewed. However, many of these studies also included a subjective assessment 

exercise. In this section, relevant literature in which subjective assessment of steering feel forms a 

significant part is reviewed, mainly regarding but not limited to on-centre steering. 

 

2.3.1 Test Subjects 

One main question in these subjective tests is whether to use average drivers, say customers, or expert 

drivers. Although both kinds of subjects have been adopted in some previous studies (e.g., Hoffman 

and Joubert [43]), subjective assessments are mostly chosen to be performed by expert drivers. Farrer 

[22] stated that the problem should be analysed statistically, and a large number of drivers with mixed 

background and ages should be used. However, he noticed that it is inappropriate for this problem due 

to the highly technical nature of research. Harrer [8] also noted that attempts to involve customers in 

steering feel investigation tests led to inconsistency between the subjects and difficulty in interpreting 

the descriptions of subjective assessments and, therefore, suggested only including experienced vehicle 

dynamics engineers with advanced driving training. Dang [34] explained that experts are required as 

they can understand the questions thoroughly and relate the sensations to them in the tests. Additionally, 

to avoid age preferences, the largest age gap was set as ten years. Chen [6] used expert drivers because 

the level of consistency of their subjective assessment results could be higher, and in addition, they can 

still have enough mental capability for subjective evaluation of steering feel while performing advanced 

manoeuvres. Although expert drivers were used, Crolla [7] indicated that the subjective ratings often 

revealed poor consistency between drivers. Gil Gomez [44] also noticed a large spread in drivers’ 

ratings in their study. 

The number of test drivers, varying from one to forty in previous studies, is another primary 

consideration in these tests. Gil Gomez [45] mentioned that four hundred random subjects would be 

necessary in order to obtain statistically significant experimental results. However, engaging a great 

number of drivers is not feasible and would extend the test time significantly. Considering that, Chen 

[6] used ten test drivers and Gil Gomez [10] selected twenty-two expert drivers participating in their 

studies . 

 

2.3.2 Test Manoeuvres 

In contrast to objective tests dominated by open-loop manoeuvres, subjective assessments are 

determined by closed-loop manoeuvres, which can be conducted using predefined courses or letting the 

driver drive freely. For instance, some researchers used predefined manoeuvres such as steady turns, 
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fast passing manoeuvres, weave test, double lane change, straight lane etc. (Segel [28], Koide [41], Sato 

[32], Farrer [22], Somerville [31], Xin [2008], Rothhämel [23], Dang [34] etc.), although not every 

study followed the exact standard. In addition, a pre-training test for the drivers is usually included to 

let the drivers get familiar with the test manoeuvres, if predefined manoeuvres are chosen for the tests. 

Crolla and Chen [7], Harnett [33], Nybacka [9] [27], et al. decided to let the drivers drive freely, which 

means that the drivers were not constrained to follow standard manoeuvres. They claimed that a more 

representative methodology would exclude rigidly specific procedures, although standardisation is a 

logical approach to evaluate various drivers and cars in a comparable way. Some researchers even 

employed both methods, such as Aurell [25] and Gil Gomez [10]. Gil Gomez [10] performed the study 

with both a short predefined manoeuvre for first impression and free driving afterwards, and showed 

that short predefined manoeuvres and long free driving gave similar subjective assessment results. 

Usually, no matter what kind of manoeuvres are chosen, random and blind tests (drivers are not told the 

condition of the test vehicles) are always considered as the best practice, and a reference vehicle is also 

recommended.  

 

2.3.3 Subjective Questionnaires 

The main method of producing the subjective assessment results is to generate right questions for the 

test subjects. However, there is a lack of consistency about the most relevant and vital subjective 

feelings in evaluating the steering quality of a vehicle; and how to describe them. Therefore, not every 

study included the same subjective questions, and the number of the questions also varies a lot. For 

example, Segel [28] generated three general questions for the steady turn test and another four questions 

for the fast passing manoeuvre test. Farrer [22] produced a questionnaire containing fifteen questions 

related to on-centre handling quality. Crolla and Chen [7] presented forty-nine well-designed questions 

in their subjective questionnaire.  

In addition, even in some studies where the same set of questions is used, the test drivers may interpret 

them differently. Crolla and Chen [7] stated that this could be the main reason for the high spread 

observed in their subjective assessment results. Therefore, they suggested that the test drivers must 

participate in designing the questions. Rothhämel [23] investigated the ‘word pool’ method to generate 

the questionnaire to make the questions conform to test driver’s parlance and then used five-word 

combination dimensions as the subjective questions.  

Another example of designing the questionnaire is given by Farrer [22], the questions in whose work 

were split into two parts: the first part assessing each quality of interest and the second asking the test 

drivers’ preferred level. This design technique has also been used in Somerville [31], Kim [26]’s work. 

In addition, Gil Gomez [44] designed two types of subjective questions for the test drivers: the 

estimation type for judging how the magnitude of each criterion of interest and the evaluation type for 
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judging how good/bad the characteristics are, and categorised the questions into five levels, with each 

subsequent level defined in more details. 

Overall, the following questions or characteristics are the most commonly used evaluation criteria, 

which indicate a concentration on steering feel, for these kinds of studies: steering response, steering 

precision, steering sensitivity, steering torque demand, steering wheel angle demand, steering stiffness, 

roll motion, road feel, steering effort, roll motion velocity, steering returnability, steering friction and 

overall steering feel/steering torque feedback etc.  

 

2.3.4 Rating Scale 

After defining the subjective questions, a strategy should be determined for answering the questions. 

Segel [28] did not numerically quantify the subjective data, and Sato [14] just asked the drivers to rate 

the subjective criteria as excellent, good or poor. These methods make it challenging to find the 

relationship between the subjective assessment results and objective metrics and therefore, a numerical 

rating scale is always used to perform statistical analysis and find a mathematical correlation.  

The most commonly used scale is the 1-10 scale defined in SAE standard J1441 [46], which has been 

employed by Farrer [22], Somerville [31], Harrer [8], Zschocke [47], Nybacka [9] [27] and Gil Gomez 

[10] et al. Harrer [8] modified the scale slightly by adding a plus or minus sign to indicate which side 

of the ideal level the assessed criterion lay. Zschocke [47] used the 1-10 scale for evaluation (very poor-

excellent) and another 1-6 scale for quantification (low-high). Gil Gomez [10] classified the subjective 

questions into different levels as mentioned above and also employed two scales: a 1-10 rating scale for 

vehicle handling was used for the subjective assessments of level 2 to 4, and a 1-5 scale with different 

paired anchor descriptions in the extremes was used for level-5 subjective assessments. Examples of 

the descriptors used are: ‘narrow to wide’, ‘weak to strong’, and ‘non-sticky to sticky’, respectively, for 

the cross-plot deadband, steering wheel torque build-up magnitude and steering friction feel.  

The second most commonly used scale is the 1-7 scale, which was used by Chen [6], Crolla and Chen 

[7], Aurell [25] and Rothhämel [23]. Normally, in these studies, a reference vehicle is used with a score 

four. Gil Gomez [45] stated that using reference vehicles might simplify the research initially, but make 

the study results difficult to compare because different references are used in different studies. 

Apart from the two common scales mentioned above, there are also other scales used in previous studies. 

For example, Tokunaga et al. [36] [37] used a scale of 1 to 5. Dang [34] adopted three different scales: 

1 to 5, 1 to 9 and -4 to 4. 
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2.4 Correlation between Subjective and Objective Data 

Once the objective metrics and the subjective assessment results are gathered, the correlation between 

them is to be found, which could provide a method to predict the subjective assessment results from the 

objective metrics so that guidelines for the design of the steering and vehicle system can be proposed 

without relying on tests on the physical vehicle. Although some studies have applied non-mathematical 

ways (for example, Harnett [33] just compared the objective and subjective data visually), this section 

focus on summarising mathematical correlation methods from linear regression to nonlinear analysis 

such as fuzzy logic and neural network. 

 

2.4.1 Data Qualification 

To prepare high quality subjective and objective data so that reliable correlations can be found, some 

researchers have applied multiple techniques, including self-correlation analysis, data selection and 

normalisation, to process the raw data. 

Correlation analysis within the dataset, or say self-correlation analysis, is a common method to ensure 

the independence of each objective metric or subjective question and to remove redundant data. For 

example, Aurell [25] found that many of the objective metrics were strongly correlated with each other 

after conducting a linear regression, and therefore only selected five independent ones to correlate with 

subjective questions. Zschocke and Albers [47] found that there is no difference between the initial and 

the holding steering torque in terms of human perception. Rothhämel [23] explained that the answers 

to two questions with a high correlation coefficient indicates that the drivers have rated the same metric 

twice, even though the formatting of the questions may be different. 

Drivers’ evaluation and subjective data selection can be conducted by analysing the mean value for all 

the drivers’ ratings and the spread in the ratings. Gil Gomez [44] [48] and Nykacka [9] [27] have 

identified drivers’ rating tendencies. Dang [34] provided a detailed procedure on eliminating the drivers 

whose subjective data are unreliable following fundamental statistical analysis: step 1: for each 

evaluation, a driver’s ratings are eliminated if the correlation coefficient between this driver’s ratings 

and the average ratings is too low; low correlation coefficient means that the driver’s rating tendency is 

quite different from the accurate ratings, that is to say, the driver’s rating is not reliable; step 2: for each 

evaluation item, a driver’s ratings are eliminated if the driver’s ratings are particularly far from the 

average; step 3: after steps 1 and 2, outliers are eliminated according to Chauvenet's criterion that 

outliers in the sample were rejected if their value is at least one and a half times the interquartile range 

away from the 25th or 75th percentile; step 4: obtain the average ratings of each evaluation for each 

characteristic based on the remaining ratings after steps 1, 2, and 3. Then the average ratings are used 

for the correlation analysis. 
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Data normalisation is another common practice for qualifying the data and has been widely used in 

previous studies such as [7] [47] [10]. Crolla and Chen [7] stated that before correlation, the objective 

metrics and the subjective data should be normalised to a dataset with a zero mean and a variance of 

one because of human differences in judging the scale and rating scale range difference. Gil Gomez [10] 

commented that this method should be used with care by considering whether the assumption can be 

made that the data from the drivers can form a normal distribution by using a small sample. Zschocke 

and Albers [47] used a Lillefors test for checking whether their data can fit a normal distribution or not 

before employing Z-transformation to normalise the data, and non-parametric statistical tools were used 

such as Spearman’s approach instead of a student’s approach if it failed. Gil Gomez [44] eventually 

used a modified version of the normalisation method that the normalisation is applied per criterion after 

noticing that the distribution of subjective ratings for all the questions is not exactly normal. 

 

2.4.2 Linear Regression  

Jaksch [21], Aurell [25], Misaji [35], Harrer [8], Zschocke and Albers [47], Nybacka [9] [27] and Kim 

[26] used simple linear regression to correlate the subjective assessment results with the objective 

metrics. The simplicity of linear regression could be the main reason for its popularity. Simple linear 

regression generates a linear model relating one objective metric to one subjective variable. The 

correlation coefficient 𝑟 (𝑟 ∈ [−1,1]) is widely adopted as a measure of the strength of the linear 

relationship. An |𝑟| value of 1 indicates the strongest correlation. If |𝑟| is smaller than a certain value, 

e.g., 0.7 in Nykacka [27]’s study, the correlation is considered as invalid. Jaksch [21] employed a 

Bravais-Pearson linear regression analysis and Harrer [8] indicated that the Pearson correlation 

coefficient should be larger than 0.8054 for a valid correlation. 

Instead of or besides a simple linear regression analysis, Koide [41], Crolla and Chen [7], Harrer [8], 

Dang [34], Rothhämel [23], Nybacka [9] [27] used multiple linear regression. In this case, more than 

one objective metric is related to one subjective variable. The coefficient of determination 𝑅2 (𝑅2 ∈

[0,1]) is used to measure the accuracy of the multiple linear regression model. F-statistics is commonly 

used to check the significance of the regression equation and each regression coefficient in the equation. 

For example, to judge whether the correlation and the equations are valid, Crolla [7] used 𝑅2 , 

correlation coefficients, the F-statistics and 𝑡-values for each regression coefficient, with the 𝑡-values 

indicating the significance of the regressor for the equation and assumed that a correlation is not valid 

if 𝑅2 < 0.7 and 𝑡-value < 95%. In Harrer [8]’s study, a confidence level of 90% was regarded as 

necessary to identify a valid correlation for a multiple linear regression. Rothhämel [23] also used 𝑅2, 

the F-statistics and 𝑡-values to check the correlation quality and the uncertainty is quantified by the 

lower and upper limits of the 95% confidence level. 
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2.4.3 Nonlinear Analysis Methods 

Ash [49] stated that because there is potential for both the subjective ratings and the steering and vehicle 

system to exhibit non-linear characteristics, a nonlinear method to build up links between the objective 

and subjective data should also be considered. In addition, Nybacka [27] argued that linear correlation 

analysis could only show that some objective metrics probably have a monotonically positive or 

negative effect on the corresponding subjective assessment, while a nonlinear method can enable a 

preferred range of an objective metric to be identified and nonlinear relationships that cannot be easily 

found by linear regression to be detected.    

Neural network (NN) is a common nonlinear method that has been used by several researchers (Ash 

[49], Rothhämel [50], Nybacka [9] [27], Gil Gomez [10]). A neural network is a kind of data-driven 

black-box mathematical structure consisting of interconnected artificial neurons that imitate how a 

biological neural system works (e.g., the human brain). The neural network is capable of learning 

nonlinear relationships between different parameters or variables from data, and a typical multi-layer 

neural network consists of an input layer, one or several hidden layers and an output layer of neurons. 

An example of the neural network structure for exploring nonlinear subjective-objective links is shown 

in Figure 2.1.  

 

Figure 2.1: Single-input-single-output (SISO) neural network with one hidden layer with two tan-

sigmoid activation neurons and a linear transfer function in the output layer [10]. 

 

Some other researchers (Ash [49] and Chen [51]) have utilised fuzzy logic for establishing nonlinear 

relationships between the subjective and objective data. Fuzzy logic is a superset of conventional 

Boolean logic that has been extended to handle the concept of partial truth to truth values between 

‘completely true’ and ‘completely false’. Ash [49] stated that the fuzzy logic method lends itself to this 

type of data well due to the nature of subjective data collected by humans which scientifically is not 

precise data; and that can be used to model non-linear functions or arbitrary complexity. 

According to Nybacka [9], although both fuzzy logic and neural network can be used to find nonlinear 

correlations between different parameters, the former can be adopted for non-metric subjective 
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assessment, such as ‘good/bad’ or ‘heavy/medium/soft’ while the latter can be used when the subjective 

assessment is in a numbered form. 

 

2.4.4 Correlation Results 

Previous studies have made some contributions to the subjective-objective correlation research. For 

example, Crolla and Chen [7] found that the subjective ratings for steering feel were consistent with 

objective metrics of steering hand wheel torque and rate of steering hand wheel torque, and good and 

consistent correlations were often associated with objective metrics that describe the higher frequency 

behaviour of the vehicle (that is, beyond the steady-state). Harrer [8] concluded that the steering hand 

wheel torque gradient and the lateral acceleration or yaw rate gradient at low steering wheel angles are 

the most significant objective metrics affecting steering feel. An example of detailed correlations in his 

study is shown in Table 2.1 and Table 2.2. In addition, Gil Gomez [10] identified a set of preferred 

ranges for the objective metrics by using a neural network, as shown in Table 2.3, which also include 

findings from Nybacka [9] [27] and King [52].  

Despite some correlations were identified, Crolla and Chen [7] concluded that it was unclear how the 

mathematical regression results could provide physical insight into the subjective-objective link. The 

authors also noticed that the drivers’ subjective ratings often revealed a poor degree of consistency. 

Additionally, Gil Gomez [10] admitted that correlations are difficult as these data are not fully 

compatible by noticing drivers’ wide rating spread and their different use of the rating scale. In addition, 

the method for transforming subjective assessment into numerical values is not optimal and therefore 

still needs to be improved. 

Table 2.1: Linear correlation results [8] 
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Table 2.2: Multiple linear regression criteria and corresponding parameters [8] 

 

Table 2.3: Identified preferred objective metrics [10] 
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2.5 Mathematical Modelling of Steering System 

The steering system can be modelled with different levels of complexity depending on the research 

purpose, and rich literature exists in this field. Preferably, the model should not be unnecessarily 

complex since it will increase computational time and become more difficult to analyse. This section 

focuses on the literature that considers mechanical system modelling of conventional manual steering 

system, hydraulic power steering system, electro-hydraulic power steering and electric power steering 

system and that predicts steering characteristics themselves. In addition, controller implementation is 

highly related to the dynamic performance of steering for power assist steering systems. Therefore, 

some studies considering steering system modelling for controller design are also reviewed.  

 

2.5.1 Mechanical System Modelling for Manual Steering System, Hydraulic 

Power Steering (HPS) and Electro-hydraulic Power Steering (EHPS) 

Modelled as a 2 degree-of-freedom system in most cases (that is, the steering hand wheel with column 

and the rack), the steering system can be considered to include up to 5 degree-of-freedom where the 

basic inertia of each component is taken into account. Baxter [53]  just used a simple model to improve 

the definitions of steering stiffness and steering feel and argued that the boost level should be minimised 

in the on-centre region, in order that the driver can detect the small fluctuations in tyre forces occurring 

in this region. Norman [29] drew a similar conclusion when comparing the power steering 

characteristics of US and European cars. Wohnhaas and Essers [54] used a 4 degree-of-freedom system 

to model a manual rack and pinion steering system, with concentration on the stick-slip friction in the 

gear mechanism for predicting the steering system behaviour. The model was able to predict the 

measured fluctuation in steering column torque arising from the tooth meshing process during 

sinusoidal steering hand wheel inputs. However, this mechanism of column torque fluctuation does not 

feature in the other steering models reviewed in this section. Post and Law [55] developed both a high 

degree-of-freedom and a simplified 2 degree-of-freedom steering system model to predict on-centre 

handling and implemented the steering system models with a vehicle model. The importance of 

modelling the nonlinear components in the steering system such as friction in the steering gear and 

king-pin axes, hydraulic boost characteristics and other nonlinear compliances in accurately 

reproducing the steering system behaviours has been shown. Neureder [56] studied vibrations in the 

steering hand wheel, and a 4 degree-of-freedom steering system model was used for this. Ueda [57] of 

Nissan also modelled the steering system with 4 degree-of-freedom and with multiple friction elements 

for the prediction of on-centre handling characteristics, and the model has been found to fit the 

measurement quite well. The validated steering system model was then used to investigate the influence 

of steering design parameters variation (such as friction and torsion bar stiffness). Harnett [33] 

developed a 2 degree-of-freedom steering system model by taking account of steering wheel inertia and 
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front tyres inertia about the steering axis with great details including column friction, column play, 

column stiffness and damping, rack friction and damping, servo force, fixed pneumatic/mechanical trail, 

tyre lateral force and aligning moment (nonlinear functions of slip angle). The simulation of the model 

agreed with the measured responses of the test vehicle well, especially in the linear region of the tyres. 

Pfeffer [58] proposed a rather complicated 5 degree-of-freedom model, shown as an example in Figure 

2.2, for a hydraulic rack and pinion model in order to analyse steering feel. However, a simplified 2 

degree-of-freedom model was also developed, and it was found that the two models performed similarly 

in vehicle dynamics simulation and investigating steering feel.  

Apart from predicting steering characteristics themselves, some studies focused on designing the 

controller for the steering system when the power assistance unit is introduced, such as [59] [60] [61] 

etc. In these studies, lower-order models were normally preferred in order to reduce the computational 

load of the controller.  

 

Figure 2.2: 5 degree-of-freedom model of steering system [58]. 
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2.5.2 Mechanical System Modelling for Electric Power Steering (EPS) 

The modelling of the mechanical system of the electric power-assist steering system is similar to that 

of the manual or hydraulic power-assist steering system, with the rotational motion of the electric motor 

always being considered as an extra degree-of-freedom. Zaremba and Davis [62] and Zaremba [63] did 

one of the earliest studies on modelling the steering mechanism of a rack-assisted EPS. They used a 3 

degree-of-freedom system consisting of steering column inertia, rack mass and assist motor inertia to 

analyse the stability of EPS in the frequency domain, taking nonlinear elements into account, such as 

friction and backlash. Badawy and Zuraski [64] used both a full order model and a reduced model to 

model a column-type EPS for the purpose of developing an optimised EPS, and it was found that the 

two models performed similarly. Based on a basic model with 4 degree-of-freedom, Dannöhl [65] 

developed a 6 degree-of-freedom detailed model with comprehensive nonlinear components including 

friction, nonlinear belt stiffness and backlash in the ball screw drive to represent the mechanical 

structure of a rack-assisted EPS for analysing the reasons for the discontinuities of steering torque. 

Tamura et al. [66] proposed a nonlinear model with 8 degree-of-freedom, as shown in Figure 2.3, for 

the analysis of the static and dynamic performance of a column-type EPS, taking the basic inertia, 

stiffness and damping properties of each component into consideration. The static and dynamic 

responses of the model agreed well with the experimental data of normal and inverse input.   

Like the manual and hydraulic power-assist steering system modelling, a lower-order or simplified 

mechanical model is often chosen for controller design due to easy implementation, such as [67] [68] 

[69] [70] [71]. Song [72] developed a full steering model with 5 degree-of-freedom firstly and 

simplified the model to just include one degree-of-freedom, that is, the total inertia referred to the pinion 

axis. The simulation results for the full steering system model and the simplified model are similar, 

although there is a slight difference in vehicle response. Dannöhl [65] also derived a reduced model 

based on his 4 degree-of-freedom basic steering system model for the convenience of controller 

implementation.  
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Figure 2.3: 8 degree-of-freedom column-type EPS model [66]. 

 

2.5.3 Friction Modelling 

An appropriate friction model is necessary for steering system model development as it is an important 

aspect in describing the steering system properly and predicting steering performance accurately. 

Friction occurs in various positions of the steering system, such as the column, the rack, the gear 

meshing, the yoke, the bearings and the steering valve sealing. Coulomb friction is one of the most 

common practices to represent friction and is usually modelled by using a hyperbolic tangent function 

to avoid the discontinuities in the calculation. Segel [73] implemented a Coulomb friction in the steering 

system model and emphasised that it is essential to include friction in the steering system to stabilise 

the vehicle. Post and Law [55] also developed a specialised friction model based on Coulomb friction 
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and demonstrated the importance of including nonlinear components in the model. The practice of using 

Coulomb friction to represent steering system friction characteristics is also seen in the studies 

conducted by Zhang [74] and Dannöhl [65]. However, Neureder [56] suggested that the steering system 

friction behaves differently than a Coulomb friction. It was found that the vehicle exhibits vibrations 

with small forces, which contradicts the characteristics of Coulomb friction. Viscous damping is another 

simple method for representing friction, being directly adopted by Yamamoto [70] and being used as a 

linearisation method in the studies conducted by Sakai [75] and Govender and Müller [69]. Govender 

and Müller [69] demonstrated that it is an acceptable approach for modelling friction to some extent, 

although the nonlinear characteristics are rarely reproduced.  

Wohnhaas and Essers [54] concentrated on the stick-slip friction in the gear mechanism and suggested 

a very detailed friction model, which is load and position dependent. The model was then found to be 

able to predict the measured fluctuation in steering column torque arising from tooth meshing, and it 

might be concluded that the tooth meshing friction is of secondary importance. 

To better represent the hysteresis characteristic of the friction, Harnett [33] modelled the friction by 

using Dahl’s Friction Model, which depends on the relative velocity 𝑥̇ between the two parts involved. 

The model is given by (2.1). 

𝐹̇𝐹𝑟 = 𝜎𝑥̇ |−
𝐹𝐹𝑟
𝐹𝑐
sign[𝑥̇]|

𝑖𝐷

. sign(1 −
𝐹𝐹𝑟
𝐹𝑐
sign[𝑥̇])                              (2.1) 

where 𝜎 and 𝑖𝐷 determine the shape of the hysteresis loop, 𝐹𝑐 is the Coulomb friction magnitude, and 

𝐹𝐹𝑟 is the friction.   

Ueda [57] developed an empirical friction model comprising three-spring coulomb friction elements in 

parallel connection in order to produce a more realistic hysteresis curve. In this case, the friction behaves 

like a spring up to a limit, after which the force remains constant.  The friction model was implemented 

in five places in the steering model. As expected, it was shown that increasing the magnitude of each 

friction element tends to widen hysteresis in the cross-plots.  

Pfeffer [58] generated another empirical friction model based on a similar idea. The friction element 

involves an exponential spring in series with a friction glider, as shown in Figure 2.4. The hysteresis 

curve consists of rising and falling branches, with the rising branch being described by (2.2) and (2.3).  

𝐹𝑆𝐹 = 𝐹𝑙𝑖𝑚(1 − 𝑒
−𝑓𝐸𝑆𝐹𝑥)                                                         (2.2) 

𝑓𝐸𝑆𝐹 =
𝐹𝑙𝑖𝑚
𝑘𝐸𝑆𝐹

                                                                       (2.3) 

where 𝑘𝐸𝑆𝐹  is the spring stiffness at zero force and 𝐹𝑙𝑖𝑚 is the force limit, which is dependent on system 

pressure or speed. The friction model was then enhanced by connecting a nonlinear Maxwell element 
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(series spring-damper) in parallel to cover dynamic effects, as shown in Figure 2.5. The exponential 

spring 𝑘𝑀 is to limit the dynamic effects at high speeds while the damper 𝑐𝑀 is to reduce the spring 

force especially at low speeds. The overall friction is the summation of the forces represented by the 

two parallel elements. Dell’ Amico [60] [61] adopted the same approach for friction modelling. 

 

Figure 2.4: Exponential-Spring-Friction-Element (ESF-Element) [58]. 

 

 

Figure 2.5: Exponential-Spring-Friction-Element with Maxwell-Element (ESFM-Element) [58]. 

 

Tamura et al. [66] argued that previous models such as Coulomb friction and combinations of friction 

elements and Maxwell have discontinuous characteristics theoretically and therefore are slow for 

numerical computation. Instead, they employed the LuGre friction model [76] [77], which represents 

friction accurately with a continuous state formulation and can capture more friction characteristics 

including stiction and Stribeck effects besides hysteresis. Basically, it is based on a representation of 

the average deflection force of elastic bristles at the friction surface, and the friction coefficient 𝜇 is 

given by (2.4), (2.5) and (2.6). 

𝜇 = 𝜎0𝑝 + 𝜎1𝑝̇ + 𝜎2𝑣                                                            (2.4) 

𝑝̇ = 𝑣 − 𝜎0
|𝑣|

𝑔(𝑣)
𝑝                                                             (2.5) 

𝑔(𝑣) = 𝜇𝑐 + (𝜇𝑏𝑎 − 𝜇𝑐)𝑒
−(

|𝑣|
𝑣𝑠𝑏

)
2

                                                (2.6) 
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where 𝜇𝑐 is the Coulomb friction coefficient, 𝜇𝑏𝑎 is the peak friction coefficient, 𝑣𝑠𝑏 is the Stribeck 

velocity, 𝜎0  and 𝜎1  are the contact stiffness and damping coefficients in the tangential direction, 

respectively, 𝜎2  is the viscous friction coefficient, 𝑝 is the bristle deflection, and 𝑣 is the slip. The 

friction model was applied at the gear meshing, the bearings and the rack guides. 

Specker [78] criticised the disadvantage of previous static and dynamic friction models in causing 

instability for lower sample frequencies and applications with nonlinear state observers due to the usage 

of stepping functions crossing zero velocity and developed a new dynamic friction model based on a 

static friction model and a linear parameter-varying first-order low-pass filter to address these problems. 

The static model considers viscous, Coulomb, and Stribeck friction features and is defined by 

continuous functions, yielding a smooth force transition at standstill. The adaptive filter changes its 

time constant dependent on the actual velocity and supplements the static model with hysteresis and 

memory effect. The complete dynamic friction model is given by (2.10) with the terms 𝐹̃𝑣(𝑣),  𝐹̃𝑐(𝑣) 

and 𝐹̃∆(𝑣) given by (2.7), (2.8) and (2.9), respectively. 

𝐹̃𝑣(𝑣) = 𝑑𝑣                                                                        (2.7) 

𝐹̃𝑐(𝑣) = 𝐹̂𝐶 tanh (
𝑣

𝑣𝑡
)                                                             (2.8) 

𝐹̃∆(𝑣) =  (𝐹̂𝑆 − 𝐹̂𝐶 tanh(
𝑣𝑠𝑝

𝑣𝑡
) − 𝑑𝑣𝑠𝑝)(

𝑣

𝑣𝑠𝑝
𝑒
−(

𝑣

√2𝑣𝑠𝑝
)

2

+
1
2
 

)                           (2.9) 

𝐹̇𝐹𝑟(𝑣) =
1 − 𝑒

−(
𝑣
𝑣0
)
2

𝑇1
(𝐹̃𝑣(𝑣) + 𝐹̃𝑐(𝑣) + 𝐹̃∆(𝑣) − 𝐹𝐹𝑟(𝑣))                        (2.10) 

where 𝑑 is a damping coefficient, 𝐹̂𝐶  is the peak of the Coulomb friction force, 𝑣𝑡  is the transition 

velocity of the hyperbolic tangent function, 𝐹̂𝑆 is the Stribeck peak force and 𝑣𝑠𝑝 is the Stribeck peak 

velocity defining the friction delay (not the Stribeck velocity). The new dynamic friction model has 

been shown to be capable of reproducing nonlinear friction characteristics with a high accuracy using 

small sample rates and therefore is suitable for practical control and state observation algorithms.  

 

2.6 Driver Modelling 

In order to accurately predict a driver’s subjective assessment of steering feel, or steering torque 

feedback, a validated mathematical model that can represent the human driver’s physiological 

behaviour precisely is necessary. This section presents a thorough review of driver modelling 

techniques in terms of cognition process, neuromuscular system, and human driver perception.  
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2.6.1 Cognition 

Increased knowledge of human driving behaviour has led to progress in modelling the driver’s cognitive 

process. A variety of driver steering control models have been proposed due to distinctive demands, 

and an extensive review of driver cognitive modelling with respect to different applications and 

methodical methods was given by Plochl and Edelmann [79]. This section focuses on path-following 

steering control at constant vehicle forward speed, especially regarding the on-centre regime of 

operation. 

McRuer and Krendel [80] [81], who described human regulation steering tasks as a form of close-loop 

compensatory control, proposed ‘cross-over models’ as shown in Figure 2.6. It suggests that the human 

driver performs a tracking task by using a compensator 𝐻(𝑠) to maintain an invariant form for the open-

loop system 𝐻(𝑠)𝐺(𝑠) in the vicinity of the cross-over frequency. The combined system is represented 

as: 

𝐻(𝑠)𝐺(𝑠) =
𝜔𝑐
𝑠
𝑒−𝜏𝑟𝑠                                                            (2.11) 

where 𝜔𝑐 is the cross-over frequency and 𝜏𝑟  is the effective system dead time.  

 

Figure 2.6: Simple feedback compensator driver model. 

 

In contrast to cross-over models, which do not consider driver predictive concepts, more modern 

preview/predictive models suggest that the driver predicts the path of the vehicle based on current 

vehicle states and a previewed path to follow with the knowledge of the vehicle dynamics. Then the 

driver will determine an appropriate steer angle guiding the vehicle along the proceeding path according 

to the prediction. The earliest attempt for this kind of preview model was made by Kondo [82]. However, 

the simplest model just included one sight point as the preview location. Yosimoto [83], Guo [84] and 

Renski [85] also used the single point review concept. 

In contrast to single preview point, the concept that the full information of the previewed road path and 

vehicle trajectory is available to the driver has been used in more recent studies. MacAdam [86] [87] 

gave the first example of an optimal control model of driver steering control, calculating the optimal 

steer angle minimising the difference between previewed road path and predicted vehicle trajectory 
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over a previewed distance using a continuous cost function. Peng [88] extended MacAdam’s use of 

model predictive control (MPC) theory to include path-following yaw angle error in the cost function 

for the minimisation. In a separate development, Sharp and Valtetsiotis [89] proposed linear quadratic 

regulator (LQR) to solve linear vehicle control problems. As opposed to MacAdam’s model, the 

controller is generated in the discrete-time domain. Cole et al. [90] compared the application of MPC 

and LQR for linear driver modelling and demonstrated that for controlling a linear time-invariant 

vehicle without constraints, the MPC and LQR approaches are identical, provided that the preview and 

control horizons are long enough. Keen [16] [91] and Odhams [14] [92] [93] used an instrumented 

vehicle operating in the linear regime and a fixed-base driving simulator separately to identify the MPC 

steering controller, and both studies found that the model fitted the measured data well. 

Keen and Cole [94] then extended the MPC approach to account for nonlinear vehicle dynamics by 

proposing a multiple linear model structure for the driver’s internal mental model. Specifically, a set of 

learnt linear models are derived by linearising the nonlinear vehicle model (nonlinear tyre) at every 

operating point of the vehicle for MPC controller formulation. Kim [18] and Kim and Cole [95] adopted 

this multiple linear model structure for nonlinear vehicle dynamics (nonlinear tyre and tyre-road friction) 

in the investigation of the role of steering torque feedback in providing the driver with road information, 

with a specific driver internal mental model selection algorithm. The simulation results showed the 

importance of steering torque feedback in helping the driver improve path-following accuracy, 

evidenced by the better identification results of the vehicle-road system with selecting the correct 

linearised model.  

 

2.6.2 Neuromuscular System   

Pick and Cole [12] [96] [97] [98] [99] [100] [101] did a series of studies to understand and model the 

driver’s neuromuscular system in steering control tasks. In experiments, electromyography (EMG) was 

employed to identify the arm muscles that contribute to generating torques at the steering wheel. The 

muscles were then lumped together into one linear muscle model that generates torques on the steering 

wheel [98]. As a result, a driver-vehicle model incorporating the driver’s neuromuscular system, which 

comprises arm inertia, muscle dynamics and stretch reflex, was proposed in [101]. In this study, the 

output from the steering controller is assumed to be the neuron signal arising from the human brain that 

activates the muscle fibres to generate torque. It was found that human drivers tend to stiffen their arms, 

which is called muscle co-contraction, to stabilise the vehicle and reject external disturbances.  

Hoult [102] [17] extended the neuromuscular model developed by Pick and Cole [101] to include 

intrinsic muscle dynamics and identified the intrinsic dynamics of test subjects experimentally through 

a transfer function. Cole [103] subsequently fitted the identified transfer function with a lumped model 

and found that the addition of an intrinsic damping term improved the fit. 
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Droogendijk [104] and Katzourakis [105] from TU Delft proposed a series of driver models including 

neuromuscular system. In these models, the simultaneous alpha and gamma motoneurons co-activation 

was represented by using an inverse model.  

Cole [103] further extended the neuromuscular model developed by Hoult [17] to include the alpha and 

gamma co-activation and cognitive delay by introducing a forward model, instead of the inverse model 

used in Droogendijk [104], Katzourakis [105] and Pick and Cole [97]’s studies.  

The role of each block in the neuromuscular system model was investigated in a series of studies carried 

out by Pick and Cole [101] and Cole [106] [103]. Generally, it was found that the stretch reflex loop 

plays an important role in the response of the model to unexpected disturbances.  

 

2.6.3 Perception 

The understanding of the human driver’s perception of vehicle states and the environment, arising from 

human sensory systems, should be a prerequisite for modelling the driver-vehicle close-loop system. 

However, there is a limited number of studies considering human perception in driver modelling. 

MacAdam [107] did an early study on including sensory limitations and noise in the driver model. 

However, the issue of sensory integration was not considered in depth. The most recent comprehensive 

reviews of existing knowledge of sensory dynamics, delays, thresholds and integration in the 

application of modelling driver steering task are given by Bigler and Cole [108] and Nash [109]. 

Bigler [19] and Bigler and Cole [108] proposed a sensory model structure, shown in Figure 2.7, 

specifically for driver modelling based on the theory provided by Harris and Wolpert [110] and Kang 

[111]. In this model, the additive and Signal-dependent noise (SDN) can represent two important 

sensory performance criteria, respectively, that is, a threshold level, which is the minimum stimulus 

that can be detected and the just-noticeable differences (JNDs) between two stimuli can be measured. 

The JND is assumed to be proportional to the stimulus amplitude, which is known as Weber’s Law. 

The time delay for the sensory organs processing the stimulus was also included.  

 

Figure 2.7: Generic sensor model proposed by Bigler and Cole [108]. 
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In terms of sensory dynamics, the visual system, the vestibular organs and the somatosensors are the 

main modalities used in vehicle steering control [109]. Visual perception typically has two functions in 

driving tasks: perception of self-motion and perception of road path geometry. Bigler [19] investigated 

the frequency response of perception of self-motion and found that the visual dynamics can be 

reasonably described by a model introduced by Soyka [112] [113], which is described as a low-pass 

filter with a cut-off frequency 𝜔𝑣𝑖: 

𝐻𝑣𝑖(𝑠) =
𝜔𝑣𝑖

𝑠 + 𝜔𝑣𝑖
                                                                  (2.12) 

Like human cognitive process modelling, visual perception of road path geometry can be represented 

by a preview controller. Nash and Cole [114] [20] adopted the model of ‘preview’ of upcoming target 

path given by Sharp and Valtetsiotis [89] and Cole et al. [90], which is shown in Figure 2.8. 

 

Figure 2.8: Model of ‘preview’ for visual perception of road path. 

 

Nash and Cole [114] [20] also incorporated the two main vestibular organs: the otoliths 𝐻𝑜𝑡𝑜  perceiving 

vehicle lateral acceleration and semi-circular canals (SCCs) 𝐻𝑆𝐶𝐶  perceiving vehicle yaw rate into the 

driver-vehicle model. The transfer functions for these two organs are given by (2.13) and (2.14). The 

dynamic behaviour of somatosensory system was not modelled in Nash and Cole [114] [20]’s study.  

𝐻𝑜𝑡𝑜(𝑠) =
0.4(1 + 10𝑠)

(1 + 5𝑠)(1 + 0.016𝑠)
                                                   (2.13) 

𝐻𝑠𝑐𝑐(𝑠) =
5.73(80𝑠2)

(1 + 80𝑠)(1 + 5.73𝑠)
                                                 (2.14) 

With respect to sensory integration, the Kalman filter was found to be capable of representing the ability 

of the human driver to estimate the states of the controlled system with an internal model of the system 
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[109] [115]. Nash and Cole [20] proposed a novel complete driver-vehicle model incorporating sensory 

dynamics, a simplified neuromuscular system, additive and signal noise, a state estimator and a 

controller. For a linear plant to be controlled, a LQG algorithm was applied (that is, a LQR controller 

and a time-invariant Kalman filter to estimate the states from noisy measurement optimally). Both the 

Kalman filter and the LQR controller were assumed to obtain a linear internal model of the 

neuromuscular, vehicle and sensory dynamics, and the process and measurement noise were modelled 

as zero-mean Gaussian noise processed by forcing functions. The model was then extended to include 

nonlinear vehicle (nonlinear tyre) dynamics and human driver limitations. In that case, several extended 

Kalman filters were selected as the state estimator, and MPC controllers with constraints were chosen. 

The structure of the model is shown in Figure 2.9 and Figure 2.10. The complete model was identified 

and validated from a series of moving-base driving simulator experiments using non-parametric and 

parametric identification methods. It was shown that the validated new driver-vehicle model is 

satisfactory for analysing the role of the sensory organs in driving [116]. Nash and Cole [117] then 

extended the study to investigate the effect of sensory conflicts on driver steering control.  

 

Figure 2.9: Overall structure of the driver-vehicle model [20]. 

 

Figure 2.10: Block diagram of the plant controlled by the driver [20]. 
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2.6.4 Subjective Assessment 

A neuroscience study conducted by Blakemore [118] into tickliness found that the subjective feeling of 

humans is reflected by the discrepancy between the human’s own prediction and actual sensory 

feedback. An internal forward model of the motor system predicts the sensory consequences of a 

movement based on the motor command. However, the prediction made by the internal forward model 

may be different from the actual sensory feedback human can receive. This study demonstrated that as 

the discrepancy between predicted and actual sensory feedback increases, there is a concomitant 

decrease in the level of subjective satisfaction. These results provide insight into a possible theoretical 

description of a driver’s subjective assessment of steering feel. However, no previous study has 

incorporated this effect in driver modelling. 

 

2.7 Conclusions and Research Objectives 

According to the review of existing steering feel assessment methods, steering system modelling 

techniques, and work on driver models, findings are summarised as follows: 

• Objective assessments are normally conducted with open-loop steering inputs. The weave test 

introduced by Norman [29] remains the basis of objective assessments of steering feel, 

especially for the on-centre region. The addition of frequency analysis, other standard 

manoeuvres and the use of steering robots aid the objective assessments. The increasing number 

of objective metrics extracted from the results of objective measurements has made 

interpretation difficult, and several researchers have proposed methods such as self-correlation 

analysis to find the independent metrics. 

 

• Subjective assessments of steering feel are typically made by expert human drivers through 

closed-loop control inputs. The wide range of assessment questions and rating scales, the 

statistically insufficient number of test drivers, and the big variation in test drivers’ ratings make 

the standardisation a challenging task. 

 

• The subjective-objective correlation method is the most established technique used to evaluate 

steering feel. Some data qualification techniques are often employed to ensure good 

correlations to be found. The correlation methods can range from simple linear regression to 

nonlinear methods such as neural network. Although some strong correlations are identified, 

the physical reasons are not clear, and it is not reliable to extrapolate these correlations beyond 

test conditions. In addition, a wide range of parameters to be correlated, test conditions and 

correlation methods make the comparison of different studies difficult to undertake. 
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• The steering system can be modelled with different levels of complexity depending on the 

trade-off between computational efficiency and prediction accuracy. Nonlinearities in the 

steering system such as friction require attention to reproduce realistic steering system 

characteristics. The development of advanced friction models has enabled steering system 

friction to be computationally efficiently simulated with a high accuracy.  

 

• Extensive research has been carried out on modelling the driver’s behaviour in vehicle steering 

control including cognition, neuromuscular action, and perception. The validated models have 

the potential to provide insight for predicting the human driver’s subjective assessment of 

steering feel mathematically with the aid of neuroscience knowledge.  

 

Based on the literature review, the following research objectives are identified: 

i. Develop a mathematical driver-steering-vehicle model incorporating steering feel, or steering 

torque feedback. The model will include a nonlinear and reasonably precise steering 

mechanism and will account for the possibility that the complexity of the internal mental model 

is limited. 

 

ii. Devise and perform experiments using a fixed-base driving simulator with a randomly moving 

target path and random disturbances to provide the subjective and objective data necessary to 

identify and validate the developed driver-steering-vehicle model. 

 

iii. Use the measured data to identify the unknown parameters of the mathematical model and the 

human driver’s internal mental model. 

 

iv. Determine the relationship between: the subjective quality of steering torque feedback; the 

ability of the driver to learn an accurate internal model of the steering system and generate 

optimal steering control actions; and the steering control performance that the human driver 

can achieve. 
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Chapter 3 

Driver-Steering-Vehicle Modelling 

 

3.1 Introduction  

With the increasing need to reduce vehicle development time and cost, there is significant motivation 

for developing closed-loop mathematical driver-vehicle models to assess objective and subjective 

dynamic qualities of the vehicle without relying on extensive track tests and subjective feedback from 

test drivers. A thorough review of earlier driver steering models was conducted by Ploechl and 

Edelmann [79]. However, most of the studies only modelled the driver as an ideal controller and put 

little emphasis on the understanding of the human driver’s limitations in the perception of vehicle states 

and the environments, arising from human sensory systems. As explained by Donges [119], the steering 

behaviour of human drivers can be explained by a ‘two-level’ model, with an open-loop controller to 

calculate steering actions to follow the previewed target trajectory from the visual system and a closed-

loop controller to compensate for disturbances around the planned trajectory based on the estimate of 

vehicle states. Steering torque feedback plays an important role in the feedback task.  

In this chapter, a new mathematical model of driver-steering-vehicle system is developed, taking 

account of steering torque feedback. The model comprises the vehicle and steering dynamics, the 

neuromuscular system, the sensory delays, and the human brain functions. The underlying hypothesis 

is that a human driver learns an internal mental model of the steering and vehicle dynamics with the 

driver’s neuromuscular dynamics and sensory systems, which plays a significant role in sensory 

perception, cognitive path following control, and neuromuscular action. This work builds on and 

complements the previous work of Nash and Cole [20], who designed a new driver model incorporating 

visual and vestibular sensory systems.  

The aim of this work is to develop a mathematical driver-steering-vehicle model incorporating steering 

torque feedback, in order to provide a theoretical understanding of how the subjective quality of a 
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vehicle’s steering torque characteristic relates to how accurately an internal mental model can be learnt 

and how accurately the steering control actions can be generated. The model is then used to make 

accurate predictions of the steering torque response and to understand the extent to which the steering 

torque is informative about the states and parameters of the vehicle. A new linear driver-steering-vehicle 

is developed first to enable a fundamental understanding of torque feedback to be obtained. The 

derivations of this linear model have been reported in [120] and are presented in Section 3.2 in this 

chapter. Next, a comprehensive analysis of the linear model behaviour is conducted through simulation 

studies of the various parameters and the results are presented in Section 3.3. However, it is necessary 

to consider the nonlinear steering dynamics for investigating steering torque feedback. Friction in the 

steering mechanism is always present to some extent, and it is thought that lower friction levels lead to 

a subjectively better steering feel. However, there is no predictive tool to assess steering friction at the 

design stage at present. The new driver-steering-vehicle model is therefore extended to account for the 

nonlinear steering system friction by using the techniques used by Nash and Cole [20] to model human 

drivers’ state estimation and cognitive control of a vehicle with nonlinear tyre dynamics. The derivation 

of this nonlinear model is presented in Section 3.4. The performance of the nonlinear model is then 

compared with that of the linear model in Section 3.5. The main conclusions are given in Section 3.6. 

 

3.2 Linear Driver-Steering-Vehicle Model 

In this section, a new mathematical model of driver-steering-vehicle system incorporating steering 

torque feedback is presented. To enable a fundamental understanding of the role of steering torque 

feedback while reducing the computational cost involved in simulating the model, linear dynamics are 

used to model the driver-steering-vehicle system. Various simplifying assumptions and omissions are 

made with the aim of devising the simplest possible model that predicts the responses of interest. These 

assumptions can be relaxed in the future once more is known about the role of steering torque feedback 

in the steering control task. The scope of the model does not extend to speed choice or control. Therefore, 

only vehicles travelling at constant longitudinal speed are considered, although the principles behind 

this model could be extended to include variable-speed vehicles. The driver is assumed to follow a 

given target path of negligible thickness. A minimal set of human sensory measurements is assumed: 

visual perception organs and the arm muscle proprioceptors. The modelling of the vestibular organs is 

omitted to reduce the complexity of the model and for compatibility with fixed-base driving simulator 

experiments described in Chapter 4. These assumptions are addressed in detail in later sections of this 

chapter. 

The steering task described by the model is represented in Figure 3.1. The driver follows a randomly 

moving target path used in [20] in the linear operating regime while compensating for random 

disturbances acting on the steering and vehicle system. The target path 𝑟 is straight but randomly varies 
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its lateral displacement from the centreline of the road, which means that the driver does not have any 

preview of the target path displacement. The aim of this is to ensure that the driver’s control action is 

entirely feedback in nature (no feed-forward) and thus emphasise the role steering torque feedback. The 

random disturbances acting on the steering-vehicle system specifically refer to column torque 

disturbance 𝑇𝑑  acting on the steering system, lateral force 𝐹𝑦 and yaw moment 𝑀𝑧  disturbances acting 

on the centre of mass of the vehicle. It is assumed that the aim of the driver is to minimise the tracking 

error between the vehicle lateral displacement and the randomly moving target path. 

 

Figure 3.1: Steering control task described by the new driver model. The driver is to follow the 

randomly moving target path 𝑟 while rejecting disturbances acting on the steering-vehicle system 𝑇𝑑 , 

𝐹𝑦 and 𝑀𝑧  

 

A schematic structure of the new driver-steering-vehicle model built upon the previous research of Nash 

and Cole [20] is shown in Figure 3.2. The model is developed based on the hypothesis that the driver is 

trying to minimise the lateral deviation of the vehicle from the randomly moving target path by using 

the optimal estimated states of the plant and the environment from the noisy sensory measurements. 

The driver’s primary control output is the alpha muscle activation signal. The driver’s control strategy 

follows the linear quadratic Gaussian (LQG) framework, combining a linear quadratic regulator (LQR) 

with a Kalman filter to give statistically optimal control actions and state estimates based on the driver’s 

internal model of the plant. A Kalman filter uses an internal model to achieve optimal state estimation 

in the presence of additive white noise. However, there is also a muscle stretch reflex action, a stretch 

reflex (𝐻𝑟  and 𝐷𝑟) controller is therefore also included in this model. The plant shown in Figure 3.3 

describes the plant controlled by the driver in detail, including models of the muscle activation process 

(𝐻𝑎), the muscle dynamics (part of 𝐻𝑚𝑠), the vehicle (𝐻𝑣) and steering dynamics (the other part of 𝐻𝑚𝑠), 

human sensory delays and disturbance filters (𝐻𝑓𝑇 , 𝐻𝑓𝐹 , 𝐻𝑓𝑀  and 𝐻𝑓𝑟 ). The perceived states by the 

driver are the visually-sensed vehicle lateral deviation with respect to the target path 𝑒, the yaw angle 

𝜓, and the proprioceptively-sensed muscle angle 𝜃𝑎. 
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The driver-steering-vehicle model is implemented in state-space form, in discrete time with a sample 

time 𝑇𝑠  so that time delays can be easily implemented using shift registers. All continuous transfer 

functions 𝐻(𝑠) are converted to discrete state-space matrices (A, B, C, D) with states 𝒙 and subscripts 

matching the name of that transfer function. The discretisation is based on a zero-order hold (ZOH) 

method, which could achieve accurate simulation results without adding too much complexity for the 

implementation, as suggested by Nash and Cole [20]. In most cases, this is approximated in the form 

𝐀 = 𝐈 + 𝑇𝑠𝐀𝑐 , 𝐁 = 𝑇𝑠𝐁𝑐, where 𝐀𝑐  and 𝐁𝑐 are continuous-time state-space matrices. The time step 

index is denoted by 𝑘.  

 

Figure 3.2: Schematic diagram of the linear driver-steering-vehicle model. Disturbance signals are 

input as white noise 𝑤𝐹, 𝑤𝑀, 𝑤𝑇 and 𝑤𝑟  then filtered in the plant. The plant input 𝛼 and outputs 𝒛 are 

perturbed with process and measurement noise 𝑤 and 𝒗, so a Kalman filter estimates the plant states 

𝒙𝒆. An LQR controller computes an optimal plant input 𝛼.  

 

Figure 3.3: Structure of plant in the new driver-steering-vehicle model. The plant describes the 

dynamics controlled by the human driver, including muscle activation 𝐻𝑎 , muscle and steering 

dynamics 𝐻𝑚𝑠 , vehicle dynamics 𝐻𝑣, human sensory delays and disturbance filters 𝐻𝑓𝑇 , 𝐻𝑓𝐹 , 𝐻𝑓𝑀  and 

𝐻𝑓𝑟 . 
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3.2.1 Vehicle Model 

The vehicle dynamics 𝐻𝑣  are represented using the two degree-of-freedom lateral-yaw single-track 

‘bicycle’ model moving at a constant speed for simplicity, as shown in Figure 3.4. The model captures 

the two dominating motions, that is, vehicle yaw and lateral motions, with lateral velocity 𝑣 measured 

along the lateral axis of the vehicle to the centre of mass of the vehicle and yaw rate 𝜔 defined with 

respect to ground. The yaw angle 𝜓 is defined as the angle between the longitudinal axis of the vehicle 

and the global 𝑥-axis. 𝛿 is the front tyres steer angle. The roll and pitch effects of the vehicle are not 

modelled.  

 

Figure 3.4: The two degree-of-freedom lateral-yaw vehicle model with disturbance force and moment. 

 

For constant longitudinal speed and small-angle assumptions, the equations of motion of the vehicle 

model are: 

𝑚(𝑣̇(𝑡) + 𝑈𝜔(𝑡)) = 𝐹𝑦𝑓(𝑡) + 𝐹𝑦𝑟(𝑡) + 𝐹𝑦(𝑡)                                             (3.1) 

𝐼𝜔̇(𝑡) = 𝑎𝐹𝑦𝑓(𝑡) − 𝑏𝐹𝑦𝑟(𝑡) + 𝑀𝑧(𝑡)                                                   (3.2) 

where 𝑈 denotes the constant longitudinal speed of the vehicle, 𝑚 and 𝐼 denote the vehicle mass and 

yaw moment of inertia, respectively. 𝑎 and 𝑏 denote the distance of front and rear tyres from the centre 

of mass of the vehicle, respectively.  𝐹𝑦𝑓 and 𝐹𝑦𝑟  are front and rear tyre forces acting on the vehicle 

lateral axis. A lateral force 𝐹𝑦 and a yaw moment 𝑀𝑧  applied at the centre of mass of the vehicle act as 

disturbances, such as might arise from road roughness or wind gusts. For the on-centre regime of 

operation considered, the lateral tyre forces 𝐹𝑦𝑓  and 𝐹𝑦𝑟  are assumed to be proportional to tyre slip 

angles. Therefore, the lateral forces of the front and rear tyres are: 

𝐹𝑦𝑓(𝑡) = 2𝐶𝑓 (𝛿(𝑡) −
𝑣(𝑡) + 𝑎𝜔(𝑡)

𝑈
)                                                (3.3) 
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𝐹𝑦𝑟 = 2𝐶𝑟 (−
𝑣(𝑡) − 𝑏𝜔(𝑡)

𝑈
)                                                            (3.4) 

where 𝐶𝑓  and 𝐶𝑟  are constant cornering stiffness of each front tyre and each rear tyre, respectively. The 

continuous-time state-space equations of the vehicle model are: 

{
 

 
𝑦̇(𝑡)

𝑣̇(𝑡)

𝜓̇(𝑡)

𝜔̇(𝑡) }
 

 

=

[
 
 
 
 
 
0 1 𝑈 0

0 −
2𝐶𝑓 + 2𝐶𝑟

𝑚𝑈
0 −𝑈 −

2𝐶𝑓𝑎 − 2𝐶𝑟𝑏

𝑚𝑈
0 0 0 1

0 −
2𝐶𝑓𝑎 − 2𝐶𝑟𝑏

𝐼𝑈
0 −

2𝑎2𝐶𝑓 + 2𝑏
2𝐶𝑟

𝐼𝑈 ]
 
 
 
 
 

{
 

 
𝑦(𝑡)

𝑣(𝑡)

𝜓(𝑡)

𝜔(𝑡)}
 

 

+

[
 
 
 
 
 
0 0 0
2𝐶𝑓

𝑚

1

𝑚
0

0 0 0
2𝐶𝑓𝑎

𝐼
0

1

𝐼]
 
 
 
 
 

{

𝛿(𝑡)

𝐹𝑦(𝑡)

𝑀𝑧(𝑡)
}                                                                                                (3.5) 

 

3.2.2 Muscle Dynamics and Steering Model 

The muscle dynamics and the steering system are strongly coupled by the torques and angles exchanged 

through the steering wheel, so they are modelled together as 𝐻𝑚𝑠 , with the structure shown in Figure 

3.5. The steering dynamics with an assist torque are represented by a two degree-of-freedom system, 

with the steering wheel angle denoted as 𝜃𝑠𝑤 and the steering column angle denoted as 𝜃𝑐. The linear 

steering dynamics interact with the driver through the introduction of the muscle angle of the arms 𝜃𝑎, 

which is the angle between the active elements of the muscle and the tendon, and results from muscle 

activation driven by neurons. The inertia of the rack and the front wheels referred to the pinion is 

denoted by 𝐼𝑐. This inertia is connected to the vehicle ground by a torsional stiffness 𝑘𝑠𝑤 that represents 

self-centering stiffness (typically arising from the tyre forces acting through the steering geometry) and 

a parallel torsional damping term 𝑐𝑠𝑤 that represents damping in the steering mechanism with respect 

to the steering wheel axis. The inertia of the steering handwheel is denoted as 𝐼𝑠𝑤  and the inertia of the 

driver’s arm 𝐼𝑎𝑟𝑚  is assumed to be rigidly connected to the steering wheel, which is denoted by the 

dashed line between 𝐼𝑎𝑟𝑚  and 𝐼𝑠𝑤 . The resulting summation of the inertia of the arms 𝐼𝑎𝑟𝑚  and the 

inertia of the steering wheel 𝐼𝑠𝑤  are connected with the inertia of the rack and the front wheels 𝐼𝑐 by 

steering column with stiffness 𝑘𝑡  and a torsion bar with damping 𝑐𝑡  in parallel. Moreover, any 

additional stiffness and damping effects that may result from the steering mechanism referred to the 

steering wheel are represented by 𝑘ℎ𝑤 and 𝑐ℎ𝑤.  

The muscle dynamics considers both the muscle activation and intrinsic dynamics [103]. The 

mechanical response of the muscle due to change in the steering wheel angle and from muscle activation 



3.2 Linear Driver-Steering-Vehicle Model                                                                                   37     

 

torque is represented by a linearized Hill’s muscle model [121], which is a series combination of a 

contractile element (parallel combination of torque from the muscle activation signal 𝑇𝑎 and a dashpot 

𝑐𝑎 which resists stretching of the muscle fibre) and spring 𝑘𝑎 representing the elasticity of the tendons. 

The details of the generation of muscle activation signal 𝑇𝑎 are described in later sections. The internal 

stiffness and damping of the muscles and joints, which are known as muscle intrinsic properties, are 

represented by 𝑘𝑝 and 𝑐𝑝, respectively.  

 

Figure 3.5: Muscle and steering system model with steering column torque disturbance. The springs 

and dampers act in rotation. 

 

The equations of motion of the muscle dynamics and steering model are: 

𝑇𝑎(𝑡) = 𝑐𝑎𝜃̇𝑎(𝑡) + 𝑘𝑎(𝜃𝑎(𝑡) − 𝜃𝑠𝑤(𝑡))                                                      (3.6) 

𝑘𝑎(𝜃𝑎(𝑡) − 𝜃𝑠𝑤(𝑡)) − 𝑐𝑡 (𝜃̇𝑠𝑤(𝑡) − 𝜃̇𝑐(𝑡)) − 𝑘𝑡(𝜃𝑠𝑤(𝑡) − 𝜃𝑐(𝑡))

= (𝐼𝑠𝑤 + 𝐼𝑎𝑟𝑚)𝜃̈𝑠𝑤(𝑡) + (𝑐ℎ𝑤 + 𝑐𝑝)𝜃̇𝑠𝑤(𝑡) + (𝑘ℎ𝑤 + 𝑘𝑝)𝜃𝑠𝑤(𝑡)                           (3.7) 

𝑇𝑑(𝑡) + 𝑐𝑡(𝜃̇𝑠𝑤(𝑡) − 𝜃̇𝑐(𝑡)) + 𝑘𝑡(𝜃𝑠𝑤(𝑡) − 𝜃𝑐(𝑡)) + 𝑇𝑚(𝑡) −
𝑇𝑤(𝑡)

𝐺
= 𝐼𝑐𝜃𝑐̈(𝑡) + 𝑐𝑠𝑤𝜃𝑐̇(𝑡) + 𝑘𝑠𝑤𝜃𝑐(𝑡)                                                                                    (3.8) 

Besides the torque applied by the arm muscles due to muscle activation, the steering model includes the 

self-aligning moment 𝑇𝑤, the torque input from the driving assist system 𝑇𝑚 and the equivalent steering 

column torque disturbance resulting from the rack. The self-aligning moment 𝑇𝑤  due to the torque 

generated about the king-pin axes by the lateral axle force is given by: 

𝑇𝑤(𝑡) = 𝐹𝑦𝑓(𝑡)𝑑                                                                     (3.9) 
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where the front tyre trail distance, consisting of both the pneumatic and mechanical trail, is denoted by 

𝑑. The assist torque applied at the steering column 𝑇𝑚  by the driving assist system, assumed to be based 

on a linear boost curve with boost coefficient 𝐶𝑏𝑜𝑜𝑠𝑡 , is given by: 

𝑇𝑚(𝑡) = 𝐶𝑏𝑜𝑜𝑠𝑡𝑐𝑡(𝜃̇𝑠𝑤(𝑡) − 𝜃̇𝑐(𝑡)) + 𝐶𝑏𝑜𝑜𝑠𝑡𝑘𝑡(𝜃𝑠𝑤(𝑡) − 𝜃𝑐(𝑡))                          (3.10) 

Finally, the steering gear ratio 𝐺 transforms the steering column angle into the front tyre steering angle 

by: 

𝛿(𝑡) =
𝜃𝑐(𝑡)

𝐺
                                                                      (3.11) 

Therefore, the continuous-time state-space equations of the muscle-steering-vehicle are: 

{
 
 
 
 
 

 
 
 
 
 
𝑦̇(𝑡)

𝑣̇(𝑡)

𝜓̇(𝑡)

𝜔̇(𝑡)

𝜃̇𝑠𝑤(𝑡)

𝜃̈𝑠𝑤(𝑡)

𝜃̇𝑐(𝑡)

𝜃̈𝑐(𝑡)

𝜃̇𝑎(𝑡) }
 
 
 
 
 

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
0 1 𝑈 0 0 0 0 0 0

0 −
2𝐶𝑓 + 2𝐶𝑟

𝑚𝑈
0 −𝑈 −

2𝐶𝑓𝑎 − 2𝐶𝑟𝑏

𝑚𝑈
0 0

2𝐶𝑓

𝐺𝑚
0 0

0 0 0 1 0 0 0 0 0

0 −
2𝐶𝑓𝑎 − 2𝐶𝑟𝑏

𝐼𝑈
0 −

2𝑎2𝐶𝑓 + 2𝑏
2𝐶𝑟

𝐼𝑈
0 0

2𝐶𝑓𝑎

𝐺𝐼
0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 𝐹2 𝐹3 𝐹4 𝐹5 𝐹1
0 0 0 0 0 0 0 1 0
0 𝐺1 0 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6 0

0 0 0 0
𝑘𝑎
𝑐𝑎

0 0 0 −
𝑘𝑎
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𝑦(𝑡)

𝑣(𝑡)

𝜓(𝑡)

𝜔(𝑡)

𝜃𝑠𝑤(𝑡)

𝜃̇𝑠𝑤(𝑡)

𝜃𝑐(𝑡)

𝜃̇𝑐(𝑡)

𝜃𝑎(𝑡) }
 
 
 
 

 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0

0
1

𝑚
0 0

0 0 0 0

0 0
1

𝐼
0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
1

𝐼𝑐
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𝑇𝑎(𝑡)

𝐹𝑦(𝑡)

𝑀𝑧(𝑡)

𝑇𝑑(𝑡)}
 

 

                                                                                                                         (3.12) 
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{

𝑦(𝑡)

𝜓(𝑡)

𝜃𝑎(𝑡)
} = [

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

]

{
 
 
 
 

 
 
 
 
𝑦(𝑡)

𝑣(𝑡)

𝜓(𝑡)

𝜔(𝑡)

𝜃(𝑡)

𝜃̇(𝑡)

𝜃𝑐(𝑡)

𝜃̇𝑐(𝑡)

𝜃𝑎(𝑡)}
 
 
 
 

 
 
 
 

                                    (3.13) 

where 𝐺1 =
2𝐶𝑓𝑑

𝐺𝑈𝐼𝑐
, 𝐺2 =

2𝐶𝑓𝑎𝑑

𝐺𝑈𝐼𝑐
, 𝐺3 =

(1+𝐶𝑏𝑜𝑜𝑠𝑡)𝑘𝑡

𝐼𝑐
, 𝐺4 =

(1+𝐶𝑏𝑜𝑜𝑠𝑡)𝑐𝑡

𝐼𝑐
, 𝐺5 = −[

(1+𝐶𝑏𝑜𝑜𝑠𝑡)𝑘𝑡+𝑘𝑠𝑤

𝐼𝑐
+
2𝐶𝑓𝑑

𝐺2𝐼𝑐
], 

𝐺6 = −
(1+𝐶𝑏𝑜𝑜𝑠𝑡)𝑐𝑡+𝑐𝑠𝑤

𝐼𝑐
, 𝐹1 =

𝑘𝑎

𝐼𝑎𝑟𝑚+𝐼𝑠𝑤
, 𝐹2 = −

𝑘𝑎+𝑘ℎ𝑤+𝑘𝑝+𝑘𝑡

𝐼𝑎𝑟𝑚+𝐼𝑠𝑤
, 𝐹3 = −

𝑐ℎ𝑤+𝑐𝑝+𝑐𝑡

𝐼𝑎𝑟𝑚+𝐼𝑠𝑤
, 𝐹4 =

𝑘𝑡

𝐼𝑎𝑟𝑚+𝐼𝑠𝑤
, 𝐹5 =

𝑐𝑡

𝐼𝑎𝑟𝑚+𝐼𝑠𝑤
 

Converted to discrete-time state-space equations with sample time 𝑇𝑠, the above equations become:  

𝒙𝑚𝑠𝑣(𝑘 + 1) = 𝐀𝑚𝑠𝑣𝒙𝑚𝑠𝑣(𝑘) + 𝐁𝑚𝑠𝑣{𝑇𝑎(𝑘) 𝐹𝑦(𝑘) 𝑀𝑧(𝑘) 𝑇𝑑(𝑘)}𝑇    (3.14) 

{𝑦(𝑘) 𝜓(𝑘) 𝜃𝑎(𝑘)}
𝑇 = 𝐂𝑚𝑠𝑣𝒙𝑚𝑠𝑣(𝑘)                                             (3.15) 

 

3.2.3 Muscle Activation 

The muscle activation signal 𝑇𝑎 arises from the neural activation of the muscle [103]. There are two 

processes associated with the activation process block 𝐻𝑎  shown in Figure 3.3. Activation begins with 

a signal 𝑢 sent to alpha motor neurons in the spine that in turn activate the muscle fibres. The dynamics 

associated with the motor neurons are represented by a first-order lag with time constant 𝜏1, normally 

in the range 20-50ms [17]. There is also a lag associated with the activation and deactivation of the 

muscle fibres. Previous twitch tests found that depending on the muscle size, the activation time 

constant is 5-15ms, while the deactivation time constant is typically in the range 20-60ms [17]. Cole 

[103] mentioned that it is a necessary approximation for a linear model that a single first-order lag with 

a time constant 𝜏2 is used for both activation and deactivation of muscle fibres. The series combination 

of the two first-order lags forms the 𝐻𝑎 block shown in Figure 3.3. Therefore, the muscle activation 

torque 𝑇𝑎 relating the signal 𝑢 is given by the transfer function: 

𝐻𝑎(𝑠) =
1

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
                                                        (3.16) 

Converted to state-space form, the muscle activation block 𝐻𝑎 is: 
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{
𝑥̇𝐻𝑎(𝑡)

𝑇̇𝑎(𝑡)
} =

[
 
 
 0 −

1

𝜏1𝜏2

1 −
𝜏1 + 𝜏2
𝜏1𝜏2 ]

 
 
 

{
𝑥𝐻𝑎(𝑡)

𝑇𝑎(𝑡)
} + [

1

𝜏1𝜏2
0

] 𝑢(𝑡)                                (3.17) 

𝑇𝑎(𝑡) = [0 1] {
𝑥𝐻𝑎(𝑡)

𝑇𝑎(𝑡)
}                                                           (3.18) 

Written in matrix notations and converted to discrete-time with sample time 𝑇𝑠, the above state-space 

equations become:  

𝒙𝑎(𝑘 + 1) = 𝐀𝑎𝒙𝑎(𝑘) + 𝐁𝑎𝑢(𝑘)                                                   (3.19) 

𝑇𝑎(𝑘) = 𝐂𝑎𝒙𝑎(𝑘)                                                                  (3.20) 

 

3.2.4 Sensory Systems 

Various sensory systems are used by the driver to infer the states of the vehicle and its surrounding. The 

main senses used by the driver in the steering control task are the visual system, the vestibular system 

and the somatosensors [109]. A minimal set of human sensory measurements is assumed for visual 

perception organs and the proprioceptors; the modelling of the vestibular organs is considered out of 

the scope of the research. The visual system is not only used for detecting the target path, but also used 

in perceiving self-motion of the vehicle relative to the surrounding environment. In this work, the 

perceived states by the visual system are the vehicle lateral deviation with respect the randomly moving 

target path 𝑒 and the yaw angle of the vehicle 𝜓. Proprioceptors are a subset of somatosensors and are 

used for sensing the motion and forces of the joints and muscle, which is an important means the driver 

has to sense the angle and torque of the steering wheel resulting from the steering dynamics and the 

contact between the front tyres and the road. In this work, the muscle angle 𝜃𝑎 is included as another 

measurement. The perceived states are subject to a visual delay 𝜏𝑣𝑖 and a muscle sensory delay 𝜏𝑣𝜃𝑎 , 

consisting of 𝑁𝑣𝑖 = 𝜏𝑣𝑖/𝑇𝑠 and 𝑁𝑣𝜃𝑎 = 𝜏𝑣𝜃𝑎/𝑇𝑠 time steps, respectively. The time delay of cognitive 

processing is assumed to be lumped together with the sensory delays and not modelled separately. The 

sensory delays in Figure 3.3 are implemented using shift registers. The delayed values of the vehicle 

lateral deviation with respect to the randomly moving target path 𝑒𝑑 are found by (3.21) and (3.22) as 

an example. 

{
𝑒(𝑘)
⋮

𝑒(𝑘 − 𝑁𝑣𝑖 + 1)
} = [

𝟎[1,𝑁𝑣𝑖−1] 0

𝐈[𝑁𝑣𝑖−1,𝑁𝑣𝑖−1] 𝟎[𝑁𝑣𝑖−1,1]
] {
𝑒(𝑘 − 1)

⋮
𝑒(𝑘 − 𝑁𝑣𝑖)

} + [
1

𝟎[𝑁𝑣𝑖−1,1]
] 𝑒(𝑘)      (3.21) 

𝑒(𝑘 − 𝑁𝑣𝑖) = [𝟎[1,𝑁𝑣𝑖−1] 1] {
𝑒(𝑘 − 1)

⋮
𝑒(𝑘 − 𝑁𝑣𝑖)

}                                        (3.22) 
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where 𝐈 is the identity matrix, 𝟎 is a matrix of zeros, and 𝐌[𝑖,𝑗] is a matrix with 𝑖 rows and 𝑗 columns. 

Converted to discrete-time state-space equations with sample time 𝑇𝑠, the above equations become:  

𝒙𝜏𝑒(𝑘 + 1) = 𝐀𝜏𝑣𝑖𝒙𝜏𝑒(𝑘) + 𝐁𝜏𝑣𝑖𝑒(𝑘)                                                   (3.23) 

𝑒(𝑘 − 𝑁𝑣𝑖) = 𝐂𝜏𝑣𝑖𝒙𝜏𝑒(𝑘)                                                                  (3.24) 

Similarly, delayed values of vehicle yaw angle 𝜓 and muscle angle 𝜃𝑎  are given by the following 

discrete-time state-space equations:  

𝒙𝜏𝜓(𝑘 + 1) = 𝐀𝜏𝑣𝑖𝒙𝜏𝜓(𝑘) + 𝐁𝜏𝑣𝑖𝜓(𝑘)                                                 (3.23) 

𝜓(𝑘 − 𝑁𝑣𝑖) = 𝐂𝜏𝑣𝑖𝒙𝜏𝜓(𝑘)                                                                 (3.24) 

𝒙𝜏𝜃𝑎(𝑘 + 1) = 𝐀𝜏𝜃𝑎𝒙𝜏𝜃𝑎(𝑘) + 𝐁𝜏𝜃𝑎𝜃𝑎(𝑘)                                               (3.25) 

𝜃𝑎(𝑘 − 𝑁𝑣𝜃𝑎) = 𝐂𝜏𝜃𝑎𝒙𝜏𝜃𝑎(𝑘)                                                              (3.26) 

The perceived states of the vehicle and its surrounding by the sensory system are then sent to the central 

nervous system (CNS), subject to measurement noise. These noisy signals are used to estimate the states 

of the plant. The detailed derivation of the state estimator is presented in later sections. 

 

3.2.5 Disturbance Filtering  

The steering task described by the model is mentioned in the preamble of Section 3.2. The vehicle 

moves at constant longitudinal speed 𝑈 and the driver is asked to follow a randomly moving target path 

while compensating for disturbances acting on the steering-vehicle system, as shown in Figure 3.3. The 

target 𝑟 and disturbances 𝑇𝑑 , 𝐹𝑦 and 𝑀𝑧  are generated by filtering Gaussian white noise to ensure that 

the closed-loop driver-steering-vehicle system is not excited beyond the frequencies of interest [20]. 

White noise signals 𝑤𝑟  𝑤𝐹, 𝑤𝑀 and 𝑤𝑇 are generated in discrete time by choosing random numbers 

from a zero-mean normal distribution. The corresponding variances 𝑊𝑟
2 𝑊𝐹

2, 𝑊𝑀
2 and 𝑊𝑇

2 of the signals 

could be adjusted based on different simulation conditions. Specifically, vehicle lateral force 

disturbance 𝐹𝑦 , vehicle yaw moment disturbance 𝑀𝑧  and steering column torque disturbance 𝑇𝑑  are 

generated by passing the noise inputs through second-order low pass filters with a cut-off frequency 

𝑓𝑐𝐹 , 𝑓𝑐𝑀  and 𝑓𝑐𝑇 , respectively. The second-order low pass filter described by (3.27) is shown as an 

example. 

𝐻𝑓𝐹(𝑠) = (
𝑓𝑐𝐹

𝑠 + 𝑓𝑐𝐹
)
2

                                                          (3.27) 

Converted to state-space form, the low pass filter 𝐻𝑓𝐹  is: 
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{
𝑥̇𝐻𝑓𝐹(𝑡)

𝐹̇𝑦(𝑡)
} = [

0 −𝑓𝑐𝐹
2

1 −2𝑓𝑐𝐹
] {
𝑥𝐻𝑓𝐹(𝑡)

𝐹𝑦(𝑡)
} + [𝑓𝑐𝐹

2

0
]𝑤𝐹(𝑡)                               (3.28) 

𝐹𝑦(𝑡) = [0 1] {
𝑥𝐻𝑓𝐹(𝑡)

𝐹𝑦(𝑡)
}                                                    (3.29) 

Written in matrix notations and converted to discrete-time with sample time 𝑇𝑠, the above state-space 

equations become:  

𝒙𝑓𝐹(𝑘 + 1) = 𝐀𝑓𝐹𝒙𝑓𝐹(𝑘) + 𝐁𝑓𝐹𝑤𝐹(𝑘)                                            (3.30) 

𝐹𝑦(𝑘) = 𝐂𝑓𝐹𝒙𝑓𝐹(𝑘)                                                                (3.31) 

Similarly, the other second-order low pass filters 𝐻𝑓𝑀  and 𝐻𝑓𝑇  are given by: 

𝒙𝑓𝑀(𝑘 + 1) = 𝐀𝑓𝑀𝒙𝑓𝑀(𝑘) + 𝐁𝑓𝑀𝑤𝑀(𝑘)                                        (3.32) 

𝑀𝑧(𝑘) = 𝐂𝑓𝐹𝒙𝑓𝑀(𝑘)                                                               (3.33) 

𝒙𝑓𝑇(𝑘 + 1) = 𝐀𝑓𝑇𝒙𝑓𝑇(𝑘) + 𝐁𝑓𝑇𝑤𝑇(𝑘)                                         (3.34) 

𝑇𝑑(𝑘) = 𝐂𝑓𝑇𝒙𝑓𝑇(𝑘)                                                                (3.35) 

The random target path 𝑟 is generated by passing the noise input 𝑤𝑟  through a function combining a 

second-order low-pass filter with a cut-off frequency 𝑓𝑟𝑙 and a second-order high-pass filter with a cut-

off frequency 𝑓𝑟ℎ  [20]: 

𝐻𝑓𝑟(𝑠) = (
𝑠

𝑠 + 𝑓𝑟ℎ
)
2

(
𝑓𝑟𝑙

𝑠 + 𝑓𝑟𝑙
)
2

                                                 (3.36) 

Similarly, converted to discrete-time state-space form, the filter 𝐻𝑓𝑟  becomes: 

𝒙𝑓𝑟(𝑘 + 1) = 𝐀𝑓𝑟𝒙𝑓𝑟(𝑘) + 𝐁𝑓𝑟𝑤𝑟(𝑘)                                         (3.37) 

𝑟(𝑘) = 𝐂𝑓𝑟𝒙𝑓𝑟(𝑘)                                                               (3.38) 

 

3.2.6 Complete Plant 

Combining blocks developed from Section 3.2.1 to 3.2.5 gives the complete plant, written in the 

discrete-time state-space form: 

𝒙(𝑘 + 1) = 𝐀𝒙(𝑘) + 𝐁𝛼(𝑘)

+ [𝐁 𝐆𝑟 𝐆𝐹 𝐆𝑀 𝐆𝑇]{𝑤(𝑘) 𝑤𝑟(𝑘) 𝑤𝐹(𝑘) 𝑤𝑀(𝑘) 𝑤𝑇(𝑘)}
𝑇           (3.39) 

𝒛(𝑘) = 𝐂𝒙(𝑘)                                                                 (3.40) 
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where 𝒙(𝑘) =

{𝒙𝑓𝑟(𝑘) 𝒙𝑓𝐹(𝑘) 𝒙𝑓𝑀(𝑘) 𝒙𝑓𝑇(𝑘) 𝒙𝑚𝑠𝑣(𝑘) 𝒙𝑎(𝑘) 𝒙𝜏𝜓(𝑘) 𝒙𝜏𝜃𝑎(𝑘)  𝒙𝜏𝑒(𝑘)}𝑇, 

 𝒛(𝑘) = {𝑒(𝑘 − 𝑁𝑣𝑖) 𝜓(𝑘 − 𝑁𝑣𝑖) 𝜃𝑎(𝑘 − 𝑁𝑣𝜃𝑎)}
𝑇
, 

𝐀

=

[
 
 
 
 
 
 
 
 
 

𝐀𝑓𝑟 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝐀𝑓𝐹 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝐀𝑓𝑀 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝐀𝑓𝑇 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝐁𝑚𝑠𝑣(:,2)𝐂𝑓𝐹 𝐁𝑚𝑠𝑣(:,3)𝐂𝑓𝑀 𝐁𝑚𝑠𝑣(:,4)𝐂𝑓𝑇 𝐀𝑚𝑠𝑣 𝐁𝑚𝑠𝑣(:,1)𝐂𝑎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝐀𝑎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝐁𝜏𝑣𝑖𝐂𝑚𝑠𝑣(2,:) 𝟎 𝐀𝜏𝑣𝑖 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝐁𝜏𝜃𝑎𝐂𝑚𝑠𝑣(3,:) 𝟎 𝟎 𝐀𝜏𝜃𝑎 𝟎

−𝐁𝜏𝑣𝑖𝐂𝑓𝑟 𝟎 𝟎 𝟎 𝐁𝜏𝑣𝑖𝐂𝑚𝑠𝑣(1,:) 𝟎 𝟎 𝟎 𝐀𝜏𝑣𝑖]
 
 
 
 
 
 
 
 
 

 

𝐁 = [𝟎 𝟎 𝟎 𝟎 𝟎 𝑩𝑎 𝟎 𝟎 𝟎]𝑇 

𝐆𝑟 = [𝐁𝑓𝑟 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎]𝑇 

𝐆𝐹 = [𝟎 𝐁𝑓𝐹 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎]𝑇 

𝐆𝑀 = [𝟎 𝟎 𝐁𝑓𝑀 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎]𝑇 

𝐆𝑇 = [𝟎 𝟎 𝟎 𝐁𝑓𝑇 𝟎 𝟎 𝟎 𝟎 𝟎]𝑇 

𝐂 = [

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝐂𝜏𝑣𝑖
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝐂𝜏𝑣𝑖 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝐂𝜏𝜃𝑎 𝟎 

] ,  

𝟎 is a matrix of zeros, 𝐌(𝑖,𝑗) indicates the 𝑖th row and 𝑗th column of matrix 𝐌 and ‘:’ represents the 

entire row or column of the matrix. 

 

3.2.7 Stretch Reflex Control 

The muscle activation is considered to come from the alpha motor neurons in the spine. The alpha motor 

neurons receive signals from two main sources [103]. Signals can be sent directly from the motor cortex 

in the brain; in Figure 3.2 this signal is labelled 𝛼. In addition, the alpha motor neurons can be signalled 

by the reflex action, which is predominantly a closed-loop feedback control of muscle length known as 

the stretch reflex. Gamma motor neurons in the spine activate special fibres in the muscle called spindles. 

The gamma motor neurons adjust the length of the spindles according to the muscle displacement angle 

(or steering wheel angle) expected by the brain. If the muscle angle differs from the expected angle, the 

spindles are strained and send a signal to the alpha motor neurons, activating the muscle to achieve the 
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expected muscle angle. The function of the muscle spindles is represented in Figure 3.2 by the 

summation circle, which calculates the difference between the expected angle 𝛾 and the actual angle 

𝜃𝑎. The generation of the expected muscle angle 𝛾 is presented in later sections. The difference is then 

operated upon by a reflex gain block 𝐻𝑟  and a delay block 𝐷𝑟  before activating the muscle via the alpha 

motor neuron.  

In this work, the reflex behaviour is modelled to be sensitive to muscle displacement angle; therefore, 

the reflex gain block 𝐻𝑟  contains a stiffness gain 𝑘𝑟 . The reflex delay is primarily a function of neural 

conduction velocities and the distance of the muscle from the motor neurons in the spine. It is modelled 

as a discrete-time shift register with a parameter 𝜏𝑟  representing the delay time, consisting of 𝑁𝑟 =

𝜏𝑟/𝑇𝑠 time steps. 

{
𝛼𝑟(𝑘)
⋮

𝛼𝑟(𝑘 − 𝑁𝑟 + 1)
} = [

𝟎[1,𝑁𝑟−1] 0

𝐈[𝑁𝑟−1,𝑁𝑟−1] 𝟎[𝑁𝑟−1,1]
] {
𝛼𝑟(𝑘 − 1)

⋮
𝛼𝑟(𝑘 − 𝑁𝑟)

} + [
1

𝟎[𝑁𝑟−1,1]
] 𝛼𝑟(𝑘)    (3.41) 

𝛼𝑟𝑑(𝑘) = 𝛼𝑟(𝑘 − 𝑁𝑟) = [𝟎[1,𝑁𝑣𝑖−1] 1] {
𝛼𝑟(𝑘 − 1)

⋮
𝛼𝑟(𝑘 − 𝑁𝑟)

}                               (3.42) 

Converted to discrete-time state-space equations with sample time 𝑇𝑠, the above equations become:  

𝒙𝜏𝑟(𝑘 + 1) = 𝐀𝜏𝑟𝒙𝜏𝑟(𝑘) + 𝐁𝜏𝑟𝑘𝑟[𝛾(𝑘) − 𝜃𝑎(𝑘)]                                    (3.43) 

𝛼𝑟𝑑(𝑘) = 𝐂𝜏𝑟𝒙𝜏𝑟(𝑘)                                                                  (3.44) 

 

3.2.8 Kalman Filter for State Estimation and Gamma Activation 

The optimal controller requires the full plant state vector 𝒙 to calculate the optimal plant input. The 

sensory systems described in Section 3.2.4 provide the central nervous system (CNS) with 

measurements 𝒛 of the plant, perturbed by measurement noise 𝒗, and it is assumed that the CNS carries 

out sensory measurement integration using statistically optimal methods to estimate the states of the 

plant. Similar to the driver model developed by Nash and Cole [20], the process of estimating the states 

of the plant is represented by using a Kalman filter, based on an internal mental model of the plant 

derived in Section 3.2.6, the measurement of noise-free plant input 𝛼 and noisy measurement 𝒛 + 𝒗 of 

the plant. The theory of Kalman filtering is given by [122] [123]. Initially, an estimate of the states 

𝒙𝑒(𝑘 + 1|𝑘) is predicted by propagating the current input 𝛼(𝑘) and state estimate 𝒙𝑒(𝑘) through the 

internal mental model of the plant: 

𝒙𝑒(𝑘 + 1|𝑘) = 𝐀𝒙𝑒(𝑘) + 𝐁𝛼(𝑘)                                                     (3.45) 
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A correction is then added based on the error between the previously estimated output 𝐂𝒙𝑒(𝑘|𝑘 − 1) 

and measured output 𝒛(𝑘) + 𝒗(𝑘), weighted by the ‘Kalman gain’ 𝐊(𝑘) 

𝒙𝑒(𝑘) = 𝒙𝑒(𝑘|𝑘 − 1) + 𝐊(𝑘){𝒛(𝑘) + 𝒗(𝑘) − 𝐂𝒙𝑒(𝑘|𝑘 − 1)}                       (3.46) 

The time-varying Kalman gain 𝐊(𝑘) is calculated to give a statistically optimal minimum-variance 

estimate based on the concept of ‘maximum likelihood estimate’ (MLE), weighting the estimates based 

on the covariances of the Gaussian noise 𝑤, 𝑤𝑟 , 𝑤𝐹, 𝑤𝑀, 𝑤𝑇 and 𝒗. In this work, the covariances are 

assumed to be time-invariant. Therefore, a steady-state Kalman filter is implemented to estimate the 

states of the plant optimally. The estimate of the plant states 𝒙𝑒 is given by:  

𝒙𝑒(𝑘 + 1|𝑘) = [𝐀 − 𝐋𝐂]𝒙𝑒(𝑘|𝑘 − 1) + [𝐁 𝐋] {
𝛼(𝑘)

𝒛(𝑘) + 𝒗(𝑘)
}                     (3.47) 

𝒙𝑒(𝑘) = [𝐈 − 𝐌𝑥𝐂]𝒙𝑒(𝑘|𝑘 − 1) + [𝟎 𝐌𝑥] {
𝛼(𝑘)

𝒛(𝑘) + 𝒗(𝑘)
}                        (3.48) 

where gain matrix 𝐋 and the innovation gains 𝐌𝑥 and 𝐌𝑦 are: 

𝐋 = 𝐀𝐏𝐂𝑇(𝐂𝐏𝐂𝑇 + 𝐑KF)
−1                                                (3.49) 

𝐌𝑥 = 𝐏𝐂
𝑇(𝐂𝐏𝐂𝑇 + 𝐑KF)

−1                                                (3.50) 

𝐌𝑦 = 𝐂𝐏𝐂
𝑇(𝐂𝐏𝐂𝑇 +𝐑KF)

−1                                             (3.51) 

and 𝐏 is given by solving the following discrete Riccati equation: 

𝐀𝑇𝐏𝐀 − 𝐏 − 𝐀𝑇𝐏𝐂(𝐂𝑇𝐏𝐂 + 𝑹𝐾𝐹)
−1𝐂𝑇𝐏𝐀 + 𝐐̂KF = 𝟎                      (3.52) 

where 𝐐̂KF = [𝐁 𝐆𝑟 𝐆𝐹 𝐆𝑀 𝐆𝑇]𝐐KF[𝐁 𝐆𝑟 𝐆𝐹 𝐆𝑀 𝐆𝑇]   

The process and measurement noise covariance matrices 𝐐KF and 𝐑KF are given by: 

𝐐KF = diag([𝑊
2 𝑊𝑟

2 𝑊𝐹
2 𝑊𝑀

2 𝑊𝑇
2])                                  (3.53) 

𝐑KF = diag([𝑉𝑒
2 𝑉𝜓

2 𝑉𝜃𝑎
2 ])                                              (3.54) 

where 𝑊2 denotes the variance of the process noise 𝑤, 𝑊𝑟
2 𝑊𝐹

2, 𝑊𝑀
2 and 𝑊𝑇

2 denote the variances of 

the disturbances 𝑤𝑟 , 𝑤𝐹 , 𝑤𝑀  and 𝑤𝑇 , respectively, and 𝑉𝑒
2 , 𝑉𝜓

2  and 𝑉𝜃𝑎
2  denote the variances of the 

measurement noise added to the plant outputs 𝑒, 𝜓, and 𝜃𝑎 , respectively.  

The generation of the expected muscle angle, labelled as 𝛾 in Figure 3.2, is known as gamma activation, 

which is also based on an internal mental model of the plant derived in Section 3.2.6. Specifically, the 

expected muscle angle 𝛾 is calculated by processing the internal mental model of the plant forwardly 
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with the current input 𝛼(𝑘) and state estimate 𝒙𝑒(𝑘), which is essentially the prediction step of Kalman 

filter. Therefore, the gamma activation process is incorporated into the Kalman filter.  

As mentioned in Chapter 2, a neuroscience study conducted by Blakemore [118] into tickliness found 

that as the discrepancy between predicted and actual sensory feedback increases, there is a concomitant 

decrease in the level of subjective satisfaction. Compared with the theory of Kalman filter, this 

discrepancy is reflected by the prediction error 𝒛(𝑘) + 𝒗(𝑘) − 𝐂𝒙𝑒(𝑘|𝑘 − 1). Therefore, the Kalman 

filtering theory provides the new driver-steering-vehicle model with the possibility of predicting the 

human driver’s subjective assessment of steering feel. Specifically, it is hypothesised that subjective 

rating of steering feel is related to the driver’s ability to predict the steering torque feedback using their 

internal model and their known control inputs. A larger error means that steering feel is subjectively 

worse. This hypothesis is tested in Chapter 6. 

 

3.2.9 Cognitive Controller 

Similar to the driver model developed by Nash and Cole [20], for the linear plant derived in Section 

3.2.6, a linear quadratic regulator (LQR) optimal controller is used to represent the driver’s cognitive 

control behaviour to follow the randomly moving target path based on the same internal mental model 

as the one in state estimation and gamma activation. The effect of cognitive delay is accounted for in 

the sensory delay blocks and thus is not considered in this section.  

In the LQR algorithm, a gain vector 𝐊LQ processing the estimated plant states 𝒙𝑒 is calculated based on 

the minimisation of a cost function  𝐽 to generate an optimal control action 𝛼. The additive Gaussian 

white noise 𝑤𝑟  𝑤𝐹, 𝑤𝑀 and 𝑤𝑇 are not considered since these are not driver control actions. In this 

work, it is assumed that the driver aligns a different part of the vehicle with the randomly moving target 

path instead of the centre of vehicle, as illustrated in Figure 3.6. A time shift constant 𝑇𝑡  is included in 

the model to account for this effect and therefore the cost function 𝐽 includes costs on the shifted lateral 

deviation of the vehicle from the target path and the plant input 𝛼 and weights the two terms by 𝑞𝑒 and 

𝑞𝛼, respectively: 

𝐽 = ∑{𝑞𝑒[𝑦(𝑘) − 𝑟(𝑘) + 𝑈𝜓(𝑡)𝑇𝑡]
2 + 𝑞𝛼𝛼(𝑘)

2}

∞

𝑘=0

= ∑{𝒙(𝑘)𝑇𝐐LQ𝒙(𝑘) + 𝛼(𝑘)
𝑇𝐑LQ𝛼(𝑘)}

∞

𝑘=0

                                                                  (3.55) 

where  

𝐐LQ = 𝐇
𝑇𝑞𝑒𝐇                                                                    (3.56) 
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𝐇 = [𝐂𝑓𝑟 𝟎[1,𝑁𝑓𝑦] 𝟎[1,𝑁𝑓𝑧] 𝟎[1,𝑁𝑓𝑑] 1 0 𝑈𝑇𝑡 𝟎[1,𝑁𝑚𝑠𝑣−3] 𝟎[1,𝑁𝑣𝑖] 𝟎[1,𝑁𝑣𝜃𝑎]
𝟎[1,𝑁𝑣𝑖]](3.57) 

𝐑LQ = 𝑞𝛼                                                                       (3.58) 

where 𝟎 is a matrix of zeros, 𝐌[𝑖,𝑗] is a matrix with 𝑖 rows and 𝑗 columns, 𝑁𝑖 is the number of states in 

the state vector 𝒙𝑖(𝑘). Several previous studies took account of vehicle yaw angle error in the cost 

function [89] [90], and it is also possible to include other elements such as the first derivative of the 

control action and the integral of tracking error. However, only two elements are considered here for 

simplicity. Different combinations of the values of the weightings can represent a range of driving 

strategies, in particular indicating the trade-off between the path-following accuracy and the control 

activity to accomplish a driving manoeuvre.  

The time-invariant LQR control is of the form [90]: 

𝛼(𝑘) = −𝐊LQ𝒙𝑒(𝑘)                                                            (3.59) 

where 

𝐊LQ = (𝐁
𝑇𝐒𝐁 + 𝐑LQ)

−1
𝐁𝑇𝐒𝐀                                                 (3.60) 

and 𝐒 is given by solving the following discrete Riccati equation: 

𝐀𝑇𝐒𝐀 − 𝐒 − 𝐀𝑇𝐒𝐁(𝐁𝑇𝐒𝐁 + 𝐑LQ)
−1
𝐁𝑇𝐒𝐀 + 𝐐LQ = 𝟎                      (3.61) 

Matlab’s dlqr function can be used to evaluate 𝐊LQ given the costs and the plant being controlled by 

the human driver. 

 

Figure 3.6: Geometry of driver’s viewpoint, a different part of the vehicle is aligned with the randomly 

moving target path instead of the centre of vehicle. 
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3.2.10 Parameters of the Driver-Steering-Vehicle Model 

In total, there are more than forty parameters in the closed-loop driver-steering-vehicle model, including 

the parameters of the vehicle model, the steering model, and the driver model. Explanations of how all 

the parameter values are determined are provided below. 

Regarding the steering model and the vehicle model, most of these parameters are directly given by 

Toyota Motor Europe (TME) [124] with a small number of them are chosen based on the measured data 

provided by TME and preliminary stability analysis. More details of the justification of the chosen 

parameter values are given in Chapter 4. The amplitudes of the applied Gaussian white noise and their 

corresponding filters are given by the driving simulator experimental conditions described in Chapter 

4. It is necessary to keep the steering and vehicle model identical to that used in the experiments. 

It is assumed that the internal model exactly matches the actual plant controlled by the driver based on 

the findings from Nash and Cole [116] that the human driver is capable of obtaining an accurate model 

if the system dynamics are linear. The driver model parameters relate to the physical properties of the 

human driver, and therefore, most of the parameters of the driver model are identified using the 

experimental results. However, some of the parameters can be fixed in advance using data from the 

relevant literature. To be specific, the muscle activation blocks 𝐻𝑎 consists of two time constants in the 

series of first-order lags 𝜏1 and 𝜏2. It has been found that these two time constants are independent of 

the muscle activation level [17], which means values of them are not affected by the states of the muscle, 

whether relaxed or tensed. Therefore, it is reasonable to fix their values. In this work, a value of 30ms 

is used for 𝜏1 and the value of 𝜏2 is chosen as 20ms, taking the advice of Cole [103]. The reflex delay 

is also not affected by the muscle activation level and is set to 40ms as suggested by Hoult [42]. The 

intrinsic dynamics is related to the flesh of arms, and the values of intrinsic stiffness 𝑘𝑝 and damping 

𝑐𝑝 are simply set to 0Nm/rad and 0Nms/rad, respectively, following the suggestions of Cole [103] 

because of the difficulty of identifying experimentally the separate contributions of the intrinsic, reflex 

and cognitive dynamics. The value of tendon stiffness 𝑘𝑎  is set to 30Nm/rad [121]. The values of the 

LQR controller cost function weightings allow the trade-off between path-following accuracy and 

control activity to be determined, and influence the path-following bandwidth of the driver model [17]. 

This means different driving styles of the driver could be represented by varying the weightings of the 

cognitive controller cost function. However, it is only the relative weightings that influence the 

controller performance. Therefore, 𝑞𝑒 is fixed to 1m−2 and 𝑞𝛼 is varied. The names, symbols, units, 

and sources of the vehicle model parameters, the steering system parameters, the disturbance filters 

parameters and the fixed driver model parameters are summarised in Table 3.1. Except the parameters 

discussed above, various other parameters values must be found by fitting the model to experimental 

data using an identification procedure. The identified parameters are: the damping 𝑐𝑎  resisting 

stretching of the muscle fibre, the arm inertia 𝐼𝑎𝑟𝑚 , the reflex controller gain 𝑘𝑟 , the noise standard 
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deviation 𝑊, 𝑉𝑒 , 𝑉𝜓and 𝑉𝜃𝑎 , the visual sensory delay 𝜏𝑣𝑖 , the muscle angle sensory delay 𝜏𝜃𝑎 , the 

cognitive controller cost on the shifted lateral deviation of the vehicle from the target path 𝑞𝑒 and the 

controller time shift 𝑇𝑡 .  
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Table 3.1: Driver-steering-vehicle model parameters  

 Description Parameter Value Unit Source 

Vehicle Model Vehicle mass 𝑚 1370 kg [124] 

 Vehicle yaw moment of inertia 𝐼 1840 kg m2 [124] 

 Lateral front tyre stiffness 𝐶𝑓  41.8 × 103 N/rad [124] 

 Lateral rear tyre stiffness 𝐶𝑟  62.2 × 103 N/rad [124] 

 Distance from CoM to front axle 𝑎 0.98 m [124] 

 Distance from CoM to rear axle 𝑏 1.49 m [124] 

 Longitudinal velocity 𝑈 16.7 m/s [124] 

Steering Model Steering gear ratio 𝐺 16  [124] 

 Trail (Pneumatic and caster) 𝑑 0.059 m [124] 

 Stiffness of the steering system due to the 

kingpin axes (inclination and scrub radius) 
𝑘𝑠𝑤 0.516 Nm/rad [124] 

 Moment of inertia of the steering wheel 𝐼𝑠𝑤  0.0264 kg m2 / 

Damping coefficient of the steering system (of 
the bearings) and steering system friction 

𝑐𝑠𝑤 0.2 
 

Nms/rad / 

Boost curve coefficient 𝐶𝑏𝑜𝑜𝑠𝑡  0  / 

Steering column stiffness 𝑘𝑡  115 Nm/rad [1] 

Inertia of the rack and the front wheels 

referred to the pinion 
𝐼𝑐 1.7

𝐺2
 

kg m2 [1] 

Damping coefficient of the torsion bar 𝑐𝑡 1.74 Nms/rad [1] 

Handwheel stiffness term 𝑘ℎ𝑤 0 Nm/rad / 

Handwheel damping term  𝑐ℎ𝑤 0 Nms/rad / 
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Table 3.1(continued): Driver-steering-vehicle model parameters 

 Description Parameter Value Unit Source 

Driver Model Intrinsic muscle stiffness 𝑘𝑝 0 Nm/rad [103] 

Intrinsic muscle damping 𝑐𝑝 0 Nms/rad [103] 

Tendon stiffness 𝑘𝑎 30 Nm/rad [121] 

Motor neurons lag time constant 𝜏1 30 ms [103] 

Muscle activation and deactivation lag time 

constant 
𝜏2 20 ms [103] 

Reflex delay 𝜏𝑟  40 ms [17] 

Cost function weight on control input 𝛼 𝑞𝛼 1  / 

Cut-off frequency for the low-pass filter 𝐻𝑓𝐹  𝑓𝑐𝐹 6.28 rad/s  

Cut-off frequency for the low-pass filter 𝐻𝑓𝑀  𝑓𝑐𝑀 6.28 rad/s  

Cut-off frequency for the low-pass filter 𝐻𝑓𝑇  𝑓𝑐𝑇 62.8 rad/s  

Cut-off frequency for the low-pass filter in 

𝐻𝑓𝑟  
𝑓𝑐𝑟𝑙 1 rad/s  

Cut-off frequency for the high-pass filter in 

𝐻𝑓𝑟  
𝑓𝑐𝑟ℎ  0.05 rad/s  
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3.3 Simulation Study of Linear Model Parameters 

Based on the formulation of the new driver-steering-vehicle model, a parameter study is conducted to 

enable a fundamental understanding of steering torque feedback. This section firstly describes the 

effects of steering system parameters on the steering properties of the vehicle to get a better 

understanding of the objective assessment of steering feel. As mentioned in Section 3.2.10, there are 

eleven driver model parameters which are neither fixed in advance from relevant literature nor taken 

from the experimental conditions. Then a parameter analysis on the eleven parameters that influence 

the drivers’ steering control performance is conducted. Baseline values of these parameters are found 

by conducting preliminary identification based on experiments over a range of conditions with details 

are given in [125] and are updated following the identification results presented in Figure 5.4 in Chapter 

5. The identified values of these eleven parameters are given in Table 3.2. Nash [126] found that the 

process noise and measurement noise standard deviations in the Kalman filter depend on the RMS 

values of the equivalent signals in the driver-steering-vehicle model. However, these signals are not 

known until after the simulation has been run, so an iterative procedure would be needed to find the 

RMS signal values for each condition. To save computational time, these noise standard deviations are 

simply fixed at the values shown in Table 3.2 for the baseline simulations in this section.  

Table 3.2: Driver model parameters used in the simulations. 

Description Parameter Value Unit 

Damping resisting stretching of the muscle fibre 𝑐𝑎 3.37  Nms/rad 

Arm inertia 𝐼𝑎𝑟𝑚  0.0973 kgm2 

Reflex gain 𝑘𝑟  24.9 Nm/rad 

Process noise standard deviation  𝑊 13.3 Nm 

Standard deviation of measurement noise on the lateral 

deviation of the vehicle from the target path 𝑒  
𝑉𝑒 0.147 m 

Standard deviation of measurement noise on the vehicle 

yaw angle 𝜓 
𝑉𝜓 0.0744 rad 

Standard deviation of measurement noise on the muscle 

angle 𝜃𝑎 
𝑉𝜃𝑎  0.863 rad 

Visual delay 𝜏𝑣𝑖 0.110 s 

Muscle angle sensory delay 𝜏𝜃𝑎  0.360 s 

Cognitive controller cost on the shifted lateral deviation of 

the vehicle from the target path 
𝑞𝑒 1000 m−2 

Controller time shift 𝑇𝑡  0.0229 s 

 

 

 



3.3 Simulation Study of Linear Model Parameters                                                                                   53     

 

3.3.1 Simulation Study of Steering System Parameters 

In this section, the steering system is decoupled from the muscle dynamics and then combined with the 

vehicle model so that the open-loop steering-vehicle dynamics can be simulated. A diagram showing 

the steering system model only together with a steering wheel torque input from the driver 𝑇𝑠𝑤  is 

presented in Figure 3.7. It is also assumed that there is no steering column torque disturbance. 

 

Figure 3.7: Steering system model with external steering wheel torque input. The springs and dampers 

act in rotation. 

 

The parameters shown in Table 3.3 are investigated. In this table, the values in bold are called baseline 

values, which are used as the baseline for the parameter analysis. The values other than the baseline 

values are used in the simulation to understand how the variation of these steering parameters affect the 

responses of the steering-vehicle system and the objective assessment of steering feel. In the analysis, 

only one parameter is varied each time while the others are fixed at the baseline values. The other 

parameters of the steering-vehicle model are given in Table 3.1.  

To investigate the on-centre region specifically, the steering-vehicle system model is subject to a 

sinusoidal steering wheel torque input with an amplitude of 2.2Nm and a frequency of 0.2Hz so that the 

maximum lateral acceleration is within the range from -2ms-2 to 2ms-2 to ensure on-centre regime. 

𝑇𝑠𝑤 = 2.2 sin(0.4𝜋𝑡)                                                               (3.62) 

Frequency responses of the steering-vehicle system are plotted to investigate vehicle steering 

performance. Several cross-plots, including vehicle lateral acceleration 𝑎𝑦 versus steering wheel torque 

𝑇𝑠𝑤 , vehicle lateral acceleration 𝑎𝑦  versus steering wheel angle 𝜃 , steering wheel angle 𝜃  versus 

steering wheel torque 𝑇𝑠𝑤 and steering wheel angle 𝜃 versus vehicle yaw rate 𝜔 are generated since 

they are useful tools for analysing objective assessment of steering feel. Returnability, on-centre feel, 
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torque stiffness and steering sensitivity are representative objective steering feel characteristics that can 

be illustrated by the cross-plots. The definitions of them are [29]: 

• Returnability: the lateral acceleration at zero steering wheel torque 

• On-centre feel: the slope of steering wheel torque to lateral acceleration between -0.5ms-2 and 

0.5ms-2 in lateral acceleration 

• Torque stiffness: steering wheel torque gradient at zero steering wheel angle 

• Steering sensitivity: the reciprocal of steering wheel angle gradient at 1ms-2 lateral acceleration 

Table 3.3: Parameter values of the steering model in the parameter study  

Description Parameter Value Unit 

Stiffness of the steering 

system due to the kingpin axes 

(inclination + scrub radius) 

𝑘𝑠𝑤 0.344  𝟎. 𝟓𝟏𝟔  0.688 Nm/rad 

Damping coefficient of the 

steering system (of the 

bearings) and steering system 

friction 

𝑐𝑠𝑤 0.1  𝟎. 𝟐  0.3 

 

Nms/rad 

Moment of inertia of the 

steering handwheel 
𝐼𝑠𝑤  0.01  𝟎. 𝟎𝟐𝟔𝟒  0.04 kgm2 

Steering column stiffness 𝑘𝑡  28.8  𝟏𝟏𝟓  230 Nm/rad 

Torsion bar damping 𝑐𝑡 0.1  𝟏. 𝟕𝟒  10 Nms/rad 

Boost curve coefficient 𝐶𝑏𝑜𝑜𝑠𝑡  𝟎  1  

Steering gear ratio 𝐺 8  𝟏𝟔  24  

Trail (Pneumatic + Caster) 𝑑 0.01  𝟎. 𝟎𝟓𝟗  0.1 m 

 

Figure 3.8 shows the frequency response of the steering-vehicle system with various values of steering 

gear ratio 𝐺. The frequency is plotted up to 104rad/s in order to confirm the correct operation of the 

model. In practice, the human driver would not be expected to apply torques at frequencies above 

30rad/s. Discernible differences are noticed when examining the plots at low frequencies such as 0.2Hz 

(1.2566rad/s) that the magnitudes of all the three system states are relatively larger for larger values of 

steering gear ratio 𝐺. This is because, at low frequencies, the torque applied to the steering wheel by 

the driver 𝑇𝑠𝑤 is mainly reacted by the steering system stiffness 𝑘𝑠𝑤 and by the self-aligning torque 

resulting from front tyres lateral force 𝐹𝑦𝑓 acting through the trail distance 𝑑 and steering gear ratio 𝐺. 

For a larger value of steering gear ratio, a larger lateral tyre force is required to react the steering wheel 

torque; this is achieved by a larger front tyres steer angle, with corresponding increases in vehicle lateral 

velocity 𝑣,  vehicle yaw rate 𝜔 and steering wheel angle 𝜃𝑠𝑤. At very high frequencies, the gain roll-

off for the two vehicle states 𝑣 and 𝜔 is 80dB/decade, which arises from the combined second-order 

steering system model with the second-order vehicle model (40dB/decade each), while the gain roll-off 
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for the steering wheel angle 𝜃𝑠𝑤 is 40dB/decade, arising just from the second-order steering system 

model. It is shown that there is also a slight decrease in gain at high frequencies for vehicle lateral 

velocity 𝑣 and vehicle yaw rate 𝜔 with the increase in steering gear ratio 𝐺. There is because that the 

increased value of the steering gear ratio leads to increased equivalent inertia of the rack and the front 

wheels. The corner frequencies of the system correspond to the resonance of the vehicle system, 

followed by the resonance of the steering system. It is easy to distinguish the two separate resonances 

when the steering gear ratio 𝐺 is 8. However, they are getting close to each other with the increase of 

steering gear ratio 𝐺 . The exact values of the damped natural frequencies of the system are the 

imaginary parts of the eigenvalues of the system, as shown in Figure 3.9. Figure 3.10 shows the cross-

plots of four states of the steering-vehicle system, illustrating the effects of changing steering gear ratio 

on objective steering feel characteristics. Firstly, discernible differences are noticed when examining 

the characteristics of steering wheel angle 𝜃𝑠𝑤 versus steering wheel torque 𝑇𝑠𝑤, and vehicle lateral 

acceleration 𝑎𝑦 versus steering wheel torque 𝑇𝑠𝑤. It is seen that as the steering gear ratio increases, less 

steering wheel torque is required to achieve the same steering wheel angle or vehicle lateral acceleration. 

This is consistent with findings from the frequency responses of the system shown in Figure 3.8. 

Additionally, the changes of characteristic parameters describing objective assessment of steering feel 

due to steering gear ratio variation are summarised in Table 3.4. In summary, the steering gear ratio 𝐺 

influences steering sensitivity, returnability, on-centre feel and torque stiffness.  

  

Figure 3.8: Frequency responses of the steering-vehicle system with different values of steering gear 

ratio 𝐺. The x-axis for the three plots is frequency in rad/s. 
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Figure 3.8(continued): Frequency responses of the steering-vehicle system with different values of 

steering gear ratio 𝐺. The x-axis for the three plots is frequency in rad/s. 

 

Figure 3.9: Eigenvalues of the steering-vehicle system. The direction of the arrow indicates increasing 

𝐺.  

 

Figure 3.10: Cross-plots of the states of the steering-vehicle system. The hysteresis loops are formed 

clockwise.  
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Figure 3.10(continued): Cross-plots of the states of the steering-vehicle system. The hysteresis loops 

are formed clockwise.  

 

Figure 3.11 shows the frequency response of the steering-vehicle system with various values of front 

tyres trail distance 𝑑. The decreases in the frequency response magnitudes of all the three states vehicle 

lateral velocity 𝑣, vehicle yaw rate 𝜔 and steering wheel angle 𝜃𝑠𝑤  are noticed in normal operation 

frequencies (low frequencies) such as 0.2Hz (1.2566rad/s) when the front tyres trail distance 𝑑 increases, 

indicating an increase in equivalent stiffness of the steering-vehicle. The values of the damped natural 

frequencies of the system are the imaginary parts of the eigenvalues of the system, as shown in Figure 

3.12. Figure 3.13 shows the cross-plots of four states of the steering-vehicle system, illustrating the 

effects of changing front tyres trail distance 𝑑 on objective steering feel characteristics. These cross-

plots highlight the effect of increasing tyre trail distance by shortening the horizontal width of the plots 

involving steering wheel torque 𝑇𝑠𝑤. As the front tyres trail distance 𝑑 increases, the resistance torque 

generated by the front tyres force acting through the trail distance becomes large and therefore needs to 

be compensated by a larger steering wheel torque 𝑇𝑠𝑤. In addition, when the front tyres trail distance 𝑑 

is set to 0.01m, there is little torque feedback from the front tyres and the maximum lateral acceleration 

and steering wheel angle are unrealistically large. The changes of the characteristic parameters 

describing objective assessment of steering feel due to front tyres trail distance 𝑑 variation are also 

summarized in Table 3.4, and basically, the front tyres trail distance 𝑑 has an influence on returnability, 

on-centre feel and torque stiffness. 
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Figure 3.11: Frequency responses of the steering-vehicle system with different values of front tyres 

trail distance 𝑑. The x-axis for the three plots is frequency in rad/s. 

 

Figure 3.12: Eigenvalues of the steering-vehicle system. The direction of the arrow indicates increasing 

𝑑.  

Steering 

system 
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Figure 3.13: Cross-plots of the states of the steering-vehicle system. The hysteresis loops are formed 

clockwise. 

 

Figure 3.14 shows the frequency response of the steering-vehicle system with and without assist torque. 

The gain for all the three states vehicle lateral velocity 𝑣, vehicle yaw rate 𝜔 and steering wheel angle 

𝜃𝑠𝑤  at low frequencies increases when there is assist torque. This is ascribed to the greater torque 

applied on the steering-vehicle system. However, at high frequencies, the increase in the gain is only 

seen for the two vehicle states. This is because the assist torque is directly applied at the inertia of the 

rack and the front wheels, which is directly connected with the vehicle and the change of the torque 

across the torsion bar and the steering column is negligible at high frequencies. The values of the 

damped natural frequencies of the system are the imaginary parts of the eigenvalues of the system, as 

shown in Figure 3.15. Figure 3.16 shows the cross-plots of four states of the steering-vehicle system. It 

is shown that when an assist torque is applied at the steering system, the required steering wheel torque 

to achieve the same steering wheel angle, vehicle yaw rate, and vehicle lateral acceleration is smaller, 

as expected. The effects of the assist torque on the characteristic parameters describing objective 
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assessment of steering feel are also illustrated by these cross plots and are summarized. In general, the 

existence of the assist torque influences steering sensitivity, returnability, on-centre feel and torque 

stiffness. 

 

 

Figure 3.14: Frequency responses of the steering-vehicle system with and without assist torque from 

driving assistant system. The x-axis for the three plots is frequency in rad/s. 
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Figure 3.15: Eigenvalues of the steering-vehicle system. The direction of the arrow indicates increasing 

𝐶𝑏𝑜𝑜𝑠𝑡 .  

  

 

Figure 3.16: Cross-plots of the states of the steering-vehicle system. The hysteresis loops are formed 

clockwise. 

Steering 

system 

Vehicle 



3.3 Simulation Study of Linear Model Parameters                                                                                   62     

 

The effects of the other steering system parameters listed in Table 3.3 are on the dynamic behaviour of 

the steering-vehicle system are predictable and obvious. Therefore, the detailed analysis regarding the 

frequency response plots and the cross-plots is not shown. Specifically, the increase of steering column 

stiffness 𝑘𝑡  reduces the magnitude of steering system responses at low frequencies, and the lower value 

of torsion bar damping 𝑐𝑡 gives lower magnitudes in vehicle responses at high frequencies. In addition, 

the increase of self-centering stiffness 𝑘𝑠𝑤 reduces the magnitude of steering and vehicle responses at 

low frequencies, the increase of steering system damping 𝑐𝑠𝑤 reduces the resonance peak related to the 

steering system, while the increase of steering wheel inertia 𝐼𝑠𝑤  results in lower magnitude of the 

steering and vehicle responses at high frequencies and lower value of resonance frequency of the 

steering system. The effects of these parameters on the characteristic parameters describing objective 

assessment of steering feel are also shown in Table 3.4. In general, the observed effects shown in Table 

3.4 are consistent with the findings of published literature reviewed in Section 2.2.3. 

Table 3.4: Effects of the increase of steering system parameters on steering feel parameters 

Steering system parameter Steering 

sensitivity 
Returnability 

On-centre 

feel 

Torque 

stiffness 

Steering gear ratio 𝐺 − + − − 

Front tyres trail distance 𝑑 / − + + 

Boost curve coefficient 𝐶𝑏𝑜𝑜𝑠𝑡  + + − − 

Steering column stiffness 𝑘𝑡  + / / + 

Torsion bar damping 𝑐𝑡 / / /  / 

Steering wheel inertia 𝐼𝑠𝑤  / / /  / 

Steering system damping 𝑐𝑠𝑤 / + / / 

Self-centering stiffness 𝑘𝑠𝑤 / / + + 

Note:’+’ indicates ‘increase’, ‘-‘ indicates ‘decrease’ and ‘/’ indicates negligible change 

 

3.3.2 Simulation Study of Neuromuscular Parameters 

In this section, the open-loop muscle-steering-vehicle model, which are the blocks 𝐻𝑚𝑠  and 𝐻𝑣 shown 

in Figure 3.3, is simulated to investigate the effects of the neuromuscular parameters on the model 

performance. Figure 3.17 shows the frequency response of the steering wheel angle 𝜃𝑠𝑤 for various 

values of arm inertia 𝐼𝑎𝑟𝑚 with muscle activation torque input 𝑇𝑎. At high frequencies, the gain roll-off 

is 60dB/decade, which is the combination effect of the first-order Hill’s muscle model (20dB/decade) 

and the second-order steering system model (40dB/decade). It is shown that there is a noticeable 

decrease in gain at high frequencies with the increase of arm inertia since the response in this frequency 
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region is dominated by the inertia of the arms and steering wheel. The roll-off frequency is affected by 

the inertia value, with an increase in the inertia value leading to a lower roll-off frequency. 

 

Figure 3.17: Frequency response of the open-loop muscle-steering-vehicle system with different values 

of arm inertia 𝐼𝑎𝑟𝑚 , specifically of steering wheel angle 𝜃𝑠𝑤 to muscle activation torque input 𝑇𝑎. 

 

Figure 3.18 shows frequency response of the steering wheel angle 𝜃𝑠𝑤  with various frequencies of 

muscle activation torque 𝑇𝑎 for several values of damping resisting stretching of the muscle fibre 𝑐𝑎. 

When the damping resisting stretching of the muscle fibre 𝑐𝑎 is increased, which arises when the extent 

to which the muscle is tensed is larger, some muscle activation is damped out by the muscle, leading to 

a reduced magnitude of the steering wheel angle at intermediate or high frequencies. Moreover, the 

slope of the phase change is also influenced by the change of damping resisting stretching of the muscle 

fibre 𝑐𝑎 . Figure 3.19 shows the frequency response of the steering wheel angle 𝜃𝑠𝑤  with various 

frequencies of muscle activation torque 𝑇𝑎 for several values of tendon stiffness 𝑘𝑎. It is shown that the 

gain of steering wheel angle increases when the tendon stiffness 𝑘𝑎 is increased. This is ascribed to the 

greater torque transmitted by the muscle to the steering wheel when the muscle is activated. The corner 

frequency corresponding to the Hill’s muscle model is reflected by the time constant, the ratio of 𝑘𝑎 to 

𝑐𝑎.  
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Figure 3.18: Frequency response of the open-loop muscle-steering-vehicle system with different values 

of damping resisting stretching of the muscle fibre 𝑐𝑎 , specifically of steering wheel angle 𝜃𝑠𝑤  to 

muscle activation torque 𝑇𝑎.  

 

Figure 3.19: Frequency response of the open-loop muscle-steering-vehicle system with different values 

of tendon stiffness 𝑘𝑎, specifically of steering wheel angle 𝜃𝑠𝑤 to muscle activation torque 𝑇𝑎.  
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To investigate the effect of stretch reflex control action, the open-loop muscle-steering-vehicle model, 

formed by the series combination of the blocks 𝐻𝑎, 𝐻𝑚𝑠  and 𝐻𝑣 shown in Figure 3.3, is simulated with 

and without the reflex control loop. The transfer function of the muscle-steering-vehicle model only is 

represented as the solid line shown in Figure 3.20. The input is the alpha activation signal 𝛼 arising 

from the brain of the human driver, and the output is the steering wheel angle 𝜃𝑠𝑤.  At low frequencies, 

the system behaves like inertia on a spring. The gain in this frequency range is therefore determined by 

the stiffness of the system. At high frequencies, the gain roll-off is 100dB/decade, arising from the 

second-order steering system (40dB/decade), the first-order Hill’s muscle model (20dB/decade) and the 

two first-order lags (20dB/decade each) related to the muscle activation block in the path from 𝛼 to 𝜃𝑠𝑤. 

The changes in the slope in the intermediate frequency range are consistent with the time lags and corner 

frequencies of the system. The transfer function of the muscle-steering-vehicle model with the stretch 

reflex loop is shown as the dashed line in Figure 3.20. The gamma activation signal 𝛾, which is the 

expected muscle angle from the human brain in this study, is set to zero. Compared with the transfer 

function without the stretch reflex loop, it is seen that at low frequencies down to zero, the gains are 

smaller because the stretch reflex loop provides additional stiffness. When there is the presence of input 

to the plant, the actual muscle angle 𝜃𝑎 will differ from the expected angle γ, which is zero here. The 

alpha motor neurons in turn send a signal 𝛼𝑟 to activate the muscle to achieve the expected muscle 

angle γ. Therefore, the magnitude of steering wheel angle is reduced with the stretch reflex control 

action. As high value of stretch reflex gain 𝑘𝑟  corresponds to a more tensed muscle state, the frequency 

responses here are consistent with the results found by [103] that human drivers tend to stiffen the arms 

to compensate for the unknown disturbances acting on the vehicle. However, the stretch reflex loop 

also results in a lightly damped resonance at about 10rad/s, the properties of which are strongly 

influenced by the reflex gain 𝐻𝑟  and delay 𝐷𝑟 . The frequency of the resonance increases with the gain 

and the damping ratio tends to reduce as the delay and gain increase. At frequencies above the resonance, 

the response of the system is similar to that without the additional stretch reflex loop.  
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Figure 3.20: Frequency responses of the open-loop muscle-steering-vehicle system with and without 

stretch reflex loop, specifically of steering wheel angle 𝜃𝑠𝑤 to alpha activation signal 𝛼. 

 

3.3.3 Simulation Study of Kalman Filter Parameters 

A Kalman filter is used in this model to represent the driver’s integration of sensory measurements. The 

measurements are combined to give a state estimate based on an internal mental model of the plant 

controlled by the human driver and estimates of the process and measurement noise standard deviations. 

The values of the process and measurement noise covariance matrices in the Kalman filter 𝐐KF and 

𝐑KF indicate how the process noise and the measurement noise are weighted in the state estimation. 

Previous studies [123] and preliminary simulation results found that the most important aspect of the 

Kalman filter is in the determination of the process and measurement noise covariance matrices 𝐐KF 

and 𝐑KF . Therefore, it is worth investigating how the variation of these noise covariance matrices, 

especially the ratio between them, influences Kalman filtering performance by simulating the closed-

loop driver-steering-vehicle system with process and measurement noise. Different from Section 3.2.7, 

the values of 𝐐KF and 𝐑KF are modified as: 

𝐐KF = diag([𝐶𝑤𝑊
2 𝑊𝑟

2 𝑊𝐹
2 𝑊𝑀

2 𝑊𝑇
2])                                  (3.63) 

𝐑KF = diag([𝐶𝑒𝑉𝑒
2 𝐶𝜓𝑉𝜓

2 𝐶𝜃𝑎𝑉𝜃𝑎
2 ])                                        (3.64) 

where 𝑊2, 𝑉𝑒
2, 𝑉𝜓

2 and 𝑉𝜃𝑎
2  still denote the actual variances of the noise, 𝑊𝑟

2 𝑊𝐹
2, 𝑊𝑀

2 and 𝑊𝑇
2 denote 

the variances of the disturbances 𝑤𝑟 , 𝑤𝐹, 𝑤𝑀 and 𝑤𝑇, respectively, and 𝐶𝑤 , 𝐶𝑒 , 𝐶𝜓 and 𝐶𝜃𝑎  are called 



3.3 Simulation Study of Linear Model Parameters                                                                                   67     

 

scaling factors. The standard deviations of the noise used in the simulations are shown in Table 3.5 and 

the standard deviations of the disturbances 𝑤𝑟 , 𝑤𝐹, 𝑤𝑀 and 𝑤𝑇 are all set to zero in the simulations.  

Table 3.5: Standard deviations of the process and measurement noise in the simulations 

Description Parameter Value Unit 

Standard deviation of the process noise 𝑤 𝑊 13.3 Nm 

Standard deviation of the measurement noise 𝑣𝑒 𝑉𝑒 0.147 m 

Standard deviation of the measurement noise 𝑣𝜓 𝑉𝜓 0.0744 rad 

Standard deviation of the measurement noise 𝑣𝜃𝑎 𝑉𝜃𝑎  0.863 rad 

 

To investigate how the use of each sensory measurement is varied with the scaling factors, a technique 

similar to that used by Nash [126], who studied the effects of sensory measurements on the driver’s 

control action, is applied. Transfer functions between each sensory measurement and the simulated 

steering wheel angle are found by splitting the contribution to the steering wheel angle for each 

measurement following the linear superposition principle. The RMS values of the simulated steering 

wheel angle contribution for each sensory measurement are calculated using a spectral analysis theory 

approach [20]. The ratios of these values to the total RMS value of the simulated steering wheel angle 

are then calculated to represent the relative weighting of each sensory measurement. The relative 

weightings of the sensory measurements for different scaling factors associated with the process and 

measurement noise are shown in Figure 3.21. The summation of these weightings may be larger than 

one because the contributions of the different measurements are not always in phase with each other. 

When the process noise scaling factor 𝐶𝑤  is increased while the others are fixed at 1, the measurements 

are weighted more in the steering control task. In all the other cases, as the scaling factor increases, the 

corresponding sensory measurement is weighted less. The reason is that when the Kalman filter assumes 

that the noise from a particular sensory measurement is large, the corresponding sensory measurement 

will not be trusted much, and the Kalman filter will rely on the other sensory measurements for state 

estimation.  
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Figure 3.21: Sensory weightings with various scaling factors. Weightings show the proportion of 

steering wheel angle RMS resulting from each sensory measurement.  

 

3.3.4 Simulation Study of Controller Parameters 

The task described by the driver-steering-vehicle model is to follow the randomly moving target path 

by steering the vehicle. Therefore, the evaluation of the path-following performance of the modelled 

driver not only depends on the RMS value of path-following error 𝑒, but also relies on the driver’s 

control effort, which can be quantified as the RMS value of the alpha signal 𝛼 from the brain. When 

putting more weightings minimising the path-following errors, the steering effort level will increase. 

On the other hand, the path-following accuracy is sacrificed to minimise the steering effort level. This 

trade-off is reflected by the values of LQR controller cost function weights on 𝑒 and 𝛼, specifically 𝑞𝑒 

and 𝑞𝛼. The values of RMS tracking error and RMS alpha signal for various values of 𝑞𝑒 are shown in 

Figure 3.22. As expected, the general trend is that the path-following error decreases as the steering 

effort increases. Figure 3.23 shows the frequency response of the closed-loop driver-steering-vehicle 

model with different values of 𝑞𝑒.  
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Figure 3.22: Trade-off plot showing the variation of RMS tracking errors and RMS control effort (alpha 

signal) with a range of values of 𝑞𝑒 (from left to right: 100 to 104).  

  

Figure 3.23: Frequency responses of the closed-loop driver-steering-vehicle system with different 

values of 𝑞𝑒, specifically of alpha signal 𝛼 to randomly moving target path 𝑤𝑟 . 

 

3.4 Nonlinear Driver-Steering-Vehicle Model 

A new driver-steering-vehicle model incorporating steering torque feedback and state estimation has 

been developed in Section 3.2. The new driver model is derived for a linear steering-vehicle system 

operating at on-centre operating regime. However, nonlinearities are always present to some extent in 

the steering mechanism, and previous research [1] [22] [33] [58] has revealed that on-centre steering 

feel is significantly affected by the nonlinear steering system friction. Therefore, it is necessary to 

develop a closed-loop driver-steering-vehicle model that can describe a human driver’s control of a 

vehicle with nonlinear components, especially steering system friction, to better understand steering 

torque feedback in on-centre regime.  

104 

100 
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Nonlinear steering control algorithms have been increasingly developed for autonomous driving and 

semi-autonomous driving, as reviewed by [127] [128] [129]. However, the objective of these algorithms 

is to find an optimal control performance instead of mimicking the human driver’s control behaviour. 

Various studies have attempted to model a human driver’s control of nonlinear vehicles [79] [89] [130], 

and Nash and Cole [20] have developed a realistic nonlinear driver-vehicle model that takes account of 

the nonlinear vehicle dynamics, specifically nonlinear tyres, and sensory dynamics in a recent study.   

In this section, the linear mathematical model of the driver-steering-vehicle system presented in Section 

3.2 is extended to control a constant-speed vehicle with nonlinear steering dynamics, especially steering 

system friction. This requires modifications of the plant, state estimator and controller. Nonlinear state 

estimation and optimal control are much more complicated than the linear ones. Nash and Cole [20] 

implemented various combinations of state estimators and controllers by approximating nonlinear 

dynamics to simplify the task and have compared the performance of the different approaches. The 

results of the study of Nash and Cole [20] are used as the initial guidance of the choice of the state 

estimator and controller for a steering-vehicle system with nonlinear steering system friction. A 

schematic structure of the nonlinear driver-steering-vehicle model is shown in Figure 3.24. The model 

still comprises the vehicle and steering dynamics, the neuromuscular system, the sensory delays, and 

the human brain functions. However, the linear quadratic Gaussian (LQG) framework used in the linear 

driver-steering-vehicle model is replaced by an extended Kalman filter (EKF) and a model predictive 

control (MPC) method.  

 

Figure 3.24: Schematic diagram of the nonlinear driver-steering-vehicle model. Disturbance signals 

are input as white noise 𝑤𝐹, 𝑤𝑀, 𝑤𝑇 and 𝑤𝑟  then filtered in the plant. The plant input 𝛼 and outputs 𝒛 

are perturbed with process and measurement noise 𝑤 and 𝒗, so an extended Kalman filter estimates the 

plant states 𝒙𝒆. An MPC controller computes an optimal plant input 𝛼.  
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3.4.1 Nonlinear Plant 

The plant for the nonlinear driver-steering-vehicle model is similar to the plant derived for the linear 

driver-steering-vehicle model in Section 3.2. Compared to the linear plant, the nonlinear friction torque 

is applied to the steering system in the nonlinear plant. The structure of the muscle dynamics and 

steering system with nonlinear steering friction 𝑇𝑓 is shown in Figure 3.25. The friction element 𝑇𝑓 is 

placed at the steering column and below the torsion, in consistent with the two degree-of-freedom 

steering system model in [131]. 

 

Figure 3.25: Muscle and steering system model with steering column torque disturbance and steering 

system friction. The springs and dampers act in rotation. 

 

The state-space representation of the muscle-steering-vehicle dynamics is now given by the general 

equation:   

𝒙𝑚𝑠𝑣
′ (𝑘 + 1) = 𝐀̂𝑚𝑠𝑣𝒙𝑚𝑠𝑣

′ (𝑘) + 𝐁𝑚𝑠𝑣
′ {𝑇𝑎(𝑘) 𝐹𝑦(𝑘) 𝑀𝑧(𝑘) 𝑇𝑑(𝑘)}𝑇          (3.65) 

where 𝒙𝑚𝑠𝑣
′ (𝑘) = {𝑦(𝑘) 𝑣(𝑘) 𝜓(𝑘) 𝜔(𝑘) 𝜃(𝑘) 𝜃̇(𝑘) 𝜃𝑐(𝑘) 𝜃̇𝑐(𝑘) 𝜃𝑎(𝑘) 𝑇𝑓(𝑘)}

𝑇
, 

𝐀̂𝑚𝑠𝑣  is a nonlinear function. The derivation of the muscle-steering-vehicle dynamics without steering 

system friction is not repeated here. The steering system friction 𝑇𝑓 shown in Figure 3.25 is represented 

by a dynamic friction model introduced by Specker [78] and is dependent on the steering column 

angular velocity 𝜃𝑐̇. This model is based on a static friction model and a linear parameter-varying first-

order low-pass filter. Simple friction models such as a hyperbolic tangent function and more or less 

complex combinations of Maxwell [132] and friction elements require small values of sample time 𝑇𝑠 

to achieve accurate representation of the friction, which leads to impractical computational time. In 

contrast, Specker’s friction model provides a good qualitative representation of the friction for relatively 

large values of sample time 𝑇𝑠, making it applicable for control and state estimation tasks. The complete 

dynamic friction model results in the following equation: 



3.4 Nonlinear Driver-Steering-Vehicle Model                                                                                   72     

 

𝑇̇𝑓(𝑡) =
1 − 𝑒

−(
𝜃̇𝑐(𝑡)

𝜃̇𝑐0
)

2

𝑇1
(𝐹𝐶 tanh (

𝜃̇𝑐(𝑡)

𝜃̇𝑐𝑡
) − 𝑇𝑓(𝑡))                                   (3.66) 

where constant 𝑇1 and 𝜃̇𝑐0 determine the hysteresis of the friction, 𝜃̇𝑐𝑡 determines the friction torque 

slope at standstill and 𝐹𝐶  determines the magnitude of the friction. The three parameters 𝑇1,  𝜃̇𝑐0 and 

𝜃̇𝑐𝑡 are tuned through preliminary simulations to ensure high precision of friction replication which is 

comparable to reputable friction models while making the computation numerical stable for a 

reasonable range of operating frequencies. The comparison of the friction-velocity characteristics 

between Specker’s friction model and a simple Coulomb friction model, which is a hyperbolic tangent 

function with a slope of 50Nms/rad, as described by (3.67), is shown in Figure 3.26, and the chosen 

parameter values for Specker’s friction model are given in Table 3.6. 

𝑇𝑓(𝑡) = 𝐹𝐶 tanh (50𝜃̇𝑐(𝑡))                                                            (3.67) 

  

Figure 3.26: Nonlinear friction-velocity characteristics with various frequencies. 

 

Table 3.6: Specker’s friction model parameter values 

Parameters 𝜃̇𝑐𝑡 𝜃̇𝑐0 𝑇1 𝐹𝑐 

Units rad/s rad/s s Nm 

Values 0.02 0.05 0.05 2 

 

3.4.2 Extended Kalman Filter for State Estimation and Gamma Activation 

An extended Kalman filter, which works on the same principles as the linear Kalman filter, is used to 

estimate the states of the nonlinear plant. In the extended Kalman filter algorithm, the nonlinear plant 
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dynamics are approximated by linearisation or other transformations through Taylor Series. Nash and 

Cole [4] implemented several variations of the extended Kalman filter and found that a first-order 

extended Kalman filter (EKF1), which calculates the first-order linearised approximation to the plant 

states at each time step, is the most appropriate one in terms of accuracy and computational speed. 

Although this could serve as an initial guideline for selecting the state estimator, by accounting for the 

difference in the nonlinearities, both a first-order extended Kalman filter (EKF1) and a second-order 

extended Kalman filter (EKF2) are implemented.  

Detailed descriptions of EKF1 and EKF2 for generic problems can be found in [133]. Similar to the 

linear Kalman filter, the algorithm is formed by two stages at each time step: the predict stage involves 

predicting a new state estimate using the previous estimate processing the internal model of the plant, 

followed by the update stage, which involves updating the estimate by incorporating the difference 

between predicted and measured plant outputs.  

For EKF1, initially, an estimate of the states 𝒙𝑒(𝑘 + 1|𝑘) is predicted by propagating the current input 

𝛼(𝑘) and state estimate 𝒙𝑒(𝑘) through the internal mental model:  

𝒙𝑒(𝑘 + 1|𝑘) = 𝐀̂(𝒙𝑒(𝑘)) + 𝐁𝛼(𝑘)                                              (3.68) 

The prediction error state covariance matrix 𝐏(𝑘 + 1|𝑘) is given by: 

𝐏(𝑘 + 1|𝑘) = 𝐀𝐉(𝒙𝑒(𝑘))𝐏(𝑘)𝐀𝐉
𝑇(𝒙𝑒(𝑘)) + 𝐐̂KF(𝑘)                            (3.69) 

where 𝐀̂ is a general nonlinear function. The nonlinear function 𝐀̂ is linearised about state estimate 

𝒙𝑒(𝑘) by expanding Taylor Series and retaining 𝐀𝐉, which is the Jacobian d𝐀̂/d𝒙 evaluated at 𝒙𝑒(𝑘). 

The correction is then added based on the error between the previous estimated output 𝐂𝒙𝑒(𝑘 + 1|𝑘) 

and measured output 𝒛(𝑘 + 1) + 𝒗(𝑘 + 1), weighted by the ‘Kalman gain’ 𝐊(𝑘 + 1) 

𝒙𝑒(𝑘 + 1) = 𝒙𝑒(𝑘 + 1|𝑘) + 𝐊(𝑘 + 1){𝒛(𝑘 + 1) + 𝒗(𝑘 + 1) − 𝐂𝒙𝑒(𝑘 + 1|𝑘)}         (3.70) 

where the ‘Kalman gain’ 𝐊(𝑘 + 1) is calculated by achieving a statistically optimal minimum-variance 

estimate based on the concept of MLE: 

𝐊(𝑘 + 1) = 𝐏(𝑘 + 1|𝑘)𝐂(𝐂𝐏(𝑘 + 1|𝑘)𝐂𝑇 +𝐑KF(𝑘 + 1))
−1
                      (3.71) 

and the state covariance matrix 𝐏(𝑘 + 1) is updated through: 

𝐏(𝑘 + 1) = (𝐈 − 𝐊(𝑘 + 1)𝐂)𝐏(𝑘 + 1|𝑘)                                        (3.72) 

It is seen that unlike the steady-state linear Kalman filter used in Section 3.2.8, the covariance matrix 𝐏 

changes with time. The prediction error state covariance matrix 𝐏(1|0) is chosen as the one calculated 

in the linear Kalman filter and is then updated through the update stage. EKF2 is implemented by 
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finding a quadratic approximation to the plant states at each time step, which is achieved by retaining 

one more term of the Taylor series expansions. In EKF2, 𝐀𝐇, which is the Hessian d𝐀̂2/d2𝒙 evaluated 

at 𝒙𝑒(𝑘), needs to be calculated.  

It is assumed that the covariances of the process and measurement noise are time-invariant, therefore 

𝐐̂KF and 𝐑KF are always set to the covariance matrices used in the linear driver-steering-vehicle model. 

Like Section 3.2.8, the gamma activation process is still incorporated into the extended Kalman filter. 

The expected muscle angle is extracted from the predict stage using the internal model of the plant. 

 

3.4.2 Model Predictive Control 

The model predictive control (MPC) method is designed to calculate an optimal plant input 𝛼 using the 

internal model of the plant. To save computation time, the system dynamics is linearised, as suggested 

by Nash and Cole [4]. The linearised MPC (LMPC) calculates an optimal control sequence 𝜶 up to the 

prediction horizon 𝑇𝑝 (𝑁𝑝 = 𝑇𝑝/𝑇𝑠 time steps), then applies the first element of the optimal control 

sequence to the plant, at which point a new optimal control sequence is calculated, and the process 

continues. 

To reduce the computational load of the MPC method, a reduced plant is defined, which includes only 

the states required by the controller, as shown in Figure 3.27. The target path is implemented as a 

reference without being included in the reduced plant. The controller minimises a cost function 

weighting the shifted lateral deviation of the vehicle from the target path (path following error) and the 

plant input 𝛼. Therefore, any part of the plant which does not feed into the shifted path following error 

is ignored.  

 

Figure 3.27: Structure of the reduced plant used for MPC in the new nonlinear driver-steering-vehicle 

model. 𝐻𝑚𝑠
′  represents muscle dynamics and steering system with nonlinear steering friction. The 

definitions of all the other blocks are unchanged from those in Section 3.2.   
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The discrete-time state-space form of the reduced plant shown in Figure 3.35 without the nonlinear 

friction (setting the steering system friction to zero but keeping involving 𝑇𝑓 notation in the state-space 

equation) is given by: 

𝒙𝑅(𝑘 + 1) = 𝐀𝑅𝒙(𝑘) + 𝐁𝑅𝛼(𝑘)

+ [𝐁𝑅 𝐆𝑅𝐹 𝐆𝑅𝑀 𝐆𝑅𝑇]{𝑤(𝑘) 𝑤𝐹(𝑘) 𝑤𝑀(𝑘) 𝑤𝑇(𝑘)}
𝑇                            (3.73) 

𝑦𝑠(𝑘) = 𝐂𝑅𝒙(𝑘)                                                                 (3.74) 

where 𝒙(𝑘) = {𝒙𝑓𝑦(𝑘) 𝒙𝑓𝑧(𝑘) 𝒙𝑓𝑑(𝑘) 𝒙𝑚𝑠𝑣
′ (𝑘) 𝒙𝑎(𝑘)}𝑇, 

𝐀𝑅 =

[
 
 
 
 
 

𝐀𝑓𝑦 𝟎 𝟎 𝟎 𝟎

𝟎 𝐀𝑓𝑧 𝟎 𝟎 𝟎

𝟎 𝟎 𝐀𝑓𝑑 𝟎 𝟎

𝐁𝑚𝑠𝑣(:,2)
′ 𝐂𝑓𝑦 𝐁𝑚𝑠𝑣(:,3)

′ 𝐂𝑓𝑧 𝐁𝑚𝑠𝑣(:,4)
′ 𝐂𝑓𝑑 𝐀𝑚𝑠𝑣 𝐁𝑚𝑠𝑣(:,1)

′ 𝐂𝑎
𝟎 𝟎 𝟎 𝟎 𝐀𝑎 ]

 
 
 
 
 

 

𝐁𝑅 = [𝟎 𝟎 𝟎 𝟎 𝐁𝑎]
𝑇 

𝐆𝑅𝐹 = [𝐁𝑓𝑦 𝟎 𝟎 𝟎 𝟎]𝑇 

𝐆𝑅𝑀 = [𝟎 𝐁𝑓𝑧 𝟎 𝟎 𝟎]𝑇 

𝐆𝑅𝑇 = [𝟎 𝟎 𝐁𝑓𝑑 𝟎 𝟎]𝑇 

𝐂𝑅 = [𝟎 𝟎 𝟎 𝐂𝑅𝑚𝑠𝑣 𝟎] and 𝐂𝑅𝑚𝑠𝑣 = [1 0 𝑈𝑇𝑡 0 0 0 0 0 0 0] 

𝟎 is a matrix of zeros, 𝐌(𝑖,𝑗) indicates the 𝑖th row and 𝑗th column of matrix 𝐌 and ‘:’ represents the 

entire row or column of the matrix. Ignoring any Gaussian white noise and adding the nonlinear friction 

in the system, the discrete-time state-space form of the nonlinear reduced plant is given by: 

𝒙𝑅(𝑘 + 1) = 𝐀̂𝑅(𝒙𝑅(𝑘)) + 𝐁𝑅𝛼(𝑘)                                            (3.75) 

𝑦𝑠(𝑘) = 𝐂𝑅𝒙𝑅(𝑘)                                                             (3.76) 

where 𝐀̂𝑅 is a general nonlinear function. The nonlinear function 𝐀̂𝑅 can be linearised about states 𝒙𝐿 

with the approximation: 

𝐀̂𝑅(𝒙𝑅(𝑘 + 𝑛)) ≈ 𝐀̂𝑅(𝒙𝐿(𝑘 + 𝑛)) + 𝐀̂𝑛(𝒙𝑅(𝑘 + 𝑛) − 𝒙𝐿(𝑘 + 𝑛))              (3.77) 

where 𝐀̂𝑛  is the Jacobian d𝐀̂𝑅/d𝒙 evaluated at 𝒙𝐿(𝑘 + 𝑛). The reduced state vector 𝒙𝑅(𝑘) and the 

reference trajectory 𝑟𝑒(𝑘) can be extracted directly from the corresponding states in 𝒙𝑒(𝑘). 

Nash and Cole [20] implemented several simplified controllers by linearising the plant to different 

extents and found that the LPF (Linearising the system about the predicted state at each time step up to 

the full prediction horizon) controller provides the best trade-off between control performance and 
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control speed. Therefore, the LMPC in this work is derived based on the LPF algorithm. Although the 

driver does not know the future target path in this work, it is assumed that the driver’s visual system 

previews (𝑁𝑝 + 1) points of the current target lateral position. However, to compensate for the human 

driver’s visual delay, the controller only evaluates the reduced plant equations from the current time 

step 𝑘 to (𝑘 + 𝑁𝑝 −𝑁𝑣𝑖 + 1). The control horizon is set equal to the prediction horizon for simplicity. 

The solution of the LMPC,  a sequence of the optimal control sequence 𝜶, starts from a nominal control 

sequence 𝜶0 , which is the previous optimal control sequence shifted by one time step, with a 

corresponding state trajectory 𝑿𝑅0 = [𝒙𝑅0 (𝑘) … 𝒙𝑅0 (𝑘 + 𝑁𝑝 − 𝑁𝑣𝑖 + 1)]. The linearised matrix 𝐀̂𝑛  

is calculated about each nominal state 𝒙𝐿 (𝑘 + 𝑛) = 𝒙𝑅0 (𝑘 + 𝑛). The controller aims to minimise the 

cost function over the full prediction horizon: 

𝐽 = ∑ {𝑞𝑒[𝑦𝑠(𝑘 + 𝑛) − 𝑟𝑒(𝑘)]
2 + 𝑞𝛼𝛼(𝑘 + 𝑛)

2} 

𝑁𝑝−𝑁𝑣𝑖+1 

𝑘=1

                             (3.78) 

Writing the values of 𝑟𝑒, 𝑦𝑠 and 𝛼 over the prediction horizon as vectors 𝒓𝑒, 𝒚𝑠 and 𝜶, and removing 

the 𝑟𝑒
2 term which is not affected the control input, (3.78) is written as: 

𝐽 = 𝑞𝑒𝒚𝑠
𝑇𝒚𝑠 − 2𝑞𝑒𝒓𝑒

𝑇𝒚𝑠 + 𝑞𝛼𝜶
𝑇𝜶                                                  (3.79) 

Substituting a nominal sequence 𝜶0 and a small change ∆𝜶 for the control sequence 𝜶, and similarly 

for 𝒚𝑠, gives 

𝐽 = 𝑞𝑒(𝒚𝑠0 + ∆𝒚𝑠)
𝑇(𝒚𝑠0 + ∆𝒚𝑠) − 2𝑞𝑒𝒓𝑒

𝑇(𝒚𝑠0 + ∆𝒚𝑠) + 𝑞𝛼(𝜶0 + ∆𝜶)
𝑇(𝜶0 + ∆𝜶)   (3.80) 

Simplifying (3.80) and removing the independent terms result in: 

𝐽 = 𝑞𝑒∆𝒚𝑠
𝑇∆𝒚𝑠 + 2𝑞𝑒(𝒚𝑠0 − 𝒓𝑒)

𝑇∆𝒚𝑠 + 𝑞𝛼∆𝜶
𝑇∆𝜶 + 2𝑞𝛼𝜶0

𝑇∆𝜶                     (3.81) 

The linearised dynamics give the approximate relationship ∆𝒚𝑠 = 𝚯∆𝜶. (3.81) is then modified to a 

quadratic program form: 

𝐽 = ∆𝜶𝑇(𝑞𝑒𝚯
T𝚯+ 𝑞𝛼𝐈)∆𝜶+ 2(𝑞𝑒(𝒚𝑠0 − 𝒓𝑒)

𝑇𝚯+ 𝑞𝛼𝜶0
𝑇)∆𝜶                     (3.82) 

Similar to the linear MPC derivation in [7], with the linearised matrices 𝐀̂𝑛 predicted 𝑛 time steps ahead 

of the current time step 𝑘, 𝚯 is found from: 

𝚯(𝑘) =

[
 
 
 
 
 
 

𝐂R𝐁R 𝟎 𝟎 ⋯ 𝟎

𝐂R𝑨𝟏̂𝐁R 𝐂R𝐁R 𝟎 ⋯ 𝟎

𝐂R𝑨𝟐̂𝑨𝟏̂𝐁R 𝐂R𝑨𝟐̂𝐁R 𝐂R𝐁R ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮

𝐂R (∏ 𝑨𝒊̂
𝑁𝑝−𝑁𝑣𝑖

𝑖=1
) 𝐁R 𝐂R (∏ 𝑨𝒊̂

𝑁𝑝−𝑁𝑣𝑖

𝑖=2
)𝐁R 𝐂R (∏ 𝑨𝒊̂

𝑁𝑝−𝑁𝑣𝑖

𝑖=3
)𝐁R ⋯ 𝐂R𝐁R]

 
 
 
 
 
 

(3.83) 
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𝒚𝑠0 is obtained by evaluating the nonlinear plant equations (3.75) and (3.76) over the prediction horizon 

using 𝜶0 . Equation (3.82) is solved by using a quadratic programming solver such as Matlab’s 

quadprog function. Alternatively, this can be solved by using QR decomposition as in [90].  

Besides the LMPC, a fully nonlinear MPC (NMPC) method is also implemented with the goal of finding 

a solution that fully incorporates the nonlinear dynamics of the plant without any approximation. In the 

NMPC method, Matlab’s fminunc function is chosen as the nonlinear optimisation solver. However, 

other commercial nonlinear optimisation solvers, such as IPOPT [134], can also be used. The optimal 

control sequence is formed by a nominal sequence 𝜶0 plus a small change ∆𝜶. In the optimisation, the 

cost function is iteratively evaluated by the solver for different values of ∆𝜶, and for each value of ∆𝜶, 

the full nonlinear reduced plant equations are calculated over the entire prediction horizon. fminunc is 

a gradient-based optimisation solver and uses the Jacobian, which is the first-order derivative, of the 

cost function to identify the direction of search for the optimal solution. The Jacobian of the cost 

function is given by: 

d𝐽

d𝜶
= 2(𝑞𝑒(𝒚𝑠 − 𝒓𝑒)

𝑇𝚯+ 𝑞𝛼𝜶
𝑇)                                               (3.84) 

 

3.5 Simulation Study of Nonlinear Model 

Compared with the linear driver-steering-vehicle model described in Section 3.2, steering system 

friction is implemented as a nonlinear component in the plant, and an EKF and a MPC method are used 

to represent the human drivers’ state estimation and gamma activation, and control for the nonlinear 

plant. In this section, the effects of the nonlinear steering system friction on the steering properties are 

investigated through simulations of the open-loop nonlinear steering-vehicle model first. Then the 

performance of the nonlinear driver model is compared with that of the linear driver model through 

simulations of the closed-loop driver-steering-vehicle model. 

 

3.5.1 Simulation Study of Friction Model Parameters 

In this section, the open-loop steering-vehicle model with nonlinear steering system friction is simulated. 

A diagram showing the nonlinear steering system model with a steering wheel torque input from the 

driver 𝑇𝑠𝑤 is presented in Figure 3.28. Like Section 3.3.1, there is no assist torque from the driving 

assist system and no steering column torque disturbance. The values of the steering-vehicle system 

parameters are given in Table 3.1. 
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Figure 3.28: Nonlinear steering system model with external steering wheel torque input. The springs 

and dampers act in rotation. 

 

Figure 3.29 show the cross-plots of the steering wheel torque input and two states of the steering-vehicle 

system, namely steering wheel angle 𝜃𝑠𝑤 and vehicle lateral acceleration 𝑎𝑦, with various values of 

steering system friction magnitude 𝐹𝑐. The basic friction level is around 1.6Nm as suggested by [131] 

from TME. The steering-vehicle system is subject to a 0.2Hz sinusoidal steering wheel torque input 

with an amplitude of 2Nm. On examining these cross plots, the friction effect is noticed immediately 

by the widening of the hysteresis of the cross-plots containing the applied steering wheel torque 𝑇𝑠𝑤 

and by the decrease in the maximum values of the system states. This is consistent with what is expected 

since part of the applied steering wheel torque 𝑇𝑠𝑤 is offset by the steering system friction torque 𝑇𝑓 

and hence more steering wheel torque needs to be applied to the steering wheel for the same level of 

steering-vehicle system response magnitude. In addition, it is noticed that there is a significant torque 

difference for an infinitesimal change in the value of system states at each end of the hysteresis curves. 

This is because as the steering wheel angular velocity changes sign, the friction torque goes from around 

+𝐹𝐶  to −𝐹𝑐 , resulting in an immediate change in steering torque. The observed effects of steering 

system friction are comparable with those found by Harnett [33] and Pfeffer [58], who analysed the 

objective assessment of steering feel with nonlinearities in the steering system.  
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Figure 3.29: Cross-plots of the states of the steering-vehicle system operated at 2Nm steering torque 

and 0.2Hz. The hysteresis loops are formed clockwise.  

 

3.5.2 Comparison between the Linear and Nonlinear Driver Models 

In this section, simulations are carried out with various combinations of state estimators and controllers 

derived in Section 3.2 and Section 3.4, in order to evaluate the performance in terms of both state 

estimation and path-following accuracy, as well as to evaluate the computational load of each 

combination. In all simulations, nonlinear steering system friction with magnitude 𝐹𝑐 = 2Nm is applied 

to the steering model, and the task for the driver is to reject the disturbances acting on the steering-

vehicle system and/or follow a randomly moving target path for 30 seconds. There is no process or 

measurement noise in the simulation. The simulation conditions are summarised in Table 3.7. The 

closed-loop driver-steering-vehicle model parameters are given in Table 3.1 and Table 3.2. 

Table 3.7: Summary of simulation conditions 

 Disturbance amplitudes 

Sim. condition 𝑊𝑟(m) 𝑊𝐹(N) 𝑊𝑀(N) 𝑊𝑇(Nm) 

1 8 0 0 0 

2 0 2190 0 0 

3 0 0 2160 0 

4 8 0 0 4 

5 8 2190 2160 4 

 

Different combinations of state estimators and controllers implemented in each of the simulation 

conditions are summarised in Table 3.8. In combinations C1 and C2, LQR and a linear Kalman filter 
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are used. However, unlike the case where the actual plant is linear, the linear Kalman filter here is time-

varying. The detailed derivations of the time-varying linear Kalman filter are similar to EKF1, which 

are given by equations 3.68 to 3.72, and therefore not repeated here. In these two combinations, the 

internal mental model of the driver-steering-vehicle dynamics must be linear. In C1, the internal mental 

model is set equal to the linear part of the nonlinear plant, which means the steering system friction 

torque is 0Nm. In C2, the internal mental model is set equal to the linear part of the nonlinear plant plus 

an equivalent damping term 𝐶𝑠𝑤 ′ of the steering system friction. The damping term 𝐶𝑠𝑤 ′ is placed in 

parallel with 𝐶𝑠𝑤 , which is between the inertia of the rack and the front wheels 𝐼𝑐 and the ground, as 

shown in Figure 3.5. The value of 𝐶𝑠𝑤′ is chosen by equating the dissipated energy from the nonlinear 

friction, assuming that the steering-vehicle system is operated at 1Hz, which is a normal operating 

frequency of a human driver in disturbance rejection tasks. The details about how 𝐶𝑠𝑤 ′ is calculated are 

given by (3.85) and (3.86).  

By assuming that the steering action is a sinusoidal signal, the energy dissipated over each cycle 𝑊𝑓 is: 

𝑊𝑓 = 4𝐹𝑐Θ𝑠𝑤                                                                (3.85) 

where Θ𝑠𝑤  is the steering wheel angle amplitude and can be approximated through preliminary 

simulations. Meanwhile, the energy lost per cycle in a damper in a harmonically forced system could 

be expressed as: 

𝑊𝑑 = 2𝜋
2𝐶𝑠𝑤 ′𝑓Θ𝑠𝑤

2                                                          (3.86) 

Therefore, the equivalent viscous damping constant is given by: 

𝐶𝑠𝑤 ′ =
2𝐹𝑐

𝜋2𝑓Θ𝑠𝑤
                                                               (3.87) 

In C3, C4 and C5, different combinations of extended Kalman filters (EKF1 and EKF2) and MPC 

methods (LMPC and NMPC) are implemented. In these cases, the internal mental model of the driver-

steering-vehicle dynamics is set equal to the actual nonlinear plant. The MPC preview horizon 𝑇𝑝 is set 

to 3s in the simulation. This could make the finite-horizon MPC approximate an infinite-horizon 

controller and make the MPC and the LQR controllers perform similarly to each other when the cost 

function weight on the path-following error 𝑞𝑒 is set to the same value for the linear models.  
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Table 3.8: Combinations of the state estimators and controllers with corresponding internal models 

Combination Internal model of the plant Controller and state estimator 

C1 The linear part of the nonlinear plant only LQR with LKF 

C2 
The linear part of the nonlinear plant plus 

an equivalent damping term of the steering 

system friction 𝐶𝑠𝑤 ′ 

LQR with LKF 

C3 Real nonlinear plant LMPC with EKF1 

C4 Real nonlinear plant LMPC with EKF2 

C5 Real nonlinear plant NMPC with EKF2 

 

To assess the performance of each combination of state estimator and controller, the RMS value of the 

state estimation error for each sensory measurement and the RMS value of the path-following error 

over each simulation are found. The results for different simulation conditions are summarised in Figure 

3.30- 3.34. As expected, it is shown that the nonlinear driver models (C3, C4 and C5) perform much 

better than the linear ones (C1 and C2) overall as more accurate internal mental models of the nonlinear 

plant are able to be implemented. When comparing the results of C3 and C4, the two extended Kalman 

filters perform very similarly, although EKF2 gives the smallest state estimation errors for the three 

measured signals in all the simulation conditions. In terms of controller performance, the NMPC is 

generally the best performing controller as the full nonlinear dynamics is captured, which is evidenced 

by the smallest path-following errors under all the simulations. However, the LMPC performs similarly 

to the NMPC in all the conditions. This suggests that the linearisation method used in the LMPC could 

properly approximate the nonlinear dynamics. The computational time is another important factor when 

considering which state estimator and controller combination should be used for practical engineering 

applications. The averaged computational time required for each state estimator and controller 

combination over all the simulation conditions is recorded in Table 3.9. There are significant differences 

in the orders of magnitudes of the computational time between the several proposed combinations of 

state estimator and controller. The slowest combination C5 takes about 4000 times longer time to run 

compared with the fastest combination C1. In general, it is shown in Figure 3.30- 3.34 that there is an 

inverse relationship between the state estimation and control accuracy and the computational speed of 

each combination. C5 achieves the smallest state estimation and path-following errors due to that the 

full nonlinear dynamics is considered as expected, however C3 with the linearised system dynamics 

performs as well as C5 in all the conditions and is much faster. Therefore, C3 can be used to represent 

the state estimation and control of a driver capturing the full nonlinear dynamics in an accurate and 

computationally efficient way. 
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Figure 3.30: State estimation and path-following performance for different combinations listed in Table 

3.8 in simulation condition 1. 

 

Figure 3.31: State estimation and path-following performance for different combinations listed in Table 

3.8 in simulation condition 2. 

 

Figure 3.32: State estimation and path-following performance for different combinations listed in Table 

3.8 in simulation condition 3. 

 

Figure 3.33: State estimation and path-following performance for different combinations listed in Table 

3.8 in simulation condition 4. 

0.03041   0.0303  0.03024  0.03023   0.03023 
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Figure 3.34: State estimation and path-following performance for different combinations listed in Table 

3.8 in simulation condition 5. 

 

Table 3.9: Computation time required for each combination. 

Combination C1 C2 C3 C4 C5 

 Simulation 

time 
3.07 s 4.22 s 68 s 80 s 192 min 

 

3.6 Conclusions 

A new driver-steering-vehicle model incorporating steering torque feedback and state estimation has 

been developed, and then been extended to control a vehicle with nonlinear steering dynamics, 

especially steering system friction. The novelty of the model is the inclusion of the three important brain 

functions of perception, cognition and action, all three of which are governed by a single internal model 

of the plant. The model was conceived to provide a theoretical understanding of the human driver’s 

subjective responses to steering torque feedback, especially in the on-centre regime. A comprehensive 

parameter study was conducted to investigate the effects of the model parameters on the model 

behaviours. 

The effects of steering system parameters on the dynamic behaviour of the steering-vehicle system and 

the objective steering feel metrics (Table 3.4) have been demonstrated by using the steering-vehicle 

model, which can provide some initial guidelines for the steering system design. These results are 

consistent with published literature. 

The neuromuscular dynamics has been modelled with the stretch reflex. The modelling of tensing (co-

contracting) the muscles are reflected by the variation of parameters in the neuromuscular dynamics 

model. The passive damping resisting stretching of the muscle fibre is able to damp out muscle torques 

across a wide range of frequencies and the magnitude of the torque transmitted by the muscle to the 

steering wheel is determined by the tendon stiffness. The stretch reflex gain in the model has the effect 

of increasing the stiffness of the arms and introducing a lightly damped resonance.  

0.03075   0.0307  0.03059  0.03058   0.03058 
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The LQG framework has been used to model the driver’s cognitive behaviour for the linear model. The 

ratios between the values of the process and measurement noise covariance matrices in the Kalman 

filter indicate how the known input and sensory measurements are weighted in the state estimation: as 

one of the values in the noise covariance matrices increases, the corresponding signal will be trusted 

less, and the Kalman filter will rely more on the other signals for state estimation. A cost function in 

the LQR controller allows the trade-off between path-following accuracy and control effort to be set. 

Simulations were run to compare various combinations of state estimator and controller for the 

nonlinear model. In general, there is a trade-off between computation time and state estimation and 

control performance. The EKF and MPC methods perform much better than the LQG framework as the 

nonlinear dynamics are considered in the internal mental model. However, the computational time of 

the nonlinear driver model is much longer than that of the linear driver model. In choosing the state 

estimator and controller combination for the nonlinear driver model, the two versions of EKF (EKF1 

and EKF2) and the two versions of the MPC method (LMPC and NMPC) perform similarly based on 

the simulation results, however EKF2 and NMPC take much longer to run compared to EKF1 and 

LMPC. Therefore, it is sensible to implement the quickest combination (EKF1 and LMPC), which 

involves a linear approximation to the nonlinear dynamics for the nonlinear driver model as an accurate 

and computationally efficient way. These findings are in consistent with those obtained by Nash and 

Cole [20]. 
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Chapter 4 

Driving Simulator Experiments  

 

4.1 Introduction 

This chapter presents a series of driving experiments performed on a fixed-base driving simulator to 

replicate real-world driving scenarios. There were two primary purposes for collecting data from these 

experiments. Firstly, the objective and subjective experimental data were used to analyse the behaviour 

of test drivers when they try to steer vehicles with different steering properties to follow the randomly 

moving target path and compensate for the disturbances acting on the steering-vehicle system, 

especially in the on-centre operating regime. Secondly, the experimental data was also used to identify 

and validate the driver-steering-vehicle model developed in Chapter 3. 

The hardware used for the driving simulator experiments is briefly introduced at the beginning of this 

chapter, including the fixed-base driving simulator, a force and torque transducer (load cell), and a 

servo-motor. The calibration work for the hardware is then presented. The software of the fixed-base 

driving simulator introduced in this chapter is mainly the test steering and vehicle system model. 

Following the introduction of the driving simulator hardware and software, procedures of the driving 

experiments are introduced. Eleven trials were included in the experiments and thirteen test subjects 

were involved. Each trial stands for a particular combination of disturbances acting on the steering and 

vehicle system and steering-vehicle configuration. The experimental data and corresponding 

discussions of these trials are presented in Section 4.4 and Section 4.5. The data reflect the responses 

of the vehicle and the driver during the driving tasks. During the experiments, the test drivers were also 

asked to rate several subjective criteria regarding the steering performance. The analysis of the 

subjective data and its correlation with objective metrics taken in the experiments is given in Section 

4.6. Conclusions from the experiments are given in Section 4.7. 
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4.2 Driving Simulator Hardware and Software 

4.2.1 Introduction 

The driving simulator experiments were carried out mainly using the fixed-base driving simulator at 

the Department of Engineering, University of Cambridge (CUED). This simulator consists of three 

commercial 4K 65-inch Samsung displays providing the driver with a 138 degrees field of view of the 

road path, a host PC controlling the driving simulator program, a target PC and a graphics PC running 

the steering-vehicle system model and virtual reality world in real-time, respectively, a torque feedback 

steering wheel driven by a torque servo-drive motor, an encoder measuring the driver steering wheel 

angle, and a six-axis load cell measuring the forces and torques applied by the driver to the steering 

wheel. A schematic representation of the configuration of the fixed-base driving simulator is shown in 

Figure 4.1. The critical parts of this simulator are calibrated before carrying out the experiments. The 

experiments were also replicated using the fixed-base driving simulator at Toyota Motor Europe (TME). 

The same software is implemented in the TME simulator. However, compared to the CUED simulator, 

the TME simulator uses a different set of hardware.  

 

Figure 4.1: Diagram of the configuration of the CUED driving simulator. 

 

4.2.2 Load Cell Calibration 

The forces and torques applied by the driver were measured using a six-axis load cell installed on the 

steering column. Six pairs of strain gauges are positioned around the circle of the load cell, which has 

a thin-walled ‘top hat' design. Forces and torques can be measured in three orthogonal directions using 
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the six pairs of gauges. The outputs of all the gauges are processed by amplifiers with a gain of 2000, 

allowing the voltage signals to be easily collected. To ensure that the logged measured data is smoothed, 

the amplified signals are then processed through an analogue low-pass filter with a cut-off frequency of 

100Hz. 

The procedure reported by Pick [12] was carried out to calibrate the load cell. In this procedure, six 

different loading conditions were configurated by applying forces and torques to the load cell. The 

forces and torques were generated by hanging weights to a calibration lever, which replaced the steering 

wheel. An example of the loading condition is shown in Figure 4.2. To increase the calibration accuracy 

and remove any bias due to directions, a modification of the calibration procedure similar to that used 

by Wang [135] was adopted. This was accomplished by applying the hanging weights to the calibration 

lever in two directions during each loading configuration. There are a total of thirteen configurations 

used, which are detailed in Table 4.1. Seven different weights (including zero weight) were applied to 

each loading configuration, and strain gauge outputs were recorded. Loading weights were limited to 

150N for direct forces and 20Nm for moments to avoid breaking the load cell. The centre of the 

orthogonal axis system was chosen as the mating face of the load cell and the steering wheel, as shown 

in Figure 4.2 as well. 

 

Figure 4.2: Load cell calibration set-up and orthogonal axis system of the steering wheel [135]. 

 

All six strain gauges’ output voltages were combined into a voltage matrix [𝑉1 𝑉2 𝑉3 𝑉4 𝑉5 𝑉6] 

according to (4.1). In one loading condition, each row corresponds to a certain hanging weight in one 

direction. A force-torque matrix [𝐹ℎ𝑥 𝐹ℎ𝑦 𝐹ℎ𝑧 𝑀ℎ𝑥 𝑀ℎ𝑦 𝑀ℎ𝑧] is used to represent the forces 

and torques applied by the hanging weight. As a result, using a multiple linear regression technique, a 

least-squared best fit to [𝑋] was obtained.  

[𝑉1 𝑉2 𝑉3 𝑉4 𝑉5 𝑉6][𝑋] = [𝐹ℎ𝑥 𝐹ℎ𝑦 𝐹ℎ𝑧 𝑀ℎ𝑥 𝑀ℎ𝑦 𝑀ℎ𝑧]                  (4.1)  
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where [𝑋] is a 6 by 6 calibration matrix; 𝑉𝑖 is a 78-element column array (13 configurations multiplied 

by 6 different weights), containing the voltage outputs from the 𝑖𝑡ℎ strain gauge set in the load cell; 

𝐹ℎ𝑥,ℎ𝑦,ℎ𝑧  and 𝑀ℎ𝑥,ℎ𝑦,ℎ𝑧 are also 78-elements column arrays containing the forces and torques applied 

to the load cell in 𝑥, 𝑦 and 𝑧 directions. It is worth noting that the voltage values when there is no 

loading are subtracted from each voltage reading to eliminate the effect of voltage offsets and self-

weight of the calibration lever and the steering wheel. In linear regression models, the coefficient of 

determination (R-squared) is a goodness-of-fit measure and measures the strength of the relationship 

between the linear regression model and the forces and torques on a convenient 0% – 100% scale. In 

this analysis, all the channels achieved R-squared values larger than 97%, with the exact R-squared 

value for each individual of the channels shown in Table 4.2. The actual forces and moments applied 

to the load cell were compared with values of the forces and moments obtained by applying the 

calibration matrix to the measured voltages. The results showed that the forces and moments applied 

by the driver to the steering wheel could be accurately measured by the load cell with the identified 

calibration matrix, especially for steering torque measurement 𝑀ℎ𝑧 , the average error of the 

measurements of which is 0.30%. 

Table 4.1: Loading configurations for load cell calibration.  

Configuration 

number 
𝐹ℎ𝑥 𝐹ℎ𝑦 𝐹ℎ𝑧 𝑀ℎ𝑥  𝑀ℎ𝑦 𝑀ℎ𝑧 

1   +    

2  −    + 

3  −     

4 +     + 

5 +      

6   +  +  

7  −    − 

8  +     

9 +     − 

10 −      

11   +  −  

12   + −   

13   + +   

Note: + denotes loaded axis in positive direction, - denotes loaded axis in negative direction, 𝐹ℎ𝑖 
denotes force and 𝑀ℎ𝑖 denotes moments, where 𝑖 is selected from x, y or z. 

Table 4.2: R-squared values of the multiple linear regression model for each individual channel 

 𝐹ℎ𝑥 𝐹ℎ𝑦 𝐹ℎ𝑧 𝑀ℎ𝑥  𝑀ℎ𝑦 𝑀ℎ𝑧 

R-squared 99.97% 99.99% 97.04% 99.76% 99.94% 99.88% 

https://statisticsbyjim.com/glossary/r-squared/
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4.2.3 Servomotor Calibration 

The servo-drive performs closed-loop control of the servomotor current in response to an analogue 

torque demand signal sent from the steering and vehicle system model in the target PC through the I/O 

card. The generated motor torque is proportional to the servomotor current. As a device for providing 

the feedback torque, the servomotor was calibrated. The servomotor was calibrated to find a factor that 

can describe the relationship between the torque demand signal and the actual motor torque by 

conducting an experiment. During the experiment, a sine wave torque demand signal (2V amplitude 

and 0.5Hz frequency) was sent to the motor. The steering wheel was rotated slowly with constant 

angular velocity, and the actual torque measured by the calibrated load cell was recorded. The cut-off 

frequencies for all the analogue low-pass filters were set to the same value, 100Hz, chosen to be low 

enough to prevent aliasing when the signals are sampled, and high enough to prevent significant gain 

or phase change in the frequency range of interest. The recorded torques and the torque demand signals 

were then used to generate a least-squared fitting line, as shown in Figure 4.3, and the slope of it was 

the calibration factor (0.986Nm/V). To check the bandwidth of the calculated calibration factor, another 

set of experiments was conducted, during which a series of sine wave torque demand signals with 

different frequencies were sent to the motor and the actual torque was measured by the calibrated load 

cell. The comparison between these two quantities showed that the servomotor can correctly generate 

the demanded steering torque for a wide range of frequencies, as shown in Figure 4.4.  

 

Figure 4.3: Torque demand signal (a sinusoidal signal with 2V amplitude and 0.5Hz frequency) vs. 

torque measured by the calibrated load cell. 
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Figure 4.4: Gain and phase plots of the calibration factor in a wide range of frequencies. The measured 

data points are shown by the cross marks. 

 

4.2.4 Test Steering-Vehicle Systems 

The test steering-vehicle systems are realised by implementing the steering and vehicle models 

introduced in Chapter 3 using Matlab and Simulink in the driving simulator with a sampling frequency 

of 1000Hz, as shown in Figure 4.5. The PCI-6621 National Instrument Data Acquisition card (NIDA 

card) is used to exchange signals with the hardware. The steering wheel angle is measured by an optical 

quadrature encoder (Wachendorff WDGI58B) with 25,000 pulses per revolution. The output of the 

encoder is counted by the NIDA card to give an angular resolution of 0.0036 degrees. The measured 

steering wheel angle signal 𝜃𝑠𝑤 is recorded and is differentiated to calculate steering wheel angular 

velocity 𝜃̇𝑠𝑤. However, the recorded wheel angle signal 𝜃𝑠𝑤 is processed by a second-order Butterworth 

low-pass filter with a cut-off frequency 100Hz first to reduce the quantisation effect of the encoder. The 

simulated torque demand signal 𝑇𝑑𝑒𝑚𝑎𝑛𝑑  is also filtered by another by a second-order Butterworth low-

pass filter with a cut-off frequency 100Hz before being sent to the servo-motor as an analogue signal 

via the NIDA card. Results from preliminary testing demonstrated that the practical effect of 

implementing these filters on the phase shift of the raw signals is negligible. 
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Figure 4.5: Structure of the Simulink model (enclosed by the dashed rectangle) operated by the Target 

PC in driving simulator and its interfaces with the hardware, the Host PC and the Graphics PC.  

 

In terms of the steering-vehicle system model block, the vehicle model is the two-degree-of-freedom 

lateral-yaw ‘bicycle’ model with a lateral force disturbance 𝐹𝑦 and a yaw moment 𝑀𝑧  applied at the 

centre of mass, as described by Section 3.2.1 in Chapter 3. The steering model is the one described by 

Section 3.5.1 in Chapter 3 with assist torque from the driving assist system 𝑇𝑚 and steering column 

disturbance 𝑇𝑑 . To avoid any confusion, the steering model is shown in Figure 4.6 in this section again. 

 

Figure 4.6: Steering system model used in the driving simulator experiments. The springs and dampers 

act in rotation. 

 

Different from Chapter 3, the state-space equations of the steering-vehicle system are formulated by 

taking the steering wheel angle 𝜃𝑠𝑤 as the system input and the torque demand 𝑇𝑑𝑒𝑚𝑎𝑛𝑑 , which is the 
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torque across the steering column stiffness 𝑘𝑡  and the torsion bar damping 𝑐𝑡, as the system output. This 

formulation makes it more convenient to integrate this steering-vehicle system model into the driving 

simulator since the steering wheel angle is treated as an input to the model, and the demanded torque is 

treated as an output of the model. The demanded torque is fed to the servo-drive of the driving 

simulator’s steering wheel to provide steering torque feedback to the driver. Therefore, the state-space 

form of the steering-vehicle system block shown in Figure 4.5 is expressed as: 

{
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𝑇𝑑𝑒𝑚𝑎𝑛𝑑 = [0 0 0 0 0 −𝑘𝑡 −𝑐𝑡]
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               (4.3) 

where 𝐺1 =
2𝐶𝑓𝑑
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𝐼𝑐
. Because small time steps could be used in the driving simulator, instead of 

being presented by Specker’s dynamic friction model [78] as in Chapter 3, the steering system friction 
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torque 𝑇𝑓 is modelled as a Coulomb friction, which is dependent on the steering column angular velocity 

𝜃̇𝑐, to replicate more realistic friction behaviour. A hyperbolic tangent function is chosen to represent 

the Coulomb friction model, as described by (4.4), to avoid the discontinuities when the steering column 

angular velocity changes from positive to negative. 

𝑇𝑓(𝑡) = 𝐹𝐶 tanh(𝑐𝜃̇𝑐(𝑡))                                                            (4.4) 

where 𝐹𝐶  is the magnitude of the friction torque, and the value of the constant 𝑐 can be chosen to give 

the desired steepness of the friction torque against the steering column angular velocity curve near zero 

steering column angular velocity. In this study, the value of 𝑐 is chosen as 50s/rad to achieve the trade-

off between the feasibility of the simulation and the accuracy of friction modelling. Figure 4.7 shows 

the Coulomb friction model with the magnitude of the friction torque 𝐹𝐶  set to 2Nm as an example. 

Figure 4.8 shows the cross-plots of the steering wheel angle measured by the encoder against the 

steering torque measured by the load cell, and the steering wheel angle measured by the encoder against 

the simulated torque demand signal from the steering-vehicle system with the implemented Coulomb 

friction, the magnitude of which is 2Nm. The influence of steering system friction on the cross-plots is 

visible as a significant torque difference for an infinitesimal change in the steering wheel angle at each 

end of the hysteresis curves, as explained in Chapter 3.  

 

Figure 4.7: Coulomb friction model with 𝐹𝐶  equal to 2Nm and 𝑐 equal to 50s/rad. 
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Figure 4.8: Cross-plots of torque against angle of the steering-vehicle system with Coulomb friction in 
the driving simulator (a: measured steering wheel angle vs. load cell measured steering torque; b: 

measured steering wheel angle vs. simulated torque demand signal). 

 

All the states, outputs and inputs in the state-space equations (4.2) and (4.3), along with the white noise 

signals before the low-pass filters, are recorded by the Target PC and fed to the Host PC for storage 

through TCP/IP protocol. The simulated vehicle yaw angle 𝜓 , vehicle longitudinal position 𝑥  and 

vehicle lateral position 𝑦 in the global coordinate system are sent to the Graphics PC to simulate the 

motion of the vehicle in the virtual reality world also via TCP/IP protocol.  

Suitable values of the steering and vehicle model parameters were either identified by fitting the 

responses of the steering-vehicle model to data from an actual vehicle, which was provided by TME 

[124], using a least-square method with the same steering wheel angle input level, or selected from 

previous literature publishing accurate corresponding parameter values of the steering and vehicle 

system [1]. In addition, the torsion bar damping coefficient 𝑐𝑎  and the damping coefficient of the 

steering system 𝑐𝑠𝑤 were adjusted during preliminary experiments to provide necessary stability of the 

software-hardware open-loop system while representing realistic steering system properties. A 

consequence of the fact that these parameter values are not from a single source is that not all of the 

parameter values of the steering-vehicle model are close to the corresponding parameter values of a real 

vehicle. However, comments from experienced test drivers, and the comparison between the simulated 

steering and vehicle responses and the actual steering and vehicle responses of an actual vehicle 

confirmed that the steering-vehicle model gave a realistic steering response. The steering and vehicle 

parameters used in the Simulink model are summarised as the ‘base’ in Table 3.1 in Chapter 3. However, 

the values of some of these parameters are altered during different experimental trials. The details are 

addressed in later sections.  
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4.2.5 Graphics and Display Setup 

As mentioned in Section 4.2.1, there are three 4K 65-inch displays showing the driver the virtual reality 

world to replicate the driver’s view in real-world driving scenarios. The horizontal width and the vertical 

height of an individual physical display screen are 144cm and 81cm, respectively, giving an aspect ratio 

of 1.7778. The seat is positioned so that the perpendicular distance from the driver’s eye to the displays 

is 170cm, then the field of view for each display is 46 degrees, and the total field of view provided by 

the three displays is 138 degrees. Figure 4.9 is a sketch plan view showing how the displays are 

positioned relative to the driver’s head. For the TME simulator, there is just one single display with a 

width of 82cm and a height of 35cm, however, the graphics and the seat were adjusted to give the same 

field of view as the CUED simulator. 

 

Figure 4.9: Plan view of the relative position of the driver’s head to the three displays. 

 

The virtual reality world is created using a Python package called Panda3D [136] and consists of a 

target path, a vehicle that the human driver steers, a double-lane road formed by the gray and white 

grids with boundary lines, and a sky with white clouds. The aspect ratio of the displays, the field of 

view, the positions and angles of the cameras are set to the values matching the real-world settings. The 

vehicle is represented by a 5m long and 2m wide box, while the width of each road lane is 4m. The 

distance of the viewpoint behind the vehicle is set to 4.2m. A plan view diagram showing the geometry 

of the virtual reality world settings is shown in Figure 4.10. The motion of the vehicle with respect to 

the road in the virtual world is controlled by the simulated vehicle yaw angle 𝜓, and the vehicle 

longitudinal position 𝑥 and vehicle lateral position 𝑦 signals from the Target PC in real-time. However, 

there is time delay of the displays and Ethernet, which has been found to be 60ms in total in preliminary 

experiments. It is important to note that in this driving simulator setup, the driver’s view is outside of 

the vehicle, which means that the human driver sits outside of the vehicle and controls the vehicle 
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remotely. As the base of the driving simulator is fixed, the primary purpose of this setup is to make sure 

that there are no conflicts between the driver’s visual and physical (vestibular) measurements, which 

could lead to motion sickness, and lead to unrealistic weightings of different sensory cues by the driver 

[117]. 

 

Figure 4.10: Plan view diagram of the virtual reality world settings, including the road with its 

centreline, the vehicle and the human driver’s viewpoint. 

 

4.3 Experimental Procedure and Results 

4.3.1 Steering Control Tasks 

The steering control task performed in the experiments was the same as the task described by the model 

in Chapter 3 (shown in Figure 3.1). The vehicle moved at constant longitudinal speed of 60km/h and 

the drivers were asked to steer the vehicle to follow a randomly moving target line 𝑟 as closely as 

possible while rejecting the disturbances acting on the steering and vehicle system. The disturbances 

𝐹𝑦 , 𝑀𝑧  and 𝑇𝑑  were added as lateral force, yaw moment and steering column torque acting on the 

steering-vehicle system as shown in Figure 3.1. However, not all the disturbances are applied in the 

experiments described in this chapter and detailed experimental conditions are given in Section 4.3.2. 

The randomly moving target line 𝑟 and the disturbances were generated using filtered Gaussian white 

noise to match the formulation of the driver model. White noise signals 𝑤𝐹 , 𝑤𝑀 , 𝑤𝑇  and 𝑤𝑟  were 

generated in discrete time by choosing random numbers from a zero-mean normal distribution, as 

suggested by Nash and Cole [116]. The variances 𝑊𝐹
2, 𝑊𝑀

2, 𝑊𝑇
2 and 𝑊𝑟

2of these signals were tuned to 

give a suitable trade-off between achieving a high signal-to-noise ratio and a comfortable experience 

for the test subjects during preliminary testing. Large signal amplitudes are desirable to allow the drivers 

to generate control actions with a high signal-to-noise ratio so that the level of uncertainty in the 
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identification results can be reduced; however, the steering control task will become demanding when 

the disturbance amplitudes are large. 

The cut-off frequencies of the low-pass filters 𝐻𝑓𝐹(𝑠), 𝐻𝑓𝑀(𝑠) and 𝐻𝑓𝑇(𝑠) for the disturbances acting 

on the steering-vehicle system were also tuned during preliminary testing to ensure that the human 

drivers are not excited beyond the frequencies of interest and that the disturbances in the range of 

frequencies are not uncomfortable for the human drivers. The corresponding cut-off frequencies 𝑓𝑐𝐹,  

𝑓𝑐𝑀 and 𝑓𝑐𝑇 were set to 1Hz, 1Hz and 10Hz, for 𝐻𝑓𝐹(𝑠), 𝐻𝑓𝑀(𝑠) and 𝐻𝑓𝑇(𝑠), respectively. The transfer 

function 𝐻𝑓𝑟(𝑠) was implemented by combining a high-pass filter, to attenuate low frequencies and a 

low-pass filter to restrict the bandwidth of the target line, as in [116]. Because the range of the 

frequencies that the human driver can generate is limited, any component of the randomly moving target 

line with a higher frequency that the human driver cannot react to should be attenuated. The filter was 

chosen to have 40dB/decade roll-off at high and low frequencies, with upper and lower cut-off 

frequencies of 1rad/s and 0.05rad/s, respectively, as given in (4.5). 

𝐻𝑓𝑟(𝑠) = (
𝑠

𝑠 + 0.05
)
2

(
1

𝑠 + 1
)
2

                                                   (4.5) 

Bode diagrams of the filters are shown in Figure 4.11, and examples of the time-domain of the randomly 

moving target line and the disturbances after being processed by the filters are shown in Figure 4.12. 

 

Figure 4.11: Bode diagram of the filters used in the experiments 
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Figure 4.12: Time histories of the steering column torque disturbance 𝑇𝑑  and the randomly moving 

target line 𝑟 used in some of the experimental trials 

 

In the experiments, the ‘no preview’ display used by Nash and Cole [116] was applied to replicate the 

steering control task described by the closed-loop driver-steering-vehicle model in Chapter 3. An 

example of the display is shown in Figure 4.13. The vehicle moved along the straight road with 

boundary lines of the road, and the gray and white grids were used as visual cues for the test drivers to 

assess depth and speed. In the experimental trials where the drivers were asked to follow a randomly 

moving target line, a straight red line moved laterally across the road, with the lateral displacement of 

each point on this line equal to 𝑟(𝑡) at time 𝑡. In this case, the driver can only see the current value of 

𝑟 without knowing any additional information about future values of the target line.  



4.3 Experimental Procedure and Results                                                                                   99     

 

 

Figure 4.13: Visual display example showing the randomly moving target line 𝑟 at time 𝑡. 

 

4.3.2 Experiment Procedure and Trials 

Based on the hardware calibration, including the load cell and the servomotor, and the implementation 

of the software, a series of driving simulator experiments were designed and carried out on the CUED 

driving simulator, as shown in Figure 4.14. The experiments were also replicated using the TME 

simulator. Each test subject sat in the driver seat of the driving simulator and was presented with a 

virtual driving environment (in the three 4K 65-inch screens) consisting of a target path (the red line) 

to follow and a vehicle (the green rectangle, with the black line representing the centre line of the vehicle) 

to steer. The complete set of experiments consisted of eleven trials to explore the driver’s control 

behaviours under a wide range of conditions. Each trial stands for a particular combination of 

disturbances acting on the vehicle and steering properties configuration. Most of the trials just involve 

the randomly moving target path without adding disturbances on the steering-vehicle system. This is to 

avoid disturbances that can be effectively compensated solely by co-contracting, and therefore 

stiffening, the arm muscles. Disturbances of the target path are not effectively compensated using co-

contraction, and instead require active control by the driver using their internal model.  After each trial, 

the drivers were asked to provide a subjective assessment of the steering feel for that trial by using 

criteria listed on a questionnaire. The conditions of the trials are summarised in Table 4.3. The first 

three trials form the ‘linear phase’ of the experiments, where the steering and vehicle dynamics are 

entirely linear. In trials 4 to 7, different levels of steering system friction torque are applied to the 

steering system and in trials 8 to 11, some assist torque from the driving assist system is added to the 

steering system in addition to the steering system friction torque in order to make the test subjects’ 

overall physical torque effort level similar to that in trial 3. An appropriate value of boost curve 

coefficient 𝐶𝑏𝑜𝑜𝑠𝑡  for each trial is chosen by making the measured steering torque level similar to that 

in trial 3 when the steering wheel angle control action level applied in each trial is the same as that in 
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trial 3. This aims to examine if the test subject’s subjective assessment of the nonlinear (steering system 

friction) characteristic is affected by the overall level of physical effort required to steer the vehicle. 

 

Figure 4.14: CUED driving simulator with test subject. 

 

The dataset comprised thirteen test subjects, including eight Cambridge University drivers tested on the 

CUED driving simulator and five Toyota drivers tested on the TME driving simulator. The eight 

Cambridge drivers are 7 male drivers and 1 female driver aged between 21 and 30. All eight drivers 

possessed driving licences and have some experience driving a car and are familiar with steering torque 

feedback. Most of them were members of Cambridge University Automobile Club (CUAC) or vehicle 

dynamics engineering students. The five Toyota drivers are 4 male drivers and 1 female driver aged 

between 24 and 27. All five drivers are professional vehicle dynamics engineers. Detailed information 

about the test drivers is given in Table 4.4. Previous literature [137] [138] found that reaction times and 

sensory threshold have been found to increase with the increase of age. Therefore, choosing test subjects 

with a narrow range of age should improve the validity of combining datasets from different drivers to 

increase the signal-to-noise ratio before attempting model identification. 

Before performing the experiments, the test subjects were given a leaflet with general information about 

the experiments and the instructions for operating the driving simulator safely. The test subjects were 

asked to familiarize themselves with the information before the experiments. General questions raised 

by the test subjects were answered regarding the experiment, the protocol, etc. After that, the test 

subjects were verbally instructed and demonstrated how to hold and turn the steering wheel. Then, a 

10-minute training session consisting of practice runs of several of the trials was conducted to reduce 

the learning effect and help the test subjects become familiar with the driving simulator, the steering 
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task, the different disturbances, and the steering-vehicle system dynamic characteristics. The test 

subjects were told to use the same control strategy and keep the muscle conditions the same for all the 

trials.  

During the experiments, linear trials 1, 2, and 3 were presented to the drivers first in order. For 

Cambridge drivers, the nonlinear trials 4 to 11 were divided into two groups: trials 4 to 7 and trials 8 to 

11. Trials 8 to 11 were then presented to the drivers, followed by trials 4 to 7. In each of the two groups, 

the order was randomised. However, all the nonlinear trials 4 to 11 were presented to the drivers together 

in one single group with randomised order for Toyota drivers. Each trial ran for 5 minutes. Before the 

experiment began, each driver was told how the conditions might vary between the trials; however, to 

avoid biasing their expectations, they were not told anything about the specific conditions of each trial. 

In experimental trials 3 to 11, the drivers were asked to provide subjective feedback of the steering feel 

for each trial by using the criteria listed in the questionnaire. The complete questionnaire on subjective 

assessment of steering feel is presented in Table 4.5. There are two types of subjective criteria, with the 

first type being estimation: judging how large/small or high/low the criterion is, such as the friction 

level and the yaw delay, and the second type being evaluation: judging how good/bad the criterion is, 

for examples, how easy is it to follow the randomly moving target path and how helpful is the steering 

torque feedback for the task. Each criterion on the questionnaire was evaluated using a unipolar discrete 

1 - 10 rating scale. Trial 3 was used as the baseline trial, and every criterion about trial 3 was rated 5 as 

a reference to provide better data for the evaluation. The drivers then set their ratings in relation to this 

reference trial, which means the subjective ratings were relative ratings instead of absolute ratings. 

Before the experiments, a short training session regarding the concept and the importance of steering 

feel was also delivered. Such training has been recommended [10] because it can be used to familiarize 

the test subjects with the vocabulary concerning steering feel, which could increase the reliability of the 

answers and shorten the experiment time. The subjective assessment questionnaire was also presented 

to the test subjects during the training session to make sure they knew what they were going to assess 

during the experiments, and the test subjects were allowed to ask for clarifying information if they were 

uncertain about the meaning of some of the criteria listed on the questionnaire. However, no further 

clarification was given on the strategies of evaluating specific criteria. During the experiment, trial 3 

was presented to the test subjects for a short time (30 seconds – 1 minute) quite often (e.g., after every 

two trials) to remind them of the conditions of the baseline trial frequently in order to ensure their use 

of the scale is constant across all the different trials. Each test subject was allowed to do some free 

driving (any manoeuvre) after the 5 minutes for each trial. This allowed the test subjects to ignore the 

instruction to follow the randomly moving target path and gave them the opportunity to evaluate all the 

criteria of steering feel in an unconstrained manner with more confidence. 
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Although a training session has been conducted before the experiments, the drivers may also have taken 

some time to get familiar with the new steering-vehicle dynamics and work out the conditions of each 

trial during the experiments. By taking account of this learning behaviour of the drivers, Nash and Cole 

[44] discarded the first 15s data of each trail. The interview responses of the test drivers indicate that 

30s - 40s is sufficient to learn the dynamics of the system and settle on a control strategy. Therefore, 

the first minute of each trial is excluded from the data to eliminate the influence of the learning process. 

Table 4.3: Experimental conditions for each trail 

 Disturbance amplitudes    

Exp. 

condition 
𝑊𝑟(m) 𝑊𝐹(N) 𝑊𝑇(Nm) 𝐹𝑐(Nm) 

Trail 

distance 

𝑑 (m)  

Boost 

coefficient 

𝐶𝑏𝑜𝑜𝑠𝑡  

1 0 0 4 0 0 0 

2 8 0 0 0 0 0 

3 8 0 0 0 0.059 0 

4 8 0 0 0.5 0.059 0 

5 8 0 0 1 0.059 0 

6 8 0 0 2 0.059 0 

7 8 0 0 4 0.059 0 

8 8 0 0 0.5 0.059 0.01 

9 8 0 0 1 0.059 0.03 

10 8 0 0 2 0.059 0.1 

11 8 0 0 4 0.059 0.4 
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Table 4.4: Detailed information about the test drivers: age, gender, and experience 

Source No. Age Gender 
Driving experience 

(years) 
Other  

University of 

Cambridge 

1 25 Male 5 Vehicle dynamics expert 

2 25 Male 7 
CUAC member, car/karting 

racing experience  

3 29 Male 18 
CUAC member, car/karting 

racing/testing experience 

4 22 Male 3 

Vehicle dynamics 

engineering student, racing 

experience 

5 21 Male 4 
Vehicle dynamics 

engineering student 

6 21 Male 4 
Vehicle dynamics 

engineering student 

7 21 Male 5 
Vehicle dynamics 

engineering student 

8 24 Female 5 / 

Toyota 

Motor 

Europe 

9 24 Female 0 Vehicle dynamics engineer 

10 24 Male 6 Vehicle dynamics engineer 

11 24 Male 6 Vehicle dynamics engineer 

12 26 Male 8 Vehicle dynamics engineer 

13 27 Male 7 Vehicle dynamics engineer 
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Table 4.5: Questionnaire asking for the test subjects’ subjective assessment of steering feel in the experiment. 

Subjective criteria 

Trial number 

1 2 3 4 5 6 7 8 9 10 11 

Q1. Friction level (1 to 10: low to high)?   5         

Q2. How easy is it to follow the randomly moving target path (1 to 10: difficult to easy)?   5         

Q3. Physical effort level (how hard is it to turn the steering wheel) (1 to 10: low to high)?   5         

Q4. Stability of the steering-vehicle system (1 to 10: unstable to stable)   5         

Q5. Yaw delay (between vehicle yaw velocity and steering wheel angle) (1 to 10: low to high)?   5         

Q6. Yaw gain (vehicle yaw velocity to steering wheel angle) (1 to 10: low to high)?   5         

Q7. Yaw linearity (1 to 10: linear to nonlinear)?   5         

Q8. How connected does it feel (1 to 10: disconnected to connected)?   5         

Q9. How helpful is the steering torque feedback for the task (1 to 10: useless to helpful)?   5         
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4.4 Analysis and Discussion of the Linear trials  

In the experiments, trial 3 is used as the baseline trial, where the steering torque feedback information 

is provided to the test subjects without being affected by any steering system friction. In contrast, in 

trial 2, the tyre trail distance is set to 0mm while all the other steering-vehicle properties and 

experimental conditions are set identical to those in trial 3. This means that there is no self-aligning 

moment generated between the front tyres and the ground, and the torque transmitted to the driver 

through the steering system is only due to the equivalent stiffness and damping of the steering system 

itself in trial 2. Therefore, the influence of steering torque feedback on the drivers’ control performance 

can be determined by directly comparing trial 2 and trial 3 for each driver. Specifically, the following 

objective metrics are compared: measured steering torques, measured path-following errors and 

measured steering wheel angles. Detailed statistical analysis is conducted to determine if there are 

significant differences in the objective metrics between the two trials. Initially, a Shapiro-Wilk test is 

conducted to demonstrate that the values of each objective metric for each trial across all the test 

subjects follow a normal distribution with a normal probability plot. The mean and standard deviation 

of each metric over all the test subjects are then found based on the properties of a normal distribution. 

The statistical significance of the differences in the objective metrics is verified by using a paired t-test 

and an f-test comparing the two trials. In addition, the subjective ratings are analysed for each driver to 

examine the importance of steering torque feedback. 

 

4.4.1 Steering Torque Analysis 

Figure 4.15 and Figure 4.16 show the values of Root-Mean-Square (RMS) steering torque measured 

during the experiments for trial 2 and trial 3, respectively. It is shown that in trial 3, where there is 

steering torque feedback, Driver 4 and Driver 5 had the smallest steering torques with the RMS values 

below 4Nm, while Driver 12 and Driver 13 had the largest steering torques with the RMS values above 

6Nm. In addition, the RMS steering torque level of trial 3 is significantly larger than that of trial 2, 

which is apparently due to the resistance caused by the self-aligning moment generated between the 

front tyres and the ground. 
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Figure 4.15: Values of RMS steering torque in trial 2 for each driver. 

 

Figure 4.16: Values of RMS steering torque in trial 3 for each driver. 

 

4.4.2 Path-following Performance Analysis 

To investigate the effect of steering torque feedback on the path-following performance, the values of 

RMS path-following error in trial 2 and trial 3 for each driver are presented in Figure 4.17. Figure 4.17 

demonstrates that most test drivers achieved small path-following errors with the RMS values below 

0.4m. Driver 13 achieved the best path-following performance, while Driver 6 had the largest tracking 

errors. Figure 4.18 shows the time histories of the vehicle lateral displacements during trial 3 performed 

by Driver 13 and Driver 6. The solid black line presents the randomly moving target line, while the blue 

and red dashed lines represent the time history of Driver 13 and Driver 6, respectively. The time phase 

difference between the randomly moving target and the vehicle lateral displacement is smaller for 

Driver 13 than for Driver 6. This might be because Driver 13 reacted to the target more aggressively by 
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applying more steering effort. This finding suggests different driving styles, which are further examined 

in the steering wheel angle data. The percentage change in RMS path-following error when steering 

torque feedback was hidden in trial 2 with respect to trial 3 for each driver is shown in Figure 4.19, 

along with the median and mean values over the thirteen drivers. 

 

Figure 4.17: Values of RMS path-following error in trial 2 and trial 3 for each driver. 

 

Figure 4.18: Time histories of the vehicle lateral displacements during trial 3 for Driver 13 and Driver 

6 with the randomly moving target line. 
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Figure 4.19: Change in RMS path-following error without steering torque feedback. Percentage 

differences are plotted for each driver and the median and mean over the thirteen drivers. 

 

Figure 4.19 shows that the absence of steering torque feedback causes the path-following error to 

increase in general. However, to conduct detailed statistical analysis to determine if the difference in 

the RMS path-following error is statistically significant, it is necessary to know whether the values of 

RMS path-following error for each trial across all the drivers follow a normal distribution or not. Given 

the relatively small number of test subjects in this study, it is not easy to detect if the values are normally 

distributed via histograms. Instead, normal probability plots are graphics tools that can be used for this 

purpose. In normal probability plots, the values of RMS path-following error in each trial are plotted 

against a theoretical normal distribution, as shown in Figure 4.20. The horizontal axes are the values of 

RMS path-following error in each trial for all the drivers, and the vertical axes are the theoretical values 

of the cumulative probability for the RMS values. Theoretically, if the RMS values are normally 

distributed for each trial, they will be plotted approximately on a straight line. In order to check the 

linearity of the scattered data points, a solid reference line connecting the first and third quartiles of the 

data, and a dashed reference line extending the solid line to the ends of the data are also shown in Figure 

4.20. If the data has a normal distribution, then the data points appear along the reference line. A 

distribution other than normal introduces curvature in the data plot. Figure 4.20 shows that most 

scattered points fall on the red straight line although there are one or two points sightly off, indicating 

the values of RMS path-following error for each trial follow a normal distribution. In addition to the 

normal probability plots, a Shapiro-Wilk test (sw-test) with a significant level of 5% is conducted to 

determine if the null hypothesis of a normal distribution is a reasonable assumption regarding the 

distribution of the RMS values for each trial. The 𝑝 values, the probability of observing a test statistic 

as extreme as, or more extreme than, the observed value under the null hypothesis for the Shapiro-Wilk 

test, are shown in Table 4.6. The large 𝑝 values indicate that the null hypothesis of a normal distribution 

is not rejected. 
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Figure 4.20: Normal plots for the values of RMS path-following error in trial 2 and trial 3. 

 

Having demonstrated that the values of RMS path-following error in each trial for all the test subjects 

approximately follow a normal distribution, the mean values over the thirteen drivers for trial 2 and trial 

3 are found, as shown in Table 4.7. The corresponding standard deviations for trial 2 and trial 3 are also 

calculated by using (4.6): 

𝜎𝑒 = √
1

𝑛𝑑 − 1
∑(RMS(𝑒𝑖) − RMS(𝑒)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2

𝑛𝑑

𝑖=1

                                               (4.6) 

where 𝑛𝑑  is the number of drivers and RMS(𝑒)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the mean RMS of path-following error over all the 

drivers, and the results are also shown in Table 4.6.  

Statistical significance of the difference in the mean RMS path-following error between trial 2 and trial 

3 is verified using a paired t-test, since the two trials were conducted by the same group of drivers. 

However, before the paired t-test, an f-test was conducted first to check the statistical significance of 

the difference in the variance of the values of RMS path-following error between trial 2 and trial 3 to 

ensure the robustness of the test results. The null hypothesis of the f-test is that the RMS values for trial 

2 and trial 3 come from normal distributions with the same variance, while the null hypothesis of the 

paired t-test is that the difference in the RMS values between trial 2 and trial 3 comes from a normal 

distribution with a mean of zero and unknown variance. Any outlier was removed from the dataset. The 

𝑝 values for f-test and t-test are also summarised in Table 4.6. The small 𝑝 values indicate that both the 

paired t-test and the f-test null hypotheses are rejected at a 5% significance level. This suggests that 

with steering torque feedback, the drivers could follow the target line more closely and achieve greater 

consistency of the path-following performance. These results agree with findings obtained by Wang 

[135], who studied the steering torque interaction between driver and vehicle, that steering torque 
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feedback information is helpful to drivers as it gives the drivers extra information which they can use 

to estimate the states and learn the system dynamics more accurately. 

Table 4.6: Mean and standard deviation (in brackets) of RMS path-following error across all thirteen 

drivers for trial 2 and trial 3 

Criteria Trial 2 𝑝 (sw-test) Trial 3 𝑝 (sw-test) 𝑝 (f-test) 𝑝 (t-test) 

RMS path-
following error 

𝑒  

0.401 m 

(0.0584 m) 
0.1330 

0.370 m 

(0.0382 m) 
0.7479 0.0216 0.0446 

 

4.4.3 Steering Wheel Angle Analysis 

To investigate the effect of steering torque feedback on the steering wheel angle, comparisons between 

the RMS values of the steering wheel angle for trial 2 and trial 3 are shown in Figure 4.21. The values 

of RMS steering wheel angle vary across the test subjects. Driver 9 to 13 had larger overall steering 

wheel angle inputs than the other drivers, with values of RMS steering wheel angle larger than 0.4rad 

for both the two trials, while Driver 4 and Driver 5 consumed the smallest level of steering wheel angle 

inputs among the test drivers, with values of RMS steering wheel angle below 0.4rad. This is consistent 

with the corresponding steering torque levels shown in Figure 4.16. Figure 4.22 shows the spectrum of 

steering wheel angle in trial for Driver 13 and Driver 6 corresponding to the analysis conducted in 

Section 4.4.2. Comparison between the two lines shows that Driver 13 generated much higher frequency 

steering control actions than Driver 6. These differences suggest that Driver 13 reacted to the randomly 

moving target line more aggressively to meet the path-following requirements better. In contrast, Driver 

6 completed the steering control task in a more ‘relaxed’ way, weighting less on the lateral displacement 

than the control inputs by applying lower-frequency small magnitude steering wheel angles. The driving 

styles shown by the steering wheel angle are consistent with the observation of difference in path-

following accuracy shown in Figure 4.18. Figure 4.23 shows the percentage change in RMS steering 

wheel angle when steering torque feedback was hidden in trial 2 with respect to trial 3 for each driver, 

along with the median and mean values over the thirteen drivers. In general, the drivers had larger 

steering wheel angle input without steering torque feedback information.  
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Figure 4.21: Values of RMS steering wheel angle in trial 2 and trial 3 for each driver. 

 

Figure 4.22: Spectrums of the steering wheel angle during trial 3 for Driver 13 and Driver 6. 

 

Figure 4.23: Change in RMS steering wheel angle without steering torque feedback. Percentage 

differences are plotted for each driver and the median and mean over the thirteen drivers. 
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Normal probability plots showing the values of RMS steering wheel angle in each trial against a 

theoretical normal distribution are presented in Figure 4.24. Although some scattered points are away 

from the reference line, the assumption of normal distribution is plausible considering the small number 

of drivers. In addition, the large 𝑝 values from the Shapiro-Wilk test results, shown in Table 4.7, also 

indicate that the null hypothesis of a normal distribution is not rejected at a 5% significant level. 

  

Figure 4.24: Normal plots for the values of RMS steering wheel angle in trial 2 and trial 3. 

 

The calculated mean values and standard deviations of RMS steering wheel angle over the thirteen 

drivers following the properties of a normal distribution for trial 2 and trial 3 are presented in Table 4.7, 

along with the paired t-test and f-test results showing the statistical significance of the difference in the 

mean values and standard deviations of RMS steering wheel angle between the two trials. The small 𝑝 

value from the paired t-test suggests that the drivers had smaller steering wheel angle input with steering 

torque feedback at over 95% significance level. In addition, the small 𝑝 value from the f-test suggests 

that the standard deviation of the steering wheel angles with steering torque feedback is also smaller 

than that without steering torque feedback at over 95% significance level.  

Table 4.7: Mean and standard deviation (in brackets) of RMS steering wheel angle across all thirteen 

drivers for trial 2 and trial 3 

Criteria Trial 2 𝑝 (sw-test) Trial 3 𝑝 (sw-test) 𝑝 (f-test) 𝑝 (t-test) 

RMS steering 

wheel angle 𝜃𝑠𝑤  

0.457 rad 

(0.109 rad) 
0.1227 

0.410 rad 

(0.081 rad) 
0.1120 0.0172 0.0176 

 

4.4.4 Subjective Assessment Analysis 

The test drivers’ subjective ratings on four questions in the subjective questionnaire for trial 2 and trial 

3 are compared, and the results are shown in Figure 4.25.  
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• Q2: How easy is it to follow the randomly moving target path: 1 (difficult) to 10 (easy): 

All the drivers gave lower ratings in trial 2 compared with trial 3. This indicates that the drivers found 

it is more difficult to follow the randomly moving target path without steering torque feedback. This is 

consistent with the findings from the objective data in Section 4.4.2 and Section 4.4.3 that the drivers 

had greater tracking accuracy with a smaller amount of steering wheel angles with the aid of steering 

torque feedback information. 

• Q3: Physical effort level (how hard is it to turn the steering wheel): 1 (low) to 10 (high): 

All the drivers gave lower ratings in trial 2 compared with trial 3, suggesting that the drivers can easily 

tell the overall physical effort level difference between the two trials. The difference in steering torque 

level between the two trials has also been demonstrated by Figure 4.15 and Figure 4.16 in Section 4.4.1. 

• Q8: How connected does it feel: 1 (disconnected) to 10 (connected) & Q9: How helpful is the 

steering torque feedback to the task: 1 (useless) to 10 (helpful): 

All the drivers gave the lowest ratings in trial 2, which agrees with the expectation that without steering 

torque feedback, the drivers felt like their control inputs are only loosely connected to the motion of the 

vehicle. Ratings in Q9 also further demonstrate that steering torque feedback information is helpful. 

 

Figure 4.25: Subjective ratings on four questions for trial 2 and trial 3 for each driver. (from top to 

bottom: Q2 – how easy is it to follow the randomly moving target path; Q3 - physical effort level; Q8 - 

how connected does is feel; Q9 - how helpful is the steering torque feedback for the task) 
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Figure 4.25(continued): Subjective ratings on four questions for trial 2 and trial 3 for each driver. (from 

top to bottom: Q2 – how easy is it to follow the randomly moving target path; Q3 - physical effort level; 

Q8 - how connected does is feel; Q9 - how helpful is the steering torque feedback for the task) 

 



4.5 Analysis and Discussion of the Nonlinear trials                                                                                   115     

 

4.5 Analysis and Discussion of the Nonlinear trials  

In the nonlinear phase of the experiments, different levels of steering system friction torque are applied 

to the steering system. In this section, the results of the nonlinear trials 4 to 11 are analysed to investigate 

the influence of steering system friction on the drivers’ control performance. Specifically, the following 

objective metrics are compared between different trials: measured path-following errors, measured 

steering wheel angles, measured steering torques and measured steering reversal rates. Detailed 

statistical analysis is conducted to determine if there are significant differences in the objective metrics 

between the trials. Initially, similar to Section 4.4, a Shapiro-Wilk test is conducted to demonstrate that 

the values of each objective metric for each trial across all the test subjects follow a normal distribution 

with a normal probability plot. The mean and standard deviation of each metric over all the test subjects 

are then found accordingly. Statistical significance of the differences in the objective metrics is then 

verified using a one-way ANOVA test comparing all the different trials. To ensure the robustness of 

the comparison, a Bartlett’s test for equal variances between the trials is conducted.  

 

4.5.1 Path-following Performance Analysis 

To investigate the effect of steering system friction on path-following performance, the values of RMS 

steering wheel angle in the nonlinear trials are plotted for each driver in Figure 4.26. The values vary 

across test drivers and trials. Similar to the observation in Section 4.4.2, Driver 13 had the smallest 

values of RMS path-following error, while Driver 6 had the largest. The percentage changes in RMS 

path-following error with respect to trial 3 when different levels of steering system friction were 

implemented are shown in Figure 4.27, along with the median and mean values over the thirteen drivers 

for each nonlinear trial. Figure 4.27 shows that an increase in friction level in the steering system 

incurred a decrease in path-following accuracy in general. However, a small amount of friction may be 

beneficial as it provides damping to stabilise the steering-vehicle system. This can explain the negative 

percentage changes with respect to trial 3 for trial 4 and trial 8. 
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Figure 4.26: Values of RMS path-following error in trials 3 to 11 for each driver. 

 

Figure 4.27: Change in RMS path-following error with different levels of steering system friction 
compared to trial 3. Percentage differences are plotted for each driver and the median and mean over 

the thirteen drivers. 

 

Detailed statistical analysis is conducted to determine if there are statistically significant differences in 

RMS path-following error between different trials. In normal probability plots, the values of RMS path-

following error for different drivers in each trial are plotted against a theoretical normal distribution to 

check the normality of the distribution of the RMS values. Examples of the plots for trial 7 and trial 11 

are shown in Figure 4.28. It is shown that most scattered points are closely aligned with the red straight 

line, justifying the normal distribution assumption for these RMS values. The results for the RMS values 

of the other trials are similar to those shown in Figure 4.28. Additionally, a Shapiro-Wilk test (sw-test) 

with a significant level of 5% is conducted for each trial, and the results are shown in Table 4.8. The 

large 𝑝 values also indicate that the null hypothesis of a normal distribution is not rejected. 
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Figure 4.28: Normal plots for the values of RMS path-following error in trial 7 and trial 11. 

 

Table 4.8: Results of Shapiro-Wilk test on the values of RMS path-following error for trials 3 to 11 

Criteria Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 

RMS path-

following 

error 𝑒 
0.7479 0.9897 0.1230 0.0888 0.1736 0.7120 0.9587 0.8317 0.5907 

 

The mean and standard deviation of RMS path-following error over the thirteen drivers for each trial 

are shown in Table 4.9, calculated based on the properties of a normal distribution. Box plot of RMS 

path-following error of all thirteen drivers in trials 3 to 11 is shown in Figure 4.29, with the black 

asterisks indicating the mean values for each trial and red plus signs indicating the outliers. An outlier 

here is defined as a data point that is located outside 1.5 times the interquartile range above the upper 

quartile and below the lower quartile. Statistical significance of the difference in the mean RMS path-

following error between the trials was verified by using a one-way ANOVA test, which is commonly 

used to determine whether there are any statistically significant differences between the means of three 

or more groups of normally distributed data. Before the one-way ANOVA test, Bartlett’s test for equal 

variances between the nine trials was conducted to ensure the robustness of the results. The null 

hypothesis of Bartlett’s test is that the RMS values for all the trials come from normal distributions with 

the same variance, while the null hypothesis of the one-way ANOVA test is that the differences in the 

RMS values between all the trials come from a normal distribution with a mean of zero. Any outlier 

was removed from the dataset. The 𝑝 values for the one-way ANOVA test and Bartlett’s test are also 

summarised in Table 4.9. Although an increasing trend can be identified in the mean value of RMS 

path-following error for the increased steering system friction level, the large 𝑝 values in the one-way 

ANOVA test suggest that there is no statistically significant difference in the means between different 
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trails. This might be due to the large standard deviation for each trial, resulting from the significant 

driver to driver variation in steering control behaviour.  

Table 4.9: Mean and standard deviation (in brackets) of RMS path-following error across all thirteen 

drivers for trials 3 to 11 

Criteria Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 
𝐹 

(ANOVA) 

𝑝 

(ANOVA) 

𝑝 

(Bartlett) 

RMS path-

following 

error 𝑒  

0.373 m 

(0.0482m) 

0.367 m 

(0.0441 

m) 

0.378 m 

(0.0581 

m) 

0.379 m 

(0.0471 

m) 

0.379 m 

(0.0481 

m) 

0.13 0.9689 0.9042 

Criteria Trial 3 Trial 8 Trial 9 
Trial 

10 

Trial 

11 
𝐹 

(ANOVA) 

𝑝 

(ANOVA) 

𝑝 

(Bartlett) 

RMS path-

following 

error 𝑒  

0.373 m 

(0.0482 

m) 

0.365 m 

(0.0373 

m) 

0.371 m 

(0.0353 

m) 

0.377 m 

(0.0415 

m) 

0.389 m 

(0.0585 

m) 

0.42 0.7964 0.3952 

 

 

Figure 4.29: Box plot of RMS path-following error of all thirteen drivers in trials 3 to 11. The black 
asterisks indicate the mean of the RMS values for each trial, and the bottom and top edges of the box 

indicate the 25th and 75th percentiles, respectively. The dashed lines extend to the most extreme data 

points not considered outliers, and the red plus signs indicate the outliers.  

 

4.5.2 Steering Action Analysis 

To investigate the effect of steering system friction on steering action, values of RMS steering wheel 

angle and values of RMS steering torque for all thirteen drivers in trials 3 to 11 are plotted in Figure 

4.30 and Figure 4.31, respectively. These steering action signals vary across the test drivers and trials. 

Driver 9 to 13 had larger overall steering wheel angle and torque inputs than the other drivers, while 

Driver 6 and Driver 7 used the smallest steering wheel angle and torque inputs among the test drivers. 

The percentage changes in RMS steering wheel angle and RMS steering torque with respect to trial 3 
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when different levels of steering system friction were implemented are shown in Figure 4.32 and Figure 

4.33, respectively, along with the median and mean values over all thirteen drivers. Figure 4.32 shows 

a general increasing trend in RMS steering wheel angle with the increased level of friction presented in 

the steering system, which might indicate the difficulty of achieving accurate state estimation and 

internal mental model with steering torque feedback affected by friction. The influence of steering 

system friction on obtaining an accurate internal mental model and generating precise steering control 

actions and its reasons is further investigated in more details with the aid of the parametric driver model 

in Chapter 6. The drivers had smaller overall steering wheel angles in trials 4 to 7 compared to trials 8 

to 11, and steering wheel angle levels in trials 4 to 6 are much lower than in trial 3. This could be 

because the addition of steering system friction increased the resistance in the steering system when 

there is no assist torque from the driving assist system. This is also the reason for the increasing steering 

torque level in trials 4 to 7, as shown in Figure 3.33. However, the drivers applied smaller steering 

torques in trials 4 and 5 compared to trial 3. This could be explained by that the drivers factor steering 

torque into their cost function more significantly in trials 4 and 5 where the resistance is relatively larger. 

In addition, although some assist torque is applied in trials 8 to 11 to make the drivers’ overall physical 

torque effort level similar to that in trial 3 during preliminary experiments, there is still a slight increase 

trend for the steering torque in trials 8 to 11, which is consistent with the increased level of steering 

wheel angles. 

 

Figure 4.30: Values of RMS steering wheel angle in trials 3 to 11 for each driver. 
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Figure 4.31: Values of RMS steering torque in trials 3 to 11 for each driver. 

 

Figure 4.32: Change in RMS steering wheel angle with different levels of steering system friction 
compared to trial 3. Percentage differences are plotted for each driver and the median and mean over 

the thirteen drivers. 

 

Figure 4.33: Change in RMS steering torque with different levels of steering system friction compared 
to trial 3. Percentage differences are plotted for each driver and the median and mean over the thirteen 

drivers. 
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Examples of the normal probability plots showing the values of RMS steering wheel angle and RMS 

steering torque against a theoretical normal distribution for trial 7 and trial 11 are presented in Figure 

4.34 and Figure 4.35. Most of the scattered points are closely aligned with the red straight line, 

suggesting that the RMS values for each trial follow a normal distribution. The results for the RMS 

values of the other trials are similar to these two figures. In addition, the large 𝑝 values from the Shapiro-

Wilk test results, shown in Table 4.10, also indicate that the null hypothesis of a normal distribution is 

not rejected at a 5% significant level.  

  

Figure 4.34: Normal plots for the values of RMS steering wheel angle in trial 7 and trial 11. 

  

Figure 4.35: Normal plots for the values of RMS steering torque in trial 7 and trial 11. 
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Table 4.10: Results of Shapiro-Wilk test on the values of RMS steering wheel angle and RMS 

steering torque for trials 3 to 11 

Criteria Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 

RMS 
steering 

wheel 

angle 𝜃𝑠𝑤 

0.1120 0.1519 0.2971 0.5785 0.4905 0.7708 0.2011 0.5197 0.6550 

RMS 
steering 

torque 

𝑇𝑠𝑤 

0.1292 0.1558 0.4621 0.8623 0.9943 0.6376 0.4663 0.1378 0.2233 

 

The means and standard deviations of RMS steering wheel angle and RMS steering torque over all 

thirteen drivers for each trial calculated based on the properties of a normal distribution are shown in 

Table 4.11. Box plots of the RMS steering wheel angle and the RMS steering torque of all thirteen 

drivers in trials 3 to 11 are shown in Figure 4.36 and Figure 4.37, respectively. The results of statistical 

tests for investigating the significance of the difference between the trials are also summarised in Table 

4.11. Although an increasing trend is identified in the mean value of RMS steering wheel angle for the 

increased steering system friction level, the large 𝑝 values in the one-way ANOVA tests suggest that 

the statistical significance of the difference is small, which could be caused by the significant driver-to-

driver variation in steering control behaviour. However, the differences in steering torque between trials 

3 to 7 are statistically significant. 
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Table 4.11: Mean and standard deviation (in brackets) of RMS steering wheel angle and RMS 

steering torque across all thirteen drivers in trials 3 to 11 

Criteria Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 
𝐹 

(ANOVA) 

𝑝 

(ANOVA) 

𝑝 

(Bartlett) 

RMS 
steering 

wheel angle 

𝜃𝑠𝑤 

0.403 
rad 

(0.0812 

rad) 

0.359 
rad 

(0.0661 

rad) 

0.356 
rad 

(0.0876 

rad) 

0.358 
rad 

(0.0730 

rad) 

0.386 
rad 

(0.0714 

rad) 

0.98 0.4249 0.8853 

Criteria Trial 3 Trial 8 Trial 9 Trial 10 Trial 11 
𝐹 

(ANOVA) 

𝑝 

(ANOVA) 

𝑝 

(Bartlett) 

RMS 

steering 

wheel angle 

𝜃𝑠𝑤 

0.403 

rad 

(0.0812 

rad) 

0.383 

rad 

(0.0406 

rad) 

0.375 

rad 

(0.0499 

rad) 

0.389 

rad 

(0.0518 

rad) 

0.423 

rad 

(0.0582 

rad) 

1.41 0.2420 0.1677 

Criteria Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 
𝐹 

(ANOVA) 

𝑝 

(ANOVA) 

𝑝 

(Bartlett) 

RMS 

steering 

torque 𝑇𝑠𝑤   

4.54 

Nm 

(0.424 

Nm) 

4.17 

Nm 

(0.532 

Nm) 

4.13 

Nm 

(0.657 

Nm) 

4.58 

Nm 

(0.602 

Nm) 

5.84 

Nm 

(0.600 

Nm) 

11.97 <0.001 0.8447 

Criteria Trial 3 Trial 8 Trial 9 Trial 10 Trial 11 
𝐹 

(ANOVA) 

𝑝 

(ANOVA) 

𝑝 

(Bartlett) 

RMS 

steering 

torque 𝑇𝑠𝑤   

4.54 

Nm 

(0.424 

Nm) 

4.64 

Nm 

(0.378 

Nm) 

4.51 

Nm 

(0.351 

Nm) 

4.74 

Nm 

(0.320 

Nm) 

4.48 

Nm 

(0.289 

Nm) 

0.59 0.6730 0.8869 

 

 

Figure 4.36: Box plot of RMS steering wheel angle of all thirteen drivers in trials 3 to 11. The black 

asterisks indicate the mean of the RMS values for each trial, and the bottom and top edges of the box 
indicate the 25th and 75th percentiles, respectively. The dashed lines extend to the most extreme data 

points not considered outliers, and the red plus signs indicate the outliers.  
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Figure 4.37: Box plot of RMS steering torque of all thirteen drivers in trials 3 to 11. The black asterisks 

indicate the mean of the RMS values for each trial, and the bottom and top edges of the box indicate 

the 25th and 75th percentiles, respectively. The dashed lines extend to the most extreme data points not 

considered outliers, and the red plus signs indicate the outliers.  

 

4.5.3 Steering Reversal Rate Analysis 

Steering reversal rate, SRR, counts the number of times the steering wheel changes direction per minute 

though an angle larger than a gap value 0.0524 radians; high values of SRR have been correlated with 

the increased level of difficulty of the steering task [139]. However, SRR could indicate how fast the 

drivers reacted to the moving target line in the randomly moving path following task. Values of RMS 

steering reversal rate for all thirteen drivers in trials 3 to 11 are plotted in Figure 4.38. The algorithm 

used for calculating the steering reversal rate is given in [140]. The steering wheel angle and steering 

angular velocity signals are processed by a second-order Butterworth filter with a cut-off frequency 

2Hz to reduce high-frequency noise. The reversals in the steering wheel angle signal and the stationary 

points in the steering angular velocity signal in trial 11 for Driver 1 are shown in Figure 4.39 as an 

example. Driver 13 had the largest overall steering reversal rates compared to the others. This could be 

because Driver 13 employed a quite ‘aggressive’ control strategy to chase the moving target line by 

weighting less on the control inputs in the cost function. The values of steering reversal rate also vary 

with trials. The percentage changes in steering reversal rate with respect to trial 3 when different levels 

of steering system friction were implemented are shown in Figure 4.40, along with the median and 

mean values over the thirteen drivers for each nonlinear trial. Figure 4.40 shows that steering reversal 

rate is reduced when the friction level is increased in the steering system.  
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Figure 4.38: Values of steering reversal rate in trials 3 to 11 for each driver. 

 

Figure 4.39: Example of steering wheel reversal in trial 11 for Driver 1. 
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Figure 4.40: Change in steering reversal rate with different levels of steering system friction compared 
to trial 3. Percentage differences are plotted for each driver and the median and mean over the thirteen 

drivers. 

 

Again, examples of the normal probability plots showing the values of steering reversal rate against a 

theoretical normal distribution for trial 7 and trial 11 are presented in Figure 4.41. Although there seems 

to be a curvature of the line formed by the scattered points, the 𝑝 values from the Shapiro-Wilk test 

results, shown in Table 4.12, indicate that the normal distribution assumption is not invalid.  

  

Figure 4.41: Normal plots for the values of steering reversal rate in trial 7 and trial 11. 

 

Table 4.12: Results of Shapiro-Wilk test on the values of steering reversal rate for trials 3 to 11 

Criteria Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 

Steering 

reversal 

rate SRR 
0.9195 0.6989 0.3752 0.0814 0.0681 0.5799 0.1829 0.0784 0.0717 
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The mean and standard deviation of steering reversal rate over the thirteen drivers for each trial are 

shown in Table 4.13. Box plot of steering reversal rate of all thirteen drivers is presented in Figure 4.42. 

The results of statistical tests for investigating the significance of the difference between the trials are 

also summarised in Table 4.13. The small 𝑝 values in the one-way ANOVA tests suggest that the 

differences between the trials are statistically significant. 

Table 4.13: Mean and standard deviation of the values of steering reversal rate across all thirteen 

drivers in trials 3 to 11 

Criteria Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 
𝐹 

(ANOVA) 

𝑝 

(ANOVA) 

𝑝 

(Bartlett) 

Steering 

reversal rate 

SRR 

108 

(17.8) 

102 

(17.0) 

95.3 

(16.1) 

85.4 

(16.1) 

84.7 

(17.1) 
4.94 0.0016 0.9962 

Criteria Trial 3 Trial 8 Trial 9 
Trial 

10 

Trial 

11 
𝐹 

(ANOVA) 

𝑝 

(ANOVA) 

𝑝 

(Bartlett) 

Steering 

reversal rate 

SRR 

108 

(17.8) 

96.7 

(15.0) 

95.3 

(15.1) 

88.7 

(18.2) 

84.9 

(19.5) 
3.53 0.0118 0.8699 

 

 

Figure 4.42: Box plot of steering reversal of all thirteen drivers in trials 3 to 11. The black asterisks 
indicate the mean of the RMS values for each trial. The black asterisks indicate the mean of the RMS 

values for each trial, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 

respectively. The dashed lines extend to the most extreme data points not considered outliers, and the 

red plus signs indicate the outliers.  

 

4.5.4 Trial Performance Comparison 

The aim of the test subjects during each trial was to follow the randomly moving target path as closely 

as possible. Therefore, one way to quantify the test subjects’ performance in each trial is to find the 

value of RMS path-following error. However, for a given test subject, the accuracy with which they 
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follow the randomly moving target also depends on their control effort, which could be reflected by the 

value of RMS steering torque. A test subject who decided to use more control effort may achieve a 

lower path-following error than a test subject who chose to steer less, which has been evidenced by the 

comparison of several objective metrics in earlier sections. Therefore, the value of RMS path-following 

error and the value of RMS steering torque need to be considered as a combination to assess the driving 

performance. The large spread of the RMS values shown in Figure 4.29 and Figure 4.37 indicate that 

the consistency between different test subjects’ driving performance is poor. Therefore, the measured 

vehicle responses and driver steering actions for all thirteen drivers are concatenated to give a 

‘concatenated driver’, which is used to assess the drivers’ performance in different trials. The duration 

of the concatenated data is longer than that of the data for the individual drivers, allowing the RMS 

values to be less uncertain. An ‘averaged driver’ generated by averaging the time series data over the 

individual drivers is not used since the principle of superposition does not apply with nonlinear 

dynamics. The values of RMS path-following error and the values of RMS steering wheel angle in 

different trials for the ‘concatenated driver’ are shown as markers in Figure 4.43. Markers towards the 

lower left of the graph represent better overall performance where drivers achieved a lower path-

following error with smaller steering torque inputs. By this metric, the ‘concatenated driver’ performed 

worse in trials with relatively high steering system friction level, which are represented by the red 

markers.  

 

Figure 4.43: RMS path-following error against RMS steering torque for each of the trials for the 

‘concatenated driver’. 
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4.6 Analysis and Discussion of Subjective Ratings 

In trials 3 to 11 where different levels of friction torque are applied to the steering system, the test 

subjects were asked to provide subjective ratings for each trial based on a questionnaire. This allows 

the influence of steering system friction on the drivers’ subjective assessment of steering feel to be 

determined by directly comparing the subjective ratings between the trials. In this section, these 

subjective ratings are analysed in various ways. As recommended in [44], initial statistical analysis of 

the subjective ratings is conducted to understand how the test subjects used the judgement scales and 

set their ratings, and the ratings’ spread. The subjective ratings are then normalised based on results of 

the initial analysis to allow the data analysis accuracy to be improved and more detailed statistical 

analysis and tests to be performed. Finally, correlations between the subjective and objective data are 

identified. 

 

4.6.1 Overall Rating Distribution  

In order to understand how the test drivers set their ratings during the experiments, a histogram showing 

their subjective rating distribution is generated by plotting the number of appearances of each rating for 

all drivers, all subjective questions and all trials, as presented in Figure 4.44a. Some descriptive statistics 

values, including the mean, the standard deviation, the median and the skewness of the ratings, are 

presented at the top of the figure. In addition, the normal probability plot of the subjective ratings to 

test whether the ratings follow a normal distribution or not is shown in Figure 4.44b. Figure 4.44a and 

Figure 4.44b show that the ratings on all subjective questions in all trials from all drivers form a slightly 

positively skewed distribution, which is somehow expected as when there was presence of steering 

system friction, most of the changes in the objective metrics reflected by the subjective questions or the 

subjective metrics themselves correspond to higher ratings compared to the linear trial 3. 

  

Figure 4.44: Subjective ratings distribution for all drivers, all questions, and all trials (a: histogram of 

subjective ratings with descriptive statistics; b: normal probability plot for the subjective ratings) 
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4.6.2 Driver Tendency and Normalisation 

In order to understand the rating tendency for different test drivers, histograms showing the subjective 

rating distribution for each driver are generated by plotting the number of appearances of each rating 

for all subjective questions and all trials, as shown in Figure 4.45. Like Figure 4.44a, the mean, the 

standard deviation, and the median of the ratings are shown at the top of the figure. Figure 4.45 shows 

that the mean of each driver’s ratings falls in the range between 4.86 to 6.32. The median of the range 

is around 5.59, which is close to the mean value 5.52 shown in Figure 4.44a. However, it is noticed that 

the rating tendency varies across the drivers. The means for Driver 2 and Driver 13 are comparably 

larger; the standard deviations for Driver 11, Driver 12, and Driver 13 are comparably lower. In Figure 

4.46, subjective ratings are plotted for each driver for all subjective questions and trials, with the red 

dots representing the means for each question. The difference in the rating tendency between the test 

drivers is also identified in Figure 4.46. For example, the red dots for Driver 2 are usually seen at the 

top of the plot, while the blue circles for Driver 12 are distributed in a small range. Previous literature 

suggests that the discrepancy in the rating behaviours between drivers could be caused by the different 

driving experiences, the different professional vehicle dynamics experience, and the difficulty in setting 

the ratings in relation to the others [44]. No matter which is the root cause, the variation in rating 

tendency implies a risk for the data analysis: even when the different test drivers share similar 

impressions of the trials, it might not be reflected by the numerical ratings because of different use of 

the rating scale. To address this problem, a normalisation is conducted by normalising each test driver’s 

ratings on each question to the average mean and standard deviation of the rating distribution of all 

ratings and all test subjects for that question, as suggested by [44] and shown in (4.7). The normalisation 

is conducted separately for each question, considering that the drivers might have different rating 

tendencies for different questions. Firstly, the ratings on each question for each test driver have their 

mean value subtracted and are divided by their standard error, resulting in a date set of standard normal 

distribution with a mean of zero and a variance of one. Then, the standard normal distribution is 

multiplied by the average standard deviation of all drivers’ ratings on that question and adds to the 

average mean of all drivers’ ratings on that question. In addition, the normalisation is conducted 

separately for trials 3 to 7 and for trials 3 and 8 to 11 in this study. 

𝑅̂𝑖,𝑗,𝑘 =
(𝑅𝑖,𝑗,𝑘 − 𝑅̅𝑖,𝑘)

𝜎𝑖,𝑘
𝜎𝑖 + 𝑅̅𝑖                                                      (4.7) 

where 𝑅𝑖,𝑗,𝑘 and 𝑅̂𝑖,𝑗,𝑘 are the original rating and the normalised rating of driver 𝑘 on question 𝑖 for trial 

𝑗, respectively; 𝑅̅𝑖,𝑘 and 𝜎𝑖,𝑘 are the mean value and the standard deviation of the ratings of driver 𝑘 on 

question 𝑖 over all the trials, respectively; 𝑅̅𝑖 and 𝜎𝑖 are the mean value and the standard deviation of all 

drivers’ ratings on question 𝑖, respectively. 
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Figure 4.45: Subjective rating distribution on all questions in all trials for each driver with descriptive 

statistics. 
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Figure 4.46: Subjective ratings on all questions in all trials for each driver, with blue circles 

representing the individual ratings and the red dots representing the values of mean of all trials.  
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4.6.3 Rating Distribution for Each Question 

In order to conduct statistical analysis of the normalised subjective ratings, the Shapiro-Wilk test with 

a 5% significant level was conducted to determine if the normalised subjective ratings for each question 

and trial across all the drivers follow a normal distribution, with the resulting 𝑝 values shown in Table 

14 and Table 15. It is shown that there is a small number of 𝑝 values which are smaller than 0.05. To 

visualise the non-normal characteristics, examples of the normal probability plots for the normalised 

subjective ratings for Question 1 Trial 11 and Question 3 Trial 7 are shown in Figure 4.47. It is also 

shown that there are several scattered points away from the red reference lines at the extremes. This 

deviation from the normal distribution is due to the finite range of the rating scale. However, it is 

encouraging that most of the 𝑝 values are larger than 0.05, suggesting that the normal distribution 

assumption should not be rejected. To ensure the robustness of further statistical analysis results, the 

normalised subjective ratings are refined further by removing all the outliers. Again, an outlier is defined 

as a data point that is located outside 1.5 times the interquartile range above the upper quartile and 

below the lower quartile. The normality of the refined normalised subjective ratings was checked once 

more with the Shapiro-Wilk test, and all the resulting 𝑝 values became larger than 0.05 after the data 

refinement.  

Table 4.14: Results of Shapiro-Wilk test on the normalised subjective ratings in trials 3 to 7 

Question No. Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 

1 0.3340 0.5040 0.0077 0.1651 0.1891 

2 0.3261 0.6816 0.6019 0.9104 <0.001 

3 0.0017 0.9181 0.2795 0.0065 <0.001 

4 0.1481 0.2139 0.1327 0.1244 0.0216 

5 0.0080 0.9194 0.3351 0.0009 0.0189 

6 0.2398 0.5039 0.7316 0.2907 0.1595 

7 0.0796 0.0846 0.1073 0.2114 0.1439 

8 0.1946 0.6190 0.5199 0.4113 0.1297 

9 0.1379 0.3086 0.1314 0.9820 0.0902 
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Table 4.15: Results of Shapiro-Wilk test on the normalised subjective ratings in trials 3 and 8 to 11 

Question No. Trial 3 Trial 8 Trial 9 Trial 10 Trial 11 

1 0.0309 0.6057 0.0444 0.3624 0.0104 

2 0.4339 0.3419 0.1180 0.4760 0.0635 

3 0.2139 0.2641 0.7920 0.0656 0.3270 

4 0.1906 0.1476 0.2981 0.0071 0.0991 

5 0.3358 0.5909 0.4979 0.1621 0.2061 

6 0.4051 0.1615 0.2637 0.6171 0.1090 

7 0.0549 0.5105 0.1684 0.3807 0.1116 

8 0.2864 0.4826 0.3457 0.2682 0.0630 

9 0.3457 0.7448 0.2121 0.1635 0.0839 

  

 

Figure 4.47: Normal plot for the subjective ratings of all drivers (a: Question 1 Trial 11; b: Question 3 

Trial 7) 

 

Based on the properties of a normal distribution, the mean of the normalised subjective ratings with the 

95% confidence interval of the mean calculated based on the assumption of t-distribution for each trial 

and subjective question is plotted, as shown in Figure 4.48. Similar to the analysis of the influence of 

steering system friction on the objective metrics, the statistical significance of the difference in the mean 

normalised subjective rating between the trials was verified by using a one-way ANOVA test, 

complemented by Bartlett’s test for equal variances to ensure the robustness of the results. The 𝑝 values 

for these statistical tests conducted for trials 3 to 7 and for trials 3, 8 to 11 are summarised in Table 4.16 

and Table 4.17, respectively. 
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Figure 4.48: Normalised subjective ratings for all drivers in each trial for each question, with mean 

normalised subjective rating over all the drivers in each trial and its 95% confidence interval(CI). 
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Figure 4.48(continued): Normalised subjective ratings for all drivers in each trial for each question, 

with mean normalised subjective rating over all the drivers in each trial and its 95% confidence 

interval(CI). 
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Table 4.16: Mean and standard deviation of the subjective ratings across all thirteen drivers in trials 3 

to 7 

Question 

No. 
Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 

𝐹 

(ANOVA) 

𝑝 

(ANOVA) 

𝑝 

(Bartlett) 

1 5.05 
(0.446) 

5.92 
(0.835) 

6.70 
(0.621) 

7.54 
(0.538) 

9.17 
(0.326) 

97.16 <0.001 0.0265 

2 5.12 

(1.29) 

5.77 

(0.460) 

5.23 

(0.829) 

3.92 

(0.953) 

2.66 

(1.12) 
21.43 <0.001 0.0193 

3 5.08 

(0.828) 

5.66 

(0.792) 

6.35 

(0.502) 

7.06 

(0.732) 

8.39 

(0.813) 
38.78 <0.001 0.4964 

4 4.85 

(0.899) 

6.12 

(0.581) 

6.43 

(0.879) 

5.90 

(1.27) 

7.40 

(1.50) 
9.55 <0.001 0.0210 

5 4.87 

(0.919) 

5.65 

(0.911) 

6.16 

(1.01) 

7.08 

(0.489) 

7.71 

(1.19) 
18.93 <0.001 0.0776 

6 5.06 

(1.46) 

4.53 

(1.27) 

4.99 

(0.738) 

4.81 

(1.30) 

4.05 

(1.58) 
1.3 0.2797 0.1551 

7 4.88 

(1.57) 

5.80 

(1.58) 

6.10 

(1.26) 

5.97 

(1.09) 

6.16 

(1.63) 
3.18 0.0195 0.6181 

8 4.90 

(1.85) 

5.45 

(1.11) 

5.15 

(1.09) 

4.37 

(1.48) 

4.21 

(1.90) 
1.52 0.2073 0.1709 

9 4.93 

(1.54) 

5.49 

(1.03) 

5.46 

(0.949) 

4.32 

(1.18) 

3.53 

(1.67) 
5.28 0.001 0.2328 

 

Table 4.17: Mean and standard deviation of the subjective ratings across all thirteen drivers in trials 

3, 8 to 11 

Question 

No. 
Trial 3 Trial 8 Trial 9 

Trial 

10 

Trial 

11 

𝐹 

(ANOVA) 

𝑝 

(ANOVA) 

𝑝 

(Bartlett) 

1 4.77 

(1.55) 

5.06 

(1.05) 

5.31 

(1.35) 

6.04 

(1.13) 

7.21 

(1.45) 
7.15 <0.001 0.6646 

2 5.08 

(1.63) 

5.99 

(1.11) 

5.98 

(1.09) 

4.93 

(1.47) 

3.87 

(1.20) 
5.81 <0.001 0.5546 

3 4.94 

(1.31) 

4.87 

(0.878) 

5.11 

(1.03) 

5.38 

(0.741) 

5.81 

(1.33) 
1.63 0.1777 0.2277 

4 4.95 

(1.36) 

5.71 

(1.47) 

5.18 

(0.945) 

6.56 

(0.704) 

6.37 

(1.53) 
4.2 0.0046 0.0649 

5 5.06 

(1.13) 

5.19 

(1.08) 

5.06 

(1.50) 

6.24 

(0.780) 

5.92 

(1.61) 
2.51 0.0443 0.1236 

6 5.01 

(0.788) 

5.51 

(0.609) 

5.01 

(1.30) 

4.91 

(0.831) 

4.18 

(1.28) 
2.96 0.0267 0.0467 

7 4.85 

(1.60) 

5.84 

(1.07) 

5.61 

(1.20) 

5.99 

(1.03) 

6.48 

(1.55) 
2.71 0.0382 0.4236 

8 5.23 

(1.89) 

5.18 

(1.24) 

5.43 

(1.09) 

5.04 

(1.58) 

3.97 

(1.40) 
2.01 0.1041 0.3667 

9 5.10 
(1.40) 

5.51 
(1.41) 

5.93 
(0.797) 

4.79 
(1.25) 

4.13 
(1.69) 

3.41 0.0140 0.1818 

 

As mentioned in Section 4.3, there are two types of subjective questions listed in the questionnaire. The 

first type is judging the magnitude of the criteria: friction level, effort level, stability of the steering-

vehicle system, yaw delay, yaw gain, and yaw linearity. The results of the statistical tests shown in 

Table 4.16 and Table 4.17 agree with most of the expected effects of steering system friction on the 



4.6 Analysis and Discussion of Subjective Ratings                                                                                   138     

 

corresponding objective metrics, indicating the drivers were able to detect the changes caused by 

steering system friction in these objective metrics. Detailed analysis of statistically significant results is 

presented below: 

• Q1: Friction level: 1 (low) to 10 (high):  

An increasing trend in the normalised subjective ratings is determined with the increased level of 

steering system friction. The normalised ratings in trials 8 to 11 are lower than those in trials 4 to 7, 

which is because of the reduction in friction level due to the existence of assist torque from the driving 

assisting system in trials 8 to 11. It is interesting to notice that the test drivers achieved greater 

consistency in the subjective evaluation in trials 4 to 7 compared to trials 8 to 11. This might be because 

it is more difficult for some drivers to assess the friction characteristics when the overall physical torque 

level is held similarly. 

• Q3: Physical effort level (how hard is it to turn the steering wheel): 1 (low) to 10 (high): 

The steering wheel is perceived as heavier to operate with an increase in steering system friction in 

trials 3 to 7, as the steering became more resistant with the implementation of steering system friction. 

A slight increase in the averaged rating is also observed in trials 8 to 11, although no significant 

difference in the perceived physical torque effort level is identified, as expected. This is because of the 

increased steering wheel angle magnitude caused by the increased steering system friction, which has 

been explained in Section 4.5.2. However, this could also be because some drivers related the change 

in the nonlinearity to the physical torque effort level, which could also explain the lower consistency in 

the ratings in trials 8 to 11 compared to trials 4 to 7. 

• Q4: Stability of the steering-vehicle system: 1 (unstable) to 10 (stable): 

The steering-vehicle system is perceived as more stable with an increase in steering system friction 

level. This is because of the damping effects of steering system friction.  

• Q5: Yaw delay (between vehicle yaw velocity and steering wheel angle): 1 (low) to 10 (high) 

& Q7: Yaw linearity: 1 (linear) to 10 (nonlinear): 

Increasing trends are observed for yaw delay and yaw linearity perceived by the drivers for increased 

steering system friction level. Friction is a direct source of nonlinearity in the steering-vehicle system 

and could incur delayed vehicle response due to its phase delay effect.  

• Q6: Yaw gain (vehicle yaw velocity to steering wheel angle): 1 (low) to 10 (high): 

In general, the yaw gain perceived by the drivers is similar in different trials, although the averaged 

normalised subjective rating in trial 11 is different from the others. This agrees with what is expected 

since the steering gear ratio is not affected by the steering system friction. 
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The second type of question is evaluating the properties of the steering-vehicle system based on purely 

subjective experience. Statistically significant differences in the normalised subjective ratings are 

observed between trials 3 to 7 and between trials 3 and 8 to 11 for the two questions: how easy is it to 

follow the randomly moving target path (Q2), and how helpful is the steering torque feedback for the 

task (Q9). The overall evaluation indicates that on average a steering-vehicle system with a small 

amount of friction around 0.5Nm to 1Nm is preferred. This could be because the small amount of 

steering system friction provides some damping to stabilise the steering-vehicle system. Segel [28] 

showed that low levels of damping in the steering response created unfavourable ratings. In addition, a 

similar finding is obtained by Skarzynska [141], who also investigated the influence of steering column 

friction on steering feel, that a steering system with a small amount of friction was preferred by the test 

drivers, although the preferred level was found to be around 0.15Nm. The drivers’ satisfaction about 

the steering properties and the steering torque feedback drops when the friction level is increased further. 

A similar trend is identified for the averaged normalised subjective ratings for the question: how 

connected does it feel (Q8), which is evaluating the extent to which the rotation of the wheel is felt 

connected to the response of the vehicle. However, this effect is not statistically significant. 

 

4.6.4 Correlations between Subjective and Objective Metrics 

The normalised subjective ratings on most estimation questions are compared with the values of 

corresponding objective metrics measured in the experiments through a linear regression method, 

similar to that used in [10], to impartially evaluate the test drivers’ subjective responses, as shown in 

Figure 4.49. The shaded area in each plot is the 95% confidence interval for the mean values of the 

normalised subjective ratings based on the assumption of t-distribution. There are three linear regression 

lines for each group of trials in each plot: the solid line represents the linear regression of mean values 

of the ratings, while the dashed lines represent the borders of the 95% confidence area. The correlation 

coefficient 𝑟 for each of the linear regression lines is also shown in Figure 4.49. The objective metrics 

consisted of the following items which need specific clarification about how they are calculated: 

• Friction torque magnitude: equivalent magnitude of the steering system friction torque acting 

on the steering wheel. A simulated torque demand signal is generated using the measured 

steering wheel angle processing a steering-vehicle model, where the friction element is placed 

directly at the steering wheel instead of the steering column. The value of the friction torque 

magnitude is estimated for each driver and trial by minimising the difference between the 

simulated torque demand signal and the actual torque demand signal recorded during the 

experiment. The known applied friction torque at the column is not directly used since the assist 

torque effectively reduces the magnitude of the applied friction torque. 
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• Steering resistance level: the ratio of RMS steering torque to RMS steering wheel angle 

(approximating the equivalent stiffness of the system). 

• Yaw delay: time shift between steering wheel angle and vehicle yaw velocity. Initially, the 

cross-correlation between each pair of signals at all possible lags is found and then normalised. 

The estimated time delay is given by the negative of the lag for which the normalised cross-

correlation has the largest absolute value. This algorithm is achieved by Matlab’s ‘finddelay’ 

function. 

• Yaw gain: the ratio of RMS vehicle yaw velocity to RMS steering wheel angle. 

• Nonlinear torque ratio: the ratio of friction torque magnitude to RMS torque demand signal. 

Figure 4.49 shows clear correlations between the normalised subjective ratings provided by the test 

drivers and the corresponding objective metrics measured in the experiments, with five values of the 

absolute value of the correlation coefficient |𝑟| larger than 0.9, three values between 0.8 to 0.9, and one 

value between 0.7 to 0.8. Small values of |𝑟| are only seen for the correlations in yaw gain. However, 

the small range of the rating distribution agrees with the constant yaw gain across all trials. Moreover, 

the slope, the vertical position, and the spread of the linear regression lines fitting the data in trials 3 to 

7 are different from those in trials 3 and 8 to 11. This could be because trials 4 to 7 and trials 8 to 11 

were presented to some of the drivers in two different groups and the drivers used the rating scale in 

different ways in the two groups, which directly affects the distribution of the ratings when 

normalisation is performed separately for the two groups of trials. 

 

Figure 4.49: Correlations between normalised subjective ratings and objective metrics with their 
correlation coefficients. The shaded area represents the 95% confidence interval(CI) for the mean values 

of the normalised subjective ratings. The solid line represents the linear regression(LR) of mean values 

of the ratings and the dashed lines represent the borders of the 95% confidence area. 
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Figure 4.49(continued): Correlations between normalised subjective ratings and objective metrics with 
their correlation coefficients. The shaded area represents the 95% confidence interval(CI) for the mean 

values of the normalised subjective ratings. The solid line represents the linear regression(LR) of mean 

values of the ratings and the dashed lines represent the borders of the 95% confidence area. 

 

The normalised ratings on the three evaluation subjective questions are also compared with some 

objective metrics measured in the experiments through linear regression, with the absolute values of the 

correlation coefficient for trials 3 to 7 and for trials 3 and 8 to 11 summarised in Table 4.18 and Table 

4.19, respectively. The results show that the test drivers’ subjective evaluation of steering feel correlates 

well with friction torque magnitude, nonlinear torque ratio, and steering resistance level for both groups 

of trials. Although there are some correlations between the ratings and other measured objective metrics, 

their coefficients are not as high as those for the three objective metrics mentioned above. Figure 4.50 

showing the correlations between friction torque magnitude and rating for Q2 and for Q9 indicate that 

the subjective evaluation of steering feel is generally perceived as worse with an increase in friction 

torque magnitude. However, there is an optimal range of the friction torque magnitude, and linear 
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regression lines cannot capture this characteristic. As explained earlier, this could be because of the 

beneficial damping effect of friction. 

Table 4.18: Absolute values of the correlation coefficient of evaluation subjective questions vs. 

objective metrics for trials 3 to 7 

Objective metrics 
Q2 (how easy is it to 

follow the path) 

Q8 (how connected 

does it feel) 

Q9 (how helpful is 

the steering torque 

feedback) 

Friction torque magnitude (Nm) 0.9471 0.8067 0.9224 

Nonlinear torque ratio 0.9249 0.8043 0.8477 

RMS steering torque (Nm) 0.8965 0.8041 0.9194 

Steering resistance level (Nm/rad) 0.9582 0.8205 0.9191 

RMS steering wheel angle (rad) 0.3827 0.4277 0.4909 

RMS path-following error (m) 0.7286 0.6828 0.6258 

Steering reversal rate 0.8151 0.7518 0.7148 

Yaw delay (s) 0.9732 0.7989 0.8587 

 

Table 4.19: Absolute values of the correlation coefficient of evaluation subjective questions vs. 

objective metrics for trials 3, 8 to 11 

Objective metrics 
Q2 (how easy is it to 

follow the path) 

Q8 (how connected 

does it feel) 

Q9 (how helpful is 

the steering torque 

feedback) 

Friction torque magnitude (Nm) 0.7390 0.8321 0.7275 

Nonlinear torque ratio 0.7385 0.8361 0.7240 

RMS steering torque (Nm) 0.1155 0.2414 0.1249 

Steering resistance level (Nm/rad) 0.8607 0.9759 0.8188 

RMS steering wheel angle (rad) 0.9455 0.8291 0.8973 

RMS path-following error (m) 0.8463 0.9730 0.8117 

Steering reversal rate 0.5029 0.6675 0.5294 

Yaw delay (s) 0.8385 0.7667 0.6703 
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Figure 4.50: Correlations between friction torque magnitude and rating for Q2 and Q9. 

 

Nash [126] suggests that assessing the steering performance of a human driver should consider both the 

path-following error and the steering effort. This trade-off is reflected by the controller cost function 

presented in Chapter 3. Therefore, a similar concept is adopted here, that is, the test drivers’ subjective 

evaluation is correlated with RMS steering torque and RMS path-following error by using multiple 

linear regression. The coefficient of determination (R-squared) values of the regressions for trials 3 to 

7 and for trials 3 and 8 to 11 are summarised in Table 4.20 and Table 4.21, respectively. Figure 4.51 

shows the multiple linear regression results for Q2 as an example. It is shown that the test drivers found 

it easier to follow the path when a high tracking accuracy can be achieved using a small amount of 

steering effort. 

Table 4.20: Coefficient of determination (R-squared) values of the multiple linear regressions of 

evaluation subjective questions vs. objective metrics for trials 3 to 7 

Objective metrics 
Q2 (how easy is it to 

follow the path) 

Q8 (how connected 

does it feel) 

Q9 (how helpful is 

the steering torque 

feedback) 

1. RMS steering torque (Nm) 

2. RMS path-following error (m) 
0.9865 0.8173 0.9643 

 

Table 4.21: Coefficient of determination (R-squared) values of the multiple linear regressions of 

evaluation subjective questions vs. objective metrics for trials 3, 8 to 11 

Objective metrics 
Q2 (how easy is it to 

follow the path) 

Q8 (how connected 

does it feel) 

Q9 (how helpful is 

the steering torque 

feedback) 

1. RMS steering torque (Nm) 

2. RMS path-following error (m) 
0.9611 0.9725 0.8990 
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Figure 4.51: Multiple linear regression of RMS path-following error and RMS steering torque vs. how 
easy is it to follow the path. The blue dots are the data points, and the coloured curves represent the 

fitted multiple linear regression models. 

 

4.7 Conclusions 

A series of experiments have been performed on a fixed-base driving simulator, and the vehicle and 

driver responses and the driver’s subjective ratings on steering feel questions were collected and 

analysed using rigorous statistical methods.  

The addition of steering torque feedback was found to help the drivers follow the target path more 

accurately by applying smaller steering wheel angle inputs with greater consistency in steering control 

behaviour across drivers. This is consistent with the findings obtained by Wang [135] that steering 

torque feedback information is helpful to drivers as it gives the drivers additional information to 

estimate the states and learn the dynamics of the steering-vehicle system more accurately. 

In general, a general increasing trend was found for RMS path-following error, RMS steering wheel 

angle and RMS steering torque with the increase in steering system friction level by comparing the 

mean values across all thirteen drivers. However, the identified trends are not statistically significant, 

resulting from the large driver to driver variation in steering control behaviour. The results from a 

‘concatenated driver’ indicated the overall steering control performance deteriorated with the increase 

in steering system friction. In addition, the steering reversal rate was found to reduce with the increase 

in steering system friction in the randomly moving target path-following task.  

The drivers’ ratings for the subjective questions judging the magnitude of several objective metrics 

correlated well with their actual magnitudes, with five of the absolute values of the linear regression 

coefficient larger than 0.9 (for friction level, physical effort level, and yaw delay for trials 3 to 7), three 

values between 0.8 to 0.9 (for yaw delay for trials 3 and 8 to 11, yaw gain for trials 3 and 8 to 11, and 

yaw linearity for trials 3 and 8 to 11), and one value between 0.7 to 0.8 (for yaw linearity for trials 3 to 
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7). The large correlation coefficient values show the ability of the drivers to detect the changes caused 

by steering system friction in the objective metrics. In addition, the drivers’ subjective evaluation of 

steering feel correlated well with friction torque magnitude, nonlinear torque ratio, and steering 

resistance level, with all the absolute values of the linear regression coefficient above 0.7. The 

subjective evaluation of steering feel is generally perceived as worse with an increase in steering system 

friction level. However, a steering-vehicle system with a small amount of friction around 0.5Nm to 

1Nm was found to be preferred, as it may provide beneficial damping effects to stabilise the steering-

vehicle system. Furthermore, the drivers also found it easier to follow the target path when a high 

tracking accuracy can be achieved with a small amount of steering effort. 
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Chapter 5 

Linear Driver Model Identification 

 

5.1 Introduction 

A mathematical model of the driver-steering-vehicle system incorporating the vehicle and steering 

dynamics, the neuromuscular system, the sensory delays, and the human brain functions was proposed 

in Chapter 3, in order to provide a theoretical understanding of the human driver’s subjective responses 

to steering torque feedback, especially in the on-centre region. The driver model performance depends 

on a large number of parameters. Although some of the parameter values are determined by the driving 

conditions or related to physical properties of the human driver, which can be obtained from relevant 

literature, there are several driver model parameters that are neither fixed in advance nor programmed 

into the driving simulator and therefore should be identified by using experimental results. In this 

chapter, an identification procedure used to find the key unknown parameter values of the linear driver 

model is presented, enabling the driver model to represent real driving behaviours, by searching for the 

best fit to the results of the three linear trials in the driving simulator experiments presented in Chapter 

4. The linear model identification is based on the hypothesis that the human driver can learn an accurate 

internal mental model of the plant when the vehicle and steering dynamics are linear. The validity of 

the identified linear driver model in predicting realistic driving behaviours and the validity of the 

identification procedure in finding the model parameter values are also examined. 

The details of the initial identification procedure for the linear model are presented in Section 5.2. The 

identification results, including model fit, identified parameter values, process noise properties, along 

with the driver model and identification procedure validations, are discussed in Section 5.3. The two 

additional experimental trials carried out to understand the properties of measurement noise and the 

corresponding results are presented in Section 5.4, and a single set of model parameter values is found 

to describe the human driver’s steering control behaviour in a wide range of conditions in Section 5.5. 
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The one single set of model parameter values can serve as the basis for the identification of the driver 

model controlling a vehicle with nonlinear steering dynamics in Chapter 6. The overall results are 

discussed further in Section 5.6, and the main conclusions are summarised in Section 5.7. 

 

5.2 Linear Driver Model Identification Procedure 

An identification procedure developed based on the one used in [116] is applied for the linear driver 

model controlling a linear steering-vehicle system. The identification procedure consists of two stages, 

a Box–Jenkins nonparametric identification to find general polynomial transfer functions giving the 

best fit to the experimental results, and parametric identification to find the unknown parameter values 

of the linear driver model. There were thirteen test subjects involved in the driving simulator 

experiments in total, as mentioned in Chapter 4 and the identification procedure runs separately for each 

of the test drivers. However, the experimental data from each individual driver may comprise a 

significant amount of noise, which adds uncertainties to the identification results. Therefore, in addition 

to the thirteen drivers, a collection of ‘averaged data’, which is generated by averaging the time series 

data of the measured steering actions over all the individual drivers, is also used for identification. A 

set of more reliable parameter values is able to be found using the ‘averaged data’ based on the 

assumption that the drivers are using similar control strategies because averaging should reduce the 

contribution of the random noise of the individual steering actions. As described in Chapter 4, the 

driving simulator experimental data is collected for 5 minutes for each trial. The measured data is 

divided into three parts. The first minute of each trial is excluded from the data used for identification, 

as the drivers may have taken some time to learn the steering-vehicle system dynamics and the driving 

conditions before settling on a stable control strategy. The next three minutes of each trial are the data 

used for identification. The final minute of each trial is also excluded, so that it can be used to validate 

the identified driver model and to check if over-fitting exists. The last two separated parts of data are 

called the identification data and the validation data, respectively.  

 

5.2.1 Box-Jenkins Identification  

At the first identification stage, general transfer functions are fitted to the experimental data to estimate 

the portion of the measured steering actions caused by linear control behaviour. The identification 

results serve as a reference for the parametric driver model, as they effectively give an approximate 

upper prediction accuracy achievable by a linear mathematical model. The Box–Jenkins method 

estimates polynomial transfer functions between each of the model inputs: lateral force disturbance 𝐹𝑦, 

yaw moment disturbance 𝑀𝑧 , steering column torque disturbance 𝑇𝑑  and randomly moving target 

lateral position 𝑟, and the model output steering wheel angle 𝜃𝑠𝑤 [142] [143].  This method also finds 
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a model 𝐻𝑛(𝑠) of the driver noise 𝑤𝑠𝑤 referred to the steering wheel angle signal. The structure of Box-

Jenkins model is: 

𝜃𝑠𝑤(𝑡) =
𝐵𝐹𝑦(𝑞)

𝐹𝐹𝑦(𝑞)
𝐹𝑦(𝑡 − 𝑛1) +

𝐵𝑀𝑧(𝑞)

𝐹𝑀𝑧(𝑞)
𝑀𝑧(𝑡 − 𝑛1) +

𝐵𝑇𝑑(𝑞)

𝐹𝑇𝑑(𝑞)
𝑇𝑑(𝑡 − 𝑛2) +

𝐵𝑟(𝑞)

𝐹𝑟(𝑞)
𝑟(𝑡 − 𝑛3)

+
𝐶𝑠𝑤(𝑞)

𝐷𝑠𝑤(𝑞)
𝑤𝑠𝑤(𝑡)                                                                                                                  (5.1) 

where variables 𝐵𝐹𝑦, 𝐵𝑀𝑧 , 𝐵𝑇𝑑 , 𝐵𝑟 ,  𝐹𝐹𝑦, 𝐹𝑀𝑧 , 𝐹𝑇𝑑 ,  𝐹𝑟 , 𝐶𝑠𝑤  and 𝐷𝑠𝑤 are polynomials expressed in the 

time-shift operator 𝑞−1, 𝑛1, 𝑛2 and 𝑛3 are the input delays that characterise the transport delay for their 

corresponding input channel. 

5th order polynomials are chosen for the Box-Jenkins identification in this study, as suggested by Nash 

and Cole [116], to balance variances and bias by considering the investigation results from Odhams and 

Cole [92]. The Box–Jenkins method also allows time delays between each input channel and the output, 

as represented by 𝑛1, 𝑛2 and 𝑛3 in (5.1), to be found. To simplify the equation formulation, the time 

delays associated with the two model inputs lateral force disturbance 𝐹𝑦 and yaw moment disturbance 

𝑀𝑧  are assumed to be the same, as these two inputs are both applied to the vehicle dynamics. However, 

the Box–Jenkins method does not estimate the values of these delays directly from the data, so they 

have to be set as known parameters. Therefore, the Box–Jenkins identification is carried out for a range 

of different delays, and the time delay values that give the optimal identification results are recorded. 

To achieve this, a genetic algorithm, starting with a population of 50 random combinations of the values 

of these time delays, is used to iterate towards the values which give the best fit to the experimental 

results. The mean-squared difference between the modelled steering wheel angle from the Box–Jenkins 

identification and the measured steering wheel angle is used to quantify the goodness of the fit of the 

identified model to the experimental results. 

 

5.2.2 Parametric Identification 

The linear parametric driver model performance depends on twenty-seven parameters in total, as 

described in Chapter 3. The amplitudes of the applied Gaussian white noise and their corresponding 

filters are known because they are programmed into the driving simulator. The other values relate to 

the physical properties of the human driver and need to be identified from the data recorded during the 

experiments. However, due to the large number of parameters involved in the driver model, the 

parameters which are not sensitive to the driving conditions are fixed following the results from the 

relevant literature, with details given in Section 3.2.10 in Chapter 3. As a result, there are eleven variable 

parameters that are neither fixed in advance nor programmed into the driving simulator, and these 

parameters are classified into three groups according to the functions they relate to: 
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• Neuromuscular parameters: damping resisting stretching of the muscle fibre 𝑐𝑎, arm inertia 

𝐼𝑎𝑟𝑚 , reflex gain 𝑘𝑟  

• Cognitive parameters: process noise standard deviation 𝑊 , measurement noise standard 

deviations 𝑉𝑒, 𝑉𝜓, 𝑉𝜃𝑎 , path-following error cost 𝑞𝑒, cognitive controller time shift 𝑇𝑡  

• Sensory delays: visual delay 𝜏𝑣𝑖, muscle angle sensory delay 𝜏𝜃𝑎  

Upper and lower bounds are chosen for these parameters based on realistic physical limitations, as 

summarised in Table 5.1. The other fixed driver model parameters are summarised in Table 5.2. 

Table 5.1: Upper and lower bounds for the identified parameter values 

Parameter 𝑐𝑎 𝐼𝑎𝑟𝑚  𝑘𝑟  𝑊 𝑉𝑒 𝑉𝜓 𝑉𝜃𝑎  𝜏𝑣𝑖 𝜏𝜃𝑎  𝑇𝑡  𝑞𝑒 

Units 
Nms

/rad 
kgm2 

Nm

/rad 
Nm m rad rad s s s  

Upper 

bound 
6.0 0.3 80 10 1.5 0.2 10 0.5 0.5 1 1000 

Lower 

bound 
0.2 10−3 0 1 10−3 10−3 0.01 0.1 0.1 −1 10−3 

Table 5.2: Fixed driver model parameters 

 Description Parameter Value Unit 

Muscle model  

Intrinsic muscle stiffness 𝑘𝑝 0 Nm/rad 

Intrinsic muscle damping 𝑐𝑝 0 Nms/rad 

Tendon stiffness 𝑘𝑎 30 Nm/rad 

Muscle 

activation  

Motor neurons lag time constant  𝜏1 30 ms 

Muscle activation and deactivation lag 

time constant  
𝜏2 20 ms 

Stretch reflex Reflex delay 𝜏𝑟  40 ms 

LQR controller 
Cost function weight on control input 

𝛼 
𝑞𝛼 1  

Disturbance 

filters 

Cut-off frequency for the low-pass 

filter 𝐻𝑓𝑦  
𝑓𝑐𝑦 1 Hz 

Cut-off frequency for the low-pass 

filter 𝐻𝑓𝑧  
𝑓𝑐𝑧 1 Hz 

Cut-off frequency for the low-pass 

filter 𝐻𝑓𝑑  
𝑓𝑐𝑑 10 Hz 

Cut-off frequency for the low-pass 

filter in 𝐻𝑓𝑟  
𝑓𝑐𝑟𝑙 1 rad/s 

Cut-off frequency for the high-pass 

filter in 𝐻𝑓𝑟  
𝑓𝑐𝑟ℎ  0.05 rad/s 
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There are two widely used methods for the identification of a parametric model incorporated in a closed-

loop system, known as the direct and indirect methods [142]. The model is simulated in the open-loop 

in the direct identification, and is simulated in the closed-loop in the indirect identification. The pros 

and cons of these two methods in driver model identification have been extensively investigated by 

Keen [16], Odhams [14], Na [144] and Nash [126], and the indirect method has been found to be more 

suitable for identification using data from driving simulator experiments, as the feedback transfer 

function (the steering-vehicle system) is known. The indirect method can also result in lower bias 

compared to the direct identification method.  

Following the framework of the indirect method for parametric identification, a prediction error 

minimisation approach is used. In general, the simulated steering wheel angle 𝜃𝑠𝑤(𝑠𝑖𝑚)  and the 

measured steering wheel angle 𝜃𝑠𝑤(𝑒𝑥𝑝) are compared with each other, and the mean-square difference 

(𝜃𝑠𝑤(𝑠𝑖𝑚) − 𝜃𝑠𝑤(𝑒𝑥𝑝))
2

 is minimised to find the optimum set of parameter values. There are two 

primary sources contributing to the difference (𝜃𝑠𝑤(𝑠𝑖𝑚) − 𝜃𝑠𝑤(𝑒𝑥𝑝)). The first one is modelling error, 

which can be reduced by improving the accuracy of the driver model. The second one is the driver’s 

random noise, which cannot be reduced. However, bias may be introduced to the identification results 

if the driver noise is not white. To address this problem, a modified version of the prediction error, a 

weighted prediction error 𝜀, as defined in (5.2), is used as the term to be minimised in the identification, 

as suggested by Ljung [142], Odhams [14] and Nash and Cole [116].  

𝜀(𝑠) =
1

𝐻𝑛(𝑠)
(
2𝜋𝑓𝑐

𝑠 + 2𝜋𝑓𝑐
)
2

(𝜃𝑠𝑤(𝑠𝑖𝑚)(𝑠) − 𝜃𝑠𝑤(𝑒𝑥𝑝)(𝑠))                            (5.2) 

The weighted prediction error 𝜀 is obtained by filtering by the inverse of the noise model 𝐻𝑛(𝑠) found 

in the Box-Jenkins identification. However, this will result in an increased prediction error amplitude 

at high frequencies, which exceed the human driver’s normal operating frequencies. To solve this 

problem, a low-pass filter is also included to reduce the high-frequency errors. The cut-off frequency 𝑓𝑐 

of the low-pass filter is set to different values for the three linear trials in the experiments: 5Hz for trial 

1 and 3Hz for trials 2 and 3, based on the preliminary analysis of the measured steering control actions 

in the frequency domain.  

The optimisation problem is likely to contain a large number of local minima and it is not feasible to 

convert the optimisation problem into a convex form due to the relatively large number of driver model 

parameters to be identified and the sophisticated relationships between them. Nash and Cole [116] has 

successfully utilised a genetic algorithm based minimisation method to find the global minimum 

solution to a similar problem with similar complexity. The genetic algorithm [145], which mimics the  

natural selection process to ‘mute’ and ‘mutate’ the best solutions, has been found to be an efficient 

way to find the global optimum solution to non-convex optimisation problems. As a result, the genetic 
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algorithm based two-stage stochastic minimisation method provided by Nash and Cole [116] is adopted 

to ensure the global minimum solution to be found: 

1. Firstly, a genetic algorithm is used to find the global minimum solution of the minimisation 

problem. The entire space of interest is searched with 100 random combinations of parameter 

values between the upper and lower bounds set in Table 5.1 as the starting points. The solution 

converges towards the global minimum over 100 iterations based on a natural selection process 

that mimics biological evolution. 

2. A gradient descent method is then carried out to ensure the global minimum solution is found, 

starting with the genetic algorithm solution. The Matlab function ‘fmincon’ is used with the 

SQP algorithm to automatically search for an appropriate set of parameter values for this 

purpose. 

Initially, single parameter sets are identified for each driver and the averaged driver by fitting the results 

of all three trials. However, it is always difficult to conduct optimisations over a multidimensional 

search space, and as the number of parameters increases, so does the uncertainties of the identified 

parameter values. Therefore, similar to the method used by Nash and Cole [116], the identification is 

conducted in several steps to limit the number of parameters to be identified at each step. The 

identification procedure is illustrated in the flow chart in Figure 5.1, and the conditions for each step 

are given in Table 5.3. The validity of the identification procedure in finding the correct model 

parameter values or say the global minimum solution are checked against the results of the simulation 

of identification described in Section 5.3.5. 

In step 1, all the parameters are identified across all three linear trials. However, noise parameters 𝑊, 

𝑉𝑒 , 𝑉𝜓  and 𝑉𝜃𝑎  not only affect the state estimation and control performance, but also represent the 

standard deviation of the driver’s random noise. It is desirable for the noise standard deviation predicted 

by the model to match that found in the experiments. The model error is assumed to be negligible, so 

the driver noise is given by the difference between the measured steering wheel angle 𝜃𝑠𝑤(𝑒𝑥𝑝) and the 

modelled steering wheel angle 𝜃𝑠𝑤(𝑠𝑖𝑚). Preliminary simulations of the driver model showed that the 

predicted noise standard deviation is primally due to the process noise because the effect of 

measurement noise on the steering control actions has been eliminated by the state estimator, which has 

also been demonstrated by Nash and Cole [116]. Therefore, the process noise standard deviation 𝑊 is 

scaled by the average ratio of the measured to the modelled noise standard deviations before step 2. In 

step 2, the process noise standard deviation 𝑊 is then held constant while the remaining parameters are 

identified to fit the results of all three linear trials once more. In step 3, the three neuromuscular 

parameters are identified using all three linear trials, while the cognitive parameters and the sensory 

delays are fixed at the values identified in step 2. In step 4, the process noise standard deviation 𝑊 and 

the cognitive controller time shift 𝑇𝑡  are kept constant at the values found in step 2, the neuromuscular 
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parameters are kept constant at the values found in step 3, and the remaining six parameters are 

identified across all three linear trials by conducting a further optimisation. For the averaged data, the 

process noise standard deviation 𝑊 is also scaled to match the standard deviation of the measured noise 

found in the data after step 1 and is then fixed at the following steps. However, the average of the scaled 

values of 𝑊 for the thirteen drivers could also be used for the averaged driver after step 1 and is then 

used in the following steps. The difference between the two approaches of identifying the process noise 

standard deviation 𝑊 for the averaged driver is discussed in Section 5.3.2. 

 

Figure 5.1: Identification procedure for finding one set of parameters for each driver and the averaged 

driver. 

 

Table 5.3: Conditions for each step of the parametric identification procedure to find a single set of 

parameter values for each driver. × indicates parameters to be identified at each step. 

  
Neuromuscular 

parameters 
Cognitive parameters 

Sensory 

delays 

Step Trials 𝑐𝑎 𝐼𝑎𝑟𝑚  𝑘𝑟  𝑊 𝑉𝑒 𝑉𝜓 𝑉𝜃𝑎  𝑇𝑡  𝑞𝑒 𝜏𝑣𝑖 𝜏𝜃𝑎  

1 1, 2, 3 × × × × × × × × × × × 

2 1, 2, 3 × × ×  × × × × × × × 

3 1, 2, 3 × × ×         

4 1, 2, 3     × × ×  × × × 

 

After a single set of parameter values fitting all three linear trials is found for each driver and the 

averaged driver, separate parameter sets are identified for each trial individually for each driver. Two 
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parallel identification steps are carried out, as illustrated by Figure 5.2, with conditions of each trial 

presented in Table 5.4. The driver noise levels predicted by the model are to be matched by those seen 

in the experiments. There is an amount of variation between different trials. Therefore, the values of 

process noise standard deviation 𝑊 are scaled by the ratio of the measured to the modelled noise 

standard deviations for each trial, respectively, before either of the two identification steps. In step 5a, 

to reduce the computational time and simplify the optimisation problem, the process noise standard 

deviation 𝑊 is then fixed at the value found in each individual trial, and the cognitive controller time 

shift 𝑇𝑡  and the neuromuscular parameters are held constant using the values found for the single 

parameter set while the other cognitive parameters and sensory delays are identified for each trial 

individually. This may provide some insights into how the human drivers’ cognitive parameters vary 

between different trials. In step 5b, another identification is carried out by fixing the process noise 

standard deviation 𝑊 at the value found in each individual trial, fixing the arm inertia 𝐼𝑎𝑟𝑚  and the 

cognitive controller time shift 𝑇𝑡  at the values found for the one single set of parameters for each driver, 

and identifying all the other parameters. This allows the variation in both the neuromuscular and 

cognitive systems between different linear trials to be studied. When identifying separate parameter sets 

for each individual trial, the upper bound of path-following error cost 𝑞𝑒 is relaxed to 104.  

 

Figure 5.2: Identification procedure for finding separate parameter sets for each trial individually for 

each driver and the averaged driver. 

 

Table 5.4: Conditions for each step of the parametric identification procedure to find separate parameter 

sets for each trial individually. × indicates parameters to be identified at each step. 

 
Neuromuscular 

parameters 
Cognitive parameters 

Sensory 

delays 

Step 𝑐𝑎 𝐼𝑎𝑟𝑚 𝑘𝑟  𝑊 𝑉𝑒 𝑉𝜓 𝑉𝜃𝑎  𝑇𝑡  𝑞𝑒 𝜏𝑣𝑖 𝜏𝜃𝑎  

5a     × × ×  × × × 

5b ×  ×  × × ×  × × × 
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5.3 Identification Results and Analysis 

This section presents a comprehensive analysis of the model identification results. In Section 5.3.1, the 

fit of the identified models to the experimental results is investigated. In Section 5.3.2, the identified 

parameter values across different drivers and across different trials are shown and discussed. In Section 

5.3.3, the driver noise levels predicted by the identified driver model are compared with those found in 

the experiments. In Section 5.3.4, the validity of the identified driver model in predicting driving 

behaviours is examined. In Section 5.3.5, the validity of the identification procedure is checked against 

simulation results.  

 

5.3.1 Agreement between Model and Measurements 

The goodness of the fit of the identified model to the experimental data is quantified using the ‘variance 

accounted for’ (VAF), which is the percentage of the variance in the measured steering wheel angle 

𝜃𝑠𝑤(𝑒𝑥𝑝) matched by the modelled steering wheel angle 𝜃𝑠𝑤(𝑠𝑖𝑚), and is given by: 

VAF = (1 −
∑ {𝜃𝑠𝑤(𝑠𝑖𝑚)(𝑘) − 𝜃𝑠𝑤(𝑒𝑥𝑝)(𝑘)}

2
𝑘

∑ {𝜃𝑠𝑤(𝑒𝑥𝑝)(𝑘)}
2

𝑘

) × 100%                              (5.3) 

where 𝑘 is the time-step index. VAF values of the identified linear parametric driver model are plotted 

in Figure 5.3 for each of the thirteen individual drivers as well as the averaged data. The lines connecting 

the markers represent variations of the agreement between experimental trials, rather than indicate a 

linear relationship or other similar interpretations between the trials. The fit of the Box–Jenkins model 

is also included as a benchmark for the fit of the parametric model, either using separate parameter sets 

to fit the results of each individual trial or a single parameter set fitting all three trials. It is seen that 

VAFs are largest for the Box–Jenkins model, which is expected as the Box–Jenkins model effectively 

gives an upper bound limit on the linear proportion of the steering wheel angle data. The VAFs for the 

separate parameter sets including both the results obtained in identification steps 5a and 5b are quite 

close or even equal to the VAFs for the Box-Jenkins model, indicating that the linear parametric driver 

model structure can explain the drivers’ linear steering control behaviour quite well, although the VAFs 

for the separate parameter sets obtained in identification step 5a are slightly higher than the VAFs for 

the separate sets obtained in identification step 5b. The VAFs for the single parameter sets are close to 

the VAFs for the separate parameter sets, indicating that a fixed-parameter model is still able to provide 

a good approximation to the measured steering response across the range of conditions in the three trials. 

It is seen that there are several trials where the single parameter sets do not fit well for some drivers. 

This is because the drivers’ control performance may vary between different trials. In addition, it is 

noticed that the VAFs are much higher for the averaged data than for any individual driver, supporting 

the hypothesis in [116] that the averaged data contains less random noise. The averaged VAF value for 
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all three trials using the averaged data is 75% for the one parameter set, and are 82% and 84% for the 

separate parameter sets obtained in identification steps 5a and 5b, respectively. These VAF values are 

comparably higher than those obtained by Nash and Cole [116], who employed five test subjects.  

 

Figure 5.3: Agreement between parametric driver model predictions and experimental results. VAF 

value is plotted for each driver/trial combination, and for the averaged driver on each trial. 
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5.3.2 Identified Parameter Values 

The identified single parameter set for each driver is shown in Figure 5.4. In general, the parameter 

values are broadly similar between the drivers, taking the complexity of the model and the number of 

unknown parameters, as well as the amount of noise in the measurements for each driver into account. 

The high similarity of the parameter values between different drivers suggests that the drivers had 

similar physical properties and were using similar control strategies, justifying the averaging of drivers’ 

responses together to obtain a set of ‘averaged data’. The parameter values identified using the averaged 

data all fall within the range for the individual drivers, suggesting that the averaged data is a valid 

representation of a typical driver’s steering control behaviour.  

The effects of these parameters on the driver model performance have been extensively investigated in 

Chapter 3. The arm inertia 𝐼𝑎𝑟𝑚  and the sensory delays 𝜏𝑣𝑖  and 𝜏𝜃𝑎  relate to each driver’s internal 

physical properties, while the muscle damping 𝑐𝑎 and the stretch reflex gain 𝑘𝑟  are mainly determined 

by the muscle states the drivers used when they performed the experiments. It is likely that drivers with 

larger values of 𝑐𝑎 and 𝑘𝑟  tensed their muscles more than the others during the experiments. The path-

following error cost 𝑞𝑒  indicates the trade-off between the steering effort and the path following 

accuracy, while the cognitive controller time shift 𝑇𝑡  describes which part of the vehicle is aligned with 

the target path. These two parameters are choices made by the human drivers during the experiments 

instead of being determined by physical properties. It is seen that the identified values of 𝑞𝑒 for most of 

the drivers hit the upper bound limit of 1000. It is shown later that 𝑞𝑒 was significantly larger for trial 

1 than for trials 2 and 3. However, it is necessary to impose a constraint of 1000 on 𝑞𝑒 to avoid biasing 

the other parameter values when identifying a single parameter set across all three trials. The details are 

discussed later in this section. The noise parameters 𝑊, 𝑉𝑒 , 𝑉𝜓 and 𝑉𝜃𝑎  appear in two places in the 

model: as variances of the added process and measurement noise; and as parameters of the state 

estimator. In Figure 5.4, the average of the scaled values of 𝑊  for the thirteen drivers, with the 

corresponding identified values of 𝑉𝑒, 𝑉𝜓 and 𝑉𝜃𝑎  for the averaged data are shown by the red dashed 

horizontal lines. As expected, the identified value of process noise standard deviation 𝑊 is smaller than 

the average of the scaled values of 𝑊 over the thirteen drivers, as the amount of random driver noise 

has been reduced by averaging the steering wheel angle actions over all the individual drivers. In 

addition, the values of the measurement noise standard deviations 𝑉𝑒, 𝑉𝜓 and 𝑉𝜃𝑎  identified using the 

process noise standard deviation 𝑊 scaled to match the standard deviation of the measured noise found 

in the measured data are also smaller than those identified using the average of the scaled values of 𝑊 

over the thirteen drivers. This is because it is the ratios between these noise parameters that affect the 

state estimator performance; the state estimator with a smaller value of one of these parameters also has 

smaller values of the others. 
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Figure 5.4: Identified single parameter sets fitting all three linear trials for the individual drivers 

(crosses) and the averaged data (solid horizontal lines). The average of the scaled values of 𝑊 for the 

thirteen drivers, with the corresponding identified values of 𝑉𝑒, 𝑉𝜓 and 𝑉𝜃𝑎  for the averaged data are 

shown by the red dashed horizontal lines.  

 

To investigate whether the drivers’ cognitive and neuromuscular parameters vary between the three 

linear experimental trials, separate parameter sets identified for each trial using the averaged data in 

identification step 5b are plotted in Figure 5.5. The cognitive parameters found in identification step 5a 

are similar to those identified in step 5b and therefore not repeated in the figure. The values of the arm 

inertia 𝐼𝑎𝑟𝑚 , process noise standard deviation 𝑊 and the time shift 𝑇𝑡  are fixed in this identification 
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step, so they are not discussed here. For some of the other parameters, there is a wide spread of identified 

values; this can be either because the parameter values are very sensitive to the type of trial or there is 

large uncertainty in the identified values. 

The identified values of muscle damping 𝑐𝑎 and stretch reflex gain 𝑘𝑟  in experimental trial 1 are larger 

compared with those in trials 2 and 3. This is because the drivers tensed their arms more when reacting 

to high-frequency steering column disturbances than following a randomly moving target path with a 

relatively lower frequency of variation. In experimental trial 1, a very large value of visual noise 

standard deviation parameter 𝑉𝑒 is identified. This is because the magnitude of the path-following error 

or say the lateral displacement of the vehicle is extremely small in trial 1 and when the noise level is 

much larger than the signal level, the driver places very little weight on the measurement. This suggests 

that there are thresholds below which drivers are unable to perceive each sensory signal. In addition, 

the large value of 𝑉𝑒 represents a large amplitude of visual noise on the path-following error in the 

simulation, which results in a poor estimation of the target path as the large amplitude noise is directly 

fed to the human driver’s visual system. This is compensated by a large value of controller cost function 

weight on path-following error 𝑞𝑒, as shown in the figure. Preliminary simulations showed that if the 

neuromuscular parameters are identified together with 𝑞𝑒, the identified values of 𝑐𝑎 and 𝑘𝑟  will be 

unrealistically large for a large value of 𝑞𝑒 as the muscles often need to be tensed more to generate such 

aggressive steering control actions. This explains why the upper bound of 𝑞𝑒 should be restricted in the 

identification procedure to find a single parameter set for each driver and the averaged data. It is also 

noticed that although the driving task is the same in trials 2 and 3, the identified measurement noise 

parameters are different. This suggests that the drivers weigh the sensory measurements in different 

ways when the steering-vehicle dynamics properties are different. However, the difference may also 

relate to the actual signal amplitudes. This relation is investigated in Section 5.4.  There is also a wide 

spread of identified values of sensory delays for different experimental trials, as shown in the figure. 

Studies [116] [146] [147] [148] [149] have found that during an active control task with multiple stimuli 

presented together, humans develop accurate sensory estimates by optimally integrating the information 

they perceived over time in a sophisticated way. Therefore, it is difficult to accurately identify one 

single value of time delay for each sensory channel and separate the delays for different sensory 

channels. Considering this effect, the wide spread of identified values of sensory delays across different 

experimental trials is plausible.  
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Figure 5.5: Identified parameter values for each trial separately using averaged data (triangles) and the 

identified single parameter set fitting all three linear trials for the averaged data (solid horizontal lines). 

 

5.3.3 Measured and Modelled Driver Noise Amplitude  

In the driver model, an optimal Kalman filtering algorithm is used to represent the human driver’s 

sensory measurement integration by using statistically optimal methods to estimate the states of the 

plant. This requires the driver noise levels predicted by the driver model to be matched by those found 

in the experiments. Preliminary simulations of the driver model with process and measurement noise 

showed that most of the driver noise present in the steering wheel angle signal comes from the process 
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noise because the measurement noise has been reduced by the state estimator while the process noise is 

directly added to the human driver’s control action. This conclusion is also supported by the study from 

Nash and Cole [116]. Therefore, the process noise standard deviation 𝑊 is scaled based on the ratio 

between the measured and modelled noise standard deviations in the identification procedure described 

in Section 5.2.2. By assuming the modelling error is negligible, the driver noise is given by (𝜃𝑠𝑤(𝑠𝑖𝑚) −

𝜃𝑠𝑤(𝑒𝑥𝑝)). The ratios between the measured and modelled noise standard deviations for each driver and 

trial combination are shown in Figure 5.6a, using the single parameter sets identified for each driver. It 

is seen that although there is an amount of variation between different trials, most of the ratios are close 

to 1, indicating the standard deviations of the modelled noise agree with those seen in the experiments 

overall. However, in order to identify separate parameter sets for each trial accurately as well as to 

investigate the reasons behind the variation in the ratios across the different trials, the value of 𝑊 is 

scaled by the ratio of the measured and modelled noise standard deviations for each trial separately as 

well, as described in Section 5.2.2. The resulting new ratios between measured and modelled noise 

standard deviations are shown in Figure 5.6b. It is clearly seen that these ratios are drawn much closer 

to 1, indicating that the agreement between the measured and modelled noise standard deviations has 

been improved significantly. 

 

 

Figure 5.6: Ratio of the measured and modelled noise standard deviations. In (a), a constant value of 

𝑊 is used for each driver, while in (b) the values of 𝑊 have been adjusted for each trial individually.  

 

To determine if there is a relationship between the process noise level and the human driver’s control 

action level, the adjusted values of 𝑊 are to be compared with the amplitudes of the muscle activation 

torque 𝑇𝑎. However, the muscle activation torque signal 𝑇𝑎  is not directly measured in the experiments. 

Therefore, a method is developed to estimate this signal by using the measured signals and the 

theoretical driver model: 
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1. A general transfer function fitting the simulated muscle angle signal 𝜃𝑎(𝑠𝑖𝑚) to the simulated 

steering wheel angle 𝜃𝑠𝑤(𝑠𝑖𝑚) is identified for each trial by using the Box-Jenkins method with 

5th order polynomials. The simulated muscle angle and steering wheel angle signals are 

generated by using the identified driver model with separate parameter sets for each trial. 

Similar to Section 5.2.1, the first minute is excluded from the data used for identification and 

the data in the last minute is used for validating the predictive power of the identified transfer 

function. 

2. The actual muscle angle signal 𝜃𝑎(𝑒𝑥𝑝) of the human driver in the experiment is estimated by 

using the measured steering wheel angle signal 𝜃𝑠𝑤(𝑠𝑖𝑚) and the transfer function identified at 

step 1 for each trial. 

3. The actual muscle activation torque 𝑇𝑎(𝑒𝑥𝑝) of the human driver in the experiment is calculated 

by using equation (3.6) describing the muscle dynamics in Chapter 3 for each trial: 

𝑇𝑎(𝑒𝑥𝑝)(𝑘) = 𝑐𝑎𝜃̇𝑎(𝑒𝑥𝑝)(𝑘) + 𝑘𝑎 (𝜃𝑎(𝑒𝑥𝑝)(𝑘) − 𝜃𝑠𝑤(𝑒𝑥𝑝)(𝑘))                        (3.6) 

The adjusted values of 𝑊 are then plotted against the values of RMS estimated muscle activation torque 

𝑇𝑎(𝑒𝑥𝑝) in the experiment in Figure 5.7a. There is a clear linear relationship between these two variables, 

showing that process noise is signal dependent. The signal-to-noise ratio (SNR), which is defined as the 

ratio of RMS estimated muscle activation torque 𝑇𝑎(𝑒𝑥𝑝) to 𝑊, is plotted for each driver in Figure 5.7b. 

It is shown that the values of SNR are broadly similar between different drivers. The averaged SNR 

value for the process noise 𝑊 over all thirteen drivers is 0.47, which is comparable to the value obtained 

by Nash and Cole [116]. 

 

Figure 5.7: Investigation into signal-dependent process noise. In (a), the identified process noise 

standard deviation 𝑊 is compared with the RMS estimated muscle activation torque 𝑇𝑎(𝑒𝑥𝑝) in the 

experiment. In (b), the SNRs for the individual drivers (crosses) are compared and the averaged SNR 

(solid horizontal line) over all the drivers are calculated. 
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5.3.4 Driver Model Validation  

Experimental data in the last minute is used to validate the identified models and to check if there is 

any over-fitting for any of these models. Over-fittings means that the fit of the model to the 

identification data is much better than the fit of the model to the validation data. This can be caused by 

the amount of data used for identification not being sufficient. To check this, the VAF values obtained 

from the identification data as well as those obtained from the validation data are plotted for each trial 

and driver including the averaged driver. The averaged VAF values calculated over all three trials are 

also calculated for each driver and the averaged driver. Figure 5.8, Figure 5.9 and Figure 5.10 show 

these VAF values for the Box-Jenkins model, the parametric driver model with separate parameter sets 

for each trial, and the parametric driver model with a single parameter set for each driver, respectively.  

In general, the VAF values in the validation data are similar to those in the identification data, indicating 

that the driver model is capable of predicting the human driver’s behaviour accurately, and the amount 

of data used for identification is sufficient. However, over-fitting may have occurred in several trials 

for some drivers, such as in trial 1 for Drivers 1, 5, 7 and 13, trial 2 for Drivers 10, 11 and 13, and trial 

3 for Drivers 2, 4, 6 and 12. These may be due to the identified models fitting to some random variations 

in each trial and may be also caused by the drivers not keeping the same driving behaviour during the 

trial. The results further suggest that the identified parameters found for these individual trial and driver 

combinations are unreliable. However, the VAF values in the identification data and the VAF values in 

the validation data are almost equal to each other for the averaged driver. This supports the hypothesis 

that averaging the measured data over all the individual drivers minimises over-fitting by reducing the 

amount of random noise in the data. Therefore, the parameter values identified by using the averaged 

data are more reliable than those for any individual driver. 
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Figure 5.8: Validation of the Box-Jenkins model for each trial and driver including the averaged driver 

(Driver 14). The VAFs obtained from the identification data are represented by the markers on the solid 

lines, while the VAFs obtained from the validation data are represented by the markers on the dashed 

lines. 
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Figure 5.9: Validation of the parametric driver model (separate parameter sets for each trial identified 
at identification step 5b) for each trial and driver including the averaged driver (Driver 14). The VAFs 

obtained from the identification data are represented by the markers on the solid lines, while the VAFs 

obtained from the validation data are represented by the markers on the dashed lines. 
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Figure 5.10: Validation of the parametric driver model (single parameter set for each driver) for each 

trial and driver including the averaged driver (Driver 14). The VAFs obtained from the identification 
data are represented by the markers on the solid lines, while the VAFs obtained from the validation data 

are represented by the markers on the dashed lines. 
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5.3.5 Identification Procedure Validation   

To check that the parametric model identification procedure described in Section 5.2.2 could converge 

to the correct parameter values, a simulation of identification is conducted. Representative steering 

wheel angles are created by using the driver model with the one single set of parameters identified by 

using the averaged data. Process and measurement noise are also added to the simulation by 

implementing Gaussian white noise with the identified standard deviations, in order to match the actual 

driver noise seen in the experiments. Ten sets of representative steering wheel angles are generated for 

each of the three experimental trials with different random noise, and the identification procedure is 

exactly replicated for each set of simulated results. The single set of parameter values across all three 

trials for the ten different sets are shown in Figure 5.11. 

 

Figure 5.11: Validation of the identification. Identified single parameter sets fitting all three linear trials 

for each data set of the simulated results. Values found for the individual set are shown by markers, and 

actual parameter values used for generating the simulated results are shown by back solid horizontal 

lines.  
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5.4 Measurement Noise Analysis 

It has been found in Section 5.3.3 that the value of process noise standard deviation 𝑊 depends linearly 

on RMS muscle activation torque 𝑇𝑎 and therefore can be described by using a constant signal-to-noise 

ratio SNR𝑊: 

SNR𝑊 =
RMS(𝑇𝑎)

𝑊
                                                                (5.5) 

It would be beneficial if the measurement noise is also signal-dependent so that the measurement noise 

standard deviation parameters 𝑉𝑒, 𝑉𝜓 and 𝑉𝜃𝑎  can be related to the amplitudes of the signals measured 

in the experiments or estimated using experimental data through constant parameters. The noise 

parameters 𝑉𝑒, 𝑉𝜓 and 𝑉𝜃𝑎  appear in two places in the model: as variances of the added noise; and as 

parameters of the state estimator to represent how the human driver places relative weights on different 

measurements. Because it is impossible to scale the values of 𝑉𝑒, 𝑉𝜓 and 𝑉𝜃𝑎  to represent the actual 

levels of measurement noise of the drivers in the experiments as what is done for the process noise, the 

identified values of 𝑉𝑒, 𝑉𝜓 and 𝑉𝜃𝑎  may represent weights placed by the drivers on different sensory 

channels. However, the drivers may have weighed them differently in trails with different steering-

vehicle dynamics properties. Therefore, it is not reliable to draw conclusions about if the measurement 

noise is also signal-dependent by comparing ratios of the identified values of 𝑉𝑒 , 𝑉𝜓 and 𝑉𝜃𝑎  to the 

amplitudes of the corresponding signals in the three experimental trials. To solve this problem, 

additional linear experimental trials were carried out with five drivers to eliminate the effects of 

different steering-vehicle dynamics characteristics on the identified values of measurement noise 

standard deviations.  

 

5.4.1 Linear Experiment Adjustments and Model Identification 

Two additional trials were added to the linear phase of the experiments for Drivers 9 to 13. These two 

trials were performed directly after trial 3. The properties of the steering-vehicle dynamics in these two 

trials are kept the same as those in trial 3 but the amplitudes of the target path lateral distance variation 

are different. The conditions of the two new trials and trial 3 are summarised in Table 5.5. 

Table 5.5: Experimental conditions for trail 3 and two new trials 

 Disturbance amplitudes    

Exp. 

condition 
𝑊𝑟(m) 𝑊𝐹(N) 𝑊𝑇(Nm) 𝐹𝑐(Nm) 

Trail 

distance 

𝑑 (m) 

Boost 

coefficient 

𝐶𝑏𝑜𝑜𝑠𝑡  

3 8 0 0 0 0.059 0 

3-1 6 0 0 0 0.059 0 

3-2 10 0 0 0 0.059 0 
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In Section 5.2, the identification procedure was run for each of the individual drivers separately as well 

as for an averaged driver. It was found that differences between the drivers were small, and the identified 

parameter values for each trial were not reliable because of the high level of random noise in each trial. 

Therefore, in this section, the time domain steering wheel angles are averaged over the five drivers to 

give a set of average responses for each trial to reduce the amount of driver noise in the measurements, 

and the analysis was only carried out for the averaged data. The identification procedure is shown in 

Figure 5.12. Similar to Section 5.2.2, separate parameter sets are identified for each of the three trials 

(3, 3-1 and 3-2) individually for the averaged driver. However, before this, a single set of parameter 

values is found for this averaged driver by using trials 1, 2 and 3 following the identification procedure 

described in Section 5.2.2 and is used as the basis for the new identification. Initially, the values of 

process noise standard deviation 𝑊 are scaled by the ratio of the measured to the modelled noise 

standard deviations for each trial, respectively. Then, the process noise standard deviation 𝑊 is fixed at 

the value found for each individual trial, and sensory delays 𝜏𝑣𝑖 and 𝜏𝜃𝑎, the cognitive controller time 

shift 𝑇𝑡  and the neuromuscular parameters are held constant using the values found for the single 

parameter set while the other parameters including 𝑉𝑒 , 𝑉𝜓 , 𝑉𝜃𝑎  and 𝑞𝑒  are identified for each trial 

individually.  

 

Figure 5.12: Identification procedure for finding separate parameter sets for each trial for the averaged 

driver. 

 

5.4.2 Modelled Driver Measurement Noise 

Identified measurement noise standard deviations for the three trials (3, 3-1 and 3-2) are plotted against 

RMS values of the corresponding signals in Figure 5.13. It is seen that there are clear linear relationships 

between them, indicating the measurement noise is also signal-dependent. In addition, the straight lines 

passing through the origin fit the scatters quite well, supporting that the patterns of the noise follow the 
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noise model, shown in Figure 5.14, used by Nash and Cole [117]. Overall, the noise standard deviation 

is proportional to signal amplitude with a zero intercept, but there is a threshold level under which 

humans cannot detect the signals. Therefore, the measurement noise standard deviations can be related 

to the amplitudes of the signals in the experiments by using constant SNRs when the levels of the signals 

are larger than the thresholds. 

SNR𝑒 =
RMS(𝑒)

𝑉𝑒
                                                                (5.6) 

SNR𝜓 =
RMS(𝜓)

𝑉𝜓
                                                               (5.7) 

SNR𝜃𝑎 =
RMS(𝜃𝑎)

𝑉𝜃𝑎
                                                             (5.8) 

Figure 5.13: The identified measurement noise standard deviations are compared with the 

corresponding RMS signal amplitudes. Straight lines passing through the origin are plotted to check the 

linearity of the plotted points. 

 

Figure 5.14: Signal-dependent noise model [117]. 

 

Although the scatters do not exactly lie on the straight lines, the identified signal-noise relationships are 

plausible by taking account that there is some uncertainty in the data although the level of noise has 

been reduced by averaging the experimental data. In addition, the averaged VAF value over all three 
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trials is 83% for the separate parameter sets, suggesting the driver model with the identified parameters 

fits the experimental results. 

5.5 Single Set of Parameter Values 

It has been found that the signal and noise amplitudes vary a lot between drivers and trials, where a 

constant noise standard deviation model would be inappropriate, and that the noise characteristics for 

the human driver’s control action and each sensory measurement can be in principle be described by a 

SNR when the amplitudes of the signals are larger than certain levels. Therefore, instead of identifying 

the process and sensory measurement noise standard deviation parameters 𝑊, 𝑉𝑒, 𝑉𝜓 and 𝑉𝜃𝑎  for the 

parametric driver model, a fixed set of parameters with SNRs has been fitted to the results from trials 

with random target path following task (trial 2 and trial 3) for each individual driver and the averaged 

driver. The experimental results from trial 1 are excluded from the data used for this identification, since 

the amplitudes of some relevant signals are below the thresholds that human drivers can detect and the 

experimental condition of trial 1 is very different to those of the other linear and nonlinear trials. SNRs 

are used to relate the noise standard deviations and the amplitudes of the signals measured in the 

experiments and therefore could provide the model with the predictive ability for a wide range of 

conditions. The parametric driver model now depends on the following eleven variable parameters: 

• Neuromuscular parameters: damping resisting stretching of the muscle fibre 𝑐𝑎, arm inertia 

𝐼𝑎𝑟𝑚 , reflex gain 𝑘𝑟  

• Cognitive parameters: process noise SNR (SNR𝑊), measurement noise SNRs (SNR𝑒, SNR𝜓, 

SNR𝜃𝑎), path-following error cost 𝑞𝑒, cognitive controller time shift 𝑇𝑡  

• Sensory delays: visual delay 𝜏𝑣𝑖, muscle angle sensory delay 𝜏𝜃𝑎  

where SNR𝑊 =
RMS(𝑇𝑎)

𝑊
, SNR𝑒 =

RMS(𝑒)

𝑉𝑒
, SNR𝜓 =

RMS(𝜓)

𝑉𝜓
 and SNR𝜃𝑎 =

RMS(𝜃𝑎)

𝑉𝜃𝑎
. 

 

5.5.1 Identification Procedure 

The identification process to a single set of parameters with SNRs is also carried out in several steps 

for each of the individual drivers and the averaged driver. The identification procedure is shown in 

Figure 5.15 and the conditions for each step are given in Table 5.6. It has been found in Section 5.3 that 

the identified value of path-following error cost 𝑞𝑒 varies significantly between different trials since it 

is a choice of the driver rather than a physical parameter and depends on the condition of each trial, 

therefore an estimated value of 𝑞𝑒  is found for each trial separately, by using a reasonable initial 

estimate of all the other parameter values: the neuromuscular parameters 𝑐𝑎, 𝐼𝑎𝑟𝑚 , 𝑘𝑟  and the cognitive 

controller time shift 𝑇𝑡  are chosen as the values found in the single set of parameters for each driver in 

Section 5.3.2, the process noise SNR𝑊 is chosen as the value found for each driver in Section 5.3.3. 



5.5 Single Set of Parameter Values                                                                                   171     

 

The value of 𝑞𝑒 is then fixed in all the identification steps. To reduce the number of parameters to be 

identified, the neuromuscular parameters 𝑐𝑎, 𝐼𝑎𝑟𝑚 , 𝑘𝑟  and the target time shift 𝑇𝑡  are also fixed at the 

values found in the singe set of parameters for each driver in Section 5.3.2 in all the identification steps. 

In step 1, all the variable parameters including the SNRs and the sensory delays are identified across 

the two linear trials. As mentioned in Section 5.3, the process noise levels predicted by the model are 

to be matched by those seen in the experiments. Therefore, after step 1, the value of process noise SNR𝑊 

is scaled by using the average ratio of the measured to the modelled noise standard deviations. In step 

2, the process noise SNR𝑊 is then held constant while the remaining variable parameters are identified 

to fit the results of two linear trials again. However, the modelled noise standard deviation may vary 

with the change of the identified values of the SNRs in step 2. Therefore, steps 1 and 2 are repeated 

iteratively until the measured noise standard deviation equals the modelled noise standard deviation. 

For the averaged data, the process noise SNR𝑊 is also scaled to match the standard deviation of the 

measured noise found in the measured data after step 1 and is then fixed in step 2. Again, similar to 

Section 5.2.2, the average of the scaled values of SNR𝑊 over the thirteen drivers is also used for the 

averaged driver after step 1 and is then used in step 2. However, the two steps are only conducted once 

in this case.  

 

Figure 5.15: Identification procedure for finding one set of parameters with SNRs for each driver and 

the averaged driver. 
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Table 5.6: Conditions for each step of the new parametric identification procedure, to find a single set 

of parameter values for each driver. × indicates parameters to be identified at each step. 

  
Neuromuscular 

parameters 
Cognitive parameters 

Sensory 

delays 

Step Trials 𝑐𝑎 𝐼𝑎𝑟𝑚  𝑘𝑟  SNRW SNR𝑒 SNR𝜓 SNR𝜃𝑎 𝑇𝑡  𝑞𝑒 𝜏𝑣𝑖 𝜏𝜃𝑎  

1 2, 3    × × × ×   × × 

2 2, 3     × × ×   × × 

There is a risk that the initial estimated values of 𝑞𝑒 are not reliable because the measurement noise 

SNRs are identified along with 𝑞𝑒. To achieve better identification results, a more reliable estimated 

value of 𝑞𝑒 is found again for each trial. Besides the fixed values of the neuromuscular parameters 𝑐𝑎, 

𝐼𝑎𝑟𝑚 , 𝑘𝑟 , the cognitive controller time shift 𝑇𝑡  and the process noise SNR𝑊, the measurement noise 

SNRs are fixed at the values found for the averaged driver using the method described in the left column 

of Figure 5.15. The new estimated values of 𝑞𝑒 are then held constant, and the identification steps 1 and 

2 are performed again until the measured noise standard deviation is equal to the modelled noise 

standard deviation. The identification procedure described in the right column of Figure 5.15 is also 

conducted. 

After a single set of parameter values fitting the two linear trials 2 and 3 is found for each individual 

driver and the averaged driver, separate parameter sets are identified for each trial individually for each 

driver. The process noise and measurement noise SNRs, the arm inertia 𝐼𝑎𝑟𝑚  and the cognitive 

controller time shift 𝑇𝑡  are fixed at the values found for the one single set of parameters for each driver, 

while all the other parameters are allowed to be varied in the identification. The aim of this is to check 

for the greatest agreement between the model and the experimental results for each trial achievable by 

using the identified process and measurement noise SNRs. 

 

5.5.2 Identification Results 

The resulting VAF values of the identified linear parametric driver model with a single set of parameters 

with SNRs are plotted in Figure 5.16 for each driver and the averaged driver. The fit of the Box–Jenkins 

model is also included. As expected, the VAFs are the largest for the Box-Jenkins model. It is seen that 

the VAFs for the separate parameter sets are quite close or even equal to the VAFs for the Box-Jenkins 

model, and the difference between the VAFs for the single parameter sets and the VAFs for the separate 

parameter sets is negligible for most drivers and trials. This further supports that the linear parametric 

driver model structure can almost perfectly explain the drivers’ linear steering control and it is a 

reasonable way to describe the process and measurement noise standard deviations in the parametric 



5.5 Single Set of Parameter Values                                                                                   173     

 

driver model by using SNRs. For the averaged driver, the averaged VAF value over the two trials is 

86.6% for the one parameter set and 86.8% for the separate parameter sets.  

The single parameter set with the process and measurement noise SNRs identified for each driver is 

shown in Figure 5.17. The identified values of 𝑐𝑎, 𝐼𝑎𝑟𝑚 , 𝑘𝑟  and 𝑇𝑡  are fixed at the values shown in 

Figure 5.4, so they are not repeated here. Overall, the parameter values, especially the process and 

measurement noise SNRs, are similar between different drivers, and the values found using the averaged 

data all fall within the range of the parameter values found for the individual drivers, further supporting 

that the averaged data is a valid representation of a typical driver’s steering control behaviour. Although 

the spread of the identified values for some of the parameters is large, it is reasonable by considering 

the model is fitting to some random noise for each individual driver. Therefore, the identified parameter 

values are more reliable for the averaged data. 

In Figure 5.17, the average of the scaled values of SNR𝑊  over the thirteen drivers, with the 

corresponding identified values of SNR𝑒, SNR𝜓 and SNR𝜃𝑎 for the averaged data, are shown by the red 

dashed horizontal lines. The identified value of SNR𝑊 is larger than the average of the scaled values of 

SNR𝑊 over the thirteen drivers because the level of driver noise has been reduced by averaging the 

steering wheel angle actions over the drivers. In general, the values of SNR𝑒 ,  SNR𝜓  and SNR𝜃𝑎 

identified by using SNR𝑊 scaled to match the standard deviation of the measured noise found in the 

experimental data are also larger than those identified by using the average of the scaled values of 

SNR𝑊 over the thirteen drivers. This is because that it is the ratios between the Kalman filter noise 

parameters that affect the state estimator performance. Therefore, the state estimator with a lower value 

of one of these noise parameters (higher value of one of the SNRs) also has lower values of the others 

(higher values of the other SNRs).  

The identified parameter values for the averaged driver are shown in Table 5.7. The average of the 

scaled values of SNR𝑊  over the thirteen drivers along with the corresponding identified values of 

SNR𝑒 , SNR𝜓  and SNR𝜃𝑎  are chosen since these values may represent a more typical driver. These 

parameters can be regarded as a single parameter set fitting the results of trials 2 and 3 across all drivers 

and can be used to simulate driver steering control under various conditions. The uncertainties of these 

parameters can be quantified by calculating the standard deviations of the identified parameters for each 

individual driver, which are also shown in Table 5.7. However, it is important to notice that the 

identified parameter values for the averaged driver are not equal to the average of the identified 

parameter values over the thirteen drivers. 
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Figure 5.16: Agreement between parametric driver model (with SNRs) predictions and experimental 

results. VAF value is plotted for each driver/trial combination, and for the averaged driver on each trial. 
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Figure 5.17: Identified single parameter sets fitting the linear trials 2 and 3 for the individual drivers 

(crosses) and the averaged data (solid horizontal lines). The average of the scaled values of SNR𝑊 over 

the thirteen drivers, with the corresponding identified values of SNR𝑒 ,  SNR𝜓  and SNR𝜃𝑎  for the 

averaged data are shown by the red dashed horizontal lines.  

 

Table 5.7: Single set of parameters identified to fit the results of all trials and all drivers. 

Parameter 𝑐𝑎 𝐼𝑎𝑟𝑚  𝑘𝑟  SNR𝑊 SNR𝑒 SNR𝜓 SNR𝜃𝑎 𝜏𝑣𝑖 𝜏𝜃𝑎  𝑇𝑡  

Units 
Nms

/rad 
kgm2 

Nm

/rad 
    s s s 

Values 3.37 0.0973 24.9 0.600 4.75 0.210 1.61 0.109 0.180 0.023 

Standard 

deviations 
0.910 0.0375 7.00 0.154 1.99 0.228 0.995 0.0133 0.0303 0.308 

 

In addition to generating noise-free steering wheel angle predictions, the parametric driver model can 

also estimate the standard deviation of the driver noise referred to the steering wheel angle. This 

estimate can be compared with the measured noise level to check if the identified SNRs are realistic. 

Again, by assuming a small modelling error, the measured driver noise is given by (𝜃𝑠𝑤(𝑠𝑖𝑚) −

𝜃𝑠𝑤(𝑒𝑥𝑝)). The ratio between the measured and modelled driver noise standard deviations for each driver 

and trial combination is shown in Figure 5.18, using the single parameter set identified for each driver. 

Overall, the noise standard deviations match well between the model estimation and experimental 

measurement, indicating that the identified SNRs are capable of representing the actual driver noise 

seen in the experiments. 
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Figure 5.18: Ratio of the measured and modelled noise standard deviations for each driver and trial 

 

Similar to Section 5.3.4, experimental measurements in the last minute are used to validate the 

predictive power of the parametric driver model with SNRs and to check if there is any over-fitting. 

The averaged VAF values over the two linear trials by using the identification data as well as those 

obtained by using the validation data are plotted for each driver and the averaged driver in Figure 5.19. 

The VAF values in the validation data are found to be similar to those in the identification data, and the 

VAF values in the identification data and the VAF values in the validation data are almost equal to each 

other for the averaged driver. This good agreement proves that the identified driver model with SNRs 

should be able to give a good approximation to the human driver’s steering control behaviour. 

 

Figure 5.19: Validation of the parametric driver model with SNRs for each driver including the 

averaged driver (Driver 14). The VAFs obtained from the identification data are represented by the 
markers on the solid lines, while the VAFs obtained from the validation data are represented by the 

markers on the dashed lines. 
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5.6 Discussion 

The identified parameter values can be compared with results from the literature to determine if each 

block of the parametric driver model can describe realistic functions of the corresponding sub-system. 

The parameters found by using the averaged data are used for the comparison, as shown in Figure 5.8.  

The identified values of neuromuscular parameters are compared with those obtained by Hoult [17], 

who proposed a neuromuscular model for simulating driver steering torque and found ranges of values 

of the muscle damping, the arm inertia, and the stretch reflex for muscles with different states through 

experiments. It is seen that the identified stretch reflex gain 𝑘𝑟  is within the range found by Hoult, while 

the identified muscle damping 𝑐𝑎  and arm inertia 𝐼𝑎𝑟𝑚  are relatively larger than the corresponding 

values found by Hoult. However, the muscle model used in Hoult’s studies is different from Hill’s 

muscle model [121], and there is another non-zero damping term representing the intrinsic muscle 

properties. In addition, the values found by Hoult are identified through passive conditions and therefore, 

may not be applicable for the active steering control task. By taking these factors into account, the 

difference in the identified neuromuscular parameter values is plausible.  

Nash and Cole [117] found a set of process and measurement noise SNRs in the study of human sensory 

feedback in car driving. The identified values of process noise SNR𝑊 and visual vehicle yaw angle 

measurement noise SNR𝜓 in this study are comparable with the those found by Nash and Cole, while 

the identified value of visual path-following error measurement noise SNR𝑒 is much greater than the 

value found by Nash and Cole. However, the selected sensory measurement channels in the model 

developed by Nash and Cole are different from the ones selected in this study, which may influence the 

human driver’s weighting on each sensory measurement for the state estimator.  

The identified sensory delays can be compared against values summarised in [109]. As mentioned in 

Section 5.3.2, the sensory measurements used by humans for state estimation could include the 

information they perceived over a period and are optimally integrated in a sophisticated way, which 

makes it difficult to accurately identify separate time delays for different sensory channels. In addition, 

the cognitive delay is not included in the driver model explicitly, and thus the effect of this could also 

be incorporated in the sensory delay blocks. Therefore, it is not necessary for the identified sensory 

delays to match the literature. However, it is encouraging that the identified values are all within the 

ranges reported in [109].  
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Table 5.8: Comparison of identified parameter values with estimates from literature. Identified 

parameter values are obtained by using the averaged data. 

Parameter 𝑐𝑎 𝐼𝑎𝑟𝑚  𝑘𝑟  SNR𝑊 SNR𝑒 

Units Nms/rad kgm2 Nm/rad   

Identified 3.37 0.0973 24.9 0.600 4.75 

Literature 0 − 1.25 0.0286 − 0.0446 0 − 50 0.57 0.901 

Source [17] [17] [17] [117] [117] 

 

Parameter SNR𝜓 SNR𝜃𝑎 𝜏𝑣𝑖  𝜏𝜃𝑎  𝑇𝑡  

Units   s s s 

Identified 0.210 1.61 0.109 0.180 0.023 

Literature 0.415 − 0.100 − 0.560 > 0.034 − 

Source [117]  [109] [109]  

 

5.7 Conclusions 

The linear experimental results have been used to identify parameter values for a new parametric driver 

model incorporating steering torque feedback and state estimation. The fit of the identified model to the 

experimental results can achieve the upper bound limit given by the Box-Jenkins model, and a single 

set of parameter values has been found to fit the results from all linear trials well for most cases. The 

good agreement between the model and the experimental results supports the hypothesis that the 

identified parametric driver model is capable of representing the human driver’s on-centre steering 

control behaviour.  

The process noise standard deviation was found to be linearly dependent on RMS muscle activation 

torque, and this signal-dependence was also demonstrated to be valid for measurement noise. Using this 

linear relationship between signal magnitudes and noise standard deviations, a single set of parameter 

values with process and measurement noise SNRs was also identified for each driver and an averaged 

driver across the two linear trials with randomly moving target path. The averaged VAF value over the 

two trials is found to be 86.6% for the one parameter set found by using the averaged data. The high 

VAF value indicates that the identified driver model with the process and measurement noise SNRs can 

be used to simulate the driver’s steering control behaviour in a wide range of conditions. The identified 

parameter values are found to be physically reasonable compared with the literature. The identification 

results in this chapter could serve as the basis for the nonlinear identification phase.  
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Chapter 6 

Nonlinear Model Identification and Correlation 

with Subjective Assessment 

 

6.1 Introduction  

In Chapter 3, a novel mathematical model of the driver-steering-vehicle system has been developed, 

based on the hypothesis that a human driver learns an internal mental model of the driver-steering-

vehicle dynamics and uses the internal model in sensory perception, cognitive control, and 

neuromuscular action. A linear model is developed first to enable a fundamental understanding of 

steering torque feedback to be obtained. The model is then extended to account for the human driver’s 

steering control of a vehicle with nonlinear steering dynamics, especially nonlinear friction in the 

steering mechanism, by using an extended Kalman filter (EKF) and model predictive control (MPC) 

method, since the nonlinear steering system friction is thought to have a significant effect on the human 

driver’s subjective assessment of steering torque feedback [1] [22] [33] [58]. These effects have also 

been demonstrated in Chapter 4, where a series of driving simulator experiments consisting of trials 

with different steering system friction levels are presented, and the correlations between the subjective 

assessment of steering torque feedback and objective metrics measured in the experiments are found. 

In Chapter 5, parameter values are found for the linear driver model using an identification procedure 

to fit results from the linear phase of the experiments and are compared with literature results. The 

model fits the experimental results well, and the parameter values are found to be physically plausible. 

In this chapter, a parametric identification procedure is used to fit the nonlinear driver-steering-vehicle 

model to the results of the nonlinear phase of the experiments described in Chapter 4. The procedure is 

adjusted to account for the challenges of finding parameter values for a nonlinear driver model based 

on the identification results of the linear model in Chapter 5. Simulations are then run by taking the 

identified driver model, and the meticulously selected simulated signals are compared with the test 
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drivers’ subjective ratings to test the hypothesis that the human driver’s subjective rating of steering 

feel is related to the driver’s ability to predict the steering torque feedback using an internal mental 

model of the plant controlled by the driver and the known control input to the plant.  

Details of the method used to identify the nonlinear model are presented in Section 6.2. The 

identification results along with the validations of the identified model and the identification procedure 

are discussed in Section 6.3. The investigation of the correlation between the model and the subjective 

ratings is presented in Section 6.4. A summary of the findings is given in Section 6.5. 

 

6.2 Nonlinear Driver Model Identification 

The identification procedure developed in Chapter 5 has been demonstrated to successfully find the 

eleven unknown parameters of the linear driver model. However, various adjustments to the 

identification procedure must be made to identify the nonlinear driver model. In Section 6.2.1, various 

assumptions of the human driver’s internal mental model are justified. Details of the new identification 

procedure are given in Section 6.2.2. Similar to Chapter 5, the first minute of each trial is excluded from 

the data used for identification to eliminate the learning behaviour of human drivers, and the final 

minute of each trial is used to validate the identified driver model. 

 

6.2.1 Perception of Nonlinear Steering Dynamics  

The linear model identification described in Chapter 5 assumes that human drivers learn an accurate 

internal model of the driver-steering-vehicle dynamics, with any discrepancies between the model and 

the measurements represented by Gaussian process noise. However, previous literature [1] [22] [33] 

[58] found that higher steering system friction levels normally lead to subjectively worse steering feel. 

This suggests that human drivers in some circumstances may be unaware of the full nonlinear steering 

system friction dynamics or may use simplifications to reduce their mental load, resulting in the 

increased discrepancy between the predicted and measured driver-vehicle responses, which in turn 

causes unsatisfactory steering feel. To test this hypothesis, several variations of the human driver’s 

internal mental model of the plant are proposed to represent different assumptions about how accurately 

the human driver can learn the characteristics of the steering-vehicle system with nonlinear friction.  

The implemented driver model variations are summarised in Table 6.1. In driver model M0, the internal 

mental model is assumed to be equal to the linear part of the nonlinear plant, which means the modelled 

human driver ignores the friction in the steering system. In driver model M1, it is assumed that the 

internal mental model is equal to the linear part of the nonlinear plant plus an equivalent damping term 

𝐶𝑠𝑤 ′ of the steering system friction. The damping term 𝐶𝑠𝑤 ′ is placed between the inertia of the rack 
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and the front wheels 𝐼𝑐 shown in Figure 3.5 in Chapter 3 and the ground, and is identified for each driver 

and nonlinear trial by minimising the difference between the simulated torque demand signal 

𝑇𝑑𝑒𝑚𝑎𝑛𝑑(𝑠𝑖𝑚) and the actual torque demand signal 𝑇𝑑𝑒𝑚𝑎𝑛𝑑(𝑒𝑥𝑝) recorded during the driving simulator 

experiment. The simulated torque demand signal 𝑇𝑑𝑒𝑚𝑎𝑛𝑑(𝑠𝑖𝑚) is generated by using the measured 

steering wheel angle 𝜃𝑠𝑤(𝑒𝑥𝑝) and the open-loop internal mental model. Driver model M1 indicates that 

the modelled human driver linearises the nonlinear steering system friction as viscous damping in the 

internal mental model. In driver model M2, the internal mental model of the driver-steering-vehicle 

dynamics is exactly the same as the actual plant, representing a modelled human driver who can 

precisely perceive the nonlinear steering characteristics. In driver models M0 and M1, the LQR method 

and a time-varying linear Kalman filter are used since their internal mental models are entirely linear, 

while in driver model M2, the MPC method (both LMPC and NMPC) and an extended Kalman filter 

(both EKF1 and EKF2) are used, as derived in Chapter 3. 

Table 6.1: Variations of the human driver’s internal mental model of the plant 

Driver Model Internal model of the plant Controller and state estimator 

M0 The linear part of the real nonlinear plant only LQR with LKF 

M1 
The linear part of the real nonlinear plant plus 
an equivalent damping term of the steering 

system friction 𝐶𝑠𝑤 ′ 

LQR with LKF 

M2 Actual nonlinear plant LMPC/NMPC with EKF1/EKF2 

 

6.2.2 Identification Procedure  

In the identification described in Chapter 5, parameter values are identified by maximising the fit of the 

linear driver model to experimental results using a two-stage minimisation method which comprises a 

genetic algorithm and a gradient search method to find the global optimal solution. This procedure has 

been demonstrated to successfully find optimal values of a large number of parameters at the same time. 

However, numerous simulations of the closed-loop driver-steering-vehicle are required in each 

optimisation in order to find reliable parameter values. The nonlinear models take much longer to 

simulate than the linear model, making it impractical to identify many parameter values in the same 

way. Therefore, where possible parameter values for the nonlinear driver models are taken from the 

linear identification phase, and only the necessary parameters are identified. 

Signal-dependent relationships (SNRs) have been found for the driver process and measurement noise 

standard deviations in Chapter 5, allowing the noise standard deviations to be estimated based on the 

RMS values of the corresponding measured signal. Therefore, the noise parameters 𝑊, 𝑉𝑒, 𝑉𝜓 and 𝑉𝜃𝑎  

in the state estimator are calculated by: 
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𝑊 =
RMS(𝑇𝑎)

SNR𝑊
                                                                   (6.1) 

𝑉𝑒 =
RMS(𝑒)

SNR𝑒
                                                                    (6.2) 

𝑉𝜓 =
RMS(𝜓)

SNR𝜓
                                                                  (6.3) 

𝑉𝜃𝑎 =
RMS(𝜃𝑎)

SNR𝜃𝑎
                                                                 (6.4) 

where the path-following error 𝑒 and the vehicle yaw angle 𝜓 are directly recorded in the driving 

simulator experiments, while the muscle activation torque 𝑇𝑎  and muscle angle 𝜃𝑎  are estimated by 

using the procedure described in Section 5.3.3. Because the simulated muscle angle 𝜃𝑎(𝑠𝑖𝑚) in the first 

step of the estimation procedure is not available until the identified nonlinear driver model is known, 

the transfer function fitting the simulated muscle angle to the simulated steering wheel angle for 

experimental trial 3 is used for all the nonlinear trials by assuming the addition of nonlinear steering 

dynamics should not significantly affect the parameter values of the driver model, since the transfer 

function mainly describes the physical systems of the driver rather than the vehicle. In addition, the arm 

inertia 𝐼𝑎𝑟𝑚  and the cognitive controller time shift 𝑇𝑡  do not vary between different trials, so the values 

of these two parameters are taken directly from the linear driver model identification results. Therefore, 

the linear driver models M0 and M1 now only depend on the following five parameters: 

• Neuromuscular parameters: damping resisting stretching of the muscle fibre 𝑐𝑎, reflex gain 𝑘𝑟  

• Cognitive controller parameter: path-following error cost 𝑞𝑒 

• Sensory delays: visual delay 𝜏𝑣𝑖, muscle angle sensory delay 𝜏𝜃𝑎  

For nonlinear driver model M2, the MPC prediction horizon 𝑇𝑝 is set to 3s. As mentioned in Chapter 3, 

setting prediction horizon 𝑇𝑝 to 3s could make the finite-horizon MPC approximate an infinite-horizon 

controller and provides a good trade-off between making MPC and LQR perform similarly to each other 

with the same value of path-following error cost 𝑞𝑒 for linear models and saving computational time of 

MPC. There are two types of MPC developed for the human driver’s nonlinear control, namely LMPC 

and NMPC, as described in Chapter 3. The simulation results in Chapter 3 show that NMPC, where the 

full nonlinear optimisation is carried out, is the best performing controller, although it is matched closely 

by LMPC, where the nonlinear system dynamics are linearised about the predicted state at each time 

step up to the full prediction horizon. However, LMPC is much faster to run than NMPC. In the 

identification of nonlinear driver model M2, both LMPC and NMPC are tested. Due to MPC and EKF 

taking much more computational time than LQR and LKF, it is not practical to identify five parameters 

for nonlinear driver model M2. Most of the parameters are thus set to the values identified for trial 3 in 

the linear identification phase in Chapter 5 for each nonlinear trial, and only the path-following error 

cost 𝑞𝑒 is identified for nonlinear driver model M2.  
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The same identification strategy is also used for driver models M0 and M1 to enable direct comparisons 

between the three driver models. Since there is just one parameter to be identified, instead of using a 

rather complicated optimisation method, the closed-loop driver-steering-vehicle model is simulated 

with a range of manually selected values of 𝑞𝑒 and the VAF between the modelled steering wheel angle 

and the measured steering wheel angle is calculated for each value of 𝑞𝑒. The highest VAF and the 

corresponding value of 𝑞𝑒 are recorded. This identification method gives a reasonable estimate of 𝑞𝑒 in 

a computationally efficient way. 

However, in order to check if the parameter values adopted in Chapter 3 are appropriate for the 

nonlinear trials, another identification is conducted for driver models M0 and M1 separately by 

searching for the five parameters simultaneously. The identified parameter values and the VAFs are 

compared to those in the case where only the path-following error cost 𝑞𝑒 is identified to justify the 

fixed parameter values. Nash [126] pointed out that the gradient search optimisation method cannot be 

applied because the optimisation cost function does not vary smoothly with the parameter values when 

simulating model with nonlinearity, and successfully used a genetic algorithm only with 10 iterations 

and an initial population of 12 to identify two unknown parameters of a nonlinear driver model 

controlling a vehicle with nonlinear tyre dynamics. In this work, a similar approach is taken. The five 

parameter values are identified using a genetic algorithm with 100 iterations and an initial population 

of 20 here. Preliminary simulations show that this is sufficient to give a reasonable estimate of the five 

optimal parameters in the trials.  

Moreover, in Chapter 5, the measured steering actions are averaged over all the test drivers to give a set 

of ‘averaged data’, with lower noise levels compared to the individual drivers. However, this does not 

work for the nonlinear trials since the principle of superposition does not apply to nonlinear dynamics. 

Therefore, parameter values are only identified for each individual trial and driver separately.  

Furthermore, Box-Jenkins models are also identified to fit the results of each nonlinear trial. However, 

this may not give an upper bound limit on the fit of the nonlinear parametric model since the relationship 

between the input and output signals of the Box-Jenkins model is restrained to be linear. Nevertheless, 

it can still be used as a benchmark for the parametric identification. 

 

6.3 Identification Results and Analysis 

This section presents a comprehensive analysis of the model identification results. In Section 6.3.1, the 

agreement between the identified models and the experimental results is investigated, and the identified 

parameter values are discussed. The validity of the identified parametric driver models in terms of 

predicting realistic driving behaviours is checked against experimental results and is justified via 

various ways including simulations of identification and coherence functions in Section 6.3.2. A deep 
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learning identification is conducted in Section 6.3.3 to investigate the parametric driver model structure 

error. A new driver noise model is proposed to make the spectrum of the driver noise predicted by the 

identified driver model match that found in the experiments with an identification procedure to find the 

new noise model parameters in Section 6.3.4.  

 

6.3.1 Driver Model Fit  

Various assumptions of the human driver’s internal model of the real plant with the corresponding 

combination of state estimator and controller are proposed, as shown in Table 6.1. In Chapter 3, these 

different combinations were compared to each other through simulations. The simulation results show 

that the EKF and MPC method performs much better than the linear LQG framework. However, the 

computational time is sacrificed for the nonlinear driver model. The simulated results of the various 

driver models in Table 6.1 are compared with the experimental results simultaneously to investigate 

which one best describes the actual steering control behaviour of the human driver. In driver model M2, 

EKF1 and LMPC are chosen to save computational time as the simulation results in Chapter 3 show 

that the EKF1 and LMPC combination performs very similarly to the EKF2 and NMPC combination. 

Similar to Chapter 5, the ‘variance accounted for’ (VAF) is used to quantify the fit of a driver model to 

the experimental results. VAF values between the measured steering wheel angle and the simulated 

steering wheel angles of the identified driver models are plotted in Figure 6.1 for each driver and trial.  

Figure 6.1 shows that the VAF values, especially those for driver model M2, are comparable to those 

achieved by the linear driver model in trial 3 in Chapter 5. This indicates that the proposed driver models 

can predict the measured driver steering behaviour well. To visualise the difference in the fit to the 

measured data between various identified driver models easily, the difference between the VAF value 

found for each driver model and that found for driver model M2 is plotted in Figure 6.2 for each driver 

and trial. Figure 6.2 shows that, overall, the VAF values for driver model M2 are the largest among the 

three proposed driver models, suggesting most drivers are able to capture the steering system friction 

characteristics in the experiments. However, the VAF values for the two linear driver models M0 and 

M1 are close to or even higher than those for driver model M2 when the friction level is relatively low, 

such as trials 4, 5, 8 and 9 for most drivers. This shows that the drivers might linearise the nonlinear 

steering system friction or even neglect the effect of friction and only used a linear internal mental 

model for the steering control task in those trials. In contrast, in trials 6, 7, 10 and 11, where the friction 

level is relatively high, the VAF values for driver model M2 are much larger than those for the linear 

driver models. This could be because that the effect of steering system friction was too significant to be 

compensated by a linear internal mental model in those trials so that the drivers had to learn the 

dynamics of the nonlinear friction as much as they could to follow the target path accurately. However, 

it is interesting to notice that for Drivers 2 and 5, the VAF values for the linear driver models are larger 
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than those for driver model M2 in most trials, and there is no significant difference in the performance 

between the various driver models even in trials where the highest VAF value is given by driver model 

M2. In addition, it is important to bear in mind that there is some uncertainty associated with the VAFs. 

Therefore, it cannot be confidently concluded which model best represents the actual driver when the 

VAF differences between the various driver models are small for some drivers and trials. 

Identified values of the equivalent damping value 𝐶𝑠𝑤 ′ of the steering system friction in driver model 

M1 for each driver and trial are shown in Figure 6.3. An obvious proportional relationship between the 

identified value of 𝐶𝑠𝑤 ′ and the steering system friction is noticed, as expected. The identified values 

depend on the frequency bandwidth and the magnitude of the measured steering actions, which vary 

across drivers. Identified values of the path-following error cost 𝑞𝑒 for each driver averaged over the 

eight trials and for each trial averaged over the thirteen drivers are shown in Figure 6.4. Although there 

is some variation in the identified values for different drivers and different trials, the orders of magnitude 

are quite consistent. The averaged identified value of 𝑞𝑒 over all drivers and trials is around 7000.  

Simulations are run for driver model M2 with EKF2 and NMPC by taking the identified values of 𝑞𝑒 

for each driver and trial combination. The simulated steering wheel angles and the corresponding VAF 

values are almost identical to those for driver model M2 with EKF1 and LMPC, suggesting that EKF1 

and LMPC can approximate the full nonlinear state estimation and control. Another set of identification 

is conducted to search for the five parameter values for driver models M0 and M1, as mentioned in 

Section 6.2. There is some variation in the identified values for different trials for each driver. However, 

the VAF values are quite similar to those shown in Figure 6.1. This demonstrates that the fixed 

parameter values taken from the linear identification phase in Chapter 5 are appropriate for the nonlinear 

trials.  
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Figure 6.1: VAF values between the measured and modelled steering wheel angles for various driver 

models. 
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Figure 6.2: Difference between VAF values between the measured and modelled steering wheel angles 

with various driver models, and with driver model M2. 
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Figure 6.3: Identified equivalent damping value 𝐶𝑠𝑤 ′ of the steering system friction in driver model 

M1 for each driver and trial. 

 

 



6.3 Identification Results and Analysis                                                                                   189     

 

 

Figure 6.4: Identified values (crosses) of path-following error cost 𝑞𝑒 for drivers averaged over all trials, 

and for trials averaged over all drivers. The average of the crosses is shown by the solid horizontal line 

in each subfigure. 

 

6.3.2 Driver Model and Identification Validation  

Switching the attention back to Figure 6.1, it is shown that the nonlinear driver model M2 does not give 

larger VAF values than the Box-Jenkins model even in trials with high friction levels. This could be 

because the steering system friction is a predictable source of disturbance that a human driver can 

compensate by additional muscle activation, and driver model M2 is able to successfully compensate 

the friction disturbance. Therefore, although the plant is nonlinear and the human driver’s state 

estimator and control could exhibit nonlinear behaviour, the resulting driver-steering-vehicle response 

to random external disturbances would appear linear, and the VAF for the Box-Jenkins model would 

still be an upper bound on the VAF for driver model M2. To test this hypothesis, simulations of 

identification are conducted. Artificial steering wheel angles are created for each of the nonlinear trials 

using driver model M2 with the identified value of 𝑞𝑒 for each driver. No process and measurement 

noise are added in the simulation, making all the steering actions be generated using the driver model. 

The identification is then conducted by fitting both the Box-Jenkins model and the driver-steering-

vehicle model with driver model M2 to the artificial steering wheel angles, and the corresponding VAFs 

are recorded. For driver model M2, the VAFs will be 100%. The same simulation of identification 

procedure is also applied to driver models M0 and M1. The resulting VAF values between the artificial 

steering wheel angle and the simulated steering wheel angles of the known driver model and Box-
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Jenkins model for Driver 1 are plotted in Figure 6.5 as examples, for each driver model. The results for 

the other drivers are similar to those for Driver 1. It is seen that the VAFs for the parametric driver 

models are 100%, as expected. The linear driver model M0 and M1 cause the VAF for the Box-Jenkins 

model to reduce, while the VAFs for the Box-Jenkins model are quite close to 100% in all trials 

generated by driver model M2. The results indicate that the nonlinear driver model M2 acts to fully 

linearise the closed-loop driver-steering-vehicle system, while the linear driver models M0 and M1 may 

also linearise the nonlinear steering dynamics to some extent.  

Figure 6.5: VAF values between the artificial and modelled steering wheel angles for Box-Jenkins 

model and the parametric driver models for Driver 1. 

 

Moreover, the coherence function is used to quantify the linearity of the relationship between the 

artificial steering wheel angle and the randomly moving target path in a wide range of frequencies. A 

value of one across the frequency range implies there is no noise and no nonlinearity. Coherence 

functions relating the artificial steering wheel angles generated by the three identified parametric driver 

models and the randomly moving path for trial 11 with Driver 1 are plotted in Figure 6.6 as an example. 

The spectrum of the artificial steering wheel angles generated by each parametric driver model is also 

plotted in Figure 6.6. The results for the other drivers are similar to those for Driver 1. Figure 6.6 shows 

that the coherence function value for driver model M2 is very close to one, supporting the hypothesis 

that the nonlinear driver model M2 could fully linearise the nonlinear steering dynamics to make the 

closed-loop driver-steering-vehicle system response to external disturbances linear, at least at normal 

operating frequencies. In addition, the coherence function values for driver models M0 and M1 are 

slightly lower than for driver model M2. Again, this indicates that the linear driver models M0 and M1 

may also linearise the nonlinear steering dynamics to some extent.  
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Figure 6.6: Coherence functions of the artificial steering wheel angles generated by the three identified 
parametric driver models and the randomly moving path for trial 11 with Driver 1, with spectrum of the 

artificial steering wheel angles. 

 

Similar to Chapter 5, experimental measurements in the last minute are used to validate the identified 

models and check for over-fitting. The averaged VAF values calculated over all the eight nonlinear 

trials for each driver are presented in Figure 6.7 for each driver model. Overall, the VAF values in the 

validation data are similar to those in the identification data for all the identified models. However, 

some over-fitting may have occurred for several drivers, such as Drivers 4, 6 and 10. These may be due 

to the identified models fitting to some random variations and may also be because the drivers did not 

keep their control strategy constant in each trial.  
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Figure 6.7: Validation of the identified models for each driver. Averaged VAF values over all the trials 

are compared. The VAFs obtained from the identification data are represented by the markers on the 
solid lines, while the VAFs obtained from the validation data are represented by the markers on the 

dashed lines. 

 

6.3.3 Deep Learning Identification 

The deep learning neural network, a data-driven Black Box modelling method, is an alternative to 

parametric-model methods for system identification [150] and can capture the underlying nonlinearity 

in the input-output relationship for complex systems according to Universal Approximation Theorem 

[151]. Recent studies [152] [153] [154] [155] show that Recurrent Neural Network (RNN) [156] [157], 
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a particular type of neural network emphasising the learning of features from a time sequence data, is 

an efficient modelling method to predict the time history response of dynamic systems as the system 

output is considered as a function of past values of system outputs, system inputs and prediction errors 

in this model. However, basic RNN could become unreliable for larger time sequences because the 

gradient of loss function will vanish gradually in the learning process so that the neural network cannot 

be optimised. Long Short-Term Memory (LSTM) [158], which is a complex form of basic RNN, 

addresses the vanishing gradient problem by adding additional components. The special memory states 

in LSTM allows the information from a given time step to be retained till the end of the time sequence. 

More about the explanation of the vanishing gradient issue and how LSTM avoids the problem is found 

in [158]. As a result, LSTM has been used to successfully identify the nonlinear dynamic system in 

[152] and [153], and Deep LSTM has been proved to be able to accurately predict dynamic system 

response in [154] and [155]. In this work, a Deep LSTM structure is used to fit the measured data to 

estimate the contribution of the driver’s control behaviour to the measured steering actions. The 

identification results are compared with those from parametric model identification to investigate if 

there is any measured behaviour that is not captured by the identified parametric driver models, as the 

Deep LSTM gives an approximate upper bound limit of how well a model could be expected to fit. 

Figure 6.8 shows the architecture of Deep LSTM estimating the dynamic relationship between the 

model input randomly moving target lateral position 𝑟 and the model output steering wheel angle 𝜃𝑠𝑤. 

The Deep LSTM structure includes a sequence input layer, multiple LSTM layers, fully connected 

layers, and a regression output layer.  

 

Figure 6.8: Schematic diagram of the Deep LSTM network mapping the model input randomly moving 

target lateral position 𝑟 and the model output steering wheel angle 𝜃𝑠𝑤 with 𝑚 LSTM layers and fully 

connected layers. 
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The structure of each individual LSTM cell is shown in Figure 6.9. It comprises four units: a forget gate, 

an input gate, a tanh layer, and an output gate. The cell state retains the valuable information of the 

dynamic system carried by the time sequences with the help of the LSTM gates. Detailed explanations 

about how the gates work are found in [158].  

 

Figure 6.9: Schematic diagram of an individual cell of LSTM at layer 𝑙 and time step 𝜏, which depicts 

operations via the gates, cell state and hidden state. 

 

The mathematical operations in the LSTM cell are as follows: 

𝚪𝑓 = 𝜎 (𝑾𝑟𝑓
(𝑙)𝒓𝜏

(𝑙) +𝑾ℎ𝑓
(𝑙)𝒉𝜏−1

(𝑙) + 𝒃𝑓
(𝑙))                                                (6.5) 

𝚪𝑖 = 𝜎 (𝑾𝑟𝑖
(𝑙)𝒓𝜏

(𝑙) +𝑾ℎ𝑖
(𝑙)𝒉𝜏−1

(𝑙) + 𝒃𝑖
(𝑙))                                                (6.6) 

𝚪𝑜 = 𝜎 (𝑾𝑟𝑜
(𝑙)𝒓𝜏

(𝑙) +𝑾ℎ𝑜
(𝑙)𝒉𝜏−1

(𝑙) + 𝒃𝑜
(𝑙))                                                (6.7) 

𝒄̃𝜏
(𝑙)
= tanh(𝑾𝑟𝑐

(𝑙)𝒓𝜏
(𝑙) +𝑾ℎ𝑐

(𝑙)𝒉𝜏−1
(𝑙) + 𝒃𝑐

(𝑙))                                            (6.8) 

𝒄𝜏
(𝑙)
= 𝚪𝑖 ∗ 𝒄̃𝜏

(𝑙) + 𝚪𝑓 ∗ 𝒄𝜏−1
(𝑙)                                                             (6.9) 

𝒉𝜏
(𝑙)
= 𝚪𝑜 ∗ tanh(𝒄𝜏

(𝑙))                                                             (6.10) 

where 𝑾𝛼𝛽
(𝑙)

 (with 𝛼 = {𝑟, ℎ} , 𝛽 = {𝑓, 𝑖, 𝑜, 𝑐} ) denotes weightings on the corresponding states, 𝒃𝛽 

denotes bias vectors added to the functions, ∗  denotes element-wise multiplication, and 𝜎  denotes 

sigmoid function. 
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Hyperparameters including variables which determine the Deep LSTM network structure such as 

number of units (dimension of the hidden state) and number of layers, and variables which determine 

the training of the network such as the learning rate need to be tuned to prevent over-fitting and under-

fitting while ensuring efficient computation in the training progress. In this study, a 7-layer Deep LSTM 

network with 300 units in each layer has been found to be able to represent the driver-steering-vehicle 

system dynamics well based on the results of preliminary simulations. The learning rate is set to 0.01 

and the ‘Adam’ algorithm is chosen for the optimisation considering the complexity of the system to be 

identified. The ‘Adam’ algorithm, which combines the advantages of ‘gradient descent with momentum’ 

and ‘RMSprop’ algorithms, has been demonstrated to be able to produce the best optimisation results 

[159]. Similar to the Box-Jenkins identification and the parametric model identification, data in the last 

minute is used to validate the identified Deep LSTM model and to check for over-fitting and under-

fitting, and VAF is used to quantify the fit of the model to the experimental results. The maximum 

number of epochs for the training is set to 600, and the model at the epoch where the VAF for the 

validation data is the maximum is selected.    

Simulations of identification are conducted to test the capability of the Deep LSTM model to capture 

the target lateral position to steering wheel angle relationship if any nonlinearity does exist. Artificial 

steering wheel angles are created for each of the nonlinear trials using driver model M0 with the 

identified value of 𝑞𝑒 for each driver without noise. The linear driver model M0 is chosen so that the 

closed-loop driver-steering-vehicle system still behave nonlinearly. Different from the artificial steering 

wheel angles generated using the same identified driver model M0 in Section 6.3.2, the bandwidth and 

the magnitude of the randomly moving target path input are adjusted to increase the proportion of 

nonlinearity in the data.  The identification is then conducted by fitting both the Box-Jenkins and the 

Deep LSTM models to the artificial steering wheel angles, and the corresponding VAFs are recorded. 

The resulting VAF values between the artificial steering wheel angle and the simulated steering wheel 

angles of the Deep LSTM model and Box-Jenkins model for all the nonlinear trials with Driver 1 are 

plotted in Figure 6.10 as examples. The VAFs for the Box-Jenkins model drop with the increase in 

friction level, indicating an increasing trend of the contribution of nonlinear behaviour to the artificially 

generated steering actions. In contrast, the VAFs for the Deep LSTM model reach about 98% for all the 

trials for both the training data set and validation data set. This suggests that the Deep LSTM model is 

able to capture and predict the nonlinear relationship.  
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Figure 6.10: VAF values between the artificial and modelled steering wheel angles for Box-Jenkins 

model and Deep LSTM model for Driver 1. 

 

Figure 6.11 compares the VAF for the Deep LSTM model with the highest VAF achieved by the 

previously identified models, either the Box-Jenkins model or the parametric driver models, for the 

validation data for each driver and trial. It is seen that VAFs are the largest for the Deep LSTM model, 

which is expected as the Deep LSTM model effectively gives an upper bound limit on the proportion 

of the steering wheel angle data that a model can predict. However, the maximum values of the VAFs 

for the other models are quite close or even equal to the VAFs for the Deep LSTM model. This indicates 

that the parametric driver models can explain the drivers’ steering control of a vehicle with nonlinear 

steering friction quite well. However, there could be some driver control randomness that cannot be 

captured by the Deep LSTM model or the parametric driver-steering-vehicle model other than noise. 

For example, Johns and Cole [160] found that human drivers may use an intermittent control strategy, 

where they only apply control actions when some of the signals they perceived have exceeded a 

threshold, which may vary randomly during the driving. For simplicity, continuous driving is assumed 

and any characteristic that cannot be fitted by the Deep LSTM model is regarded as random noise in 

this study. 
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Figure 6.11: VAF values between the measured and modelled steering wheel angles for Box-Jenkins 

model and Deep LSTM model. 
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6.3.4 Measured and Modelled Driver Noise  

Figure 6.1 shows that there is some variation in VAFs between different trials for each driver, and a 

decreasing trend is identified with the increase of friction level for most of the drivers. The deep learning 

identification results presented in Section 6.3.3 suggest that the parametric model error is small. 

Therefore, the variation in VAFs is predominantly due to the driver process noise because the effect of 

measurement noise is significantly reduced by the state estimator, as mentioned in Chapter 5. In this 

case, the driver process noise reflected in the steering wheel angle comes from the process noise added 

on the neural activation signal. The neural activation signal is processed by the neuromuscular dynamics 

and steering system dynamics, which varies with the steering system friction level. Therefore, the effect 

of the driver process noise on the variation in VAFs could be either due to the signal-to-noise ratio 

SNR𝑊 being not constant cross different trials, or due to variation in the system dynamics for different 

trials with a relatively constant SNR𝑊. To investigate which one is the root cause of the variation in the 

experimental noise level, simulated driver noise referred to the steering wheel angle 𝑤𝑠𝑤(𝑠𝑖𝑚)  is 

generated and compared with the experimental noise (𝜃𝑠𝑤(𝑒𝑥𝑝) − 𝜃𝑠𝑤(𝑠𝑖𝑚)). The identified driver 

model M2 is used in the simulations as it gives the highest VAF overall. 

In order to have reliable simulations results, a deeper understanding of the driver’s noise characteristics 

needs to be obtained. Figure 6.12 compares the spectrum of the experimental noise (𝜃𝑠𝑤(𝑒𝑥𝑝)(𝑠) −

𝜃𝑠𝑤(𝑠𝑖𝑚)(𝑠)) and with the spectrum predicted by the model 𝑤𝑠𝑤(𝑠𝑖𝑚)(𝑠) with Gaussian white process 

noise added to the neural activation signal. Even though the RMS noise level on the steering wheel 

angle is similar in the simulation and the experiment, the modelled noise contains more high-frequency 

components while the experimental noise contains more low-frequency components. This suggests that 

the assumption of white process and measurement noise may be invalid, which was also noticed by 

Nash [126]. In order to have a realistic simulated driver’s noise signal, the process noise model is revised 

based on the assumption that the noise spectrum should be similar in shape to the corresponding signal. 

Therefore, the Gaussian white process noise is processed by a filter 𝐻𝑓𝑤  before applied to the neural 

activation signal, as shown in Figure 6.13. The noise filter 𝐻𝑓𝑤  is defined as a combination of a second-

order low-pass filter with a cut-off frequency 𝑓𝑤𝑙 and a second-order high-pass filter with a cut-off 

frequency 𝑓𝑤ℎ:  

𝐻𝑓𝑤(𝑠) = (
𝑠

𝑠 + 𝑓𝑤ℎ
)
2

(
𝑓𝑤𝑙

𝑠 + 𝑓𝑤𝑙
)
2

                                                 (6.11) 

For simplicity, this filter is not included in the human driver’s internal mental model. 
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Figure 6.12: Spectrum of the driver noise referred to the steering wheel angle 𝜃𝑠𝑤, as found in the 

experiment and as predicted by the model for trial 4 with Driver 1, using the SNR𝑊 obtained in the 

linear identification phase described in Chapter 5. 

 

Figure 6.13: Schematic diagram of the nonlinear driver-steering-vehicle model with process noise filter 

𝐻𝑓𝑤 .  

 

There are three parameter values to be determined in the new process noise model: the white noise 

amplitude RMS(𝑤), and cut-off frequencies 𝑓𝑤𝑙 and 𝑓𝑤ℎ  of the filter 𝐻𝑓𝑤 . An identification procedure 

is developed to find the values of these three parameters to make the spectrum of the filtered white noise 

𝑤𝛼 be similar to the spectrum of neural activation signal 𝛼 in shape while ensuring the effect of the 

filtered white noise 𝑤𝛼  is equivalent to that of the originally assumed white process noise 𝑤 , the 

standard deviation of which is equal to the Kalman filter parameter 𝑊. The identification is conducted 

in several steps for each driver and trial combination separately: 
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1. The simulated neural activation signal 𝛼𝑠𝑖𝑚 is generated first by running a noise-free simulation 

of the identified driver-steering-vehicle model for the use of identification. 

2. The spectrum of the simulated filtered process noise 𝑤𝛼(𝑠𝑖𝑚)(𝑠) can be compared with the 

simulated neural activation signal 𝛼𝑠𝑖𝑚(𝑠)  and the difference (𝛼𝑠𝑖𝑚(𝑠) − 𝑤𝛼(𝑠𝑖𝑚)(𝑠))  is 

minimised to find the three parameter values simultaneously. This gives the simulated filtered 

white noise spectrum approximately the same as the simulated neural activation signal. 

3. The values of cut-off frequencies 𝑓𝑤𝑙 and 𝑓𝑤ℎ  are then fixed. However, the value of RMS(𝑤) 

needs to be adjusted because it is desirable for the steering wheel angle noise amplitude 

predicted by the model to match the noise amplitude found in the experiment. A process signal-

to-noise ratio SNR𝑊 has been determined for each driver to achieve this goal in Chapter 5 and 

been used in the nonlinear phase identification procedure, as described in Section 6.2.2. 

However, the previously determined SNR𝑊 value for each driver needs to be adjusted as the 

noise model structure has been modified. The new value of SNR𝑊 for each driver is determined 

using the linear trial 3 in several steps: 

a. Simulated driver noise referred to the steering wheel angle 𝑤𝑠𝑤(𝑠𝑖𝑚) is generated by 

using the identified linear driver-steering-vehicle model in Chapter 5 with the 

additional process noise filter 𝐻𝑓𝑤  identified in step 2 with process noise 𝑤 only, where 

the amplitude RMS(𝑤) = the identified value of 𝑊 in the Kalman filter in trial 3.  

b. The simulated noise amplitude RMS(𝑤𝑠𝑤(𝑠𝑖𝑚)) for trial 3 is calculated. 

c. The white noise amplitude RMS(𝑤) for trial 3 is then scaled by using the ratio: the 

experimental noise amplitude RMS(𝜃𝑠𝑤(𝑒𝑥𝑝)(𝑠) − 𝜃𝑠𝑤(𝑠𝑖𝑚)(𝑠)) to the simulated noise 

amplitude RMS(𝑤𝑠𝑤(𝑠𝑖𝑚)).  

d. The new value of SNR𝑊 is defined as the ratio of the scaled white noise amplitude 

RMS(𝑤) for trial 3 to the experimental muscle activation torque amplitude 𝑇𝑎(𝑒𝑥𝑝), 

which is estimated using the procedure described in Section 5.3.3. 

The value of RMS(𝑤) for each driver and trial is then calculated by:  

RMS(𝑇𝑎(𝑒𝑥𝑝))

the new value of SNR𝑊
                                                        (6.12) 

Figure 6.14 compares the spectrum of the filtered white noise 𝑤𝛼(𝑠𝑖𝑚)(𝑠) generated using the identified 

parameter values in step 2 with the spectrum of the simulated neural activation signal 𝛼𝑠𝑖𝑚(𝑠). It is 

shown that the two spectrums match each other well, demonstrating the ability of the new noise model 

to replicate more realistic driver noise characteristics.  
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Figure 6.14: Spectrum of neural activation signal 𝛼 predicted by the identified driver model M2, and 

the spectrum of filtered white noise 𝑤𝛼 in step 2 for trial 4 with Driver 1. 

 

Figure 6.15 compares the spectrum of the experimental noise (𝜃𝑠𝑤(𝑒𝑥𝑝)(𝑠) − 𝜃𝑠𝑤(𝑠𝑖𝑚)(𝑠)) with the 

spectrum predicted by the driver-steering-vehicle model 𝑤𝑠𝑤(𝑠𝑖𝑚)(𝑠) with the modified noise model. 

The spectrums are similar in shape to each other. However, there is some discrepancy in the amplitudes, 

which suggests that the value of SNR𝑊 might be affected by the steering system friction level. 

 

Figure 6.15: Spectrum of the driver noise referred to the steering wheel angle 𝜃𝑠𝑤, as found in the 

experiment and as predicted by the identified driver model M2 for trial 4 with Driver 1, using the 

modified noise model. 

 

To further investigate how the VAF would vary between trials with a constant SNR𝑊, another set of 

simulations of identification is conducted. Artificial steering wheel angles are generated for each of the 

nonlinear trials using the identified driver model M2 for each driver. Filtered process white noise is 

added with the identified noise model parameter values. The identification of driver model M2 is run 

for the artificial steering wheel angles for each driver and trial. The resulting VAF is compared with the 
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corresponding VAF of driver model M2 fitting the actual experimental data, as shown in Figure 6.16. 

The discrepancy between the VAF values indicates that the values of SNR𝑊 in the nonlinear trials are 

not always equal to that in the linear trials.  

For easier comparison, the difference in VAF between the two sets of identification results is plotted in 

Figure 6.17 for each driver and trial. An apparent increasing trend in the VAF difference is noticed with 

the increase of steering system friction level. This suggests that the drivers had more process noise when 

there is more friction in the steering system. This might be because that the existence of friction prevents 

the actual system dynamics from being learnt by the drivers and therefore results in confusion in drivers’ 

mind, which is also captured by process noise in the parametric model. 
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Figure 6.16: VAF values between the measured and modelled steering wheel angles for driver model 

M2, and VAF values between the artificially generated and modelled steering wheel angles for driver 

model M2. 
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Figure 6.17: Difference between VAF values between the measured and modelled steering wheel 

angles with driver model M2, and between the artificially generated and modelled steering wheel angles 

for driver model M2. 
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6.4 Correlation between the Model and Subjective Assessment 

In previous sections, the new parametric driver model structure is found to fit the experimental results 

from the nonlinear trials well, which has been justified by a comprehensive analysis of the identification 

results. In this section, the correlation between the parametric driver model and the human driver’s 

subjective assessment of steering feel is explored through a series of simulations. To allow reliable 

simulations to be carried out, a rigorous method with multiple steps is developed by taking account of 

the variation in process noise signal-to-noise ratio in trials with different levels of steering system 

friction, as described in Section 6.4.1. The correlation results are presented in Section 6.4.2. These 

results highlight the potential of using the new parametric driver model structure to explain and predict 

the human driver’s subjective responses to steering feel. 

 

6.4.1 Simulation Techniques  

Simulation is run by using the identified parametric driver model giving the highest VAF for each driver 

and trial with process noise, the standard deviation of which should be equal to the corresponding value 

of the noise parameter 𝑊 in the state estimator, which can be determined by the value of RMS muscle 

activation torque 𝑇𝑎 and the identified process noise signal-to-noise ratio SNR𝑊. However, it has been 

found in Section 6.3.4 that setting the value of SNR𝑊  constant for all the nonlinear trials is not 

appropriate, and Gaussian white noise cannot represent the characteristics of a real driver’s noise. 

Therefore, a modification to the identified parametric driver model is conducted through several steps 

to allow reliable simulation results to be collected: 

• First, it is necessary for the noise amplitude predicted by the model RMS(𝑤𝑠𝑤(𝑠𝑖𝑚)) to match 

the noise amplitude found in the experiment RMS(𝜃𝑠𝑤(𝑒𝑥𝑝) − 𝜃𝑠𝑤(𝑠𝑖𝑚)). Therefore, the value 

of process noise signal-to-noise SNR𝑊 is scaled by using the ratio of the measured to modelled 

noise amplitudes and is used to update the value of the noise parameter 𝑊 in the state estimator. 

This step is repeated iteratively until this ratio is almost equal to one.  

• Second, it is also desirable for the spectrum of the noise predicted by the model 𝑤𝑠𝑤(𝑠𝑖𝑚)(𝑠) to 

match the spectrum of noise found in the experiment (𝜃𝑠𝑤(𝑒𝑥𝑝)(𝑠) − 𝜃𝑠𝑤(𝑠𝑖𝑚)(𝑠)). Therefore, 

the Gaussian white noise only process noise model is replaced by the new process noise model 

proposed in Section 6.3.4 and the three parameter values in the new noise model are found 

following the proposed identification method in that section. Different to the identification 

procedure described in Section 6.3.4, the white noise amplitude RMS(w) is found by matching 

the noise level in the trial itself, not in trial 3, in step 3 of the identification.  
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6.4.2 Correlation Results  

As mentioned in Chapter 4, the subjective questions answered by the drivers can be divided into two 

categories, one is called estimation: judging the magnitude of an objective metric, and the other is called 

evaluation: assessing the properties of the steering-vehicle system based on purely subjective 

experience. Similar to Section 4.6.4 in Chapter 4, the normalised subjective ratings on most of the 

estimation questions are compared with the values of the corresponding test drivers’ estimated objective 

metrics from simulations through linear regression, as shown in Figure 6.18. The shaded area in each 

plot is the 95% confidence interval for the mean values of the normalised subjective ratings based on 

the assumption of t-distribution. There are three linear regression lines for each group of trials in each 

plot: the solid line represents the linear regression of mean values of the ratings, and the dashed lines 

represent the borders of the 95% confidence area. The absolute value of the correlation coefficient |𝑟| 

for each linear regression line is also shown in Figure 6.18. The definitions of the objective metrics are 

similar to those defined in Section 4.6.4 in Chapter 4. However, the signals estimated by the state 

estimator from simulations are used instead of the signals measured in the experiments. In addition, the 

value of RMS steering torque is replaced by the value of RMS muscle activation torque in the 

calculation of steering resistance level and nonlinear torque ratio. 

Overall, the normalised subjective ratings provided by the drivers correlate well with the values of the 

corresponding test drivers’ estimated objective metrics from simulations, with six values of the absolute 

value of the correlation coefficient |𝑟|  larger than 0.9 and three values between 0.8 to 0.9. The 

correlation results are comparable with those in Section 4.6.4, suggesting that the parametric driver 

model can reproduce the test drivers’ steering behaviour. These results also show the capability of the 

parametric driver model structure to reflect the test drivers’ subjective responses to the estimation 

questions. It is shown that the estimated yaw gain correlates with the rating of yaw gain inversely for 

trials 3 and 8 to 11. However, the range of the distribution for the ratings of yaw gain is quite small. 

Taking this into account, this correlation result is plausible.  
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Figure 6.18: Correlations between normalised subjective ratings and simulated human drivers’ 
estimated objective metrices with the correlation coefficients. The shaded area represents the 95% 

confidence interval(CI) for the mean values of the normalised subjective ratings. The solid line 

represents the linear regression(LR) of mean values of the ratings and the dashed lines represent the 

borders of the 95% confidence area. 
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It is hypothesised that the human driver’s subjective rating of steering feel is related to the driver’s 

ability to predict the steering torque feedback using an internal mental model and the known control 

input. To test this hypothesis, the normalised subjective ratings on the three evaluation questions are 

compared with the state estimator prediction error 𝒛(𝑘) + 𝒗(𝑘) − 𝐂𝒙𝑒(𝑘|𝑘 − 1), which represents the 

discrepancy between the predicted and the measured sensory feedback, from simulations. Again, the 

linear regression method is used, and the resulting absolute values of the correlation coefficient for trials 

3 to 7 and trials 3 and 8 to 11 are summarised in Table 6.2 and Table 6.3, respectively. The average of 

all the correlation coefficients in the two tables is 0.9127. The large correlation coefficients suggest that 

the test drivers’ subjective evaluation of steering feel correlates well with state estimator prediction 

error. Figure 6.19 illustrates the correlations for Q9 as an example. In general, the subjective evaluation 

is perceived as worse with an increase in state estimator prediction error, which is a combined effect of 

increased internal mental model inaccuracy and increased driver noise level. However, the test drivers 

gave the highest ratings in trials with a small non-zero steering system friction. As explained in Chapter 

4, this could be because the test drivers perceived the steering-vehicle system as more stable compared 

with trial 3 as the small amount of steering system friction provides the essential damping effect to 

stabilise the system. To check this, the step response of the steering-vehicle system with the equivalent 

damping value 𝐶𝑠𝑤
′  of the steering system friction shown in Figure 6.3 is plotted for each trial in Figure 

6.20. The system is clearly shown to be less stable in trial 3 than in the other trials, evidenced by the 

larger overshoot and longer settling time for trial 3.  

Table 6.2: Absolute values of correlation coefficient of evaluation subjective questions vs. state 

estimator prediction error for trials 3 to 7 

Simulated signal 
Q2 (how easy is it to 

follow the path) 

Q8 (how connected 

does it feel) 

Q9 (how helpful is 

the steering torque 

feedback) 

State estimator prediction error for 

𝑒(𝑘 − 𝑁𝑣𝑖)  
0.8400 0.7852 0.7727 

State estimator prediction error for 

𝜓(𝑘 −𝑁𝑣𝑖) 
0.9751 0.9455 0.9841 

State estimator prediction error for 

𝜃𝑎(𝑘 − 𝑁𝑣𝜃𝑎) 
0.9440 0.9624 0.9262 
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Table 6.3: Absolute values of correlation coefficient of evaluation subjective questions vs. state 

estimator prediction error for trials 3 and 8 to 11 

Objective metrics 
Q2 (how easy is it to 

follow the path) 

Q8 (how connected 

does it feel) 

Q9 (how helpful is 

the steering torque 

feedback) 

State estimator prediction error for 

𝑒(𝑘 − 𝑁𝑣𝑖) 
0.8782 0.9364 0.8843 

State estimator prediction error for 

𝜓(𝑘 −𝑁𝑣𝑖) 
0.9679 0.9322 0.9640 

State estimator prediction error for 

𝜃𝑎(𝑘 − 𝑁𝑣𝜃𝑎) 
0.8766 0.9577 0.8964 

 

  

 

Figure 6.19: Correlations between normalised subjective ratings for Q9 and simulated state estimator 

prediction error signals with their correlation coefficients.  
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Figure 6.20: Step response of the steering-vehicle system with an equivalent damping value 𝐶𝑠𝑤
′  of the 

steering system friction shown in Figure 6.3 for each trial for Driver 1. 

 

6.5 Conclusions 

The results from the nonlinear experiments have been used to identify parameter values and the internal 

mental model for a driver model controlling a vehicle with nonlinear steering system friction. The fit 

of the identified models to the experimental results can achieve the upper bound limit given by the Deep 

LSTM model, indicating that the model structure is able to accurately predict the deterministic 

component of the human driver’s on-centre steering control of a vehicle with nonlinear steering system 

friction. 

For most of the nonlinear trials, a nonlinear driver model accounting for the full nonlinear steering 

dynamics fits the measured results best. However, a driver model linearising the nonlinear steering 

system friction or even neglecting the effect of friction provides a similar or even higher agreement to 

the experimental results in trials with low friction levels. The driver model with an accurate nonlinear 

internal mental model has also been found to fully linearise the closed-loop driver-steering-vehicle 

system.  

The assumption of Gaussian white noise for the driver’s noise was found to be invalid, and a new 

process noise model developed based on the assumption that the noise spectrum should be similar in 

shape to the corresponding signal was found to fit the characteristics of the experimental driver noise 

well. In addition, the identified process noise level was found to increase with the increase in steering 

system friction level. Therefore, separate values of process noise signal-to-noise ratio SNR𝑊 have been 

identified for each driver and trial combination, and the driver model structure has been updated by 

incorporating the new process noise model. However, it is possible that drivers may use an intermittent 

and threshold-driven control strategy which might not be represented by the neural network and the 
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current driver model structure and therefore might explain the increase in identified process noise level 

with the increase in steering system friction level. 

Simulations were run to investigate the capability of the driver model to predict the human driver’s 

subjective assessment of steering feel. The drivers’ ratings for the subjective questions judging the 

magnitude of several objective metrics correlated well with the magnitudes of the corresponding signals 

from the state estimator, with six of the absolute values of the linear regression coefficient above 0.9 

(for friction level, physical effort level, yaw delay for trials 3 to 7, and yaw gain for trials 3 and 8 to 11), 

and three values between 0.8 to 0.9 (for yaw delay for trials 3 and 8 to 11, yaw gain for trials 3 to 7, and 

yaw linearity for trials 3 and 8 to 11). These large correlation coefficient values show the capability of 

the driver model structure to reflect the drivers’ ability to estimate the actual objective metrics. The 

drivers’ subjective evaluation of steering feel correlated with the state estimator prediction error, which 

represents the discrepancy between the predicted and measured sensory feedback, with the averaged 

correlation coefficient being 0.9127. Overall, the subjective evaluation is perceived as worse with an 

increase in state estimator prediction error, which results from the increased internal mental model 

inaccuracy and/or the increased driver noise level. These results highlight the potential of using the 

driver model structure to explain and predict the human driver’s subjective responses to steering feel. 

However, the limitation of the model is that the values of SNR𝑊 were identified using the experimental 

results. Future work is necessary to understand why and how the identified process noise level depends 

on the steering and vehicle parameters.  
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Chapter 7 

Conclusions and Future Work 

 

7.1 Introduction  

This thesis describes research on measuring and modelling human car driving with steering torque 

feedback, especially in the on-centre steering region. The aim of this research, defined in Chapter 1, 

was: 

to improve theoretical understanding of the subjective assessment of steering feel, or steering torque 

feedback by measuring, understanding and modelling a driver’s subjective and objective responses to 

steering torque feedback, especially for on-centre steering. 

Four research objectives were proposed following the review of published literature, including (i)  

develop a mathematical driver-vehicle model incorporating steering feel, or steering torque feedback, 

for both linear and nonlinear steering dynamics, (ii) devise and perform experiments using a fixed-base 

driving simulator to provide the subjective and objective data necessary to identify and validate the 

driver-vehicle model, (iii) use the measured data to identify the unknown parameters of the 

mathematical model and the human driver’s internal mental model, (iv) determine the relationship 

between: the subjective quality of steering torque feedback; the ability of the driver to learn an accurate 

internal model of the steering system and to generate optimal steering control actions; and the steering 

control performance that the human driver can achieve. Corresponding to these objectives, the main 

results and findings from previous chapters are summarised in this chapter. In addition, 

recommendations for potential future work to develop further understanding of steering torque feedback 

based on the findings discovered in this thesis are also made. 

 



7.2 Summary of Findings                                                                                   213     

 

7.2 Summary of Findings 

7.2.1 Literature Review (Chapter 2)  

Published literature regarding existing steering feel assessment methods, steering system modelling 

techniques and works about driver models are reviewed. The findings are:  

• The subjective-objective correlation method for the evaluation of steering feel has been 

criticised due to the little insight into the physical reasons and the wide range of objective 

parameters, subjective parameters, and test conditions. 

• The steering system can be modelled with different levels of complexity depending on the aim 

of the study. The trade-off between computational efficiency and prediction accuracy favours 

a relatively simple steering mechanism model. Nonlinearities in the steering system such as 

friction require attention if accurate predictions are to be obtained. The development of 

advanced friction models has enabled the friction characteristics to be efficiently reproduced 

with high accuracy.  

• An alternative approach likely to provide the necessary insight for the human driver’s 

subjective evaluation of steering feel is to obtain a better understanding of the driver-vehicle 

system. Research in the field of motor neuroscience is relevant and applicable. 

 

7.2.2 Driver-Steering-Vehicle Modelling (Chapter 3)  

A new driver-steering-vehicle model incorporating steering torque feedback has been developed for 

both linear and nonlinear steering dynamics. The novelty of the model is the inclusion of the three 

important brain functions of perception, cognition and action, all three of which are governed by a single 

internal model of the plant. A comprehensive parameter study has been conducted, and the findings are: 

• The influence of steering system parameters on the dynamic behaviour of the steering-vehicle 

system is demonstrated. The effects of steering system parameters on the objective steering feel 

metrics (Table 3.4) can provide some initial guidelines for the steering system design. The 

results are in consistent with published literature. 

• The modelling of tensing (co-contracting) the muscles is able to be reflected by the variation of 

parameters in the neuromuscular dynamics model. The stretch reflex gain increases the stiffness 

of the arms and introduces a lightly damped resonance.  

• The values of the process and measurement noise covariance matrices in the Kalman filter 

weigh the known input and sensory measurements in the state estimation, and the LQR cost 

function provides the trade-off between path-following accuracy and control effort. 
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• The EKF1 and LMPC methods, which involve a reasonable linear approximation to the 

nonlinear dynamics, can represent the state estimation and control of a driver capturing the full 

nonlinear dynamics in an accurate and computationally efficient way. 

 

7.2.3 Driving Simulator Experiments (Chapter 4)  

A series of driving simulator experiments and the analysis of the subjective and objective data collected 

during the experiments are presented. The findings are: 

• Steering torque feedback is helpful for human drivers to achieve better tracking accuracy with 

a smaller steering input level. This in consistent with published literature. 

• The steering reversal rate reduces with the increase in steering system friction in the randomly 

moving target path-following task. 

• The drivers’ steering control performance deteriorates with the increase in steering system 

friction overall.  

• The drivers are able to detect the changes caused by steering system friction in objective metrics. 

The coefficients of the correlations between the drivers’ ratings for the subjective questions 

judging the magnitude of the objective metrics and their actual magnitudes are large, with five 

values above 0.9, three values between 0.8 to 0.9, and one value between 0.7 to 0.8.  

• The subjective evaluation of steering feel is generally perceived as worse with increased 

steering system friction level. The drivers’ subjective evaluation of steering feel correlates well 

with friction torque magnitude, nonlinear torque ratio, and steering resistance level, with all the 

correlation coefficient values above 0.7.  

• A small friction level of 0.5Nm to 1Nm may be preferred if it provides beneficial damping 

effects to stabilise the steering-vehicle system.  

• The drivers may find it subjectively easier to follow the target path when a high tracking 

accuracy can be achieved with a low steering effort level. 

 

7.2.4 Linear Driver Model Identification (Chapter 5)  

An identification procedure has been developed to find parameter values for the new driver model using 

the linear experimental results. The findings are: 

• The model fits the experimental results well, demonstrating its capability of representing the 

human driver’s on-centre steering control behaviour. 

• The process noise added to the driver’s control action is signal-dependent, increasing linearly 

with RMS muscle activation torque. 
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• The measurement noise is also signal-dependent, increasing linearly with the corresponding 

RMS signal amplitudes when the signal amplitudes exceed the threshold.  

• A single set of parameter values with process and measurement noise SNRs can be used to 

simulate drivers’ steering control behaviour in a wide range of conditions. The model fits the 

results of the averaged driver with a variance account for value of 86.6% averaged over trials.  

• The identified parameter values are physically reasonable compared with the literature. 

 

7.2.5 Nonlinear Model Identification and Correlation with Subjective 

Assessment (Chapter 6)  

The identification of the parameter values and the internal mental model of the driver model controlling 

a vehicle with nonlinear steering dynamics using the nonlinear experimental data and the correlation 

between the model and the human driver’s subjective assessment of steering feel are presented. The 

findings are: 

• The fit of the driver-steering-vehicle model to the experimental results agrees to that of the 

Deep LSTM model, demonstrating the capability of the driver-steering-vehicle model to 

represent the deterministic component of a human driver’s on-centre steering control of a 

vehicle with nonlinear steering system friction. 

• A nonlinear driver model accounting for the full nonlinear steering dynamics gives the best fit 

to the experimental results overall. It acts to fully linearise the closed-loop driver-steering-

vehicle system.  

• A driver model linearising the nonlinear steering system friction or even neglecting the effect 

of friction gives a similar or even higher fit to the experimental results in trials with low friction 

levels.  

• A process noise model with a noise spectrum similar in shape to the driver’s control signal fits 

the measured driver noise well. 

• The identified process noise level increases with the increase of steering system friction level.  

• An updated driver model accounting for the process noise level variation and the realistic 

process noise spectrum can reflect the drivers’ ability to estimate the actual objective metrics. 

The coefficients of the correlations between the drivers’ ratings for the subjective questions 

judging the magnitude of the objective metrics and the magnitudes of the corresponding signals 

from the state estimator are large, with six values above 0.9 and three values between 0.8 to 0.9.  

• The subjective evaluation of steering feel is overall perceived as worse with an increase in state 

estimator prediction error, resulting from the increased internal mental model inaccuracy and/or 

the increased driver noise level. This highlights the ability of the driver model structure to 
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explain and predict the human driver’s subjective responses to steering feel. The drivers’ 

subjective evaluation of steering feel correlates well with the state estimator prediction error, 

with an averaged correlation coefficient of 0.9127.  

• The limitations of the study include: the process noise level is identified using the experimental 

results for each trial separately; the possibility that the drivers may use an intermittent and 

threshold-driven control strategy which might explain the increasing trend for identified 

process noise level with the increase in steering system friction level is not examined.  

 

7.3 Future Work 

Future research work based on the findings and conclusions from this thesis is recommended as below: 

• Investigate why and how the identified process noise signal-to-noise ratio depends on the 

vehicle and steering parameters. One limitation of the current study is that the identified process 

noise level is found to vary with the steering system friction level, so that a constant signal-to-

noise ratio is not applicable. In order to use the model as a predictive tool for the assessment of 

the human driver’s subjective evaluation of steering feel, various studies should be conducted 

to enable a better understanding of the physical reason for the variation in the identified process 

noise level. These studies might involve updating the driver model by incorporating the human 

driver’s intermittency in cognitive control. The driver model currently uses the LQR and MPC 

methods to model the driver’s cognitive control behaviour, which assumes that the driver uses 

a continuous control strategy. However, it has been found by Johns and Cole [160] that the 

human driver might use an intermittent control and threshold-driven control strategy, which the 

deep learning model may not capture. Therefore, updating the LQR and MPC methods with an 

intermittent control behaviour might help explain the increase in the identified process noise 

level. 

• Update the driver model using an adaptive control method (such as the model-based 

reinforcement learning method). When a new steering-vehicle system is presented, the driver 

must undergo a period of adaptation to become familiar with the dynamics of the vehicle and 

then settle on a stable control strategy. This learning/adaptation process contributes to the 

human driver’s subjective assessment of steering feel and might be more significant in the 

transition from automated control to human control for ADAS systems. To include such 

learning/adaptation behaviours in the driver model, an adaptive control method like the model-

based reinforcement learning might be helpful. 

• Review the design of the driving simulator experiments to improve the reliability and 

generalizability of the results. Future improvements might involve: include trials in which the 

drivers are allowed to preview the upcoming target path; tune the amplitudes of the disturbances 
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to replicate more realistic driving conditions; extend the duration of each trial to reduce the 

uncertainties regarding the objective data and subjective data collected during the experiments.   

• Extend the model to include more nonlinear components in the steering-vehicle system and 

deal with the off-centre operating regime. Until now, the scope of the research has been limited 

to the on-centre operating regime, where the nonlinear steering system friction significantly 

affects the dynamic properties of the system. It is necessary to understand if the findings 

reported in this thesis still hold in the off-centre operating regime, where the nonlinear tyre 

dynamics and the nonlinear motor assist torque characteristics significantly impact the steering 

feel. 
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