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Genetic and chemotherapeutic influences 
on germline hypermutation

Joanna Kaplanis1, Benjamin Ide2, Rashesh Sanghvi1, Matthew Neville1, Petr Danecek1, 
Tim Coorens1, Elena Prigmore1, Patrick Short1, Giuseppe Gallone1, Jeremy McRae1,  
Genomics England Research Consortium*, Jenny Carmichael3, Angela Barnicoat4, 
Helen Firth1,3, Patrick O’Brien2, Raheleh Rahbari1 & Matthew Hurles1 ✉

Mutations in the germline generates all evolutionary genetic variation and is a cause 
of genetic disease. Parental age is the primary determinant of the number of new 
germline mutations in an individual’s genome1,2. Here we analysed the genome-wide 
sequences of 21,879 families with rare genetic diseases and identified 12 individuals 
with a hypermutated genome with between two and seven times more de novo 
single-nucleotide variants than expected. In most families (9 out of 12), the excess 
mutations came from the father. Two families had genetic drivers of germline 
hypermutation, with fathers carrying damaging genetic variation in DNA-repair 
genes. For five of the families, paternal exposure to chemotherapeutic agents before 
conception was probably a key driver of hypermutation. Our results suggest that the 
germline is well protected from mutagenic effects, hypermutation is rare, the number 
of excess mutations is relatively modest and most individuals with a hypermutated 
genome will not have a genetic disease.

The average number of de  novo mutations (DNMs) generating 
single-nucleotide variants (SNVs) is estimated to be 60–70 per human 
genome per generation, but little is known about individuals with ger-
mline hypermutation with unusually large numbers of DNMs1,3,4. The 
human germline-mutation rate varies between individuals, families and 
populations, and has evolved over time5–9. Parental age explains a large 
proportion of variance for SNVs, insertion–deletions (indels) and short 
tandem repeats1,10,11 It has been estimated that there is an increase of 
around 2 DNMs for every additional year in father’s age and around 0.5 
DNMs for every additional year in mother’s age1,12. Subtle differences 
have also been observed between the maternal and paternal mutational 
spectra and may be indicative of different mutagenic processes2,13–15. 
Different mutational mechanisms can leave distinct mutational pat-
terns termed ‘mutational signatures’16,17. There are currently more than 
100 somatic mutational signatures that have been identified across a 
wide variety of cancers of which half have been attributed to endog-
enous mutagenic processes or specific mutagens18,19. The majority of 
germline mutations can be explained by two of these signatures, termed 
signature 1 (SBS1), probably due to deamination of 5-methylcytosine20, 
and signature 5 (SBS5), which is thought to be a pervasive and rela-
tively clock-like endogenous process. Both signatures are ubiquitous 
among normal and cancer cell types21,22 and have been reported pre-
viously in trio studies14. The impact of environmental mutagens has 
been well established in the soma but is not as well understood in the 
germline23,24. Environmental exposures in parents, such as ionizing 
radiation, can influence the number of mutations transmitted to off-
spring25–27. Individual mutation rates can also be influenced by genetic 
background. With regard to somatic mutation, thousands of inherited 

germline variants have been shown to increase cancer risk28–30. Many 
of these variants are in genes that encode components of DNA-repair 
pathways which, when impaired, lead to an increase in the number of 
somatic mutations. However, it is unclear whether variants in known 
somatic mutator genes can influence germline-mutation rates. There 
are examples in which the genetic background has been shown to affect 
the local germline-mutation rate of short tandem repeats, minisatel-
lites and translocations31–35.

An increasing germline-mutation rate results in an increased risk of 
offspring being born with a dominant genetic disorder36. Long-term 
effects of mutation rate differences as a result of mutation accumula-
tion have been demonstrated in mice to have effects on reproduction 
and survival rates and there may be a similar impact in humans37,38.

Little is known about rare outliers with extreme mutation rates. 
DNMs are a substantial cause of rare genetic disorders and cohorts of 
patients with such disorders are more likely to include individuals with 
germline hypermutation 12,39. To this end, we sought to identify individu-
als with germline hypermutation in sequenced parent–offspring trios 
from two rare disease cohorts. We identified genetic or environmental 
causes of this hypermutation and estimated how much variation in the 
germline-mutation rate that this may explain.

Individuals with germline hypermutation
We identified individuals with germline hypermutation in two separate 
cohorts comprising parent–offspring trios: 7,930 exome-sequenced 
trios from the Deciphering Developmental Disorders (DDD) study and 
13,949 whole-genome sequenced trios in the rare disease arm of the 
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100,000 Genome Project (100kGP). We selected nine trios from the 
DDD study with the largest number of DNMs, given their parental ages, 
which were subsequently whole-genome sequenced to characterize 
DNMs genome-wide. In the 100kGP cohort, we performed filtering of 
the DNMs, which resulted in a total of 903,525 de novo SNVs (dnSNVs) 
and 72,110 de novo indels (dnIndels). The median number of DNMs per 
individual was 62 for dnSNVs and 5 for dnIndels (median paternal and 
maternal ages of 33 and 30) (Supplementary Fig. 1).

We observed an increase in the total number of dnSNVs of 1.28 dnSNVs 
per year of paternal age (95% confidence interval (CI) = 1.24–1.32, 
P < 10−300, negative binomial regression) and an increase of 0.35 dnSNVs 
per year of maternal age (95% CI = 0.30–0.39, P = 3.0 × 10−49, negative 
binomial regression) (Fig. 1a). We phased 241,063 dnSNVs and found 
that 77% were paternal in origin, in accordance with previous esti-
mates13–15. Estimates of the parental age effect in the phased muta-
tions were similar to the unphased results: 1.23 paternal dnSNVs 
per year of paternal age (95% CI = 1.14–1.32, P = 1.6 × 10−158) and 0.38 
maternal dnSNVs per year of maternal age (95%  CI = 0.35–0.41, 
P = 6.6 × 10−120) (Extended Data Fig. 1). Paternal and maternal age were 
also significantly associated with the number of dnIndels: an increase 
of 0.071 dnIndels per year of paternal age (95% CI = 0.062–0.080,  
P = 8.3 × 10−56; Extended Data Fig.  1) and a smaller increase of 
0.019 dnIndels per year of maternal age (95% CI = 0.0085–0.029, 
P = 3.4 × 10−4; Extended Data Fig. 1). The ratios of paternal to mater-
nal mutation increases per year were very similar—3.7 for SNVs and  
3.8 for indels. The proportion of DNMs that phase paternally increased 
by 0.0017 for every year of paternal age (P = 3.37 × 10−38, binomial regres-
sion; Supplementary Fig. 2). However, the proportion of DNMs that 
phase paternally in the youngest fathers remains around 0.75 and, 
therefore, the paternal age effect alone does not fully explain the strong 

paternal bias15. We compared the mutational spectra of the phased 
DNMs and found that maternally derived DNMs have a significantly 
higher proportion of C>T mutations (0.27 maternal versus 0.22 paternal,  
P = 3.24 × 10−80, binomial test), whereas paternally derived DNMs  
have a significantly higher proportion of C>A, T>G and T>C mutations 
(C>A: 0.08 maternal versus 0.10 paternal, P = 4.6 × 10−23; T>G: 0.06 
versus 0.7, P = 6.8 × 10−28; T>C: 0.25 versus 0.26, P = 1.6 × 10−5, binomial 
test; Extended Data Fig. 2a). These mostly agree with previous studies, 
although the difference in T>C mutations was not previously signifi-
cant13. Most paternal and maternal mutations could be explained by 
SBS1 and SBS5, with a slightly higher contribution of SBS1 in paternal 
mutations (0.16 paternal versus 0.15 maternal, χ2 test, P = 2.0 × 10−5; 
Extended Data Fig. 2b).

We identified 12 individuals with germline hypermutation after 
accounting for parental age (Methods): 11 from 100kGP and 1 from 
DDD (Fig. 1a and Extended Data Table 1). The number of dnSNVs for 
each of the 12 individuals with hypermutation ranged from 110 to 425, 
corresponding to a fold increase of 1.7–6.5 compared with the median 
number of dnSNVs per individual. Two of these individuals also had a 
significantly increased number of dnIndels (Extended Data Table 1). 
The mutational spectra across these individuals with hypermutation 
varied considerably (Fig. 1b, Extended Data Figs. 3 and 4 and Supple-
mentary Tables 1 and 2) and, after extracting mutational signatures, 
we found that, although most mutations mapped onto known somatic 
signatures from COSMIC40, a new signature, SBSHYP, was also extracted 
(Fig. 2, Extended Data Fig. 5 and Supplementary Table 3). In addition to 
mutational spectra, we evaluated the parental phase, transcriptional 
strand bias (Extended Data Fig. 6) and the distribution of the variant 
allele fraction (VAF) for these mutations (Extended Data Fig. 7). After 
examining these properties, we identified three potential sources of 
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Fig. 1 | Identification of individuals with germline hypermutation.  
a, Paternal and maternal age versus the number of dnSNVs. Individuals with 
hypermutation (hm) from the 100kGP cohort (pink) and individuals with 
hypermutation from the DDD cohort (blue) are highlighted. b, Enrichment 
(observed/expected) of mutation type for individuals with hypermutation. 
Sample names are shown on the y axis, and mutation type is shown on the x axis. 

The enrichment is coloured by the −log10[enrichment P value], determined 
using two-sided Poisson tests comparing the average number of mutations in 
each type across all individuals in the 100kGP cohort. White colouring 
indicates no statistically significant enrichment after multiple-testing 
correction (P < 0.05/12 × 7 tests). Exact P values are provided in Supplementary 
Table 2.
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germline hypermutation: paternal defects in DNA-repair genes, paternal 
exposure to chemotherapeutics and post-zygotic mutational factors.

Paternal defects in DNA-repair genes
For eight individuals with hypermutation, the DNMs phased paternally 
significantly more than expected (P < 0.05/12 tests, two-sided bino-
mial test; Extended Data Table 1), implicating the paternal germline 
as the origin of the hypermutation. Two of these fathers carry rare 
homozygous non-synonymous variants in known DNA-repair genes 
(Supplementary Table 4). Defects in DNA repair are known to increase 
the mutation rate in the soma and may have a similar effect in the ger-
mline. Individual GEL_1 has the highest number of DNMs of all of the 
individuals, and a significantly increased number of dnIndels. The muta-
tional spectra exhibit enrichment of C>A and T>A mutations (Fig. 1b) 
and we observed a large contribution of the signature SBS8 (Fig. 2). This 
signature is associated with transcription-coupled nucleotide-excision 
repair (NER) and typically presents with transcriptional strand bias. This 
agrees with the strong transcriptional strand bias observed in GEL_1 
(P = 2.1 × 10−40, Poisson test; Extended Data Fig. 6). The father has a rare 
homozygous nonsense variant in the gene XPC (Extended Data Table 1 
and Supplementary Table 4), which is involved in the early stages of 
the NER pathway. The paternal variant is annotated as pathogenic for 
xeroderma pigmentosum in ClinVar and the father had already been 
diagnosed with this disorder. Patients with xeroderma pigmentosum 
have a high risk of developing skin cancer and have an increased risk 
of developing other cancers41,42. XPC deficiency has been associated 
with a similar mutational spectrum to the one that we observed in 
GEL_1 (ref. 43) and XPC deficiency in mice has been shown to increase 
the germline-mutation rate at two short tandem repeat loci44.

GEL_3 has about a fivefold enrichment of dnSNVs, which exhibit a 
distinctive mutational spectrum with around a seventeenfold increase in 
T>C mutations but no increase in other mutations (Fig. 1b and Extended 
Data Fig. 3d). Extraction of mutational signatures revealed that the 
majority of mutations mapped onto SBS26, which has been associated 
with defective mismatch repair. The father has a rare homozygous mis-
sense variant in the gene MPG (Extended Data Table 1 and Supplementary 
Table 5). MPG encodes N-methylpurine DNA glycosylase (also known 
as alkyladenine-DNA glycosylase), which is involved in the recogni-
tion of base lesions, including alkylated and deaminated purines, and 
initiation of the base-excision repair pathway. The MPG variant is rare in 
gnomAD (allele frequency = 9.8 × 10−5, no observed homozygotes) and 
is predicted to be pathogenic (CADD score = 27.9) and the amino acid 
residue is fully conserved across 172 aligned protein sequences from 

VarSite45,46. The variant amino acid forms part of the substrate-binding 
pocket and probably affects substrate specificity (Fig. 3a). MPG has not 
yet been described as a cancer-susceptibility gene, but studies in yeast 
and mice have demonstrated variants in this gene and, specifically, in 
its substrate-binding pocket, can lead to a mutator phenotype47,48 (Sup-
plementary Table 6). We examined the functional impact of the observed 
A135T variant using in vitro assays (Methods and Extended Data Figs. 8 
and 9). The A135T variant caused a twofold decrease in excision effi-
ciency of the deamination product hypoxanthine (Hx) in both the T 
and C contexts (Fig. 3c and Extended Data Fig. 9), with a small increase 
in excision efficiency of an alkylated adduct 1,N(6)-ethenoadenine (εA) 
in both the T and C contexts (Fig. 3b and Extended Data Fig. 8). The 
maximal rate of excision is increased by twofold for εA—among the 
largest increases that have been observed for 15 reported MPG variants 
(Supplementary Table 5). Another variant—N169S, which also shows 
an increase in N-glycosidic bond cleavage with the εA substrate—has 
been established as a mutator in yeast48,49. These assays confirm that 
the A135T substitution alters the MPG-binding pocket and changes the 
activity towards different DNA adducts. MPG acts on a wide variety of 
DNA adducts and further functional characterization and mechanistic 
studies are required to link the observed T>C germline mutational sig-
nature to the aberrant processing of a specific class of DNA adducts.

Parental chemotherapy before conception
Three individuals with hypermutation (GEL_8, GEL_9 and GEL_11) 
have a contribution from the signature SBS31 (Fig. 2), which has been 
associated with treatment with platinum-based drugs, which damage 
DNA by causing covalent adducts16. The phased dnSNVs in GEL_9 and 
GEL_11 are paternally biased (46 paternal:2 maternal, P = 0.0014; 28 
paternal:1 maternal, P = 0.012; binomial test; Extended Data Table 1), 
and the dnSNVs in GEL_11, who has the largest contribution of SBS31, 
exhibit a significant transcriptional strand bias, as expected for this 
signature (P = 6.9 × 10−6, two-sided Poisson test; Extended Data Table 1 
and Extended Data Fig. 6). All three fathers had a cancer diagnosis and 
chemotherapy treatment before conception of their child with a hyper-
mutated genome. The father of GEL_11 was diagnosed with and received 
chemotherapeutic treatment for osteosarcoma, lung cancer and cancer 
of the intestinal tract before conception. Cisplatin is a commonly used 
chemotherapeutic agent for osteosarcoma and lung cancer. Cisplatin 
mainly reacts with purine bases, forming intrastrand cross-links that 
can be repaired by NER or bypassed by translesion synthesis, which 
may in turn induce single-base substitutions50. The fathers of GEL_8 
and GEL_9 both have a history of testicular cancer where cisplatin is 
the most commonly administered chemotherapeutic.

GEL_2 and DDD_1 have a similar number of dnSNVs, which are signifi-
cantly paternally biased (Extended Data Table 1), and share a mutational 
signature (SBSHYP) that is characterized by an enrichment of C>G and 
T>G mutations (Fig. 2 and Extended Data Fig. 5) and does not map on to 
any previously described signatures observed in COSMIC or in response 
to mutagenic exposure24,40,51,52 (Supplementary Fig. 3a). The fathers do not 
share rare non-synonymous variants in any genes. Both fathers received 
chemotherapy treatment before conception, including nitrogen mustard 
alkylating agents (Supplementary Table 5), although with different mem-
bers of this class of chemotherapies. We therefore strongly suspect that 
this class of chemotherapeutic agents is the cause of this mutational sig-
nature. Experimental studies of a subset of alkylating agents have shown 
them to have diverse mutational signatures24,51–53 (Supplementary Fig. 3b).

GEL_5 has 182 dnSNVs and a significant paternal bias in the phased 
dnSNVs (P = 5.8 × 10−4, binomial test; Extended Data Table 1). The 
father of GEL_5 was diagnosed with systemic lupus erythematosus 
and received chemotherapy treatment before conception; however, 
the dnSNVs do not map onto any known chemotherapeutic mutational 
signatures (Figs. 1b and 2). GEL_5 has a contribution of SBS24, which is 
associated with aflatoxin exposure in cancer blood samples22; however, 
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Fig. 2 | Mutational signatures in individuals with germline hypermutation. 
Contributions of mutational signatures extracted using SigProfiler and 
decomposed onto known somatic mutational signatures as well as the 
signature SBSHYP that we identified in both DDD_1 and GEL_2.
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aflatoxin exposure is often dietary and there is no evidence of exposure 
in the father’s hospital records

We assessed how parental cancer and exposure to chemotherapy 
might impact the germline-mutation rate more generally by examin-
ing 100kGP hospital records for ICD10 codes related to cancer and 
chemotherapy recorded before the conception of the child. We iden-
tified 27 fathers (0.9%) who had a history of cancer, 7 of whom had 
testicular cancer (Supplementary Table 7). The offspring of these 
27 fathers did not have a significantly increased number of dnSNVs 
after correcting for parental age (P = 0.73, two-sided Wilcoxon test) 
and their fathers were not significantly older than average (P = 0.77, 
two-sided Wilcoxon test). The available health records are not defini-
tive with regard to historical chemotherapeutic treatments or the 
potential use of sperm stored before treatment for conception (only 
6 had chemotherapy-related ICD10 codes). Although the total number 
of dnSNVs is not significantly increased, 2 out of the 27 fathers had 
children with a hypermutated genome, a significant enrichment com-
pared with fathers without a history of cancer (2 out of 27 versus 9 out 
of 2,891, P = 0.0043, Fisher exact test). This is probably a conservative 
assessment as two other individuals with hypermutation have fathers 
who were subsequently shown to have had chemotherapy treatment 
but were not included in this analysis as they did not have any ICD10 
codes recorded before conception (Methods). We performed the 
same analysis across 5,508 mothers in the 100kGP cohort with hospital 
records before conception and identified 27 mothers (0.5%) with a 
history of cancer, 9 of whom had chemotherapy recorded. Children 
of these 27 mothers had a nominally significant increase in dnSNVs 
after correcting for parental age and data quality (P = 0.03, two-sided 
Wilcoxon test). These mothers were significantly older at the birth 
of the child compared with the mothers without cancer (P = 0.003, 
Wilcoxon test). Matching on parental age, children of mothers with 
cancer had a median increase of 9 dnSNVs.

Among the offspring who did not have a hypermutated genome 
but had a parental history of cancer, we found only one with unusual 
mutational signatures (Supplementary Fig. 4). PatCancer_10 has 94 
dnSNVs (P = 0.005, dnSNV P value after correcting for parental age) 
of which 89% phased paternally (Supplementary Fig. 4 and Supple-
mentary Table 7) with a contribution from SBS31, which is associated 
with platinum-based drugs (Supplementary Fig. 4). Their father was 
treated for testicular cancer before conception.

Post-zygotic hypermutation
Two individuals with hypermutation, GEL_4 and GEL_7, had around a 
fourfold and twofold increase in dnSNVs, respectively, that phase equally 
between maternal and paternal chromosomes. The VAF of dnSNVs in 
these individuals was shifted below 0.5 (Extended Data Fig. 7): the 

proportion of dnSNVs with VAF < 0.4 was significantly higher compared 
with all dnSNVs observed (GEL_4: P = 3.9 × 10−59; GEL_7: P = 8.3 × 10−4, 
two-sided binomial test). These mutations most likely occurred 
post-zygotically and are not due to a parental hypermutator. Both indi-
viduals share a large contribution from SBS1 (ref. 40) (Fig. 2). GEL_4 has 
several blood-related clinical phenotypes, including myelodysplasia. 
The observations in GEL_4 are probably due to clonal haematopoiesis 
leading to a large number of somatic mutations in the child’s blood. 
We identified a mosaic de novo missense mutation in ETV6, a gene that 
is associated with leukaemia and thrombocytopaenia54. We did not 
observe similar blood-related phenotypes in GEL_7 (although the child 
was one year old at recruitment), nor did we identify a possible genetic 
driver of clonal haematopoiesis. We investigated whether a maternal 
protein with a mutator variant may be affecting the mutation rate in the 
first few cell divisions. We identified a mosaic maternal missense variant 
in TP53 that was previously annotated as pathogenic for Li–Fraumeni 
cancer predisposition syndrome, which was not observed in the child. 
It is not known whether this variant is present in the maternal germline 
or whether it would have a germline mutagenic effect55.

Variation in the germline-mutation rate
We investigated the factors influencing the number of dnSNVs per indi-
vidual in a subset of 7,700 100kGP trios filtered more stringently for 
data quality (Methods). We estimated that parental age accounts for 
69.7% and data quality metrics explain 1.3% of the variance. The vari-
ance explained by parental age is smaller than a previous estimate of 
95% on the basis of a sample of 78 families1. Repeated estimates of the 
variance explained by parental age from resampling of 78 trios from 
100kGP showed that these estimates can vary widely (median = 79%, 95%  
CI = 52–100%); 7% of resamplings have an estimated variance explained 
of 95% or greater. We estimated that germline hypermutation in the 11 
100kGP individuals with hypermutation explained an additional 7.1% of 
variance in this cohort. This leaves 21.9% (19.7–23.8%, bootstrap 95% CI) 
of variance in the numbers of dnSNVs per individual unaccounted for.

Both mutagenic exposures and genetic variation in DNA-repair 
genes could have a more subtle role in influencing variation in the 
germline-mutation rate. Moreover, polygenic effects and gene by envi-
ronment interactions may also contribute. We investigated whether 
rare variants in DNA-repair genes influence germline-mutation rates in 
the 100kGP cohort. We curated three sets of rare non-synonymous vari-
ants with increasing likelihoods of impacting the germline-mutation 
rate: (1) variants in all DNA-repair genes (n = 186), (2) variants in 
DNA-repair genes that are most likely to create SNVs (n = 66) and (3) 
the subset of (2) that has been associated with cancer (Methods). We 
focused on heterozygous variants (MAF < 0.001), but also considered 
rare homozygous variants (MAF < 0.01) in all DNA-repair genes. There 
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was no statistically significant effect in any of these groups of variants 
after Bonferroni correction (Supplementary Fig. 5 and Supplemen-
tary Table 8). We examined heterozygous protein-truncating variants 
(PTVs) in the known cancer mutator gene MBD4 that are associated 
with a threefold increased CpG>TpG mutation rate in tumours. We per-
formed whole-genome sequencing of 13 DDD trios with paternal carri-
ers of MBD4 PTVs. We found no significant increase in either the total 
number of DNMs or the number of CpG>TpG mutations (P = 0.56, χ2;  
Supplementary Fig. 6). Power modelling suggested that there is prob-
ably not an increase in the CpG germline-mutation rate of higher than 
a 22%.

To examine potential polygenic contributions, we estimated the 
residual variation in the number of dnSNVs in the 100kGP cohort (after 
correcting for parental age, data quality and hypermutation status) 
explained by more common genetic variants. We estimated this sepa-
rately for fathers and mothers using GREML-LDMS56 stratified by minor 
allele frequency and linkage disequilibrium. We found that maternal 
germline variation (MAF > 0.001) is unlikely to explain much residual 
variation (h2 = 0.07, P = 0.21, GCTA reported results; Supplementary 
Table 9). We found that paternal variation could contribute a substantial 
fraction of residual variation (h2 = 0.53, 95% CI = 0.20–0.85, P = 0.09); 
however, this seems to be concentrated exclusively in low-frequency 
variants (0.001 < MAF < 0.01, h2 = 0.52, 95% CI = 0.01–0.94) rather than 
more common variants (MAF > 0.01, h2 = 0.008, 95% CI = 0–0.38; Sup-
plementary Table 9). Further investigation of polygenic contributions 
will require larger sample sizes.

Discussion
Germline hypermutation is an uncommon but important phenomenon. 
We identified 12 individuals with hypermutation from over 20,000 par-
ent–offspring sequenced trios in the DDD and 100kGP cohorts with a 
two- to sevenfold increase in the number of dnSNVs. There are probably 
other individuals with germline hypermutation in the DDD cohort, 
as screening this exome-sequenced cohort for potential individuals 
with hypermutation for confirmation by genome sequencing will have 
missed some individuals with two- to sevenfold hypermutation.

In two individuals with hypermutation, the excess mutations 
occurred post-zygotically; however, for the majority (n = 8), excess 
dnSNVs phased paternally, implicating the father as the source of 
hypermutation. For five of these fathers, mutational signatures and 
clinical records implicated the mutagenicity of two classes of chemo-
therapeutics: platinum-based drugs (n = 3) and mustard-derived 
alkylating agents (n = 2). For two fathers, functional and clinical data 
implicated the mutagenicity of homozygous missense variants in the 
known DNA-repair genes XPC and MPG.

Our findings imply that defects in DNA-repair genes can increase 
germline-mutation rates in addition to their well-established impacts 
on somatic mutation rates57. However, DNA-repair defects do not always 
behave similarly in the soma and the germline. We found that PTVs in 
an established somatic mutator gene, MBD4, did not have a detect-
able effect in the germline58. We also did not observe a significant 
effect on germline-mutation rates of rare non-synonymous variants 
in DNA-repair genes more generally. Paternal variants previously asso-
ciated with cancer had a nominally significant effect but amounted to 
an average increase of only around 2 dnSNVs. Both larger sample sizes 
and additional variant curation will probably be needed to investigate 
this further. Genes and pathways that impact germline mutation more 
than the soma may also exist; detecting mutagenic variants in these 
genes will be challenging.

Germline hypermutation accounted for 7% of the variance in the 
germline-mutation rate in the 100kGP cohort. The ascertainment in this 
cohort for rare genetic diseases probably means that individuals with 
germline hypermutation are enriched relative to the general popula-
tion. As a consequence, our estimate of the contribution of germline 

hypermutation is probably inflated. However, the absolute risk of an 
individual with a hypermutated germline having a child with a genetic 
disease is low. The population average risk for having a child with a 
severe developmental disorder caused by a DNM has been estimated to 
be 1 in 300 births12 and so a fourfold increase in DNMs in a child would 
increase this absolute risk to just over 1%. Thus, most individuals with 
germline hypermutation will not have a genetic disease, and germline 
hypermutation should also be observed in healthy individuals.

The two genetic causes of germline hypermutation that we identified 
were both recessive in action. Similarly, most DNA-repair disorders act 
recessively in their cellular mutagenic effects. This implies that genetic 
causes of germline hypermutation are likely to arise at substantially 
higher frequencies in populations with high rates of parental consan-
guinity. In such populations, the overall incidence of germline hyper-
mutation may be higher, and the proportion of variance in the number 
of dnSNVs per offspring accounting for genetic effects will be higher. 
We anticipate that studies focused on these populations are likely to 
identify additional mutations that affect germline-mutation rate.

We found that, among 7,700 100kGP families, parental age 
explained only around 70% of the variance in the numbers of dnSNVs 
per offspring, which is substantially smaller than a previous estimate 
of 95% based on 78 families1. Resampling analyses showed that, in 
small numbers of families, estimates of the variance explained by 
parental age have wide confidence intervals such that these two 
estimates are not inconsistent, although estimates based on a two 
order of magnitude greater number of samples will be much more 
precise. A residual ~20% of variation in the numbers of germline 
dnSNVs per individual remains unexplained by parental age, data 
quality and hypermutation. We found that neither rare variants in 
known DNA-repair genes nor polygenic contributions from common 
variants (MAF > 0.01) are likely to account for a large proportion of 
this unexplained variance. Larger sample sizes are required to fur-
ther evaluate polygenic contributions from intermediate frequency 
(0.001 < MAF < 0.01) variants. A limitation of these heritability analy-
ses is the use of DNMs in offspring as a proxy for germline-mutation 
rates in individual parents. Measuring germline-mutation rates more 
directly by, for example, sequencing hundreds of single gametes per 
individual, should facilitate better powered association studies and 
heritability analyses.

Environmental exposures are also likely to contribute to germline- 
mutation rate variation. We have observed evidence that certain chemo-
therapeutic agents can affect the germline-mutation rate. Targeted 
studies on the germline mutagenic effects of different chemothera-
peutic agents (such as in cancer survivor cohorts) will be crucial in 
understanding this further. We anticipate heterogeneity in the germline 
mutagenic effects of different chemotherapeutic agents, in part due to 
differences in the permeability of the blood–testis barrier59, as well as 
variation in the vulnerability to chemotherapeutic germline mutagen-
esis by sex and age. As few individuals receive chemotherapy before 
reproduction, chemotherapeutic exposures will not explain a large 
proportion of the remaining variation in germline-mutation rates. 
However chemotherapeutic mutagenesis has important implications 
for patients receiving some chemotherapies who plan to have children, 
especially in relation to storing unexposed gametes for future use of 
assisted reproductive technologies.

Unexplained hypermutation and additional variance in the germline- 
mutation rate might be explained by other environmental exposures. 
One limitation of this study was the lack of data on non-therapeutic 
environmental exposures. Reassuringly, the narrow distribution of 
DNMs per individual in the 100kGP cohort suggests that it is unlikely 
that there are common environmental mutagen exposures in the UK 
(such as cigarette smoking) that cause a substantive (for example, 
>1.5 times) fold increase in mutation rates and concomitant disease 
risk. The germline generally appears to be well protected from large 
increases in mutation rate. However, including a broader spectrum 



508  |  Nature  |  Vol 605  |  19 May 2022

Article
of environmental exposures in future studies would help to identify 
more subtle effects and may reveal gene-by-environment interactions.
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Methods

DNM filtering in 100,000 Genomes Project
We analysed DNMs called in 13,949 parent–offspring trios from 
12,609 families from the rare disease programme of the 100,000 
Genomes Project. The rare disease cohort includes individuals with 
a wide array of diseases, including neurodevelopmental disorders, 
cardiovascular disorders, renal and urinary tract disorders, oph-
thalmological disorders, tumour syndromes, ciliopathies and oth-
ers. These are described in more detail in previous publications60,61. 
The cohort was whole-genome sequenced at around 35× coverage 
and variant calling for these families was performed through the 
Genomics England rare disease analysis pipeline. The details of 
sequencing and variant calling have been previously described61. 
DNMs were called by the Genomics England Bioinformatics team 
using the Platypus variant caller62. These were selected to optimize 
various properties, including the number of DNMs per person being 
approximately what we would expect, the distribution of the VAF of 
the DNMs to be centred around 0.5 and the true positive rate of DNMs 
to be sufficiently high as calculated from examining IGV plots. The 
filters applied were as follows:
•	 Genotype is heterozygous in child (1/0) and homozygous in both 

parents (0/0).
•	 Child read depth (RD) > 20, mother RD > 20, father RD > 20.
•	 Remove variants with >1 alternative read in either parent.
•	 VAF > 0.3 and VAF < 0.7 for child.
•	 Remove SNVs within 20 bp of each other. Although this is probably 

removing true MNVs, the error mode was very high for clustered 
mutations.

•	 Removed DNMs if child RD > 98 (ref. 14).
•	 Removed DNMs that fell within known segmental duplication regions 

as defined by the UCSC (http://humanparalogy.gs.washington.edu/
build37/data/GRCh37GenomicSuperDup.tab).

•	 Removed DNMs that fell in highly repetitive regions (http://human-
paralogy.gs.washington.edu/build37/data/GRCh37simpleRepeat.txt).

•	 For DNM calls that fell on the X chromosome, these slightly modified 
filters were used:
•	 For DNMs that fell in PAR regions, the filters were unchanged from 

the autosomal calls apart from allowing for both heterozygous (1/0) 
and hemizygous (1) calls in males.

•	 For DNMs that fell in non-PAR regions the following filters were 
used:
•	 For males: RD > 20 in child, RD > 20 in mother, no RD filter on 

father.
•	 For males: the genotype must be hemizygous (1) in child and 

homozygous in mother (0/0).
•	 For females: RD > 20 in child, RD > 20 in mother, RD > 10 in father.

DNM filtering in DDD
To identify individuals with hypermutation in the DDD study, we started 
with exome-sequencing data from the DDD study of families with a 
child with a severe, undiagnosed developmental disorder. The recruit-
ment of these families has been described previously63: families were 
recruited at 24 clinical genetics centres within the UK National Health 
Service and the Republic of Ireland. Families gave informed consent 
to participate, and the study was approved by the UK Research Ethics 
Committee (10/H0305/83, granted by the Cambridge South Research 
Ethics Committee, and GEN/284/12, granted by the Republic of Ireland 
Research Ethics Committee). Sequence alignment and variant calling 
of SNVs and indels were conducted as previously described. DNMs 
were called using DeNovoGear and filtered as described previously12,64.  
The analysis in this paper was conducted on a subset (7,930 parent–
offspring trios) of the full current cohort, which was not available at 
the start of this research.

In the DDD study, we identified 9 individuals out of 7,930 parent–
offspring trios with an increased number of exome DNMs after 
accounting for parental age (7-17 exome DNMs compared to an 
expected number of ~2). These were subsequently submitted along 
with their parents for PCR-free whole-genome sequencing at >30x 
mean coverage using Illumina 150bp paired end reads and in house 
WSI sequencing pipelines. Reads were mapped with bwa (v0.7.15)65. 
DNMs were called from these trios using DeNovoGear64 and were 
filtered as follows:
•	 Child RD > 10, mother RD > 10, father RD > 10.
•	 Alternative allele RD in child of >2.
•	 Filtered on strand bias across parents and child (p-value > 0.001, 

Fisher’s exact test).
•	 Removed DNMs that fell within known segmental duplication regions 

as defined by the UCSC (http://humanparalogy.gs.washington.edu/
build37/data/GRCh37GenomicSuperDup.tab).

•	 Removed DNMs that fell in highly repetitive regions (http://human-
paralogy.gs.washington.edu/build37/data/GRCh37simpleRepeat.txt).

•	 Allele frequency in gnomAD < 0.01.
•	 VAF < 0.1 for both parents.
•	 Removed mutations if both parents have >1 read supporting the 

alternative allele.
•	 Test to see whether VAF in the child is significantly greater than the 

error rate at that site as defined by error sites estimated using Shear-
water66.

•	 Posterior probability from DeNovoGear > 0.00781 (refs. 12,64).
•	 Removed DNMs if the child RD > 200.

After applying these filters, this resulted in 1,367 DNMs. All of 
these DNMs were inspected in the Integrative Genome Viewer67 
and removed if they appeared to be false-positives. This resulted 
in a final set of 916 DNMs across the 9 trios. One out of the nine had  
277 dnSNVs genome wide, whereas the others had expected numbers 
(median, 81 dnSNVs).

Parental phasing of DNMs
To phase the DNMs in both 100kGP and DDD, we used a custom script 
that used the following read-based approach to phase a DNM. This 
first searches for heterozygous variants within 500 bp of the DNM 
that was able to be phased to a parent (so not heterozygous in both 
parents and offspring). We next examined the reads or read pairs 
that included both the variant and the DNM and counted how many 
times we observed the DNM on the same haplotype of each parent. 
If the DNM appeared exclusively on the same haplotype as a single 
parent then that was determined to originate from that parent. We 
discarded DNMs that had conflicting evidence from both parents. 
This code is available on GitHub (https://github.com/queenjobo/
PhaseMyDeNovo).

Parental age and germline-mutation rate
To assess the effect of parental age on germline-mutation rate, we 
ran the following regressions on autosomal DNMs. These and subse-
quent statistical analyses were performed primarily in R (v.4.0.1). On all 
(unphased) DNMs, we ran two separate regressions for SNVs and indels. 
We chose a negative binomial generalized linear model (GLM) here as 
the Poisson was found to be overdispersed. We fitted the following 
model using a negative Binomial GLM with an identity link where Y is 
the number of DNMs for an individual:

E(Y) = β0 + β1paternal age + β2maternal age
For the phased DNMs we fit the following two models using a nega-

tive binomial GLM with an identity link where Ymaternal is the number 
of maternally derived DNMs and Ypaternal is the number of paternally 
derived DNMs:

E(Ypaternal) = β0 + β1paternal age
E(Ymaternal) = β0 + β1maternal age
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Individuals with hypermutation in the 100kGP cohort
To identify individuals with hypermutation in the 100kGP cohort, we 
first wanted to regress out the effect of parental age as described in 
the parental age analysis. We then looked at the distribution of the 
studentized residuals and then, assuming these followed a t distribu-
tion with N − 3 degrees of freedom, calculated a t-test P value for each 
individual. We took the same approach for the number of indels except, 
in this case, Y would be the number of de novo indels.

We identified 21 individuals out of 12,471 parent–offspring trios 
with a significantly increased number of dnSNVs genome wide 
(P < 0.05/12,471  tests). We performed multiple quality control 
analyses, which included examining the mutations in the Integra-
tive Genomics Browser for these individuals to examine DNM call-
ing accuracy, looking at the relative position of the DNMs across the 
genome and examining the mutational spectra of the DNMs to identify 
any well-known sequencing error mutation types. We identified 12 
that were not truly hypermutated. The majority of false-positives 
(10) were due to a parental somatic deletion in the blood, increas-
ing the number of apparent DNMs (Supplementary Fig. 7). These 
individuals had some of the highest numbers of DNMs called (up 
to 1,379 DNMs per individual). For each of these 10 individuals, the 
DNM calls all clustered to a specific region in a single chromosome. 
In this same corresponding region in the parent, we observed a loss 
of heterozygosity when calculating the heterozygous/homozygous 
ratio. Moreover, many of these calls appeared to be low-level mosaic 
in that same parent. This type of event has previously been shown to 
create artifacts in CNV calls and is referred to as a ‘loss of transmit-
ted allele’ event68. The remaining two false-positives were due to bad 
data quality in either the offspring or one of the parents leading to 
poor DNM calls. The large number of DNMs in these false-positive 
individuals also led to significant underdispersion in the model so, 
after removing these 12 individuals, we reran the regression model 
and subsequently identified 11 individuals who appeared to have true 
hypermutation (P < 0.05/12,459 tests).

Extraction of mutational signatures
Mutational signatures were extracted from maternally and pater-
nally phased autosomal DNMs, 24 controls (randomly selected),  
25 individuals (father with a cancer diagnosis before conception),  
27 individuals (mother with a cancer diagnosis before conception) and 
12 individuals with hypermutation that we identified. All DNMs were 
lifted over to GRCh37 before signature extraction (100kGP samples 
are a mix of GRCh37 and GRCh38) and, through the liftover process, a 
small number of 100kGP DNMs were lost (0.09% overall, 2 DNMs were 
lost across all of the individuals with hypermutation). The mutation 
counts for all of the samples are shown in Supplementary Table 1. 
This was performed using SigProfiler (v.1.0.17) and these signatures 
were extracted and subsequently mapped on to COSMIC mutational 
signatures (COSMIC v.91, Mutational Signature v.3.1)19,40. SigProfiler 
defaults to selecting a solution with higher specificity than sensitivity. 
A solution with 4 de novo signatures was chosen as optimal by Sig-
Profiler for the 12 individuals with germline-hypermutated genomes. 
Another stable solution with five de novo signatures was also manually 
deconvoluted, which has been considered as the final solution. The 
mutation probability for mutational signature SBSHYP is shown in 
Supplementary Table 3.

External exposure signature comparison
We compared the extracted signatures from these individuals 
with hypermutation with a compilation of previously identified 
signatures caused by environmental mutagens from the literature.  
The environmental signatures were compiled from refs. 24,51,52. Com-
parison was calculated as the cosine similarity between the different 
signatures.

Genes involved in DNA repair
We compiled a list of DNA-repair genes that were taken from an updated 
version of the table in ref. 69 (https://www.mdanderson.org/documents/
Labs/Wood-Laboratory/human-dna-repair-genes.html). These can be 
found in Supplementary Table 4. These are annotated with the pathways 
that they are involved with (such as nucleotide-excision repair, mis-
match repair). A ‘rare’ variant is defined as those with an allele frequency 
of <0.001 for heterozygous variants and those with an allele frequency 
of <0.01 for homozygous variants in both the 1000 Genomes as well as 
across the 100kGP cohort.

Kinetic characterization of MPG
The A135T variant of MPG was generated by site-directed mutagenesis 
and confirmed by sequencing both strands. The catalytic domain of 
WT and A135T MPG was expressed in BL21(DE3) Rosetta2 Escherichia 
coli and purified as described for the full-length protein70. Protein 
concentration was determined by absorbance at 280 nm. Active con-
centration was determined by electrophoretic mobility shift assay 
with 5′-FAM-labelled pyrolidine-DNA48 (Extended Data Fig. 8). Glyco-
sylase assays were performed with 50 mM NaMOPS, pH 7.3, 172 mM 
potassium acetate, 1 mM DTT, 1 mM EDTA, 0.1 mg ml−1 BSA at 37 °C. 
For single-turnover glycosylase activity, a 5'-FAM-labelled duplex was 
annealed by heating to 95 °C and slowly cooling to 4 °C (Extended Data 
Fig. 9). DNA substrate concentration was varied between 10 nM and 
50 nM, and MPG concentration was maintained in at least twofold 
excess over DNA from 25 nM to 10,000 nM. Samples taken at timepoints 
were quenched in 0.2 M NaOH, heated to 70 °C for 12.5 min, then mixed 
with formamide/EDTA loading buffer and analysed by 15% denaturing 
polyacrylamide gel electrophoresis. Fluorescence was quantified using 
the Typhoon 5 imager and ImageQuant software (GE). The fraction 
of product was fit by a single exponential equation to determine the 
observed single-turnover rate constant (kobs). For Hx excision, the con-
centration dependence was fit by the equation kobs = kmax [E]/(K1/2 + [E]), 
where K1/2 is the concentration at which half the maximal rate constant 
(kmax) was obtained and [E] is the concentration of enzyme. It was not 
possible to measure the K1/2 for εA excision using a fluorescence-based 
assay owing to extremely tight binding71. Multiple turnover glycosy-
lase assays were performed with 5 nM MPG and 10–40-fold excess of 
substrate (Extended Data Fig. 8).

Fraction of variance explained
To estimate the fraction of germline mutation variance explained by 
several factors, we fit the following negative binomial GLMs with an 
identity link. Data quality is likely to correlate with the number of DNMs 
detected so, to reduce this variation, we used a subset of the 100kGP 
dataset that had been filtered on some base quality control metrics by 
the Bioinformatics team at GEL:
•	 Cross-contamination < 5%
•	 Mapping rate > 75%
•	 Mean sample coverage > 20
•	 Insert size < 250

We then included the following variables to try to capture as much 
of the residual measurement error which may also be impacting DNM 
calling. In brackets are the corresponding variable names used in the 
models below:
•	 Mean coverage for the child, mother and father (child mean RD, 

mother mean RD, father mean RD)
•	 Proportion of aligned reads for the child, mother and father (child 

prop aligned, mother prop aligned, father prop aligned)
•	 Number of SNVs called for child, mother and father (child snvs, 

mother snvs, father snvs)
•	 Median VAF of DNMs called in child (median VAF)
•	 Median ‘Bayes Factor’ as outputted by Platypus for DNMs called in 

the child. This is a metric of DNM quality (median BF).

https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.html
https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.html


The first model only included parental age:
E(Y) = β0 + β1paternal age + β2maternal age
The second model also included data quality variables as described 

above:
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The third model included a variable for excess mutations in the 11 
confirmed individuals with hypermutation (hm excess) in the 100kGP 
dataset. This variable was the total number of mutations subtracted by 
the median number of DNMs in the cohort (65), Yhypermutated − median(Y) 
for these 11 individuals and 0 for all other individuals.
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The fraction of variance (F) explained after accounting for Poisson 
variance in the mutation rate was calculated in a similar way to in ref. 1 
using the following formula:

F R
Y
Y

= pseudo
1 −

Var( )
2

McFadden’s pseudo R2 was used here as a negative binomial GLM 
was fitted. We repeated these analyses fitting an ordinary least squares 
regression, as was done in ref. 1, using the R2 and got comparable results. 
To calculate a 95% confidence interval, we used a bootstrapping 
approach. We sampled with a replacement 1,000 times and extracted 
the 2.5% and 97.5% percentiles.

Rare variants in DNA-repair genes
We fit eight separate regressions to assess the contribution of rare 
variants in DNA-repair genes (compiled as described previously). These 
were across three different sets of genes: variants in all DNA-repair 
genes, variants in a subset of DNA-repair genes that are known to be 
associated with base-excision repair, MMR, NER or a DNA polymerase, 
and variants within this subset that have also been associated with a can-
cer phenotype. For this, we downloaded all ClinVar entries as of October 
2019 and searched for germline ‘pathogenic’ or ‘likely pathogenic’ 
variants annotated with cancer55. We tested both all non-synonymous 
variants and just PTVs for each set. To assess the contribution of each of 
these sets, we created two binary variables per set indicating a presence 
or absence of a maternal or paternal variant for each individual, and 
then ran a negative binomial regression for each subset including these 

as independent variables along with hypermutation status, parental 
age and quality-control metrics as described in the previous section.

Simulations for parental age effect
We downsampled from the full cohort to examine how the estimates of 
the fraction of variance in the numberof DNMs explained by paternal 
age varied with sample number. We first simulated a random sample 
as follows 10,000 times:
•	 Randomly sample 78 trios (the number of trios in ref. 1.)
•	 Fit ordinary least squares of E(Y) = β0 + β1paternal age.
•	 Estimated the fraction of variance (F) as described in ref. 1.

We found that the median fraction explained was 0.77, with a s.d. of 
0.13 and with 95% of simulations fallings between 0.51 and 1.00.

Parental cancer diagnosis before conception
To identify parents who had received a cancer diagnosis before the 
conception of their child, we examined the admitted patient care hos-
pital episode statistics of these parents. There were no hospital episode 
statistics available before 1997, and many individuals did not have any 
records until after the birth of the child. To ensure that comparisons 
were not biased by this, we first subset to parents who had at least one 
episode statistic recorded at least two years before the child’s year of 
birth. Two years before the child’s birth was our best approximation for 
before conception without the exact child date of birth. This resulted 
in 2,891 fathers and 5,508 mothers. From this set we then extracted 
all entries with ICD10 codes with a ‘C’ prefix, which corresponds to 
malignant neoplasms, and ‘Z85’, which corresponds to a personal his-
tory of malignant neoplasm. We defined a parent as having a cancer 
diagnosis before conception if they had any of these codes recorded 
≥2 years before the child’s year of birth. We also extracted all entries 
with ICD10 code ‘Z511’, which codes for an ‘encounter for antineoplastic 
chemotherapy and immunotherapy’.

Two fathers of individuals with hypermutation who we suspect had 
chemotherapy before conception did not meet these criteria as the 
father of GEL_5 received chemotherapy for treatment for systemic 
lupus erythematosus and not cancer and, for the father of GEL_8, the 
hospital record ‘personal history of malignant neoplasm’ was entered 
after the conception of the child (Supplementary Table 5).

To compare the number of dnSNVs between the group of individuals 
with parents with and without cancer diagnoses, we used a Wilcoxon 
test on the residuals from the negative binomial regression on dnSNVs 
correcting for parental age, hypermutation status and data quality. 
To look at the effect of maternal cancer on dnSNVs, we matched these 
individuals on maternal and paternal age with sampling replacement 
with 20 controls for each of the 27 individuals. We found a significant 
increase in DNMs (74 compared to 65 median dnSNVs, P = 0.001, Wil-
coxon Test).

SNP heritability analysis
For this analysis, we started with the same subset of the 100kGP dataset 
that had been filtered as described in the analysis of the impact of rare 
variants in DNA-repair genes across the cohort (see above). To ensure 
variant quality, we subsetted to variants that have been observed in 
genomes from gnomAD (v.3)72. These were then filtered by ancestry 
to parent–offspring trios where both the parents and child mapped 
on to the 1000 Genomes GBR subpopulations. The first 10 principal 
components were subsequently included in the heritability analyses. To 
remove cryptic relatedness, we removed individuals with an estimated 
relatedness of >0.025 (using GCTA grm-cutoff, 0.025). This resulted in 
a set of 6,352 fathers and 6,329 mothers. The phenotype in this analysis 
was defined as the residual from the negative binomial regression of 
the number of DNMs after accounting for parental age, hypermutation 
status and several data quality variables, as described when estimating 
the fraction of DNM count variation explained (see above). To estimate 
heritability, we ran GCTA GREML-LDMS on two linkage disequilibrium 
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stratifications and three MAF bins (0.001–0.01, 0.01–0.05, 0.05–1)56. 
For mothers, this was run with the --reml-no-constrain option because 
it would otherwise not converge (Supplementary Table 9).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Sequence and variant-level data and phenotypic data for the DDD 
study data are available from the European Genome–Phenome Archive 
(EGA: EGAS00001000775). The DDD_1 WGS and DNM data are under 
EGAD00001008497. These data are under managed access to ensure 
that the work proposed by the researchers is allowed under the study’s 
ethical approval. Sequence- and variant-level data (including the DNM 
dataset) and phenotypic data from the 100,000 Genomes Project can 
be accessed by application to Genomics England following the proce-
dure outlined at https://www.genomicsengland.co.uk/about-gecip/
joining-research-community/. Other databases are available online: 
Genome Aggregation Database (gnomAD v.2.1.1; https://gnomad.
broadinstitute.org/); Catalogue of Somatic Mutations in Cancer (v.3.1; 
https://cancer.sanger.ac.uk/); ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/).

Code availability
Phasing of mutations was performed with a custom Python (3) script 
available at GitHub (https://github.com/queenjobo/PhaseMyDeNovo).
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Extended Data Fig. 1 | Parental age and number of DNMs. (a) Paternal and 
maternal age against the number of dnInDels. (b) Paternal age against number 
of paternally phased dnSNVs and maternal age against number of maternally 

phased dnSNVs. Hypermutated individuals are highlighted in pink (11 
individuals in 100kGP) and blue (DDD individuals).
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Extended Data Fig. 2 | Mutational spectra and signatures for maternal vs 
paternal DNMs across 100kGP cohort. (a) Mutational spectra for maternal vs 
paternal DNMs across 100kGP cohort (48,381 maternal DNMs and 167,558 
paternal DNMs). Significant differences (chi-squared test, two sided, 
Bonferroni corrected threshold of P < 0.05/7) are marked with * (p-values:  

C > A 4.6310-23,C > G 0.20, C > T 3.2510-80, CpG>TpG 0.75, T > A 0.98, 
T > C1.6210-5,T > G 6.8110-28). The 95% confidence intervals are shown.  
(b) Mutational signature decomposition for DNMs in maternally and paternally 
derived DNMs. Signatures extracted with SigProfiler. Colours correspond to 
COSMIC signatures.



Extended Data Fig. 3 | Mutational spectra for the DNMs of hypermutated 
individuals part 1. (a–f correspond to individual GEL_1, GEL_2, DDD_1, GEL_3, 
GEL_4, and GEL_5 respectively). Each row is a hypermutated individual showing 
the mutational spectra according to count of mutations per each single base 
change (with CpG>TpG mutations separated from other C>T mutations) and 

the second plot is the mutation count for all 96 mutations in their trinucleotide 
context. The x-axis demonstrates the reference trinucleotide sequence with 
the mutated base highlighted. The colour and label on the bar above indicates 
the mutation type.



Article

Extended Data Fig. 4 | Mutational spectra for the DNMs hypermutated 
individuals part 2. (a–f correspond to individual GEL_6, GEL_7, GEL_8, GEL_9, 
GEL_10 and GEL_11 respectively). Each row is a hypermutated individual 
showing the mutational spectra according to count of mutations per each 
single base change (with CpG>TpG mutations separated from other C>T 

mutations) and the second plot is the mutation count for all 96 mutations in 
their trinucleotide context. The x-axis demonstrates the reference 
trinucleotide sequence with the mutated base highlighted. The colour and 
label on the bar above indicates the mutation type.



Extended Data Fig. 5 | Novel mutational signature SBSHYP. Trinucleotide context mutational profile of novel extracted mutational signature SBSHYP.
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Extended Data Fig. 6 | Transcriptional strand bias for DNMs in hypermutated individuals. Plot shows the count of each mutation type on the transcribed and 
untranscribed strand for each individual. P-values of transcriptional strand bias tests are given in Extended Data Table 1.



Extended Data Fig. 7 | Distribution of VAF for DNMs in hypermutated individuals. The vertical line indicates 0.5 VAF. The two plots highlighted in pink are 
those where the DNMs appear post-zygotic. P-values of VAF tests are given in Extended Data Table 1.
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Extended Data Fig. 8 | Determination of active concentration of MPG. (a) 
Representative native gel electrophoresis with 20 nM pyrolidine-DNA (Y•T) and 
varying concentration of WT or A135T MPG (25 mM NaHEPES pH 7.5, 100 mM 
NaCl, 5% v/v glycerol, 1 mM EDTA, 1 mM DTT). Agarose gels (2% w/v) were run in 
0.5X TBE buffer at 10 V/cm at 4 °C. (b) Independent dilutions were fit to a 

binding titration to yield an active fraction of 0.57 for both WT and A135T 
(n = 3). This demonstrates that equal concentrations of WT and A135T were 
tested in the glycosylase assays. The concentrations listed are not corrected by 
this factor. The points shown are the mean and error bars show 1 standard 
deviation.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | In vitro glycosylase activity of WT and A135T MPG.  
(a) Glycosylase assay for recombinant protein and 25mer lesion-containing 
oligonucleotides (O’Brien 2003). MPG excises lesion X from X•Y duplex to 
create an abasic site, which is subsequently hydrolysed by NaOH to create a 
12mer product. (b) Representative denaturing gel scanned for fluorescein 
fluorescence. (c-d) Concentration independent excision of εA from opposing  
T and C shows increased rate of N-glycosidic bond cleavage by A135T. (panel c, 
n = 6; panel d, n = 4) (e-f) Concentration dependence for single-turnover 
excision of Hx from opposing T and C contexts shows decreased catalytic 

efficiency for A135T as compared to WT MPG. These single turnover rate 
constants were fit to the equation kobs = kmax [MPG]/ (K1/2 + [MPG]). (g-h) 
Steady state concentration dependence for excision of εA was performed in 
order to measure the catalytic efficiency (kcat/KM) for A135T and WT MPG 
using 5 nM enzyme and the indicated concentration of substrate. To 
circumvent the tight binding by MPG, 800 mM NaCl was added to the standard 
buffer as previously described, using the equation V/E = kcat/KM[S] (panel e-h, 
n = 3). Mean ± SD is shown for at least 3 independent experiments.



Extended Data Table 1 | Properties and possible hypermutation sources for germline hypermutated individuals

Eleven of these individuals were identified in 100kGP as having a significantly large number of dnSNVs (GEL_1-GEL_11) and one hypermutated individual identified in the DDD study (DDD_1). 
The DNM counts are for autosomal DNMs only. Child age refers to age when sample was taken. Paternal and maternal age refer to age at child’s birth. All ages are given as 5 year ranges for 
100kGP individuals and the exact age for the DDD individuals. SNV and indel p-value is from testing the number of dnSNVs and dnIndels compared to what we would expect after account-
ing for parental age. TS bias: transcriptional strand bias poisson two sided p-value for dnSNVS. Phase (P,M): the number of dnSNVs that phase paternally (P) and maternally (M). Phase 
p-value: from two sided Binomial test for how different this ratio is compared to the observed proportion across all DNMs that phase paternally in 100kGP (~0.78). VAF p-value: one-sided 
Binomial p-value for testing if number of DNMs with VAF < 0.4 is greater than for all DNMs across 100kGP (~0.21). For potential sources of hypermutation when we suspect parental chemo-
therapy we have detailed the parental cancer and chemotherapy drugs received when relevant. The treatments are abbreviated as follows: BEP (Bleomycin, etoposide and platinum), ABVD 
(Bleomycin-Dacarbazine-Doxorubicin-Vinblastine) and IVE (Iphosphamide, epirubicin and etoposide).
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