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Abstract

The decision problem for Boolean satisfiability, generally referred to as SAT, is the
archetypal NP-complete problem, and encodings of many problems of practical interest
exist allowing them to be treated as SAT problems. Its generalization to quantified
SAT (QSAT) is PSPACE-complete, and is useful for the same reason. Despite the
computational complexity of SAT and QSAT, methods have been developed allowing
large instances to be solved within reasonable resource constraints. These techniques
have largely exploited algorithmic developments; however machine learning also exerts a
significant influence in the development of state-of-the-art solvers. Here, the application
of machine learning is delicate, as in many cases, even if a relevant learning problem
can be solved, it may be that incorporating the result into a SAT or QSAT solver
is counterproductive, because the run-time of such solvers can be sensitive to small
implementation changes. The application of better machine learning methods in this
area is thus an ongoing challenge, with characteristics unique to the field. This work
provides a comprehensive review of the research to date on incorporating machine
learning into SAT and QSAT solvers, as a resource for those interested in further
advancing the field.

1 Introduction

Automated theorem proving represents a significant and long-standing area of research in
computer science, with numerous applications. A large proportion of the methods developed
to date for the implementation of automated theorem provers (ATPs) have been algorithmic,
sharing a great deal in common with the wider study of heuristic search algorithms (Harrison,
2009). However in recent years researchers have begun to incorporate machine learning
(ML) methods (Murphy, 2012) into ATPs in an effort to extract better performance.
ATPs represent a compelling area in which to explore the application of ML. It is well-
known that theorem-proving problems are computationally intractable, with the exception
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of specific, limited cases. Even in the apparently simple case of propositional logic the
task is NP-hard, and adding quantifiers makes the task PSPACE-complete (Garey and
Johnson, 1979). Taking a small step further we arrive at first-order logic (FOL ), which is
undecidable (Boolos et al., 2007). In addition to the general computational complexity of
theorem-proving problems, they have a common property that makes them challenging as a
target for ML: even the most trivial change to the statement of a problem can have a huge
impact on the complexity of any subsequent proof attempt (Fuchs and Fuchs, 1998; Hutter
et al., 2007; Hutter et al., 2009; Biere and Frohlich, 2015; Biere and Frohlich, 2019).

The aim of this work is to review the research that has appeared to date on incorporating
ML methods into solvers for propositional satisfiability (SAT) problems, and also solvers
for its immediate variants such as quantified SAT (QSAT).

In a sense, these are some of the simplest possible ATP problems. (Any instance of a
SAT problem can be represented as a Boolean formula in conjunctive normal form, and
it is undeniably hard to propose anything much simpler.) But the combination of the
computational challenges such problems present, and the enormous range of significant,
practical applications that can be addressed this way, makes general solvers for SAT and its
friends a compelling target for research. Marques-Silva (2008) reviews applications of SAT
solvers circa 2008, and the interested reader might consult work applying them to bounded
model checking (Biere et al., 1999; Clarke et al., 2001), planning (Kautz and Selman, 1992;
Kautz, 2006), bioinformatics (Lynce and Marques-Silva, 2006; Graga et al., 2010), allocation
of radio spectrum (Fréchette et al., 2016), and software verification (Babi¢ and Hu, 2007). A
further notable application has been the solution of the Boolean Pythagorean triples problem
by Heule et al. (2016), resulting in what is currently considered the longest mathematical
proof in history.

1.1 Coverage

Work on applying ML in this context appears to have started with Ertel et al. (1989)
and Johnson (1989). At that time the limited availability of computing power and the
limitations of existing solvers made the studies necessarily small by current standards, in
terms of the size of the problems addressed, and also of the ML methods applied. This
review is the result of a systematic search for literature appearing from then until late 2020.

SAT/QSAT solving and machine learning are both large and long-standing areas of
research, and each has a correspondingly large literature. As these are two apparently
rather unrelated fields, it is therefore inevitable that any reader versed in one might feel less
confident with the other. (It has certainly been my experience in talking to researchers from
both domains that this is often the case.) It would not be feasible to explain either, let alone
both, areas in full detail here; and in any case, this is not intended to be a textbook on



either subject. I have provided an introduction to each, but experts in either area might find
one presentation overly elementary and the other too brief. The aim has been to provide
sufficient information to make this work self-contained for both sides while maintaining
a manageable length; however I expect that for many there will be areas where further
reading will be necessary.

I wrote this work guided by two central aims for what the reader should gain from it.
First, they should know what has been tried. In presenting the material, I concentrate on
the learning methods used and the way in which they have been incorporated into solvers.
As the literature rarely if ever presents methods not leading to performance improvements
of some kind, less consideration is given to the details of the level of improvement achieved,
because I believe such details are secondary to my second aim, which is: that the reader
should understand the often complex interaction between ATP and ML that is needed for
success in these undeniably challenging applications.

In order to achieve these aims it was necessary to be quite selective in the level of detail
used to present various methods. Some research is presented in very great detail, relating
to the learning method and its relationship with a solver, the description of the data used,
or the experimental method employed. Other research is presented in less detail, although
I hope at a level sufficient to allow the reader to understand what was done, and why.
With the exception of the Chapters on ATP and ML, each Chapter presents a discussion
summarizing what I believe are the central lessons to be taken from it. Where methods
have been presented in greater detail, it is generally in the service of these arguments.

1.2 Outline of the review

Chapter 2 presents an introduction to the SAT problem, and to contemporary methods for
its solution. Much of this section is devoted to summarizing the operation of Conflict-Driven
Clause Learning (CDCL) solvers;! first, as these form the core of many of the most successful
SAT solvers available; and second, because there are many distinct areas of their operation
that have provided a point at which to introduce ML, and this therefore provides a road
map for a large portion of the review. This section also briefly describes portfolio solvers
and local search solvers, which have also been targets for ML, and which will be described
further in later Chapters.

Chapter 3 provides a complementary introduction to some of the ML methods most

IThere is an important distinction to be made here for the avoidance of confusion. The term ‘learning’
in the context of a CDCL solver is, at least at first glance, unconnected to the idea of machine learning. It
is used to describe the addition of one or more new clauses to a problem after analysing a conflict during
the search for a satisfying assignment; this is explained in more detail in Section 2.4.4. The use of the
term ‘learning’ in both contexts is ubiquitous however, and we expand on the distinction a little further in
Section 3.1.5.



commonly applied to SAT and QSAT solvers; this work spans supervised and unsupervised
learning in addition to m-armed bandits, reinforcement learning, neural networks and
evolutionary computing. In addition we describe some of the main sources of problems
available for testing SAT and QSAT solvers; as these are often annotated such that we
know which problems are satisfiable, and which are not, they provide a valuable resource
for training ML methods.

Many applications of ML in this domain have required a phase of feature engineering,
whereby a problem, typically expressed in conjunctive normal form (CNF), is converted
into a vector of real numbers suitable for use by an ML method. Chapter 4 reviews common
sets of features that have been used, and that continue to form the basis for many ongoing
studies. More recent work has made significant use of graph neural networks to (partially)
automate the feature engineering process, and we introduce these here also.

There are, broadly-speaking, four ways in which ML has been applied to SAT solvers:
by treating SAT directly as a classification problem; by building portfolios of existing SAT
solvers; by modifying CDCL solvers; and by treating the problem as a form of local search.

In Chapter 5 we describe work aiming to identify satisfiability directly, without necessarily
also obtaining a satisfying assignment of variables if one exists. Here, the SAT problem is
treated as a classification problem: given a formula f, we aim to return the answer ‘yes’ or
‘no’, indicating whether or not the problem is satisfiable. In some cases it may be possible
to extract a satisfying assignment as a side-effect.

Portfolio solvers are addressed in Chapter 6. Here, a collection of different SAT solvers
is used in some combination to attack a problem. Chapter 7 then reviews the application
of ML to CDCL solvers, addressing in turn the way in which ML has been applied to the
individual elements described in Chapter 2. Chapter 8 describes the application of ML to
local search SAT solvers.

In Chapter 9 we address attempts to introduce ML into solvers for QSAT. This area
has received comparatively little attention, but work has appeared addressing ML for both
portfolio solvers, and individual solvers.

While this review mainly addresses solvers for SAT and QSAT—these problems having
received considerable attention as they have clear and significant applications—in Chapter 10
we briefly address machine learning applied to intuitionistic propositional logic (IPL) (Dalen,
2001). While this logic is of more foundational interest, having few applications beyond the
philosophy of mathematics, it is related sufficiently closely to propositional logic that I feel
attempts to apply machine learning to the search for proofs in IPL are relevant.

Chapter 11 concludes.



1.3 Limits to Coverage

A body of research exists addressing methods for automatically configuring algorithms that
expose parameters—a process sometimes referred to as the algorithm configuration problem.
Effective methods such as ParamILS (Hutter et al., 2009) and, perhaps the best-known
system of this kind, Sequential Model-based Algorithm Configuration (SMAC) (Hutter et al.,
2011), are now common. Algorithms in this class can clearly be applied to SAT/QSAT and
related solvers, which invariably have parameters governing aspects of their operation. In
compiling this review, I have aimed to focus on material that has a specific emphasis on SAT,
QSAT and (closely) related problems. As a result, I decided not to describe in detail work
such as that of Kadioglu et al. (2010) and Malitsky et al. (2013), that develops a general
method for algorithm configuration and uses SAT as a test case, or Hutter et al. (2007)
and Mangla et al. (2020), that is predominantly an application of an existing algorithm
configuration method to SAT. For the same reasons, I have not included work that mainly
relies on the application of general methods for selecting an algorithm from a collection of
candidates; see Kotthoff (2016) for a review of such methods.

1.4 What Should the Reader Gain?

It is my hope that ML researchers might gain from this work, an understanding of state-of-
the-art SAT and QSAT solvers that is sufficient to make new opportunities for applying
their own ML research to this domain clearly visible. It is equally my hope that ATP
researchers will gain a complementary understanding, giving them a clear appreciation of
how state-of-the-art machine learning might help them to design better solvers. For both
constituencies, I aim to show what has already been achieved at the time of writing, at a
level of detail sufficient to provide a basis for new work.

2 Algorithms for Solving SAT

SAT is a central problem in computer science, and consequently its literature is huge; the
reader seeking a comprehensive review of the field as it stood in 2009 might consult Biere
et al. (2009), and a great deal has happened since then. As a result, it will be impossible
to be comprehensive in this work; rather, it is the principal aim of this Chapter to give a
view of current SAT solving methods that is sufficiently detailed for ML practitioners to
appreciate how ML has been applied to them.

Attempts to use ML to improve SAT solvers have, inevitably, tended to focus on adding
to methods that are already known to be effective. (This has not always been the case, as we
shall see.) Such methods fall into three broad categories—local search methods (Section 2.3),
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CDCL solvers (Section 2.4) and portfolios (Section 2.5)—and we present each of these
in turn. We begin however with some essential definitions, and by introducing the DPLL
algorithm.

2.1 The SAT Problem

Let V be a set of propositional variables taking values T' or F' (‘true’ or ‘false’). A literal [ is
either a variable v € V or its negation —w. A clause c is a disjunction {1 V- - - VI, of n literals
where V denotes the logical ‘or’ connective. A formula f is a conjunction (c; A -+ A ¢p,)
of m clauses where A denotes the logical ‘and’ connective. The symbols =, V and A are
interpreted in the usual way. For example, with V' = {v1,v2,v3} we might define

f= (ﬁ’l)g vV 1)3) A (’1)1 V 1)3) A ('UQ). (2.1)

This is a conjunctive normal form (CNF) formula and any Boolean formula involving the
usual extended set of connectives (— and so on) can be equivalently expressed in this way.
The majority of SAT solvers use CNF as the format for their input. (We will make specific
note where necessary of solvers that do not; this will be particularly relevant when we
discuss quantified SAT solvers, many of which favour circuit-based representations.)

An assignment A is a partial function from V' to the set {T', F'}. We write for example
A(v1) = F to denote that A assigns v; to be false. A variable v for which A(v) is not defined
is unassigned. The truth or falsity of a formula is then defined by extending A in the usual
way. That is,

A(-v) =T < A(v) =F
A(fiv o) =T <= A(fr) =T or A(fo) =T
AUfiA fo) =T — A(f1) = T and A(fa) = T.

A formula f is satisfiable if there is an assignment A such that A(f) = 7. Such an assignment
is known as a model. The set of satisfiable formulas is denoted SAT, and we are interested
in the following decision problem: given an arbitrary CNF formula f, is f € SAT? For
example in the case of the formula in Equation (2.1), we see that f € SAT with the model
(v1 = Fyvg = T,v3 = T). In this example other models also suffice. If an algorithm always
provides an answer, given an instance f, it is complete; if this answer is always correct, the
algorithm is consistent.

The SAT problem has numerous variations. For example, the #SAT problem, asks how
many satisfying assignments f has, and the quantified SAT (QSAT) problem considers the
addition of quantifiers to propositional formulas. #SAT has received little attention from
ML researchers and will not be discussed further beyond a single example in Chapter 7.
QSAT is described separately in Chapter 9.



There are numerous algorithms for deciding whether a given formula f is in SAT, and
these algorithms fall naturally into three categories:

1. Solvers based on local search. These are described in Section 2.3.

2. Distinct from local search solvers, the category that has proved the most influential is
based on extensive modifications to the Davis, Putnam, Logemann, Loveland (DPLL)
algorithm (Davies et al., 1962) described in the next Section. The modifications needed,
leading to Conflict-Driven Clause Learning (CDCL) solvers, are extensive, and are
described in Section 2.4.

3. Portfolio Solvers employ collections, or portfolios of multiple, different SAT-solvers.
These are introduced in Section 2.5.

These categories have very different characteristics, and this is reflected in the methods
used to apply ML to them. For example, DPLL can be considered a search algorithm, and
this observation leads to natural methods for adding ML—we shall discuss this further
below. In extending DPLL to CDCL many other points become available at which ML can
be applied in specific ways. Local search solvers are incomplete, in that they can not prove
unsatisfiability, while in portfolio solvers the emphasis is on learning to select which solver
to use for a given problem. These differences entail the use of different approaches to ML.

2.2 The DPLL Algorithm

Starting with a formula in CNF, we need some further definitions. If a literal [ only appears
with one polarity—that is, for some variable v either [ = v throughout the formula or | = —w
throughout the formula—it is known as a pure literal. A clause containing a single literal is
called a unit clause. The DPLL algorithm works by repeating the following steps:

1. Propagate the effects of unit clauses: for each unit clause with literal [, remove all
other clauses containing [, and remove =l from any clause in which it appears. The
last step may produce further unit clauses, so we continue until either all clauses are
satisfied, we detect an inconsistency (because a clause becomes empty), or there are
no unit clauses remaining.

2. For each pure literal [, remove all clauses containing .

3. Choose a variable v and perform a split, recursively testing for satisfiability when
v =T and when v = F'.

The process can easily be arranged as a depth-first search with chronological backtracking.
If at any point in the process the empty clause is generated then the formula is unsatisfiable
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with the set of assignments currently made, and the process backtracks; alternatively, if
the process generates a consistent collection of literals then a satisfying assignment can be
returned.

One critical observation that can be made allowing ML to be applied to theorem provers
is that many of them can be regarded as search algorithms wherein at each step of the search
a critical choice needs to be made. For example, in the DPLL algorithm we have a search
problem where the central choice involved is which variable to split on.! The hope is that
by learning from existing proofs we might succeed in making this choice more effectively. In
Section 2.4 we briefly review the modifications made to DPLL solvers allowing them to be
applied to large problems, and in the process uncover several further areas where ML can
be introduced.

2.3 Local search SAT solvers

While the DPLL algorithm makes a systematic, tree-based search for a satisfying assignment,
an alternative method employed by state-of-the-art SAT solvers is that of local search. These
solvers employ a fundamentally straightforward algorithm:

1 Select an initial solution candidate x € {0, 1}";
2 totalFlips = 0;

3 while totalFlips < flipLimit do

4 if x is a satisfying assignment then

5 L return x;

6 totalFlips = totalFlips + 1;
7 Choose a variable to flip;
8 Flip the chosen variable in x;

Typically, a solver begins with a random assignment to the variables in an instance. If
the assignment satisfies the instance we are done; otherwise, a variable is selected and
its assignment flipped. This continues until we find a satisfying assignment, or reach a
time-out. Solvers differ mainly in how a variable is chosen at each iteration. This process
can be considered an application of hill-climbing search, where a step in the search space

'In a wider context, the same can be said of methods for theorem proving in equational reasoning,
first-order logic (FOL) and so on. While modern FOL solvers for example rely on different proof methods,
in particular resolution using some variant of the given clause method (McCune, 2003), there is a similar
choice to be made in the search process: which given clause to use next. The most important single factor in
making an effective FOL prover based on resolution is the ability to make such selections effectively; this was
recognised early in the construction of ATPs with the use of simple heuristics such as unit preference (Wos,
1964) and many more advanced heuristics have since been developed for making such choices.



corresponds to flipping a variable, and the function being maximized is the number of
satisfied clauses. Further refinements can be made to the method. For example, a solver
might incorporate restarts, where the search process is stopped and restarted at a new,
typically random assignment.

Since the introduction of GSAT (Selman et al., 1992) and WalkSAT (Selman et al.,
1996), solvers of this kind, while they are generally incomplete as they can not prove
unsatisfiability, have proven to be very effective for many practical problems.

Local search solvers have proved particularly popular as a target for ML based on
evolutionary algorithms (Chapter 3, Section 3.6). This is because such algorithms can
naturally represent heuristics similar to the hand-crafted heuristics used by solvers such as
GSAT and WalkSAT, and modify them over time. We describe these methods in Chapter 8.

2.4 Conflict-Driven Clause Learning

DPLL is typically a depth-first search problem—in the third step we have to choose a
variable along with a value to assign to it. In its basic form backtracking is chronological;
that is, on exhausting the assignments for a variable we always backtrack to the immediately
preceding variable in the search. In practice DPLL is ineffective at solving realistic problems,
and modern SAT solvers use various techniques in an attempt to manage both time and
space requirements. CDCL has become a general term applied to this class of SAT-solvers,
although strictly speaking the title refers to only one of the methods that builds on DPLL.
As these methods have often introduced new opportunities for applying ML, we now provide
a brief summary. This is by no means a complete introduction and the interested reader is
directed to Biere et al. (2009) and to the more recent papers cited below.?

A number of solvers are available taking different approaches to the implementa-
tion of these methods; see for example GRASP (Marques-Silva and Sakallah, 1999),
CHAFF (Moskewicz et al., 2001), BERKMIN (Goldberg and Novikov, 2002), MINISAT (Eén
and Sorensson, 2003), PIcoSAT (Biere, 2008b), MAPLESAT (Liang et al., 2016b), GLU-
COSE (Audemard and Simon, 2018) and KISsSAT (Biere et al., 2020). This list is by no means
exhaustive; the annual International SAT Competition® provides an ongoing, up-to-date
reference to the state-of-the-art.

2Descriptions of the relevant algorithms are often somewhat informal, which in the past has made
reference to source code necessary for a definitive description. In recent work efforts have been made to
provide formal descriptions allowing formally verified solvers to be constructed, and this work also provides
a clear and precise description of many of the algorithms—see for example Nieuwenhuis et al. (2006), Fleury
et al. (2018), and Blanchette et al. (2018).

3www.satcompetition.org
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Figure 2.1: Illustration of the two watched literals algorithm. Each row is a single clause, represented at a
different point in an attempt to find a satisfying assignment. Initially all literals are unassigned, and -z and
x5 are watched. In the second step —xs is assigned, and as we are watching its negation the watched literal
moves to an alternative that is unassigned or true. Later, =z, and —z4 are assigned so the unwatched literals
1 and x4 have become false. Finally, assignment x2 falsifies watched literal —x2. There is no unwatched
literal that is unassigned or true, so we need to propagate the assignment —zs.

2.4.1 Preprocessing and Inprocessing

SAT solvers can be made more effective by attempting to simplify a formula at the start
of the process—referred to as preprocessing (Eén and Biere, 2005)—or while the search
for a solution is under way—referred to as inprocessing (Han and Somenzi, 2009; Hamadi
et al., 2010; Jarvisalo et al., 2012). Related methods employ simplification at other points in
the SAT solving process, in particular by simplifying learned clauses (Soérensson and Biere,

2009; Luo et al., 2017; Li et al., 2020).

2.4.2 Efficient Unit Propagation

The time taken to solve realistic SAT problems is overwhelmingly dominated by the cost
of performing unit propagation. Consequently, great care and ingenuity has been applied
to optimizing this process. Several data structures have been devised that help in this
process (see for example Lynce and Marques-Silva (2005)) however one in particular—the
two watched literals algorithm—has become dominant.

The idea is straightforward and is illustrated in Figure 2.1. Initially all literals in all
clauses are unassigned. The key insight is that, as long as at least two literals in a clause
are unassigned, no unit propagation can occur from that clause. For each clause we choose
(arbitrarily) two unassigned literals {; and ls to be watched. Each time a literal [ is assigned
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we only consider clauses watching its negation for unit propagation. For those clauses,
without loss of generality let us assume that [y = —[. If the other watched literal I is true
then the clause is satisfied and there is nothing left to do. Otherwise, we search for another
literal to watch instead of [1. If there is an unwatched literal that is either unassigned or
true then we watch it instead of I;. Otherwise only two outcomes are possible:

1. The other watched literal I, is false, so there is a conflict as all literals in the clause
are now false.

2. The other watched literal lo is free, so we need to perform a unit propagation.

It turns out that this process has the desirable property that the literals being watched
do not need to be updated on backtracking. Additionally, further gains can be made by
treating clauses of sizes 2 or 3 as special cases (Biere, 2008b).

2.4.3 Standard Variable Choice Heuristics

Considerable effort has been expended in the development of heuristics for choosing the
next variable on which to branch in DPLL-based solvers. Perhaps the best known and
most effective, until this class of heuristics was superseded by the activity-related heuristics
described in Section 2.4.5, was the Jeroslow-Wang heuristic (Jeroslow and Wang, 1990).
Let f be a CNF formula and for each literal [ in f define

J(Iy= > 27k
l€c,cef
The one-sided Jeroslow-Wang (OS-JW) heuristic selects the literal maximizing J(I) as the
next assignment. The two-sided Jeroslow-Wang (TS-JW) heuristic selects the variable v
maximizing J(v) + J(—w), and chooses its polarity according to whether J(v) > J(-w).
Various further heuristics of this kind are reviewed in Marques-Silva (1999). However
they are now little-used on account of the developments described in Section 2.4.5.

2.4.4 Clause Learning and Backjumping

It is worth re-iterating that, while the term ‘clause learning’ is ubiquitous in the SAT-solving
literature, it is considered a distinct form of learning for the purposes of this review. The
relationship between the two concepts is discussed further in Section 3.1.5.

Henceforth we need to make a distinction between assignments chosen after unit
propagation terminates, and assignments that are forced by unit propagation. We will refer
to the former as asserted or as decision variables, and the latter as implied. We also need
to consider the level at which each assignment is made. Initially the level is 0. The level
increases by 1 each time an assertion is made, and any assignments implied by an assertion
share its level.

11



Level d, where d > d' and d > d”

3 =F » o V3V Ty
at level d’ _— \\
1 =T — 21 V22 Conflict
\ /
x5 =T » o V x5 V 2y

at level d”

Figure 2.2: Learning a clause and backjumping. The assignment x1 = T causes unit propagations leading
to a conflict. Resolving clauses as described in the text leads to clauses implied by the original problem; in
this case the clause asserting —x3 A x5 — —x2 can be added. In addition we can immediately backjump to
the higher of levels d’ and d”.

The key idea in clause learning is that the satisfiability of a set of clauses is unaffected
if we add a new clause that is implied by the original set. Thus, further clauses can be
added to the original problem. Typically when a conflict is detected, indicating that a
current partial assignment to the variables can not be extended to a solution, the situation
is analysed and information about the conflict is encoded in a new clause. Such clauses can
be used to aid the continuing search. In practice the finding and addition of such clauses
has three primary benefits:

1. Chosen carefully, they force unit propagations allowing the solver to avoid repeated
steps.

2. The process of deriving them can provide information allowing us to backjump many
levels, instead of a single level as with chronological backtracking, without any danger
of missing out areas of the search space.

3. The degree to which variables are being used in the process of finding new, implied

4

clauses® can be exploited to devise improved heuristics for which literal to assert next.

Many approaches have been suggested to the derivation of implied clauses; we will describe
the most common: learning at the first Unique Implication Point (UIP). Figure 2.2 illustrates
the key idea. At some level d in the search we assert that xz; = T. This triggers unit
propagations leading to a conflict. Specifically, the clause —x1 V z9 propagates the assignment
x9 = T'. This, in conjunction with assignments z3 = F' and x5 = T made at earlier decision

4The term ‘“implied clause’ has been defined in different ways by different authors. We use it largely in
the sense termed a resolvent by Eén and Biere (2005), but the reader should be aware that others, such
as Moskewicz et al. (2001), may use it differently.
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levels d’ and d”, causes two further unit propagations implying both 24 = T and x4 = F.
At this point we have a conflict and therefore need to backtrack.

Resolving the two latest clauses in this process leads to the clause —x2 V x3 V —x5, which
is implied by the original formula. Stepping back again and resolving with -z V x4 results
in the clause —~x1 V x3 V =5, which is also implied by the original formula. We can add any
clause derived in this way to the original formula without changing its satisfiability.

Looking at the first clause obtained using resolution, note that it contains only a single
variable at decision level d. Notice also that it can equivalently be written

—x3 N\ s — L9

This means that, not only can we add it to the clauses available, but that it encodes enough
knowledge about the original problem potentially to be of use in continuing the search. In
particular, assuming without loss of generality that d’ > d”, we can backjump to the last
unit propagation at level d’ and immediately assert xo = F.

A more general description of this process can be given using an implication graph (Zhang
et al., 2001) as illustrated in Figure 2.3. Here, the black node is a decision variable vy =T
at decision level 10, denoted 10|vs = T. White nodes are implied assignments, and grey
nodes are assignments at earlier decision levels. The problem clauses themselves are now
implicit; for example, the implied assignment vg = T can be seen to be due to a clause
{—ws, v3, w12, v6} by examining nodes with outgoing edges connected to vg.

We say that a node ni; dominates node no if any path from the decision variable at
n1’s decision level to ne must pass through ni. A Unique Implication Point is then a node
that dominates both nodes causing the conflict, in this case the two nodes for vi7. In the
present example, both vs and veg are UIPs. The first UIP is the first such node encountered,
working backwards from the right-hand-side of the graph, in this case vag.

Multiple learned clauses can be obtained by cutting the implication graph as illustrated.
(The two examples shown are not exhaustive.) A cut divides the graph into a reason side
(including all nodes with no incoming edge) and a conflict side (including the conflicting
variable). A learned clause is obtained by negating the variables of the nodes directly
adjacent to the cut on its reason side—the reader may easily verify that this corresponds to
the resolution process described earlier. In our example, Cut 1 allows us to learn the clause
{—v7, =g, v16, V19, 713}

The cut corresponding to the first UIP places all assignments following the first UIP,
and that have a path to the conflicting variable, on the conflict side, and all remaining
assignments on the reason side. In our example this is Cut 2, which allows us to learn the
clause {—wvr, g9, ~w13} corresponding to the first UIP. This contains only one variable
assigned at level 10, and is equivalent to v; A v13 — —wag, so we can backjump to level 6
(the highest level among variables v7 and v13) and assert vog = F.
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Cut 1

1|’020 =T 3’1)21 =F

Figure 2.3: Example of an implication graph, with cuts used to generate two possible learned clauses.
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In practice the learned clause for the first UIP can be obtained by resolving clauses
starting with the conflict, and working backwards along the sequence of assignments, at each
stage resolving with the clause that caused the assignment. We continue this process until
the resulting clause contains only one variable at the current level. Thus in our example we
start by resolving {ﬁv77 =029, v17} and {Ug, —13, ﬁv17} to obtain {ﬁv7, =129, V2, ﬁvlg}. This
has two variables at the current level. Immediately preceding the conflict is the assignment
ve = F, caused by clause {—wvag, —v2}. Resolving with this clause gives {—wv7, —vag, w13} as
required.

Learned clauses can be simplified before adding them to the problem, as described
by Sorensson and Biere (2009) and Hamadi et al. (2010).

Backjumping is an elegant and effective idea. Because of this, for some time it entirely
replaced DPLL’s chronological backtracking; that is, the simpler strategy of backtracking to
the last decision and flipping the assignment. (Or backtracking further if both assignments
have been tried.) However recent work by Nadel and Ryvchin (2018) argues that chronological
backtracking can be beneficial, and suggests a backtracking strategy that applies it if, first,
sufficient conflicts have occurred since solving began, and second, the chronological and
backjumping levels are sufficiently different.

2.4.5 Activity-Related Variable Choice Heuristics

The use of clause learning has a further useful side-effect. It appears that variables used
in deriving learned clauses often make good candidates when we need to choose the next
variable to assert. This has led to the development of a large number of variable choice
heuristics, the best-known being the Variable State Independent Decaying Sum (VSIDS)
heuristic (Moskewicz et al., 2001). With these heuristics the central idea is to maintain
a record of how often each variable has been used recently in the derivation of a learned
clause—such measures are usually referred to as a variable’s activity—and to choose the
variable with highest activity to assert next. For a comparison of several related heuristics
of this kind see Biere and Frohlich (2015).

The solver MINISAT has become ubiquitous in applications of ML to SAT. This solver
chooses variables using the Ezponential VSIDS (EVSIDS) method. It assigns to each variable
v in a problem instance an activity a(v), initialized to zero. At each conflict, the variables
appearing in a learned clause have their activities incremented as

a(v) «+ a(v) +u
and at each conflict u is increased as
w—uxu
where u’ takes a value typically between 1.01 and 1.2, and which in some variations may vary.

Activities a(v) and the value u are re-scaled when necessary to avoid numerical overflow.
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Thus, variables involved in more recent conflicts attain higher activities, and when choosing
the next variable to assign, the variable with the highest activity is chosen and set to F
first.

These heuristics are often used only to choose the variable on which to branch, and not
its polarity. A common method for making the latter choice is simply to set it to whichever
polarity was used last time it was assigned, as suggested by Pipatsrisawat and Darwiche
(2007). However some solvers take a different approach, for example by always asserting the
negative literal.

More recent developments have been made in improving variable choice heuristics. As
these rely on the introduction of ML we defer further discussion to Chapter 7.

2.4.6 Clause Forgetting

While clause learning has definite benefits, it also has an important shortcoming: it is
possible to learn so many new clauses that memory becomes a limiting factor. It is therefore
common also to forget learned clauses on a periodic basis. This is often achieved by keeping
a record of each clause’s activity, in a way analogous to that of variable activity—clauses
used often are considered more active.

MINISAT maintains an activity score a(c) for each learned clause ¢. An activity a(c)
is incremented each time c is used to analyse a conflict, and the size of the increment
increased over time as in the case of the variable activities. The activities are used to prune
learned clauses at various points in the search, with learned clauses having small a(c) being
discarded.

More recently, alternative notions of how the quality of a clause might be assessed have
received scrutiny, and a particularly significant outcome has been the introduction of the
Literals Blocks Distance (LBD) measure of clause quality (Audemard and Simon, 2009).
When a clause is learned, its literals each have a level at which they were assigned. The LBD
of a clause is the number of levels that appear, and clauses with a low LBD are preferred.

2.4.7 Restarting

We noted above that local search solvers can employ restarts as part of their search process.
Restarts can also be effective in the context of CDCL solvers. Here, restarting involves simply
stopping the search process at some point, typically after a specified number of conflicts,
and starting again. While this initially seems an unlikely way to make any improvement,
the key idea is that we keep all learned clauses, variable and clause activities, and any
other relevant information inferred by the searches made so far. It has been established that
frequently restarting can lead to faster successful searches, and numerous methods have
been explored for deciding when to force a restart. The best-known restart method, and a
common one in practice, is the Luby Restart originally devised for minimizing the expected
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time taken by a randomized algorithm (Luby et al., 1993). Other methods of varying levels
of sophistication have also been employed, see for example Biere (2008a).

We will have further need to discuss the Luby restart sequence in Section 7.4. Say
we have an algorithm whose runtime ¢(x) for input z is randomized, having probability
distribution p(t). Instead of starting the algorithm and just waiting for a solution, we run it
for a time t¢1. If it produces a result within this limit we are done, otherwise we start an
independent run for time t3, and so on. For a sequence t = (¢1,12,...) we are interested in
the expected value of the resulting total runtime 7'(t, z). Luby et al. (1993) showed that if
p(t) is known then the optimal sequence

t= argfnin E[T(t,x)]

A

is uniform, such that € = (t,1,...) for a specified value . The value { is

i = argminE[T (1), )] = Ptt) (t - / tP(T)dT) (2.2)

where P is the cumulative distribution function corresponding to p. In practice p(t) is of
course rarely known however. Let 7' = E[T(t, )] be the expected total runtime for the
optimal sequence. The Luby sequence t; is non-uniform, but has the property that its
expected total runtime is O(T log T for any p(t).

While the Luby sequence is widely known and understood, its use has fallen out of
favour in the SAT-solving world since the introduction of methods allowing more frequent
restarts, in particular those pioneered by the GLUCOSE (Audemard and Simon, 2018) solver.
This development has more recently been challenged by Oh (2015), whose approach is
described in Section 2.4.9.

2.4.8 Cache-Friendly Data Structures

In implementing a SAT solver there are various points at which suitable data structures
need to be chosen. While it might appear that a sophisticated data structure would be be
preferred, it has been found that often the best performance can be attained using carefully
implemented array-type data structures. This is because their default layout across adjacent
memory locations leads to a better cache hit rate: locality of reference seems to be crucial
here. In practice, SAT solvers now pay careful attention to optimizing cache performance,
often to the extent that they will implement their own memory management.

This issue is studied in detail by Chu et al. (2010), where data structures for various
parts of the process are considered. An example of how attention to the cache can be
beneficial is as follows. Often in detecting unit propagations, it is necessary only to examine
the first few literals in a clause. A clause can thus be represented using a data structure
specifically aligned to the cache, where a single cache line contains the first few literals
along with a pointer to the remainder of the clause.
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2.4.9 Recent Developments

Should satisfiable (S) instances be treated differently to unsatisfiable (U) instances? For
some time it has been known that these classes appear to have contrasting characteristics,
but research on improving CDCL solvers has mostly proceeded without differentiating them.
Oh (2015) argues that this has been counterproductive, and provides the origin of a method,
now known as phasing, that attempts to address the difference. In this work, it is shown
that, for problems in the industrial domain, different approaches to learned clauses, restarts,
and variable selection can lead to better performance for S or U instances. Specifically:

1. Learned clauses are more significant in proving U instances, while variable choice is
more important for S instances.

2. Luby restarts can perform better than more frequent restarts for S instances.

3. Different settings governing the VSIDS heuristic can be appropriate under different
circumstances.

Evidence is then provided showing that improvements can be achieved by mixing, during
a solution attempt, phases in which different approaches are used. For example, a solver
might alternate between phases with and without restarts, and use different approaches to
VSIDS for each phase.

2.5 Portfolio Solvers

The third broad class of SAT solvers that has benefited from the use of ML is that of
portfolio solvers, with the best-known example being SATzilla (Xu et al., 2012¢). The
reader might reasonably suspect by now that different approaches to SAT solving have
complementary strengths and weaknesses. This is indeed the case, and so the question arises
of how, given a problem of interest, we might choose a specific solver with which to address
it.

In a portfolio solver the inclusion of ML focuses on learning to select, from a portfolio
of available SAT-solvers, which solver to use given the problem at hand. For example, if
we have a portfolio S = {s1,...,s,} of n solvers, we might apply ML to learn n functions
{h1,...,h,}. Given a problem p, h;(p) is then an estimate of the time solver s; will take to
solve p, and these estimates can be used to choose the most promising solver.

This idea can be expanded such that if we have a portfolio S = {s1,...,s,} of solvers
and a time limit T, we can learn to construct a schedule based on the problem at hand.
Here, a schedule takes the form of a permutation 7 of {1,...,n} and a sequence {t1,...,tmn}
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of times where m <n and
m
d i <T.
i=1

Given such a schedule, we run solver s ;) with time limit ¢;. If it is successful, we are done,
otherwise we run s;() with time limit ¢, and so on.

A considerable degree of success has been achieved in applying ML to the construction
of portfolios for SAT, and we describe this work in Chapter 6.

2.6 Standard Input File Formats

SAT and QSAT solvers need to read an input describing the problem to be solved, typically
from a file. Researchers have converged on a small number of file formats that are now
standard:

e The DIMACS format describes SAT problems in CNF form. Its description can be
found at: www.satcompetition.org/2009/format-benchmarks2009.html.

e The QDIMACS format extends the DIMACS format to a CNF-based description of
QSAT problems. Its description can be found at: www.gbflib.org/qdimacs.html.

e The QCIR format describes QSAT problems in a circuit-based form. Its description
can be found at: www.qbflib.org/qcir.pdf.

3 Machine Learning

While theorem-proving and ML are very different fields, they share the characteristic of
having a vast associated literature. As with the previous chapter, we can not attempt to be
comprehensive in the following introduction to ML. Rather, having presented an outline
of the SAT-solving world for the benefit of ML researchers, the present Chapter aims to
provide a complementary presentation of ML for researchers in SAT and the wider ATP
world.

Historically, the majority of deployed applications of ML have been of the supervised
learning kind (Section 3.1), and consequently we shall cover supervised learning in the
greatest detail. It is only quite recently that wunsupervised learning (Section 3.2) and
reinforcement learning (RL) (Section 3.4) have started to gain more widespread application.
The subject of multi-armed bandits (Section 3.3) can be seen as an introduction to the more

1Other approaches to ML, in particular semi-supervised learning and active learning have so far not
been applied in the SAT and QSAT spheres.
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general idea of reinforcement learning; however, it has an important role to play specifically
in the application of ML to SAT-solvers, so we give it its own Section.

Neural Networks (NNs) (Section 3.5) have alternated several times between periods
of great popularity and deep unfashionability, while currently enjoying the former status.
They can be applied to all the variants of the ML problem mentioned so far. Evolutionary
methods, particularly genetic algorithms and genetic programs (Section 3.6), are essentially
optimization procedures that can be applied to ML; as they have very specific characteristics
we introduce them separately.

Finally, applications of ML depend fundamentally on the availability of good data. Over
many years, SAT and QSAT researchers have built extensive collections of problems that
can be used for this purpose (Section 3.8).

3.1 Supervised Learning

We begin by providing a very brief introduction to the fundamental idea of supervised
learning, and to some of the algorithms most commonly used in this area; for a more
detailed, but gentle introduction see Mitchell (1997), and for an in-depth view see Murphy
(2012).

3.1.1 Feature Engineering

To ground the discussion with a relevant example, consider the problem of deciding directly
the satisfiability of an arbitrary Boolean formula f. (This is a problem that has been studied
extensively, as we shall see in Chapter 5.) The formula f can be encoded as an instance
x € R™, the n elements of which are called features. Traditionally the ML practitioner has
needed to find an effective way of transforming a CNF, or other logical representation of f,
into the vector x, using their domain knowledge about the problem at hand. (And often a
considerable degree of trial, error, and experimentation.) This process is commonly called
feature engineering.

Features, when engineered in this way, are generally chosen according to the problem
domain; in this case for example we might characterise f by features such as the average size
of its clauses, the number of variables and so on. As we shall see in Chapter 4, the problem
of SAT solving is unusual in that, unlike most supervised learning problems, there exists
a quite standardized set of features, and this set (or a subset) has been used in multiple
applications of ML to SAT.

While traditionally features have been chosen by the designer, in recent years there has
been a move more generally in ML towards methods that work directly on a representation
of the input, inferring relevant features without human intervention. We address this issue
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at greater length in Chapter 4, but for now it better fits the discussion to assume that
features are derived from f in the more traditional way.

3.1.2 Classifiers

Let F be the space of all Boolean formulas. A method as described for turning formulas
into feature vectors can be regarded as a function F': F — R"™. Once an arbitrary formula f
can be represented using a set of features x = F(f), solving SAT then becomes the problem
of designing a classifier h : R™ — {0, 1} such that h(x) = 1 for any instance derived from a
satisfiable f and h(x) = 0 otherwise. The classifier h is not designed by hand; rather, we
gather a collection of training data. To do this we take m formulas

(fla"'vfm)

where in each case we know whether or not the formula is satisfiable, and label the
corresponding instances according to satisfiability. This results in the training sequence

s = ((x1,91)s- > (Xm,Ym))

with x; = F(f;) and y; € {0,1} for i = 1,...,m. A learning algorithm takes s and outputs
h. Let ‘H be a set, often called the hypothesis space, containing all allowed functions h. The
learning algorithm is in essence a function

A: U " x {0,1})

3.1.3 Generalization

It is critical to note that h is a function. As a result, it will provide a value in {0,1} for
instances derived from formulas that were not represented in s. We might reasonably expect
that h does not always provide the correct answer, but the ability to provide the correct
answer in the majority of cases is referred to as generalization.

Can this possibly work? How can we hope to choose h on the basis of s such that it can
be successful in predicting outcomes for formulas the learning algorithm has never seen?

This is a deep and interesting issue. Put simply: the relationship between instances and
their labels is not random. As a result, the examples in s can form the basis for a statistical
model of a general probability distribution on the space R™ x {0, 1}—we shall see a simple
example of this below. By carefully controlling the nature of the function h € H that A
picks, in particular properties relating to its smoothness, generalization can be achieved.

This is of course a very simplified explanation, but the reader can, for the purposes of
understanding the rest of this review, safely assume that modern, standard methods for ML
can achieve a usable, even profound level of generalization. The reader in need of further
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justification can find extensive theoretical models of the process based on computational
learning theory (Anthony and Bartlett, 2009), empirical risk minimization (Vapnik, 2006)
and statistical physics (Engel and Broeck, 2001), amongst other areas.

3.1.4 Classifiers Making Non-Binary Predictions

As we do not expect the classifier h to guarantee a correct answer, we might wish to relax
the requirement that it produces a prediction in {0,1}. The problem of predicting a real
number—that is, learning a function h : R — R—is known as regression. For example, we
might then decide satisfiability by predicting f € SAT if h(x) > 0 and f ¢ SAT otherwise,
while using |h(x)| as a measure of the certainty of the prediction.? Regression has also
proved useful for tasks such as predicting the time that a solver might take to solve a
problem; this idea is central to the construction of solver portfolios, and we explore it
further in Chapter 6.

We can also formulate the problem as one of predicting the probability that f € SAT,
allowing h to be a function h : R™ — [0, 1] with the interpretation

h(x) = Pr (f € SAT|x) = Pr (C = 1]x) (3.1)

where we have introduced the random variable C' used to denote class. For a classification
problem with two classes, thresholding h at 1/2 then corresponds in certain circumstances
to the Bayes-optimal classifier (see for example Duda et al. (2000)).

We now provide three examples of simple classification algorithms.

Example 1: The naive Bayes classifier represents perhaps the easiest approach to learning
a classifier of the form h(x) = Pr (C = 1|x). While it makes very strong assumptions
regarding the underlying probability distribution governing the generation of labelled data,
it often works well in practice and has the advantage of being computationally lightweight—
a property that, as we shall see, is often of great significance when attempting to prove
theorems.

We can in principle compute the value Pr (C|x) as

Pr (Clx) = %Pr (x|C) Pr (C)

where

Z = ZPr (x]c) Pr ()

2A Bagyesian approach to ML allows us to treat the issue of certainty more rigorously, by inferring a
distribution on the output value, and using the variance of this distribution as an indicator of certainty. We
will not pursue this subject further here; see Bishop (2006) for details.

22



normalises the distribution. While the prior class probabilities Pr (C') can in general be
estimated easily by observing the numbers of training examples in s corresponding to each
class, the distribution Pr (x|C') will be much harder to obtain—if we wish to estimate its
value for a specific x then we are likely to need a great deal of data in s. The naive Bayes
classifier therefore makes the assumption that features are conditionally independent given

the class
n

Pr (x|C) = [[ Pr (x:]C) .
i=1
The estimation of the distributions Pr (z;|C) from s is in some cases significantly more
straightforward, particularly when the features z; are discrete; Mitchell (1997) for example
describes the use of this form of classifier in the automated classification of news stories. [J

Example 2: A second simple but often very effective machine learning algorithm is the
nearest neighbour algorithm, or its close relative the k-nearest neighbours algorithm. Consider
a training sequence s as already described. In order to classify a new instance x the nearest
neighbour algorithm works as follows: find the example (x;,¥;) in s with x; closest to x
according to some metric, then classify x using y;.

This idea can easily be extended to take account of the k instances x; closest to
x. For example, let Sx be the set of the k examples in s that are closest to x. Let
Sy = {(xi,yi) € Sx|yi = y}. Then for a two-class classification problem with labels in {0,1}
we might define the classifier h as

0 if |Sp| > |
h(x) = [Sol > 151
1 otherwise

Algorithms of this kind have been very extensively studied and applied; many variations
can be constructed using different metrics, different ways of taking the neighbouring examples
into account, and so on. For a comprehensive treatment see Devroye et al. (1996). O

Many learning algorithms do not output a classifier h directly; rather, they output a
vector of parameters, usually called weights, that define h implicitly. This kind of learning
algorithm is the norm for NNs, and the simplest possible NN is equivalent to the method of
linear regression.

Example 3: In linear regression we learn a function

h(X, W) = wo + Z W; T (3.2)
=1
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where?
and
T=] ]
W = |wyg W1 - Wp|-

It is notationally convenient to assume that x is always prefixed with an extra element
equal to 1, so
x! = {1 AT xn}

and Equation (3.2) can be re-written
h(x,w) = w!x. (3.3)

Learning now corresponds to mapping the training sequence s to the vector w. To do this
we can choose w to minimize some measure of the error that h makes when trying to
classify the available training data. For example, define the error

E(w) = (h(xi,w) — :)?. (3.4)
=1

The training algorithm for linear regression should then choose
Wopt = argmin £(w)
w

and is straightforward to derive as it corresponds to solving a set of linear equations—we
present a more general version below.

Equation (3.2) clearly describes a linear relationship between input and output. In order
to make the relationship nonlinear while maintaining the overall simplicity of the method,
it is common to introduce p basis functions ¢; : R™ — R and modify Equation (3.2) to

h(x,w) = wl ¢(x) (3.5)

where

T =[1 o1(x) - )]
A drawback of this approach, when applied directly, is that it can suffer from overfitting;
that is, the tendency if the data is noisy to fit it too closely, in essence attempting to learn
the noise. Ridge-regression modifies the learning algorithm to compute

Wopt = argmin (B(w) + /\HWH) (3'6)

3Tt is now the norm in the literature on ML to assume vectors are column vectors, hence this perhaps
unfamiliar notation.
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where A € R is a further parameter that can be set experimentally, typically using a method
such as crossvalidation (Kohavi, 1995) to estimate the generalization performance expected
for a selection of values. It is straightforward to show that the solution to Equation (3.6) is

wope = (@7 + 1) @y

where
®=[px1) - Plxm)]

and

yi= 1l o oyl

In the case where we wish to perform classification rather than regression, we can for
example address two-class problems with labels in {0,1} by modifying Equation (3.5) to

h(x,w) =0 (WT¢(X)) . (3.7)
If
1 ifz>0
o(x) = (3.8)
0 otherwise
then we have the perceptron; in this case there are numerous applicable training algo-
rithms (Duda et al., 2000). To obtain a probabilistic output we can use a function such as

the sigmoid function
1

o(z) = T exp(—a)
In this case the error defined by Equation (3.4) is no longer appropriate and is generally
replaced by the cross-entropy loss

(3.9)

m
E(w) ==Y (yilog h(x;) + (1 — y;) log(1 — h(x;))) - (3.10)

i=1
There is no longer a closed-form solution to the corresponding minimization problem,
however a solution can be found iteratively using the iterative re-weighted least squares
algorithm (Bishop, 2006). O
We will at some points in the following also need to refer to a classifier known as the
Support Vector Machine (SVM) (Shawe-Taylor and Cristianini, 2000). This is based on the
idea that, taking Equations (3.7) and (3.8) as a starting point, the two classes are divided by
a hyperplane in RP, the position and orientation of which depend on w. The SVM chooses
w to place this hyperplane as far away as possible from the training examples, while still
classifying them correctly. This idea can be adapted to situations where the training data

are not separable.

4Parameters such as A are called hyperparameters and their careful estimation is critical. In training
NNs there can be many hyperparameters, and the process of estimating expected performance for many
combinations of hyperparameter values is referred to as grid-search.
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3.1.5 Supervised Learning Versus Clause Learning

In Section 1.2 we noted that the term ‘learning’ has distinct meanings, depending on
whether the context involves machine learning or clause learning. It is worthwhile at this
point briefly to expand on the relationship between these ideas.

One way in which we can model supervised learning is to propose the existence of a
target function t : R™ — L where L denotes an appropriate space of labels. This function
is never revealed to our learning algorithm. It is however used to generate the training
set s, using some process to generate feature vectors x;, and labelling them as y; = t(x;).
The labels y; may additionally be perturbed by noise, however the training set ultimately
provides a limited representation of the function ¢. The purpose of supervised learning is to
infer a hypothesis h, based on s, that represents ¢ well even in areas not represented by
s. Each time a new example is added to s, we expect to be able to improve the quality of
the inferred h. We are, in essence, attempting to reconstruct ¢ in the form of h, using the
incomplete information represented by s.

In the case of clause learning, assume we have a CNF formula f. Whenever a solver
generates a partial assignment leading to a conflict, one or more clauses can be learned and
added to f; thus over time the problem takes the form

n
IA /\Ci
i=1

where the ¢; are learned clauses. These clauses are derived using the partial assignments,
which in essence act as training examples. As the learned clauses are implied by f, their
addition does not alter the meaning of the problem, but they do encode knowledge about
the problem uncovered by the partial assignments and resulting conflicts, and which is
useful in the ongoing proof search. We can thus regard the conjunction c¢; A --- A ¢, as
analogous to h in the ML context.

3.2 Unsupervised Learning

In unsupervised learning we attempt to infer structure in data without the assistance of
labels as in supervised learning. Given m examples, often in the form of vectors x; € R",
we typically aim to identify clusters within the data. Numerous algorithms are available
that aim to solve this problem. For example, denote by N (x; u, ¥) the multivariate normal
density with mean p and covariance X. Assume that the x; are drawn at random from a
probability distribution with density p(x) of the form

K
p(x) =Y mN(x; pi, i) (3.11)
i=1
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where m; > 0, YK, m; = 1. Equation (3.11) is a natural description of a density that will
produce data from K clusters centred on the u; and with shapes described by the ;.

Given only this model and m samples (Xi,...,X;,), how might we then infer the
parameters p;, 3; and ;7 Collecting the parameters as 6 = {m;, p;, 3;|i = 1,..., K} one
approach is to maximize the likelihood

m

L(0) = [ ] (xi).

=1

This can be achieved using the EM algorithm; for the details see Bishop (2006).

3.3 Multi-Armed Bandits

Multi-armed bandits provide the simplest possible model for a learning task where an agent
learns by interaction with the environment, rather than simply by observing it. We provide
only a minimal introduction; see Sutton and Barto (2018) for further details.

Imagine you are faced with n 1-armed bandit machines. Each has a probability distribu-
tion over the rewards payed out when it is played, and this distribution is not known to
you. You are given m plays and asked how you might choose a sequence of machines to play
in order to optimize the reward obtained. If the reward distributions were known to you it
would make sense to play only the machine with the highest expected reward; but when
these distributions are unknown you need to try some machines to learn how they perform.

You might for example try a small number of machines and find that one gives you
some large rewards. One approach is then to exploit this machine by continuing to play
it. Alternatively, you might forego playing this machine, and try out others in the hope of
finding an even better one. Thus you would explore the characteristics of the machines in
an attempt to gain better rewards. When the distributions of rewards are unknown to you
the problem becomes one of how to balance exploration and exploitation.

The problem becomes more complicated if the reward distributions can evolve over
time, in which case rewards gained recently should carry more weight in our strategy than
those gained earlier in the process. A simple idea then is to compute weighted averages. If a
machine gives a sequence 71,79, ...,r, of rewards we might compute the weighted average

n

P = Z(l — )" tar;

i=1

where 0 < o < 1 is a discount parameter. This can be achieved without storing the entire
reward sequence as

Pl = (1 — @)Pp + arpyr.

This is known as the exponential recency weighted average (ERWA ) algorithm.
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Space again precludes any comprehensive presentation of algorithms for learning to
play multi-armed bandits. We limit ourselves to an example of a simple algorithm with
provable performance guarantees. The discounted Upper-Confidence Bound (UCB) algo-
rithm (Garivier and Moulines, 2011) addresses multi-armed bandit problems where the
distribution of rewards is stationary for periods of time but occasionally changes. It takes
the idea of discounting rewards further, and in doing so provides one of many algorithms
for addressing multi-armed bandit problems. Once again, a discount factor 0 < v < 1
is introduced, allowing immediate rewards to be treated as more valuable than delayed
rewards. Let I denote the indicator function, such that for a predicate P, I(P) = 1 when
P is true and I(P) = 0 otherwise. Let r;; be the reward obtained from playing arm i at
time ¢, and let p; denote the arm played at time ¢. Then the discounted UCB algorithm
estimates for the arm ¢

1 & .
rr(1) = - “rril(pr =4
(%) Ny () ;7 i l(pr = 1)
where
T
Np(i) =Y 7" (pe = i)
t=1
It then introduces a further term
. §log Nt
CT(Z) =2b W

where b is a bound on the size of the rewards, £ is a parameter and

Np = zanT(i).

i=1

Finally, it plays the arm maximizing 77(i) + cp (7).

3.4 Reinforcement Learning

In a multi-armed bandit system our only choice in accumulating reward is which arm to
choose. In reinforcement learning our aim is still to accumulate reward, but the actions we
take can change the state of the world, and rewards can be state and action dependent.
Our aim now is to learn a policy p : S — A where S is a set of states and A is a set
of actions. Taking action a € A in state s € S results in us moving to a new state s’ € S
and receiving a reward r € R; we do not however know at the outset how new states and
rewards are assigned, and in general there are probability distributions that govern the
assignments. Our aim is to learn a policy that maximizes some measure of the rewards
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accumulated over time, typically the expected value of the quantity
>0 .
Ri=ri+yris1 +7V°riga =Y _ Vi (3.12)
§=0

where r; denotes the reward received at the ith step and v € [0,1] is a discount factor used
to emphasise near-term rewards over those received some time in the future, in exactly the
same way as in a multi-armed bandit problem.

Once again, there are numerous algorithms that can be used to infer a policy through
interaction with the environment; see Sutton and Barto (2018) for a detailed introduction.
For example, in Q-learning we attempt to learn a function Q(s,a) that estimates the
reward attained by performing action a in state s and thereafter acting optimally. The
corresponding policy then simply selects the @ maximizing Q(s,a) for the current state s.

3.5 Neural Networks

It is to some extent unnecessary to give NNs a section separate from those preceding, as they
can be applied in some form to all of the learning tasks seen so far, either as self-contained
methods or as components of larger systems. However the proliferation of architectures now
available, aimed at diverse elements of the ML problem, makes it convenient to treat them
in a single place.

NNs have been applied in many ways in attempts to improve SAT and QSAT solvers,
and these attempts have covered the full spectrum of complexity available. In this section
we present a short introduction to several NN architectures, attempting to give a flavour of
the main ones used to date. In reading it, we advise the non-specialist to be mindful of two
important points:

1. We mentioned above that a training algorithm can specify a hypothesis implicitly by
specifying a set w of parameters, or weights. Hence for example, in Equation (3.2) a
linear function was denoted h(x, w), where x is an instance. NNs can for our purposes
almost always be regarded as a way of specifying parameterized hypotheses that are
much more flexible than the linear regressor.

2. The design of these, more flexible hypotheses can be regarded as a process of selecting
the correct building blocks and combining them in an effective way. Different building
blocks, such as multilayer perceptrons, convolution layers, long short-term memories
and so on are designed to address particular kinds of problem.

3.5.1 The Perceptron

The simplest possible neural network is illustrated in Figure 3.1, and corresponds to the
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Figure 3.1: Representation of the perceptron model. The N inputs are z1,...,xn, collected into the vector
x. A linear function is formed from these, parameterized by the weights w1, ...,wn and the bias b. The

value of this function is the activation a, and is modified by the activation function o to produce the output
Y-

linear model of Equation (3.2), usually with the edition of a nonlinearity o known as the
activation function, and taking the shape of a step or a smoothed version of a step as
discussed above.® The value N
a= Z wiz; + b
i=1
is referred to as the activation. We will not discuss these simple models further, other than
to note that they form the basic building block for the multi-layer perceptron (MLP).

3.5.2 The Multilayer Perceptron, and Friends

By connecting many perceptrons into a more complex structure we obtain a multilayer
perceptron (MLP). The typical format is illustrated in Figure 3.2. There are two points
to note here. First, the network is a directed acyclic graph (DAG), beginning on the left
with the input nodes, and with one or more output nodes on the right. Second, it has
a layered structure: input nodes connect directly to the first layer, these nodes connect
directly to the second layer, and so on. It is entirely possible to deal with more complex
structures—for example by allowing connections to skip layers. While this is not unusual
in the more recent work discussed below, we confine ourselves for the time being to this
structure, which provides a useful and very common basis.

Each node in the MLP is itself a perceptron as described in the previous section. By
collecting together the weights and biases of all the nodes in the structure into a single

®Henceforth in this work we will use ¢ to denote the sigmoid function defined by Equation (3.9). In the
literature, many functions with a similar shape are used, depending on the circumstances, and these will be
introduced as required and denoted using a different symbol.
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Figure 3.2: Representation of a multilayer perceptron having five inputs, two hidden layers with seven and
three nodes respectively, and a single output layer with one node. Each node in the network is a perceptron
as illustrated in Figure 3.1.



vector @, and assuming for the moment that there is a single output y as illustrated, we
can consider the MLP to compute a function hg : R” — R just as in previous sections;
however the more complex structure now allows for more expressive functions, depending
on the number of layers and the number of nodes in each layer. In any case, the process of
computing hg(x) by applying an input x to the network and successively computing the
outputs of each of the following layers is called forward propagation.

Given a training set s the network can also be trained in the same manner as already
discussed, by minimizing a measure E(0) of error such as those in Equations (3.4) and (3.10),
where we have changed the notation from w to 8 to emphasise that 8 contains parameters
collected from multiple perceptrons. However, the resulting optimization problems do not
have closed-form solutions and must therefore be addressed using other methods. The key
requirement for such methods is to obtain the gradient Vg F of the error. For example, if
this gradient is available then in the simplest form of optimization, namely gradient descent,
we can try to compute a good vector € in an iterative manner by starting at some random
solution 8y and applying updates

0i+1 = 02 - /.LVQE(OZ) (313)

where 1 is a parameter denoting step size. Note that as the error F(0) is almost always a
sum of individual terms, one for each example in s, its gradient can also be expressed as a
sum of gradients corresponding to individual examples; that is,

m
VoE =) VoE;. (3.14)
i=1
A variant of gradient descent, known as stochastic gradient descent performs updates on a
per-example basis using VgF; instead of VgFE. In either case the question remains though
of how to compute the gradient.

The process of backpropagation refers to the algorithm for finding Vg FE;(0) for a single
labelled example (x;,y;) and the current parameters 6. Its name alludes to the fact that,
once X; has been applied to the inputs of the network and forward propagation performed,
Ve E;(0) can be computed in a straightforward manner by starting at the output node
and working backwards, layer by layer. Each step backwards through the network requires
only the use of the chain rule of calculus. This process is illustrated in many existing
works on NNs, and we will not repeat it in detail here, referring the reader to Bishop
(2006) or one of many alternatives for the details. Similarly, in practice the basic method of
gradient descent is usually not sufficient for the training of large networks, and numerous
more powerful optimization methods exist; for example a recent, effective development is
the Adam optimizer (Kingma and Ba, 2015).

Thus far we have limited the discussion to networks that have a single output, such

32



Figure 3.3: Convolutional layer mapping a 5 x 6 image to a 4 x 4 image. Each pixel in the smaller image
is computed by applying the convolution operation to the larger image using a 2 x 3 kernel. The weights
defining the kernel are the same for all pixels.

that in performing classification we are limited to problems with two classes.® Given ¢
classes, ideally we want a learner to provide a distribution over these classes as its output
for any new instance x. This is typically achieved using a network with ¢ real-valued output
nodes. Denote the values produced by these nodes as 01(x), ..., 0.(x). These outputs can
be transformed to a distribution using the softmaz function, such that the ¢ final outputs
(X)) are

exp(0i(x))

i=1exp(0i(x))

It is straightforward to adapt the cross-entropy loss and the relevant gradient calculations

yi(x) =

to this format.

3.5.3 Convolutional Neural Networks

NNs are often used to process images, in which case the instance x is arranged as a
matrix X € R™*"2. Convolutional neural networks (CNNs) map from one layer to the
next using a modified computation. Let K € RF1xk2 he a kernel matrix, where k1 < ny
and ko < ng. It is convenient to think of a convolutional layer as computing a new image
X' € Rm—Fitlxna—ka+l g jllustrated in Figure 3.3. Pixel X ; in the output image is

k1 ko

!
X[ =" KimXiti-1j+m-1-
=1 m=1

In this case the learned parameters are the elements of K, and during learning they are
constrained such that each pixel of X’ is computed using the same values; this is easily
accounted for in computing the relevant gradients.

3.5.4 Recurrent Neural Networks and Long Short-Term Memory

The learning methods described so far take individual feature vectors x and map them
to one of a finite number of classes. In many problems it is more natural to think in

SWhile we could, for instance, divide a single real-valued output into an arbitrary number of intervals,
one for each class, such methods are in general uncompetitive.
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Figure 3.4: Common format for a recurrent neural network. Inputs x; at each time step are combined with
the state vector h;_; for the previous time step to produce the current state h;. The current state is passed
forward, and also used to compute the current output y;. Parameters used during the computation in each
node are constrained to be equal for all nodes.

terms of classifying a sequence X1,Xs,...,X, ... indexed by the time ¢, either producing a
classification after some final time 7', or at each point in the sequence. Many methods have
been explored for addressing such problems, and at present the recurrent neural network
(RNN) is a common solution.

The basic architecture for an RNN is shown in Figure 3.4. Intuitively, each node combines
an input vector x; with a vector hy_; representing the state carried over from the previous
time step, and passes the resulting state h; forward. A separate computation computes
the output y; from the state. For example, a common format for the forward propagation

computes
st = bs + Sth;_1 + Sox;
ht = tanh(st) (315)
yt = by + Yh,

at each step. The critical point to note here is that the parameters contained in S, So, Y,
b, and b, are not indexed by time, but are identical at all time steps. As with CNNs, this
requires only minor changes to be made in using backpropagation to compute the gradients
needed for learning; essentially, small modifications are needed to constrain the parameters
to be identical across time steps, and the resulting process is called backpropagation through
time.

An unfortunate side-effect of the architecture of the RNN is that the gradients computed
can either disappear or grow exponentially. Numerous modified architectures have been
proposed to address this, with the long short-term memory (LSTM) introduced by Hochreiter
and Schmidhuber (1997) having become the dominant model. Once again there are numerous
related approaches and variations on the LSTM and we will not attempt to introduce them
all here; Hu et al. (2019) review the LSTM and some of its many variations. Several recent
applications of RNNs to the SAT problem have employed architectures very close to the
original LSTM, and so we limit ourselves to presenting this in full.
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Figure 3.5: Representation of the standard LSTM node. The structure and components of this node are
explained in the text.

The central idea involves replacing the RNN nodes described above in Equation (3.15)
with the LSTM node illustrated in Figure 3.5. The forward propagation process for this
node is defined by the equations
fy = o(bs + Fih;_1 + Foxy)
it =o(b; + Ith;—1 + Inxy)

o(by + O1h;—1 + O9xy)
g: = tanh(by + G1h;—1 + Goxy)
= (st1®@f) + (k@ gt)
h; = tanh(s;) ® oy

O =

St

where ® denotes element-by-element multiplication. Each LSTM node now has two state
vectors s; and h; at time ¢, with h; also acting as the output for the node. Intuitively, s;
passes long-term memory forward, and h; short-term memory. The node combines the input
X; and previous short-term state h;_; to form four new vectors:

e The vector f; allows the node to forget elements of the long-term state.
e The vector i; represents new information to be incorporated into the long-term state.
e The vector g; controls the way in which i; is incorporated.

e The vector o; is combined with the new long-term state to produce an output.

35



x' [1]1]1]1]0]o]o]0] y' [1][1][1]1]0]1]0]0]

—_—

x" [0]1]1]0]1][1]0]0] y" [0]1]1]o][1]0]0]0]

Figure 3.6: Generating new individuals in a GA using crossover. The initial individuals (x’,x") are split at
a random point—in this case between bits 5 and 6, and their tails swapped to generate the new individuals

,y").

3.6 Genetic Algorithms and Genetic Programming

Several attempts at combining ML with theorem proving have employed genetic algorithms
(GAs) (Mitchell, 1998) or genetic programming (GP) (Koza, 1992). Both of these methods
are general approaches to the wider field of optimization (Luenberger, 2003). They are
however loosely based on ideas from biological evolution, and rename various terms from
the optimization literature accordingly. We shall refer to them under the common term
evolutionary programming (EP).

In the usual optimization parlance we have an objective function O : R® — R and aim
to find

Xopt = argmax O(x).
X

As EP addresses precisely this problem, it should come as no surprise that such ideas have
been used as alternatives to traditional optimization methods, such as gradient descent
with gradients computed using backpropagation. One of their strengths however is their
ability to search for good functions that are not described by, for example, a fixed network
structure.

In EP, possible solutions x, rather than necessarily being real vectors, are structured.
This allows new algorithms to be devised. For the purpose of the following brief description
of a basic GA we will assume individuals are represented as binary strings x € {0,1}".

We have a fitness function F assigning a fitness F'(x) to any proposed solution x—this is
simply a renaming of the usual objective function. We start with a population {x1,...,xxn}
of N individuals. These are used to produce the next generation of individuals using some
variant of the following process:

o Pairs (x/,x”) of individuals are selected, often with a bias towards individuals with a
high fitness, and often stochastically.

o These pairs are combined in some way to form a new pair of individuals (y’,y”). The
combination is usually through some variant of crossover, as illustrated in Figure 3.6.
The new individuals become part of the next generation.
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Figure 3.7: Generating new individuals in a genetic program using crossover. Each individual is represented
as a tree. In this case the left tree computes exp(zy) and the right tree 22+ cos(z + y). Subtrees are cut
at random—in this case at the points indicated by dotted lines—and swapped. The resulting individuals
compute exp(x cos(z +y)) and 22 4 y.

¢ Individuals x in a new generation may be subject to mutation, whereby one or more
bits of x are randomly flipped.

This process is iterated, forming a sequence of new generations, and it is often found that
the fitness of the generations improves over time.

In GP the primary difference is that individuals are represented in the form of trees,
typically representing simple computations. Crossover is achieved by swapping subtrees,
as illustrated in Figure 3.7. The remainder of the approach is essentially unchanged, and
we aim to obtain individuals representing more effective computations as the number of
generations increases.

3.6.1 Machine Learning Versus Optimization

It is worth emphasizing at this point that EP methods are in fact optimization methods, and
not in themselves machine learning methods—at least, when applied without modification.
(In many ways they are more akin to local search (Russell and Norvig, 2020).) The distinction
is an important one.

Earlier in this Chapter we saw that supervised learning using a system such as an MLP
can be described as an optimization problem involving the minimization of a function E(8).”
Once 0 is determined it implicitly defines the function hg : R™ — R used to classify new
data. One might reasonably argue that a GP achieves the same result, the only difference

"Indeed, a significant body of work exists applying EP methods to precisely this problem.
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being that the function obtained is represented as a computation tree, rather than in terms
of a structure built from perceptrons. So where does the distinction lie?

In Section 3.1.3 we mentioned the need for a learner to generalize. If we were to naively
train an MLP, GP or other learner only by minimizing its error as measured on a training
set, it is very unlikely that we would obtain generalization. This is a phenomenon known as
overfitting (Bishop, 2006), and it is avoided using one or more of numerous methods. It is
this that sets supervised learning apart from straightforward optimization.

Clearly though, there is considerable common ground, and EP methods are included
here on account of the extensive literature applying them to SAT and related problems.
The reader should nonetheless keep this important point in mind in what follows.

3.7 Choosing a Learning Algorithm

Given the huge variety of learning algorithms available, how does one choose which to use?
There is no straightforward answer to this, beyond choosing the method—supervised, unsu-
pervised, reinforcement and so on—to best fit the problem, and thereafter experimenting.

For supervised learners there is some degree of further guidance. Holte (1993) reviews
evidence suggesting that in many cases, methods that learn very simple rules can perform
comparably to more complex approaches. He then presents extensive experimental results
verifying this observation for sixteen data sets, comparing rules that make a classification
based on only one feature in an example against more complex classifiers. It is found that
the simpler classifier usually suffers by only a few percent in accuracy compared to C4’s
decision trees (Quinlan, 1986).

While Holte’s results were published in 1993, and we might therefore be tempted to
suspect that they have limited relevance today, they are in fact reinforced by the more
recent study of Ferndndez-Delgado et al. (2014). This work compares 179 classifiers on 121
data sets. They find that overall the best two classifiers are Random Forests (Breiman, 2001)
and Support Vector Machines with Gaussian kernels (Shawe-Taylor and Cristianini, 2000;
Shawe-Taylor and Cristianini, 2004), and that a rather small number of classifiers dominate
the remaining majority.® Ultimately the lesson to be learned from extensive research in
machine learning is that, regardless of the problem domain, there is no rule for choosing the
best algorithm: one must choose algorithms whose computational complexity is appropriate
to the problem, and thereafter be guided by experimentation.

The more recent opportunities presented by large, deep NN architectures only serve to
make this issue more problematic. The experimental work just described dealt with more
standard ML methods; the variety of NN architectures available, and the ease with which

8Since this work appeared some doubt has been cast on its conclusion for random forests (Wainberg
et al., 2016). These should certainly not be discounted however, and have been used with great success in
ATP applications both within and outside of the SAT/QSAT domain.
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they can be combined to build hugely complex systems makes specific advice impossible to
provide, and the fact that their complexity needs to be balanced against the characteristics
of the available data leaves only one conclusion: one must be willing to experiment, and
choose what works.

These issues are of course not limited to the application of ML to ATP, and consequently
recent work on Automated Machine Learning (AutoML) attempts to further automate the
process. A description of recent progress can be found in Hutter et al. (2019).

3.8 Sources of Data

In order to apply ML in any field of study, a source of training data is required. In SAT
and QSAT solving, and indeed in the wider area of ATP, we are lucky in having access to
large quantities of good quality data. In particular, for SAT and QSAT:

o The Satisfiability Library (SATLIB) (Hoos and Stiitzle, 2000) contains a large collection
of data sets. The library is available at Hoos and Stiitzle (2019).

e One reason for the good availability of data is the competitive nature of SAT research.
The International SAT Competition (Heule et al., 2019) allows developers of SAT-
solvers to compete using collections of problems that are made freely available.

e A further competition serves a similar purpose for QSAT solvers. Narizzano et al.
(2006) describe the Quantified Boolean Formulas Satisfiability Library (QBFLIB),
which includes a large collection of problems used for competitive evaluations. The
library is available at Giunchiglia et al. (2005).

It is worth noting that these data collections are not limited to small or synthetic problems.
On the contrary, they contain a mixture covering the range from small, algorithmically
generated problems to very large instances derived from real industrial problems.

4 Extracting Features from a Formula

In general, in the context of ML research, ‘feature engineering’ refers to the process of using
domain knowledge to design a set of features that the designer expects to be effective in
representing problem instances—in the present case, propositional formulas. Accordingly,
in most of the work to date, a fundamental need in applying ML to SAT solvers has been a
method to extract a set of features from a given formula. More recent NN-based methods,
based in particular on graph neural networks (GNNs), have attempted to circumvent this
need by using a CNF or other propositional formula directly as input and encoding it as a
real-valued vector. In this Chapter we describe both of these approaches.
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The SAT problem is in a sense unusual in that there is a single, very widely studied
feature that is known to be an indicator of the likely difficulty of an instance: the ratio R
of the number ¢ of clauses to the number v of variables. Specifically, in the case of 3-SAT
the point at which there is a probability of 1/2 that a randomly selected instance will be
satisfiable occurs at a phase transition with R = ¢/v ~ 4.26, and instances in this region
tend to be hard to solve. See Saitta et al. (2011) for further details. We might expect though,
that more sophisticated features are needed to address realistic SAT and related problems.
This has been verified in practice: features other than R are invariably required.

One of the earliest attempts to apply ML to SAT solvers was described by Ertel et al.
(1989), and this work provides a very simple example of how features can be obtained.
While the problems addressed were small—having at most three variables, four clauses and
three literals per clause—the work provided an initial indication that learning might be
beneficial in this context. The aim was to show that, when using the prover SETHEO (Letz
et al., 1992) to solve propositional problems, it was possible to predict the limit on depth of
search needed to allow a proof to be found quickly. CNF formulas were encoded into binary
strings indicating whether or not a literal appeared in each clause; this made it possible
to present a formula to a NN using twenty-four inputs. Five outputs were used, and again
these were binary and indicated that the depth limit should be one, two, and so on up to
five. Labelled examples were obtained by randomly generating suitable formulas and using
exhaustive search to find labels. A basic NN with a single hidden layer of sixteen units was
trained successfully to solve this problem.

We now discuss the approaches used to develop further useful features.

4.1 Feature-Engineered Representations

Many of the features used to describe CNF formulas are based on three graphs.! In the
following we describe each graph in terms of its nodes N and edges E. We denote by V the
set, of variables and C' the set of clauses in a CNF formula.

1. The clause-variable incidence graph (CVIG) is a weighted bipartite graph with
N =V UC and edges

le|=t ifveec
v,c — .
0 otherwise

where v e V and ce C.

!The definitions here are those used by Ansétegui et al. (2017). Variations on these definitions are also
used; for example, Nudelman et al. (2004) do not use edge weighting.
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2. The wariable incidence graph (VIG) is a weighted graph with nodes N =V and edges

-1
€]
€vi,vg = Z <2 .

ceC
v1,V2€C

3. The clause incidence graph (CIG) has nodes N = C' and edges

€c1,co € B < c1,c2 € C and share a negative literal.

4.1.1 The ‘Standard Features’

Perhaps the earliest attempt to define a single, widely effective set of features was that
of Nudelman et al. (2004) in the context of the empirical hardness models, which we will
discuss further in Chapter 6. In this work a total of ninety-one features in nine groups
were introduced, and some evidence advanced for which might be the most useful in some
circumstances. The set of features was expanded to 138 in twelve groups by Xu et al.
(2012b). Table 4.1 shows the groups of features proposed and gives some examples of each.
This collection of features has become sufficiently ubiquitous, and widely used in whole
or in part in subsequent research, that from here on we will refer to the collection as the
standard features.

It is noteworthy that some of the standard features—often referred to as probing
features—are computed by performing limited runs of a SAT solver. Intuitively, this should
represent an effective means of obtaining useful features, as they are derived using the
behaviour of a system while it investigates the problem at hand. This approach to feature
engineering is also attractive in that it can be applied by a user not well-versed in the
subtleties of the SAT problem, by simply running tools that are already available. The
use of such features is also not limited to the SAT problem; for example Bridge et al.
(2014) have employed such features in the domain of first-order logic, and in a non-logical
context landmark features, which use runs of simple machine learning systems to provide
features for selecting more complex learners appropriate to a specific problem, have been
employed (Pfahringer et al., 2000).

4.1.2 Features for Industrial Problems

As it became clear that SAT solvers had important potential applications in industrial
problems, interest increased in whether such problems have exploitable structure. Ansétegui
et al. (2017) considered feature engineering with a specific emphasis on problems arising in
industry applications. There is indeed evidence that problems of this kind, in contrast to
problems such as randomly generated 3-SAT problems for example, possess three specific
kinds of structure:
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Table 4.1: The standard features for SAT instances. The first nine groups were introduced by Nudelman et al. (2004) and the final three
by Xu et al. (2012b). The number of features in a group appears in brackets—numbers correspond to the original publication as some of
the original groups differ in the later work. The number of variables is v and the number of clauses c. Statistics collected are usually the
minimum, maximum, mean, coefficient of variation and entropy.

Origin of features in group

Example(s) of feature(s)

Basic size of the problem (11)
Variable-clause graph (10)

Variable graph (4)
Clause graph (10)

Balance of items in a formula (13)
Similarity to Horn (6)

Features from a linear program (6)

Features from the DPLL search (7)

Features from local search (24)

v, ¢, R=c/v, R* R3 R™!, |4.26 — R|.

Statistics of the degrees of variable and clause nodes in

the formula’s CVIG.

Statistics for the degrees of nodes in the formula’s VIG.
Statistics for the degrees of nodes and the weighted

clustering coefficient in the formula’s CIG.

Fractions of clauses that are unary, binary or ternary.
Statistics of the ratio of positive/negative variable occurrences.
Statistics for how many times a variable occurs in a Horn
clause.

Value of the objective function after a linear program

related to the formula is solved. Fraction of variables that

are 1 in the solution, and further statistics.

Estimates of the size of the search space. Number of unit
propagations measured at different depths. Mean depth leading
to a contradiction when instantiating variables at random

and performing propagation.

Search for local minima with two local search algorithms.
Each is run multiple times, and statistics are derived

from the runs.

Features from clause learning (18)
Features from survey propagation (18)

Features from timing (12)

Run a SAT solver for 2 seconds. Statistics for number

and length of clauses learned.

Estimate Pr(v; = T') and Pr(v; is not constrained) for each v;.
Statistics are derived from these values.

The time taken to compute the features in each group.
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1. Power-law or scale-free structure. This is related to the existence of heavy-tailed
distributions in some real-world date. Specifically, denoting by V' the set of variables
in a SAT instance define

|{v € V|v occurs n times}|
V] '

fu(n) =

Under the assumption that f,(n) ~ cn™ the single feature o can be estimated using
the methods described by Clauset et al. (2009).

2. Community structure. This relates to the tendency of some graphs observed in practice
to be structured as a number of communities. A single feature can be obtained for a
SAT instance by estimating the modularity of the VIG (Ansétegui et al., 2012) using
an algorithm described by Blondel et al. (2008).

3. Fractal or self-similar structure as measured by estimating the fractal dimension of

the VIG and CVIG graphs (Ansétegui et al., 2014).

Ansétegui et al. (2017) compared the use of 115 of the standard features by the portfolio
SAT solver SATzilla (described in Chapter 6) with a set of only five features consisting of
the four structure-related features mentioned along with the clause/variable ratio R. It was
found that, for the industry applications considered, similar performance can be obtained.

4.2 Graph Representations

The structure-related features described above suggest that it may be profitable to represent
a CNF formula as a graph, as part of the feature engineering process. Several machine
learning algorithms have now been proposed that aim to take graphs directly as input, and
this provides a way of partially avoiding the feature engineering process. These methods
are collected under the heading of Graph Neural Networks (GNNs); a survey can be found
in Wu et al. (2019), and Hamilton (2020) provides a readable introduction. Some of these
methods have the advantage that they can be made invariant to symmetries that appear
in the SAT problem; for example, we can re-order the clauses in a CNF formula without
changing its SAT status, and similarly we can change the polarity of a single variable
throughout a formula.

Gilmer et al. (2017) show that many of the proposed algorithms have significant elements
in common, and propose the Message-Passing Neural Network (MPNN) as a single unified
architecture for such tasks. The underlying structure of the MPNN is shown in Figure 4.1.
Each node n; has features x; and hidden state hﬁ. Edges e;,; have features x; ; and hidden
state h;??j. Updates are made over T steps, and the superscript ¢ denotes the current step.
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Figure 4.1: Message passing for graph neural networks, in the general MPNN case based on Gilmer et al.
(2017). Nodes n; and n; are connected by an edge e; ;, and have features x;,x; and hidden state h!, h;
respectively. The edge has features x;,; and hidden state hﬁ,j. The superscript ¢ denotes the time step at

which messages and hidden states are calculated.

t

During each update messages m; are passed between nodes. Let N (i) denote the neighbours

of the ith node in the graph. Updates over the T steps are

mEJrl = Z Mt(hg,h}Xi,j)
JEN(9)
h!*! = Uy(h}, m{*").

Here, the M; and U; are message functions and vertex update functions respectively. Hidden
states h? can be initialized, for example, using the features x;, if necessary padded out to a
higher dimension. After these updates a single output vector y is obtained as

y =R(MmT, ... nk)

where R is the readout function and N is the number of nodes in the graph. The functions
My, Uy and R are typically parameterized, and learned during the training process; thus
the output y obtained directly from the input graph is the outcome of a process of learning
from the data, rather than explicit feature engineering. We should note however that some
degree of feature engineering might remain, in that node and edge features x; and x; ;
specific to the problem at hand may still be required.

The various methods proposed for turning graphs into vectors y in this way differ
according to the functions used, and to other details such as whether the edge hidden
states are included in the computation. For example, functions can vary from simple fixed
concatenations, through parameterized linear functions, to full NNs. While in general,
functions M; and Uy can be trained for each iteration, it is common to employ weight tying
such that single functions M and U can be used for all iterations.

Clearly there is considerable scope for adapting the MPNN model to the SAT problem.
As an example, we describe the architecture used by Selsam et al. (2019) in a system that
will be described further in Chapter 5. Initially a formula f is represented as a graph with
its literals and clauses as nodes, as shown in Figure 4.2. There are two kinds of edge: an
edge of the first kind occurs between each clause and the literals it contains; an edge of the
second kind occurs between complementary pairs of literals.
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Figure 4.2: Representation of the CNF formula (z1 V —z2) A (mz2 V —x3) A (z1 V22 Vas) A (-z1 Vzs) as a
graph in the manner of Selsam et al. (2019).

For a formula with v variables and ¢ clauses, the ultimate aim is to derive matrices
L! € R?*? and C! € R°*?, the rows of which contain vector-valued embeddings for the
literals and clauses respectively, each in R? where d is a parameter of the system. Once
again t denotes the time step and the process is run for T' steps. Updates are made using
four learned functions: L and C are MLPs, and L’ and C’ are layer-norm LSTMs (Ba et al.,
2016). Hidden states L}, and C} have the same dimensions as L’ and C* respectively. The
updates are

(C, G = C(Cj,, ATL/ (L) (4.1)
(L7 L) = L(Lj, fLY, AC/(C™)

where A is the adjacency matrix

~ )1 if literal i is in clause j
" 0 otherwise

and f(L!) swaps each row representing a literal with the row representing its negation.

4.3 Discussion

It has long been known that both the quality and the number of features used in an
application of ML can have a significant effect on the performance attained. It is therefore
common in ML to concentrate on the quality of extracted features first—in terms of their
contribution to performance—and for any difficulty involved in computing such features
to be secondary. SAT solving, as a target for ML, is perhaps unique in having such a
standardized set of hand-engineered features, with a large body of research demonstrating
their effectiveness.
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SAT solving can however carry a further requirement, that can make feature engineering
notably challenging. It should be clear that many of the features described above are likely
to be time-consuming to compute; this was, for example, observed directly by Devlin and
O’Sullivan (2008) while learning to identify satisfiability directly—a procedure described
further in the next Chapter. They also observed that the time taken to compute some of
the standard features can differ for satisfiable and unsatisfiable problems. Complex features
(in the sense of their relative difficulty of computation) are unlikely to be a problem in some
applications of ML to the SAT problem. A common example is that of portfolio solvers,
where the time taken to compute features can be heavily outweighed by the time taken to
run one or more standard SAT solvers. The standard features are often not problematic in
this case; this is unsurprising as they were designed with portfolio methods in mind.

However, there are numerous applications where feature complexity is highly significant.
In particular, we shall see in what follows that any attempt to introduce ML into the
operation of a CDCL solver can force us to use only features that are very cheap indeed
to compute. (And for the same reasons, any classifier will need to be able to compute its
result very quickly). Otherwise, the ML components can easily slow the solver to the extent
that it is entirely uncompetitive.

Attempts to mitigate the complexity of feature computation can take multiple forms.
For example, feature selection algorithms are common in the ML literature; these attempt
to find a subset of features that can be used alone without unduly reducing performance.
Another approach, related to the GNN methods described above, involves learning features
from experience without designing them by hand; an example is the work of Loreggia et al.
(2016) that we describe in Section 6.5. There is some evidence (Cameron et al., 2020) that
such features can be faster to compute than engineered alternatives. We shall discuss these
issues further as they arise in later Chapters.

5 Learning to Identify Satisfiability Directly

Some of the earliest attempts to apply ML to the SAT problem involved treating the
problem purely as a classification task—given an instance of SAT in the form of a proposi-
tional formula, classify it into one of two classes: satisfiable or unsatisfiable. This work is
described in Section 5.1. While limited by the resources available at the time, it provides us
with a historical starting point—one that has a great deal in common with more recent
developments.

Later, the straightforward correspondence between variable assignments and bit-strings
led researchers to explore the use of GAs to solve SAT directly. This work is described in
Section 5.2.

More recently, the former approach has been revisited. In particular, developments in
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NNs and GNNs have been applied to SAT as a classification problem. Section 5.3 describes
several such applications using different architectures and different representations for the
SAT problems of interest.

Closely related to the problem of identifying satisfiability is the problem of identifying
sequents. Given a pair X and Y of propositional formulas, a sequent X = Y denotes
the property that any satisfying assignment for X is also a satisfying assignment for Y.
Section 5.4 describes research using NNs to learn to solve this variant of the problem.

Finally, in Section 5.5 we describe work with the aim of embedding solvers into larger
NN-based systems, in a way that allows them to learn from examples how to solve a problem.

5.1 Early Approaches to SAT as Classification

Johnson (1989) attempted to solve 3-SAT using an approach building on that applied
by Hopfield and Tank (1985) to the travelling salesman problem (Garey and Johnson, 1979).
Given an instance of 3-SAT a continuous, recurrent neural network was constructed in such
a way that its dynamics minimize a specified error function; in turn, it can be shown that
the global minimum of this function corresponds to a satisfying assignment, if one exists,
and that this assignment can be extracted. While no proof was provided that local minima
will be avoided, experimental evidence suggested this might not be problematic.

Spears (1996) took a similar approach, presenting a method for directly converting a
CNF formula into a corresponding neural network. An algorithm was presented allowing
the network to evolve over time, the activations of the nodes being updated probabilistically
at each step. The degree of randomness at each update was controlled by a temperature
parameter that is reduced over time—a form of simulated annealing (Laarhoven and Aarts,
1987). The dynamics were again designed such that the network tends to converge in a way
that allows a satisfying assignment to be read from its nodes. However convergence to a
satisfying assignment is again not guaranteed.

Devlin and O’Sullivan (2008) used forty-eight of the standard features along with
multiple learning methods, including MLPs, naive Bayes, decision trees, random forests,
and nearest-neighbour classifiers, to learn directly whether or not an instance is satisfiable.
They found that no single classifier dominates, but the best appears to depend on the
nature of the problem set.

The reader should have two worries at this point. The first two approaches work by
setting up a dynamic system that attempts to converge to a solution, but in neither case is
convergence guaranteed. The third approach attempts to classify instances directly, but
using ML methods that we might expect to make mistakes. In logical terms, they act as
provers that might fail to be consistent or complete. Problems such as this are also present
in the more recent work described below, and we might legitimately ask whether such
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provers are in any way useful.

We leave this thought for further discussion in Section 5.6. For the time being, let it
suffice to note that such provers are indeed useful. For example, in constructing portfolio
solvers a hierarchical approach can be taken, because the time taken to solve a SAT problem
can be dependent on whether the instance is satisfiable or unsatisfiable. Predicting this
time can therefore be done most effectively using different predictors for the two types of
instance, and a choice between these can be made by first predicting whether an instance is
satisfiable.

5.2 GAs for Solving SAT Directly

The SAT problem lends itself very naturally to solution by GAs. Any potential solution is a
bit-string with one bit per variable, the fitness of a solution is the number of satisfied clauses,
and standard crossover and mutation operators can be applied. Consequently, considerable
effort has been expended in approaching SAT-solving in this way.

The research published up to 2002 was the subject of its own review by Gottlieb et al.
(2002), to which the reader is directed for details. We shall however mention some overall
lessons. First, there are other ways of representing a potential solution to a SAT problem;
for example, attempts have been made to represent potential solutions for problems with n
variables as real vectors x € [—1,1]". However, the evidence suggests that the bit-string
representation is preferred. Furthermore:

o It is important to use adaptive fitness functions. Two specific examples are given. For
a CNF formula f =c; A -+ A ¢y, let ¢;(A) take the value 1 if clause ¢; is satisfied by
assignment A and 0 otherwise. The first adaptive fitness function is

F(A) = Z wici(A)
=1

and the second is .

F(A) = ci(A) + ar(A)
i=1
where r is a refining function and « sets the degree to which r affects the fitness. In
the former case the parameters w; are adapted during the evolution process, and in
the latter case o and any parameters associated with r are adapted.

e Small populations, and the use of mutation without crossover are preferred.

A notable work since this review appeared is that of Aksoy and Gunes (2005). Here,
the underlying GA uses the bitstring representation and the number of satisfied clauses as
fitness, but modifies both initialization of the population and crossover using properties of
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the specific instance formula f. In addition it mixes the evolutionary process with runs of
a local search solver, and uses a lack of progress by this solver as an indication of having
found a local optimum, thus triggering the use of mutation.

5.3 SAT as Classification Using GNNs and NNs

In Chapter 4 we noted that recent work on GNNs provides a way to deal with formulas
represented as graphs directly using ML methods. Biinz and Lamm (2017) attempted to
learn to classify formulas as satisfiable or unsatisfiable using this approach to formula
representation. They represented formulas in a direct graph-based format and trained a
GNN to perform the classification. They also provided evidence—by applying a recurrent
neural network to a textual representation—that trying to treat propositional formulas in a
similar way to written text is less successful, giving weight to the GNN approach.

This work in essence represents an attempt to re-start the research described in Sec-
tion 5.1, using a mixture of more sophisticated ML, methods and more capable hardware.
Several researchers have taken this approach further still.

5.3.1 GNNs Applied to CNF Formulas

In Chapter 4 we also gave a partial description of the NeuroSAT system presented by Selsam
et al. (2019), which has further developed the idea of treating SAT directly as a classification
problem. In that Chapter we introduced its use of a GNN incorporating a combination of
MLPs and LSTMs to map each literal and each clause of a candidate CNF formula to a
vector representation. The mapping was constructed to be invariant to some important
symmetries.

The key equations defining this process are Equations (4.1) and (4.2) (page 45), and
the matrix L* € R2v*? obtained at step ¢ = T in this process contains a representation in
R? for each of the 2v literals. The final step needed was to introduce a further function
V, implemented by a trainable MLP, to produce a vote for each literal. Thus we obtain a
vector v = V(L) € R?” of votes. The output of the system is essentially the average of the
votes in v. The entire system—including all the MLPs and LSTMs mentioned, is trained
to minimize a measure of loss between this average and a single bit denoting satisfiability
versus unsatisfiability for a set of training problems.

This work diverges from the mainstream of SAT-solver research, in the kind of data
used for training and testing. (There are good reasons for this, which we return to in our
Discussion in Section 5.6.) The problems used are not derived from repositories such as
SATLIB, or those associated with the International SAT Competitions. Rather, they are
randomly generated. As the method of problem generation used has been taken up by other
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researchers, particularly those interested in NNs and related methods, we describe it in
detail.

The problem class SR(n) denotes by n the number of variables and generates CNFs in
pairs, such that one instance is satisfiable, one unsatisfiable, and they differ by a single
flipped literal in a single clause. To make such a pair, a CNF is grown a clause at a time. A
clause is made as follows: a value n’ is generated at random using a distribution with mean a
little greater than four, n’ variables are chosen from n at random without replacement, and
each is negated with probability 1/2. Clauses are added until the CNF becomes unsatisfiable,
and at this point a single literal in the last clause is flipped to give a satisfiable CNF.

A second method for generating problem pairs involves the idea of an Unsatisfiable Core
(UC). A UC C is a set of clauses, possibly part of a larger CNF, that are known to be
unsatisfiable. The problem class SRC(n, C) is similar to SR(n), but each unsatisfiable CNF
is known to have C as a UC. To generate pairs, a single literal in a clause in C' is flipped
to make C’, which is satisfiable. Clauses are added to C’ as described above to make the
satisfiable instance, in which C’ is replaced with C' to obtain the unsatisfiable instance.

The results obtained using this system show some interesting characteristics. When
trained on problems from SR(n) with n between ten and forty, an accuracy of 85% was
achieved on a representative test set from SR(40). Of greater significance however is that,
using the activations for each literal in the input formula, a satisfying assignment can often
be extracted for satisfiable instances—this was possible 70% of the time for the test set
used.

A further significant observation is that, while the main training and test problems
are randomly generated, when applied to larger problems and to formulas from several
graph-based problems, some success can be achieved simply by increasing the number of
iterations the system is allowed to run for. However when applied to problems differing
significantly from those used in training, accuracy is reduced.

A final outcome of interest was obtained by attempting to learn using SRC(40, C') with
a selection of three known UCs for C'. In this case the system showed some ability to identify
the variables involved in the contradictions.

5.3.2 GNNs Applied to Formulas as Circuits

Amizadeh et al. (2019) take an alternative approach to this problem, based on a circuit
representation instead of the CNF representation. A formula is represented as a DAG: nodes
correspond to AND, OR or NOT gates, and edges define connections between them. The SAT
problem is then to find inputs to the circuit (now corresponding to variables) to produce a
logical T at the output.

The proposed system has two components, the first attempting to find a satisfying
assignment, and the second verifying that this assignment in fact works. The first of these
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networks uses a NN that processes an input circuit based on its graph structure. Nodes
n are converted to vectors v(n), using a one-hot encoding to denote whether they are a
variable or one of the logic gates. Using the ordering implied by the DAG, a state vector s,
is then propagated as
sp = S(v(n), Spred)
Spred = T({sn’ :n € p(n)})
where p(n) denotes the set of predecessors of node n, and S and T are learned.

This is sufficient to construct a mapping from variables to a state. How do we then
propose an assignment to the variables? In order to do this the idea is extended in two
ways. First, it is also applied to the DAG with its edges reversed, and multiple forward and
reverse layers with this structure are employed. Second, the computation of these layers is
itself repeated in a recurrent manner. The only constraint is that the last layer should be a
reverse layer, so that its outputs—corresponding to variables—can be used to compute a
potential assignment. A final, feedforward network is used to convert those outputs to soft
assignments with values between 0 and 1.

When the first component has proposed a soft assignment to the variables, the second
component is used to check whether this assignment does in fact satisfy the problem at
hand. It does this by reproducing the input circuit using soft versions of the gates. For
example, each NOT gate is modelled by the function

Nx)=1-=z
and each AND gate by the function
T € —x;/T
Aon oy — Setiexn (—a/)
Yiexp (—zi/T)
where T is a parameter used to adjust the characteristics of the function. An analogous
function models each OR gate.

The output of this network is then used to train the overall system, using a loss function
that is essentially a smooth version of the step function and thus rewards situations where

the second network verifies that a satisfying assignment has been found. This training
process is related to the use of policy gradient methods in reinforcement learning, and the
parameter 17" can be used to trade-off exploration against exploitation.

This system was initially applied by training using satisfiable problems from the SR(n)
class described above, with n between three and ten, that had been converted from CNFs
to circuits. Using the finding of a satisfying assignment as a measure of success, it again
showed a level of ability to generalize to larger problems, from SR(20) up to SR(80). A
similar result was achieved generalizing to random graph k-colourability problems, for
graphs with six to ten nodes and k from two to four. Performance was generally improved
when compared against NeuroSAT.
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5.3.3 Exchangeable Matrix Layers

Another recent approach to learning to identify satisfiability directly, that has much in
common with Selsam et al. (2019) but employs contrasting methods, appears in Cameron
et al. (2020). This work also treats the problem as a two-class classification problem, and
addresses it using an NN. It shares the aim of explicitly modelling the symmetries inherent
in this problem, however it achieves this using a different approach: instead of using a
GNN to learn a new representation of the input, it uses a v X ¢ x 2-dimensional tensor
input, where the ¢, jth entry is a two-bit one-hot encoding denoting whether variable ¢ or
its negation appears in clause j. This input is passed to successive further layers initially
based on exchangeable matriz layers (Hartford et al., 2018), and followed by pooling and
an MLP. It is trained much as in Selsam et al. (2019), by minimizing the cross-entropy loss
between the output of the network and a single bit indicating satisfiability.

Training and testing concentrated on randomly generated CNFs with between 100
and 600 variables, and with a clause-to-variable ratio placing them in the difficult, phase
transition region. (This makes problems with 600 variables reasonably challenging.) In
terms of classification accuracy, when trained and tested on comparable problems there
was little to differentiate this approach from NeuroSAT. However this approach turns out
to have two advantages. First, the training process is more memory-efficient. Second, and
perhaps more significantly, it shows a much greater ability to generalize from small to large
problems. It was found that training on problems with one hundred variables produced
classifiers that still performed well on problems with six hundred variables.

5.4 Learning to Recognize Sequents

The closely-related problem of identifying sequents in propositional logic was addressed
by Evans et al. (2018). Given formulas X and Y, a sequent X = Y denotes that any
satisfying assignment for X is also a satisfying assignment for Y'; equivalently, —(X — Y)
is unsatisfiable. In this work, several NN architectures were explored for solving this as a
classification problem. Fncoding architectures take the form

Pr(X EY) =o0o(f(9(X)og(Y)))
and relational architectures take the form
Pr(X £ Y) = o(f(X,Y))

where o is a function with range [0, 1], f is a feedforward NN, g is a NN embedding formulas
into R?, f’ is a combination of NNs, and o denotes concatenation. While some of these
architectures have moderate success in identifying sequents, considerably greater accuracy
was achieved using an architecture based on replacing the sequent with a continuous
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approximation. For a sequent X |= Y, we know that a satisfying assignment for X is a
satisfying assignment for Y. Allowing an assignment a to be modelled as a vector a € R?,
we can represent this statement by

Imp(Sat(X,a),Sat(Y,a))

by learning functions Sat with range R?, and Imp : R? x R — [0, 1], again implemented by
NNs. Taking a set A = {ay,...,a,} of assignments chosen at random we then have

Pr(X EY)= H Imp(Sat(X,a;),Sat(Y,a;)).
a;EA

Perhaps the most notable result obtained with this architecture is that, for some of the
data sets employed, in excess of 90% of sequents can be correctly classified using a set A
that is extremely small in comparison with the total number of possible assignments.

Chvalovsky (2019) have also addressed this problem, using a circuit-based representation
for formulas. It is assumed that a formula is represented as a circuit consisting of variables
along with connectives NOT, AND, OR and IMPLIES. The key idea is to employ a vector p,
which can either be specified or learned, representing some property of the formula to be
determined, such as satisfiability; it can therefore in principle be applied to problems other
than recognizing sequents.

Variables are represented as vectors in R? for some p. Feedforward networks are trained
to represent reversed applications of the available connectives. For example, a network
for a two-input OR operation computes for : RP — R? x R? and should be interpreted as
computing from the output to the inputs of an OR gate.

Given an input formula, the trained networks are assembled to reflect its structure, and
p is applied as an input to the combined network to produced output vectors corresponding
to the variables in the original problem. A second collection of networks is then used to
process those outputs. Three distinct processes are needed for this step:

1. It is possible for several outputs from the first stage to correspond to the same variable.
A recurrent neural network is used to combine these into a single vector.

2. Having obtained a single vector for each variable, these are combined by a second
recurrent neural network to give a single vector.

3. The final stage is a feedforward network converting that single vector into a direct
indication of whether or not the formula has the property represented by p.

The overall system is trained by optimization using the sum of squared errors as a loss
function.
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5.5 Differentiable Solvers

In this, final section we describe a system that departs somewhat from the usual conception
of a SAT-solver. In essence, the idea is to parameterize a solver in such a way that the
problem it addresses can be specified by setting the parameters, and these parameters can
be learned by seeing examples of the problem. The aim is to allow a SAT-solver to be
treated as a learnable module, possibly as part of a larger ML system. This requires some
further explanation.

Convolution nodes, LSTMs and so on are two examples of a plethora of substructures
available to the NN designer, from which NN architectures can be built targeting specific
applications. Given the flexibility of the SAT representation the following question presents
itself: how might a SAT solver be incorporated into a larger, NN-based system?

The training of a supervised, feedforward NN using gradient descent typically requires
two phases. First, in the forward propagation an input vector is applied to the network and
the necessary computations are allowed to propagate to the output. Second, in the backward
propagation the gradients of the network’s loss function with respect to its parameters
are computed, starting at the output and working back to the inputs. Both forward and
backward propagations are straightforward for the kinds of structure commonly employed.

If we wish to include a SAT-solver in this kind of system, there are three inherent
challenges. First, while a SAT-solver clearly has an input and an output, the intervening
process is NP-complete, and is thus likely to present an unacceptable bottleneck. This
suggests a need to design approrimate, rather than exact solvers. Second, a SAT-solver
is not differentiable with respect to its parameters, so computing gradients of the overall
network’s loss function with respect to them is not possible. Third—and this is perhaps the
most interesting source of new possibilities—it is not immediately clear what the input to a
solver should be.

The preceding statement needs elaboration. Consider a SAT-solver applied to deciding
graph colourability. We start with a graph, use a standard encoding method to obtain a CNF,
and the solver provides an answer. We might regard the graph as the input; alternatively,
we could consider the input to be the CNF formula, which also encodes the problem to
be solved. Might a solver be parameterized in a way allowing a solver for the colourability
problem, or some other problem, to be learned from examples?

When dealing with the CNF representation, the SAT problem can be modified to give
us the MAXSAT problem: rather than looking for a satisfying assignment we try to find an
assignment satisfying as many clauses as possible. Let the n variables in the problem be
denoted v; € {+1, —1} and let ¢;; denote the status of variable v; in clause j, taking value
1 if the variable is positive, —1 if it is negative, and 0 if it is not present. If there are m
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clauses then the MAXSAT problem is to find
argmaxZ\/H [cijvi > 0] (5.1)

V1 yeeeyUn 7
where I[P] is the indicator function.

Wang et al. (2019) have used the MAXSAT problem as a means of producing a
differentiable solver. The first step is to represent MAXSAT in a continuous rather than
discrete form. Each variable v; is mapped to a corresponding unit vector v; € R¥, with the
interpretation that, with respect to some truth direction unit vector v

1
Pr(v; = 1) = = cos™ }(—v! vp).
7r

Let ciT =lei1 - cim], and let 1;; be the ¢ by j matrix with unit elements. Also, define
the matrices
V= [VT Vi e Vn]
C=[-1m e - cdiag((4]ei))"/?).

Let (.,.) denote the inner product
<Ma N> = Z Z UCALYE
i g
Then an alternative to solving Equation (5.1) is to solve

argmin(VT'V, CTC)
v

under the constraints ||vy|| =1 and ||v;|| =1 for ¢ = 1,...,n. This optimization problem
can be solved using a co-ordinate descent method.

Having transformed the MAXSAT solver into a continuous form, it can be incorporated
into an NN by treating the c;; values as parameters, variables with known values as inputs,
and the remaining variables as outputs. The co-ordinate descent is then applied only to
find the output variables, and this constitutes the forward propagation process.

Finally, if L denotes the NN’s loss function, then gradients such as 0L/dc;, OL/0v;
and so on can be computed. (The conversion of variables to their vector representations
and the corresponding inverse transformations must also be accounted for in this process.)
As these gradients are available, the backpropagation phase of NN training can also be
implemented. As a result, the parameters c;; can be adapted in response to examples, and
these parameters define the MAXSAT problem being solved. Wang et al. (2019) give an
example of how this can be used to learn to solve Sudoku puzzles purely by seeing examples.
This ability is demonstrated first by using a direct encoding of the input. An extension is
then demonstrated adding CNN layers to the network such that learning can take place
using images.
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5.6 Discussion

It is notable that the earliest work on applying ML to the SAT problem has a great deal
in common with some of the most recent: both treat SAT in terms of learning to classify
an instance as satisfiable or unsatisfiable, and both show an ability to extract satisfying
assignments as a side-effect of this process.

At present, this approach to SAT has become dominated by research based on NNs.
While great attention has been payed to GAs for solving essentially the same problem, and
with considerable success, this line of development appears to have stalled. The conclusion
that there is a preference for mutation without crossover moves the GA approach rather
close to a form of random search; while more recent work such as Aksoy and Gunes (2005)
is more sophisticated, it remains to be seen whether there is further room for improvement
using evolutionary methods.

The work on differentiable solvers represents a distinctive move beyond SAT as classifi-
cation, and is reflected in a wider interest in modelling reasoning tasks in a connectionist
manner. There is clearly considerable opportunity for further development here.

5.6.1 Should We Use Inconsistent Solvers?

From the perspective of an ML researcher, the treatment of SAT using ML is a legitimate
and undoubtedly interesting problem, as SAT is known to be a computationally hard task—
surely any ability demonstrated by an ML system to solve it must be significant? Arguably
however, the inherent behaviour demonstrated by ML methods—that of generalization,
with occasional errors appearing in the output—makes the approach of less interest to
those predominantly interested in theorem-proving: any prover should at least be consistent.
This is a relevant issue even when accuracy generally better than 90%, and in some cases
better than 99% as reported even in relatively early work (Devlin and O’Sullivan, 2008), is
obtained. Many of the architectures described above, while achieving good classification
accuracy, do fall short of attaining an accuracy of 100%; in other words, they are not
consistent theorem-provers, even when used to classify quite small—by the standards of
CDCL solvers—problems.

We noted earlier in this Chapter that readers most interested in the ATP aspects of this
review might be uncomfortable with the idea that some of the provers described here are
not consistent. (We assume that incompleteness is more palatable, as local-search solvers
share this property and are a long-standing and accepted tool.) There is however a single
very good reason that such solvers are useful: one of the key applications of learners that
treat SAT as classification is in the portfolio solvers we discuss in the next Chapter. Here,
the classifier is not asked to provide a final answer, given an instance; rather, it is used
to choose a consistent solver that might be more capable for satisfiable or unsatisfiable
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instances.

5.6.2 Specialization and Generalization

The use of a wide range of NN-related methods in this context provides a further set of
reasons for accepting the study of imperfect classifiers. Such studies are seen by many
authors as addressing a scientific—as opposed to purely ATP-centric—pursuit. There is
clear merit in this position: as generalization is a key ability in ML, questions regarding the
ability of a learner to solve problems not seen during training, when faced with a difficult
problem such as SAT, are of inherent interest.

Questions are also asked here that are closely aligned with multiple areas of research to
be described in later Chapters. In particular:

1. Can a classifier trained using instances specific to a particular problem class also
perform well in solving problems from outside that class?

2. Can similar generalization be achieved from small instances used in training, to larger
instances used in testing?

As we shall see, such issues gain considerable significance when NN-based methods are
taken beyond SAT as classification.

5.6.3 Architecture, Data and Resources

Throughout this review we shall see two recurring characteristics of some of the modern ML
methods applied in the SAT domain. First, there is a huge variation in the architectures
used. (And very clear opportunities for others.) Second, these architectures are often large
enough to represent very significant computational challenges; in the current context, for
the training process.

The second of these issues has sometimes made it infeasible to train models using the
kinds of large and challenging SAT problems that are the staple means of assessing CDCL
solvers. It is to be hoped that ongoing improvements in NN-specific hardware will solve this
issue.

Despite these computational difficulties, Cameron et al. (2020) make an intriguing
suggestion. While training such systems is currently time-consuming, features are effectively
learned—rather than hand-engineered—as part of that process. Once learning is complete,
the computation of those features for new inputs can be much more efficient than the
computation of the standard features. (We might ask however, to what extent this observation
is limited to that work.)
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5.6.4 The Question of Unsatisfiability

Much of the direct ML treatment of SAT has focused on satisfiable instances, and the process
of extracting a satisfying assignment. There are indications that unsatisfiable instances
might be more problematic for ML.

This is perhaps unsurprising. Satisfiable instances are easy to certify, and we only need
to find one assignment that works; unsatisfiability on the other hand appears much harder
to handle. While we don’t necessarily have to check all 2" assignments for n variables to
demonstrate unsatisfiability, a modern CDCL solver will still need to construct a proof,
and these proofs can be quite lengthy. (Many solvers now provide proofs in the Deleted
Resolution Asymmetric Tautology (DRAT) format (Wetzler et al., 2014).)

Chen and Yang (2019) argue that the apparent difficulty that GNN-based methods have
in dealing with unsatisfiable problems—in the absence of small unsatisfiable cores—might
represent an inherent limitation of this approach. They provide some discussion in support
of this position, but stop short of providing a fully definitive proof. They do however also
argue that GNN-based methods can represent the standard heuristic used by the WalkSAT
local-search solver, that we shall discuss further in Chapter 8. This seems an interesting
connection, as local search solvers are also not capable of proving unsatisfiability.

6 Learning for Portfolio SAT Solvers

It has long been observed in experimental SAT research, that different solvers can show
widely differing performance when applied to a problem instance. This should not be
surprising: on the one hand, SAT is an extremely rich problem, and instances can possess a
variety of structure, as discussed for example in Chapter 4. Also, solvers may be designed
with specific kinds of problem in mind.

If a user needs solutions to problems from a known class, then use of a single, dedicated
solver may seem a good strategy; but even then, there is evidence that behaviour can be
very different for satisfiable versus unsatisfiable instances.

The following question thus arises naturally: is it possible to select a solver, or perhaps
a sequence of solvers, most suitable for attacking a specific problem instance? This is the
domain of solver portfolios.

Solver portfolios can be constructed using the more general idea of empirical hardness
models (EHMs), which we describe in Section 6.1. These form the basis for SATzilla, which
is undoubtedly the most widely successful SAT solver portfolio in practice. We describe
its development in Section 6.2, and an alternative approach more rooted in statistics in
Section 6.3.

While these methods show significant sophistication, parallel developments have demon-
strated that effective portfolios can also be constructed using only very simple ML techniques.
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These are described in Section 6.4. Finally, an attempt to apply NNs to the problem is
described in Section 6.5.

6.1 Empirical Hardness Models

Many attempts to apply ML to the SAT and QSAT problems have focused on the con-
struction of EHMs (Nudelman et al., 2004). Essentially, the aim is to learn to predict how
long some solver will take to solve a given instance, and the approach is therefore closely
related to the wider field of algorithm selection as reviewed by Kotthoff (2016), and to the
use of runtime performance prediction (Allan and Minton, 1996), which uses short runs of
solvers to estimate their ultimate performance. Similar work has appeared for problems
closely related to SAT, such as solving constraint satisfaction problems (CSPs); see for
example O’Mahony et al. (2008) and Yun and Epstein (2012).1
The construction of an EHM for a solver S works as follows:

1. Collect a set { Py, ..., Py} of problems for training, and convert each to an appropriate
set of features x; = ¢(P;).

2. Run solver S on each of the training problems F; to obtain its running time y;. This
results in the training sequence

s = ((x1,91)s -+ (Xm, Ym))-

3. Train a regression method on s to obtain a predictor h that can be used to predict
the running time h(¢(P)) for a new problem P, when solved by solver S.

4. Repeat this process for each solver of interest. This results in a set of predictors, one
for each solver.

It is common for this procedure to be applied to a collection of solvers known as a portfolio,
allowing the resulting classifiers to be used to select a single solver to use for a new problem.
The process for this is straightforward: given a new problem, compute its features and apply
them to each EHM, then choose the solver predicted to require the smallest solution time.

The process just described is straightforward, but many variations have been explored.
For example, Nudelman et al. (2004) show that it may be advantageous to treat the prediction
of running time differently for satisfiable and unsatisfiable instances. In particular, different
classifiers using different features may be appropriate. (We expand on both of these points
later in this Chapter.)

ITo be clear, these works do not explicitly construct regression models to predict run-time. Instead they
employ case-based reasoning (Mitchell, 1997). The design space for problems of this kind is extremely large,
and admits multiple approaches.

59



6.2 Portfolios: Learning to Select a SAT Solver

The SATxilla solver is a portfolio solver—it uses a number of different SAT-solver algorithms.
It employs numerous ML methods to do this.

In the version of SATzilla described in Xu et al. (2007) and Xu et al. (2008) the central
ML method involves the construction of EHMs as described in the previous Section. These
are based on the standard features, after some have been discarded through the application

of feature selection (Guyon et al., 2006). In addition, products of features are computed

to form further features, which are subjected to a second phase of feature selection. Using
the resulting features, EHMs predicting the runtime of various individual SAT-solvers are
learned using ridge regression.

The system incorporates several further subtleties:

The portfolios constructed run pre-solvers before attempting to apply the EHMs
to select an alternative solver. (In fact, before even computing features for a new
problem: as the computation of the features and application of the EHMs can itself
be time-consuming, and many instances will be solved in less time than it takes to
perform these steps, this can be a sensible first step. The EHMs themselves are trained
only on instances that can not be solved by the pre-solvers, and thus concentrate on
harder instances.

In training an EHM the question arises of how to approach an instance for which
the solver of interest times out. When this is the case, it is impossible to correctly
label the instance according to its runtime; such data is known as censored data. An
iterative method due to Schmee and Hahn (1979) is used to incorporate censored
data.

The authors explore the prediction of more general scores as an alternative to runtime.
This can introduce further difficulties. For example, some scores used in competitions
may depend on the performance of competing solvers.

The EHMSs are hierarchical models (Xu et al., 2007). Instead of attempting to predict
the runtime of a solver directly from the features of an instance, they first use a
classifier to predict whether the instance is satisfiable or unsatisfiable. Two EHMs are
trained for each solver—one for satisfiable and one for unsatisfiable instances. The
predictions of the two EHMSs are combined to obtain an overall predicted runtime.

In some versions of SATzilla the hierarchical modelling approach is taken a step
further. The data used for training relates to three groups of problems, with problems
in a common group considered similar. The hierarchical modelling is extended from
two to six EHMs, one for each combination of group and satisfiability.
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Later versions of SATzilla (Xu et al., 2009; Xu et al., 2012a; Xu et al., 2012c¢) introduce
further refinements:

e Further ML is introduced attempting to predict whether computation of the features
will take too long. This step uses a very simple set of features, such as the numbers of
clauses and variables in the instance. If it is predicted that computing the full set of
features will take too long, then a backup solver is run without making any use of the
EHMs.

o A somewhat different approach to EHMs is introduced. Instead of learning to predict
the runtime for a solver S on an instance, classifiers are trained for each pair (S;, S;)
of solvers to predict which is superior. To choose a solver for a new instance, all
classifiers make a prediction for that instance and the solver with the most winning
predictions is chosen.

The learning method applied here is somewhat more sophisticated, employing random
forests (Breiman, 2001) and based on a classifier proposed by Ting (2002) that takes
account of training examples having different weights. If solvers S; and S; have
performance ¢; and ¢; respectively for an instance, then the corresponding training
example is given weight |t; — t;].

In the most recent version, now re-named *Zilla (Cameron et al., 2017), some further
refinements are made, particularly in terms of using a general scheduling algorithm due
to Streeter and Golovin (2008).

6.3 Learning Portfolios using Latent Classes

SAT problems can be divided into classes of related instances. For example, one source of
SAT problems is SATLIB (Hoos and Stiitzle, 2000), and this contains classes such as graph
colouring, model checking, fault analysis in circuits, planning, inductive inference and so on.
While it is known that small changes to an instance of SAT can have a significant effect
on the difficulty of finding a solution, it is natural to ask whether problems from the same
class might be related, to the extent that similar methods can be applied to all instances
within the class.

Taking a more general view, we can consider a scenario where instances fall into classes
in this way, but where these classes are not known at the outset. In general, variables such as
this—that form part of the structure of a problem but are not directly observed—are known
as latent variables. An approach to portfolio construction suggested by Silverthorn and
Miikkulainen (2010) achieved performance comparable to SATzilla, but required minimal
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domain-specific knowledge in the form of feature engineering.?

In the following we denote by [n] the set {1,...,n}. Assume we have P problems, each of
which falls into one of G groups. Assume there are S solvers. Given a parameter 6 € [0, 00)“
we can introduce a distribution over the groups using a conjugate pair of Dirichlet and

multinomial distributions

d ~ Dirichlet(6)
gp ~ Multinomial(d) for p € [P]

where g, denotes the group associated with problem p.

Assume the result of running one of the S available solvers can be one of O outcomes.
Denote by o(i, s, p) the outcome of the ith run of solver s on problem p, where we consider
the possibility of multiple runs to account for any randomization in the solver. Let N,
be the number of times s is run on p. Given parameters 65, € [0,00)? with s € [S] and
g € [G], the outcomes can then be modelled using a second conjugate pair as

d,, ~ Dirichlet(0s,) with s € [S],p € [P]
o(i,s,p) ~ Multinomial(dsy) with s € [S],p € [P] and i € [N, ,).

With this model for the data, and given training data obtained by observing the out-
comes of solvers on a collection of test problems, the Expectation Maximization (EM)
algorithm (Bishop, 2006) can be used to infer the parameter vectors 65 4. The learned model
can then be used to choose an action to take when faced with a new problem. Actions
are regarded as pairs specifying a solver to use and a duration for which to run it, where
durations are specified using values from a finite set of possibilities.

6.4 Simplified Approaches to Portfolio SAT Solvers

SATzilla and other methods have proved extremely effective in practice. However, Malitsky
et al. (2011) note that prediction of run time for a SAT solver is a difficult problem—with
SATxzilla’s own methods often showing significant inaccuracy—and one whose solution might
not be necessary for the construction of an effective portfolio.

They explore an alternative approach based on the k-nearest neighbour algorithm. (A
related approach using k-nearest neighbours to perform heuristic selection in the context of
CDCL solvers has been employed by Nikolié¢ et al. (2009), and is described in Section 7.2.
In Section 9.1 we describe an application of k-nearest neighbours to portfolios for quantified
satisfiability, due to Pulina and Tacchella (2007), and the method has also been applied to

2Silverthorn and Miikkulainen (2010) in fact propose two models, and we describe only the more
successful of these here—the Dirichlet compound multinomial model. Further variations can be found
in Silverthorn (2012).
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portfolio construction in the context of constraint satisfaction problems (Amadini et al.,
2015).) Given a collection S of solvers, a set P of training problems, and a time-out 7', they
measure the time taken (bounded by T') by each solver in S to solve each problem in P.
They also compute the standard features for the problems in P, and parameters needed to
normalise each to the range [0, 1].

Given a new problem p ¢ P to solve, they compute its standard features, normalize

them, and find the k problems p1,...,p; in P whose normalized standard features are
closest (according to Euclidean distance) to those of p. The PAR10 score? is then calculated
for each solver on the problems p1, ..., px, and the solver with the best score is chosen to
solve p.

A good value for k£ was determined using cross-validation (Kohavi, 1995), and in
experiments it was found that this method performs significantly better than SATzilla.

Kadioglu et al. (2011) present a two-stage SAT solver which runs a single solver selected
by the k-nearest neighbour algorithm for 90% percent of the available time, and a schedule
of solvers precomputed using an integer program for the remainder.

In the first stage, problems are represented using a subset of the standard features,
and training data specifies the run-times for all available solvers on all available training
problems. For a new problem, the approach selects the k closest problems in the training
sequence. The value of k is again selected using cross-validation. A single solver is selected
from these: the solver that would perform the best on the k selected problems during the
time limit, according to the PAR10 score.

The work also explores two further refinements. First, the use of weighted k-nearest
neighbours, where the neighbours closer to a new problem have greater influence. Second,
the use of variable k, where the value used depends on the new problem.

This method was extended by Malitsky et al. (2012) for the case where more than one
processor is available. Here, having selected the k instances, a parallel schedule is chosen
that would again solve the largest number of these instances.

Nikoli¢ et al. (2013) also take a simplified approach to the construction of SAT solver
portfolios. Their method is very similar to Malitsky et al. (2011), but differs as follows:

1. In order to make feature computation fast it uses a smaller subset of the standard
features; this is also justified on the basis that the learning task is likely to be simplified
as it is no longer necessary to estimate run times.

2. Features are not scaled.

3. If more than one solver minimizes the PAR10 score, ties are broken by selecting the
one with the best performance on P.

3For a time limit 7', the PAR10 score is an average computed using the time taken for solved problems,
and 107 for unsolved problems.
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4. The Euclidean distance is replaced by

.l
d(x,x') = Zim zil )

" el
i 1+ T

Experimental evaluation shows that, while this system differs only in limited respects from
the earlier work, it nonetheless outperforms it.

6.5 NNs for Portfolio Solvers

More recently, Loreggia et al. (2016) have attempted to extend various successes achieved
by NNs, mostly in the area of image processing, to algorithm portfolios. The fundamental
idea is to transform an algorithm selection problem directly into an image classification
problem. The method for achieving this relies of the fact that algorithm selection, regardless
of whether applied to SAT solving, constraint satisfaction, or some other task, usually starts
with a text file describing a problem instance.

In order to transform an arbitrary text file into a suitable image, the string of characters
is replaced by the corresponding sequence of ASCII codes. Assuming this sequence has
length 1, it is re-arranged as a v/1 x v/1 image, with the ASCII codes interpreted as grey-scale.
This image is then re-sized using a standard image processing algorithm to an n X n image,
where n is a fixed parameter.

The process described essentially allows any text file at all to be reduced to an n x n
image, and thus the common method of convolutional neural networks (Goodfellow et al.,
2016) can be applied to solve the problem of selecting an algorithm from a portfolio: if m
algorithms are available then the classifier has m corresponding outputs, which can be used
directly to learn algorithm choice, or as features for use by a further classifier.

The authors apply this idea to problems from a recent international SAT competition,
using both interpretations of the network outputs: direct solver selection, and features for
a further portfolio builder. As a benchmark, they use cost-sensitive hierarchical cluster-
ing (Malitsky et al., 2013) with hand-engineered features. They find that the approach
outperforms individual solvers, but does not match existing state-of-the-art methods. How-
ever it provides a further interesting example of the way in which features can be learned
rather than hand-engineered.

6.6 Discussion

The success of ML-based portfolio methods is a significant indicator that ML can profitably
be applied to SAT-solving.
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This area of research was for some time dominated by SATzilla, which has achieved a
significant degree of sophistication and correspondingly high performance. There is evidence
however that general approaches to portfolio construction, such as cost-sensitive hierarchical
clustering (Malitsky et al., 2013) can equal or exceed its performance.

There is an observation regarding ML in portfolio SAT solvers that seems particularly
noteworthy: it is possible to achieve a great deal using what are, in ML terms, quite standard
and relatively lightweight methods. While decision forests and statistical models based
on latent variables are certainly sophisticated, they can be very much more compact and
undemanding—in computational terms—than the various deep learning methods available.
Also, the standard features form a relatively small set in comparison to the features employed
in many other applications of ML. The fact that, as we saw in Section 6.4, such good
performance can be attained using something as simple as k-nearest neighbour algorithms
is particularly impressive.

Given the success of lightweight ML methods, the observation that the application of
CNNs in this context does not equal the state-of-the-art might be taken to suggest that this
is an area in which deep learning is not required. (The lack of the need for hand-engineered
features however remains a notable advantage.) On the other hand, one might argue that
the representation of SAT problems as images is, despite its merits, an unnatural one, in
addition to lacking invariance to numerous symmetries inherent to SAT problems, that
many GNN-based approaches have been careful to address. It remains to be seen whether
other applications of deep learning to SAT portfolios, perhaps based on GNNs, can improve
matters.

This chapter has limited itself to discussing only SAT portfolios. Portfolio solvers for
QSAT have also been studied, and we shall take up this discussion again in Chapter 9. For
now, we note that a similar conclusion is reached. In fact, there is evidence that excellent
portfolio QSAT solvers can be constructed using only three features.

7 Learning for CDCL Solvers

In Chapter 2 we described quite an extensive collection of methods that have been employed
to bring CDCL solvers to a level of performance making them capable of attacking large
and interesting problems. Essentially any of these methods can be regarded as a target
for improvement by the application of ML. It is probably not surprising that, given the
importance of the SAT problem, numerous attempts have been made by researchers to
apply ML wherever there is an opportunity.

In this chapter we take each target area for ML in a CDCL solver in turn, and describe
how ML has been applied to it, beginning with learning to select a preprocessor in Section 7.1.

The effectiveness of any SAT solver is highly dependent on its ability to choose which
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variable to branch on next. We saw in Chapter 2 that, prior to the development of activity-
related heuristics such as VSIDS, several variable choice heuristics were proposed. We
describe ML for selecting a good heuristic of this type in Section 7.2. These heuristics were
largely superseded by more sophisticated activity-related heuristics, but one area in which
ML has had a particular impact has been in moving beyond activity measures based on
simple counts of variable use. We describe these developments in Section 7.3.

We describe the use of ML for selecting a restart strategy in Section 7.4, and for deletion
of learned clauses in Section 7.5.

Researchers interested in evolutionary computing have tended to approach ML for
SAT solvers in a manner complementary to that of mainstream ML. We shall see further
examples of this in later Chapters; for now, let it suffice to observe that this should not
seem surprising, as the methods used by GA and GP algorithms to represent solutions to
problems tend to be very different. Such representations have been used to learn CDCL
heuristics combining known approaches, as we shall see in Section 7.6.

Such differences carry over to the methods discussed in the final Sections. All current
CDCL solvers expose numerous user-specifiable parameters. This review does not address
the use of general-purpose algorithm configuration methods to choose such parameters;
however, research that is specific to CDCL solvers exists on setting them. We address such
methods in Section 7.7. Finally, in Section 7.8 we describe evolutionary computing methods
attempting to directly modify the source code of a CDCL solver.

It will quickly become clear to the reader that a common shared factor in this research
has been the use of MINISAT as a target solver. To date it has been the subject of work
setting its parameters, modifying its internal heuristics, automatically editing its source
code, and beyond.

7.1 Learning to Select a Preprocessor

Chen et al. (2014) apply a simple supervised learning model to select a preprocessor to use
in advance of running MINISAT. Three preprocessors are available, with a fourth option of
using no preprocessor.

o The SatELite preprocessor (Eén and Biere, 2005) applies logically sound simplification
methods to the initial CNF formula with the aim of making it easier to solve.

e The second preprocessor inverts all literals in the original CNF, and if a solution is
found inverts its literals accordingly. The aim here is to exploit the fact that the solver
favours choosing negative literals to branch on first, and thus one choice of polarity
may lead to a faster solution than the alternative.
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e The preprocessor sets the ten most common literals to be false, simplifies the CNF
accordingly, and runs the solver on the resulting CNF, but with a timeout. If the
solver times out or indicates unsatisfiability, then the ten literals are set to true and
the process repeated. If this leads to unsatisfiability then the solver is run on the
original CNF. The aim here is to exploit the fact that setting common literals to
guessed values may simplify the formula sufficiently to make the solving process much
faster.

A training set is obtained by running each possibility on a set of training problems. Each
problem is labelled according to the possibility that leads to a solution most quickly. A
decision tree classifier (Quinlan, 1993) is trained on this data using the original standard
features. The trained model is then used to predict which approach to use on a new problem.

7.2 Learning to Select a Heuristic

Lagoudakis and Littman (2001), building on Lagoudakis and Littman (2000), apply RL to
SAT-solvers based on the DPLL procedure. Their aim was to learn to choose which of seven
heuristics to use when selecting a literal at each point where the algorithm branches. They
found that, using this approach, it was possible to perform better than when using any
individual heuristic. They address the #SAT problem, which, rather than simply asking
for a satisfying assignment, attempts to count the total number of satisfying assignments.
This can be achieved by a small modification to the DPLL algorithm: instead of choosing
a variable and polarity at each decision, we try both polarities and count the number of
satisfying assignments achieved from each.

An RL problem is constructed as follows. The state is some representation of the formula
at the point when a new decision is required. In fact, the authors find that a formula can be
represented using only the number of variables it contains, and that using further features
is not helpful. An action corresponds to a choice of one of the seven available, standard
heuristics. The reward for choosing a particular heuristic is the number of nodes generated
in the search tree by propagation as a result. (Some of the heuristics need to generate nodes
as part of their computation. For these, the extra nodes generated are also included.)

The learning algorithm is a form of Q-learning (Sutton and Barto, 2018) based on trying
to learn a function Q(s,a), denoting the cost of taking action a in state s and thereafter
acting optimally. It relies on the use of the update equation

Q(s,a) = r—{—mainQ(s',a) —l—mainQ(s",a). (7.1)

In Equation (7.1), r is the cost of taking action a in state s, and a corresponds to selection
of a heuristic h. If h selects a literal [, then s is the state reached from s using [, and s” is
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the state reached from s using —I. In order to learn Q(s,a) it is represented as

log Q(s, a) = W, ¢(s)

where w, is a vector of parameters for action a and
o) =s & - ),

so we are using a polynomial approximation to log Q(s, a). As this is linear in its parameters
a straightforward linear regression method is used to learn the weight vectors. If Q(s, a) is
the current estimate for Q(s,a), then during training we choose an action in state s, and
the weights are adjusted to move Q(s, a) closer to the value

y=r+minQ(s,a) + min Q(s”, a).
a a

This is achieved using a set of problems similar to those we expect to need to solve.

Taking a very different approach, Nikoli¢ et al. (2009) explore the use of a k-nearest
neighbour classifier with thirty-three syntactic features, derived from the standard features,
to predict which of a predefined set of problem classes a new problem instance belongs to;
that is, the label in the classification problem is now drawn from the collection

{graph_colouring,model checking,...}.

Having established that this prediction can be made very effectively, they use it as a means
of selecting the best heuristic for the DPLL solver ArgoSAT (Mari¢, 2009). Starting with a
collection of heuristics for choosing the next literal to search on, and the point at which to
restart, they select, for each problem class in a training set, the combination of heuristics
performing best for that class in the sense that it solves the largest number of problems.
When faced with a new problem, the classifier is used to find the most appropriate problem
class. The best heuristic combination for that class, as learned in the training phase, is then
applied.

7.3 Learning to Select Decision Variables

7.3.1 Learning to Initialise Variable Activities

MINISAT assigns to each variable v in a problem instance an activity a(v), initialized to
zero. Kibria and Li (2006) aim to learn to initialise the activities in a way that is more
effective than the default of setting them to zero. To do this a function f is learned and
used to initialise activities as

a(v) = Z Z fle,v,l,. )

ceC(v) lec(v)
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where C'(v) denotes the clauses containing v, and ¢(v) denotes the literals in ¢ not containing
.

The function f is represented as a LISP expression (McCarthy, 1960) constructed
from simple functions including exp, sqrt, if a > 0 then b else 0, the basic arithmetic
functions and so on. The additional arguments of f are values such as the number of times
v appears as a positive/negative literal in the instance, the number of times [ appears
as positive/negative in the instance, the polarity of v in ¢, the number of clauses in the
instance, and so on. A standard GP is used to learn the form of f, using as a fitness function
the time taken to solve the instances in a training set of SAT problems.

This approach was significantly extended in later research described in Section 7.7.

7.3.2 Learning to Select Variable Polarity

The work of Grozea and Popescu (2014) is unusual in that it deliberately applies machine
learning to a SAT solver which does not include state-of-the-art heuristics. Starting with an
entirely basic backtracking solver the authors attempt to learn, first, to predict the polarity
to try first for the current variable in the search. (Clearly, for any satisfiable instance the
ability to predict polarity correctly will result in a solution being found immediately with
no backtracking required.) This is then taken further in an attempt also to predict which
variable to assign next.

The authors base their work on forty-eight of the standard features; in fact, they include
two copies of these features, re-computed setting the variable of interest to true or false
respectively. They also add twelve further features considered informative for the problem:;
for example, the size of the smallest clause containing v or —w, where v is the variable of
interest.

Training data for supervised learning using a random forest classifier is extracted by
running a solver on random 3-SAT problems and extracting, from each successful run, a
collection of training examples during the final backtracking. After training it is found that
the system has considerable success in reducing branching.

7.3.3 Learning to Improve on VSIDS

The VSIDS and related heuristics described in Section 2.4.5 maintain a measure a(v) of
activity for each variable v. Every time a variable is used in the derivation of a learned
clause its activity is increased—or “bumped” in the usual parlance—and whenever the
search needs to select a variable to assign it selects the variable having the highest activity.
The alternative algorithms vary in how they bump variables, how the activities are allowed
to decay over time, and so on.

Attempts have been made to improve such heuristics, in particular by increasing the
amount by which variables involved in learning small clauses or clauses with a small
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LBD are bumped, and increasing the bump for variables involved in computing large
backjumps (Carvalho and Marques-Silva, 2004; Chang et al., 2017; Chang et al., 2018).
While improvements have been demonstrated through such modifications they do not in
themselves use ML as part of their operation.

Recently, researchers have incorporated ML into CDCL solvers by using multi-armed
bandits to allow variable activities to be learned as a proof attempt progresses. This
represents an important variation on many of the methods seen so far: we are now learning
activities on a per-proof basis—there is no requirement to learn using a set of similar proofs
before a learned model can be applied.

The Conflict History-Based Heuristic

The first method of this kind was proposed by Liang et al. (2016a) and Liang et al. (2016b).
The underlying motivation was that experience suggests picking variables that are likely to
be involved in the generation of many learned clauses. The conflict history-based (CHB)
branching heuristic addresses the problem as a multi-armed bandit learning procedure, in
which one arm is assigned to each variable and playing an arm corresponds to selecting a
variable. The activity a(v) of each variable v is updated using the ERWA algorithm every
time v is chosen to branch on, propagated during unit propagation, or asserted as a result
of clause learning. That is, we update as

a(v) + (1 —a)a(v) + ar,.

The parameter « is initialised to 0.4 and is reduced by 1076 at each conflict until it reaches
0.06, where it remains. The reward r, for playing variable v is defined in order to provide
high rewards to variables that have recently been involved in clause learning, with the aim
of maximising the rate at which clauses are learned. Specifically,

_ p
S C-Cv)+1

Tv

where C is the number of conflicts seen so far, C(v) is the number of conflicts seen at the last
point where v was used in learning a clause, and 5 is 1 if a conflict exists and 0.9 otherwise.

The Learning Rate Branching Heuristic

Liang et al. (2016b) extended the approach underlying the CHB heuristic by more explicitly
optimizing the rate at which the heuristic generates conflict clauses. The learning rate
branching (LRB) heuristic employs the same multi-armed bandit setup—with one arm per
variable and the use of the ERWA algorithm—and uses the same schedule for the parameter
«. It differs in its use of a more sophisticated concept of the reward r,, and outperforms
the CHB heuristic as a result.
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Let Z denote the interval beginning when a variable v is assigned and ending when it is
unassigned during backtracking. A variable is said to participate in generating a clause c if,
either it is a member of ¢, or it was resolved in generating c. Let p(v,Z) denote the number
of clauses v participates in generating during interval Z, and let £(Z) denote the number of
clauses learned during Z. The learning rate LR(v) of v for the interval Z is defined as

_p(v,7)
L)

LR(v)

A second component of the reward is generated by also considering literals on the reason-side

of the cut during clause learning. A variable is said to reason in learning clause c if it does

not appear in ¢, but does appear in a reason clause for a variable in c¢. Let ¢(v,Z) be the

number of clauses v reasons in generating during Z and let RR(v) denote the reason rate
q(v,7)

RR(v) = £

Then the overall reward is
ry = LR(v) + RR(v).

Note that the reward in this case can not be computed until a variable is unassigned. Each
time a variable is unassigned, including those originally assigned due to unit propagation, a
play for the corresponding variable is made using reward 7.

Finally, based on the observation that VSIDS can exploit community structure by
preferring variables forming a particular community, at each conflict the activities of
unassigned variables are scaled by a factor of 0.95.

The Global Learning Rate Heuristic

The LRB heuristic assesses variables individually, in terms of how they contribute to the
generation of conflicts. Liang et al. (2017) take a more global approach, based on the global
learning rate (GLR). This is defined as the number of conflicts per decision generated by a
solver. Empirical evidence demonstrates that high GLR correlates with shorter solver runs.

In initial experiments, decision variables were chosen by explicitly favouring those that
would lead to a conflict if chosen. This is not a feasible heuristic to use in practice as it is
very expensive to compute; however, it was found to be more effective than VSIDS if the
time taken to compute it was discounted. Denote by P the set of partial assignments, and
by f:P — {0,1} the function mapping a partial assignment to 1 if it will lead to a conflict
when propagated and 0 otherwise. If available, this function would allow the full heuristic
to be computed.

In an attempt to efficiently approximate the heuristic, the authors applied Lo-regularized
linear logistic regression to learn an approximation to the function f. For a problem with
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V variables, they learn an approximation f : RY — [0, 1] of the probability that a partial
assignment leads to a conflict. The feature vector x € RV is simply

1 if v; is currently assigned

0 otherwise.

The training data is extracted during the clause learning process, with a pair of examples
being generated at each conflict: a positive example is generated using the negation of the
learned clause along with the conflict-side literals; a negative example is constructed using
the current partial assignment, having removed the literals at the current decision level and
those in the positive example.

Two modifications can be made to this process. First, as the negative example tends to
include many more literals than the positive example, these can be limited to one literal
per decision level. Second, the reason-side literals adjacent to the learned clause can be
added to the positive example.

A single step of gradient descent is then performed using these examples. This application
of online learning is appropriate as it is efficient, and as the heuristic should be expected to
vary over time as a side-effect of the clause learning process changing the state of the solver.

After training, the heuristic—known as the Stochastic Gradient Descent Branching
(SGDB) heuristic—picks the variable predicted by f to have the highest probability of
leading to a conflict, and achieves a level of performance comparable to VSIDS.

7.3.4 Perceptron-Based Methods for Learning to Select Variables

Heuristic Search (Pearl, 1984; Russell and Norvig, 2020) is a staple area of interest within
artificial intelligence. In heuristic search we are searching on a graph of states, trying to
move from start state s’ to a goal state s” in the best possible way. During a search, we
wish to choose a state to explore next. The A* method, for example, assesses a state s
using the sum of the (known) cost p(s’, s) of moving from s’ to s, and a heuristic h(s,s")
that estimates the cost of moving from s to s”. A good heuristic can vastly improve the
effectiveness of such searches. Fink (2007) has explored the use of ML to learn a good
heuristic: each time a problem is solved, a single training example is generated and used to
improve the current estimate for h.

Heuristic search clearly has a great deal in common with the search conducted by a
DPLL/CDCL solver. In the latter, states represent the state of the solver after a number of
decisions have been made, moving to a new state corresponds to selecting and assigning
a variable, s’ corresponds to no variables having been assigned, and s” (for a satisfiable
instance) to all variables having been assigned.

Flint and Blaschko (2012) have developed this correspondence further to learn to improve
variable selection. At any point in the proof search tree, we will have reached a state s.
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This state is described by the trail,’ and by the state of the formula of interest given that
decisions and propagations will have potentially simplified it. The key idea is to learn a
perceptron, defined by a vector w of weights as described in Chapter 3.? Given such a
weight vector, we need to use it to choose a literal (that is, the variable and its polarity) to
assert, such that it is likely to lead to a satisfying assignment. The literal is chosen as

I(s) = argmax w’ ¢ (s).
!

This is an unusual format, but one that is derived from attempts to apply ML when
outputs are highly structured, rather than taken from simple sets such as {0,1}; see for
example Daumé and Marcu (2005).

A feature vector ¢(s) is computed for each possible literal assignment. Specifically,
the work uses 25 simple features mostly related to standard DPLL search heuristics. For
example, three of the features correspond to the number of times [ appears in clauses of
length two, three and four. A further feature is the current activity assigned to [’s variable
by MINISAT.

It is assumed that a solver will see a sequence of related problems. After a problem is
solved using the current setting for w, nodes in the resulting search tree can be labelled,
provided that a satisfying assignment was found. If it was, then on the path in the search
tree leading to that assignment, pairs ([, s) are labelled +1; all other pairs are labelled —1.
The algorithm then attempts to find two sets of pairs, ST and S—, such that pairs in ST
are labelled +1, pairs in S~ are labelled —1, but pairs in ST are scored lower than pairs in
S~. It does this by finding a threshold 6 and the two sets such that

Y(l,s) e ST,(I',s') € S~ wley(s) <0 <wlol(s)
and |S*||S™| is maximized. Having done so, w is updated as
W<~ w—€eV

where € is a learning rate parameter and
1 1
Vzm > ¢l(5)—@ > duls).
(1,s)eS— (I,s)eS+

When used to modify MINISAT, it was found that this method delivered an order of
magnitude increase in speed when tested using a set of hardware verification problems.

The term trail is commonly used to refer to the list of assignments currently made, either as decisions
or through propagation.

2In the original paper the authors use a more general Hilbert space-based formulation. I have simplified
this in order to maintain a consistent notation and to keep the exposition straightforward. The reader should
consult the original work for a fully general presentation.
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7.3.5 GNNs for Learning to Select Variables

In Chapter 5 we described the NeuroSAT system of Selsam et al. (2019). While this does
not offer a solver that guarantees to provide a correct answer, it has inspired a considerable
body of further research in the context of consistent solvers.

Learning using Unsatisfiable Cores and Glue Variables

The first such extension is the NeuroCore solver described by Selsam and Bjgrner (2019).
This solver uses a simplified version of the original NN architecture, combined with standard
CDCL solvers employing the EVSIDS variable selection heuristic, in a hybrid approach.
It makes extensive use of the idea of unsatisfiable cores (UCs) for unsatisfiable problem
instances, as described in Chapter 5, Section 5.3.1.

The work is based on the intuition that if a variable is likely to be part of a UC, then it
makes sense to branch on it, as it is likely to lead quickly to a conflict. The authors therefore
prepare a training set of unsatisfiable problems, and, by analysing proofs of unsatisfiability
extracted from them, identify the variables in UCs. The problems forming the basis for this
generation process include problems from the international SAT competitions up to 2017. A
collection of NNs—in this case constructed from MLPs and without including LSTMs—is
trained to produce outputs predicting how likely any variable is to be in a UC.

Denote the resulting prediction core(v;) for each variable v;. In order to incorporate
the prediction into an existing CDCL solver, let E(v;) denote the activity for v; according
to the EVSIDS heuristic. Periodically, the solver is interrupted and the current activities
are replaced. In order to do this, a subset of the current problem and its learned clauses is
provided to the predictor, and the activities are reset as

E(v;) = vk X softmax(core(v;)/T)

where v is the number of variables and 7 and k are parameters.

Results using test problems from the 2018 international SAT competition indicate
an improvement over the unmodified CDCL solver. With a time limit of 5,000 seconds,
improvements of between 6% and 11% in the numbers of problems solved were obtained,
depending on the underlying solver and the schedule used to reset the activations. The
improvement comes mostly from an increased ability to solve satisfiable instances, despite
the training employing only unsatisfiable ones. Results for a specific class of problems,
rather than the full, and quite diverse set of problems were better still.

Two extensions to the approach of NeuroCore have appeared. The first, named NeuroGlue,
is due to Han (2020a). This proposes that an alternative to assessing variables by their
presence in UCs is to identify glue variables, which are variables likely to appear in clauses
having LBD at most two. An architecture similar to one used by Lederman et al. (2019)—and
which is described further in Chapter 9, Section 9.2.4—is trained to predict a corresponding
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distribution over variables. This prediction is again used to periodically reset EVSIDS
scores.
Han (2020a) also experiments with an RL-based method, constructed as follows:

1. For an instance f and trail ¢, let f(¢) be the formula obtained by making the
assignments in ¢ and carrying out any resulting propagations. Such formulas form the
states for the RL.

2. An action consists of choosing a variable.

3. State transitions on choosing a variable v are implemented by choosing a polarity for
v at random, adding the resulting assignment to the current trail to make a new trail
t', and moving to the new state f(¢').

4. If the new state proves satisfiability the reward is 0; for unsatisfiability it is 1/G?,
where G is the LBD of the conflict clause. Otherwise the reward is —1/V where V is
the number of variables in f.

The second extension to NeuroCore was proposed in Han (2020b). This work applies
to cube and conquer solvers (Heule et al., 2011; Heule et al., 2016; Heule et al., 2017),
which work as follows. Initially, an instance f is addressed essentially using tree search,
with a carefully hand-crafted heuristic for variable selection. This process aims to find a
set T'= {t1,...,t,} of trails. Considering the trails ¢,—generally referred to as cubes—the
aim is to find a set 7" for which the problems f(¢;) are likely to be solvable efficiently by
standard CDCL solvers, which can then if necessary be run in parallel.

Han (2020Db) takes the view that variables appearing often in proofs of unsatisfiability
might be good candidates for building cubes. A system based on NeuroCore is trained
using variable counts extracted from Deletion Resolution Asymmetric Tautology (DRAT)
proofs (Wetzler et al., 2014). Given a new instance, the model is used to find the m
top-ranked variables, and these are used to produce 2" cubes.

Learning to Predict Satisfying Assignments

In Jaszczur et al. (2019) a graph-based representation for CNF formulas was used to learn a
literal-choice heuristic directly. In addition to learning to predict whether or not an instance
is satisfiable, the approach involves learning to predict whether or not each literal will
appear in a satisfying assignment. This is done by augmenting the training data with further
labels for each literal [ in an instance formula ¢, denoting whether or not ¢ A [ is satisfiable.

The same data generation process was used as by Selsam et al. (2019), with models
trained using examples from SR(n) with n taking values 30, 50, 70 and 100. Using the trained
networks for literal selection in DPLL solvers it was found that, using only satisfiable test
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instances, performance over 1,000 steps was similar to that of the one-sided Jeroslow-Wang
(OS-JW) heuristic (Jeroslow and Wang, 1990), with OS-JW better on problems from SR(50)
and SR(70), and the learned system better for SR(90) and SR(110).

A hybrid approach—testing the SR(50) trained model with satisfiable instances but this
time with no step limit—where the learned heuristic was used until satisfiability is predicted
with probability less than 0.3 and OS-JW is used thereafter, was also shown usually to use
fewer steps in solving a problem than OS-JW alone, when used with DPLL or CDCL.

While these results are interesting, it is worth noting that:

1. The OS-JW heuristic is by no means a state-of-the art heuristic, having been eclipsed
by VSIDS and others.

2. The problems addressed are much smaller than those that can be solved by existing
CDCL solvers.

Finally, it is worth noting that the work concentrates on using the number of steps as
a performance measure. It is common in attempts to apply deep learning methods to
theorem-proving problems, even when bolstered by special-purpose hardware, to observe
that, while the deep learning approach can require fewer steps, this must be offset by the
fact that it may generate predictions relatively slowly, leading to an overall slow-down. We
see further examples of this problem elsewhere.

Reinforcement Learning for Variable Choice

Kurin et al. (2019) use GNNs in an RL framework to learn a variable choice heuristic for a
MINISAT-based solver. Their aim is to learn heuristics specialized to particular problem
classes. Their GQSAT system places variable choice in an RL framework as follows:

1. A state s contains the currently unassigned variables and the set of unsatisfied clauses.
2. An action a is the selection of a variable and its polarity.

3. A state transition is obtained by asserting a variable and polarity, and allowing
propagation and so on to occur.

4. Reward is —r for some constant » when no solution is attained, and 0 otherwise.

The method of deep Q-networks (Mnih et al., 2015) is used to learn an approximation
Qo(s,a) to an optimal function, the value of which is the expected reward if action a is
taken in state s, and behaviour is optimal thereafter. Function Qg(s,a) is based on a GNN,
and @ is the set of learned parameters. Once learned, it can be used to implement a policy
p(s) as

p(s) = argmax Qg (s, a).
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The system is trained on a collection of problems from the SATLIB library. As the
learned heuristic is computationally demanding compared with EVSIDS, it is used only
at the beginning of a solution attempt, allowing EVSIDS to take over thereafter. This is
justified using the observation that EVSIDS needs time for its initial state, with all variable
activities set to 0, to become effective by identifying useful variables.

Several conclusions are drawn. The main conclusion is that the learned heuristic is more
efficient than EVSIDS, in the sense that it generally leads to fewer decisions being needed
to solve an instance. The system also demonstrates some ability to generalize from SAT to
UNSAT problems, and to problems with more variables than those used in training. Finally,
the system can, to a lesser degree, generalize to problem classes other than those used for
training.

7.4 Learning to Select a Restart Strategy

7.4.1 Predicting the Number of Conflicts

Haim and Walsh (2008) note that predicting the run-time of a solver can be complicated by
the presence of clause learning or restart strategies. This is because, in the first case, learning
a clause changes the formula being processed, and in the second case, use of restarting
generates a new search tree.

They address this by using features computed during the early part of the search. They
initially compute seventeen features. These are specifically designed to be computed quickly,
and are based on information generated during an observation window starting a short
time after processing begins and persisting for a limited time. Using these features they use
linear ridge regression to predict the logarithm of the number of conflicts. They attempt to
allow solvers with a restart strategy to use information learned in earlier restarts to improve
the prediction for later restarts. This is achieved by adding the predictions for the earlier
restarts to the feature vector for the later one. Finally, they apply their method in a simple
two-solver portfolio where the solvers differ in terms of the restart strategy used, in order
to select the best alternative.

7.4.2 Predicting Which Strategy To Use

Haim and Walsh (2009) take the work on selecting a restart strategy a step further. They
apply ML directly to the problem of selecting the best restart strategy from a choice of
nine. To do this, they use sixty features based partly on the standard features and partly
on those from Haim and Walsh (2008). Some features are computed at the outset and some
during an observation window. They train a linear logistic classifier to predict satisfiability.
In addition, for each restart strategy, they train a pair of linear ridge regression models to
predict CPU time for satisfiable and unsatisfiable instances respectively. If the first classifier
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predicts that an instance is satisfiable with probability p, and for a given restart strategy the
predictions for CPU time are tgaT and t—gaT, then the prediction for that restart strategy
is

predicted time = ptgat + (1 — p)t_sar

and the strategy with the lowest prediction is selected.

7.4.3 Restarting Using Learned Clause Quality

More recently, Liang et al. (2018) have developed a learned restart method competitive with
the state-of-the-art, based on the observation that restarts tend to improve the quality of
learned clauses, where quality is measured in terms of the LBD—lower LBD clauses being
considered of higher quality. (Clause LBD was defined in Chapter 2, Section 2.4.6.) On the
other hand, restarting too frequently is to be avoided as it comes at the cost of having to
reconstruct the search tree. They make two specific observations: first, that the tail of the
distribution of learned clause LBDs is well-approximated by a normal distribution; second,
that if LBDs of learned clauses are observed in the order they are generated then they
are correlated, and thus it should be possible to predict the LBD of the next clause to be
learned.

Taken together these observations make it possible to predict when to restart using the
following approach:

1. By keeping track of the estimated mean p and variance o2 of the LBDs of clauses
learned so far, the z-score for the normal distribution can be used to detect when an
LBD falls in a particular percentile. The authors use the 99.9th percentile, meaning
that the threshold is

LBD > p+ 3.080.

2. Each time a clause is learned, a training example is generated. As the aim is to
predict LBD, the LBD of this clause is used as the target. The features are the LBDs
L1, Lo, L3 of the three immediately preceding learned clauses. This example is used
to make a single online update to the parameters of the linear function

L = wyg~+ wiLy + wolo + wgLs + wgliLo + w5l L3 + weLoLs
used to predict the next LBD.

3. Whenever unit propagation completes without detecting a conflict, the current set of
weights is used to predict the LBD of the next clause that will be learned, and if this
exceeds the threshold a restart is triggered.

This method is known as the Machine Learning-based Restart (MLB) heuristic. As the
LBD of the next clause is predicted without actually generating it, a restart is therefore
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attempting to better use the time that would have been needed to do this by rebuilding the
search tree instead.

7.4.4 Restarting using Multi-Armed Bandits

Nejati et al. (2017) describe the MapleCrypt solver. While aimed specifically at the problem
of inverting cryptographic hash functions, this solver uses a multi-armed bandit approach
to learning to select a restart strategy. This approach—known as the Multi-Armed Bandit
(MAB) restart strategy—is generally applicable.

A 4-armed bandit is used with the arms corresponding to the uniform, linear, Luby and
geometric restart strategies. When a strategy is chosen the solver is allowed to run until a
restart is indicated by that strategy, keeping track of the average LBD of the clauses learned
during the run. The reciprocal of this average is then used as the reward for training using
the discounted UCB algorithm.

In Section 2.4.7 we briefly reviewed some results on restarting due to Luby et al. (1993).
In summary, if the run-time distribution is known then a uniform restart strategy is optimal;
if not, then a single, fixed strategy exists with a guaranteed performance bound. Gagliolo
and Schmidhuber (2007) propose a method employing MABs, involving several elements:

1. It attempts to learn the run-time distribution while solving a series of problems.

2. Tt uses a 2-armed bandit trained using the algorithm of Auer et al. (1995) to mix the
use of an (approximate) optimal restart based on the estimated distribution, and the
fixed Luby sequence.

3. While solving a problem the bandit is used to probabilistically select the next time
limit to run for—either the next value in the Luby sequence, or the current estimate
of the optimal time limit.

4. If the algorithm is unsuccessful within this time limit then the bandit learning
algorithm is updated with a reward of 0, and the process repeats.

5. However, if the problem is solved then two things occur. First, the bandit algorithm is
updated with a reward related to the total run-time. Second, the successful run-time,
in addition to the times for unsuccessful runs—which act as censored samples—are
used with an algorithm of Kaplan and Meier (1958), to maintain an estimate of the
cumulative distribution function corresponding to the run-time distribution; this is
represented in a form making the integral in Equation (2.2) easy to evaluate, and so
the estimated optimal time limit for the fixed strategy can be updated as a sequence
of problems is solved.
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7.5 Learning to Delete Learned Clauses

When a CDCL solver learns a clause, the clause may then be used in producing future
propagations, conflicts, learned clauses, and so on. It has been observed that such uses
often happen shortly after the clause is learned, but much less frequently later in the search.
As keeping all learned clauses entails costs both in memory and time, solvers therefore
periodically delete clauses that are deemed in some sense to no longer be useful.

Soos et al. (2019) attempt to use ML to decide when to delete clauses. Their approach is
a standard application of supervised learning, but incorporates a number of insights related
specifically to this problem:

Feature engineering The standard features are used, but they are recomputed every
100, 000 conflicts because they will change during a solution attempt. Features more
specific to individual clauses, such as the number of literals and the LBD are also used;
in addition, features related to the state of the solver at the current and previous
restart are used, such as averages of the LBDs and trail depth. Finally, features for a
clause are included in an attempt to reflect its level of performance.

Labelling In order to label examples derived from learned clauses, it is necessary to assess
how useful they were in finding a solution. In order to achieve this, training is based
only on unsatisfiable instances. This is because learned clauses can be used in this case
to construct a proof of the unsatisfiability of the original instance, and the degree to
which a clause is involved in such a proof can be used as a measure of its importance.
Proofs are written using the standard DRAT format described by Wetzler et al. (2014).
Given an interval ¢, a clause is labelled to be kept for that period if the number of
times it is used in the proof of unsatisfiability exceeds the average number of uses for
all clauses over interval t.

One effect of this approach to labelling is that training data can only be obtained from
unsatisfiable instances. This appears to have little negative effect on performance.

Classifier choice The work uses decision trees and random forests to perform classification,
first because decision trees provide some interpretability, but also because in both
cases the learned rules can be converted to C++ and thereby incorporated directly
into the solver. In addition, random forests make assessment of the importance of
individual features straightforward, allowing the size of the collection of features to
be reduced to twenty-two.

Classifier training As deletion of a clause is in some sense more final than keeping it,
classifiers are deliberately biased in favour of keeping clauses.
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The work includes a notable observation on the difficulties involved in incorporating
machine learning into state-of-the-art SAT-solvers: the use of twenty-two features increases
the amount of information stored per clause by sixty-eight bytes, and at present the system
increases cache misses enough to affect performance.

It is worth noting that part of the reason for this method’s success is that ML has
been applied outside the central loop of variable selection and propagation. Vaezipoor et al.
(2020) have also used the approach of applying ML outside of this loop to allow relatively
time-consuming processes to be used, applying RL to the problem of clause deletion. They
place the problem into an RL format as follows:

1. The state of the solver includes the ratio of the number of learned to the number of
original clauses, the histogram of LBDs for recently learned clause, and their average,
and a moving average of recent decision levels and trail size.

2. An action consists of specifying a limit on clause LBD at the point clause deletion
occurs: any clause with an LBD above the specified level is deleted.

3. To assign reward, the number n of times clauses are accessed during propagation
is maintained. A limit [ is placed on n, and should the limit be exceeded a run is
deemed unsuccessful. Unsuccessful runs receive a reward of 0, and successful runs
receive 200 — 10~ "n for the limit I = 10° employed.

7.6 GAs for Learning CDCL Heuristics

The term hyperheuristic is commonly used within the GA/GP literature when referring to a
method that either chooses the best of an existing set of heuristics (a selective hyperheuristic),
or constructs a new heuristic (a generative hyperheuristic). In Bertels (2016), Bertels and
Tauritz (2016), and Illetskova et al. (2017), the ADSSEC system is described. This employs
GPs to construct heuristics for variable selection and learned clause ranking, by combining
elements of existing heuristics used by CDCL solvers. The central aim is to allow an existing
CDCL solver to be specialized for solving a particular class of problems.

The way in which a GP can represent an individual corresponding to a heuristic, in such
a way as to incorporate elements of multiple existing heuristics, is perhaps best illustrated
using the example of learned clause ranking. Here, MINISAT for example updates the score
for a clause additively each time the clause is used in analysing a conflict. On the other
hand, GLUCOSE scores clauses using their LBD. ADSSEC constructs heuristics using the
usual tree-based representation for a function based on the following elements:

e Current score assigned to the clause.

e MINISAT increment for additive updates.
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LBD and its inverse.

Number of conflicts so far.

Number of literals in the clause.

A finite set of constants.

Addition, subtraction, multiplication and division operators.

An individual heuristic in this representation is incorporated directly into the source code
of a SAT solver and assessed in the usual way. ADSSEC uses a fitness measure based on
the number of variable decisions made and also, in the case of learned clause ranking, the
number of literals in learned clauses, in order to promote short learned clauses to save
memory.

7.7 Learning to Select Solver Parameters

7.7.1 GPs for Selecting Multiple Solver Parameters

In Section 7.3.1 above we described the approach taken by Kibria and Li (2006) to learning
to initialize variable activities. Kibria (2007) build on this idea to target multiple solver
parameters covering variable activities, clause activities, clause deletion, and restarts. For
example, MINISAT maintains a bound on the number of conflicts allowed during a search,
after which it restarts. At each restart the thresholds for the number of conflicts before the
next restart, and the number of learned clauses that can be added before pruning them,
are increased. The work involves replacing the fixed thresholds and parameters used by
MINISAT with a more dynamic system that is learned from examples.
The following constants are introduced:

1. 61 is used to increase the increment for variable activities. If 4, is the increment, such
that activities are updated as a(v) = a(v) + iy, then the increment is updated as
iy = O1y.

2. B is used to increase the increment for clause activities, in an analogous way to 6.

3. 03 and 6, are thresholds for forcing a restart and forcing pruning of the learned clauses
respectively.

4. 05 is used to decide which learned clauses to prune: if there are n learned clauses and
the clause activity increment is i, then clauses with a(c) < 65(i./n) are discarded.
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In addition, a simple neural network is added. This network has eleven inputs, and at each
conflict it is applied to each literal in a learned clause. The inputs specify the size of the the
learned clause, the number of clauses learned since they were last pruned, the polarity of
the literal, and so on. The network has four outputs N;. N7 is used to update the activity
of the current literal’s variable v as a(v) = a(v) + Nii,. Ny and N3 specify values added to
the restart and clause pruning counters. N, is used to decide whether T" or F' should be
assigned to v. This neural network, along with the constants 6;, are learned using an EP
method. The fitness is once again the total time taken to solve a set of training instances.

7.7.2 Evolutionary Strategies for Learning CDCL Solver Parameters

Kibria (2011) applies both GAs, and a variant of the GA approach known as an evolutionary
strategy (ES), to try to learn good settings for seven of MINISAT’s parameters. Real-valued
parameters are represented in the form G = (v,l,u,0), where v is a parameter value,
[ and u are lower and upper bounds for v, and o is a parameter that we will explain
below. A potential solution, if we are trying to learn m parameters, then takes the form
S=(G1,...,Gnp).

The ES takes essentially the same form as a GA: a population of potential solutions
is maintained, solutions are selected and combined to produce offspring, and these can be
subject to mutation. A new population is then selected, either from the offspring alone,
or allowing parents also to persist. In an ES however the recombination and mutation
operations differ from those generally used in GAs. Recombination for example might take
one or more potential solutions S1, ..., Sk, and either average corresponding components
within them, or select offspring components at random from the parents. Mutation for
example might take a component and add zero-mean normally-distributed noise having
variance o. The variances are attached to the components themselves as described above,
and consequently are subject to adaptation as part of the algorithm. As with GAs, there
are many possible variations on ESs; a more comprehensive introduction can be found
in Emmerich et al. (2018).

7.7.3 AvatarSAT

Singh et al. (2009) describe the AvatarSAT system. This applies ML to the problem of
setting two of the parameters used by MINISAT. The version of MINISAT used has ten
parameters controlling its operation, and empirical experience suggests that the variable
decay rate used by the VSIDS heuristic, and the restart factor, are particularly effective in
changing the behaviour of the solver.

AvatarSAT uses two multi-class SVM classifiers. The first uses features of the initial
CNF problem to choose one of nine decay rates and one of three restart factors to use
when starting MINISAT. After MINISAT has learned a number of clauses exceeding 80% of
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those in the original problem, a second classifier repeats the process, this time also using
features from the learned clauses. It then has the option of changing the two parameters.
Training examples for the SVMs are obtained from a set of training problems by running
MINISAT for each problem using all twenty-seven combinations of parameters, and making
an example labelled with the combination that achieves the fastest solution. Features are a
mixture of the standard features and some designed specifically for this application.

7.7.4 Other Methods for Selecting Solver Parameters

While we do not aim in this work to address in detail the application of generic parameter
optimization methods to SAT solvers, it is worth noting two research efforts that have
achieved considerable success through this approach.

The Configurable SAT Solver Challenge described by Hutter et al. (2017) applied three
algorithm configuration methods—ParamILS (Hutter et al., 2009), SMAC (Hutter et al.,
2011) and GGA (Ansétegui et al., 2009)—to a collection of SAT solvers in a competitive
environment, and found that the resulting parameter settings were often much better than
the defaults that would otherwise be used.

The SATenstein solver (Khudabukhsh et al., 2016) is a local search SAT solver that
has been constructed to include elements of existing solvers along with other methods,
and highly parameterized with the aim of providing a high degree of flexibility to an
algorithm configuration method, in this case ParamILS. The combination of this flexibility
and automated parameter tuning again leads to notably high performance.

7.8 Specializing a SAT Solver at the Source Code Level

The MINISAT Hack track of the annual SAT Solver Competition® allowed modified versions
of MINISAT to compete. This part of the competition was based on the observation that
many improvements to SAT solvers involve changing only a small number of lines of source
code, often at most 10. Consequently, entries were limited to modifications comprising
changes of at most a thousand non-space characters.

Petke et al. (2013) and Petke et al. (2014) have attempted to apply a form of GP known
as Genetic Improvement, previously applied to automated software patching, in order to
produce improved versions of MINISAT. In their work, individual versions of a program are
allowed to compete against one-another. Each is a variant of a single core program—in this
case MINISAT—and individuals are represented as a list of modifications to be made to the
source code of the core program. These modifications operate on single lines of source code,
and consist of three kinds: deletions, replacements, and copying. A variety of constraints

3The MINISAT Hack track was held in 2009, 2011, 2013 and 2014. Information on all past SAT Solver
Competitions can be found at satcompetition.org.
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are imposed, such as the maintenance of pairs of brackets. A key idea was to include entries
from the MINISAT Hack track as a source of potential modifications.

The algorithm itself runs much as any GP: a population of individuals is maintained, and
a fitness function based on number of lines executed and accuracy on a source of test SAT
problems is used to decide which individuals survive. Crossover consists of concatenating
lists of modifications. A key difference is that a postprocessing step is used in an attempt
to produce a fully optimized final individual.

It was found that, while this approach provided minimal benefit in improving MINISAT
for general problem classes—one problem here was that individuals simply learned to remove
code such as that used for gathering statistics—a significant improvement could be achieved
when searching for a specific version aimed at a single class—in this case Combinatorial
Interaction Testing.

7.9 Discussion

The immediate, striking conclusion to be drawn from this Chapter is that researchers have
approached ML for SAT-solvers in an extraordinary variety of ways: at essentially every
point in the solver structure that is open to ML, and using essentially every tool in the
ML toolbox. (In fact, a state-of-the-art SAT solver may be using several ML algorithms
simultaneously.) It is however possible to identify some important core lessons and themes.

7.9.1 Lightweight Versus Heavyweight Methods

It is easy to destroy the performance of a CDCL solver: in adding a new component at any
key point, that component must either achieve a sufficient positive outcome quickly, or be
so effective that the impact of the time taken to do its job is less than the improvement
it delivers. (Ideally, it should of course be very fast and very effective, but there is an
inevitable trade-off.)

This is reflected in the results to date on learning to select preprocessors, existing
heuristics, and restart strategies, and learning to delete learned clauses. In each of these
areas the results are dominated by what might be termed lightweight methods: linear
regression, decision trees, smaller MLPs and so on.*

A notable, and worrying, characteristic of much work applying lightweight methods has
been that often little attention is given to optimizing hyperparameters. (There are of course
many exceptions—the AUTOFOLIO system for example (Lindauer et al., 2015) performs
hyperparameter optimization as an integral part of its operation.) This applies also to work

4Given the considerable body of work applying GNNs to SAT, it is surprising that no attempt appears
to have been made to apply graph kernels (Vishwanathan et al., 2010) with SVMs. The latter are known to
be extremely effective, while falling into the lightweight category.
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described in other Chapters. Even for a very simple method such as ridge regression, with
a single hyperparameter (A in Equation (3.6)), correctly setting that parameter can hugely
affect performance. It is interesting to wonder how better attention to this detail might
improve results. Wainer and Fonseca (2021) and Bischl et al. (2021) both provide recent
discussions of methods available for achieving this most effectively.

In the area of learning to select variables there is a greater diversity of methods; here,
everything from the simplest of ML methods to deep architectures requiring significant
specialized computing resources has been applied. It is unclear at present whether any
particular level of complexity will turn out to be appropriate; this is very much a developing
area.

It has certainly been demonstrated that there is great potential for the more complex
methods. A common conclusion is that they demonstrate a clear ability to make better
decisions than heuristics such as (E)VSIDS in the sense that fewer decisions are needed to
solve problems. At present this is often at the expense of requiring more time to find these
solutions, on account of the time taken for these methods to make their choice.’

The situation is complicated by the disparity of the methods used to implement state-of-
the-art CDCL solvers—typically in highly optimized C or C++—versus deep architectures
using a mixture typically of Python with specialized GPUs. This begs both the question of
how CDCL solvers might benefit from specialized hardware, and how deep architectures
might benefit from further optimization of their code.

It seems inevitable that deep architectures will indeed prove to be of long-term benefit
in this area; there is perhaps significant opportunity for further research applying them
to restart strategy selection, clause deletion and so on. However I expect that significant
opportunities also remain for lightweight methods. One reason for this belief is that work
such as that of Flint and Blaschko (2012) demonstrates that carefully-judged use of such
a method, in this case a perceptron, in a central part of the solver can still achieve very
significant results. The other reason relates to the question of precisely what we want a
variable selection heuristic to achieve: generality or specialization.

7.9.2 General Versus Specialized Heuristics

(E)VSIDS might itself be considered a learning algorithm: it observes how variables are used
and updates activities accordingly. The CHB, LRB and GLR heuristics are most definitely
ML methods. The application of ML here has, for the purpose of our discussion, three
critical characteristics:

1. It is extremely lightweight.

5This situation is by no means unique to applications in the ATP domain. For example, deep architectures
also suffer from problems when translated to mobile devices, as their power and memory requirements can
be limiting, and significant research currently attempts to address this.
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2. It learns on a per-instance basis: the heuristic learns from scratch whenever it is faced
with a new instance of the SAT problem.

3. As a result, it is a general heuristic: it has not been specialized for any class of
problems.

It is common when using more involved learning methods to treat the problem as one of
learning specialized heuristics, in the sense that the learning employs a collection of related
problems, and it is assumed that new problems will share the same characteristics.

It is worth emphasizing that these two scenarios differ in their use of training data.
In the former case, there is no fixed set of training examples; rather, the training data
is generated as a side-effect of the proof process on a per-instance basis. (We shall see
a further notable example of such a process, which is central to the QFUN algorithm
described in Section 9.2.2.) As a result, learning adapts the solver to specific instances and
generalization across problem classes is automatic. In the latter case a specific collection of
SAT problems is typically required; as a result learning often has the aim of specializing a
solver to problems represented by the collection. In this case learning happens once and
the outcome is used for all future problems, meaning that the time-scale for learning is
fundamentally different. (And while any ability the learner gains to generalize to other
problem classes is undoubtedly of interest, it is reasonable to expect that this might be
limited.) Of course, whether the aim is to obtain a general solver or one specialized to some
particular problem class will in practice be dependent on the desired application.

It seems then, that one must exert great caution in directly comparing the two approaches:
they work on different timescales (per-instance versus per-domain) and thus solve different
problems. In fact, shouldn’t one aim to exploit the abilities of both?

7.9.3 Are Hybrid Methods the Sweet Spot?

To date, when demanding deep architectures have been added to SAT solvers, tested using
realistic data, and shown to improve both decision quality and the time taken to find
solutions, it has usually been by combining the strengths of existing heuristics such as
(E)VSIDS with the more demanding methods. In the present Chapter this was particularly
apparent when two kinds of hybrid approach were employed. First, when predictions by a
deep architecture were used periodically, to re-set the variable activities (for example Selsam
and Bjgrner (2019) and Han (2020a)). Second, when existing variable scores were used as
inputs for a modified calculation of variable scores (for example Flint and Blaschko (2012)
and Illetskova et al. (2017)).

In Chapter 9 we shall describe work by Lederman et al. (2019) that has achieved similar
success using a hybrid approach exploiting elements of an existing solver in the context of the
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QSAT problem. Perhaps it is hybrid solvers that provide some of the greatest opportunities
for advancing the field?

7.9.4 Other Unanswered Questions

We end this Chapter by noting three further potential directions for improving SAT and
QSAT solvers using ML.

First, many of the results described in this review rely on reinforcement learners. Kurin
et al. (2019) note that, despite the successes achieved, one might expect to encounter very
considerable challenges in trying to scale such methods to address realistic problems. These
challenges are not limited to the SAT/QSAT domain, but are likely to be encountered in
any sufficiently complex environment.

Second, we have described a single piece of research applying ML to the cube and conquer
approach to SAT solving. This area presents multiple opportunities for new research.

Finally, the disparity between satisfiable and unsatisfiable instances seems underexplored.
It has been noted by multiple authors, and several have also noted that training only on
unsatisfiable instances can improve performance on satisfiable ones. There are clearly
opportunities here.

8 Learning to Improve Local-Search SAT Solvers

Local search solvers take a fundamentally different approach to the SAT problem than
most of the solvers to which ML has been applied. The basic algorithm was presented in
Chapter 2, and for convenience is repeated here:

1 Select an initial solution candidate x € {0, 1}";
2 totalFlips = 0;

3 while totalFlips < flipLimit do

4 if x is a satisfying assignment then

5 L return x;

6 totalFlips = totalFlips + 1;

7 Choose a variable to flip;
8 Flip the chosen variable in x;

The only point in this algorithm at which we can reasonably apply a heuristic choice that
might be improved by ML is in the choice of the next variable to flip. Hand-engineered
heuristics for this choice have attracted great attention, and provide a basis for some of the
learning methods used; we provide some initial background material in Section 8.1. It is
perhaps because of the limited choice of targets that relatively little work applies ML to
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local search SAT solvers. Nonetheless, some successful attempts have been made, which we
now describe.

Local search has attracted particularly keen interest from evolutionary computing
researchers, and several successful systems have been developed. These are described in
Section 8.2.

Local search solvers are often parameterized. Section 8.3 describes methods related to
empirical hardness models, that aim to allow good parameters to be selected with the aim
of minimizing a solver’s runtime.

Recently GNNs have been applied in conjunction with reinforcement learning in an
attempt to learn good variable selection heuristics. This work is described in Section 8.4.

The STAGE method is unusual in that, rather than targeting variable selection, it
attempts to learn to identify good restarting points. The process here is analogous to the
use of restarts by CDCL solvers: it can be beneficial periodically to stop the search process
and restart, only now a restart involves choosing a new initial solution candidate x in the
algorithm above. This method is described in Section 8.5.

8.1 Standard Variable Selection Heuristics for Local Search

The literature on variable choice heuristics, in the absence of an ML component, is extensive,
and relies on some basic definitions that we will need to re-use (Fukunaga, 2008). Let f be
a CNF formula and A an assignment. Define

o UNSAT(f, A) to be the number of clauses in f that are unsatisfied for A.

e A, to be the assignment that flips the assignment of variable v but is otherwise
identical to A.

The net gain G(v, A) of a variable v for assignment A is then
G(v,A) = UNSAT(f, Ay,) — UNSAT(f, A).

Similarly, the negative gain of a variable for A is the number of clauses that were satisfied
but will be made unsatisfied by flipping v, and the positive gain is the number of clauses
that were unsatisfied but will be made satisfied by flipping v. The age of a variable v is the
number of flips made to variables since v was last flipped.

8.2 Evolutionary Learning of Local Search Heuristics

8.2.1 CLASS

We saw in Chapter 5 that GAs have been used to solve SAT directly. In Fukunaga (2002),
Fukunaga (2004), and Fukunaga (2008) the CLASS method is developed; this moves
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beyond the straightforward application of evolutionary methods to SAT-solving. The central
observation leading to these developments was that the variable selection heuristics used
by existing local search solvers could generally be represented as simple combinations of a
small number of basic primitives, such as net, positive or negative gain. For example, GSAT
simply selects a variable with the best net gain; on the other hand, WalkSAT’s heuristic is
as follows:

1 Randomly select an unsatisfied clause C' = {l1, ..., };
2 Let V = {v € Clv has 0 negative gain};

3 if |[V| > 0 then

4 L select v € V' at random;

5 else

6 if binomial(p) then

7 L select v € C at random,;

8 else

9 L select the v € C having smallest negative gain;

Algorithms such as these can be represented as LISP s-expressions (McCarthy, 1960),
and, as s-expressions have a clear interpretation as trees, any pair of s-expressions can be
combined using familiar GP methods.

The original CLASS system described in Fukunaga (2002) takes this approach. If S}
and Sy are s-expressions implementing heuristics, then CLASS combines them to generate
ten offspring. The composition method is not a standard one, but was designed specifically
for this application. Two examples of the ten offspring produced are as follows; in both
cases v1 and v9 are the variables selected by S7 and Ss:

1. The s-expression that returns v1 or ve, according to which has the smaller negative
gain.

2. The s-expression that returns v1 or ve, according to which is oldest.

The remainder of the system operates as a standard GP method, with the initial population
containing randomly generated s-expressions. In addition, it was found that improved
heuristics could be developed by modifying the composition method such that it sometimes
introduces a heuristic taken from a collection of known good heuristics.

In Fukunaga (2004) numerous improvements were made to CLASS, leading to the
CLASS2.0 system. The improvements were mostly aimed at improving efficiency, but also
led to the development of further good heuristics without needing to introduce known
good heuristics during composition. In Fukunaga (2009) a further effort involving the use
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of parallel computing led to further improvements in the learned heuristics. It is notable
that, until significant effort was expended to improve efficiency, CLASS suffered from the
problem commonly encountered when attempting to improve heuristics for CDCL solvers:
while improvements were found in the number of flips needed by the learned heuristics to
find a solution, such improvements were negated because these heuristics took too long to
evaluate.

8.2.2 Inc* and Friends

Further GP-based approaches to learning heuristics for local search SAT solvers can be
found in Bader-El-Den and Poli (2007), Bader-El-Den and Poli (2008b), Bader-El-Den and
Poli (2008c), and Bader-El-Den and Poli (2008a). There are two main contributions here:
the first is the Inc* algorithm, and the second a set of methods for evolving heuristics more
closely related to Fukunaga’s work.

The initial development of the Inc* algorithm by Bader-El-Den and Poli (2008¢) begins
with the idea that a SAT problem can be addressed by local search in an incremental
manner. (This differs somewhat from the form of incremental solving used in CDCL solvers,
but is certainly related.) The idea is to work with a subset of the problem clauses called
the clauses active list (CAL). The algorithm begins with a small CAL and runs a local
search solver. If the solver is successful then further problem clauses are added to the CAL
and a further solution attempt is made. If a solution attempt is unsuccessful then the CAL
is reduced in size; the clauses to be removed are chosen using a weighting scheme that
measures the number of variable flips needed to satisfy the CAL after the addition of each
clause.

A GP is used to improve this process by learning a function called ifSuccess. The GP
learns a tree representation of this function having root node ifSuccess(p1,p2), where p;
and po are themselves evolved programs. The interpretation is that if a solution attempt is
successful then p; computes the number of clauses to add to the CAL; conversely if it is
unsuccessful then po computes the number of clauses to remove.

A further variant of this algorithm called Inc** is presented in Bader-El-Den and
Poli (2008a), where an improved clause weighting scheme is introduced along with an
improvement to the way in which the algorithm increases the allowed number of flips after
an unsuccessful solution attempt.

Bader-El-Den and Poli (2007) takes a more direct approach by using a relatively standard
GP to evolve a variable-selection heuristic. The aim here is similar to Fukunaga’s, in that a
collection of basic primitives used by existing successful heuristics is identified, and these
are then combined in the usual way by a GP to make new, more complex heuristics. The
work differs from Fukunaga’s in that standard GP recombination is used instead of the
composition method described above, which is criticised for producing heuristics which are
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time-consuming to compute.

The work by Bader-El-Den and Poli (2007) is related to that by Bain et al. (2005a)
and Bain et al. (2005b), who have also attempted to learn heuristics for SAT and MAXSAT
problems, but again use standard GP crossover. Experiments suggest that, in learning
heuristics for local search, the standard operators may perform better under various measures;
conversely Fukunaga (2008) reports an inability to obtain good performance using standard
operators.

Bader-El-Den and Poli (2008b) attempt to improve on the GP approach to evolving
heuristics by allowing such heuristics to interact with the Inc* algorithm. This is achieved
by allowing them to use, for example, the size of the CAL, and a Boolean variable indicating
whether the last solution attempt was successful, in the corresponding evolved computation.

8.3 Learning Good Parameters for Local Search Solvers

Hutter et al. (2006) observe that, as local search algorithms are typically randomized, the
run-time for a given problem can differ for consecutive runs of the solver. Based on this,
they develop a method extending the idea of an empirical hardness model.

As run-times can vary it is necessary to consider the distribution of run-times for an
instance, instead of trying to predict a single run-time. It has been observed experimentally
that the run-time distribution often conforms to a standard distribution, such as the
exponential distribution, and so this might be achieved by learning to predict a small
number of parameters. The work applies this idea to the solvers Novelty™ (Hoos, 1999) and
SAPS (Hutter et al., 2002). Instances are described by features derived from the standard
features, which are reduced by forward selection (Hastie et al., 2009). Supervised learning
is applied using ridge regression with basis functions corresponding to individual features,
and products of pairs of features.

This modification is successful, and it is then further extended to incorporate the
parameters associated with Novelty™ and SAPS. For each method, a set of parameter
settings is chosen, and these parameters are added to the features. After training, it becomes
possible to use the classifier for parameter selection, as the classifier can be used to predict
the median of the run-time distribution based on both instance features and parameters.
The parameters expected to lead to the shortest run-time can then be chosen.

8.4 GNNs for Learning in Local Search

Yolcu and Péczos (2019) have applied RL to the learning of variable selection heuristics,
using a GNN to represent the learned policy, with the aim of specializing local search solvers
to particular classes of SAT problem.
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For a formula ¢ with n variables v;, the problem can be cast in an RL format as follows:

1. A state is the pair (¢, A), where A is the current assignment to the variables.

[\)

. An action consists of flipping one of the n variables.
3. State transition simply modifies A to reflect the flipping of the relevant variable.
4. Reward is 1 if a satisfying assignment is found, and 0 otherwise.

To learn a policy, a GNN is used. This represents ¢ in a manner related to those used
by Selsam et al. (2019) and others, and described in Chapter 5, Section 5.3, although with
notable differences needed to adapt it to this scenario. The complete, learned NN represents
a function

fg(A) = d(vl, . ,Un).

Here, 6 is a vector of learned parameters, and d is a probability distribution on the variables.
Note that ¢ is implicitly involved as its structure is used to define f.

The policy derived from f selects a variable by sampling from d with probability 1/2,
and otherwise selecting a variable at random from a randomly selected, unsatisfied clause.
The overall system is trained using the REINFORCE algorithm (Williams, 1992) and a
curriculum learning approach starting with simple problems and using their solution as a
basis for learning harder problems.

After training on a collection of relatively straightforward SAT problems—numbers of
variables range from 50 to 100, with 213 to 1,725 clauses—the authors find that the system
makes more effective decisions than the standard WalkSAT heuristic, but at increased
computational cost in terms of runtime.

8.5 Other Approaches to Learning in Local Search

The STAGE method presented in Boyan (1998), Boyan and Moore (1998), and Boyan
and Moore (2000) is a general optimization method, but one applied successfully to the
SAT problem. Consider a local search method 7 for solving SAT, based on the bit-string
representation x € {0,1}" of a solution and aiming to minimize some cost function F(x),
such as the number of unsatisfied clauses. Any run of 7 starting at x; gives rise to a sequence

m(x1) = ((x1, F(x1)), -y (Xm, F(x)) (8.1)

of potential solutions with corresponding costs. How might we choose a starting point x;?
Define the function V7 (x) to be the best cost encountered if we run 7 from starting point
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x.! If we had access to this function, and could find its minimum, then the problem would
be solved; however the function is not known.

Rather than using x values directly, STAGE uses features derived from x using a
function f : {0,1}"* — R, and learns a function V' with the aim of approximating V7™ (x)
as V'(f(x)). Now, any run of 7 provides a sequence as in Equation (8.1) and this provides
m training examples of the form (f(x;), Finin) where ¢ = 1,...,m and Fpi, is the smallest
value of F(x;) occurring in m(x1). By interleaving runs of the solver WalkSAT, with learning
using polynomial regression to estimate V', it was found that good restarting points for
WalkSAT could be found as

x' = argmin V'(f(x))

using hill-climbing search to find x’.

8.6 Discussion

Local search has provided fertile ground for evolutionary learning, which has achieved
considerable success. There appears to be some disagreement regarding whether standard or
specialized GP crossover methods are preferred but, aside from this, little if any controversy.

What is particularly clear is that, once again, lightweight ML methods—particularly
those inspired by EHMs—can show great success. More involved methods however—here,
based on evolutionary computing or the combination of GNNs with RL—can sometimes
learn heuristics that make better decisions, but at the expense of being expensive to compute,
sometimes to the extent that they are, in their current form, counterproductive. Later work
on learners of the Inc* type has attempted to address this, but in general the trade-off of
effectiveness against complexity continues to present opportunities for new work.

As we have now seen several times, there is a need to draw a distinction between
heuristics that are intentionally general, which have usually been the target of earlier
research, and heuristics that are specialized to a particular problem class, which more recent
work has tended to address. It is not unusual for the former to be used as a baseline for
comparison with the latter. This is a sensible way to check that the specialized heuristic
reaches a basic level of performance. However care is needed, as it is often possible for the
general heuristic to outperform the specialized one if the class of problems used for testing
changes.

Finally, it is perhaps surprising that such significant effort has been expended on local-
search for SAT without similar attention being paid to the use of large neighbourhood
search algorithms (Shaw, 1998; Pisinger and Ropke, 2010). Here perhaps lies significant
opportunity for further application of ML.

! The notation V™ is similar to that commonly used to denote a value function in reinforcement learning.
This is not accidental; see Boyan and Moore (2000) for a discussion.

94



9 Learning to Solve Quantified Boolean Formulas

Perhaps the simplest way to generalize the SAT problem is to introduce quantifiers, leading
to quantified Boolean formulas (QBF's). In a QBF, variables can be arbitrarily universally
(V) or existentially (3) quantified. The interpretation of the quantifiers is straightforward:
let ¢ denote some Boolean formula, and let ¢[z = B| with B € {T, F'} denote the formula
obtained by replacing the variable x throughout ¢ with its assigned value, T or F'. Then

Vr.p = ¢z =T] A plx
dr.p = ¢lz =T]V ¢l

This definition is extended such that if ® is a QBF with a free variable z, and @ € {V, 3},
then Qz.® is also a QBF, in which z is now bound, and with an interpretation that is the

F (9.1)
F.

obvious extension of the above. Let free(®) denote the set of variables that are free in ®. If
free(®) = () then @ is closed, and ® can only take the value T or F.

When free(®) # () let x = free(®). Then, if the identities in Equations (9.1) and (9.2)
are applied, we can treat ® as a Boolean formula ®(x). The aim of the QSAT problem in
general is to establish whether or not ®(x) is satisfiable. However, as this is equivalent to
establishing the truth value of Ix.®(x) it is usual only to consider closed QBFs.

In general a QBF will have nested quantifiers. Let @ € {V, 3} denote a quantifier, and
let Q =V when Q = 3, and Q = 3 when Q = V. We abbreviate a formula of the form
Qr1Qxs - - - Qxp.@ to Qx.¢ where x = {x1, 2, ..., 2, }. Similarly, we abbreviate a formula
of the form

Qlwgl) e Qlw&)Q%L’?) .. 'Q2l’$122) .. megm) . mem)é

where Q; 11 = Q, to
Q1x1Q2x2 - - QmXm - @

where x; = {:cgi), . ,a:ﬁf?}, and the quantifier in ();x; is said to have level i. If ¢ is proposi-
tional then the formula is said to be in prenex form, the initial block Q1x1Q2X2 - - - QmXm
is called the prenez, and ¢ is called the matriz.

Interest in finding good QSAT solvers is driven by the development of encodings
for various practical problems; for example, in conditional planning (Rintanen, 1999),
knowledge representation for non-monotonic reasoning (Egly et al., 2000) and bounded
model checking (Dershowitz et al., 2005). Further, there is evidence that QSAT codings can
be more compact than SAT encodings for similar problems. Conversely. the expansions in
Equations (9.1) and (9.2) allow a QSAT problem to be converted to a SAT problem, with
the obvious potential for an exponential increase in the size of the formula to be tested for
satisfiability. The trade-off is not straightforward, and so research on solvers of both kinds
is ongoing.
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The possibility of an exponential increase in problem size suggests that this obvious
approach to solving QSAT is unlikely to be successful; and indeed, this is the case in practice.
In complexity terms, QSAT is PSPACE-complete (Garey and Johnson, 1979): we should
expect its solution to be challenging in general. Nonetheless, methods have appeared that
can deal with interesting problems of realistic size.

As might be expected, these methods fall into different camps, depending on their
underlying approach. For example, the testing of QBFs for validity can be achieved by a
search process that is a modification of the DPLL procedure (Samulowitz and Memisevic,
2007). At each node in the search tree the formula is modified—for example, by choosing a
variable and setting it to be true or false—and each sub-tree recursively tries to solve a
modified version of the formula. Heuristics can be used here for example to choose which
variable to assign. We will not describe further the multitude of solvers available, other
than to the extent necessary to explain how ML has been incorporated.

9.1 Learning for Portfolios of QSAT Solvers

Clearly one way of applying machine learning to the QSAT problem is through the con-
struction of portfolio solvers. This can be achieved using precisely the same set of methods
as we saw in Chapter 6: a classifier is trained to predict, on the basis of syntactic features
computed from a formula, which of a collection of solvers will be most effective in solving
that formula.

Pulina and Tacchella (2007) were the first to explore this possibility. While their approach
is essentially as expected, it is notable in that it applies a collection of classifiers, rather
than a single classifier, to the problem. Specifically, decision trees (Quinlan, 1993), decision
lists (Rivest, 1987), logistic regression and nearest-neighbour methods are used. By moving
beyond the simpler techniques, decision trees in particular are found to perform very well.

The initial set of 141 features used in Pulina and Tacchella (2007) was related to the
existing standard features for SAT solvers—described in Chapter 4—augmented using simple
syntactic features specific to QBFs; it was later shown, with the help of a straightforward
forward selection algorithm (Hastie et al., 2009), that the initial 141 features could be
reduced to 20 with little loss of performance. In addition, having grouped the available
QBF solvers into two fundamental types—search-based and hybrid—the authors applied the
Partition Around Medoids (Kaufman and Rousseeuw, 1990) clustering algorithm to show
that these can be treated as latent classes, in that formulas tend to be more successfully
addressed by one of the two types of solver.

A further contribution of note in Pulina and Tacchella (2007) is the introduction of two
methods, specific to the assessment of portfolio solvers, for measuring the performance of a
classifier. This is important as it provides an approach more closely aligned to the relevant
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problem than a standard measure such as accuracy. It was first noted that the cost of a
solver-selection method should take account of any limit imposed on how long a solver is
run for. To take account of this the following cost was used:

1
1—mzt(f)

fer

where F' is a set of formulae, ¢(f) is the time taken by the solver selected for f, and [ is the
time limit. This cost varies between 0 and 1, with values close to 1 indicating that selected
solvers rarely need the full time limit. The second cost proposed is

1 )~ ()
2 )

where t/(f) is the time taken by the best solver for f. This cost indicates how far the
selected solvers fall short of the best available solvers.

Pulina and Tacchella (2009) take this work further. The authors note that the system
described fails to prove 24% of the theorems that one or more of its constituent provers is
capable of proving. In addition, by studying the distribution of run-times for the constituent
solvers over a large number of problems, it is noted that a solver will tend either to solve
a problem within a few seconds, or run for considerably longer.! To address this they
introduce a more sophisticated method for scheduling solvers. This method is assigned an
overall limit on the time available. A learner is used as in the earlier system to choose a
solver, and a time limit set for its execution. The solver is run for the assigned time; if a
solution is found we are done, otherwise alternative solvers are tried according to a specified
ordering, each being assigned some portion of the remaining time available, until a solution
is found or no time remains. If at any point in this process a solver other than the first,
chosen using the learner, finds a solution then we have essentially generated a new training
example. This example is added to the training set and the learner is re-trained.?

There are essentially three areas in this algorithm that are open to variation: the
underlying machine learner used, the ordering imposed on solvers, and the approach to
assigning a time limit, given the remaining time available. Several approaches to each of
these areas are explored in Pulina and Tacchella (2009), ultimately allowing the system to
achieve a considerable improvement in performance over its earlier version.

1This is in fact a common observation made by authors when experimenting with QSAT solvers on
large collections of problems: most problems are either easy, or not solvable within the time limit of interest;
solvers are differentiated largely according to their ability to solve the remaining problems.

2The full version of the algorithm also accounts for the case where all solvers fail but the time-out is not
reached. The reader should consult the original work for full details.
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9.1.1 Good Features for QSAT Portfolios

Hoos et al. (2018) note that QSAT solvers might be expected to benefit from a portfolio
approach, because it has been observed (Lonsing and Egly, 2018) that solvers based on
expansion tend to be more successful for problems with a small number of quantifier
alternations, while solvers based on search tend to dominate for problems with many
quantifier alternations. They use a general method called AutoFolio (Lindauer et al., 2015)
to build a portfolio using the solvers QUABS (Tentrup, 2019; Giunchiglia et al., 2006),
QFUN (Janota, 2018), QUTE (Peitl and Slivovsky, 2017) and GHOSTQ (Klieber et al.,
2010).

In order to construct the portfolio they design a set of features specifically with the
circuit-based QCIR problem format in mind. The first set of twenty-three features is
computed before any solver is run. This set contains features relating to the numbers of
existential and universal variables, number and sizes of quantifier blocks, sizes of gates,
numbers of gates of different types, and so on. The second set of eight features is computed
after a short run of the QUTE solver, and contains features such as the number of backtracks,
the number of learned clauses, fraction of assignments due to branching versus propagation,
and so on.

The study has two notable outcomes. First, that the second set of features is essentially
unhelpful.? Second, that only three of the features in the first set are needed to attain 99%
of the full performance. The work identifies the following four features as being particularly
useful:

1. The circuit depth. (The best, single feature.)
2. The number of quantifier blocks.
3. The average size of the blocks.

4. The relative standard deviation of the gate depths.

9.2 Learning in Non-Portfolio QSAT Solvers

9.2.1 Learning to Select a Heuristic

Samulowitz and Memisevic (2007) were the first to apply non-portfolio machine learning
methods to the solving of QBFs. Their approach is to learn to select a good heuristic for
a single solver: they train a linear logistic regression model to predict the best heuristic
for each of ten available heuristics, under the assumption that the heuristic chosen at the

$While relevant to the domain of first-order logic, rather than SAT/QSAT, it is perhaps relevant that a
similar observation was made by Bridge et al. (2014).
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beginning of the search is then fixed and used at all other nodes.* They use seventy-eight
features, some related to the standard features for SAT based on Nudelman et al. (2004)
and some specific to quantified formulas. In addition to simple heuristic selection, they go
further by allowing the trained classifier to choose a heuristic at every node in the search
tree, allowing the heuristic to change as the search progresses, and find that this is on the
whole advantageous.

9.2.2 Learning Strategies

The method of Counterexample Guided Abstraction Refinement (CEGAR) (Janota et al.,
2016) forms the basis for several QSAT solvers. Janota (2018) developed the solver QFUN,
which added machine learning to CEGAR with considerable success.

This application of ML has certain similarities to (E)VSIDS and related heuristics, in
that learning takes place from scratch every time a solver is run on a problem, and the
solver generates the learner’s training data as it runs. Learning takes place as an integral
part of the solver; consequently, we will need to present considerably more machinery to
explain this method. In the following, some details are omitted for brevity, but the critical
themes remain.

Solving a QBF can be cast as a two-player game, where one player makes choices for the
universally quantified variables, and the other for the existentially quantified variables. We
denote the two players by Ry and P5. Let ¢ be a Boolean formula and let ® be a prenex,
closed QBF

O = Qix1Q2x2 - - QmXm- ¢

where as usual Q;+1 = Q;. The fundamental idea is that P, tries to choose values for its
variables to make ¢ false, while P5 tries to choose values for its variables to make ¢ true.
Play begins at Q1 and moves along the sequence of quantifiers. Players alternate along the
sequence of quantifiers, and Ry wins if the eventual formula ¢—now with all variables set
to T or F—is F, and P53 wins otherwise. A strategy for player Pg at level 7 is a mapping
from the values chosen for x1,...,x;_1 to a set of values to be assigned to x;.

In order to illustrate the ideas needed to add ML to this process it suffices to use the
specific example of a QBF of the form

d = vx.Jy.¢ (9.3)

and so we shall use this as a working example; the reader should consult Janota (2018) for
the details involved in extending the following to the general case.

4There is some mixing of nomenclature here. The authors refer to this as a portfolio. While essentially
correct, the term ‘portfolio’ is more usually applied not to a single solver that can use one of a selection of
fixed heuristics, but to a collection of solvers each of which can employ its own collection of heuristics.
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A winning move for Py in ® is an assignment x’ to x such that Jy.¢[x = x'] is F, or
equivalently ¢[x = x'] is unsatisfiable. If P, has made a move x’ then a counter-move for
P5 in ® is an assignment y’ to y such that ¢[x = x’,y =y’] is T. Given x/, P53 can try to
find such an assignment using a SAT solver: it simply passes ¢[x = x’| to the solver and
receives a result SAT(¢[x = x']), which can either be y’ or an indication of unsatisfiability.
The formula is false precisely when there is a winning move for Py, and an indication of
unsatisfiability establishes that ® is F'; but how do we proceed if we obtain a countermove
y'? The key idea is to build a sequence

S = ((X1,Y1)7 SRR (X'myn))

in which each y; is a counter-move to x;. Starting with a random assignment for xi, a
countermove y; is found by running a SAT solver as described. If this is successful, we
attempt to extend S = ((x1,y1)) as follows. If at any point we have managed to construct
a sequence S, we can find a candidate for x,,+1 by running a SAT solver on the formula

n
=\/ ¢ly = yil. (9.4)
i=1
This is simply the negation of an incomplete expansion of the existential quantifier, referred
to as an abstraction. If there is no satisfying assignment then the QBF is 7. However if the
SAT solver returns x,11 then we can use this as a candidate winning move. This process
continues until the status of ® is resolved.
In order to incorporate learning into this process the key observation is that S can act
as a training sequence for supervised learning, where we wish to infer a classifier C' that
can map any candidate winning move x to a countermove y. In fact if

yT =Yy - ym}

has m elements the idea is to train m binary classifiers C;. Provided these classifiers can be
expressed as a Boolean formulas ¢¢; : x — y;, we can use them to extend the abstraction
in Equation (9.4) not just by substituting specific countermoves y;, but by substituting
strategies. Equation (9.4) is then

: (\/ oly = yil v 8lic, - . ,wom]>

where ¢[Yc,, ..., %¢,,] is the formula obtained by replacing y; by ¢, throughout ¢ for
7 =1,...,m. This has the effect of further strengthening the abstraction for .

The QFUN solver uses precisely this technique, extended to the case of an arbitrary
number of quantifiers. It collects pairs of candidate and countermove vectors, and periodically
uses them to learn classifiers, adding multiple formulas ¢ derived from the learners to the
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abstraction. The need for a classifier that can be expressed as a logical formula limits the
pool of methods that can be applied, but the authors successfully employ a decision tree
learner (Quinlan, 1993) in this way.

Clearly, decision trees are not the only method that can be used in this approach.
Santos Silva (2019) explores the use of six classifiers as alternatives to decision trees in
QFUN, finding that two were worse, two gave similar performance, and two gave a limited
improvement.

9.2.3 GNNs for Ranking Candidates and Countermoves

Yang et al. (2019) have attempted to extend the earlier work of Selsam et al. (2019)
(discussed in Chapter 5, Section 5.3) to the QSAT problem. This essentially requires a
modification allowing existential and universal literals to be treated as separate groups.
They attempt to predict the status of QBFs of the form of Equation (9.3) directly, and
also to predict witnesses, but find that this has limited success. (The problems used had 18
variables, with 10 existential and 8 universal. Clauses had 5 literals, 3 selected at random
from the existential variables and 2 from the universal variables.) They argue that this is
due to the difficulty GNNs appear to have in addressing unsatisfiability.

As an alternative they then address the use of GNN-based models to rank potential
candidates and countermoves in a CEGAR solver, finding that this approach has greater
success.

9.2.4 Learning to Improve a VSIDS-Based Heuristic

The method of incremental determinization described by Rabe and Seshia (2016) extends
many of the ideas used by CDCL SAT solvers, such that propagation of variables is replaced
by propagation of Skolem functions. The QSAT solver CADET implements this idea
using an analogue of VSIDS as its central variable-choice heuristic. CADET again applies
specifically to QBFs of the form
P =Vx.dy.¢.
Here, we can try to establish the truth value of ® by searching for a Skolem function f
that maps assignments to x to assignments to y. The formula & is true if and only if there
is a Skolem function f such that

Vx.¢ly = f(x)] (9-5)

is true. If f can be expressed by substituting a suitable Boolean formula in x for each
element of y then the truth of the formula in Equation (9.5) can be decided by applying a
SAT solver to the formula —¢[y = f(x)].

Lederman et al. (2019) applies GNNs and reinforcement learning to replace CADET’s
use of the VSIDS-based heuristic. (There are noteworthy similarities with the work of Kurin
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et al. (2019) described in Chapter 7, Section 7.3.5.) A GNN is used to compute embeddings
for each clause and each literal in a problem, and in this application the GNN takes a small
number of inputs, corresponding to more traditional features for the clauses and variables.
For example, such features indicate whether or not a clause was in the original formula,
and whether a variable is universal, existential and so on.® In a similar way, the literal
embeddings computed for each variable are concatenated with the variable’s features and
with 5 features describing the current state of the solver; for example, the decision level
and the number of restarts so far. Each of the resulting vectors is then passed to its own
three-layer feedforward NN, and the outputs of these networks provide a heuristic measure
of how desirable each literal is for selection.

The GNN and the feedforward NNs are trained using the REINFORCE algorithm
described in Williams (1992) and Sutton and Barto (2018). To do this, training problems
are executed with a limit of 400 steps, and rewards are assigned, with a reward of —1074
for each step and 1 for a successful proof.

This system was evaluated using a collection of problems involving the finding of logical
reductions (Jordan and Kaiser, 2013), and compared against the VSIDS heuristic and a
heuristic that selects an action at random in terms of the number of decisions needed and
the actual time for finding solutions. This data is quite challenging—the largest problems
exceed 1,600 variables and 12,000 clauses. The system shows a clear improvement in terms
of the number of decision made, but it is of particular note that, for larger time limits, it
achieves an increase in performance in terms of time taken despite the learned heuristic
having an overhead of around ten times compared to the standard heuristic. This suggests a
significant increase in the quality of literal selection obtained. In addition the method shares
the ability of some other methods to generalize performance attained when training with
these problems to problems in a different set—in this case taken from the 2QBF problem
set for one of the QBFEVAL competitions. However in this case it fails to match VSIDS.

9.3 Discussion

The QSAT problem has seen less progress to date than SAT; this reflects its underlying
difficulty. Consequently, attempts to improve QSAT solvers using ML are also relatively
rare. There is though, sufficient material to suggest that many, now familiar lessons can be
learned: much of our discussion for this chapter has a close correspondence to discussions in
earlier Chapters, and many of the conclusions are the same.

5In an earlier version of this work, the features for a variable included its current VSIDS score, however
it turns out that this leads to a small decrease in performance.
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9.3.1 Portfolios for QSAT

Portfolios of QSAT solvers have been built very successfully using primarily lightweight
learning methods and hand-engineered features; the demonstration that only three, simple
features essentially suffice (Hoos et al., 2018) is particularly compelling. It is also interesting
that the QSAT domain has been innovative in designing better cost measures and more
flexible schedules. The main conclusion here though parallels the lessons learning in the
SAT domain: relatively straightforward ML methods can yield very high-quality portfolios.

9.3.2 Can SAT-based ML Methods be Extended?

It is interesting to consider whether the many approaches seen so far to the introduction of
ML to SAT might be extended to the QSAT domain. Many QSAT solvers employ a SAT
solver at some point in their operation, and we can of course reduce the QSAT problem
entirely to a SAT problem by application of Equations (9.1) and (9.2). To this extent the
use of ML to solve SAT can easily be exploited for QSAT; in both cases however, this would
be to ignore significant opportunities. Taking the QFUN solver described above for example,
the introduction of ML that it employs exploits elements of the CEGAR method entirely
unrelated to the applications of ML to SAT seen earlier. Multiple methods have now been
introduced for the solution of QSAT—Tentrup (2019) provides a concise summary—and
these often require methods moving beyond CDCL. It seems therefore that further work on
adding ML to QSAT solvers should focus on targeting the specific characteristics of these
solvers, rather than simply extending work from the SAT domain.

9.3.3 Complexity and Generality

As in our discussion in Chapter 7, we note that there is a clear and significant contrast
between two kinds of learning in the QSAT domain. First, we have methods that learn on a
per-instance basis and are essentially general. These are exemplified by the attempts to
add learning to CEGAR solvers. Second, we have methods used to specialize solvers to
particular problem classes.

It is particularly noteworthy that the combination of an existing solver with advanced
ML methods, for example in the work of Lederman et al. (2019), has led to significant gains
for realistic problems. This precisely parallels the results noted in Chapter 7.

10 Learning for Intuitionistic Propositional Logic

Intuitionistic Propositional Logic (IPL) (Dalen, 2001) is a variant of propositional logic in
which the law of the excluded middle PV =P and law of double negation ——P — P can
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not be assumed to hold. Instead we have the principle of explosion
-P— (P —Q)
and the law of contradiction
(P = Q)= [(P—-Q) = —P]

As a result, the process of proving a formula in IPL differs from that needed for classical
(non-intuitionistic) propositional logic.

Proving a classical propositional formula f corresponds to showing that —f is unsatisfi-
able. Thus, while we are primarily interested in the SAT problem for classical propositional
logic, the fact that some attention has been directed at ML for IPL provers is relevant to
this study. More so in fact as the specific characteristics of IPL provide openings for ML to
be exploited in ways not available for the classical case.

10.1 Methods Employing the Curry-Howard Correspondence

Sekiyama et al. (2017) present a method for learning to prove formulas in IPL, building on
the success of sequence to sequence (seq2seq) learning (Sutskever et al., 2014) for language
translation. The process of finding a proof P for a given formula f in IPL is cast as a
problem of translation from f to P. As the intuitionistic variant is used, the Curry-Howard
Correspondence (Pierce, 2002) allows f to be represented as a type and P as a term in
simply-typed A-calculus; this in turn provides a problem representation suitable for training
a seq2seq learner.

The authors find that, after training, the network has limited success in predicting
correct proofs directly, as the output is often not typeable. However, they then add a search
mechanism that attempts to find a typeable term that is close to the output term. With this
addition, the system is often successful in finding a proof. Termination is not guaranteed if
f is not a tautology (and hence not provable), so as a prover the system is incomplete.

This work was later extended. As is commonly the case, the learner in the work just
described tries to learn a conditional distribution Pr(P|f)—the probability that P is a
proof of f—directly from data. It is the difficulty of learning this distribution directly that
led to the limited success of the method. In Sekiyama and Suenaga (2018a) and Sekiyama
and Suenaga (2018b) it is noted that as statements in the simply-typed A-calculus have
a hierarchical structure, the probability Pr(P|f) can be expressed in terms of simpler
distributions, and this leads to an approach where a learned probability distribution can be
used to guide a search for a proof.

Constructors in the A-calculus are represented with holes that need to be filled. Paths
denoted by path specify the locations of holes in an incomplete proof. For example, we
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Axi INA,B= A A
A= A oW ILANB = A
I'NA,B= A A= 1B
=1 —_—
I'NAJA— B=A I'=A—-1B

(A is atomic)

Figure 10.1: Examples of rules in the LJT sequent calculus. The subscript for rule L; denotes that it is the
first of a set of four rules in the LJT calculus that together cover various possibilities for — used of the left.

might feel that the top-level constructor for a proof of f is function abstraction, which
would be represented as Az.[] where [] denotes a hole to be filled.

The aim of the ML part of the system is to learn an approximation to a distribution
Pr(rulelf, g,path), which can then be used to guide a search procedure that systematically
attempts to fill holes until none remain. We will not describe the search process in further
detail here, but instead focus on the ML part of the system.

The probability distribution is learned using a collection of NNs. As f and g correspond
to formulas they are represented as abstract syntax trees with nodes labelled by one of
three connectives or a propositional variable. These are in turn one-hot encoded, although
variables are encoded as (n(z),0,0,0) where n(z) denotes the number of the variable. One
or more convolution layers are then used to combine each node with its parent and children,
and the nodes are then aggregated to give a single vector representation F(f) € R™. A
similar process is used to embed g as a vector G(g). A second NN takes the vector encoding
of f and the path path and combines them to form a real vector extract(F'(f), path). This
is concatenated with the vector encoding of g and passed to a multilayer feedforward NN
with eight outputs corresponding to the possible proof inference rules.

The overall architecture is considerably more successful in finding proofs than the earlier
version. While any proof found will be a correct one, the system still suffers from the
problem that it may not terminate if no proof exists.

10.2 Methods Employing Sequent Calculus

A different approach to finding proofs in the IPL was taken by Kusumoto et al. (2018).
Here, the system is based on the sequent calculus LJT introduced by Dyckhoff (1992).

A sequent takes the form I' = A where I' is a multiset of formulas and A is a formula.
The LJT calculus has eleven rules, each of which has one or more premises, and a single
conclusion, and can act on the left or right of a sequent. Rules without premises are axioms.
Figure 10.1 shows examples of four of these rules. In order to prove f, we build a tree
starting with the sequent = f as root node. If a node matches the conclusion of a rule then
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=[AN(A—B)]— B R

Figure 10.2: Example of a proof in the LJT sequent calculus.

its children contain the premises. A tree with axioms at all leaves is a proof. Figure 10.2
shows an example proof of the assertion [A A (A — B)] — B, employing the 4 rules from
figure 10.1.

In Kusumoto et al. (2018) the search for a proof is approached as a reinforcement
learning problem. In attempting to prove f:

1. States s are sets of sequents that remain to be proved. The initial state is s = {= f}
and the goal is to obtain s = {}. In general s = {p1, ..., pn} where each p; is a sequent.

2. An action a taken in state s involves selecting a sequent in s corresponding to the
conclusion of some rule, and replacing it with the corresponding premises from that
rule.

3. A transition from state s to state s’ as a result of an action a in the manner described
is denoted s’ = S(s,a).

4. The reward on reaching state s is denoted R(s) and is

1 if s is the goal
R(s) = goat.
0 otherwise
Denoting by r; the reward received at the ith step, the overall reward for a proof

taking n steps is the usual reward introduced in Chapter 3, Equation (3.12)

with the convention that R = 0 if no proof is obtained. In general, as each premise in
a state s = {p1,...,pn} must be proved, we have

n

R(s) = [[ R{p:})-

i=1

Say we have a policy P : s — a that can be used to search for proofs. This will have a
corresponding reward function R”(s) denoting the reward attained by starting at s and
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acting according to policy P. This reward function, if known, can always be used to derive
an improved policy, by applying the following;:

Vs.P'(s) = argznaxRP(S(s,a)). (10.1)

A GNN is used to represent a parameterized estimate of reward, denoted Ry : s — R, where
0 denotes the network’s parameters. From this, a policy Py : s — a can be obtained using
Equation (10.1). The GNN is trained using approximate policy iteration (Sutton and Barto,
2018), which involves beginning with some initial policy Pp, and producing a sequence
Po,, Po,, Pe, - .. of improved policies. At each step, a training set D; is selected from the
example problems available, with each example being labelled as (s, R7% (s)). The GNN is
then trained as follows:

0,1 = argminz (7?,9(5) — RPe; (s))2 .
o D

10.3 Discussion

IPL has received much less attention as a target for ML than the classical SAT or QSAT
problems. This is to be expected: the wealth of problems—many of considerable practical
relevance—that can be addressed by translating them to the SAT or QSAT form has no
analogue for IPL. IPL is close enough to SAT and QSAT to be of interest; but also enough
of a niche subject that opportunities for discussion are limited.

I am not aware of any attempt to date to apply portfolio methods to IPL. This is perhaps
surprising, for two reasons. First, there are several theorem provers for IPL available: at the
time of writing the ILTP Library (Raths et al., 2007) available at www.iltp.de lists seven
solvers, and to these can be added Imogen (McLaughlin and Pfenning, 2008), FCUBE (Ferrari
et al., 2010) and possibly others. Second, there appears to be little if any reason to suppose
that the application of portfolio methods to these solvers would require much beyond the
straightforward extension of existing approaches.

The Curry-Howard correspondence has provided opportunities for the application of
seq2seq learners and other methods that are in striking contrast to the other work we have
seen. Whether this was a unique opportunity, or one that can be exploited further remains
an open question.

The approach to IPL based on using RL to guide search within the sequent calculus
is more familiar. While we have seen numerous applications of RL in earlier Chapters, it
has not to date been applied in the SAT/QSAT domain to structured proof methods of
this kind. Recent work exists applying ML to proofs based on the connection calculus in
first-order logic (Farber et al., 2021), so there is perhaps room for further work here.

More generally, it is interesting to wonder whether the success of local search for SAT,
or of the many methods developed allowing ML to be applied to CDCL solvers, can be
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repeated by adapting them in some way to the IPL context. The same question was raised
earlier in the case of QSAT solvers, and the conclusion is the same. Methods for the solution
of IPL problems often seem sufficiently removed from those used for SAT that researchers
might be better advised to target the specifics of IPL solvers, rather than to attempt to
re-apply ML approaches from SAT.

11 Conclusion

In writing this work I have been struck by the extraordinary variety of approaches that have
been taken to mixing ML with ATP. In retrospect this should not have been so surprising,
as the problems being addressed are rich, and the available methods both powerful and
diverse. I am now equally struck by the extent to which there are opportunities to take the
work further, and I hope that my original aims have been satisfied to the extent that the
reader might feel equally inspired.

My main conclusions have been set out in the Discussion sections of the preceding
Chapters, and do not need to be repeated. I will therefore conclude with some more general
observations that did not fit naturally into that structure.

11.1 The Structure of Solvers

Thus far, theorem-provers have not been built from the outset with learning in mind—
learning has been retro-fitted. This is not necessarily good. As noted by Samulowitz and
Memisevic (2007), the use of a portfolio approach limits behaviour to that provided by exist-
ing solvers. In the case of CDCL solvers, the fact that they have been so forcefully engineered
with performance in mind makes modifications possible, but somewhat uncomfortable, in
the sense that one has to tread very carefully to avoid destroying the performance of the
solver. It is perhaps worth considering whether re-engineering SAT and QSAT solvers with
such modifications in mind might be a profitable exercise.

In Section 7.7.4 we described the SATenstein solver, which deliberately exposed a large
number of parameters, allowing great flexibility in modifying solver behaviour. While the
aim in that work was to allow those parameters to be optimized automatically, it represents
one way in which future solvers might be made more accessible to ML researchers. (While
many existing solvers are parameterized, the extent of the parameterization is often limited
in comparison.) In Section 7.8 we described a system that learns at the source code level.
Additionally, in the context of constraint satisfaction problems, Minton (1996) describes the
MULTI-TAC system, which produces solver programs optimized for specific classes of problem.
Such systems represent another way of providing great flexibility in solver operation, but it
is again not clear whether this flexibility can be harnessed by other ML researchers in a
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straightforward way.

11.2 What is the Appropriate Level of Complexity?

The worlds of ML and ATP currently possess a relatively new toolbox in the form of the
large set of methods collectively entitled ‘deep learning’. It is unsurprising that these new
tools are being applied freely.

In scientific terms, there is clear evidence that large-scale learning of this kind can
improve decision-making in SAT and QSAT solvers. This is an important lesson, and
it is likely that ongoing developments will mitigate the negative effects that sometimes
accompany it: in particular, the overall slow-down imposed by the increased time taken to
make the improved decisions.

For now, where deep learning has made improvements in both numbers of problems
solved and speed, and when this has been achieved with realistic data, it has been through
being combined with existing methods.

Of course, heavyweight tools are sometimes the right ones. But not for brain surgery;
and modifying the inner workings of a SAT solver is certainly the computer scientist’s
answer to brain surgery. It is important to maintain a balanced view, as much of the success
in applying ML to SAT and QSAT has been achieved using lightweight (in comparison with
deep learning) methods. And again, there appears to be merit in continuing to develop
both.

It may be that deep learning turns out to be a universal tool in this field. But the jury
is at present still deliberating.

11.3 What About Parallel Solvers?

Work on incorporating ML into SAT solvers has almost entirely targeted sequential ap-
proaches; so for example portfolio solvers select a single solver from the portfolio to run on a
single processor. This is rather surprising in the light of the extensive literature on portfolio
design in general, addressing the running of multiple algorithms in parallel, switching
between algorithms on a single processor, or treating portfolio construction as a form of
restarting (Huberman et al., 1997; Gomes and Selman, 2001).

More recent work, as reviewed by Holldobler et al. (2011) has turned to SAT solvers
exploiting parallel architectures, and the question arises of how learning methods might
be extended to these more recent solvers. Using again the example of portfolio solvers, we
might for example try to identify the best subset of solvers to run in parallel on the available
resources. In particular it has become clear that to attain the best performance parallel
solvers must be designed specifically to exploit the properties of the underlying hardware,
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and it is of interest to ask whether ML has a further contribution to make in this context.

11.4 Solver Competitions

The field of automated theorem proving places great importance on competitions. This has
driven huge innovation and progress. At present the standard metrics used to judge provers
are solution time and number of theorems proved within some time limit. Such metrics
have an influence on the way in which solvers are developed, and as proving more theorems
more quickly is a perfectly reasonable target, these metrics, and competitions themselves,
are useful tools.

Historically, the use of predominantly time-based metrics has allowed advances to be
made through careful and ingenious programming. Given the well known computational
complexity of theorem proving problems, even in the simplest SAT variant, we might only
expect this approach to provide limited benefit in the long-term, regardless of its undoubted
merits. Indeed, it seems that this approach has in recent years been less influential, and
that advances have been dominated by more foundational developments. Again, a positive
outcome based on time-based metrics as a driver for competitive solvers.

Might it be productive however to consider additional metrics? In writing this work it
has become clear that ML. methods can be used to make better decisions during a proof
attempt, although often at the cost of increased runtime. The fact that decisions of better
quality can be made is surely an indication that fundamental advances are being made,
even if not yet in a context that allows them to be fully exploited. It seems therefore
important that researchers devote time to developing methods that, while perhaps not
winning competitions in the short-term—and under the current metrics—have the potential
to allow us to address harder problems in the future. This might be facilitated by adding
alternative ranking methods within existing competitions. For example, by rewarding solvers
finding solutions using fewer decisions separately to solvers that solve problems faster.
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A Abbreviations

Abbreviation Meaning

ATP Automated theorem-prover

CAL Clauses active list

CDCL Conflict-Driven Clause Learning
CHB Conflict history-based

CIG Clause incidence graph

CNF Conjunctive normal form

CNN Convolutional neural network

CSp Constraint satisfaction problem
CVIG Clause-variable incidence graph
DAG Directed acyclic graph

DPLL Davis, Putnam, Logemann, Loveland
DRAT Deletion Resolution Asymmetric Tautology
EHM Empirical hardness model

EP Evolutionary programming

ES Evolutionary strategy

Continued overleaf...
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Abbreviation Meaning

ERWA
EVSIDS
GA
GLR
GNN
GP
IPL
LBD
LRB
LSTM
MAB
ML
MLB
MLP
MPNN
NN
QSAT
RL
SAT
SVM
SGDB
uC
UCB
UIP
VIG
VSIDS

Exponential recency weighted average
Exponential VSIDS

Genetic algorithm

Global learning rate

Graph neural network

Genetic program

Intuitionistic propositional logic
Literals blocks distance

Learning rate branching

Long short-term memory
Multi-armed bandit

Machine learning

Machine learning-based restart
Multi-layer perceptron
Message-passing neural network
Neural network

Quantified satisfiability
Reinforcement learning

Satisfiability

Support vector machine

Stochastic Gradient Descent Branching
Unsatisfiable core

Upper confidence bound

Unique implication point

Variable incidence graph

Variable State Independent Decaying Sum
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B Symbols

General
1 Identity matrix
R? Set of i-dimensional vectors with real elements
v; Element 7 of a vector v
R#*J Set of 7 by j matrices with real elements
M; ; Element at row ¢, column j of a matrix M
I Indicator function: I[P] is 1 if P is true

and 0 otherwise
1;; ¢ by j matrix with all elements equal to 1.
N(x;p,3) Multivariate normal density with mean p
and covariance 3
® Element-by-element multiplication of vectors
[n] The set {1,...,n}

Continued overleaf...
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The SAT Problem

V Set of variables

C Set of clauses

v A variable. or [V|, according to context
c A clause, or |C|, according to context

l A literal

f, &, ¢ Propositional formulas

A Assignment

a(v) Activity of a variable

Q
—~

)
~—

Activity of a clause

Machine Learning

Dimension of feature space for a classifier

Size of training set

Sequence containing m training examples
Function mapping instances of a problem to feature vectors
Learning algorithm

Hypothesis space

Constant normalizing a probability distribution
Random variable denoting a class

Instance vector

Dimension of the extended space

Number of basis functions

Basis functions

SRR = ANEPTm® I3

Regularization parameter
Mapping from instance x to the extended space
Matrix of ¢(x) for x in a training sequence

& S >
X

8
~—

Step or sigmoid function
Vectors of parameters
Number of clusters

=22
g

Continued overleaf...
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Machine Learning

<
)

<
!
-

ONTROE IT L BP0

Reward sequence

Reward from arm ¢ of a multi-armed bandit at time ¢
EWMA discounting factor

Bandit or reinforcement learning discount factor
Estimated bandit reward at time T

RL state set

RL action set

RL policy

RL discounted reward

Step size for gradient descent

Number of classes in a problem

CNN kernel

Step in a sequence

Final step in a sequence

Objective function
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