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Genetic and chemotherapeuticinfluences
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Mutations in the germline generates all evolutionary genetic variation and is a cause
of genetic disease. Parental age is the primary determinant of the number of new
germline mutationsin anindividual’s genome’?. Here we analysed the genome-wide
sequences of 21,879 families with rare genetic diseases and identified 12 individuals
withahypermutated genome with between two and seven times more de novo
single-nucleotide variants than expected. In most families (9 out of 12), the excess
mutations came from the father. Two families had genetic drivers of germline
hypermutation, with fathers carrying damaging genetic variation in DNA-repair
genes. For five of the families, paternal exposure to chemotherapeutic agents before
conception was probably a key driver of hypermutation. Our results suggest that the
germlineis well protected from mutagenic effects, hypermutationis rare, the number

of excess mutations is relatively modest and most individuals with a hypermutated
genome will not have a genetic disease.

The average number of de novo mutations (DNMs) generating
single-nucleotide variants (SNVs) is estimated to be 60-70 per human
genome per generation, but little isknown about individuals with ger-
mline hypermutation with unusually large numbers of DNMs"**. The
humangermline-mutationrate varies betweenindividuals, families and
populations, and has evolved over time*°. Parental age explains a large
proportionof'variance for SNVs, insertion-deletions (indels) and short
tandem repeats'®" It has been estimated that there is an increase of
around 2 DNMs for every additional year in father’sage and around 0.5
DNMs for every additional year in mother’s age"'. Subtle differences
have alsobeen observed between the maternal and paternal mutational
spectra and may be indicative of different mutagenic processes*”>™,
Different mutational mechanisms can leave distinct mutational pat-
terns termed ‘mutational signatures™®”, There are currently more than
100 somatic mutational signatures that have been identified across a
wide variety of cancers of which half have been attributed to endog-
enous mutagenic processes or specific mutagens'®*, The majority of
germline mutations can be explained by two of these signatures, termed
signature1(SBS1), probably due to deamination of 5-methylcytosine?,
and signature 5 (SBSS), which is thought to be a pervasive and rela-
tively clock-like endogenous process. Both signatures are ubiquitous
among normal and cancer cell types?** and have been reported pre-
viously in trio studies™. The impact of environmental mutagens has
been well established in the soma but is not as well understood in the
germline”®?*, Environmental exposures in parents, such as ionizing
radiation, can influence the number of mutations transmitted to off-
spring®?.Individual mutation rates can also be influenced by genetic
background. Withregard to somatic mutation, thousands of inherited

germline variants have been shown to increase cancer risk?*°, Many
ofthese variants are in genes that encode components of DNA-repair
pathways which, when impaired, lead to an increase in the number of
somatic mutations. However, it is unclear whether variants in known
somatic mutator genes can influence germline-mutation rates. There
areexamplesinwhich the geneticbackground has been shown to affect
the local germline-mutation rate of short tandem repeats, minisatel-
litesand translocations® >,

Anincreasing germline-mutationrate resultsin anincreased risk of
offspring being born with a dominant genetic disorder®. Long-term
effects of mutation rate differences as a result of mutation accumula-
tion have been demonstrated in mice to have effects on reproduction
and survival rates and there may be a similar impact in humans®%,

Little is known about rare outliers with extreme mutation rates.
DNMs are asubstantial cause of rare genetic disorders and cohorts of
patients with suchdisorders are morelikely toinclude individuals with
germline hypermutation ™. To this end, we sought to identify individu-
alswithgermline hypermutationinsequenced parent-offspring trios
fromtworare disease cohorts. We identified genetic or environmental
causes of this hypermutation and estimated how much variationin the
germline-mutation rate that this may explain.

Individuals with germline hypermutation

Weidentified individuals with germline hypermutationin two separate
cohorts comprising parent-offspring trios: 7,930 exome-sequenced
trios fromthe Deciphering Developmental Disorders (DDD) study and
13,949 whole-genome sequenced trios in the rare disease arm of the

'Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK. 2Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA. ®East Anglian Medical Genetics Service,
Cambridge University Hospitals, Cambridge, UK. “North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK. *A list of authors and their affiliations appears at

the end of the paper. ¥e-mail: meh@sanger.ac.uk

Nature | Vol 605 | 19 May 2022 | 503


https://doi.org/10.1038/s41586-022-04712-2
mailto:meh@sanger.ac.uk

Article

a ° b
400 A
[ ]
”
z 300 1 b
2 e °
S GEL_1
g 200 4 o ®
e} ° GEL_2
° .
§ 100+ o® 0
0 -
T T T T T DDD_1
20 30 40 50 60
Paternal age GEL 4
[ ]
400 -+ GEL_5
[ ]
2
Z 300 ° GEL_6
(%] °
c [ ]
o
5 200 . GEL_7
9] °
a o ® GEL_8
IS
S 100 4 1
i o
ool GEL 9
o A T T T
20 30 40 GEL_10
Maternal age
GEL_11
© 100kGP hm ® 100kGP non-hm  ® DDD hm

Fig.1|Identification ofindividuals with germline hypermutation.

a, Paternal and maternal age versus the number of dnSNVs. Individuals with
hypermutation (hm) from the 100kGP cohort (pink) and individuals with
hypermutation from the DDD cohort (blue) are highlighted. b, Enrichment
(observed/expected) of mutation type for individuals with hypermutation.
Sample names are shown on the yaxis, and mutation type isshown on the x axis.

100,000 Genome Project (100kGP). We selected nine trios from the
DDD study with the largest number of DNMs, given their parental ages,
which were subsequently whole-genome sequenced to characterize
DNMs genome-wide. In the 100kGP cohort, we performed filtering of
the DNMs, which resulted in a total of 903,525 de novo SNVs (dnSNVs)
and 72,110 de novo indels (dnindels). The median number of DNMs per
individual was 62 for dnSNVs and 5 for dnindels (median paternal and
maternal ages of 33 and 30) (Supplementary Fig.1).

Weobserved anincrease in the total number of dnSNVs 0f1.28 dnSNVs
per year of paternal age (95% confidence interval (Cl) =1.24-1.32,
P <107, negative binomial regression) and anincrease of 0.35 dnSNVs
per year of maternal age (95% Cl = 0.30-0.39, P=3.0 x 107, negative
binomial regression) (Fig.1a). We phased 241,063 dnSNVs and found
that 77% were paternal in origin, in accordance with previous esti-
mates™ %, Estimates of the parental age effect in the phased muta-
tions were similar to the unphased results: 1.23 paternal dnSNVs
per year of paternal age (95% Cl=1.14-1.32, P=1.6 x 107%) and 0.38
maternal dnSNVs per year of maternal age (95% Cl=0.35-0.41,
P=6.6 x10"%°) (Extended DataFig.1). Paternal and maternal age were
alsosignificantly associated with the number of dnindels: anincrease
of 0.071 dnindels per year of paternal age (95% Cl=0.062-0.080,
P=8.3x107%; Extended Data Fig. 1) and a smaller increase of
0.019 dnindels per year of maternal age (95% CI = 0.0085-0.029,
P=3.4x10* Extended Data Fig. 1). The ratios of paternal to mater-
nal mutation increases per year were very similar—3.7 for SNVs and
3.8forindels. The proportion of DNMs that phase paternally increased
by 0.0017 for every year of paternal age (P = 3.37 x 107, binomial regres-
sion; Supplementary Fig. 2). However, the proportion of DNMs that
phase paternally in the youngest fathers remains around 0.75 and,
therefore, the paternal age effect alone does not fully explain the strong
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Theenrichmentis coloured by the —log,,[enrichment Pvalue], determined
using two-sided Poisson tests comparing the average number of mutationsin
eachtypeacrossallindividualsin the 100kGP cohort. White colouring
indicates no statistically significant enrichment after multiple-testing
correction (P<0.05/12 x 7 tests). Exact Pvalues are provided in Supplementary
Table 2.

paternal bias. We compared the mutational spectra of the phased
DNMs and found that maternally derived DNMs have a significantly
higher proportion of C>T mutations (0.27 maternal versus 0.22 paternal,
P=3.24 x107%, binomial test), whereas paternally derived DNMs
have asignificantly higher proportion of C>A, T>G and T>C mutations
(C>A: 0.08 maternal versus 0.10 paternal, P=4.6 x107%; T>G: 0.06
versus 0.7,P=6.8 x107%; T>C: 0.25 versus 0.26, P=1.6 x 10°, binomial
test; Extended Data Fig. 2a). These mostly agree with previous studies,
although the difference in T>C mutations was not previously signifi-
cant®. Most paternal and maternal mutations could be explained by
SBS1and SBSS5, with a slightly higher contribution of SBS1in paternal
mutations (0.16 paternal versus 0.15 maternal, * test, P=2.0 x1075;
Extended Data Fig. 2b).

We identified 12 individuals with germline hypermutation after
accounting for parental age (Methods): 11 from 100kGP and 1 from
DDD (Fig. 1a and Extended Data Table 1). The number of dnSNVs for
each of the 12 individuals with hypermutation ranged from 110 to 425,
corresponding to afold increase of 1.7-6.5 compared with the median
number of dnSNVs per individual. Two of these individuals also had a
significantly increased number of dnindels (Extended Data Table 1).
The mutational spectra across these individuals with hypermutation
varied considerably (Fig. 1b, Extended Data Figs. 3 and 4 and Supple-
mentary Tables 1and 2) and, after extracting mutational signatures,
we found that, although most mutations mapped onto known somatic
signatures from COSMIC*, a new signature, SBSHYP, was also extracted
(Fig. 2, Extended DataFig. 5and Supplementary Table 3).In addition to
mutational spectra, we evaluated the parental phase, transcriptional
strand bias (Extended Data Fig. 6) and the distribution of the variant
allele fraction (VAF) for these mutations (Extended Data Fig. 7). After
examining these properties, we identified three potential sources of
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Fig.2|Mutational signaturesinindividuals with germline hypermutation.
Contributions of mutational signatures extracted using SigProfiler and
decomposed onto known somatic mutational signatures as well as the
signature SBSHYP that weidentifiedinboth DDD_1and GEL_2.

germline hypermutation: paternal defectsin DNA-repair genes, paternal
exposure to chemotherapeutics and post-zygotic mutational factors.

Paternal defects in DNA-repair genes

For eight individuals with hypermutation, the DNMs phased paternally
significantly more than expected (P < 0.05/12 tests, two-sided bino-
mial test; Extended Data Table 1), implicating the paternal germline
as the origin of the hypermutation. Two of these fathers carry rare
homozygous non-synonymous variants in known DNA-repair genes
(Supplementary Table 4). Defectsin DNA repair are known toincrease
the mutation rate in the soma and may have a similar effectin the ger-
mline. Individual GEL_1 has the highest number of DNMs of all of the
individuals, and asignificantly increased number of dnindels. The muta-
tional spectra exhibit enrichment of C>A and T>A mutations (Fig. 1b)
andwe observed alarge contribution of the signature SBS8 (Fig. 2). This
signatureis associated with transcription-coupled nucleotide-excision
repair (NER) and typically presents with transcriptional strand bias. This
agrees with the strong transcriptional strand bias observed in GEL_1
(P=2.1x107*, Poisson test; Extended Data Fig. 6). The father hasarare
homozygous nonsense variantin the gene XPC (Extended Data Table 1
and Supplementary Table 4), which is involved in the early stages of
the NER pathway. The paternal variantis annotated as pathogenic for
xeroderma pigmentosum in ClinVar and the father had already been
diagnosed with this disorder. Patients with xeroderma pigmentosum
have a high risk of developing skin cancer and have an increased risk
of developing other cancers**%. XPC deficiency has been associated
with a similar mutational spectrum to the one that we observed in
GEL_1 (ref. **) and XPC deficiency in mice has been shown to increase
the germline-mutation rate at two short tandem repeat loci*.

GEL_3 has about a fivefold enrichment of dnSNVs, which exhibit a
distinctive mutational spectrum with around aseventeenfoldincreasein
T>C mutations but noincrease in other mutations (Fig.1b and Extended
Data Fig. 3d). Extraction of mutational signatures revealed that the
majority of mutations mapped onto SBS26, which hasbeen associated
with defective mismatch repair. The father has arare homozygous mis-
sense variantinthe gene MPG (Extended Data Table1and Supplementary
Table 5). MPG encodes N-methylpurine DNA glycosylase (also known
as alkyladenine-DNA glycosylase), which is involved in the recogni-
tion of base lesions, including alkylated and deaminated purines, and
initiation of the base-excision repair pathway. The MPG variantisrarein
gnomAD (allele frequency = 9.8 x 107, no observed homozygotes) and
is predicted to be pathogenic (CADD score = 27.9) and the amino acid
residue is fully conserved across 172 aligned protein sequences from

VarSite**¢, The variant amino acid forms part of the substrate-binding
pocket and probably affects substrate specificity (Fig. 3a). MPG has not
yetbeendescribed as a cancer-susceptibility gene, but studiesin yeast
and mice have demonstrated variants in this gene and, specifically, in
its substrate-binding pocket, can lead to amutator phenotype**& (Sup-
plementary Table 6). We examined the functionalimpact of the observed
A135T variant using in vitro assays (Methods and Extended Data Figs. 8
and 9). The A135T variant caused a twofold decrease in excision effi-
ciency of the deamination product hypoxanthine (Hx) in both the T
and C contexts (Fig. 3c and Extended Data Fig. 9), with asmallincrease
in excision efficiency of an alkylated adduct 1,N(6)-ethenoadenine (¢A)
inboth the T and C contexts (Fig. 3b and Extended Data Fig. 8). The
maximal rate of excision is increased by twofold for eA—among the
largestincreases that have been observed for15reported MPG variants
(Supplementary Table 5). Another variant—N169S, which also shows
anincrease in N-glycosidic bond cleavage with the €A substrate—has
been established as a mutator in yeast*®*, These assays confirm that
the A135T substitution alters the MPG-binding pocket and changes the
activity towards different DNA adducts. MPG acts on a wide variety of
DNA adducts and further functional characterization and mechanistic
studies are required tolink the observed T>C germline mutational sig-
nature to the aberrant processing of a specific class of DNA adducts.

Parental chemotherapy before conception

Three individuals with hypermutation (GEL_8, GEL_9 and GEL_11)
have a contribution from the signature SBS31 (Fig. 2), which has been
associated with treatment with platinum-based drugs, which damage
DNA by causing covalent adducts'. The phased dnSNVs in GEL_9 and
GEL_11 are paternally biased (46 paternal:2 maternal, P= 0.0014; 28
paternal:1 maternal, P=0.012; binomial test; Extended Data Table 1),
and the dnSNVs in GEL_11, who has the largest contribution of SBS31,
exhibit a significant transcriptional strand bias, as expected for this
signature (P= 6.9 x 107, two-sided Poisson test; Extended Data Table 1
and Extended DataFig. 6). All three fathers had a cancer diagnosis and
chemotherapy treatment before conception of their child with a hyper-
mutated genome. The father of GEL_11 was diagnosed withand received
chemotherapeutic treatment for osteosarcoma, lung cancer and cancer
oftheintestinal tract before conception. Cisplatinis acommonly used
chemotherapeutic agent for osteosarcoma and lung cancer. Cisplatin
mainly reacts with purine bases, forming intrastrand cross-links that
can be repaired by NER or bypassed by translesion synthesis, which
may in turn induce single-base substitutions®. The fathers of GEL_8
and GEL_9 both have a history of testicular cancer where cisplatin is
the most commonly administered chemotherapeutic.

GEL_2 and DDD_1 have a similar number of dnSNVs, which are signifi-
cantly paternally biased (Extended Data Table 1), and share amutational
signature (SBSHYP) that is characterized by an enrichment of C>G and
T>G mutations (Fig. 2 and Extended Data Fig. 5) and does not map on to
any previously described signatures observedin COSMIC orinresponse
to mutagenic exposure?**"32(Supplementary Fig. 3a). The fathers do not
sharerare non-synonymous variantsinany genes. Both fathersreceived
chemotherapy treatmentbefore conception, including nitrogen mustard
alkylating agents (Supplementary Table 5), although with different mem-
bers of this class of chemotherapies. We therefore strongly suspect that
this class of chemotherapeutic agentsis the cause of this mutational sig-
nature. Experimental studies of asubset of alkylating agents have shown
themto have diverse mutational signatures**'>* (Supplementary Fig. 3b).

GEL_5 has 182 dnSNVs and a significant paternal bias in the phased
dnSNVs (P=5.8x107*, binomial test; Extended Data Table 1). The
father of GEL_5 was diagnosed with systemic lupus erythematosus
and received chemotherapy treatment before conception; however,
the dnSNVs do not map onto any known chemotherapeutic mutational
signatures (Figs.1band 2). GEL_5 has a contribution of SBS24, whichis
associated with aflatoxin exposure in cancer blood samples?; however,
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Fig.3|A135T substitution alters the DNA glycosylase activity of MPG.

a, Active-site view of MPG bound to eA-DNA from Protein Data Bank IEWN.
Alal35and His136 form the binding pocket for the flipped-out base lesion,
whichisbracketed by Tyr127 onthe opposing face. b, Single-turnover excision
of eAfromeA-Tis twofold faster for A135T (red) than for wild-type (blue) MPG.

aflatoxin exposureis often dietary and thereis no evidence of exposure
inthe father’s hospital records

We assessed how parental cancer and exposure to chemotherapy
mightimpact the germline-mutation rate more generally by examin-
ing 100kGP hospital records for ICD10 codes related to cancer and
chemotherapy recorded before the conception of the child. We iden-
tified 27 fathers (0.9%) who had a history of cancer, 7 of whom had
testicular cancer (Supplementary Table 7). The offspring of these
27 fathers did not have a significantly increased number of dnSNVs
after correcting for parental age (P=0.73, two-sided Wilcoxon test)
and their fathers were not significantly older than average (P=0.77,
two-sided Wilcoxon test). The available health records are not defini-
tive with regard to historical chemotherapeutic treatments or the
potential use of sperm stored before treatment for conception (only
6 had chemotherapy-related ICD10 codes). Although the total number
of dnSNVs is not significantly increased, 2 out of the 27 fathers had
childrenwith a hypermutated genome, asignificant enrichment com-
pared with fathers without a history of cancer (2 out of 27 versus 9 out
0f2,891, P=0.0043, Fisher exact test). Thisis probably a conservative
assessment as two other individuals with hypermutation have fathers
who were subsequently shown to have had chemotherapy treatment
but were not included in this analysis as they did not have any ICD10
codes recorded before conception (Methods). We performed the
same analysis across 5,508 mothersin the 100kGP cohort with hospital
records before conception and identified 27 mothers (0.5%) with a
history of cancer, 9 of whom had chemotherapy recorded. Children
of these 27 mothers had a nominally significant increase in dnSNVs
after correcting for parental age and data quality (P=0.03, two-sided
Wilcoxon test). These mothers were significantly older at the birth
of the child compared with the mothers without cancer (P=0.003,
Wilcoxon test). Matching on parental age, children of mothers with
cancer had amedianincrease of 9 dnSNVs.

Among the offspring who did not have a hypermutated genome
but had a parental history of cancer, we found only one with unusual
mutational signatures (Supplementary Fig. 4). PatCancer_10 has 94
dnSNVs (P=0.005, dnSNV Pvalue after correcting for parental age)
of which 89% phased paternally (Supplementary Fig. 4 and Supple-
mentary Table 7) with a contribution from SBS31, which is associated
with platinum-based drugs (Supplementary Fig. 4). Their father was
treated for testicular cancer before conception.

Post-zygotic hypermutation

Two individuals with hypermutation, GEL_4 and GEL_7, had around a
fourfold and twofold increase in dnSNVs, respectively, that phase equally
between maternal and paternal chromosomes. The VAF of dnSNVs in
these individuals was shifted below 0.5 (Extended Data Fig. 7): the
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¢, Single-turnover excision of Hx from HxT is slower for A135T (red) compared
withwild-type (blue) MPG. The arrows indicate the N-glycosidicbond that is
cleaved by MPG. Data are mean + s.d. for glycosylase reactions with 10 nM DNA
substrate and either 100 nM enzyme for €A excision (n = 6) or 40 nM enzyme for
Hx excision (n=3) (Extended DataFig.9).

proportion of dnSNVs with VAF < 0.4 was significantly higher compared
with all dnSNVs observed (GEL_4: P=3.9 x10™%; GEL_7: P=8.3x107*,
two-sided binomial test). These mutations most likely occurred
post-zygotically and are not due to a parental hypermutator. Bothindi-
viduals share alarge contribution from SBSI (ref. *°) (Fig. 2). GEL_4 has
several blood-related clinical phenotypes, including myelodysplasia.
The observations in GEL_4 are probably due to clonal haematopoiesis
leading to a large number of somatic mutations in the child’s blood.
Weidentified amosaic de novo missense mutationin ETV6,agenethat
is associated with leukaemia and thrombocytopaenia®. We did not
observe similar blood-related phenotypesin GEL_7 (although the child
wasoneyear old at recruitment), nor did we identify a possible genetic
driver of clonal haematopoiesis. We investigated whether a maternal
proteinwith amutator variant may be affecting the mutationratein the
firstfew cell divisions. We identified amosaic maternal missense variant
in TP53 that was previously annotated as pathogenic for Li-Fraumeni
cancer predisposition syndrome, which was not observed in the child.
Itisnot knownwhether this variant is presentin the maternal germline
or whether it would have a germline mutagenic effect.

Variationin the germline-mutationrate

We investigated the factorsinfluencing the number of dnSNVs per indi-
vidual in a subset of 7,700 100kGP trios filtered more stringently for
data quality (Methods). We estimated that parental age accounts for
69.7% and data quality metrics explain 1.3% of the variance. The vari-
ance explained by parental age is smaller than a previous estimate of
95% on the basis of a sample of 78 families'. Repeated estimates of the
variance explained by parental age from resampling of 78 trios from
100kGP showed that these estimates can vary widely (median = 79%, 95%
Cl=52-100%); 7% of resamplings have an estimated variance explained
of 95% or greater. We estimated that germline hypermutationin the 11
100kGP individuals with hypermutation explained an additional 7.1% of
varianceinthis cohort. This leaves 21.9% (19.7-23.8%, bootstrap 95% CI)
of variance in the numbers of dnSNVs per individual unaccounted for.

Both mutagenic exposures and genetic variation in DNA-repair
genes could have a more subtle role in influencing variation in the
germline-mutation rate. Moreover, polygenic effects and gene by envi-
ronment interactions may also contribute. We investigated whether
rare variantsin DNA-repair genes influence germline-mutation ratesin
the100kGP cohort. We curated three sets of rare non-synonymous vari-
ants withincreasing likelihoods of impacting the germline-mutation
rate: (1) variants in all DNA-repair genes (n =186), (2) variants in
DNA-repair genes that are most likely to create SNVs (n = 66) and (3)
the subset of (2) that has been associated with cancer (Methods). We
focused on heterozygous variants (MAF < 0.001), but also considered
rare homozygous variants (MAF < 0.01) in all DNA-repair genes. There
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was no statistically significant effectin any of these groups of variants
after Bonferroni correction (Supplementary Fig. 5 and Supplemen-
tary Table 8). We examined heterozygous protein-truncating variants
(PTVs) in the known cancer mutator gene MBD4 that are associated
withathreefoldincreased CpG>TpG mutation ratein tumours. We per-
formed whole-genome sequencing of 13 DDD trios with paternal carri-
ers of MBD4PTVs. We found no significantincrease in either the total
number of DNMs or the number of CpG>TpG mutations (P=0.56, x’;
Supplementary Fig. 6). Power modelling suggested that there s prob-
ablynotanincreaseinthe CpG germline-mutation rate of higher than
a22%.

To examine potential polygenic contributions, we estimated the
residual variation in the number of dnSNVsin the 100kGP cohort (after
correcting for parental age, data quality and hypermutation status)
explained by more common genetic variants. We estimated this sepa-
rately for fathers and mothers using GREML-LDMS* stratified by minor
allele frequency and linkage disequilibrium. We found that maternal
germline variation (MAF > 0.001) is unlikely to explain much residual
variation (h*=0.07, P=0.21, GCTA reported results; Supplementary
Table 9). We found that paternal variation could contribute a substantial
fraction of residual variation (h*= 0.53,95% Cl = 0.20-0.85, P= 0.09);
however, this seems to be concentrated exclusively in low-frequency
variants (0.001 < MAF < 0.01, i*=0.52,95% Cl=0.01-0.94) rather than
more common variants (MAF > 0.01, ~? = 0.008, 95% Cl= 0-0.38; Sup-
plementary Table 9). Further investigation of polygenic contributions
will require larger sample sizes.

Discussion

Germline hypermutation is anuncommon but important phenomenon.
Weidentified 12 individuals with hypermutation from over 20,000 par-
ent-offspring sequenced trios in the DDD and 100kGP cohorts witha
two-to sevenfoldincrease inthe number of dnSNVs. There are probably
other individuals with germline hypermutation in the DDD cohort,
as screening this exome-sequenced cohort for potential individuals
with hypermutation for confirmation by genome sequencing will have
missed some individuals with two- to sevenfold hypermutation.

In two individuals with hypermutation, the excess mutations
occurred post-zygotically; however, for the majority (n = 8), excess
dnSNVs phased paternally, implicating the father as the source of
hypermutation. For five of these fathers, mutational signatures and
clinical records implicated the mutagenicity of two classes of chemo-
therapeutics: platinum-based drugs (n = 3) and mustard-derived
alkylating agents (n =2). For two fathers, functional and clinical data
implicated the mutagenicity of homozygous missense variants in the
known DNA-repair genes XPC and MPG.

Our findings imply that defects in DNA-repair genes can increase
germline-mutation ratesin addition to their well-established impacts
onsomatic mutation rates”. However, DNA-repair defects do not always
behave similarly in the soma and the germline. We found that PTVsin
an established somatic mutator gene, MBD4, did not have a detect-
able effect in the germline’®. We also did not observe a significant
effect on germline-mutation rates of rare non-synonymous variants
inDNA-repair genes more generally. Paternal variants previously asso-
ciated with cancer had a nominally significant effect butamounted to
anaverageincrease of only around 2 dnSNVs. Both larger sample sizes
and additional variant curation will probably be needed toinvestigate
this further. Genes and pathways thatimpact germline mutation more
than the soma may also exist; detecting mutagenic variants in these
genes will be challenging.

Germline hypermutation accounted for 7% of the variance in the
germline-mutationrate in the 100kGP cohort. The ascertainmentin this
cohortforrare genetic diseases probably means thatindividuals with
germline hypermutation are enriched relative to the general popula-
tion. As a consequence, our estimate of the contribution of germline

hypermutation is probably inflated. However, the absolute risk of an
individual with a hypermutated germline having a child with a genetic
disease is low. The population average risk for having a child with a
severe developmental disorder caused by aDNM has been estimated to
be1in300 births?and so afourfold increase in DNMs in a child would
increase this absolute risk to just over 1%. Thus, most individuals with
germline hypermutation will not have a genetic disease, and germline
hypermutation should also be observed in healthy individuals.

The two genetic causes of germline hypermutation that we identified
were bothrecessivein action. Similarly, most DNA-repair disordersact
recessively intheir cellular mutagenic effects. This implies that genetic
causes of germline hypermutation are likely to arise at substantially
higher frequencies in populations with high rates of parental consan-
guinity. In such populations, the overall incidence of germline hyper-
mutation may be higher, and the proportion of variance in the number
of dnSNVs per offspring accounting for genetic effects will be higher.
We anticipate that studies focused on these populations are likely to
identify additional mutations that affect germline-mutation rate.

We found that, among 7,700 100kGP families, parental age
explained only around 70% of the variance in the numbers of dnSNVs
per offspring, which is substantially smaller than a previous estimate
of 95% based on 78 families'. Resampling analyses showed that, in
small numbers of families, estimates of the variance explained by
parental age have wide confidence intervals such that these two
estimates are not inconsistent, although estimates based on a two
order of magnitude greater number of samples will be much more
precise. A residual ~20% of variation in the numbers of germline
dnSNVs per individual remains unexplained by parental age, data
quality and hypermutation. We found that neither rare variants in
known DNA-repair genes nor polygenic contributions from common
variants (MAF > 0.01) are likely to account for a large proportion of
this unexplained variance. Larger sample sizes are required to fur-
ther evaluate polygenic contributions from intermediate frequency
(0.001 < MAF < 0.01) variants. A limitation of these heritability analy-
sesistheuse of DNMs in offspring as a proxy for germline-mutation
ratesinindividual parents. Measuring germline-mutation rates more
directly by, for example, sequencing hundreds of single gametes per
individual, should facilitate better powered association studies and
heritability analyses.

Environmental exposures are also likely to contribute to germline-
mutationrate variation. We have observed evidence that certain chemo-
therapeutic agents can affect the germline-mutation rate. Targeted
studies on the germline mutagenic effects of different chemothera-
peutic agents (such as in cancer survivor cohorts) will be crucial in
understanding this further. We anticipate heterogeneity in the germline
mutagenic effects of different chemotherapeutic agents, in part due to
differencesin the permeability of the blood-testis barrier®®, as well as
variationin the vulnerability to chemotherapeutic germline mutagen-
esis by sex and age. As few individuals receive chemotherapy before
reproduction, chemotherapeutic exposures will not explain a large
proportion of the remaining variation in germline-mutation rates.
However chemotherapeutic mutagenesis hasimportantimplications
for patients receiving some chemotherapies who plan to have children,
especially in relation to storing unexposed gametes for future use of
assisted reproductive technologies.

Unexplained hypermutation and additional variance in the germline-
mutation rate might be explained by other environmental exposures.
One limitation of this study was the lack of data on non-therapeutic
environmental exposures. Reassuringly, the narrow distribution of
DNMs per individual in the 100kGP cohort suggests that it is unlikely
that there are common environmental mutagen exposures in the UK
(such as cigarette smoking) that cause a substantive (for example,
>1.5times) fold increase in mutation rates and concomitant disease
risk. The germline generally appears to be well protected from large
increases in mutation rate. However, including a broader spectrum
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of environmental exposures in future studies would help to identify
more subtle effects and may reveal gene-by-environment interactions.
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Methods

DNM filtering in100,000 Genomes Project
We analysed DNMs called in 13,949 parent-offspring trios from
12,609 families from the rare disease programme of the 100,000
Genomes Project. The rare disease cohort includes individuals with
awide array of diseases, including neurodevelopmental disorders,
cardiovascular disorders, renal and urinary tract disorders, oph-
thalmological disorders, tumour syndromes, ciliopathies and oth-
ers. These are described in more detail in previous publications®®¢.,
The cohort was whole-genome sequenced at around 35% coverage
and variant calling for these families was performed through the
Genomics England rare disease analysis pipeline. The details of
sequencing and variant calling have been previously described®.
DNMs were called by the Genomics England Bioinformatics team
using the Platypus variant caller®?. These were selected to optimize
various properties, including the number of DNMs per person being
approximately what we would expect, the distribution of the VAF of
the DNMs to be centred around 0.5 and the true positive rate of DNMs
to be sufficiently high as calculated from examining IGV plots. The
filters applied were as follows:

« Genotype is heterozygous in child (1/0) and homozygous in both
parents (0/0).

« Child read depth (RD) > 20, mother RD > 20, father RD > 20.

« Remove variants with >1 alternative read in either parent.

 VAF > 0.3 and VAF < 0.7 for child.

« Remove SNVs within 20 bp of each other. Although this is probably
removing true MNVs, the error mode was very high for clustered
mutations.

» Removed DNMs if child RD > 98 (ref. ™).

« Removed DNMs that fell within known segmental duplication regions
as defined by the UCSC (http://humanparalogy.gs.washington.edu/
build37/data/GRCh37GenomicSuperDup.tab).

« Removed DNMs that fell in highly repetitive regions (http://human-
paralogy.gs.washington.edu/build37/data/GRCh37simpleRepeat.txt).

« For DNM calls that fell on the X chromosome, these slightly modified
filters were used:

» For DNMs that fellin PAR regions, the filters were unchanged from
the autosomal calls apart from allowing for both heterozygous (1/0)
and hemizygous (1) callsin males.

» For DNMs that fell in non-PAR regions the following filters were
used:

* For males: RD >20 in child, RD > 20 in mother, no RD filter on
father.

- For males: the genotype must be hemizygous (1) in child and
homozygous in mother (0/0).

« Forfemales:RD >20inchild, RD > 20 inmother, RD > 10in father.

DNMfilteringin DDD

Toidentifyindividuals with hypermutationin the DDD study, we started
with exome-sequencing data from the DDD study of families with a
child withasevere, undiagnosed developmental disorder. The recruit-
ment of these families has been described previously®: families were
recruited at 24 clinical genetics centres within the UK National Health
Service and the Republic of Ireland. Families gave informed consent
to participate, and the study was approved by the UK Research Ethics
Committee (10/H0305/83, granted by the Cambridge South Research
Ethics Committee, and GEN/284/12, granted by the Republic of Ireland
Research Ethics Committee). Sequence alignment and variant calling
of SNVs and indels were conducted as previously described. DNMs
were called using DeNovoGear and filtered as described previously'>¢*.
The analysis in this paper was conducted on a subset (7,930 parent-
offspring trios) of the full current cohort, which was not available at
the start of this research.

In the DDD study, we identified 9 individuals out of 7,930 parent-
offspring trios with an increased number of exome DNMs after
accounting for parental age (7-17 exome DNMs compared to an
expected number of -2). These were subsequently submitted along
with their parents for PCR-free whole-genome sequencing at >30x
mean coverage using lllumina 150bp paired end reads and in house
WSI sequencing pipelines. Reads were mapped with bwa (v0.7.15)%,
DNMs were called from these trios using DeNovoGear®* and were
filtered as follows:

« Child RD > 10, mother RD >10, father RD > 10.

« Alternative allele RD in child of >2.

« Filtered on strand bias across parents and child (p-value > 0.001,
Fisher’s exact test).

« Removed DNMs that fell within known segmental duplication regions
asdefined by the UCSC (http://humanparalogy.gs.washington.edu/
build37/data/GRCh37GenomicSuperDup.tab).

- Removed DNMs that fell in highly repetitive regions (http://human-
paralogy.gs.washington.edu/build37/data/GRCh37simpleRepeat.txt).

« Allele frequency ingnomAD < 0.01.

* VAF <0.1for both parents.

- Removed mutations if both parents have >1 read supporting the
alternative allele.

« Test to see whether VAF in the child is significantly greater than the
errorrate at thatsite as defined by error sites estimated using Shear-
water®.

« Posterior probability from DeNovoGear > 0.00781 (refs. 2¢%),

» Removed DNMs if the child RD > 200.

After applying these filters, this resulted in 1,367 DNMs. All of
these DNMs were inspected in the Integrative Genome Viewer®’
and removed if they appeared to be false-positives. This resulted
inafinal set of 916 DNMs across the 9 trios. One out of the nine had
277 dnSNVs genome wide, whereas the others had expected numbers
(median, 81 dnSNVs).

Parental phasing of DNMs

To phase the DNMs inboth 100kGP and DDD, we used a custom script
that used the following read-based approach to phase a DNM. This
first searches for heterozygous variants within 500 bp of the DNM
that was able to be phased to a parent (so not heterozygous in both
parents and offspring). We next examined the reads or read pairs
thatincluded both the variant and the DNM and counted how many
times we observed the DNM on the same haplotype of each parent.
If the DNM appeared exclusively on the same haplotype as a single
parent then that was determined to originate from that parent. We
discarded DNMs that had conflicting evidence from both parents.
This code is available on GitHub (https://github.com/queenjobo/
PhaseMyDeNovo).

Parental age and germline-mutation rate
To assess the effect of parental age on germline-mutation rate, we
ran the following regressions on autosomal DNMs. These and subse-
quentstatistical analyses were performed primarily inR (v.4.0.1). Onall
(unphased) DNMs, we ran two separate regressions for SNVs and indels.
We chose a negative binomial generalized linear model (GLM) here as
the Poisson was found to be overdispersed. We fitted the following
model using a negative Binomial GLM with an identity link where Yis
the number of DNMs for an individual:

E(Y) =B, + B,paternal age + f,maternal age

For the phased DNMs we fit the following two models using a nega-
tive binomial GLM with an identity link where Y, ,.rnal is the number
of maternally derived DNMs and Y,,.ena is the number of paternally
derived DNMs:

E(ypatemal) = ﬁO + ﬂlpaternal age

E(Ynaterna) = Bo + Bimaternal age
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Individuals with hypermutation in the 100kGP cohort

To identify individuals with hypermutation in the 100kGP cohort, we
first wanted to regress out the effect of parental age as described in
the parental age analysis. We then looked at the distribution of the
studentized residuals and then, assuming these followed a ¢ distribu-
tionwith N-3 degrees of freedom, calculated a t-test P value for each
individual. We took the same approach for the number of indels except,
in this case, Ywould be the number of de novo indels.

We identified 21 individuals out 0of 12,471 parent-offspring trios
with a significantly increased number of dnSNVs genome wide
(P<0.05/12,471 tests). We performed multiple quality control
analyses, which included examining the mutations in the Integra-
tive Genomics Browser for these individuals to examine DNM call-
ing accuracy, looking at the relative position of the DNMs across the
genome and examining the mutational spectra of the DNMs to identify
any well-known sequencing error mutation types. We identified 12
that were not truly hypermutated. The majority of false-positives
(10) were due to a parental somatic deletion in the blood, increas-
ing the number of apparent DNMs (Supplementary Fig. 7). These
individuals had some of the highest numbers of DNMs called (up
to 1,379 DNMs per individual). For each of these 10 individuals, the
DNM calls all clustered to a specific region in a single chromosome.
In this same corresponding region in the parent, we observed a loss
of heterozygosity when calculating the heterozygous/homozygous
ratio. Moreover, many of these calls appeared to be low-level mosaic
inthat same parent. This type of event has previously been shown to
create artifacts in CNV calls and is referred to as a ‘loss of transmit-
ted allele’ event®®. The remaining two false-positives were due to bad
data quality in either the offspring or one of the parents leading to
poor DNM calls. The large number of DNMs in these false-positive
individuals also led to significant underdispersion in the model so,
after removing these 12 individuals, we reran the regression model
and subsequentlyidentified 11individuals who appeared to have true
hypermutation (P < 0.05/12,459 tests).

Extraction of mutational signatures

Mutational signatures were extracted from maternally and pater-
nally phased autosomal DNMs, 24 controls (randomly selected),
25 individuals (father with a cancer diagnosis before conception),
27 individuals (mother with a cancer diagnosis before conception) and
12 individuals with hypermutation that we identified. Al DNMs were
lifted over to GRCh37 before signature extraction (100kGP samples
areamix of GRCh37 and GRCh38) and, through the liftover process, a
small number of 100kGP DNMs were lost (0.09% overall,2 DNMs were
lost across all of the individuals with hypermutation). The mutation
counts for all of the samples are shown in Supplementary Table 1.
This was performed using SigProfiler (v.1.0.17) and these signatures
were extracted and subsequently mapped on to COSMIC mutational
signatures (COSMIC v.91, Mutational Signature v.3.1)"*%°, SigProfiler
defaults toselecting asolution with higher specificity than sensitivity.
A solution with 4 de novo signatures was chosen as optimal by Sig-
Profiler for the12 individuals with germline-hypermutated genomes.
Another stable solution with five de novo signatures was also manually
deconvoluted, which has been considered as the final solution. The
mutation probability for mutational signature SBSHYP is shown in
Supplementary Table 3.

External exposure signature comparison

We compared the extracted signatures from these individuals
with hypermutation with a compilation of previously identified
signatures caused by environmental mutagens from the literature.
The environmental signatures were compiled from refs. >****2, Com-
parisonwas calculated as the cosine similarity between the different
signatures.

Genes involved in DNA repair

We compiled alist of DNA-repair genes that were taken from an updated
versionofthe tableinref. * (https://www.mdanderson.org/documents/
Labs/Wood-Laboratory/human-dna-repair-genes.html). These can be
foundinSupplementary Table 4. These are annotated with the pathways
that they are involved with (such as nucleotide-excision repair, mis-
matchrepair). A ‘rare’ variantis defined as those with an allele frequency
of<0.001 for heterozygous variants and those with anaallele frequency
of <0.01forhomozygous variants inboth the 1000 Genomes as well as
across the100kGP cohort.

Kinetic characterization of MPG

The A135T variant of MPG was generated by site-directed mutagenesis
and confirmed by sequencing both strands. The catalytic domain of
WT and A135T MPG was expressed in BL21(DE3) Rosetta2 Escherichia
coli and purified as described for the full-length protein’. Protein
concentration was determined by absorbance at 280 nm. Active con-
centration was determined by electrophoretic mobility shift assay
with 5’-FAM-labelled pyrolidine-DNA* (Extended Data Fig. 8). Glyco-
sylase assays were performed with 50 mM NaMOPS, pH 7.3,172 mM
potassium acetate, 1mM DTT, 1mM EDTA, 0.1 mg mI BSA at 37 °C.
For single-turnover glycosylase activity, a 5'-FAM-labelled duplex was
annealed by heating to 95 °C and slowly cooling to 4 °C (Extended Data
Fig. 9). DNA substrate concentration was varied between 10 nM and
50 nM, and MPG concentration was maintained in at least twofold
excess over DNA from 25 nMt010,000 nM. Samples taken at timepoints
were quenchedin 0.2 MNaOH, heated to 70 °C for 12.5 min, then mixed
with formamide/EDTA loading buffer and analysed by 15% denaturing
polyacrylamide gel electrophoresis. Fluorescence was quantified using
the Typhoon 5imager and ImageQuant software (GE). The fraction
of product was fit by a single exponential equation to determine the
observed single-turnover rate constant (k). For Hx excision, the con-
centration dependence was fit by the equation Ky, = Koy [E1/(Kyo + [ED),
where K, is the concentration at which half the maximal rate constant
(k.ax) Was obtained and [E] is the concentration of enzyme. It was not
possible to measure the K; , for A excision using a fluorescence-based
assay owing to extremely tight binding”. Multiple turnover glycosy-
lase assays were performed with 5 nM MPG and 10-40-fold excess of
substrate (Extended Data Fig. 8).

Fraction of variance explained

To estimate the fraction of germline mutation variance explained by

several factors, we fit the following negative binomial GLMs with an

identity link. Data quality is likely to correlate with the number of DNMs

detected so, to reduce this variation, we used a subset of the 100kGP

dataset that had beenfiltered on some base quality control metrics by

the Bioinformatics team at GEL:

 Cross-contamination < 5%

* Mapping rate > 75%

« Mean sample coverage >20

* Insert size <250

We thenincluded the following variables to try to capture as much

of the residual measurement error which may also be impacting DNM

calling. In brackets are the corresponding variable names used in the

models below:

« Mean coverage for the child, mother and father (child mean RD,
mother mean RD, father mean RD)

* Proportion of aligned reads for the child, mother and father (child
prop aligned, mother prop aligned, father prop aligned)

» Number of SNVs called for child, mother and father (child snvs,
mother snvs, father snvs)

« Median VAF of DNMs called in child (median VAF)

- Median ‘Bayes Factor’ as outputted by Platypus for DNMs called in
the child. This is a metric of DNM quality (median BF).


https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.html
https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.html

The first model only included parental age:

E(Y) =B, + Bipaternal age + f,maternal age

The second model alsoincluded data quality variables as described
above:

E(Y)= pB,+pB,paternal age+B,maternal age
+f,child mean RD + §,mother mean RD
+p.father mean RD + ,child prop aligned
+B.mother prop aligned

+ B father prop aligned
+B,childs nvs + B, mother snvs

+ B, father snvs
+f,,median VAF + 8 .median BF

The third model included a variable for excess mutations in the 11
confirmedindividuals with hypermutation (hm excess) in the 100kGP
dataset. This variable was the total number of mutations subtracted by
the mediannumber of DNMsin the cohort (65), Yiypermutaes — median(y)
for these 11individuals and O for all other individuals.

E(Y)= B,+p,paternal age +B,maternal age
+p,child mean RD + 8, mother mean RD
+f, father mean RD + S child prop aligned
+B.mother prop aligned

+ BSfather prop aligned
+B,child snvs + B, ;)mother snvs
+ B, father snvs
+f,,median VAF + 8, ,median BF

+ B, ,hmexcess

The fraction of variance (F) explained after accounting for Poisson
variance in the mutation rate was calculated in a similar way toin ref.'
using the following formula:

-Y

1
_ 2
F=pseudo R Var(Y)

McFadden’s pseudo R* was used here as a negative binomial GLM
was fitted. We repeated these analyses fitting an ordinary least squares
regression, aswas doneinref.!, using the R>and got comparable results.
To calculate a 95% confidence interval, we used a bootstrapping
approach. Wesampled with areplacement 1,000 times and extracted
the 2.5% and 97.5% percentiles.

Rare variantsin DNA-repair genes

We fit eight separate regressions to assess the contribution of rare
variants in DNA-repair genes (compiled as described previously). These
were across three different sets of genes: variants in all DNA-repair
genes, variants in a subset of DNA-repair genes that are known to be
associated with base-excision repair, MMR, NER or a DNA polymerase,
and variants within this subset that have also been associated with a can-
cer phenotype. For this, we downloaded all ClinVar entries as of October
2019 and searched for germline ‘pathogenic’ or ‘likely pathogenic’
variants annotated with cancer®. We tested both all non-synonymous
variants andjust PTVs for each set. To assess the contribution of each of
these sets, we created two binary variables per setindicating a presence
or absence of a maternal or paternal variant for each individual, and
thenrananegative binomial regression for each subsetincluding these

asindependent variables along with hypermutation status, parental
age and quality-control metrics as described in the previous section.

Simulations for parental age effect
We downsampled from the full cohort to examine how the estimates of
the fraction of variance in the numberof DNMs explained by paternal
age varied with sample number. We first simulated arandom sample
as follows 10,000 times:
« Randomly sample 78 trios (the number of trios in ref.'.)
« Fitordinary least squares of E(Y) = 3, + B,paternal age.
« Estimated the fraction of variance (F) as described inref. .

We found that the median fraction explained was 0.77, withas.d. of
0.13 and with 95% of simulations fallings between 0.51and 1.00.

Parental cancer diagnosis before conception

To identify parents who had received a cancer diagnosis before the
conceptionoftheir child, we examined the admitted patient care hos-
pital episode statistics of these parents. There were no hospital episode
statistics available before 1997, and many individuals did not have any
records until after the birth of the child. To ensure that comparisons
were not biased by this, we first subset to parents who had atleast one
episode statistic recorded at least two years before the child’s year of
birth. Two years before the child’s birth was our best approximation for
before conception without the exact child date of birth. This resulted
in 2,891 fathers and 5,508 mothers. From this set we then extracted
all entries with ICD10 codes with a ‘C’ prefix, which corresponds to
malignant neoplasms, and ‘Z85’, which corresponds to a personal his-
tory of malignant neoplasm. We defined a parent as having a cancer
diagnosis before conception if they had any of these codes recorded
>2 years before the child’s year of birth. We also extracted all entries
withICD10 code ‘Z511, which codes for an ‘encounter for antineoplastic
chemotherapy and immunotherapy’.

Two fathers of individuals with hypermutation who we suspect had
chemotherapy before conception did not meet these criteria as the
father of GEL_S received chemotherapy for treatment for systemic
lupus erythematosus and not cancer and, for the father of GEL_8, the
hospital record ‘personal history of malignant neoplasm’ was entered
after the conception of the child (Supplementary Table 5).

To compare the number of dnSNVs between the group of individuals
with parents with and without cancer diagnoses, we used a Wilcoxon
testontheresiduals from the negative binomial regression ondnSNVs
correcting for parental age, hypermutation status and data quality.
Tolook at the effect of maternal cancer on dnSNVs, we matched these
individuals on maternal and paternal age with sampling replacement
with 20 controls for each of the 27 individuals. We found a significant
increase in DNMs (74 compared to 65 median dnSNVs, P=0.001, Wil-
coxon Test).

SNP heritability analysis

For thisanalysis, we started with the same subset of the 100kGP dataset
that had beenfiltered as described inthe analysis of theimpact of rare
variants in DNA-repair genes across the cohort (see above). To ensure
variant quality, we subsetted to variants that have been observed in
genomes from gnomAD (v.3)”2. These were then filtered by ancestry
to parent-offspring trios where both the parents and child mapped
on to the 1000 Genomes GBR subpopulations. The first 10 principal
components were subsequently included in the heritability analyses. To
remove crypticrelatedness, we removed individuals with an estimated
relatedness of >0.025 (using GCTA grm-cutoff, 0.025). This resulted in
asetof 6,352 fathers and 6,329 mothers. The phenotype in this analysis
was defined as the residual from the negative binomial regression of
the number of DNMs after accounting for parental age, hypermutation
status and several data quality variables, as described when estimating
thefraction of DNM count variation explained (see above). To estimate
heritability, we ran GCTA GREML-LDMS on two linkage disequilibrium
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stratifications and three MAF bins (0.001-0.01, 0.01-0.05, 0.05-1)°.
For mothers, this was runwith the --reml-no-constrain option because
itwould otherwise not converge (Supplementary Table 9).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Sequence and variant-level data and phenotypic data for the DDD
study dataare available from the European Genome-Phenome Archive
(EGA:EGAS00001000775). The DDD_1 WGS and DNM data are under
EGAD00001008497. These data are under managed access to ensure
thatthe work proposed by the researchersis allowed under the study’s
ethicalapproval. Sequence- and variant-level data (including the DNM
dataset) and phenotypic datafrom the 100,000 Genomes Project can
beaccessed by application to Genomics England following the proce-
dure outlined at https:/www.genomicsengland.co.uk/about-gecip/
joining-research-community/. Other databases are available online:
Genome Aggregation Database (gnomAD v.2.1.1; https://gnomad.
broadinstitute.org/); Catalogue of Somatic Mutationsin Cancer (v.3.1;
https://cancer.sanger.ac.uk/); ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/).

Code availability

Phasing of mutations was performed with a custom Python (3) script
available at GitHub (https://github.com/queenjobo/PhaseMyDeNovo).
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Extended DataFig.9|See next page for caption.
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Extended DataFig. 9|Invitro glycosylase activity of WT and A135T MPG.
(a) Glycosylase assay for recombinant protein and 25mer lesion-containing
oligonucleotides (O’Brien 2003). MPG excises lesion X from X-Y duplex to
createanabasic site, whichissubsequently hydrolysed by NaOH to create a
12mer product. (b) Representative denaturing gel scanned for fluorescein
fluorescence. (c-d) Concentrationindependent excision of eA from opposing
Tand Cshowsincreased rate of N-glycosidicbond cleavage by A135T. (panelc,
n=6;paneld, n=4) (e-f) Concentration dependence for single-turnover
excision of Hx from opposing T and C contexts shows decreased catalytic

efficiency for A135T as compared to WT MPG. These single turnover rate
constants were fit to the equation kobs =kmax [MPG]/ (K1/2 + [MPG]). (g-h)
Steady state concentration dependence for excision of eAwas performedin
order to measure the catalytic efficiency (kcat/KM) for A135T and WT MPG
using 5nM enzyme and the indicated concentration of substrate. To
circumvent the tight binding by MPG, 800 mM NaClwas added to the standard
bufferas previously described, using the equation V/E = kcat/KMI[S] (panel e-h,
n=3).Mean+SDisshown foratleast3independent experiments.



Extended Data Table 1| Properties and possible hypermutation sources for germline hypermutated individuals

ID dnSNVs/ Child Paternal Maternal SNV Indel TSbias Phase Phase VAF Potential source of
dnindels age age age p-value p-value (P,M) p-value p-value hypermutation
count

GEL_1 425/16 5-10 30-35 20-25 4.2e-90 9.4e-05 2.1e-40 129,1 5.3e-13 1.00 Paternal DNA repair defect;
homozygous stop-gain XPC
variant

GEL_2 375/5 10-15  25-30 25-30 2.3e-83 0.43 0.22 106,7 6.8e-06 0.86 Paternal chemotherapy;
Nephrotic syndrome:
Cyclophosphamide,
Chlorambucil

GEL_3 306/4 0-5 35-40 30-35 2.5e-44 0.73 0.86 87,5 2.3e-05 0.89 Paternal DNA repair defect;
homozygous missense MPG
variant

DDD_1 276/6 6 25 37 NA NA 3.3e-03 72,4 9.6e-04 1.00 Paternal chemotherapy;
Hodgkins Lymphoma:
ABVD, IVE

GEL_4 262/12 10-15 30-35 20-25 1.7e-37 0.007 0.070 36,32 6.3e-06 3.9e-59 Post-zygotic hypermutation

GEL_5 182/8 0-5 35-40 35-40 8.4e-14 0.19 0.15 63,4 5.8e-04 0.88 Paternal chemotherapy;
SLE: drugs unknown

GEL_6 164/7 0-5 30-35 40-45 9.8e-13 0.25 0.066 38,3 0.022 0.96 Unknown

GEL_7 145/9 0-5 30-35 30-35 2.4e-09 0.08 0.02 24,16 0.012 8.3e-04 Post-zygotic hypermutation

GEL_8 130/6 20-25  25-30 25-30 2.1e-09 0.31 1.00 31,11 0.58 0.04 Paternal chemotherapy;
Testicular cancer: drugs
unknown

GEL_9 130/5 5-10 30-35 30-35 1.2e-07 0.53 0.016 46,2 0.0014 0.88 Paternal chemotherapy;
Testicular cancer: BEP

GEL_10 123/5 10-15  30-35 25-30 5.3e-08 0.48 0.082 38,0 1.1e-04 0.81 Unknown

GEL_11 110/5 10-15 25-30 25-30 8.2e-07 0.44 6.9e-06 28,1 0.012 0.61 Paternal chemotherapy;

Cancer of long bones,
intestinal tract, lung
(secondary):

Drugs unknown

Eleven of these individuals were identified in 100kGP as having a significantly large number of dnSNVs (GEL_1-GEL_11) and one hypermutated individual identified in the DDD study (DDD_1).
The DNM counts are for autosomal DNMs only. Child age refers to age when sample was taken. Paternal and maternal age refer to age at child’s birth. All ages are given as 5 year ranges for
100kGP individuals and the exact age for the DDD individuals. SNV and indel p-value is from testing the number of dnSNVs and dnindels compared to what we would expect after account-
ing for parental age. TS bias: transcriptional strand bias poisson two sided p-value for dnSNVS. Phase (P,M): the number of dnSNVs that phase paternally (P) and maternally (M). Phase
p-value: from two sided Binomial test for how different this ratio is compared to the observed proportion across all DNMs that phase paternally in 100kGP (~0.78). VAF p-value: one-sided
Binomial p-value for testing if number of DNMs with VAF <0.4 is greater than for all DNMs across 100kGP (~0.21). For potential sources of hypermutation when we suspect parental chemo-
therapy we have detailed the parental cancer and chemotherapy drugs received when relevant. The treatments are abbreviated as follows: BEP (Bleomycin, etoposide and platinum), ABVD
(Bleomycin-Dacarbazine-Doxorubicin-Vinblastine) and IVE (Iphosphamide, epirubicin and etoposide).
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Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|Z| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Policy information about availability of computer code

Data collection NA

Data analysis Analyses were performed primarily in R (4.0.1). Phasing of mutations was performed with a custom Python (3) script available at https://
github.com/queenjobo/PhaseMyDeNovo. Signature extraction was performed using SigProfiler (v1.0.17). Details of software used for
sequence alignment, variant calling and de novo mutation calling are given in the Methods. Analysis of gels was done with ImageQuant
TL 7.0 (Cytiva).
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Sequence and variant-level data and phenotypic data for the DDD study data are available from the European Genome-phenome Archive (EGA; https://
www.ebi.ac.uk/ega/) with study ID EGASO0001000775. This is under managed access to ensure that the work proposed by the researchers is allowed under the
study’s ethical approval.

Sequence and variant-level data (including the de novo mutations dataset) and phenotypic data from the 100,000 Genomes Project can be accessed by application
to Genomics England Ltd following the procedure outlined at: https://www.genomicsengland.co.uk/about-gecip/joining-researchcommunity/

Genome Aggregation Database (gnomAD v2.1.1; https://gnomad.broadinstitute.org/)

=
Q
—t
-
=
()
=
D
wv
D
Q
=
(@)
o
=
D
o
¢}
=.
>
(e]
wv
e
)
Q
=
A




Catalogue of Somatic Mutations in Cancer (v3.1; https://cancer.sanger.ac.uk/)
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/)

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

=
Q
=i
-
=
()
=
D
wv
D
Q
=
@)
o
=
D
o
¢}
=.
>
(e]
wv
e
)
Q
=
A

Sample size This is an observational study: the sample size is 7,930 exome sequenced parent-child trios from the DDD study and 13,949 whole genome
sequenced parent-child trios from the 100,000 Genome Project. No power calculations were done prior to analyses; we used all available
samples.

Data exclusions  We excluded 12 trios in the 100,000 Genomes Project with a high false positive rate of de novo mutations as outlined in the Methods.

Replication There was no replication in this study as it was focused on specific outliers in an observational study which is unable to be replicated. However
these outliers were identified in two separate studies. Analyses performed across the whole cohort were not replicated although results were
compared and found to be very similar to previous published results from other studies.

Randomization  There was no randomization in this study as it was not applicable since we were identifying specific outliers in an observational study.

Blinding There was no blinding in this study as it was not applicable as it was an observational study focussed on genetic data.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines g |:| Flow cytometry
Palaeontology |:| MRI-based neuroimaging

Animals and other organisms

Human research participants
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Clinical data

Human research participants

Policy information about studies involving human research participants

Population characteristics The Deciphering Developmental Disorders study consists of individuals with severe developmental disorders recruited along with
their parents. The rare disease arm of the 100,000 Genomes Projects consists of individuals with rare disease (that fall into 15
rare disease domains) recruited along with their parents (see https://www.nature.com/articles/s41586-020-2434-2#Sec21 for
details)

Recruitment Recruitment differed for the two cohorts:

Deciphering Developmental Disorders (DDD): Patients with severe, undiagnosed developmental disorders were recruited from
24 regional genetics services within the United Kingdom National Health Service and the Republic of Ireland. These analyses
involve 7,930 trios who have been analyzed in previous publications. Patients typically had some prior genetic testing (e.g. an
array or a single gene test) before recruitment into the study.

100,00 Genomes Project: Study participants were enrolled by one of three mechanisms between December 2012 and March
2017 under the overall coordination of the National Institute for Health Research BioResource (NBR) at Cambridge University
Hospitals. Patients with rare diseases and their close relatives were enrolled into 15 rare disease domains approved by the
Sequencing and Informatics Committee of the NBR. Participants in the rare disease domains were recruited mainly at NHS
Hospitals in the United Kingdom, but also at hospitals overseas.




Ethics oversight DDD: The study was approved by the UK Research Ethics Committee (10/H0305/83 granted by the Cambridge South Research
Ethics Committee, and GEN/284/12 granted by the Republic of Ireland Research Ethics Committee).

100,000 Genomes Project: All participants provided written informed consent, either under the East of England Cambridge South
national research ethics committee (REC) reference no. 13/EE/0325 or under ethics for other REC-approved studies.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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