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Abstract: Long-haul backbone communication networks provide internet services across a
region or a country. The access to internet at smaller areas and the functioning of other critical
infrastructures rely on the long-haul backbone high speed services and resilience. Hence, such
networks are key for the decision-making of internet service managers and providers, as well as
for the management and control of other critical infrastructures. This paper proposes a critical
link analysis of the physical infrastructure of the UK internet backbone network from a dynamic,
complex network approach. To this end, perturbation network analyses provide a natural
framework to measure the network tolerance facing structural or topological modifications.
Furthermore, there have been taken into account variations on data-traffic for the internet
backbone that usually happen in a typical day. The novelty of the proposal is, then, twofold:
proposing a weighted (traffic informed) Laplacian matrix to compute a perturbation centrality
measure, and enhancing it by a time-dependent perturbation analysis to detect changes in link
criticality within the network, coming from data traffic variation in a day. The results show which
are the most critical links at every time of the day, being of main importance for protection,
maintenance and mitigation plans for the UK internet backbone.

Keywords: Communication network, perturbation analysis, graph theory, complex networks,
dynamic systems.

1. INTRODUCTION

Communication systems are a collection of machines and
linking mechanisms that facilitate the transfer of infor-
mation between many actors. More abstractly, they can
be described as a collection of nodes engaging in many-
to-many communication (Ding, 2016). Such nodes can
be, for instance, router stations, core routers, switches,
servers, and computers. They are connected to each other
to transmit and share data and information. Communica-
tion channels such as cables (twisted wire, coaxial, fibre-
optics, optical) and wireless radio-frequencies, are the net-
work links. A communication network has a heterogeneous
topology. This comprises a central mesh structure - the
core or backbone network - that is densely connected, while
reaching the end-user through a branched network (last-
mile connection). Backbone networks provide the main
paths for the information exchange between nodes, to
reach peripheral network areas and end-users.

The physical backbone of a communication network is
a fibre-optic, meshed, trunk network providing internet
service to a region or a country (Durairajan et al., 2015).
As a consequence, it is of crucial importance to maximise
its resilience to targeted attacks or unintended disrup-
tions (originated by random or natural causes) through
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the protection of the most critical nodes such as router
stations and exchange servers. Ranking the network nodes
by their criticality is of high interest for scheduling further
operation and maintenance plans as well as optimising
the network performance. In the literature, this task has
been widely studied from a complex networks perspective,
which means we use a graph with consistent mathemati-
cal properties, representing some physical, real-world at-
tributes (Van Mieghem, 2014).

Complex networks have shown to be key for analysing
communication networks performance and resilience. In
this regard, we highlight the work of Kuipers (2012),
which gives an overview of algorithms that impart the
network the ability to maintain operations under failure
of one or more network assets. Related to this paper is
the work of Shatto and Cetinkaya (2017). Within it, the
authors use the Laplacian spectra, a network scientific
concept, to analyse the strength against targeted attacks.
Another example is the work of Jiao et al. (2019), where
the authors use features extracted from the normalised
Laplacian spectra to decompose internet graph networks.

This paper proposes a novel approach for the link critical-
ity and resilience assessment of a backbone communication
network. This is based on complex network analysis. Crit-
ical link analysis has been investigated for the resilience
assessment of several critical infrastructures such as water
(Herrera et al., 2015; Ayala-Cabrera et al., 2019), trans-
port (Wang et al., 2016; He et al., 2018), and electric power



networks (Fang et al., 2016; Moussa et al., 2017), among
others. Most of these studies use percolation theory (Stauf-
fer and Aharony, 2018) to define and detect criticality
through an iterative link removal process. We propose a
critical link analysis, using the weighted Laplacian matrix
of an internet backbone network to create a variant of
the perturbation centrality index developed by Ceci and
Barbarossa (2018). This measure is of special relevance for
the analysis herein, as it naturally follows to compute how
resilient the structure of any graph or network is, when
facing some modification (perturbation) to its edges and
vertices. The weighted version informs the index on the
intensity of the network flow. As such traffic flow varies
along time, the proposal adds a second novelty introducing
a temporal analysis (Huang et al., 2017) of the weighted
perturbation centrality. The UK backbone communication
network is the case-study selected to check the suitability
of the proposed framework.

2. NETWORK PERFORMANCE UNDER
PERTURBATION

This section provides a theoretical basis within complex
networks and perturbation theory to build towards the
proposed methods.

2.1 Graph theory framework

Let us denote a node set as V = {v0, v1, . . . , vn−1}, and
the edges between them as E = {e0, e1, . . . , em−1}, such
that we have a graph, G = (V, E) of n nodes and m
edges. G can be directed or undirected, and supposing it
is unweighted, capture structure in the adjacency matrix
A = [aij ]. Here aij ∈ {0, 1}, such that when (i, j) ∈ E ,
that is, i and j share an edge, aij = 1, else aij = 0. In
directed networks, aij 6= aji, since (i, j) 6= (j, i), however in
undirected networks, aij = aji, such that A is symmetric.

Supposing the addition of a unique weight to each edge,
we add the weight set,W = {ω0, ω1, . . . , ωm−1}, such that
G = (E ,V,W). Given this bijection between E and W, we
may replace A with the weighted adjacency matrix, W =
[wij ], where wij ≥ 0 and zero when (i, j) /∈ E . Directedness
or undirectedness manifest on weighted networks in the
same manner as they have been previously defined to
do. Since we only consider simple networks, there are no
self loops, such that aii = wii = 0 always. Physical and
performance characteristics of every link may vary, so we
work with weighted graphs.

The Laplacian matrix (Mohar et al., 1991) is another
matrix that closely captures network structure. It is used
because of the interesting properties arising from its spec-
trum, which is the set of eigenvalues with their multi-
plicities (Mohar, 1997). It is defined as L = D − A,
where D = [dij ], and dii is the degree of node i, and
D is 0 everywhere off the leading diagonal. For weighted
networks, we define the Laplacian by L = D −W . The
multiplicity of eigenvalues equalling zero for L determines
the number of connected regions, known as components,
in G. This means that it is connected if the first eigenvalue,
λ1 = 0 and if the second eigenvalue is λ2 > 0. The
size of λ2 determines how strongly connected G is, and
is thus called the algebraic connectivity (Von Luxburg,

2007). To allow for comparison between different network
graphs, a normalised version of the Laplacian matrix, Ln,
is widely used as it is symmetric and positive definite. The
normalised Laplacian follows the expression of Equation
(1).

Ln = D−1/2LD−1/2 = I −D−1/2AD−1/2. (1)

2.2 Perturbation and graph spectra analysis

This paper proposes a critical link analysis based on a
perturbation network framework. This is a graph opera-
tion, shifting the state of G by the addition of a perturbed
graph, δG, such that

G̃ = G + δG, (2)

where G̃ is the new state after perturbation. We can
represent this as a matrix operation upon the eigende-
composition of a Laplacian matrix, L, and it is achieved
by modifying (perturbing) the properties of a small per-
centage of L, using δL, as Equation (3) shows.

L̃ = L + δL. (3)

The expression of Equation (3) will serve as a basis for
network metrics and analysis considering a disruption
or failure. One may cause perturbations from a node-
centric rather than an edge-centric perspective, which
would be achieved by modifying the edge set incident to
the perturbed node. The perturbation analysis that we
propose is in large part building on the work of Ceci and
Barbarossa (2018). It shows that in the case of removing a
single edge, denoted r, bounded be vertices ur and vr, the
perturbation matrix, δL, can be rewritten as in Equation
(4).

δL(r) = −aratr, (4)

where ar is a vector of length n, the number of nodes, and
is all zero except for ar(ur) = 1 and ar(vr) = −1. Follow-
ing Ceci and Barbarossa (2018), the perturbed eigenvalues
can be computed in relation to their unperturbed counter-
parts by following Equation (5) for λ̃i. The same can be
done for perturbed eigenvectors by following Equation (6)
for q̃i.

λ̃i = λi + ∆λi(r) ≈ λi + qtiδL(r)qi; (5)

q̃i = qi + ∆qi(r) ≈ qi +
∑
j 6=i

qtjδL(r)qi
λi − λj

qj , (6)

where ∆λi(r) is the perturbation of the i-th eigenvalue
and ∆qi(r) is the perturbation of the i-th eigenvector,
corresponding to the removal of the edge, r.

There exists a centrality measure, developed in Ceci and
Barbarossa (2018), called perturbation centrality. The
measure is based on the sum of the K smallest eigenvalues
of the Laplacian matrix. Equation (7) shows the perturba-
tion centrality expression in the case of removing the edge
r.



ρK(r) =

K∑
i=2

|∆λi (r)| (7)

Since the smallest eigenvalues of the Laplacian inform on
graph connectivity, Equation (7) describes the variation
in graph connectivity after the removal of an edge, r.
This measure is therefore sensitive to edges that bridge
neighbourhoods.

3. DYNAMIC PERTURBATION ANALYSIS

Among the primary contributions of this paper is a method
to analyse networks perturbations over time, with two
main novelties. The work is pioneering on considering a
generalisation of the perturbation concept by variations on
the weighted Laplacian matrix rather than edge/s removal
or addition. The edge removal is, then, a particular case for
which the associated weight is equal to zero. The second
novelty presented herein is the analysis of such a weighted
Laplacian perturbation over time.

3.1 Weighted perturbation analysis

Weighted perturbation analysis does not necessarily re-
move edges from the graph but rather varies their weights.
In the work of Poignard et al. (2018), the authors propose
to perturb the weights of the edges of a given graph to
obtain a Laplacian matrix with two convenient properties
- simpler eigenvalues and an algebraic connectivity, λ2,
with associated eigenvector, q2 with all nonzero entries.
We work with weighted Laplacian matrices, where weight
perturbation in an edge represents, a partial variation of
the importance or performance of a given edge. Note that
the space of edge removal or addition operations are a
subset of of those that perturb weights. This is because if
one supposes binary edge weights, fixing an edge weight
to zero, or assigning nonzero weight to a zero edge, are
operations that are isomorphic to removal or addition.
This suggests that Equation (4) may be extended into the
general case, so that it is re-computed using the weighted
Laplacian, L = D −W , consequently perturbed by pro-
portionally adjusting a given edge, r, incident on nodes ur
and vr, by β(r), where β ∈ [0, 1]. We therefore define the
modification matrix, δL, through Equation (8), such that

δL(β, r) = −wβ
rw

t,β
r , (8)

with wβ : V → R as all zero except for wβ
r (ur) =

√
β and

wβ
r (vr) = −

√
β.

As Equation (5) and Equation (6) define perturbation
in the discrete case, we may also define them in the
corresponding weighted context, as in Equation (9) and
Equation (10).

λ̃i = λi + ∆λi(β, r) ≈ λi + qtiδL(β, r)qi; (9)

q̃i = qi + ∆qi(β, r) ≈ qi +
∑
j 6=i

qtjδL(β, r)qi
λi − λj

qj , (10)

where ∆λi(β, r) is the perturbation of the i-th the eigen-
value and ∆qi(β, r) the perturbation of the i-th eigen-
vector, corresponding to a perturbation of size β upon the
edge r. We redefine perturbation centrality in the weighted
case in Equation (11).

ρK(β, r) =

K∑
i=2

| ∆λi(β, r) | (11)

3.2 Temporal perturbation centrality

Temporal networks can be represented as an ordered
sequence of graphs taken at regular time stamps, t ∈ T
(Holme and Saramäki, 2012). In addition to vertices,
edges, and their weights, we now have another parameter
that defines graph states, which is time, such that G =
(E ,V,W, T ), as in our graph theoretical framework. We
can claim that each new timestamp involves a perturbation
to the original graph - no change simply suggests an
all zero perturbation. Extending Equation (2) to involve
consecutive perturbation, we define time progression as

G (E ,V,W, t+ 1) = G (E ,V,W, t) + δG (E ,V,W, t) . (12)

Given that Equation (12) is isomorphic to (2), it is clear
that shifts from stamp t to t + 1 can be defined in terms
of Laplacian perturbation, as in Equation (3).

Combined with the weighted extension of perturbation
analysis, introduced in Subsection 3.1, we therefore pro-
pose a novel dynamically-weighted perturbation centrality
metric. The advantage of such a measure is that, since
each timestamp is dependent on the last, a complete com-
putation of the Laplacian spectra is only necessary once at
t = 1, so it is then possible to just update the evolution in
time of the eigenvectors and eigenvalues. Figure 1 shows
the overall process of decision making support based on
temporal perturbation centrality.

After an intialisation step, Figure 1 shows that, for time
stamps such that t > 1, we need only update the eigenval-
ues and eigenvectors as dependant on new weights coming
from information of the flow passing by the network. From
a computational perspective, this is of great value, since
the Laplacian spectrum need only be computed once, after
which only the Laplacian spectrum of the perturbation
matrix needs computation at each timestamp. This is ad-
vantage since perturbations are all zero but for an affected
link.

One suitable way to work with temporal networks is to
extract a weighted perturbation centrality time series per
each network link/node, over a cycle of time (day) of
the data traffic. Boccaletti et al. (2014) and Kivelä et al.
(2014) previously declare that working with time-based
marginals for centrality measures is a particular case of a
multilayer network, where new layers are created at each
time stamp, and propose computing marginals by layer
and node. Building on this, Taylor et al. (2017) presented
time-based marginals for eigenvector centrality measures.
Lv et al. (2019) go on to present a PageRank centrality for
temporal networks. The current proposal takes a different
approach, instead relying on the weighted Laplacian via its



Fig. 1. Flowchart of any decision making using temporal
perturbation centrality

perturbation and how this measure varies over time with
the intensity of the network flow. Related methods have
used Laplacian perturbation to identify node criticality
(Liu et al., 2015), however these are not temporal methods.

In the proposed method, Equation (11) is extended to a
temporal context, which creates

ρK(βt, r) =

K∑
i=2

| ∆λi(βt, r) |, (13)

where Equation (13), is used to populate the sequence,
{ρK(βt, r)

T
t=1}. This, instead of a single value assigned to

each node, gives n many times series, one for each node,
all of equal length and increment.

4. CASE-STUDY OF THE UK BACKBONE
NETWORK INFRASTRUCTURE

This work is part of the Engineering and Physical Sciences
Research Council (EPSRC) and BT Prosperity Partner-
ship project: Next Generation Converged Digital Infras-
tructure. Today, the BT long-haul backbone network for
the UK comprises 103 nodes; representing super hub, re-
gional hub, and metro router stations. Besides, there is
a total of 309 links (fibre-optic cables) connecting those
nodes. In addition to the information about the network
layout and physical elements, we also have information
about the data traffic on a typical weekday. The traffic
information on this weekday is taken every 2 minutes
at each of the nodes of the network. Figure 2 shows
the network layout and the average traffic at each link.
This is obtained by network flow simulation considering

Fig. 2. Backbone for the UK communication network.
Links are weighted by the average data traffic mea-
sured for 1 typical weekday. Geographical information
is withheld to preserve anonymity.

Fig. 3. First 10 eigenvalues of the unweighted, normalised
Laplacian matrix of the UK backbone network

the traffic information at each node and the associated
network dynamics.

Preliminary analysis of the network show an average node
degree equal to 2 (Newman, 2018). This value is computed
apart from the node hubs, representing super and regional
routers, which have node degree in a range of 15 to 27 (in
addition to 2 super hubs of a degree value over 60). Among
other possible preliminary analysis, it is specifically rele-
vant to compute the top normalised Laplacian eigenvalues.
Figure 3 shows the first 10 eigenvalues, from which it
highlights the relatively high value of the second small-
est eigenvalue (Fiedler, 1973), λ2 = 0.29. This indicates
that any given edge, upon removal, has a small chance
of splitting the network into clusters. This claim is also
reinforced by the value of the spectral gap (Estrada, 2006)
for the first 10 eigenvalues. The spectral gap functions as
a measure of the surplus of the strength needed to split
the network from k to k + 1 clusters.

Real traffic data collected from the backbone network
is used to run network traffic simulations further. This
endows the process with the robustness associated with
a re-sampling processes in which traffic is generated by
the observed distribution of the 24h demand curve. The
network simulation is modified and adapted over the
software proposed by Likic and Shafi (2018). Figure 4



Fig. 4. Time series of 1 day of data traffic over the
backbone network nodes

shows 1 day of measures of data traffic over the network
nodes. Note that this is a weekday, so the rest of the
simulations and inferences made at the present paper are
about weekdays (since it is expected that data traffic may
have a different profile at weekends and festive days).

Figure 4 shows groups of similar nodes regarding their
demand profile. There is also noticeable, for at least 3 of
the 4 observed groups, a large difference in data traffic over
the day, having a clear peak and valley with a difference
of size up to 3.5e10 packets per time unit. Based on the
observed data, 20 simulations have been run following
the changing parameters of Table 1. The different groups
of nodes have also been considered in the data being
generated: C1, C2, C3, C4 at Table 1. There have been
sent, in average, 1,915,455 out of which, also in average,
833,945 have been received.

Table 1. Summary of data packet generation
at different time intervals

Time interval Internal time units C1 C2 C3 C4

14h-18h [0,120) 20 15 10 5
18h-22h [120,300) 40 25 12 5
22h-03h [300,450) 15 15 5 5
03h-08h [450,600) 5 3 3 1
08h-14h [600,720) 15 15 10 5

In addition to tailored dynamics depending on the ob-
served data-traffic, the simulation herein propose a number
of advantages such as the possibility to run the period un-
der study many times to get an output statistically robust.
In addition, simulation allows to blend telecommunication
indices and metrics with complex network analysis. This is
actually the case presented in this paper, where the data-
traffic, its intensity and variation over time, informs the
generation of the current perturbation analysis.

The perturbation over the Laplacian matrix is dynamically
informed of the traffic flow at different times of a typical
day. As a result we have computed the information about
the criticality of the network links under perturbation
over such day. Figure 5 shows the UK internet backbone
network with its links width depending on how the average
perturbation centrality vary over time. This is an expected
but important result, given that the data-traffic profile also
presents significant variations as it is discussed above on
Figure 4. This analysis provides much more information

Fig. 5. Backbone for the UK communication network.
Links width is proportional to the average of their
perturbation for 1 typical weekday. Geographical in-
formation is withheld to preserve anonymity.

than the generally calculated static approach, for which
the criticality of a link is a constant with respect to the
time of day.

Table 2 shows, in average, the top 5 links prone to have
a higher average value of the perturbation centrality over
the day. The table also shows which are their maximum
values of such perturbation and when them happen.

Table 2. Top 5 links in average perturbation
centrality and peak critical hours

Link ID Avg. pertub. Critical time Max. perturb.

7 24.2702 22:20 34.9967
39 24.1511 07:28 35.3164
80 24.0111 04:24 38.2808
136 23.0902 11:00 34.1277
62 23.0566 21:38 37.8204

5. CONCLUSIONS

This paper proposes a perturbation analysis of the UK
backbone network infrastructure over one normal-day data
traffic. The aim is to approach a critical link analysis for
advising practitioners and decision makers on optimal as-
set management and maintenance plans. The results show
which links are more critical and at which time of the day.
This is highly relevant for assessing network vulnerability
and resilience, and so launching protection plans adap-
tive in time, prioritising network physical assets laying
or rehabilitation schemes, optimising capital budgets and
the return of investment, and minimising how any failure
may have an impact on the customer. These plans and
the managerial operations enable awareness to internet
providers and companies at higher level, given the also
high topological and temporal resolution of the analysis.

The analysis presents two major novelties. First, the use
of perturbation analysis as a natural indicator of link
criticality and network resilience. To better inform the
complex network on telecommunication characteristics,
it has been considered for analysis the graph Laplacian
matrix weighted by the intensity of data traffic. The sec-
ond novelty relies on the use of a temporal evolution of
such weights to propose different (dynamic) perturbation
centrality index depending on the time of the day (and



the corresponding variation on data demand). The pro-
posed dynamic perturbation centrality is approached by
iterative updates of a first complete computation of the
Laplacian spectra. This means that the computational
burden is significantly reduced and the application can be
straightforwardly adapted to a near real-time approach.

This paper also comes with a future research avenue
in which more research should be done. For instance,
formalising the graph-theoretic framework via multilayer
networks and the use of the supra-Laplacian matrix.
Another research direction should focus in the time-series
mining of the centrality indices evolution. In this regard,
using data coming from week-days and weekends will be
of high importance. The reason is that these two periods
of the week may behave differently on their data demand.
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