
i 
 

 

 

Phononic Frequency Combs 

Adarsh Ganesan 

 

 

Queens’ College 

 

A dissertation submitted to the University of Cambridge in  

partial fulfilment of the requirements for the degree of  

 

Doctor of Philosophy 

 

Department of Engineering,  

University of Cambridge, 

Cambridge, United Kingdom 

September, 2017 

  



ii 
 

 

  



iii 
 

 

 

 

 

 

 

 

 

 

 

Dedicated to my late Amma 

  



iv 
 

 

  



v 
 

Preface 

 

This dissertation is of the author's own work and contains nothing which is the outcome of 

work done in collaboration with others, except as declared in the Preface and specified in the 

text. No part of the work presented in this thesis has already been, or is currently being 

submitted for any other degree, diploma or qualification. The composition of this dissertation 

is approximately 17,000 words in length (including figure captions, appendices and 

references), including a total of 76 figures. 

 

 

 

 

 

 

 

 

  

Adarsh Ganesan 

 

  



vi 
 

  



vii 
 

Abstract 

 

Optical frequency combs have resulted in significant advances in optical frequency metrology 

and found wide application to precise physical measurements and molecular fingerprinting. A 

direct analogue of frequency combs in the phononic or acoustic domain has not been reported 

to date. This thesis describes a series of results to provide the first clear evidence for the 

generation of phononic frequency combs in the domain of micromechanical resonators. These 

results are supported by a theoretical framework which was originally developed to predict the 

existence of such features of combs in physical systems described by Fermi-Pasta-Ulam 

dynamics.   

The phononic frequency combs is mediated by nonlinear coupling between a primary driven 

mode and one or more parametrically excited internal modes. We provide experimental 

evidence for the formation of such phononic frequency combs in systems comprising of 2 or 

more coupled modes, with results qualitatively consistent with previous numerical studies 

based on Fermi-Pasta-Ulam dynamics. Additionally, externally pumped comb processes are 

also reported.  Through systematic experiments at different drive frequencies and amplitudes, 

we portray the well-connected processes of phononic frequency comb formation and define 

attributes to control their concomitant features. Further, the interplay between these new 

nonlinear resonances and the well-established Duffing phenomenon is also discussed.  

While the experimental verification of the existence of phononic frequency combs is of 

scientific interest, several potential engineering applications exist including the unique 

capability to track resonant frequency of a micromechanical resonator without the 

requirement for an external feedback loop to sustain oscillations at the resonant frequency. 

The initial experimental results also demonstrate that good short-term frequency stability may 

be obtained for such micromechanical resonators operated under ambient conditions.  
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Chapter 1 

 

Introduction 

 

1.1. What are Frequency Combs? 

 

Frequency combs refer to a collection of precisely positioned equidistant spectral lines (Figure 

1.1).  

 

 

 

Figure 1.1: Spectral Signature of Frequency Combs. The precisely positioned spectral lines 

of equidistant spacing Δ𝜔. 

 

The component tones of frequency combs are defined by one of the frequencies 𝜔𝑜𝑓𝑓 +

𝑛Δ𝜔; 𝑛 ∈ 𝑍. Here, 𝜔𝑜𝑓𝑓 and Δ𝜔 are the offset frequency and frequency spacing associated with 

the frequency combs respectively.  

 

In addition to the equidistant nature of spectral lines in a frequency comb, such lines are also 

phase-coherent i.e. have ‘0’ phase difference. Hence, in the time domain, the frequency combs 

take the form of a ‘pulse train’. This feature is pictorially demonstrated in Figure 1.2. 
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Figure 1.2: Temporal Signature of Frequency Combs. The train of pulses with period 2𝜋/

Δ𝜔. 

 

1.2. Why are Frequency Combs so Popular? 

 

While existing electronic measurement techniques can address metrology at low frequencies 

(microwave regime and below), the applicability does not extend to probing fast oscillations 

for e.g. electromagnetic radiation with frequencies in the THz or above. As a result of this 

limitation, the precise estimation of high frequencies was limited. The optical frequency 

combs have thankfully addressed this by providing the equivalent of a ruler in the frequency 

domain [1-4].  

 

In frequency comb based light metrology, a laser of known frequency is first stabilized. This 

stabilized laser then interacts with the target light in a nonlinear optical medium. Such 

interactions result in a frequency comb of spacing corresponding to the difference between 

the laser’s known frequency 𝜔𝑘𝑛𝑜𝑤𝑛 and target light’s unknown frequency 𝜔𝑢𝑛𝑘𝑛𝑜𝑤𝑛 (Figure 

1.3). Hence, through the low frequency beat-note 𝜔𝑘𝑛𝑜𝑤𝑛 − 𝜔𝑢𝑛𝑘𝑛𝑜𝑤𝑛 detection, the target 

light 𝜔𝑢𝑛𝑘𝑛𝑜𝑤𝑛 can be precisely probed and the precision of such a measurement will only be 

largely limited by the stability of probe laser (𝜔𝑘𝑛𝑜𝑤𝑛) [5-8]. 
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Figure 1.3: Generation of Optical Frequency Combs. 

 

 

 

Figure 1.4: Optical Frequency Combs as a Counter of Optical Atomic Transitions. 

 

Soon after the development of optical frequency comb metrology, several new fields that 

involve light measurement opened up. These include ultrafast optics [9] and laser astrophysics 

[10]. In addition, frequency comb metrology is fundamental to the development of optical 

atomic clock that oscillates at about 500,000 billion cycles per second and thus, also enabling 
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the smallest measure of time (Figure 1.4) [11]. Owing to the significance of optical frequency 

combs to the scientific and technological development, the inventors received the 2005 Nobel 

prize in physics [4,12]. 

 

1.3. Our Experimental Discovery of Phononic Frequency Combs 

 

 

 

Figure 1.5: Emergence of Phononic Frequency Combs in a Micromechanical Resonator. 

 

 

Figure 1.6: Regimes of Phononic Frequency Combs in a Micromechanical Resonator. The off-

resonant drive of a phonon mode of micromechanical resonator results in phononic frequency 

combs. 

 

This decades-old optical frequency comb, by its manifestation as a frequency ruler, has 

revolutionized optical frequency metrology. This thesis now presents the first experimental 

demonstration of the phononic analogue of such frequency combs [13]. These observations 

came about in a micromechanical resonator device, confirming predictions made by 

numerical simulations of a Fermi-Pasta-Ulam system [14]. While the spectral features are 

similar, the physics of phononic frequency comb generation is conceivably different from that 
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of its optical counterpart. An off-resonant drive of a phonon mode results in frequency combs 

through its intrinsic coupling with the other modes of micromechanical resonator (Figure 1.5).  

 

The possible reasons for the absence of phononic frequency combs in the past are as follows: 

multiple modes should be strongly coupled and the device should withstand high excitation 

amplitudes; easy and informative characterisation is required for the clear demonstration of 

physical pathway related to the generation of phononic frequency comb. While the comb 

regimes are qualitatively known for simple experimental cases (Figure 1.6), the future studies 

on the deep understanding of emergent maps of phononic frequency comb are therefore 

necessary for its predictive engineering.  

 

1.4. Possible Significance of Phononic Frequency Combs 

 

 

 

Figure 1.7: Phononic Frequency Combs based Resonant Frequency Excitation and Tracking. 

Comparison of the feedback oscillator vs. phononic frequency combs based oscillator. 
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While the optical frequency combs have revolutionized light metrology and hence, have 

served as ‘gears’ of ultra-fast optical atomic clocks [15], phononic frequency combs can 

possibly impact another class of precision measurements. It will be shown in this thesis that 

the physical pathway of phononic frequency combs is fundamental to the self-excitation of 

modal frequency 𝜔𝜃 [13]. This unique capability can therefore present a new approach to track 

resonance. Such a phononic frequency combs based approach, through a much simpler 

topology, can provide a more precise estimate for resonant frequency 𝜔𝜃 (Figure 1.7) as also 

suggested by the results provided in the future work section of this thesis.  

 

 

1.5. Objectives and Plan of the Thesis 

 

This thesis presents experimental observations of phononic frequency combs in 

micromechanical devices, and provides a conceptual basis to describe these observations. 

Chapter 2 presents the discussion on the established resonant pathways. In Chapter 3, a 

theoretical sketch of new phononic frequency combs is presented. After setting out the 

theoretical background, the experimental segment spans over Chapters 4-5. While the 

construction of experimental device is presented in Chapter 4, Chapter 5 presents multiple 

experimental observations of frequency combs and their links to the established theoretical 

framework. Finally, Chapter 6 summarizes the findings and Chapter 7 discusses future work 

and potential applications. 
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Chapter 2 

 

Established Resonant Phenomena 

 

This chapter recapitulates established resonant phenomena that typically arise in many 

physical systems, including vibratory structures. Particularly, we focus on three representative 

mechanisms of relevance to this thesis namely, linear resonance, Duffing phenomenon and 

parametric resonance. 

 

2.1. Linear Resonance 

 

2.1.1. Observations 

 

 

 

Figure 2.1: Resonance of Pendulum (A pendulum is a mass suspended from a pivot). A: 

An oscillatory force 𝐹𝐷 cos(𝜔𝐷𝑡) is applied on the pendulum so that it oscillates; B: The 

pendulum oscillation amplitudes as a function of driving frequency 𝜔𝐷. 

 

https://en.wiktionary.org/wiki/pivot
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Resonance or Linear Resonance (LR) is a phenomenon by which a physical system responds at 

greater amplitude when the frequency of oscillations 𝜔𝐷 gets closer to the system’s natural 

frequency 𝜔𝜃 (Figure 2.1).  

 

2.1.1.1. Example of Swing  

 

To understand this mechanism further, let us consider a familiar case of swing as shown 

below. If the swing is struck, the seat will move back and forth about the pivot (Figure 2.2).  

 

 

 

Figure 2.2: Swing oscillations. The swing oscillates at a specific frequency when struck.  

 

The frequency of this oscillation depends on the length of rope (𝐿) that connects the pivot and 

seat together. We term this frequency as the system’s natural or resonant frequency (𝜔𝜃). 

Particularly, for the swing system, 𝜔𝜃 is given by 

 

𝜔𝜃 = √
𝑔

𝐿
 (2.1) 

 

where 𝑔 is the acceleration due to gravity (about 9.8 𝑚/𝑠2 near the surface of earth). 

 

Now, instead of ping, we consider the case where the swing is periodically pushed. If the 

frequency of input drive (𝜔𝐷) equals 𝜔𝜃 , the swing will oscillate at higher and higher 

amplitudes. However, when 𝜔𝐷 gets farther from 𝜔𝜃, the swing oscillations turn feeble. This 

happens because the energy absorbed by the swing is maximal for the swing’s natural 

oscillations. 
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2.1.2. Theoretical Description 

 

 

 

Figure 2.3: A: Hooke’s Law. The extension of spring 𝑘 is directly proportional to the net force 

𝐹 acting on the spring itself; B: Newton’s Second Law. The acceleration of mass 𝑚 is directly 

proportional to the net force acting on the mass itself.  

 

 

 

Figure 2.4: Force Applied on a Mass-Spring System. If force 𝐹 is applied on the system 

consisting of mass 𝑚 and spring 𝑘, then the net time-varying displacement (𝑥) of system can 

be computed based on both Hooke’s and Newton’s laws. 

 

The previous section has thus shown the features of LR. However, to quantitatively 

understand this mechanism, the equations of motion should be developed for the physical 

system undergoing resonance (for e.g. a swing). To this end, we begin with the fundamental 
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Hooke’s law 𝐹𝐻𝑜𝑜𝑘𝑒 = 𝑘𝑥  (Figure 2.3A) and Newton’s second law 𝐹𝑁𝑒𝑤𝑡𝑜𝑛 = 𝑚
𝜕2𝑥

𝜕𝑡2  (Figure 

2.3B).  

 

 

 

Figure 2.5: Analogy of Mass-Spring System. Any physical system can be represented by a 

coupled mass 𝑚 – spring 𝑘 framework. However, the virtual values of 𝑚 and 𝑘 are calculated 

based on the specific properties of physical system under consideration.  

 

We can represent any physical system by a coupled mass 𝑚 – spring 𝑘 arrangement (Figure 

2.5). The applied force 𝐹 on such a system manifests as Hooke’s force 𝑘𝑥 and Newton’s force 

𝑚
𝜕2𝑥

𝜕𝑡2  (Figure 2.4) i.e. 

 

𝐹 = 𝑘𝑥 + 𝑚
𝜕2𝑥

𝜕𝑡2
 (2.2) 

 

Here, 𝑥  is the time-varying displacement of mass-spring system. Now, to explore the 

phenomenon of LR, we consider an oscillatory force 𝐹 = 𝐹𝐷 cos(𝜔𝐷𝑡) i.e. 

 

𝐹𝐷 cos(𝜔𝐷𝑡)  = 𝑘𝑥 + 𝑚
𝜕2𝑥

𝜕𝑡2
 (2.3) 
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This oscillatory force is analogous to the periodic push on the swing (or a pendulum) (Section 

2.1.1.1.). After time integration of equation 2.3, we now have  

 

∫ ∫ 𝐹𝐷 cos(𝜔𝐷𝑡)  𝑑𝑡
𝑡

0
𝑑𝑡

𝑡

0
 = ∫ ∫ 𝑘𝑥 𝑑𝑡 𝑑𝑡

𝑡

0

𝑡

0
 + ∫ ∫ 𝑚

𝜕2𝑥

𝜕𝑡2  𝑑𝑡 𝑑𝑡
𝑡

0

𝑡

0
  

[−
𝐹𝐷 cos(𝜔𝐷𝑡)

𝜔𝐷
2 = 𝑘 ∫ ∫ 𝑥 𝑑𝑡 𝑑𝑡

𝑡

0

𝑡

0

+ 𝑚𝑥] 

(2.4) 

 

The displacement 𝑥, in response to 𝐹𝐷 cos(𝜔𝐷𝑡), will also oscillate at the same frequency 𝜔𝐷. 

Hence, we have 

 

[−
𝐹𝐷 cos(𝜔𝐷𝑡)

𝜔𝐷
2 = 𝑘 ∫ ∫ 𝑥 𝑑𝑡 𝑑𝑡

𝑡

0

𝑡

0

+ 𝑚𝑥] ; 𝑥 = 𝐴 cos(𝜔𝐷𝑡) 

[−
𝐹𝐷 cos(𝜔𝐷𝑡)

𝜔𝐷
2 = −

𝐴𝑘 cos(𝜔𝐷𝑡)

𝜔𝐷
2 + 𝐴𝑚 cos(𝜔𝐷𝑡)] 

(2.5) 

 

By rearrangement of terms, the solution for 𝑥 can be obtained as  

 

𝑥 =
𝐹𝐷

𝑘 − 𝑚𝜔𝐷
2 cos(𝜔𝐷𝑡) =

𝐹𝐷

𝑚 (
𝑘
𝑚 − 𝜔𝐷

2 )
cos(𝜔𝐷𝑡) (2.6) 

 

Now, we investigate the relationship between 𝜔𝐷 and amplitude of oscillations 𝑥𝐴 =
𝐹𝐷

𝑚(
𝑘

𝑚
−𝜔𝐷

2 )
. 

As 𝜔𝐷 gets closer to √
𝑘

𝑚
, 𝑥𝐴 tends to infinity.  

 

In reality, even at resonance, the infinite oscillation amplitudes do not exist (Figures 2.1B and 

2.6B). Hence, the equation 2.2 that is merely constructed by the basic Hooke’s law and 

Newton’s second law does not fully describe the experiments (Figure 2.6).  

 

To account for this experimental variation, a correction term 𝛾
𝜕𝑥

𝜕𝑡
 is then introduced into the 

original formulation (Equation 2.2) as, 

 

𝐹 = 𝑘𝑥 + 𝑚
𝜕2𝑥

𝜕𝑡2
+ 𝛾

𝜕𝑥

𝜕𝑡
 (2.7) 
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Figure 2.6: Disagreement between Theory and Experiment. A and B: The theoretical and 

experimental responses respectively. 

 

Here again, 𝐹 = 𝐹𝐷 cos(𝜔𝐷𝑡) is applied and 𝑥 is assumed to take the form 𝐴𝑒𝑗𝜔𝐷𝑡. 𝐹𝐷 cos(𝜔𝐷𝑡) 

can also be written as 
𝐹𝐷𝑒𝑗𝜔𝐷𝑡

2
+

𝐹𝐷𝑒−𝑗𝜔𝐷𝑡

2
. Hence, 𝐹 = 𝑘𝑥 + 𝑚

𝜕2𝑥

𝜕𝑡2 + 𝛾
𝜕𝑥

𝜕𝑡
 becomes 

𝐹𝐷𝑒𝑗𝜔𝐷𝑡

2
+

𝐹𝐷𝑒−𝑗𝜔𝐷𝑡

2
= 𝑘𝐴𝑒𝑗𝜔𝐷𝑡 − 𝑚𝜔𝐷

2 𝐴𝑒𝑗𝜔𝐷𝑡 + 𝑗𝛾𝜔𝐷𝐴𝑒𝑗𝜔𝐷𝑡.  

 

By rearrangement, the solution for 𝑥 can be obtained as 

 

𝑥 = 𝐴𝑒𝑗𝜔𝐷𝑡 =
𝐹𝐷

𝑘 − 𝑚𝜔𝐷
2 + 𝑗𝛾𝜔𝐷

𝑒𝑗𝜔𝐷𝑡 + 𝑒−𝑗𝜔𝐷𝑡

2
 

𝑥 =
𝐹𝐷

𝑘 − 𝑚𝜔𝐷
2 + 𝑗𝛾𝜔𝐷

cos(𝜔𝐷𝑡) 

(2.8) 

 

Hence, 𝑥𝐴 =
𝐹𝐷

√(𝑘−𝑚𝜔𝐷
2 )

2
+𝛾2𝜔𝐷

2

.  

 

Figure 2.7 depicts frequency responses at varying levels of damping 
𝛾

𝑚
. As it can now be seen 

from Figure 2.8, the revised formalism 𝐹 = 𝑘𝑥 + 𝑚
𝜕2𝑥

𝜕𝑡2 + 𝛾
𝜕𝑥

𝜕𝑡
 captures the experimental 

observations of LR (Figure 2.8A). 
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Figure 2.7: Damped Frequency Responses.  

 

 

 

Figure 2.8: Agreement between Theory and Experiment. A and B: The theoretical and 

experimental responses associated with linear resonance respectively. 

 

Let us now understand the physical meaning of 𝐹 = 𝑘𝑥 + 𝑚
𝜕2𝑥

𝜕𝑡2 + 𝛾
𝜕𝑥

𝜕𝑡
. The driving force 𝐹 gets 

manifested not only as spring and inertial forces but also as lossy damping force. Similar to the 

linear dependence with displacement 𝑥 in the Hooke’s law and the linear dependence with 

acceleration 
𝜕2𝑥

𝜕𝑡2 in the Newton’s second law, the linear dependence with velocity 
𝜕𝑥

𝜕𝑡
 is typical 

of damping force.  

 

The equation 𝐹 = 𝑘𝑥 + 𝑚
𝜕2𝑥

𝜕𝑡2 + 𝛾
𝜕𝑥

𝜕𝑡
, with 𝐹 = 𝐹𝐷 cos(𝜔𝐷𝑡), describes resonance of a physical 

system abstracted by a coupled mass 𝑚 - spring 𝑘 model. This resonance equation can also be 

re-arranged as 
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𝐹𝐷 cos(𝜔𝐷𝑡) = 𝑘𝑥 + 𝑚
𝜕2𝑥

𝜕𝑡2
+ 𝛾

𝜕𝑥

𝜕𝑡
 

𝐹𝐷

𝑚
cos(𝜔𝐷𝑡) =

𝑘

𝑚
𝑥 +

𝜕2𝑥

𝜕𝑡2
+

𝛾

𝑚

𝜕𝑥

𝜕𝑡
 

𝑃𝐷 cos(𝜔𝐷𝑡) =
𝜕2𝑥

𝜕𝑡2
+ 2휁𝜃

𝜕𝑥

𝜕𝑡
+ 𝜔𝜃

2𝑥 

(2.9) 

 

where 𝜔𝜃 (= √
𝑘

𝑚
)  and 휁𝜃 (=

𝛾

2𝑚
)  are the resonant frequency and damping ratios of the 

physical system; 𝑃𝐷 and 𝜔𝐷 are the drive level and frequency.  

 

Hence, the mathematical description 
𝜕2𝑥

𝜕𝑡2 + 2휁𝜃
𝜕𝑥

𝜕𝑡
+ 𝜔𝜃

2𝑥 = 𝑃𝐷 cos(𝜔𝐷𝑡)  models LR of a 

resonant system with damping ratio 휁𝜃 and natural frequency 𝜔𝜃. Such resonators assume 

specific forms viz. mechanical or acoustic resonator [16-18], electrical resonator [19], optical 

resonator [20-22], orbital resonator [23] and atomic, particle, and molecular resonators [24-

25].  

 

2.2. Duffing Phenomenon 

 

 

 

Figure 2.9: Duffing Phenomenon. The frequency responses get skewed at large drive levels 

of 𝑃𝐷 . Reprinted figure with permission from [C. Stambaugh and H. B. Chan, Physical Review 

B, vol. 73, p. 172302, 2006.] Copyright (2006) by the American Physical Society. 
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While the formulation 
𝜕2𝑥

𝜕𝑡2 + 2휁𝜃
𝜕𝑥

𝜕𝑡
+ 𝜔𝜃

2𝑥 = 𝑃𝐷 cos[(𝜔𝐷 ≅ 𝜔𝜃)𝑡]  presents an excellent 

description for resonance at low values of 𝑃𝐷, the deviations from the standard resonant 

response are typically observed at larger 𝑃𝐷. The starting point to describe deviation from 

linear theory is often the Duffing phenomenon (DP) [26] which is presented in more detail 

below.  

 

The mere original formulation 
𝜕2𝑥

𝜕𝑡2 + 2휁𝜃
𝜕𝑥

𝜕𝑡
+ 𝜔𝜃

2𝑥 = 𝑃𝐷 cos[(𝜔𝐷 ≅ 𝜔𝜃)𝑡]  however cannot 

explain this mechanism. To this end, an additional correction term: 𝛽𝑥3 is thus included to 

describe the first higher order nonlinear term in a system describing symmetrical nonlinear 

response about the rest position. This term is proportional to the cube of displacement 𝑥. 

While the term 𝛽𝑥3 is added to specifically address DP, the inclusion of terms with different 

powers of displacements i.e. 𝑥2, 𝑥4, 𝑥5, … may possibly address other variants of resonant 

response [27].  

 

Now, we can solve the corrected formalism 

 

𝜕2𝑥

𝜕𝑡2
+ 2휁𝜃

𝜕𝑥

𝜕𝑡
+ 𝜔𝜃

2𝑥 + 𝛽𝑥3 = 𝑃𝐷 cos[(𝜔𝐷 ≅ 𝜔𝜃)𝑡] (2.10) 

 

Let us first assume that 𝑥 takes the form 
1

2
(𝐴𝑒𝑗𝜔𝐷𝑡 + 𝐴∗𝑒−𝑗𝜔𝐷𝑡) where 𝐴 is a complex number 

and 𝐴∗ is its conjugate. By mathematical identity, cos(𝜔𝐷𝑡) can be written as 
𝑒𝑗𝜔𝐷𝑡

2
+

𝑒−𝑗𝜔𝐷𝑡

2
. 

After substituting 𝑥 and cos(𝜔𝐷𝑡) by the respective analogues, we have 

 

−
𝜔𝐷

2 𝐴

2
𝑒𝑗𝜔𝐷𝑡 −

𝜔𝐷
2 𝐴∗

2
𝑒−𝑗𝜔𝐷𝑡 + 𝑗휁𝜃𝐴𝜔𝐷𝑒𝑗𝜔𝐷𝑡 − 𝑗휁𝜃𝐴∗𝜔𝐷𝑒−𝑗𝜔𝐷𝑡 +

𝜔𝜃
2𝐴

2
𝑒𝑗𝜔𝐷𝑡

+
𝜔𝜃

2𝐴

2
𝑒−𝑗𝜔𝐷𝑡

+
𝛽

8
[𝐴3𝑒3𝑗𝜔𝐷𝑡 + 𝐴∗3𝑒−3𝑗𝜔𝐷𝑡 + 3|𝐴|2𝐴𝑒𝑗𝜔𝐷𝑡 + 3|𝐴|2𝐴∗𝑒−𝑗𝜔𝐷𝑡]

=
𝑃𝐷𝑒𝑗𝜔𝐷𝑡

2
+

𝑃𝐷𝑒−𝑗𝜔𝐷𝑡

2
 

(2.11) 

 

In this lengthy expression 2.11, we can drop-off terms of order 𝑒±3𝑗𝜔𝐷𝑡 assuming that the 

primary term of interest is fundamental. Now, by comparing the terms of order 𝑒±𝑗𝜔𝐷𝑡, we get  
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𝐴 =
𝑃𝐷

𝜔𝜃
2 − 𝜔𝐷

2 +
3𝛽
4

|𝐴|2 + 2𝑗휁𝜃𝜔𝐷

 (2.12) 

 

Hence, 𝑥 is given by 

 

𝑥 = 𝐴 cos(𝜔𝐷𝑡) =
𝑃𝐷

𝜔𝜃
2 − 𝜔𝐷

2 +
3𝛽
4

|𝐴|2 + 2𝑗휁𝜃𝜔𝐷

cos(𝜔𝐷𝑡) (2.13) 

 

Now, by solving the following equation 2.14, we can thus obtain the solutions for the 

displacement amplitude 𝑥𝐴. 

 

𝑥𝐴 = |𝐴| =
𝑃𝐷

√(𝜔𝜃
2 − 𝜔𝐷

2 +
3𝛽
4

|𝐴|2)
2

+ 4휁𝜃
2𝜔𝐷

2

⇒ {[
9

16
𝛽2] 𝑥𝐴

6 + [
3

2
𝛽(𝜔𝜃

2 − 𝜔𝐷
2 )] 𝑥𝐴

4 + [(𝜔𝜃
2 − 𝜔𝐷

2 )
2

+ 4휁𝜃
2𝜔𝐷

2 ] 𝑥𝐴
2  − 𝑃𝐷

2

= 0} 

(2.14) 

 

As it can now be seen from Figure 2.10, the revised formalism 
𝜕2𝑥

𝜕𝑡2 + 2휁𝜃
𝜕𝑥

𝜕𝑡
+ 𝜔𝜃

2𝑥 + 𝛽𝑥3 =

𝑃𝐷 cos(𝜔𝐷𝑡) can thus capture the experimental observations of DP (Figure 2.9). 

 

 

 

Figure 2.10: Duffing Phenomenon. The frequency responses for 𝜔𝜃 = 1; 휁𝜃 = 0.05; 𝑃𝐷 = 1 

and varying levels of 𝛽. 
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Let us now turn to the physical meaning of 
𝜕2𝑥

𝜕𝑡2 + 2휁𝜃
𝜕𝑥

𝜕𝑡
+ 𝜔𝜃

2𝑥 + 𝛽𝑥3 = 𝑃𝐷 cos(𝜔𝐷𝑡). While 

the fundamental Hooke’s or spring force has a linear dependence with displacement 𝑥, the 

term 𝛽𝑥3 describes nonlinear spring action. Fundamentally, this term corrects the Hooke’s 

law which ultimately leads to an interesting variation of resonant response inherent to DP.  

 

2.3. Parametric Resonance 

 

In Section 2.1, we had discussed the nominal case of LR. While such a phenomenon of LR can 

only be seen at low enough drive levels 𝑃𝐷, there is however an onset of DP at large 

magnitudes of 𝑃𝐷 (Figure 2.9). Section 2.2 had presented a mathematical framework to explain 

DP (Figure 2.10). While DP represents one possible nonlinear pathway, different operative 

pathways may also evidence at large enough values of 𝑃𝐷. One such case is parametric 

resonance (PR) (Figure 2.11) [28]. Here, when 𝑃𝐷 goes above a threshold value, a secondary 

mode 𝑦 also gets excited in addition to the nominal driven mode 𝑥. 

 

To understand this observation, we first consider two independent resonant modes 𝑥 and 𝑦. 

The equations of motion corresponding to each mode can then be written as 

 

𝜕2𝑥

𝜕𝑡2
+ 2휁𝑥

𝜕𝑥

𝜕𝑡
+ 𝜔𝑥

2𝑥 = 𝑃𝐷 cos(𝜔𝐷𝑡) (2.15) 

𝜕2𝑦

𝜕𝑡2
+ 2휁𝑦

𝜕𝑦

𝜕𝑡
+ 𝜔𝑦

2𝑦 = 𝑃𝐷 cos(𝜔𝐷𝑡) (2.16) 

 

Based on the analysis presented in Section 2.1, we know that the modes 𝑥 and 𝑦 are excited at 

amplitudes 
𝑃𝐷

√(𝜔𝑥
2−𝜔𝐷

2 )
2

+4𝜁𝑥
2𝜔𝐷

2

 and 
𝑃𝐷

√(𝜔𝑦
2 −𝜔𝐷

2 )
2

+4𝜁𝑦
2𝜔𝐷

2
 respectively. However, if the drive 

frequency (𝜔𝐷 ≅ 𝜔𝑥) ≫ 𝜔𝑦, then the amplitude of mode 𝑦 is negligibly small. Hence, only the 

mode 𝑥  is significantly excited. Therefore, the coupled equations 2.15 and 2.16 can be 

approximated as, 

 

𝜕2𝑥

𝜕𝑡2
+ 2휁𝑥

𝜕𝑥

𝜕𝑡
+ 𝜔𝑥

2𝑥 = 𝑃𝐷 cos(𝜔𝐷𝑡) (2.17) 

𝜕2𝑦

𝜕𝑡2
+ 2휁𝑦

𝜕𝑦

𝜕𝑡
+ 𝜔𝑦

2𝑦 = 0 (2.18) 
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Figure 2.11: Parametric Resonance. A: An electrical signal 𝑆𝑖𝑛(𝜔𝐷)  is injected into a 

micromechanical resonator; B: The corresponding output response of resonator; C: The 

displacement amplitude at 
𝜔𝐷

2
 as a function of drive power level. When the drive power level is 

increased above a threshold value 𝑇ℎ, the displacement amplitude is increased from ‘0’ to a 

large value of approximately 30 nm. 

 

Now, when 𝑥  is large-enough and the condition (𝜔𝐷 ≅ 𝜔𝑥) ≈ 2𝜔𝑦  is also satisfied, the 

experimental results have however indicated (including Figure 2.11) that a mode 𝑦 gets excited 

as well. This excitation of a different mode 𝑦 (which is not directly driven) through the driven 

mode 𝑥 is referred to as PR. 

 

However, the equations 2.17 and 2.18 in the present form cannot directly explain the peculiar 

observations of PR (Figure 2.11). To now formulate the dynamics for this, the nonlinear terms 
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𝛼𝑦𝑦𝑦2 and 𝛼𝑦𝑥𝑦𝑥 are added in the equations 2.17 and 2.18 respectively so that the modes 𝑥 and 

𝑦 are nonlinearly coupled. Henceforth, we have 

 

𝜕2𝑥

𝜕𝑡2
+ 2휁𝑥

𝜕𝑥

𝜕𝑡
+ 𝜔𝑥

2𝑥 + 𝛼𝑦𝑦𝑦2 = 𝑃𝐷 cos(𝜔𝐷𝑡) (2.19) 

𝜕2𝑦

𝜕𝑡2
+ 2휁𝑦

𝜕𝑦

𝜕𝑡
+ 𝜔𝑦

2𝑦 + 𝛼𝑦𝑥𝑦𝑥 = 0 (2.20) 

 

The solution of first differential equation 2.19 is assumed to yield displacement 𝑥 in the form 

𝐴(𝑡) cos(𝜔𝐷𝑡). Now, we substitute this expression of 𝑥 in the second differential equation 2.20. 

Henceforth, we have 

 

𝜕2𝑦

𝜕𝑡2
+ 2휁𝑦

𝜕𝑦

𝜕𝑡
+ 𝜔𝑦

2𝑦 + 𝛼𝑦𝑥𝑦𝐴(𝑡)cos(𝜔𝐷𝑡) = 0 (2.21) 

 

Motivated by the observations presented in Figure 2.11, we set 𝜔𝐷 = 2𝜔𝑦 + 𝜖 (Here, 𝜖 is the 

detuning for the parametric resonance of mode 𝑦). Now, we search for the displacement 𝑦 in 

the form 

 

𝑦 = 𝑝 cos [(𝜔𝑦 +
𝜖

2
) 𝑡] + 𝑞 sin [(𝜔𝑦 +

𝜖

2
) 𝑡] (2.22) 

 

The time derivatives �̇� =
𝜕𝑦

𝜕𝑡
 and �̈� =

𝜕2𝑦

𝜕𝑡2 will then be 

 

�̇� = �̇� cos [(𝜔𝑦 +
𝜖

2
) 𝑡] + �̇� sin [(𝜔𝑦 +

𝜖

2
) 𝑡] − 𝑝 (𝜔𝑦 +

𝜖

2
) sin [(𝜔𝑦 +

𝜖

2
) 𝑡]

+ 𝑞 (𝜔𝑦 +
𝜖

2
) cos [(𝜔𝑦 +

𝜖

2
) 𝑡] 

(2.23) 

�̈� = �̈� cos [(𝜔𝑦 +
𝜖

2
) 𝑡] + �̈� sin [(𝜔𝑦 +

𝜖

2
) 𝑡] − 2�̇� (𝜔𝑦 +

𝜖

2
) sin [(𝜔𝑦 +

𝜖

2
) 𝑡]

+ 2�̇� (𝜔𝑦 +
𝜖

2
) cos [(𝜔𝑦 +

𝜖

2
) 𝑡] − 𝑝 (𝜔𝑦 +

𝜖

2
)

2

cos [(𝜔𝑦 +
𝜖

2
) 𝑡]

− 𝑞 (𝜔𝑦 +
𝜖

2
)

2

sin [(𝜔𝑦 +
𝜖

2
) 𝑡] 

(2.24) 

 

We can further assume that the functions 𝑝 and 𝑞 are slow-varying. Hence, �̈� and �̈� can be set 

to zero. 
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�̇� = �̇� cos [(𝜔𝑦 +
𝜖

2
) 𝑡] + �̇� sin [(𝜔𝑦 +

𝜖

2
) 𝑡] − 𝑝 (𝜔𝑦 +

𝜖

2
) sin [(𝜔𝑦 +

𝜖

2
) 𝑡]

+ 𝑞 (𝜔𝑦 +
𝜖

2
) cos [(𝜔𝑦 +

𝜖

2
) 𝑡] 

(2.25) 

�̈� ≅ −2�̇� (𝜔𝑦 +
𝜖

2
) sin [(𝜔𝑦 +

𝜖

2
) 𝑡] + 2�̇� (𝜔𝑦 +

𝜖

2
) cos [(𝜔𝑦 +

𝜖

2
) 𝑡]

− 𝑝 (𝜔𝑦 +
𝜖

2
)

2

cos [(𝜔𝑦 +
𝜖

2
) 𝑡] − 𝑞 (𝜔𝑦 +

𝜖

2
)

2

sin [(𝜔𝑦 +
𝜖

2
) 𝑡] 

(2.26) 

 

Also, for small 𝜖, (𝜔𝑦 +
𝜖

2
)

2
≅ 𝜔𝑦

2 + 𝜔𝑦𝜖 and 𝜔𝑦 +
𝜖

2
≅ 𝜔𝑦. Hence, we get  

 

�̇� = �̇� cos [(𝜔𝑦 +
𝜖

2
) 𝑡] + �̇� sin [(𝜔𝑦 +

𝜖

2
) 𝑡] − 𝑝𝜔𝑦 sin [(𝜔𝑦 +

𝜖

2
) 𝑡]

+ 𝑞𝜔𝑦 cos [(𝜔𝑦 +
𝜖

2
) 𝑡] 

(2.27) 

�̈� ≅ −𝜔𝑦
2𝑦 − 𝜔𝑦𝜖𝑦 − 2�̇�𝜔𝑦 sin [(𝜔𝑦 +

𝜖

2
) 𝑡] + 2�̇�𝜔𝑦 cos [(𝜔𝑦 +

𝜖

2
) 𝑡] (2.28) 

 

Let us now turn to the equation 2.21. 

 

[�̈� + 2휁𝑦�̇� + 𝜔𝑦
2𝑦 + 𝛼𝑦𝑥𝑦𝐴(𝑡)cos(𝜔𝐷𝑡) = 0] 

⇒ [�̈� + 2휁𝑦�̇� + 𝜔𝑦
2𝑦 + (𝛼𝑦𝑥𝐴) 𝑦 cos[(2𝜔𝑦 + 𝜖)𝑡] = 0] 

(2.29) 

 

Also, the term (𝛼𝑦𝑥𝐴) 𝑦 cos[(2𝜔𝑦 + 𝜖)𝑡] can be re-arranged as  

 

(𝛼𝑦𝑥𝐴) 𝑦 cos[(2𝜔𝑦 + 𝜖)𝑡] 

⇒ {(𝛼𝑦𝑥𝐴) [𝑝 cos [(𝜔𝑦 +
𝜖

2
) 𝑡] + 𝑞 sin [(𝜔𝑦 +

𝜖

2
) 𝑡]]  cos[(2𝜔𝑦 + 𝜖)𝑡]} 

⇒ {(𝛼𝑦𝑥𝐴) [𝑝 [
1

2
cos [(𝜔𝑦 +

𝜖

2
) 𝑡] +

1

2
cos [3 (𝜔𝑦 +

𝜖

2
) 𝑡]]

+ 𝑞 [−
1

2
sin [(𝜔𝑦 +

𝜖

2
) 𝑡] +

1

2
sin [3 (𝜔𝑦 +

𝜖

2
) 𝑡]]]} 

(2.30) 

 

Here, we can drop-off terms with functions cos [3 (𝜔𝑦 +
𝜖

2
) 𝑡] and sin [3 (𝜔𝑦 +

𝜖

2
) 𝑡] as these 

will be damped out. Hence, 

 

(𝛼𝑦𝑥𝐴) 𝑦 cos[(2𝜔𝑦 + 𝜖)𝑡] ≅ [(𝛼𝑦𝑥𝐴) [
𝑝

2
cos [(𝜔𝑦 +

𝜖

2
) 𝑡] −

𝑞

2
sin [(𝜔𝑦 +

𝜖

2
) 𝑡]]] (2.31) 

 



21 
 

Now, we substitute the expressions of �̈� (Equation 2.28), �̇� (Equation 2.27), 𝑦 (Equation 2.22) 

and (𝛼𝑦𝑥𝐴) 𝑦 cos[(2𝜔𝑦 + 𝜖)𝑡] (Equation 2.31) in equation 2.22. Hence, we get 

 

[�̈� + 2휁𝑦�̇� + 𝜔𝑦
2𝑦 + (𝛼𝑦𝑥𝐴) 𝑦 cos[(2𝜔𝑦 + 𝜖)𝑡] = 0] ⇒ 

{−𝜔𝑦𝜖 [𝑝 cos [(𝜔𝑦 +
𝜖

2
) 𝑡] + 𝑞 sin [(𝜔𝑦 +

𝜖

2
) 𝑡]] − 2�̇�𝜔𝑦 sin [(𝜔𝑦 +

𝜖

2
) 𝑡]

+ 2�̇�𝜔𝑦 cos [(𝜔𝑦 +
𝜖

2
) 𝑡] + 2휁𝑦�̇� cos [(𝜔𝑦 +

𝜖

2
) 𝑡] + 2휁𝑦�̇� sin [(𝜔𝑦 +

𝜖

2
) 𝑡]

− 2휁𝑦𝑝𝜔𝑦 sin [(𝜔𝑦 +
𝜖

2
) 𝑡] + 2휁𝑦𝑞𝜔𝑦 cos [(𝜔𝑦 +

𝜖

2
) 𝑡]

+ (𝛼𝑦𝑥𝐴) [
𝑝

2
cos [(𝜔𝑦 +

𝜖

2
) 𝑡] −

𝑞

2
sin [(𝜔𝑦 +

𝜖

2
) 𝑡]] = 0} 

(2.32) 

 

Now, we group all of the cos and sin functions together. 

 

[−𝜔𝑦𝜖𝑝 + 2�̇�𝜔𝑦 + 2휁𝑦�̇� + 2휁𝑦𝑞𝜔𝑦 +
𝛼𝑦𝑥𝐴

2
𝑝 ] cos [(𝜔𝑦 +

𝜖

2
) 𝑡]

+ [−𝜔𝑦𝜖𝑞 − 2�̇�𝜔𝑦 + 2휁𝑦�̇� − 2휁𝑦𝑝𝜔𝑦 −
𝛼𝑦𝑥𝐴

2
𝑞] sin [(𝜔𝑦 +

𝜖

2
) 𝑡] = 0 

(2.33) 

 

Now, the equation 2.33 is only fulfilled if the coefficients of cos and sin functions are zero. 

Hence, 

 

−𝜔𝑦𝜖𝑝 + 2𝜔𝑦�̇� + 2휁𝑦�̇� + 2휁𝑦𝜔𝑦𝑞 +
𝛼𝑦𝑥𝐴

2
𝑝 = 0 (2.34) 

−𝜔𝑦𝜖𝑞 − 2𝜔𝑦�̇� + 2휁𝑦�̇� − 2휁𝑦𝜔𝑦𝑝 −
𝛼𝑦𝑥𝐴

2
𝑞 = 0 (2.35) 

 

We now search for the solution of this system of equations in the form 

 

𝑝 = 𝑝0𝑒𝜇𝑡; 𝑞 = 𝑞0𝑒𝜇𝑡 (2.36) 

 

After substituting these into the equations 2.34 and 2.35, we get 

 

−𝜔𝑦𝜖𝑝0 + 2𝜔𝑦𝜇𝑞0 + 2휁𝑦𝜇𝑝0 + 2휁𝑦𝜔𝑦𝑞0 +
𝛼𝑦𝑥𝐴

2
𝑝0 = 0 (2.37) 

−𝜔𝑦𝜖𝑞0 − 2𝜔𝑦𝜇𝑝0 + 2휁𝑦𝜇𝑞0 − 2휁𝑦𝜔𝑦𝑝0 −
𝛼𝑦𝑥𝐴

2
𝑞0 = 0 (2.38) 
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Let us now group the terms as 

 

[2𝜔𝑦𝜇 + 2휁𝑦𝜔𝑦]𝑞0 + [
𝛼𝑦𝑥𝐴

2
− 𝜔𝑦𝜖 + 2휁𝑦𝜇] 𝑝0 = 0 (2.39) 

[
𝛼𝑦𝑥𝐴

2
+ 𝜔𝑦𝜖 − 2휁𝑦𝜇] 𝑞0 + [2𝜔𝑦𝜇 + 2휁𝑦𝜔𝑦]𝑝0 = 0 (2.40) 

 

Now, we can solve these simultaneous equations as 

 

|
2𝜔𝑦𝜇 + 2휁𝑦𝜔𝑦

𝛼𝑦𝑥𝐴

2
− 𝜔𝑦𝜖 + 2휁𝑦𝜇

𝛼𝑦𝑥𝐴

2
+ 𝜔𝑦𝜖 − 2휁𝑦𝜇 2𝜔𝑦𝜇 + 2휁𝑦𝜔𝑦

| = 0 

⇒ [(2𝜔𝑦𝜇 + 2휁𝑦𝜔𝑦)
2

− (
𝛼𝑦𝑥𝐴

2
− (𝜔𝑦𝜖 − 2휁𝑦𝜇)) (

𝛼𝑦𝑥𝐴

2
+ (𝜔𝑦𝜖 − 2휁𝑦𝜇)) = 0] 

⇒ [(2𝜔𝑦𝜇 + 2휁𝑦𝜔𝑦)
2

− ((
𝛼𝑦𝑥𝐴

2
)

2

− (𝜔𝑦𝜖 − 2휁𝑦𝜇)
2

 ) = 0] 

⇒ [(4𝜔𝑦
2𝜇2 + 4휁𝑦

2𝜔𝑦
2 + 8𝜔𝑦

2휁𝑦𝜇) − (
𝛼𝑦𝑥

2 𝐴2

4
− (𝜔𝑦

2𝜖2 + 4휁𝑦
2𝜇2 − 4𝜔𝑦𝜖휁𝑦𝜇)) = 0] 

⇒ [(4𝜔𝑦
2 + 4휁𝑦

2)𝜇2 + (8𝜔𝑦
2휁𝑦 − 4𝜔𝑦𝜖휁𝑦)𝜇 + (4휁𝑦

2𝜔𝑦
2 + 𝜔𝑦

2𝜖2 −
𝛼𝑦𝑥

2 𝐴2

4
) = 0] 

(2.41) 

 

Now, after solving the quadratic on 𝜇, we get 

 

𝜇 =

−(2𝜔𝑦
2휁𝑦 − 𝜔𝑦𝜖휁𝑦) ± √(2𝜔𝑦

2휁𝑦 − 𝜔𝑦𝜖휁𝑦)
2

− (𝜔𝑦
2 + 휁𝑦

2) (4휁𝑦
2𝜔𝑦

2 + 𝜔𝑦
2𝜖2 −

𝛼𝑦𝑥
2 𝐴2

4 )

2𝜔𝑦
2 + 2휁𝑦

2  
(2.42) 

 

Here, for small damping and 𝜖, 𝜔𝑦
2 ≫ 휁𝑦

2, 2휁𝑦 ≫ 𝜖휁𝑦. Hence, 

 

𝜇 =

−2𝜔𝑦
2휁𝑦 ± √(2𝜔𝑦

2휁𝑦)
2

− (4휁𝑦
2𝜔𝑦

4 + 𝜔𝑦
4𝜖2 −

𝜔𝑦
2𝛼𝑦𝑥

2 𝐴2

4 )

2𝜔𝑦
2  

𝜇 =

−2𝜔𝑦
2휁𝑦 ± √− (𝜔𝑦

4𝜖2 −
𝜔𝑦

2𝛼𝑦𝑥
2 𝐴2

4 )

2𝜔𝑦
2  

(2.43) 
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𝜇 = −휁𝑦 ±
1

2
√

𝛼𝑦𝑥
2 𝐴2

4𝜔𝑦
2 − 𝜖2 

 

Thus, 𝑦 can be computed as 

 

𝑦 = 𝑝0𝑒
(−𝜁𝑦±

1
2

√
𝛼𝑦𝑥

2 𝐴2

4𝜔𝑦
2 −𝜖2)𝑡

cos [(𝜔𝑦 +
𝜖

2
) 𝑡] + 𝑞0𝑒

(−𝜁𝑦±
1
2

√
𝛼𝑦𝑥

2 𝐴2

4𝜔𝑦
2 −𝜖2)𝑡

sin [(𝜔𝑦 +
𝜖

2
) 𝑡] 

𝑦 = 𝑝0𝑒

(−𝜁𝑦±
1
2

√
𝛼𝑦𝑥

2 𝐴2

4𝜔𝑦
2 −𝜖2)𝑡

cos (
𝜔𝐷

2
𝑡) + 𝑞0𝑒

(−𝜁𝑦±
1
2

√
𝛼𝑦𝑥

2 𝐴2

4𝜔𝑦
2 −𝜖2)𝑡

sin (
𝜔𝐷

2
𝑡) 

(2.44) 

 

For the displacement 𝑦 to build up, the exponential growth factor 𝜇 can only be positive. In 

other words, only the positive real values of 𝜇 results in the excitation of mode 𝑦. Hence, the 

condition for PR can be extracted as 

 

[𝜇 = −휁𝑦 ±
1

2
√

𝛼𝑦𝑥
2 𝐴2

4𝜔𝑦
2 − 𝜖2] > 0 

(𝑥𝐴 = |𝐴|) >
2𝜔𝑦

𝛼𝑦𝑥
|√4휁𝑦

2 + 𝜖2| 

(2.45) 

 

This expression thus defines the threshold for PR. Such a threshold effect corresponding to PR 

was also captured in Figure 2.11C. The PR of mode 𝑦 with frequency 𝜔𝑦 ≅
𝜔𝐷

2
 occurs only if 𝑥𝐴 

of mode 𝑥 with frequency 𝜔𝑥 ≅ 𝜔𝐷 is set above a characteristic value which is determined by 

𝜖, 휁𝑦 and 𝛼𝑦𝑥. Particularly, for smaller PR thresholds, the detuning levels 𝜖 and damping ratio 

휁𝑦 should be kept smaller and the modal coupling coefficients 𝛼𝑦𝑥 should be larger. 

 

2.4. Summary 

 

This chapter has hence presented three characteristic resonant phenomena viz. LR, DP and 

PR.  
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Chapter 3 

 

Fermi-Pasta-Ulam Chains and Phononic Frequency 

Combs 

 

In Chapter 2, we had discussed multiple interesting resonant phenomena including LR, DP 

and PR. While these discussions present an understanding of their independent implications, 

a collective viewpoint connecting these discrete cases was however absent in Chapter 2. And, 

such broad vision of resonance phenomena is equally important to establish wide 

experimental analogies. To this end, in this chapter, we introduce the Fermi-Pasta-Ulam 

(FPU) problem [29] to start with. We then present the existence of previously considered 

mechanisms viz. LR, DP and PR. In this manner, we establish the relevance of FPU to even the 

traditional cases of resonance. Following this discussion, utilizing the very same FPU 

framework, we show the emergence of a completely new class of nonlinear phenomena which 

results in phononic frequency combs (PFC). 

 

3.1. Fermi-Pasta-Ulam Problem 

 

The formulation of FPU problem was originally developed by the scientists Enrico Fermi, John 

Pasta, Stanislaw Ulam and Mary Tsingou in 1954–1955 to examine the mechanism by which a 

crystal advances towards thermal equilibrium [29]. For this study, they took a virtual chain of 

particles of mass 𝑚 that are coupled by springs of constant 𝑘 (Figure 3.1). 

 

 

 

Figure 3.1: Fermi-Pasta-Ulam Chain. 
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The equations of motion for such springs can be written as 

 

[𝑚�̈�𝑛 + 𝑘[(𝑥𝑛+1 − 𝑥𝑛) − (𝑥𝑛 − 𝑥𝑛−1)] = 0] 

⇒ [𝑚�̈�𝑛 + 𝑘[𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1] = 0] 
(3.1) 

 

Here, 𝑥𝑛 denotes the displacement of 𝑛𝑡ℎ particle from its original position. 

 

This model of a coupled system does not change the energy distribution between normal 

modes from a pre-defined initial condition in contravention with the equipartition theorem. 

To address this discrepancy, the researchers made the springs nonlinear such that the 

quadratic and cubic interaction terms are also included.  

 

𝑚�̈�𝑛 + 𝑘[𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1] + 𝛼𝐹𝑃𝑈[(𝑥𝑛+1 − 𝑥𝑛)2 − (𝑥𝑛 − 𝑥𝑛−1)2]

+ 𝛽𝐹𝑃𝑈[(𝑥𝑛+1 − 𝑥𝑛)3 − (𝑥𝑛 − 𝑥𝑛−1)3] = 0 
(3.2) 

 

Here, 𝛼𝐹𝑃𝑈 and 𝛽𝐹𝑃𝑈 represent the strengths of quadratic and cubic interactions between 

particles. 

 

In the normal mode representation, the equations of motion of a 𝑁-site FPU chain takes the 

form 

 

�̈�𝑞 + 𝜔𝑞
2𝑄𝑞 + 𝛼𝐹𝑃𝑈 ∑ 𝐴𝑞,𝑖,𝑗𝑄𝑖𝑄𝑗

𝑁

𝑖,𝑗=1

+ 𝛽𝐹𝑃𝑈 ∑ 𝐵𝑞,𝑖,𝑗,𝑘𝑄𝑖𝑄𝑗𝑄𝑘

𝑁

𝑖,𝑗,𝑘=1

= 0; 𝑞 = 1,2, … , 𝑁 (3.3) 

 

Here, 𝑄𝑞 is the displacement of mode 𝑞, 𝜔𝑞 = 2 sin [
𝜋𝑞

2𝑁
] are the normal mode frequencies and 

𝐴𝑞,𝑖,𝑗 & 𝐵𝑞,𝑖,𝑗,𝑘 are the coupling coefficients.  

 

The initial thinking was that the nonlinearities 𝛼𝐹𝑃𝑈 ∑ 𝐴𝑞,𝑖,𝑗𝑄𝑖𝑄𝑗
𝑁
𝑖,𝑗=1  and 

𝛽𝐹𝑃𝑈 ∑ 𝐵𝑞,𝑖,𝑗,𝑘𝑄𝑖𝑄𝑗𝑄𝑘
𝑁
𝑖,𝑗,𝑘=1  would lead to energy leaking from a specific mode to the other 

modes until full thermalization is reached and hence, the equipartition theorem could be 

satisfied. However, their numerical results indicated that the energy was only shared by a few 

normal modes instead of all. Furthermore, after a long time, the initial state gets completely 

recovered. Hence, it turned out that the nonlinearity by itself is not sufficient to guarantee 
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equipartition of energy. While these initial numerical results of FPU did not reveal the 

signatures of equipartition, a recent theoretical work, supported by extensive numerical 

results [30], has now predicted the long thermalization timescales for the FPU chains. 

 

3.2. Generalizing Nonlinear Phenomena 

 

FPU chains have been used as a theoretical framework to interpret many nonlinear 

phenomena [14, 31-40]. For instance, one may numerically integrate FPU chains and may 

henceforth theorize the description and operational regimes for a new FPU phenomenon [41-

42] for instance, PFC [14]. Those theories may then be adapted by the experimentalists to 

interpret their observations.  

 

3.3. Linear Resonance, Duffing Phenomenon and Parametric 

Resonance in Fermi-Pasta-Ulam Chain 

 

Before delving into the numerical results of PFC, we present the relevance of FPU chains to 

the well-established LR, DP and PR.  To this end, we first consider the equations of motion. 

 

�̈�𝑞 + 𝜔𝑞
2𝑄𝑞 + 𝛼𝐹𝑃𝑈 ∑ 𝐴𝑞,𝑖,𝑗𝑄𝑖𝑄𝑗

𝑁

𝑖,𝑗=1

+ 𝛽𝐹𝑃𝑈 ∑ 𝐵𝑞,𝑖,𝑗,𝑘𝑄𝑖𝑄𝑗𝑄𝑘

𝑁

𝑖,𝑗,𝑘=1

= 0 ; 𝑞 = 1,2, … , 𝑁 (3.4) 

 

In this equation 3.4, the terms 2휁𝑞�̇�𝑞 and drive 𝑃𝐷 cos(𝜔𝐷𝑡) are also included.  

 

�̈�𝑞 + 𝜔𝑞
2𝑄𝑞 + 2휁𝑞�̇�𝑞 + 𝛼𝐹𝑃𝑈 ∑ 𝐴𝑞,𝑖,𝑗𝑄𝑖𝑄𝑗

𝑁

𝑖,𝑗=1

+ 𝛽𝐹𝑃𝑈 ∑ 𝐵𝑞,𝑖,𝑗,𝑘𝑄𝑖𝑄𝑗𝑄𝑘

𝑁

𝑖,𝑗,𝑘=1

= 𝑃𝐷 cos(𝜔𝐷𝑡); 𝑞

= 1,2, … , 𝑁 

(3.5) 

 

We term this revised equation 3.5 as driven-damped FPU chain. Let us consider specific cases 

of this condensed dynamics. 

 

Case 1: 𝛼𝐹𝑃𝑈 = 𝛽𝐹𝑃𝑈 = 0 

 

�̈�𝑞 + 𝜔𝑞
2𝑄𝑞 + 2휁𝑞�̇�𝑞 = 𝑃𝐷 cos(𝜔𝐷𝑡); 𝑞 = 1,2, … , 𝑁 (3.6) 
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This reduced dynamics is now similar to the equation 2.9. As derived in Section 2.1, the 

equation 3.6 will lead to the following solutions of 𝑄𝑞 which model the behaviour of LR. 

 

𝑄𝑞 =
𝑃0

𝜔𝑞
2 − 𝜔𝐷

2 + 2𝑗휁𝑞𝜔𝐷

cos(𝜔𝐷𝑡) (3.7) 

 

Case 2: 𝛼𝐹𝑃𝑈 = 0 & 𝛽𝐹𝑃𝑈 ∑ 𝐵𝑞,𝑖,𝑗,𝑘𝑄𝑖𝑄𝑗𝑄𝑘
𝑁
𝑖,𝑗,𝑘=1 = 𝛽𝑞𝑞𝑞𝑞𝑄𝑞

3 

 

�̈�𝑞 + 𝜔𝑞
2𝑄𝑞 + 2휁𝑞�̇�𝑞 + 𝛽𝑞𝑞𝑞𝑞𝑄𝑞

3 = 𝑃𝐷 cos(𝜔𝐷𝑡); 𝑞 = 1,2, … , 𝑁 (3.8) 

 

This now corresponds to the ‘Duffing oscillator’ (Equation 2.10). Again, as derived in Section 

2.2, the solutions for 𝑄𝑞 can be obtained as 

 

𝑄𝑞 =
𝑃𝐷

𝜔𝑞
2 − 𝜔𝐷

2 +
3𝛽𝑞𝑞𝑞𝑞

4 𝜑2 + 2𝑗휁𝑞𝜔𝐷

cos(𝜔𝐷𝑡) (3.9) 

 

where 𝜑  corresponds to the solution of cubic equation:  [
9

16
𝛽𝑞𝑞𝑞𝑞

2] 𝜑6 + [
3

2
𝛽𝑞𝑞𝑞𝑞(𝜔𝑞

2 −

𝜔𝐷
2 )] 𝜑4 + [(𝜔𝑞

2 − 𝜔𝐷
2 )

2
+ 4휁𝑞

2𝜔𝐷
2 ] 𝜑2 − 𝑃𝐷

2 = 0.  

 

Case 3: Parametric Resonance 

 

�̈�1 + 𝜔1
2𝑄1 + 2휁1�̇�1 + 𝛼122𝑄2

2 = 𝑃𝐷 cos(𝜔𝐷𝑡) (3.10) 

�̈�2 + 𝜔2
2𝑄2 + 2휁2�̇�2 + 𝛼221𝑄1𝑄2 = 𝑃𝐷 cos(𝜔𝐷𝑡) (3.11) 

 

The equations 3.10 and 3.11 will collectively lead to (Section 2.3) 

 

𝑄1 = 𝐴 cos(𝜔𝐷𝑡) 

𝑄2 = 𝐵1 cos (
𝜔𝐷

2
𝑡) + 𝐵2 sin (

𝜔𝐷

2
𝑡) 

(3.12) 

  

where 𝐴 =
𝑃𝐷

𝜔1
2−𝜔𝐷

2 +2𝑗𝜁1𝜔𝐷
 and 𝐵1 & 𝐵2 correspond to the amplitudes associated with the in-

phase and quadrature components of oscillations with frequency 
𝜔𝐷

2
 (Equation 2.44).  
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Hence, the unified FPU framework can address LR, DP and PR.  

 

3.4. Emergence of Phononic Frequency Combs 

 

While we had shown the existence of three well-established resonances in the previous 

section, the FPU chains can also emanate a wide variety of rich physical phenomena [14, 31-

42]. Here, in this section, we present the theoretical discovery of one such nonlinear 

phenomenon: PFC. 

 

3.4.1. Numerical Observation of Frequency Combs  

 

To observe PFC, a 10-site FPU-𝛼 chain (Equation 3.13) was numerically simulated [14].  

 

�̈�𝑞 + 𝜔𝑞
2𝑄𝑞 + 2휁𝑞�̇�𝑞 = −𝛼𝐹𝑃𝑈 ∑ 𝐴𝑞,𝑖,𝑗𝑄𝑖𝑄𝑗

10

𝑖,𝑗=1

+ 𝑃𝐷 cos(𝜔𝐷𝑡); 𝑞 = 1,2, … , 𝑁 (3.13) 

 

 

 

Figure 3.2: Spectral Signature of Frequency Combs. A-B: The frequency spectra 

corresponding to phonon modes 𝑄1  and 𝑄10  respectively. Here, (𝑃𝐷 , 𝛼𝐹𝑃𝑈, 𝜔𝐷) =

(0.1,0.1,2.264). Reprinted figure with permission from [L. S. Cao, D. X. Qi, R. W. Peng, M. 

Wang, and P. Schmelcher, Physical review letters, vol. 112, p. 075505, 2014.] Copyright (2014) by 

the American Physical Society. 

 

The reported numerical simulations are based on the complete dynamics (Equation 3.13) 

without any truncation [14]. The drive 𝑃𝐷 cos(𝜔𝐷𝑡) was suitably adjusted to a specific set of 

values to let the modes: 𝑄1 and 𝑄10 in nonlinear resonance. Further, to avoid significant linear 
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excitation of other phonon modes 𝑄2,…,9, 𝜔𝐷 was also spaced farther away from their resonant 

frequencies 𝜔2,…,9. Now, to quantify the response, the oscillations of effective phonon number 

𝑁𝑒𝑓𝑓 corresponding to all phonon modes 𝑄1,…,10 were examined.  

 

 

 

Figure 3.3: Temporal Signature of Frequency Combs. The 𝑁𝑒𝑓𝑓 oscillations corresponding 

to all phonon modes 𝑄1,…,10 . Here, (𝑃𝐷 , 𝛼𝐹𝑃𝑈, 𝜔𝐷) = (0.1,0.1,2.264). Reprinted figure with 

permission from [L. S. Cao, D. X. Qi, R. W. Peng, M. Wang, and P. Schmelcher, Physical review 

letters, vol. 112, p. 075505, 2014.] Copyright (2014) by the American Physical Society. 

 

The spectral fingerprints of 𝑁𝑒𝑓𝑓 oscillations indicate that the observed nonlinear resonance 

relates to the emergence of an array of frequencies which are precisely separated by Δ𝜔 and 

such combs of frequencies were formed near the resonant frequency of modes 𝑄1 and 𝑄10 i.e. 

0.285 and 1.979 respectively (Figure 3.2). Furthermore, as shown in Figure 3.3, the temporal 

evolution of these frequency combs gets manifested as a train of pulses with period 𝑇 =
2𝜋

Δ𝜔
. 

This thus, as demonstrated in Figure 1.2, proves the phase coherent nature of PFC.  

 

The numerical simulations have thus proved the existence of PFC in a 10-site FPU chain. Now, 

for further exploration of the PFC process, the simulations were also carried out under 

different drive conditions (𝜔𝐷 , 𝑃). Figures 3.4A and 3.4B show the evolution of frequency 

combs with varying 𝜔𝐷  and 𝑃 . Since the dynamical characteristics of combs near 𝜔 =

0.285 & 1.979  are identical, only the combs near 𝜔 = 0.285  were analysed. When 𝜔𝐷  is 

reduced below the frequency threshold 2.65, the tones at �̃�1 and 𝜔𝐷 − �̃�10 get excited. By 

decreasing 𝜔𝐷  further, the number of lines associated with the frequency combs gets 

increased. This indicates that the strength of nonlinear resonance is greater for those low 

values of 𝜔𝐷. In addition to the increase in the number of spectral lines, all the frequencies in 
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the comb including �̃�1 get varied with 𝜔𝐷. This 𝜔𝐷  dependence of PFC results from the 

nonlinear foldover effect which can qualitatively be modelled by the following equation [14]. 

 

�̃�1(10)
2 − 𝜔1(10)

2 = −
𝐹𝑘�̃�10(1)

2

2𝜔10(1)
2 [�̃�10(1)

2 − (𝜔𝐷 − �̃�1(10))
2

]
 (3.14) 

 

Here, 𝜔1(10) and �̃�1(10) are the nominal and amplitude dependent resonant frequencies of 

normal modes 1(10) respectively; 𝐹𝑘(∝ 𝑃𝐷) is the amplitude of a third mode 𝑘 which mediates 

the interactions between modes 1 and 2 [14]. This expression indicates that �̃�1(10) gets farther 

away from 𝜔1(10) as 𝜔𝐷 approaches �̃�1 + �̃�10. To independently validate this renormalization 

effect, the dependence with 𝑃𝐷 can also be examined. Figure 3.4B clearly indicates the direct 

dependence of frequency comb spacing with 𝑃 and the equation 3.14 also captures such a 

trend. 

 

 

 

Figure 3.4: 𝝎𝑫 − 𝑷𝑫 Dependence. A-B: The frequency spectra of 𝑄1 for different values of 𝜔𝐷 

and 𝑃𝐷 respectively. Here, 𝛼 = 0.1. Reprinted figure with permission from [L. S. Cao, D. X. Qi, 

R. W. Peng, M. Wang, and P. Schmelcher, Physical review letters, vol. 112, p. 075505, 2014.] 

Copyright (2014) by the American Physical Society. 
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Chapter 4 

 

Micromechanical Resonator – An Experimental 

Analogue of Fermi-Pasta-Ulam Chains 

 

In Chapter 3, the general formalism of FPU chain was introduced. The theoretical prediction 

of PFC associated with a 10-site FPU-𝛼 chain was then presented. While the numerical 

analyses of FPU chains can bring in interesting new insights similar to PFC, the typical 

timescales associated with the concomitant computations may be long enough to demand 

exorbitant resources. While such numerical attempts cannot be avoided owing to their own 

importance for model identification, the complementary experimental analogues of FPU 

chains can instantaneously compute the solutions of relevant FPU phenomena, for instance, 

PFC. Also, such experimental signatures are required for the practical utilization of FPU 

mechanisms. To this end, this chapter presents an experimental analogue of FPU chains. 

 

4.1. Why Micromechanical Resonators? 

 

Various FPU phenomena for instance, PR [28, 43-64] are observed in disparate physical 

systems including elementary particles [43-44], astrophysics [45], fluid mechanics [28, 46-48], 

magnetism [49], electronics [50], optical lasers [51-52], mechanics [53-62] and biophysics [63-

64]. Hence, based on dynamic similarity, it is possible to analogize a virtual FPU chain to all of 

these physical systems. In other words, such physical systems can form experimental 

analogues of FPU chains. However, “micromechanical resonators” present unique attributes 

for studying FPU physics as outlined below. 

 

• Multiple Normal Modes: To explore rich FPU phenomena, it is important for the physical 

system to possess multiple normal modes. Interestingly, even the simplest topology of 

micromechanical resonators can be set in multiple modes of vibration (Figure 4.4). 

 

• Strong Normal Mode Coupling: In addition to the presence of multiple normal modes, the 

coupling between such modes should be strong enough to produce rich dynamics. 
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However, for this purpose, large unrealistic drive power levels are usually necessary. 

Fortunately, the miniaturized mechanical resonators, owing to smaller drive power level 

handling capability, can exhibit strong modal coupling even at nominal drive power levels.  

 

• Ease of Experimental Control: To systematically study and model FPU phenomena, the 

experimental system should be easily controllable with a high degree of precision. As the 

silicon-based micro-/nanofabrication technology (Appendix A) is well-established, it is 

possible to control geometry and material properties for such resonators with high 

precision. 

 

• Informative Experimental Characterization: To extract meaningful information about FPU 

phenomena, the experimental system should be properly characterized and the resulting 

characteristics should be independently validated. The micromechanical resonators can be 

characterized through multiple techniques including electrical (Section 4.5.1) and optical 

(Section 4.5.2). Hence, by correlating experimental results measured by 2 or more separate 

techniques, any artefacts associated with any particular experimental technique can be 

eliminated.  

 

4.2. Piezoelectric Micromechanical Resonators 

 

Micromechanical resonators can be interfaced through various means. A popular approach is 

using ‘electrostatic methods’ [65-68]. Here, as the name suggests, the micromechanical 

resonator is driven by the electrostatic forces. In this device topology, the electrodes are 

defined in close proximity of micromechanical resonator to form a parallel-plate [67-68] or 

comb drive [65-66] arrangement. When an oscillating electrical signal is applied to this 

electrode, mechanical vibrations are set up in the micromechanical resonator. A polarization 

voltage is commonly employed to linearize the transducer response and allow for a linear 

voltage-to-force, and current-to-velocity motional response. However, due to weak 

electromechanical coupling, the amplitude of such excitations is typically low and the method 

is usually only effective for interfacing a very specific mode of interest, such that the electrodes 

are defined specifically to interrogate a particular mode. However, a piezoelectric 

micromechanical resonator [69-72], in contrast to the aforementioned configurations, can be 

an ideal candidate for the FPU experimental analogue due to strong electromechanical 
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coupling offered by its implementation. The topology of a representative piezoelectric 

micromechanical resonator is depicted in Figure 4.1. 

 

 

 

Figure 4.1: Piezoelectric Micromechanical Resonator. A piezoelectric material coated free-

standing mechanical structure of dimensions 𝑤 × 𝐿 × 𝑡. The electrical signals are applied and 

extracted from the Input/Output (I/O) metal pads. The electrical field is set up across the 

piezoelectric material through the adjoining metal electrodes. 

 

A piezoelectric thin film coating forms the functional component of piezoelectric 

micromechanical resonator. When an electrical field is applied across this thin film, the 

mechanical deformation of film and underlying device layer occurs. Conversely, the 

mechanical deformation will also result in the generation of charge across the electrode plates. 

In this device topology, a thin layer of piezoelectric material is attached to a conducting or 
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semiconducting micromechanical resonator. In addition, on top of the piezoelectric film, a 

conducting (for instance, metal) layer is also added. Now, when an oscillating electrical signal 

is applied on this metal electrode with respect to the micromechanical resonator, the 

piezoelectric transduction of a phonon mode of eigenfrequency closer to the drive frequency 

takes place. Relative to the electrostatic counterpart, owing to higher electromechanical 

coupling, the amplitude of excitations is often larger for the same drive levels, particularly for 

high frequency modes.  

 

4.3. Design of Piezoelectric Micromechanical Resonators 

 

For the design of piezoelectric micromechanical resonator, the built-in ‘piezoelectric devices’ 

module of COMSOL® Multiphysics 4.3a [73] is utilized. Through this sophisticated software 

tool, the piezoelectric micromechanical structure of interest can be 3-D modelled and the 

characteristics of its phonon modes including the eigenfrequencies and spatial displacement 

profiles can be predicted.  

 

4.3.1. 3D Simulation of Piezoelectric Micromechanical Resonator 

 

The simulation is based on Finite Element Method (FEM). Here, the bounded continuous 

domain is decomposed into a finite number of elements for which an approximate solution is 

produced (Figure 4.2). The simulation steps are listed below: 

 

1. Definition of Physical Geometry 

 

Here, the variables corresponding to the geometry of piezoelectric micromechanical resonator 

are defined. 

 

2. Definition of Material Parameters 

 

For all of the component layers including piezoelectric, metal and silicon, the mechanical 

parameters including density 𝜌, Young’s modulus matrix [𝐸], Poisson’s ratio 𝜎 and shear 

modulus [𝐺] are defined. Particularly, for the piezoelectric material, the relative electrical 

permittivity matrix [𝜖𝑟] and piezoelectric coupling matrix [𝑒] are also defined. Further, for 
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capturing information about the material related quality factor, the damping ratio 휁 can also 

be defined.  

 

3. Definition of Physical Problem and Boundary Conditions 

 

In the simulation of piezoelectric micromechanical resonator, the amount of electrical charge 

which is generated in the piezoelectric film for an applied electrical potential is computed at 

first. This electrical charge is then converted to mechanical strains based on the associated 

piezo-electromechanical coupling relationship. The corresponding stresses are then used to 

estimate the 3D displacement distribution of structure. While the electrical charge 

distribution quantifies the electrical behaviour, the displacement profile describes the mode 

shapes. In this definition of physical problem, the electrical and mechanical boundary 

conditions should also be provided appropriately as: the interface between the top electrode 

and piezoelectric layers is at +𝑉/2 ; the interface between the bottom electrode and 

piezoelectric layers is at −𝑉/2; the displacements are set to ‘0’ at the locations of mechanical 

anchors. 

 

4. Discretization of Structure 

 

Prior to the simulation, the structure is discretized into a number of elements (Figure 4.2) that 

can produce reasonably good convergence to the desired solution. The mesh structure i.e., 

tetrahedral, hexahedral or a combination of these has to be appropriately chosen so as to have 

minimal numerical errors.  

 

 

 

Figure 4.2: Discretization of Structure. 
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5. Simulation of the Structure 

 

For the simulation, the eigenfrequency study is considered. The eigenfrequency analysis is 

carried out to obtain the eigenfrequencies and spatial vibration patterns of phonon modes 

associated with the structure.  

 

4.3.2. Simulation Results 

 

We consider a piezoelectric micromechanical structure of free-free beam topology. The 

schematic of this device is presented in Figure 4.3.  

 

 

 

Figure 4.3: Schematic of Piezoelectric Micromechanical Free-Free Beam Structure. An 

Aluminium Nitride (AlN) and Aluminium (Al) coated Silicon (Si) structure of dimensions 

1100 × 350 × 10 supported by anchors of dimensions 2 × 20 × 10. Here, the dimensions are 

in 𝜇𝑚 units. 
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Figure 4.4: Multiple Eigenmodes of Piezoelectric Micromechanical Free-Free Beam 

Structure. The eigenfrequencies (in Hz) corresponding to each eigenmode of piezoelectric 

micromechanical resonator. 

 

Now, based on the background presented in Section 4.3.1, a micromechanical free-free beam is 

simulated using COMSOL Multiphysics 4.3a. Figure 4.4 showcases multiple eigenmodes and 

corresponding eigenfrequencies associated with this micromechanical resonator. The mode of 

frequency 3.86 𝑀𝐻𝑧 is a length extensional mode where the beam expands and squeezes along 

its length. While the choice of micromechanical resonator is justified in the section 4.1, there 

is no specific rationale behind the choice of exact microscale dimensions. However, a length-

extensional mode of micromechanical resonator has been chosen as the driven mode. Hence, 

a free-free beam topology which naturally involves length extensional modes has been 

considered. Alternatively, a cantilever topology may also be considered. The reasons for the 

choice of length-extensional mode are as follows: 1. the length extensional mode of free-free 

micromechanical beam has higher frequency and many modes are usually associated at 

frequencies lower than the frequency of extensional mode. Owing to this high modal density, 

the frequency matching conditions for the excitation of phononic frequency combs can be 

easily achieved. 2. The length extensional mode has greater strain energy. Hence, the drive 

level thresholds for the excitation of phononic frequency combs can be lower.  

 

4.4. Fabrication of Piezoelectric Micromechanical Resonator 

 

To fabricate piezoelectric micromechanical resonators, a MEMSCAP foundry process named 

PiezoMUMPs is consulted [74-75]. Appendix A presents the PiezoMUMPs process flow in the 

context of building a micromechanical free-free beam architecture which is simulated in 
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Section 4.3.2. Figure 4.5 shows the schematic of microfabricated piezoelectric 

micromechanical resonator. 

 

 

 

Figure 4.5: Microfabricated Piezoelectric Free-Free Beam Resonator. 

 

To fabricate piezoelectric micromechanical resonators, a MEMSCAP foundry process named 

PiezoMUMPs is consulted [74-75]. Appendix A presents the PiezoMUMPs process flow in the 

context of building a micromechanical free-free beam architecture which is simulated in 

Section 4.3.2. Figure 4.5 shows the schematic of microfabricated piezoelectric 

micromechanical resonator. 

 

4.5. Characterization of Piezoelectric Micromechanical Resonator 

 

The fabricated Si chip (11 mm x 11 mm) is glued onto a ceramic leadless chip carrier (LCC44 

Spectrum Semiconductors) (Figure 4.6). The electrical connections from the chip to the 

carrier are made through wire bonding using a wedge wire bonder (Kulike & Soffa 4523 Digital 

Wedge Bonder). The LCC package is then placed on a LCC burn-in socket (P2044S-A-AU, 
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Plastronics) which is in turn soldered to a customized plastic circuit board and the electrical 

connections in to and out from the board are through the RF-SMA ports (Figure 4.6).  

 

 

 

Figure 4.6: Circuit board, with the Si-chip glued onto the leadless chip carrier, is placed in the 

vacuum chamber 

 

4.5.1. Electrical Characterization 

 

The piezoelectric resonator is driven and sensed in two-port configuration (Figure 4.7). Here, 

the top Si layer of SOI wafer is grounded. The drive and sense are through the split Al patterns 

which are adjoined to the AlN film.  

 

4.5.1.1. Drive and Sense: Network Analyser 

 

Here, we characterize the frequency response of piezoelectric micromechanical resonance 

utilizing Agilent Network Analyser 4391B. The input and output ports of network analyser are 

connected to the drive and sense electrodes of device respectively. The transmission 

parameter S21 is displayed on the screen of Agilent Network Analyser 4391B as the frequency 

of source is swept (Figure 4.8). 

 

4.5.1.2. Drive: Waveform Generator and Sense: Oscilloscope 

 

The electrical outputs derived from a waveform generator (Agilent 33220A and/or 335ARB1U) 

are connected to the drive electrode of device and the electrical signal which is transduced by 
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the sense electrode of device is probed using an oscilloscope (Agilent Infiniium 54830B DSO) 

(Figure 4.9). 

 

 

 

Figure 4.7: Two-Port Configuration. 

 

 

 

Figure 4.8: Electrical Characterization using Network Analyser (dotted box). 

 

4.5.2. Optical Characterization 

 

The piezoelectric resonator is driven in two-port configuration (Figure 4.7). Here, the top Si 

layer of SOI wafer is grounded. The electrical output derived from a waveform generator 

(Agilent 335ARB1U) is connected to the drive electrode of device and the resulting mechanical 

vibrations of device are probed using a laser Doppler vibrometer (LDV) (Polytec MSA-400 

Micro System Analyzer) (Figure 4.10). 
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Figure 4.9: Electrical Characterization using Oscilloscope. 

 

 

 

Figure 4.10: Optical Characterization using Laser Doppler Vibrometer. 

 

4.6. Summary 

 

In Sections 4.1 and 4.2, we have discussed the rationale behind the choice of piezoelectric 

micromechanical resonators as an experimental FPU analogue. In Sections 4.3, 4.4 and 4.5, we 
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have discussed both general and specific device-oriented aspects concerning the design, 

fabrication and characterization of piezoelectric micromechanical resonators.  
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Chapter 5 

 

Observation of Phononic Frequency Combs in a 

Micromechanical Resonator 

 

The theoretical basis for PFC in a FPU chain and design of a micromechanical resonator based 

FPU analogue were discussed in the previous chapters. Now, this chapter presents 

experimental results demonstrating the generation of PFC in the FPU analogue of 

piezoelectric micromechanical resonator.  

 

5.1. Definition of Dynamics 

 

To recapitulate, the equations of motion for a multimode micromechanical resonator 

(abstracted by 𝛼-FPU dynamics) are given by 

 

�̈�𝑞 + 𝜔𝑞
2𝑄𝑞 + 2휁𝑞�̇�𝑞 = −𝛼𝐹𝑃𝑈 ∑ 𝐴𝑞,𝑖,𝑗𝑄𝑖𝑄𝑗

𝑁

𝑖,𝑗=1

+ 𝑃; 𝑞 = 1,2, … , 𝑁 (5.1) 

 

Here, 𝑄𝑞 is the displacement of mode 𝑞, 𝜔𝑞 and 휁𝑞 are the natural frequencies and damping 

ratios of mechanical modes of micromechanical resonator respectively. The coefficients 𝐴𝑞,𝑖,𝑗 

of nonlinear terms associated with the mode 𝑄𝑞 quantify the degree of coupling between the 

modes 𝑄𝑖 and 𝑄𝑗.  

 

These equations of motion of a multimode micromechanical resonator are dynamically similar 

to those of a 𝑁-site FPU-𝛼 chain (Chapter 3). However, the difference lies at the interpretation 

of domain-specific results. While the numerical results presented in Section 3.4 captured the 

motion of each phonon mode of 𝑁 -site FPU chain, the trends associated with the 

displacement amplitudes of each mode of micromechanical resonator are reported in this 

chapter. 
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5.2. Observation of Phononic Frequency Combs via Two-Mode 

Three-Wave Mixing 

 

To experimentally observe PFC via intrinsic three-wave mixing [13], the electrical drive 

𝑆𝑖𝑛(𝜔𝐷) ∝ (𝑃 = 𝑃𝐷 cos(𝜔𝐷𝑡)) which is applied to the micromechanical resonator is suitably 

adjusted. At 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.862 𝑀𝐻𝑧) = 5 𝑑𝐵𝑚, the LDV (Section 4.5.2) detected the presence of 

phase-coherent PFC.  

 

 

 

Figure 5.1: A & B: Spectral and Temporal Signatures of Frequency Combs. Here, the 

electrical drive 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.862 𝑀𝐻𝑧) = 5 𝑑𝐵𝑚. 

 

Figure 5.1A shows the spectral signature of PFC i.e. the precisely positioned frequencies of 

equidistant spacing 
Δ𝜔

2𝜋
= 2.6 𝑘𝐻𝑧  and Figure 5.1B shows the corresponding temporal 

manifestation which is the train of pulses of period 
2𝜋

Δ𝜔
= 0.384 𝑚𝑠.  
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To explore the generation process underpinning this intriguing PFC, the experiments were 

systematically carried out at different drive conditions and the resulting spectra are electrically 

probed (Section 4.5.1.2). To start with, the 𝑆𝑖𝑛 dependence of PFC for 
𝜔𝐷

2𝜋
= 3.862 𝑀𝐻𝑧 is 

examined. When 𝑆𝑖𝑛 < 3.5 𝑑𝐵𝑚, only the tone corresponding to 
𝜔𝐷

2𝜋
 is observed (Figure 5.2A). 

However, once 𝑆𝑖𝑛 crosses this threshold value, the PFC process onsets. As 𝑆𝑖𝑛 is increased, the 

number of spectral lines of such PFC enlarges. However, this only happens at discrete steps 

due to the cascade of inherent thresholds associated with every other high order nonlinear 

interaction. While the PFC generation threshold for 
𝜔𝐷

2𝜋
= 3.862 𝑀𝐻𝑧  is 3.5 𝑑𝐵𝑚 , the 𝜔𝐷 

dependence of such a threshold is now studied. When 
𝜔𝐷

2𝜋
 is between 3.86 𝑀𝐻𝑧  and 

3.8608 𝑀𝐻𝑧, PFC is not formed even at extreme values of 𝑆𝑖𝑛 (Figure 5.2B). However, above 

𝜔𝐷

2𝜋
= 3.8608 𝑀𝐻𝑧, the emergence of PFC is evidenced and the associated generation threshold 

decreases with increase in 
𝜔𝐷

2𝜋
 (Figure 5.2B). 

 

 

 

Figure 5.2: Thresholds for Frequency Comb Excitations. Dependence with A: electrical 

drive power level (𝑆𝑖𝑛) and B: drive frequency (
𝜔𝐷

2𝜋
). 

 

At 𝑆𝑖𝑛 > 5 dBm, we also evidence the onset of another attribute in PFC (Figure 5.3). Here, the 

spacing Δ𝜔 of PFC broadens as 𝑆𝑖𝑛 is increased. While the nominal regime of PFC is termed as 

‘Direct Nonlinear Resonance (DNR)’ (equivalent to Figure 5.2A), we refer to this PFC 

broadening regime as ‘DNR+Duffing’. In DNR, the increase in 𝑆𝑖𝑛  merely results in the 
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increase in the number of spectral lines associated with PFC while the corresponding Δ𝜔 stays 

constant. As contrasted with DNR, in Duffing-DNR, Δ𝜔  increases with 𝑆𝑖𝑛 . While the 

contrasting 𝑆𝑖𝑛 dependences of PFC in the DNR and DNR-Duffing regimes are clear, we now 

seek 𝜔𝐷 dependence of PFC in each of these two regimes.  

 

 

 

Figure 5.3: Onset of Duffing Phenomenon (By Varying the Drive Power Level 𝑺𝒊𝒏).  

 

 

 

Figure 5.4: Onset of Duffing Phenomenon (By Varying the Drive Frequency 
𝝎𝑫

𝟐𝝅
).  

 

To this end, 
𝜔𝐷

2𝜋
 is first detuned and the corresponding 𝑆𝑖𝑛 is adjusted such that the number of 

frequency comb lines stays constant at 5. When 
𝜔𝐷

2𝜋
 is between 3.86 𝑀𝐻𝑧 and 3.8622 𝑀𝐻𝑧, 

Δ𝜔 = |𝜔𝐷 − �̃�𝑖| matches up with |𝜔𝐷 − 𝜔𝑖| (Figure 5.4). (Here, 𝜔𝑖 and �̃�𝑖 are the nominal and 

amplitude dependent resonant frequencies of the driven mode respectively.) In other words, 
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�̃�𝑖 is 𝑆𝑖𝑛 independent and is constant at its nominal value 𝜔𝑖. However, when 
𝜔𝐷

2𝜋
 is increased 

above 3.8622 𝑀𝐻𝑧, Δ𝜔 deviates from |𝜔𝐷 − 𝜔𝑖| (Figure 5.4). And, such a deviation is due the 

emergence of DNR-Duffing regime. While the PFC (of 5 spectral lines) corresponding to the 

𝜔𝐷

2𝜋
 range of 3.86 − 3.8622 𝑀𝐻𝑧 fall under DNR regime, the transition to DNR+Duffing regime 

occurs when 
𝜔𝐷

2𝜋
 is increased above 3.8622 𝑀𝐻𝑧. This, in other words, means that the number 

of spectral lines associated with PFC, at the point of transition from the DNR to DNR-Duffing 

regime, need not be the same for the entire range of 𝜔𝐷,.  

 

 

 

Figure 5.5: Drive Frequency Dependence of Frequency Combs under ‘DNR+Duffing’ 

Regime. 

 

In the DNR regime, Δ𝜔 can only be controlled by 
𝜔𝐷

2𝜋
 but not 𝑆𝑖𝑛  (Figures 5.2 and 5.4). 

However, in the DNR+Duffing regime, this may not be the case. Hence, to study this trend, we 

detune 
𝜔𝐷

2𝜋
 while also keeping 𝑆𝑖𝑛 constant at a high enough value of 23 𝑑𝐵𝑚 such that PFC is 

in DNR+Duffing regime. Figure 5.5 shows that Δ𝜔 does not vary with 
𝜔𝐷

2𝜋
. Instead, the entire 

PFC collectively shifts with 
𝜔𝐷

2𝜋
. This arises due to the direct dependence of �̃�𝑖 with 

𝜔𝐷

2𝜋
 such 

that Δ𝜔 = |𝜔𝐷 − �̃�𝑖|  is constant. Hence, in the DNR+Duffing regime, Δ𝜔  can only be 

controlled by 𝑆𝑖𝑛 but not 
𝜔𝐷

2𝜋
 (Figures 5.3 and 5.5). 

 

Hence, we have now studied two distinct DNR and DNR+Duffing regimes of two-mode three-

wave mixing based PFC. We will now discuss the correspondence of PFC to the typical 

Lorentzian resonant response of the driven phonon mode. The PFC is formed only when 
𝜔𝐷

2𝜋
 is 

detuned above a specific threshold value of 𝛿𝑃𝐹𝐶  (Figure 5.6). The span of 𝜔𝐷 = (𝜔𝑖 ± 𝛿𝑃𝐹𝐶) 

which does not constitute PFC is termed as ‘Dispersion band’ and the PFC regime falls right 
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outside this band. We also know that the PFC is generated only when 𝑆𝑖𝑛  crosses a 

concomitant threshold value (Figure 5.2) and such a threshold is directly proportional to 𝛿𝑃𝐹𝐶 . 

Hence, the span of PFC regime is set by 𝑆𝑖𝑛. While the dispersion band sets a constant interior 

bound of PFC regime, its exterior bound can however be tuned by 𝑆𝑖𝑛 (Figure 5.6).  

 

 

 

Figure 5.6: Experimentally Observed Operational Regime of Phononic Frequency 

Combs. 

 

5.3. Observation of Phononic Frequency Combs via Two-Mode 

Pumped Three-Wave Mixing 

 

5.3.1. Nominal Observations of Frequency Combs 

 

To experimentally observe PFC via pumped three-wave mixing [76], we apply two drive tones 

to the micromechanical resonator. That is, the drive 𝑃  of equation 5.1 is equal to 

𝑃𝐷 cos(𝜔𝐷𝑡) + 𝑃𝑃 cos(𝜔𝑃𝑡). Here, one of the drive tones is also referred to as ‘pump’. The 

amplitudes and frequencies of this pump are 𝑃𝑃 and 𝜔𝑃 respectively. Also, the electrical drives 

𝑆𝑖𝑛(𝜔𝐷) ∝ (𝑃𝐷 cos(𝜔𝐷𝑡)); 𝑆𝑖𝑛(𝜔𝑃) ∝ (𝑃𝑃 cos(𝜔𝑃𝑡)). Now, when the drive condition is tuned to 

𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.855 𝑀𝐻𝑧) = 4 𝑑𝐵𝑚; 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.86 𝑀𝐻𝑧) = 12 𝑑𝐵𝑚, the motion corresponding to 

a series of spectral lines with equidistant spacing of  
|𝜔𝐷−𝜔𝑃|

2𝜋
= 5 𝑘𝐻𝑧 is launched in the 

micromechanical resonator (Figure 5.7).  
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Now, to understand the mechanism of PFC generation, the drive conditions are systematically 

controlled and the resulting vibrations are probed using LDV. For this experimental study, we 

have four control parameters: 
𝜔𝐷

2𝜋
, 𝑆𝑖𝑛 (

𝜔𝐷

2𝜋
), 

𝜔𝑃

2𝜋
 and 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
).  

 

 

 

Figure 5.7: Observation of Frequency Combs via Two-Mode Pumped Three-Wave 

Mixing. Here, 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.855 𝑀𝐻𝑧) = 4 𝑑𝐵𝑚; 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.86 𝑀𝐻𝑧) = 12 𝑑𝐵𝑚. 

 

To start with, we keep 
𝜔𝐷

2𝜋
 and 

𝜔𝑃

2𝜋
 constant at 3.855 𝑀𝐻𝑧 and 3.86 𝑀𝐻𝑧 respectively and vary 

𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
) and 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
) from 0 𝑑𝐵𝑚 to 20 𝑑𝐵𝑚. During this control, we evidence PFC only for a 

specific set of drive conditions. Figure 5.8 charts out the well-bounded regions of PFC in the 

𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
) − 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
) map. In the absence of PFC process, only the frequencies corresponding to 

the drive tones i.e. 
𝜔𝐷

2𝜋
 and 

𝜔𝑃

2𝜋
 are existent in the spectral response. On the other hand, the PFC 

process results in a series of equidistant spectral lines at 𝜔𝑃 + 𝑛(𝜔𝑃 − 𝜔𝐷); 𝑛 ∈ 𝑍.  

 

To observe the spectral line growth of PFC, one of the drive levels 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.855 𝑀𝐻𝑧) is 

increased from 0 𝑑𝐵𝑚 to 22 𝑑𝐵𝑚 by keeping 𝑆𝑖𝑛 (
𝜔𝑃

2𝜋
= 3.86 𝑀𝐻𝑧) constant at 14 𝑑𝐵𝑚. At low 

enough values of 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.855 𝑀𝐻𝑧) i.e. < 8 𝑑𝐵𝑚, PFC is not formed (Figure 5.9). However, 

above this threshold, an additional spectral line is generated at the frequency  2𝜔𝑃 − 𝜔𝐷 =

𝜔𝑃 + (𝜔𝑃 − 𝜔𝐷). With further increase in 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.855 𝑀𝐻𝑧), a series of spectral lines at 

𝜔𝑃 + 𝑛(𝜔𝑃 − 𝜔𝐷); 𝑛 ∈ 𝑍 are produced. Thus, the spectral bandwidth of PFC can be controlled 

by 𝑆𝑖𝑛. Figure 5.9 also shows the presence of steps during the spectral line growth. These steps 
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indicate the relevant thresholds for the high-order expansions associated with the PFC 

process. 

 

 

 

Figure 5.8: 𝑺𝒊𝒏 (
𝝎𝑫

𝟐𝝅
) − 𝑺𝒊𝒏 (

𝝎𝑷

𝟐𝝅
) Map of Frequency Combs.  

 

 

 

Figure 5.9: Drive Power Level Dependence. Here, 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.855 𝑀𝐻𝑧) = 4 𝑑𝐵𝑚; 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
=

3.86 𝑀𝐻𝑧) = 12 𝑑𝐵𝑚 . Here, 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.855 𝑀𝐻𝑧) = 0 − 22 𝑑𝐵𝑚; 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.86 𝑀𝐻𝑧) =

14 𝑑𝐵𝑚. 

 

We thus understood the relevance of 𝑆𝑖𝑛 in PFC via pumped three-wave mixing. In this 

specific PFC process, the comb spacing Δ𝜔 is set by 
𝜔𝐷

2𝜋
 and 

𝜔𝑃

2𝜋
 i.e. Δ𝜔 = |𝜔𝐷 − 𝜔𝑃|. Hence, if 
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𝜔𝐷

2𝜋
 and 

𝜔𝑃

2𝜋
 are altered, ∆𝜔  of PFC gets changed as well. To experimentally test this 

characteristic, 
𝜔𝐷

2𝜋
 is varied from 3.85 𝑀𝐻𝑧 to 3.87 𝑀𝐻𝑧 by keeping 

𝜔𝑃

2𝜋
 constant at 3.86 𝑀𝐻𝑧 

such that both 
𝜔𝐷

2𝜋
 and 

𝜔𝑃

2𝜋
 are still within the resonance bandwidth of the driven phonon mode.  

 

 

 

Figure 5.10: Drive Frequency Dependence. The frequency responses corresponding to 

different drive frequencies 
𝜔𝐷

2𝜋
= 3.85, 3.854, 3.857 3.858, 3.859, 3.86, 3.861, 3.862, 3.863, 3.866 

and 3.87 𝑀𝐻𝑧 (1-11); 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
) = 4 𝑑𝐵𝑚; 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.86 𝑀𝐻𝑧) = 14 𝑑𝐵𝑚. 

 

Figure 5.10 shows the spectral responses for each 
𝜔𝐷

2𝜋
−

𝜔𝑃

2𝜋
 combination. It can be noted from 

these figures that ∆𝜔 of PFC varies as 
|𝜔𝐷−𝜔𝑃|

2𝜋
. However, at close-enough separation between 

𝜔𝐷

2𝜋
 and 

𝜔𝑃

2𝜋
, the spectral lines become less defined and hence, a clear form of PFC is not 

produced. This characteristic sets the lower limit on Δ𝜔 of PFC utilizing pumped three-wave 

mixing.  

 

5.3.2. Transitional Characteristics 

 

The previous section (Section 5.3.1.) offered insights into the pumped three-wave mixing based 

PFC process through the examination of PFC truncated to frequencies ≅
𝜔𝐷

2𝜋
≅

𝜔𝑃

2𝜋
. While the 

nature and operational regimes of PFC were extracted, some additional details about the PFC 

process were probably missed owing to the truncation. Hence, we now also analyse the spectra 

of motion about half the drive frequency. 
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Figure 5.11: Subharmonic Excitations. A: 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧) = 15 𝑑𝐵𝑚 ; B: 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
=

3.864 𝑀𝐻𝑧) = 15 𝑑𝐵𝑚. 

 

At first, only 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧) = 15 𝑑𝐵𝑚 is applied. The frequency spectra detected by 

LDV revealed the presence of a tone of frequency 
𝜔𝐷

4𝜋
= 1.93 𝑀𝐻𝑧 in addition to the drive tone 

𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧 (Figure 5.11A). Similarly, when 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧) = 15 𝑑𝐵𝑚 is applied, the 

tones 
𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧 and 

𝜔𝑃

4𝜋
= 1.932 𝑀𝐻𝑧 are produced (Figure 5.11B).  

 

Now, when both 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧) and 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧) are introduced, we observed 

the excitation of PFC consisting of spectral lines at 𝜔𝑃 + 𝑛(𝜔𝑃 − 𝜔𝐷);
𝜔𝑃

2
+ 𝑛(𝜔𝑃 − 𝜔𝐷);  𝑛 ∈ 𝑍 

(Figure 5.12).  

 

When only 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧)  was applied, the tone of 

𝜔𝐷

4𝜋
= 1.93 𝑀𝐻𝑧  was generated. 

However, when 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧) is applied together with 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧), the tone 

of 
𝜔𝐷

4𝜋
 (∉

1

2𝜋
(

𝜔𝑃

2
+ 𝑛(𝜔𝑃 − 𝜔𝐷)) ;  𝑛 ∈ 𝑍) is not produced (Figure 5.12). This result thus points to 

a potentially complex characteristic. Now, to seek clarity on this specific aspect, the drive 

conditions are systematically varied and the frequency spectra about 1.9 − 1.96 𝑀𝐻𝑧 are 

examined.  
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Figure 5.12: Observations of Frequency Combs. Here, 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧) =

15 𝑑𝐵𝑚; 𝑆𝑖𝑛 (
𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧) = 15 𝑑𝐵𝑚. 

 

 

 

Figure 5.13: Thresholds for Subharmonic Excitations [77]. The displacement contours: A: 

𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧) = −15 − 20 𝑑𝐵𝑚; B: 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧) = −15 − 20 𝑑𝐵𝑚. 
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For the controls, 
𝜔𝐷

2𝜋
 and 

𝜔𝑃

2𝜋
 are first individually applied at varying values of 𝑆𝑖𝑛. Figures 5.13A 

and 5.13B depict the 𝑆𝑖𝑛  thresholds for the excitation of  
𝜔𝐷

4𝜋
 and 

𝜔𝑃

4𝜋
 respectively and the 

thresholds are −10 𝑑𝐵𝑚 and 10 𝑑𝐵𝑚 respectively.  

 

 

 

Figure 5.14: Transitional Characteristics of Frequency Combs. A: The displacement 

contour: 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧) = 10 𝑑𝐵𝑚; 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧) = −15 − 20 𝑑𝐵𝑚 ; B-C: The 

frequency spectra for 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧) = 10 𝑑𝐵𝑚; 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧) = 0 𝑑𝐵𝑚 , 

𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧) = 10 𝑑𝐵𝑚; 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧) = 12 𝑑𝐵𝑚  and 𝑆𝑖𝑛 (

𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧) =

10 𝑑𝐵𝑚; 𝑆𝑖𝑛 (
𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧) = 18 𝑑𝐵𝑚 respectively. 

 

Now, we feed 
𝜔𝐷

2𝜋
 and 

𝜔𝑃

2𝜋
 together and 𝑆𝑖𝑛 (

𝜔𝑃

2𝜋
= 3.864 𝑀𝐻𝑧) is varied by keeping 𝑆𝑖𝑛 (

𝜔𝐷

2𝜋
=

3.86 𝑀𝐻𝑧) constant at 10 𝑑𝐵𝑚.  

 

As shown in Figure 5.14A, the PFC of 
𝜔𝐷

2
+ 𝑛(𝜔𝑃 − 𝜔𝐷);  𝑛 ∈ 𝑍 is observed for low values of 𝑆𝑖𝑛. 

However, for 𝑆𝑖𝑛 > 10 𝑑𝐵𝑚, the PFC of 
𝜔𝐷

2
+ 𝑛(𝜔𝑃 − 𝜔𝐷);  𝑛 ∈ 𝑍 (Figure 5.14B) transitions into 
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𝜔𝑃

2
+ 𝑛(𝜔𝑃 − 𝜔𝐷);  𝑛 ∈ 𝑍 (Figure 5.14D). Here, such a cross-over occurs despite the largeness of 

𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.86 𝑀𝐻𝑧)  ( = 10 𝑑𝐵𝑚 ). Also, in between the two characteristic PFC (

𝜔𝐷

2
+

𝑛(𝜔𝑃 − 𝜔𝐷);  𝑛 ∈ 𝑍 and 
𝜔𝑃

2
+ 𝑛(𝜔𝑃 − 𝜔𝐷);  𝑛 ∈ 𝑍), there also exists a transition regime where 

the PFC is ill-defined (Figure 5.14C). 

 

5.4. Observation of Phononic Frequency Combs via Three-Mode 

Four-Wave Mixing 

 

 

 

Figure 5.15: Phononic Frequency Combs via Three-Mode Four-Wave Mixing. The 

frequency spectrum of output electrical signal 𝑆𝑜𝑢𝑡 for 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.857 𝑀𝐻𝑧) = 15 𝑑𝐵𝑚; 1-5: 

The zoomed views of spectral features 1-5 respectively. 

 

The PFC pathways presented in Sections 5.2 and 5.3 are associated with a system of two 

coupled phonon modes. In contrast, we now present the experimental observations of four-
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wave mixing based PFC in a system of three coupled modes [78]. When tuned to a specific 

drive condition: 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.857 𝑀𝐻𝑧) = 15 𝑑𝐵𝑚, the micromechanical resonator has been 

observed to exhibit PFC via three-mode four-wave mixing. Figure 5.15 shows the frequency 

spectrum of output electrical signal at this drive condition. As seen in this figure, there are five 

thick features in the spectral response. The feature 1 is closer to 
𝜔𝐷

2𝜋
. The features 2 and 3 are 

however about some arbitrary frequencies 𝜔𝑚 and 𝜔𝑛. Despite the arbitrariness, their sum 

𝜔𝑚 + 𝜔𝑛 is closer to 𝜔𝐷. The frequency locations corresponding to the last two features 4 and 

5 are closer to 2𝜔𝑚 and 2𝜔𝑛 respectively. 

 

 

 

Figure 5.16: Drive Level Dependence of Frequency Combs. The 𝑆𝑜𝑢𝑡 contours of frequency 

combs formed around A: 𝜔𝐷 ; B: 𝜔𝑚 ; C: 𝜔𝑛  respectively for 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.857 𝑀𝐻𝑧) = 4 −

23.8 𝑑𝐵𝑚. The inset figures show the vibration mode shapes corresponding to the respective 

frequency combs and the colours red and blue in these figures correspond to maximum and 

minimum displacements. 

 

To closely visualize these features 1-5, their zoomed-in views are presented in Figures 5.15-(1-

5). These views indicate that all of the features 1-5 correspond to PFC of spacing Δ𝜔 =
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5.035 𝑘𝐻𝑧. However, such individual PFC are located closer to 3.857 𝑀𝐻𝑧 =
𝜔𝐷

2𝜋
, 1.791 𝑀𝐻𝑧 ≅

𝜔𝑚

2𝜋
, 2.066 𝑀𝐻𝑧 ≅

𝜔𝑛

2𝜋
, 3.582 𝑀𝐻𝑧 ≅

𝜔𝑚

𝜋
 and 4.132 𝑀𝐻𝑧 ≅

𝜔𝑛

𝜋
 respectively. While the spectral 

line at 
𝜔𝐷

2𝜋
 corresponds to the drive tone, every other spectral lines are generated through the 

intrinsic PFC process. 

 

To understand the mechanism underpinning this specific PFC process, we systematically carry 

out experiments at different values of 𝑆𝑖𝑛 and analyse the PFC located about 𝜔𝐷, 𝜔𝑚 and 𝜔𝑛. 

The inset figures 5.16 A-C indicate that each of the PFC about 𝜔𝐷, 𝜔𝑚 and 𝜔𝑛 has different 

characteristic spatial vibration patterns. This suggests that each of those PFC correspond to 

different phonon modes. In Figure 5.16A, the vertical line corresponds to the constant 
𝜔𝐷

2𝜋
. 

While the additional lines about 
𝜔𝐷

2𝜋
 are equally spaced away at any particular value of 𝑆𝑖𝑛, Δ𝜔 

however gets increased with 𝑆𝑖𝑛. When 𝑆𝑖𝑛 > 18 𝑑𝐵𝑚, we further evidence secondary inter-

leaved spectral lines i.e. the spectral lines are formed between the nominal comb lines. Such 

features were also previously observed in the experimental results of two-mode three-wave 

mixing (Cyan regions of Figure 5.3). 

 

 

 

Figure 5.17: Drive Level Dependence of Frequency Combs (Contd.). A-C: The drive level 

𝑆𝑖𝑛  dependence of 
𝜔𝑛+

2𝜋
, 

𝜔𝑚

2𝜋
, 

𝜔𝑚+𝜔𝑛+

2𝜋
 respectively. Here again, 𝑆𝑖𝑛 (

𝜔𝐷

2𝜋
= 3.857 𝑀𝐻𝑧) = 4 −

23.8 𝑑𝐵𝑚. 
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In contrast to Figure 5.16A, Figures 5.16B and 5.16C does not feature even a single vertical line. 

This is due to the 𝑆𝑖𝑛 dependence of both 𝜔𝑚(𝑛) and Δ𝜔 = |𝜔𝐷 − �̃�𝑖|. Now, to understand 

these dependencies further, the trends associated with 𝜔𝑚 and 𝜔𝑛 are examined. Figures 5.17A 

and 5.17B plot out 
𝜔𝑚

2𝜋
 and 

�̃�𝑛+

2𝜋
=

1

2𝜋
(𝜔𝑛 + 𝜔𝐷 − �̃�𝑖) for varying 𝑆𝑖𝑛 and these show that 𝜔𝑚 and 

𝜔𝑛 are related to 𝑆𝑖𝑛 by peculiar nonlinear functions. Despite such intriguing dependences, 

𝜔𝑚 + 𝜔𝑛+  is always 𝜔𝐷  for any value of 𝑆𝑖𝑛  (Figure 5.17C). Unlike the interesting 𝑆𝑖𝑛 

dependency of 𝜔𝑚(𝑛+) , Δ𝜔  has a linear relationship with 𝑆𝑖𝑛  (Figure 5.18). This linear 

dependence of Δ𝜔 was also observed in PFC via two-mode three-wave mixing (Figure 5.3). 

Further, Δ𝜔 at any value of 𝑆𝑖𝑛 is same for all of the component combs (Figure 5.18). 

 

 

 

Figure 5.18: Frequency Comb Spacing. The spacing of frequency combs formed around 𝜔𝑚, 

𝜔𝑛 and 𝜔𝐷 respectively. Here again, 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.857 𝑀𝐻𝑧) = 4 − 23.8 𝑑𝐵𝑚. 

 

While the 𝑆𝑖𝑛 dependence is clear, the relevance of 
𝜔𝐷

2𝜋
 to PFC is now studied. The dotted line 

in Figure 5.19 shows the 𝑆𝑖𝑛 threshold for the intrinsic excitation of additional phonon modes 

with frequencies 
𝜔𝑚

2𝜋
 and 

𝜔𝑛+

2𝜋
. While such an intrinsic process is necessary, it is not sufficient to 

guarantee PFC formation. In our experiments, the PFC is only formed when 
𝜔𝐷

2𝜋
 is also set 

above 3.857 𝑀𝐻𝑧. In other words, to observe PFC, both 𝑆𝑖𝑛 and 𝜔𝐷 should be set to a specific 

range of values. Further, similar to the two-mode three-wave mixing (Figure 5.5), Δ𝜔 further 

stays constant with 
𝜔𝐷

2𝜋
 for any particular value of 𝑆𝑖𝑛 which also indicates that the operative 

PFC is in the ‘DNR-Duffing’ regime.  
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Figure 5.19: Frequency Comb Spacing (Contd.). The spacing of frequency combs for 

𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= (3.85 𝑀𝐻𝑧 − 3.865 𝑀𝐻𝑧)) = 4 − 23.8 𝑑𝐵𝑚. The absence of colour or white-colour 

indicates the absence of frequency comb for that drive condition. The dotted black line 

indicates the parametric resonance threshold. The drive level 𝑆𝑖𝑛 above this threshold line 

leads to the excitation of 
𝜔𝑚

2𝜋
 and 

𝜔𝑛+

2𝜋
. 

 

In the penultimate paragraph, we had discussed the nonlinear functional relationship between 

𝜔𝑚(𝑛+) and 𝑆𝑖𝑛. Further, we had also shown that the PFC is not formed if 
𝜔𝐷

2𝜋
< 3.857 𝑀𝐻𝑧. 

While PFC is absent, at high-enough values of 𝑆𝑖𝑛, the tones of frequencies 𝜔𝑚 and 𝜔𝑛+ 

continue to get excited even for 
𝜔𝐷

2𝜋
< 3.857 𝑀𝐻𝑧 . Hence, the comparison between 𝑆𝑖𝑛 

dependences of 𝜔𝑚(𝑛+) corresponding to PFC and non-PFC stages (i.e. 
𝜔𝐷

2𝜋
> 3.857 𝑀𝐻𝑧 and 

𝜔𝐷

2𝜋
< 3.857 𝑀𝐻𝑧 respectively) can sketch out the correlation of PFC process and nonlinear 𝑆𝑖𝑛 

dependency of 𝜔𝑚(𝑛+) (Figures 5.17A and 5.17B). To this end, we plot 𝜔𝑚 and 𝜔𝑛+  for different 

values of 𝑆𝑖𝑛 and 𝜔𝐷. Figures 5.20A-C indicate that the simultaneous nonlinear downshifts and 

upshifts of 𝜔𝑚 and 𝜔𝑛+ only occur during the operation of PFC process. Despite such shifts, 

the condition 𝜔𝑚 + 𝜔𝑛+ = 𝜔𝐷 is always satisfied. Yet, 𝜔𝑚 − 𝜔𝑛+ is 𝜔𝐷 dependent.  
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Figure 5.20: Comb vs. Non-Comb Processes. A-C: The value of 
𝜔𝑚

2𝜋
, 

𝜔𝑛+

2𝜋
 and 

𝜔𝑚+𝜔𝑛+

2𝜋
 for 

different drive frequencies 
𝜔𝐷

2𝜋
 and drive levels 𝑆𝑖𝑛 respectively. The colour-maps indicate the 

values of these frequencies. The absence of colour or white-colour indicates the absence of 

frequency comb for that drive condition. The sketched planes correspond to the nominal 
𝜔𝐷

2𝜋
 

dependence of 
𝜔𝑚

2𝜋
, 

𝜔𝑛+

2𝜋
 and 

𝜔𝑚+𝜔𝑛+

2𝜋
 i.e. in the absence of three mode four-wave mixing. Note: 

The projections of 3-D plots on the 𝑆𝑖𝑛 −
𝜔𝐷

2𝜋
 plane are also shown for clarity. 

 

5.5. Analytical Formulation of Phononic Frequency Combs 

 

Appendices B-D present the analytical formulation of PFC via two-mode three-wave mixing, 

two-mode pumped three-wave mixing and three-mode four-wave mixing processes 

respectively. Here, the Poincare-Lindstedt (PL) method is adapted. 
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5.6. Steps Ahead for New Explorations 

 

5.6.1. Recap 

 

Until now, in this chapter, we had discussed the experimental observations related to three 

characteristic PFC pathways.  

 

1. The two-mode three-wave mixing results in PFC that spans two phonon modes. Here, the 

drive frequency is set within a specific window of the resonant band associated with one 

phonon mode. Now, if the amplitude associated with this drive is increased above a threshold 

value, one another phonon mode also gets excited. And, with further increase in the drive 

amplitude, the PFC is then formed through high-order interactions. The spacing associated 

with PFC is defined by the separation between the drive frequency and resonant frequency of 

the driven phonon mode. 

 

2. The two-mode pumped three-wave mixing also produces PFC that spans two phonon 

modes. However, unlike three-wave mixing, two drive frequencies are involved. These 

frequencies are set anywhere within the resonant band of one phonon mode. After a 

characteristic drive level threshold, the PFC is formed through the intrinsic excitation of 

another phonon mode. The spacing associated with PFC corresponds to the separation 

between two drive frequencies. 

 

3. The three-mode four-wave mixing, in contrast to the first two cases, results in PFC that span 

three phonon modes. Here again, similar to two-mode three-wave mixing, the drive frequency 

is set within a specific window of the resonant band corresponding to one phonon mode. 

However, when the drive level is increased above the characteristic threshold, two additional 

phonon modes get excited which in turn results in PFC.  

 

These cases thus show the feasibility of PFC in the realm of micromechanical resonators. 
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5.6.2. Hypothetical Phononic Frequency Comb Pathways 

 

Despite the existence proofs, the demonstrated PFC pathways merely represent discrete 

snapshots of a complicated yet unified problem set. However, before getting into the 

generalization of PFC, we hypothesize a few other PFC pathways. 

 

 

 

Figure 5.21: A-B: Phononic frequency combs via two-mode pumped three-wave mixing and 

three-mode pumped four-wave mixing respectively.  

 

• Three-Mode Pumped Four-Wave Mixing: Similar to a threshold dependent two-mode 

pumped three-wave mixing pathway (Figure 5.21A) in a two phonon mode system, an 

analogous mechanism may also exist in a three-mode system (Figure 5.21B). Through such 

a possibility, PFC can emerge about three phonon mode frequencies. Here again, the 

spacing associated with PFC may also be set by the separation between two drive 

frequencies. 

 

• (𝑁 + 1)-Wave Mixing and Pumped (𝑁 + 1)-Wave Mixing – Coexistence or Transition: In 

‘(𝑁 + 1)-wave mixing’ pathway, a single drive frequency develops into a series of 

frequencies with an equidistant spacing. On the other hand, in pumped (𝑁 + 1)-wave 

mixing, two frequencies (corresponding to the drive and pump) develop into a series of 

frequencies with an equidistant spacing (Figure 5.22B). Now, let us consider the case 

where one or both of the drive frequencies can independently develop into PFC via 
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(𝑁 + 1)-wave mixing (Figure 5.22A). In this scenario, there can be two possible routes. 1. 

The independent (𝑁 + 1)-wave mixing pathways corresponding to each of the drive 

frequencies and the pumped (𝑁 + 1)-wave mixing pathway between the two drive 

frequencies may always co-exist (Figure 5.22C). Due to this co-existence, the nature of 

each component pathways may or may not be altered. 2. There may be distinct bounded 

regimes associated with each of these pathways with the transitions occuring at the 

characteristic boundaries. 

 

 

 

Figure 5.22: A-B: Phononic frequency combs via two-mode three-wave mixing and two-mode 

pumped three-wave mixing respectively; C: Coexistence of A and B. 

 

• Two-Mode Three-Wave Mixing and Three-Mode Four-Wave Mixing – Coexistence or 

Transition: In ‘two-mode three-wave mixing’ pathway, a strongly driven phonon mode 

intrinsic couples to another phonon mode to produce PFC. On the other hand, in ‘three-

mode four-wave mixing’ pathway, a strongly driven phonon mode intrinsic couples to two 

additional phonon modes to produce PFC. Let us now consider the case where the driven 

phonon mode can couple to one another phonon mode through two-mode three-wave 
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mixing (Figure 5.23A)  and can also couple to two different phonon modes through three-

mode four-wave mixing (Figure 5.23B). In this situation, there can be two possibilities. 1. 

Both two-mode three-wave mixing and three-mode four-wave mixing pathways may co-

exist (Figure 5.23C). Due to this co-existence, the nature of each component pathways may 

or may not be altered. 2. There may exist bounded regimes corresponding to two-mode 

and three-mode four-wave mixing pathways and the transitions may therefore occur at the 

characteristic boundaries. 

 

 

 

Figure 5.23: A-B: Phononic frequency combs via two-mode three-wave mixing and three-mode 

four-wave mixing respectively; C: Coexistence of A and B. 

 

• PFC and Other Nonlinear Resonances – Coexistence or Transition: We now know that the 

PFC can be generated through either (𝑁 + 1)-wave mixing or pumped (𝑁 + 1)-wave 

mixing pathways in a system of 𝑁 coupled modes. While the PFC forms one specific 

nonlinear problem, there exist a wide variety of other nonlinear resonances for instance, 

PR. Let us now consider a hypothetical situation where there is an equal enough 

probability for one of the PFC pathways (Figure 5.24B) and a different nonlinear pathway 
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(Figure 5.24A). Here again, similar to the arguments presented in the previous points, 

there may be co-existence of each of the possible pathways (Figure 5.24C) or there may be 

characteristic zones for each of the possible pathways. 

 

 

 

Figure 5.24: A: Two-mode parametric resonance; B: Phononic frequency combs via three-mode 

four-wave mixing; C: Coexistence of A and B. 

 

• Three-Tone Excitation: In our experiments, we had at most applied two drive frequencies 

and this specific case of two drive frequencies had revealed the existence of ‘two-mode 

pumped three-wave mixing’ pathway. Now, we extend our discussion to a case of ‘three-

tone excitation’ where three drive frequencies are applied. Here, the following pathways 

are possible. 1. The three independent two-mode three-wave mixing pathways associated 

with each drive frequency; 2. The three two-mode pumped three-wave mixing pathways 

associated with each binary permutation of drive frequencies. Now, these six processes 

may co-exist or these may exist only in their characteristic regimes. 
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5.6.3. Generalization 

 

In Section 5.6.1, we had listed the experimental observed PFC pathways. Based on these, we 

had broadly classified PFC into two categories: 1. ‘(𝑁 + 1)-wave mixing’ and 2. ‘pumped 

(𝑁 + 1)-wave mixing’. 

 

Following this first step towards generalization, in Section 5.6.2, we had attempted to predict 

the possible outcome of slightly advanced experimental scenarios with the help of precursory 

knowledge related to (𝑁 + 1)-wave mixing and pumped (𝑁 + 1)-wave mixing. Henceforth, we 

had arrived at a few hypotheses. However, in real experiments, only one of these answers may 

be true. Hence, a clear understanding about such cases has to be sought. Thereupon, we 

should be able to predict the behaviour that results when 

 

1. both two-mode three-wave and pumped three-wave mixing processes can simultaneously be 

operative. 

2. both two-mode three-wave mixing and three-mode four-wave mixing processes can 

simultaneously be operative. 

3. both (𝑁 + 1) -wave and/or pumped (𝑁 + 1) -wave mixing and different nonlinear 

mechanism(s) can simultaneously be operative. 

4. three drive frequencies are applied. 

 

This higher-level understanding will form the next step towards generalization of the results, 

and also is precursory for more advanced experimental studies of PFC and for the subsequent 

steps towards generalization. 
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Chapter 6 

 

Conclusion 

 

The Microelectromechanical Systems (MEMS) based resonator technology has now enabled 

high-sensitivity sensors and high-accuracy clocks. During the development of such practical 

devices, it was quickly discovered that the vibrations of such miniaturized mechanical entities 

also render access to new physical regimes. It has thus become our vision to utilize the 

matured MEMS resonator technology for exploring such interesting physical regimes. This 

thesis entitled, “Phononic Frequency Combs” is one of the initial results of this vision. Here, as 

the title suggests, the first experimental observations of PFC are recorded and the theoretical 

basis for the same is discussed.  

The established resonant pathways including LR, DP and PR are the salient features of 

micromechanical resonator. The LR represents a manifestation of the nominal combination of 

forces including inertial, spring and damping. However, the DP and PR characterise specific 

deviations from the nominal case of LR and can be included in the broad category of 

‘nonlinear resonance’. The key feature of DP is the drive amplitude dependent resonant 

frequency modulation- also typically referred to as ‘amplitude-to-frequency effect’. On the 

other hand, the noticeable aspect of PR is that the drive mode causes self-excitation of other 

modes through an associated intrinsic coupling. 

 

These distinctive salient features of micromechanical resonator namely LR, DP and PR can be 

unified using a generalized Fermi-Pasta-Ulam (FPU) framework. This general formalism can 

not only demonstrate LR, DP and PR but also the new PFC. The numerical prediction of PFC 

[14] proves this aspect and the drive amplitude and frequency controls portray the underlying 

physical pathway of PFC.  

 

However, owing to the long computation times, systematic numerical studies of complex FPU 

phenomena including PFC may not be practically possible. Hence, accessible experimental 

test-beds are important. The micromechanical resonator, due to the access to multiple modes 
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with strong modal couplings, ease of their experimental control and their informative 

experimental characterization, can be extremely useful for the exploration of FPU phenomena. 

 

We have then shown the experimental evidences of PFC in a micromechanical resonator. 

These evidences include two-mode three-wave mixing (Section 5.2, [13]), two-mode pumped 

three-wave mixing (Section 5.3, [76-77]) and three-mode four-wave mixing (Section 5.4, [78]) 

(Figure 6.1).  

 

 

 

Figure 6.1: A-C: Phononic frequency combs via two-mode three-wave mixing (input frequency: 

𝜔𝐷); two-mode pumped three-wave mixing (input frequencies: 𝜔𝐷 and 𝜔𝑃); three-mode four-

wave mixing (input frequency: 𝜔𝐷) respectively. 

 

The two-mode three-wave mixing results from the intrinsic coupling among two phonon 

modes and one drive tone; The two-mode pumped three-wave mixing results from the 

intrinsic coupling among two phonon modes, drive and pump frequencies; three-mode four-

wave mixing results from the intrinsic coupling among three phonon modes and one drive 

tone. Through these large number of experimental observations, PFC can thus emerge as a 

new salient feature of micromechanical resonator. 



69 
 

Chapter 7 

 

Future Work 

 

This thesis has presented the initial evidence for PFC in a micromechanical resonator. Hence, 

there exist a lot of new directions for the development of PFC. In this chapter, we discuss 

those opportunities under different sections. 

 

7.1. Observation of New Frequency Combs in Micromechanical 

Resonator 

 

 

Figure 7.1: Exploring New forms of Phononic Frequency Combs. Reprinted figure with 

permission from [L. S. Cao, D. X. Qi, R. W. Peng, M. Wang, and P. Schmelcher, Physical review 

letters, vol. 112, p. 075505, 2014.] Copyright (2014) by the American Physical Society. 

 

We have shown three representative kinds of PFC viz. ‘two-mode three-wave mixing’, ‘two-

mode pumped three-wave mixing’ and ‘three-mode four-wave mixing’. However, these may 

not be the only possible pathways for the generation of PFC. There may exist further new 
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types of PFC. This idea can straightforwardly be validated by the additional numerical 

evidences of [14] and our follow-on experimental results [79] (Figure 7.1). Hence, it will be an 

interesting experimental practice to actively research such new observations in 

micromechanical resonators through logical extension of the initial experimental results of 

PFC viz. increasing the number of coupling elements [80-84], the number of coupled normal 

modes [59-62] and the coupling strength [85-86].  

 

7.2. First-Principles Modelling of Phononic Frequency Combs in 

Micromechanical Resonator 

 

 

 

Figure 7.2: First-Principles Modelling of Micromechanical Frequency Combs. 
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While we have presented the conceptual understanding and feasibility of PFC, the real 

physical (mechanical) nonlinearities which are responsible for its emergence in a 

micromachined vibratory device should also be extracted through the first-principles 

modelling approaches including continuum elastic modelling [87-88]. Such studies are 

important for the predictive engineering of micromechanical frequency combs with high-

reproducibility. In addition, the first-principles studies may also reveal the optimization 

protocols for such frequency combs.  

 

7.3. Observation of New FPU Phenomena in Micromechanical 

Resonator 

 

 

 

Figure 7.3: Exploring New FPU Phenomena using Micromechanical Resonators. 
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In this thesis, we have shown experimental results demonstrating the formation of PFC in 

micromechanical resonators. However, multiple unexplored FPU phenomena may also be 

equally feasible in this physical system. Hence, it will again be interesting to explore such 

possible mechanisms. 

 

7.4. Mathematical Treatment of Phononic Frequency Combs 

 

The mathematical solution of FPU framework for a single tone drive 𝑃 = 𝑃𝐷 cos(𝜔𝐷𝑡) ; 𝜔𝐷 ≅

𝜔𝜃; 𝜃 ∈ {1,2, … , 𝑁} has historically been conceived as follows. 

 

 

 

Figure 7.4: Mathematical Understanding of Frequency Combs. 

 

In the absence of PR, the displacement of driven mode 𝑄𝜃∈𝑞 is 𝐴𝜃 cos(𝜔𝜃𝑡) ; 𝜃 ∈ 𝑞. However, 

in the presence of PR, the other coupled modes may also get excited and their motion can be 

captured as 𝐴𝑞 cos(𝜔𝜀𝑡) ; 𝜔𝜀 ≅ 𝜔𝑞 (Section 2.3). The displacement amplitudes 𝐴𝑞 are however 

dependent on the specific system parameters including 𝜔𝑞 , 휁𝑞 , 𝛼𝐹𝑃𝑈, 𝐴𝑞,𝑖,𝑗, 𝑃𝐷&𝜔𝐷. 

 

Now, the experiments of [13, 78] and numericals of [14] had shown the possibility to obtain an 

alternative solution of ‘frequency combs’. The modal displacement corresponding to this 

solution is  
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𝑄𝜃 = ∑ 𝐴𝜃

𝑛∈𝑍

cos ((𝜔𝜃 + 𝑛(𝜔𝜃 − 𝜔𝐷))𝑡) 

𝑄𝑞≠𝜃 = ∑ 𝐴𝑞

𝑛∈𝑍

cos ((𝜔𝜀 + 𝑛(𝜔𝜃 − 𝜔𝐷))𝑡) ; 𝜔𝜀 ≅ 𝜔𝑞 

(8.1) 

 

Hence, fundamentally, we have two possible solutions for the same dynamics (Figure 7.4). 

This also means that the motion of a physical device which is engineered with a specific set of 

physical parameters 𝜔𝑞 , 휁𝑞 , 𝛼, 𝐴𝑞,𝑖,𝑗 can either be described by the standard solutions or our 

new solution of frequency combs (Figure 7.4). However, physically, only one of these solutions 

might actually materialize. Hence, rigorous mathematical efforts [89-92] are warranted to 

chart out the regimes specific to each of such patterns similar to the previous experimental [13, 

78] and numerical [14] efforts. 

 

 

 

Figure 7.5: Experimental and Numerical Mapping of Frequency Combs. Reprinted figure 

with permission from [L. S. Cao, D. X. Qi, R. W. Peng, M. Wang, and P. Schmelcher, Physical 

review letters, vol. 112, p. 075505, 2014.] Copyright (2014) by the American Physical Society. 
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7.5. Micromechanical Resonant Frequency Tracking: A Key 

Application of Phononic Frequency Combs 

 

The PFC is composed of spectral lines (𝜔𝜃 + 𝑛(𝜔𝜃 − 𝜔𝐷)); (𝜔𝜀 + 𝑛(𝜔𝜃 − 𝜔𝐷)). If 𝐴𝑞≠𝜃 ≪ 𝐴𝜃, 

then the total motion of micromechanical resonator can be approximated to 

∑ 𝐴𝜃𝑛∈𝑍 cos ((𝜔𝜃 + 𝑛(𝜔𝜃 − 𝜔𝐷))𝑡). While this represents a series of equidistant frequencies, 

the corresponding temporal signature is a train of periodic pulses which are mode-locked to 

the modal frequency 𝜔𝜃. In other words, we obtain an amplitude modulated sinusoidal wave 

of frequency 𝜔𝜃 (Figure 7.6). 

 

 

 

Figure 7.6: Spectral and Temporal Manifestation of Phononic Frequency Combs. 

 

 

 

Figure 7.7: Phononic Frequency Combs based Micromechanical Resonant Tracking. 
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Figure 7.8: First Experimental Demonstration of Resonant Tracking utilizing Phononic 

Frequency Combs. A: The resonant response of length-extensional mode associated with the 

micromechanical resonator. B: The frequency spectrum and C: waveform corresponding to the 

output signal for the drive condition 𝑆𝑖𝑛 (
𝜔𝐷

2𝜋
= 3.8552 𝑀𝐻𝑧) = 10 𝑑𝐵𝑚; D: The temporal 

evolution of self-excited resonant frequency (𝜔𝜃) and E: the Allan Deviation 𝜎(𝜏) of frequency 

counts. 
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While the signal of frequency 𝜔𝐷 ≅ 𝜔𝜃 which is synthesized by the waveform generator is fed 

into the micromechanical resonator (Figure 7.8), the output corresponds to a sinusoidal wave 

of frequency 𝜔𝜃. Now, to track micromechanical resonance frequency 𝜔𝜃, the output has to be 

simply probed using a frequency counter (Figure 7.8). Such an approach to resonant frequency 

tracking can be harnessed for timing [93-94] and sensing [95-106] applications. Figure 7.9 

presents the experimental demonstration of this PFC based resonant tracking. Here, the 

evolution of resonant frequency (Figure 7.8A) associated with the length-extensional mode of 

micromechanical resonator is tracked (Figure 7.8D) using the frequency counter (Agilent 

53220A) through the generation of PFC (Figures 7.8B and 7.8C)). 

 

 

 

Figure 7.9: Feedback Oscillator vs. Phononic Frequency Combs based Oscillator. 

 

The PFC based resonant tracking, unlike feedback oscillator-based approach [65, 67, 107-108], 

does not require an external electronic amplifier connected up in a feedback configuration 

(Figure 7.9). Hence, this new approach not only removes the additional design overhead 

associated with the amplifier but also eliminates associated electronic noise sources and the 

undesired dynamical electronic noise interactions with resonator dynamics [109-110]. As a 

result, high-stable measurements of resonant frequency can be achieved (Figure 7.8E). In 

addition to the stochastic fluctuations, Figure 7.8D also reveals the drift of resonant frequency 

with time. The physical origins of such drift can be either dynamical PFC process or ambient 

changes. While the PFC induced drift may reveal a new possibility to control the resonant 

frequency and its associated fluctuations, the ambience induced drift can be directly relevant 

to sensing applications. Hence, further investigations of PFC based resonant tracking are 

warranted for both fundamental understanding and its application in timing and sensing. 

  

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwjU7bqR-djVAhXBShQKHfuUB8IQjhwIBQ&url=https%3A%2F%2Fwww.ebay.com%2Fp%2Fkeysight-agilent-53220a-universal-frequency-counter-350mhz-100ps-opt-010-106%2F545809533%3F_trksid%3Dp2047675.l2644&psig=AFQjCNGYLnej4Rt7-C1gSqZiiWJxswotTA&ust=1502876430003674
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The PFC based resonant tracking approach may also in general be applicable to a number of 

other physical oscillators for instance, atomic clocks and may potentially be more useful than 

the standard feedback oscillator configuration [107-108]. 

 

7.6. Inspiring other Experimentalists 

 

 

 

Figure 7.10: Realization of Frequency Combs in Other Physical Systems. 

 

Up till now, the specific pathways associated with PFC have been evidenced in the numerical 

simulations of PFC chains [14] and experimental characterization of micromechanical 

resonator [13]. In this manner, a theoretical to experimental leap has already been achieved. 

However, the micromechanical resonator might not be the only physical system that exhibits 

such novel frequency comb pathways. Owing to the observations of other FPU phenomena 

(for instance, PR [43-52, 63-64]) in disparate physical systems, the reported frequency comb 

processes [13, 76-79] may also possibly emerge in such systems (Figure 7.10). In addition, the 

frequency combs may also appear in other mechanical systems including nanomechanics [111], 

optomechanics [112] and granular matter [113]. Hence, an active search for the systematic 
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observations of frequency combs in these experimental systems may be warranted. 

Meanwhile, using the first experimental venue of micromechanical resonator, we are 

interested in systematically charting out a wide-range of new concepts pertaining to frequency 

combs. Such systematic evaluation of frequency combs will serve as a guideline for other 

experimentalists who are motivated towards the realization of frequency combs in their 

physical systems. 
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Appendix A 

 

Fabrication of Micromechanical Resonator by 

PiezoMUMPs Process 

 

A.1. SOI Substrate 

 

A n-type double-side polished silicon-on-insulator (SOI) wafer (Figure A.1) is the substrate for 

the PiezoMUMPs process. Its diameter and orientation are 150 mm and (100) respectively. The 

component layers of SOI wafer are as follows.  

 

1. Top: Silicon layer of thickness: 10 ± 1 µm  

2. Middle: Oxide layer of thickness: 1 ± 0.05 µm  

3. Bottom: Substrate of thickness: 400 ± 5 µm  

 

 

 

Figure A.1: Schematic of SOI Wafer. 

 

A.2. Silicon Doping 

 

A phosphosilicate glass (PSG) layer is deposited on top of the SOI substrate (Figure A.2A). 

Following this precursory step, the ‘Silicon doping’ is carried out. For this purpose, the SOI 

substrate is annealed at 1050°C for 1 hour in Argon (Figures A.2B and A.2C). Once the Silicon is 

doped through this annealing process, the previously deposited PSG layer is removed via wet 

chemical etching (Figure A.2D). 
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Figure A.2: Silicon Doping. 

 

A.3. Growth of Thermal Oxide 

 

A 2000 Å  thermal oxide is grown on top of the doped SOI substrate (Figure A.3A). Now, the 

PADOXIDE mask (Figure A.3C) defines the area where the thermal oxide layer should be 

removed. Hence, for this patterning process, we first coat the doped SOI wafer with positive 

photoresist (Figure A.3B) and then expose this photoresist layer with light coming through the 

PADOXIDE mask (Figure A.3C). In this manner, the patterns associated with the PADOXIDE 

mask are lithographically transferred to the photoresist (Figure A.3C). Once the light-exposed 

regions of photoresist are removed, the oxide layer beneath the photoresist becomes 

unprotected. Hence, the oxide layer corresponding to these regions is removed by wet etching 

and acid resist strip. We will thus be left with the required oxide patterns on the SOI substrate 

(Figure A.3D). 
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Figure A.3: Thermal Oxide Growth. 
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Figure A.4: Piezoelectric Film Liftoff. 
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A.4. Piezoelectric Film Liftoff 

 

Aluminium Nitride (AlN) forms the functional component of our piezoelectric 

micromechanical resonator. The piezoelectric strain coefficient d33 of AlN is around 3.4 −

 6.5 𝑝𝐶/𝑁 [74]. First, we deposit a 0.5 µm thick AlN film on the processed SOI substrate (i.e. 

after SOI doping and thermal oxide growth) by reactive sputtering (Figure A.4A). Now, similar 

to the thermal oxide patterning process, the AlN film is also lithographically patterned using a 

PZFILM mask (Figures A.4B and A.4C). Hence, we will also be left with the AlN patterns on 

the SOI substrate along with the prior thermal oxide patterns (Figure A.4D). 

 

A.5. Pad Metal Liftoff 

 

Here, 20 nm thick Chromium and 1 µm thick Aluminium layers are deposited at first (Figure 

A.5A). The Chromium forms the intermediate adhesion layer connecting Aluminium with 

Silicon. Again, similar to the previous liftoff processes, these metal layers are also 

lithographically patterned (Figures A.5B and A.5C). However, a PADMETAL mask is used for 

this purpose. Hence, the Al patterns are formed on the SOI substrate (Figure A.5D). 

 

A.6. Silicon Patterning 

 

The SOI wafer is coated with the UV-sensitive photoresist (Figure A.6A). The photoresist is 

then patterned by exposing it to UV light coming through the SOI mask. The exposed sections 

of photoresist are then removed (Figure A.6B). Now, the unprotected oxide layer which is 

present underneath is cut off through Reactive Ion Etching (RIE). The Silicon is then etched 

down to the buried oxide layer of SOI substrate through Deep Reactive Ion Etching (DRIE) 

(Figure A.6C). This DRIE process is carried out through Inductively Coupled Plasma (ICP) 

technology and a special SOI recipe is utilized to avoid undercutting of Silicon once the Buried 

Oxide is reached during DRIE [74]. Once the SOI is patterned, the photoresist is then 

stripped-off. 
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A.6. Polyimide Coat 

 

Prior to substrate patterning, the front side of SOI wafer bearing the Si, Al and AlN patterns 

should be protected. Hence, a polyimide layer is applied on the top surface of this side of the 

wafer (Figure A.7). 

 

 

Figure A.5: Pad Metal Liftoff. 
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Figure A.6: Silicon Patterning. 

 

A.8. Substrate Patterning 

 

Now, the SOI wafer is reversed. The top surface of bottom side is coated with photoresist and 

is subsequently patterned through the TRENCH mask (Figures A.8A and A.8B). The bottom 

side oxide layer and substrate Silicon layer (down to the buried oxide layer) are removed 

through RIE and DRIE respectively. After these etching processes, the buried oxide gets 
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exposed in the regions defined by the TRENCH mask. Now, this unprotected oxide layer is 

removed through wet-etching. Hence, we obtain the backside trenches (Figure A.8C). 

 

 

 

Figure A.7: Polyimide Coating. 

 

 

 

Figure A.8: Substrate Patterning. 
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A.9. Polyimide Removal 

 

The front side protection material is now removed using a dry etching process.  

 

Thus, the piezoelectric micromechanical resonator is fabricated (Figure A.9). 

 

 

 

Figure A.9: Microfabricated Piezoelectric Free-Free Beam Resonator. 
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Appendix B 

 

Analytical Formulation of Two-Mode Three-Wave 

Mixing 

 

Motivated by the experimental results presented in Section 5.2, let us consider a truncated 

phase space spanning two normal modes 𝑄𝑎 , 𝑄𝑏. 

 

�̈�𝑎 + 𝜔𝑎
2𝑄𝑎 + 2휁𝑎�̇�𝑎 + 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏𝑄𝑏

2 = 𝑃𝐷 cos(𝜔𝐷𝑡) (B.1) 

�̈�𝑏 + 𝜔𝑏
2𝑄𝑏 + 2휁𝑏�̇�𝑏 + 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏𝑄𝑎𝑄𝑏 = 0 (B.2) 

 

Now, based on the principles of PL method, the time 𝑡 is first re-scaled to 𝜏𝑞; 𝑞 ∈ {𝑎, 𝑏} as 𝜏𝑞 =

�̃�𝑞𝑡. Consequently, the time derivative 𝜕𝑡
2 is re-written in terms of the derivative with respect 

to 𝜏𝑞 as 𝜕𝑡
2 = �̃�𝑞

2𝜕𝜏𝑞
2 . After substituting these, the equations B.1 and B.2 become 

 

�̃�𝑎
2𝜕𝜏𝑎

2 𝑄𝑎 + 𝜔𝑎
2𝑄𝑎 + 2𝑗휁𝑎𝜕𝜏𝑎

�̃�𝑎𝑄𝑎 + 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏𝑄𝑏
2 = 𝑃𝐷 cos (

𝜔𝐷

�̃�𝑎
𝜏𝑎) (B.3) 

�̃�𝑏
2𝜕𝜏𝑏

2 𝑄𝑏 + 𝜔𝑏
2𝑄𝑏 + 2𝑗휁𝑏𝜕𝜏𝑏

�̃�𝑏𝑄𝑏 + 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏𝑄𝑎𝑄𝑏 = 0 (B.4) 

 

We now set the variables 𝑄𝑞 and �̃�𝑞 in terms of the order parameter 휀 as, 

 

𝑄𝑞 = ∑ 휀𝑛𝑄𝑞
(𝑛)

𝑛=0

; �̃�𝑞
2 = 𝜔𝑞

2 + ∑ 휀𝑛�̃�𝑞,𝑛
2

𝑛=1

 (B.5) 

 

𝑄𝑎
(0)

 and 𝑄𝑏
(0)

 correspond to the solutions of equations B.3 and B.4 in the absence of nonlinear 

coupling terms respectively. 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(0)
+ 2𝑗휁𝑎𝜔𝑎𝜕𝜏𝑎

𝑄𝑎
(0)

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) (B.6) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(0)
+ 2𝑗휁𝑏𝜔𝑏𝜕𝜏𝑏

𝑄𝑏
(0)

= 0 (B.7) 
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That is, 𝑄𝑎
(0)

 will simply be cos(𝜔𝐷𝑡) with amplitude 
𝑃𝐷

𝜔𝑎
2−𝜔𝐷

2 +2𝑗𝜁𝜔𝐷
 and 𝑄𝑏

(0)
≅ 0. 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(1)
+ 2𝑗휁𝑎𝜔𝑎𝜕𝜏𝑎

𝑄𝑎
(1)

+ 2𝑗휁𝑎�̃�𝑎,1𝜕𝜏𝑎
𝑄𝑎

(0)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏𝑄𝑏
(0)

𝑄𝑏
(0)

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(B.8) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(1)
+ 2𝑗휁𝑏𝜔𝑏𝜕𝜏𝑏

𝑄𝑏
(1)

+ 2𝑗휁𝑏�̃�𝑏,1𝜕𝜏𝑏
𝑄𝑏

(0)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐𝑄𝑎
(0)

𝑄𝑏
(0)

= 0 
(B.9) 

 

Motivated by the experimental results, the solution 𝑄𝑏
(1)

 is assumed to contain the tone 

cos (
�̃�𝑎

2
𝑡). The amplitude of this tone will then be proportional to  [(�̃�𝑏

2 −
�̃�𝑎

2

4
)

2

+ 휁𝑏
2�̃�𝑎

2]
−

1

2

. 

The solution 𝑄𝑎
(1)

 continues to contain only a single tone cos(𝜔𝐷𝑡).  

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(2)
+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏

(0)
𝑄𝑏

(1)
]

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(B.10) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(2)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(1)

+ 𝑄𝑎
(1)

𝑄𝑏
(0)

] = 0 
(B.11) 

 

𝑄𝑎
(2)

 will still be a single tone solution of cos(𝜔𝐷𝑡). 𝑄𝑏
(2)

 will however contain an additional 

tone cos ((𝜔𝐷 −
�̃�𝑎

2
) 𝑡) = cos ((

�̃�𝑎

2
+ (𝜔𝐷 − �̃�𝑎)) 𝑡) which is generated through 𝑄𝑎

(0)
𝑄𝑏

(1)
. 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(3)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏
(0)

𝑄𝑏
(2)

+ 𝑄𝑏
(1)

𝑄𝑏
(1)

] = 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(B.12) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(3)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(2)

+ 𝑄𝑎
(1)

𝑄𝑏
(1)

+ 𝑄𝑎
(2)

𝑄𝑏
(0)

] = 0 
(B.13) 

 

Now, 𝑄𝑎
(3)

 will also contain the tone cos(�̃�𝑎𝑡) which is generated through 𝑄𝑏
(1)

𝑄𝑏
(1)

. 𝑄𝑏
(3)

 will 

however not contain any additional tones compared to 𝑄𝑏
(2)

. 
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𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(4)
+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏

(0)
𝑄𝑏

(3)
+ 2𝑄𝑏

(1)
𝑄𝑏

(2)
] = 𝑃𝐷 cos (

𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(B.14) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(4)
+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎

(0)
𝑄𝑏

(3)
+ 𝑄𝑎

(1)
𝑄𝑏

(2)
+ 𝑄𝑎

(2)
𝑄𝑏

(1)
+ 𝑄𝑎

(3)
𝑄𝑏

(0)
] = 0 

(B.15) 

 

𝑄𝑎
(4)

 and 𝑄𝑏
(4)

 will not contain any additional terms compared to 𝑄𝑎
(3)

 to 𝑄𝑏
(3)

 respectively.  

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,5
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(5)
+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏

(0)
𝑄𝑏

(4)
+ 2𝑄𝑏

(1)
𝑄𝑏

(3)
+ 𝑄𝑏

(2)
𝑄𝑏

(2)
]

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(B.16) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,5
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(5)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(4)

+ 𝑄𝑎
(1)

𝑄𝑏
(3)

+ 𝑄𝑎
(2)

𝑄𝑏
(2)

+ 𝑄𝑎
(3)

𝑄𝑏
(1)

+ 𝑄𝑎
(4)

𝑄𝑏
(0)

] = 0 

(B.17) 

 

𝑄𝑎
(5)

 will contain the tone cos((2𝜔𝐷 − �̃�𝑎)𝑡) = cos ((�̃�𝑎 + 2(𝜔𝐷 − �̃�𝑎))𝑡)  in addition to 

cos (�̃�𝑎𝑡)  and cos(𝜔𝐷𝑡) = cos ((�̃�𝑎 + (𝜔𝐷 − �̃�𝑎))𝑡)  and is generated through 𝑄𝑏
(2)

𝑄𝑏
(2)

. 𝑄𝑏
(5)

 

will not contain any additional tones compared to 𝑄𝑏
(4)

.  

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(6)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(6)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,5
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,6
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(6)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏
(0)

𝑄𝑏
(5)

+ 2𝑄𝑏
(1)

𝑄𝑏
(4)

+ 2𝑄𝑏
(2)

𝑄𝑏
(3)

] = 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(B.18) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(6)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(6)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,5
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,6
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(6)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(5)

+ 𝑄𝑎
(1)

𝑄𝑏
(4)

+ 𝑄𝑎
(2)

𝑄𝑏
(3)

+ 𝑄𝑎
(3)

𝑄𝑏
(2)

+ 𝑄𝑎
(4)

𝑄𝑏
(1)

+ 𝑄𝑎
(5)

𝑄𝑏
(0)

] = 0 

(B.19) 

 

𝑄𝑎
(6)

 will not contain any additional tones compared to 𝑄𝑎
(5)

.  However, 𝑄𝑏
(6)

 will contain an 

additional tone of cos ((
�̃�𝑎

2
− (𝜔𝐷 − �̃�𝑎)) 𝑡) through the term 𝑄𝑎

(3)
𝑄𝑏

(2)
. 
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𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(7)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(7)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(6)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,5
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,6
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,7
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(7)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏
(0)

𝑄𝑏
(6)

+ 2𝑄𝑏
(1)

𝑄𝑏
(5)

+ 2𝑄𝑏
(2)

𝑄𝑏
(4)

+ 𝑄𝑏
(3)

𝑄𝑏
(3)

]

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(B.20) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(7)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(7)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(6)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,5
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,6
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,7
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(7)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(6)

+ 𝑄𝑎
(1)

𝑄𝑏
(5)

+ 𝑄𝑎
(2)

𝑄𝑏
(4)

+ 𝑄𝑎
(3)

𝑄𝑏
(3)

+ 𝑄𝑎
(4)

𝑄𝑏
(2)

+ 𝑄𝑎
(5)

𝑄𝑏
(1)

+ 𝑄𝑎
(6)

𝑄𝑏
(0)

] = 0 

(B.21) 

 

𝑄𝑎
(7)

 will not contain any additional tones compared to 𝑄𝑎
(6)

.  However, 𝑄𝑏
(7)

 will contain an 

additional tone of cos ((
�̃�𝑎

2
+ 2(𝜔𝐷 − �̃�𝑎)) 𝑡)  through the term 𝑄𝑎

(5)
𝑄𝑏

(1)
. Hence, 𝑄𝑎

(7)
 will 

consist of the tones cos(�̃�𝑎𝑡) , cos ((�̃�𝑎 + (𝜔𝐷 − �̃�𝑎))𝑡)  and cos ((�̃�𝑎 + 2(𝜔𝐷 − �̃�𝑎))𝑡)  and 

𝑄𝑏
(7)

 will consist of the tones cos ((
�̃�𝑎

2
− (𝜔𝐷 − �̃�𝑎)) 𝑡), cos (

�̃�𝑎

2
𝑡), cos ((

�̃�𝑎

2
+ (𝜔𝐷 − �̃�𝑎)) 𝑡) 

and cos ((
�̃�𝑎

2
+ 2(𝜔𝐷 − �̃�𝑎)) 𝑡). 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(𝑛)

+ ∑ �̃�𝑎,𝑛1
2 𝜕𝜏𝑎

2 𝑄𝑎
(𝑛2)

𝑛1+𝑛2=𝑛

+ 𝜔𝑎
2𝑄𝑎

(𝑛)
+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 ∑ 𝑄𝑏

(𝑛1)
𝑄𝑏

(𝑛2)

𝑛1+𝑛2=𝑛−1

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(B.22) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(𝑛)

+ ∑ �̃�𝑏,𝑛1

2 𝜕𝜏𝑏
2 𝑄𝑏

(𝑛2)

𝑛1+𝑛2=𝑛

+ 𝜔𝑏
2𝑄𝑏

(𝑛)
+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 ∑ 𝑄𝑎

(𝑛1)
𝑄𝑏

(𝑛2)

𝑛1+𝑛2=𝑛−1

= 0 (B.23) 

 

By sequentially solving the equations B.22 and B.23, high-order solutions 𝑄𝑎
(𝑛>7)

 and 𝑄𝑏
(𝑛>7)

 

can be obtained. Through these iterations, a series of near-resonant tones cos ((�̃�𝑎 ±

𝑝(𝜔𝐷 − �̃�𝑎))𝑡) & cos ((
�̃�𝑎

2
± 𝑝(𝜔𝐷 − �̃�𝑎)) 𝑡) ; 𝑝 ∈ 𝑍  can be generated. Hence, the general 

solution for 𝑄𝑎(𝑏) is given by  
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𝑄𝑎 = 𝐴0
(𝑎)

cos(�̃�𝑎𝑡) + ∑ 𝐴𝑝
(𝑎)

𝑝≠0

cos((�̃�𝑎 + 𝑝Δ𝜔)𝑡) (B.24) 

𝑄𝑏 = 𝐴0
(𝑏)

cos (
�̃�𝑎

2
𝑡) + ∑ 𝐴𝑝

(𝑏)

𝑝≠0

cos ((
�̃�𝑎

2
+ 𝑝Δ𝜔) 𝑡) (B.25) 

 

with the amplitude |𝐴𝑝
(𝑎)

| ~[(�̃�𝑎
2 − (�̃�𝑎 + 𝑝Δ𝜔)2)2 + 4휁𝑎

2(�̃�𝑎 + 𝑝Δ𝜔)2]−
1

2; |𝐴𝑝
(𝑏)

| ~ [(�̃�𝑏
2 −

(
�̃�𝑎

2
+ 𝑝Δ𝜔)

2
)

2

+ 4휁𝑏
2 (

�̃�𝑎

2
+ 𝑝Δ𝜔)

2
]

−
1

2

; 𝑝 ∈ 𝑍  and the frequency spacing Δ𝜔 = |𝜔𝐷 − �̃�𝑎|. It 

should be noted that �̃�𝑎 is the re-normalized resonant frequency. While it is difficult to derive 

an analytical expression for �̃�𝑎  by PL method, its relationship can be understood by 

phenomenology. As shown in Figure 5.3, �̃�𝑎 stays constant at its nominal value 𝜔𝑎 up till the 

electrical drive power level 𝑆𝑖𝑛 = 5 𝑑𝐵𝑚. However, when 𝑆𝑖𝑛 is increased above this threshold 

value, �̃�𝑎 starts to linearly increase with 𝜔𝐷. 
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Appendix C 

 

Analytical Formulation of Two-Mode Pumped Three-

Wave Mixing 

 

Motivated by the experimental results presented in Section 5.3, let us consider a truncated 

phase space spanning two normal modes 𝑄𝑎 , 𝑄𝑏. 

 

�̈�𝑎 + 𝜔𝑎
2𝑄𝑎 + 2휁𝑎�̇�𝑎 + 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏𝑄𝑏

2 = 𝑃𝐷 cos(𝜔𝐷𝑡) + 𝑃𝑃 cos(𝜔𝑃𝑡) (C.1) 

�̈�𝑏 + 𝜔𝑏
2𝑄𝑏 + 2휁𝑏�̇�𝑏 + 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏𝑄𝑎𝑄𝑏 = 0 (C.2) 

 

Now, based on the principles of PL method, the time 𝑡 is first re-scaled to 𝜏𝑞; 𝑞 ∈ {𝑎, 𝑏} as 𝜏𝑞 =

�̃�𝑞𝑡. Consequently, the time derivative 𝜕𝑡
2 is re-written in terms of the derivative with respect 

to 𝜏𝑞 as 𝜕𝑡
2 = �̃�𝑞

2𝜕𝜏𝑞
2 . After substituting these, the equations C.1 and C.2 become 

 

�̃�𝑎
2𝜕𝜏𝑎

2 𝑄𝑎 + 𝜔𝑎
2𝑄𝑎 + 2𝑗휁𝑎𝜕𝜏𝑎

�̃�𝑎𝑄𝑎 + 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏𝑄𝑏
2 = 𝑃𝐷  cos (

𝜔𝐷

�̃�𝑎
𝜏𝑎) + 𝑃𝑃 cos (

𝜔𝑃

�̃�𝑎
𝜏𝑎) (C.3) 

�̃�𝑏
2𝜕𝜏𝑏

2 𝑄𝑏 + 𝜔𝑏
2𝑄𝑏 + 2𝑗휁𝑏𝜕𝜏𝑏

�̃�𝑏𝑄𝑏 + 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏𝑄𝑎𝑄𝑏 = 0 (C.4) 

 

We now set the variables 𝑄𝑞 and �̃�𝑞 in terms of 휀 as, 

 

𝑄𝑞 = ∑ 휀𝑛𝑄𝑞
(𝑛)

𝑛=0

; �̃�𝑞
2 = 𝜔𝑞

2 + ∑ 휀𝑛�̃�𝑞,𝑛
2

𝑛=1

 (C.5) 

 

𝑄𝑎
(0)

 and 𝑄𝑏
(0)

 correspond to the solutions of equations C.3 and C.4 in the absence of nonlinear 

coupling terms respectively. 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(0)
+ 2𝑗휁𝑎𝜔𝑎𝜕𝜏𝑎

𝑄𝑎
(0)

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) + 𝑃𝑃 cos (

𝜔𝑃

�̃�𝑎
𝜏𝑎) (C.6) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(0)
+ 2𝑗휁𝑏𝜔𝑏𝜕𝜏𝑏

𝑄𝑏
(0)

= 0 (C.7) 
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That is, 𝑄𝑎
(0)

 will consist of two tones cos(𝜔𝐷𝑡) and cos(𝜔𝑃𝑡) with amplitudes 
𝑃𝐷

𝜔𝑎
2−𝜔𝐷

2 +2𝑗𝜁𝜔𝐷
 

and 
𝑃𝑃

𝜔𝑎
2 −𝜔𝑃

2 +2𝑗𝜁𝜔𝑃
 respectively. However, 𝑄𝑏

(0)
≅ 0. 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(1)
+ 2𝑗휁𝑎𝜔𝑎𝜕𝜏𝑎

𝑄𝑎
(1)

+ 2𝑗휁𝑎�̃�𝑎,1𝜕𝜏𝑎
𝑄𝑎

(0)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏𝑄𝑏
(0)

𝑄𝑏
(0)

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) + 𝑃𝑃 cos (

𝜔𝑃

�̃�𝑎
𝜏𝑎) 

(C.8) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(1)
+ 2𝑗휁𝑏𝜔𝑏𝜕𝜏𝑏

𝑄𝑏
(1)

+ 2𝑗휁𝑏�̃�𝑏,1𝜕𝜏𝑏
𝑄𝑏

(0)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐𝑄𝑎
(0)

𝑄𝑏
(0)

= 0 
(C.9) 

 

Motivated by the experimental results presented in Figure 5.14, the solution 𝑄𝑏
(1)

 can either 

contain cos (
𝜔𝐷

2
𝑡) or cos (

𝜔𝑃

2
𝑡). For the sake of this analysis, we consider the case where 𝑄𝑏

(1)
 

contains cos (
𝜔𝐷

2
𝑡). The amplitude of this tone will then be proportional to  [(�̃�𝑏

2 −
𝜔𝐷

2

4
)

2

+

휁𝑏
2𝜔𝐷

2 ]
−

1

2
. The solution 𝑄𝑎

(1)
 continues to contain the previously generated tones cos(𝜔𝐷𝑡) and 

cos(𝜔𝑃𝑡).  

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(2)
+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏

(0)
𝑄𝑏

(1)
]

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) + 𝑃𝑃 cos (

𝜔𝑃

�̃�𝑎
𝜏𝑎) 

(C.10) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(2)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(1)

+ 𝑄𝑎
(1)

𝑄𝑏
(0)

] = 0 
(C.11) 

 

𝑄𝑎
(2)

 will not contain any additional tones compared to 𝑄𝑎
(1)

. 𝑄𝑏
(2)

 will however contain an 

additional tone cos ((𝜔𝑃 −
𝜔𝐷

2
) 𝑡) = cos ((

𝜔𝐷

2
+ (𝜔𝑃 − 𝜔𝐷)) 𝑡)  which is generated through 

𝑄𝑎
(0)

𝑄𝑏
(1)

. 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(3)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏
(0)

𝑄𝑏
(2)

+ 𝑄𝑏
(1)

𝑄𝑏
(1)

] = 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) + 𝑃𝑃 cos (

𝜔𝑃

�̃�𝑎
𝜏𝑎) 

(C.12) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(3)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(2)

+ 𝑄𝑎
(1)

𝑄𝑏
(1)

+ 𝑄𝑎
(2)

𝑄𝑏
(0)

] = 0 
(C.13) 
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𝑄𝑎
(3)

 and 𝑄𝑏
(3)

 will not contain any additional tones compared to 𝑄𝑎
(2)

 and 𝑄𝑏
(2)

 respectively.  

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(4)
+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏

(0)
𝑄𝑏

(3)
+ 2𝑄𝑏

(1)
𝑄𝑏

(2)
]

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) + 𝑃𝑃 cos (

𝜔𝑃

�̃�𝑎
𝜏𝑎) 

(C.14) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(4)
+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎

(0)
𝑄𝑏

(3)
+ 𝑄𝑎

(1)
𝑄𝑏

(2)
+ 𝑄𝑎

(2)
𝑄𝑏

(1)
+ 𝑄𝑎

(3)
𝑄𝑏

(0)
] = 0 

(C.15) 

 

𝑄𝑎
(4)

 and 𝑄𝑏
(4)

 will not contain any additional terms compared to 𝑄𝑎
(3)

 to 𝑄𝑏
(3)

 respectively.  

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,5
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(5)
+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏

(0)
𝑄𝑏

(4)
+ 2𝑄𝑏

(1)
𝑄𝑏

(3)
+ 𝑄𝑏

(2)
𝑄𝑏

(2)
]

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) + 𝑃𝑃 cos (

𝜔𝑃

�̃�𝑎
𝜏𝑎) 

(C.16) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,5
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(5)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(4)

+ 𝑄𝑎
(1)

𝑄𝑏
(3)

+ 𝑄𝑎
(2)

𝑄𝑏
(2)

+ 𝑄𝑎
(3)

𝑄𝑏
(1)

+ 𝑄𝑎
(4)

𝑄𝑏
(0)

] = 0 

(C.17) 

 

𝑄𝑎
(5)

 will contain the tone cos((2𝜔𝑃 − 𝜔𝐷)𝑡) = cos ((𝜔𝐷 + 2(𝜔𝑃 − 𝜔𝐷))𝑡)  in addition to 

cos (𝜔𝐷𝑡) and cos(𝜔𝑃𝑡) = cos ((𝜔𝐷 + (𝜔𝑃 − 𝜔𝐷))𝑡) and is generated through 𝑄𝑏
(2)

𝑄𝑏
(2)

. 𝑄𝑏
(5)

 

will not contain any additional tones compared to 𝑄𝑏
(4)

.  

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(6)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(6)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,5
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,6
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(6)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏
(0)

𝑄𝑏
(5)

+ 2𝑄𝑏
(1)

𝑄𝑏
(4)

+ 2𝑄𝑏
(2)

𝑄𝑏
(3)

]

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) + 𝑃𝑃 cos (

𝜔𝑃

�̃�𝑎
𝜏𝑎) 

(C.18) 
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𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(6)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(6)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,5
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,6
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(6)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(5)

+ 𝑄𝑎
(1)

𝑄𝑏
(4)

+ 𝑄𝑎
(2)

𝑄𝑏
(3)

+ 𝑄𝑎
(3)

𝑄𝑏
(2)

+ 𝑄𝑎
(4)

𝑄𝑏
(1)

+ 𝑄𝑎
(5)

𝑄𝑏
(0)

] = 0 

(C.19) 

 

𝑄𝑎
(6)

 will not contain any additional tones compared to 𝑄𝑎
(5)

.  However, 𝑄𝑏
(6)

 will contain an 

additional tone of cos ((
𝜔𝐷

2
− (𝜔𝑃 − 𝜔𝐷)) 𝑡) through the term 𝑄𝑎

(3)
𝑄𝑏

(2)
. 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(7)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(7)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(6)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,5
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,6
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,7
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(7)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 [2𝑄𝑏
(0)

𝑄𝑏
(6)

+ 2𝑄𝑏
(1)

𝑄𝑏
(5)

+ 2𝑄𝑏
(2)

𝑄𝑏
(4)

+ 𝑄𝑏
(3)

𝑄𝑏
(3)

]

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) + 𝑃𝑃 cos (

𝜔𝑃

�̃�𝑎
𝜏𝑎) 

(C.20) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(7)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(7)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(6)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,5
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,6
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,7
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(7)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(6)

+ 𝑄𝑎
(1)

𝑄𝑏
(5)

+ 𝑄𝑎
(2)

𝑄𝑏
(4)

+ 𝑄𝑎
(3)

𝑄𝑏
(3)

+ 𝑄𝑎
(4)

𝑄𝑏
(2)

+ 𝑄𝑎
(5)

𝑄𝑏
(1)

+ 𝑄𝑎
(6)

𝑄𝑏
(0)

] = 0 

(C.21) 

 

𝑄𝑎
(7)

 will not contain any additional tones compared to 𝑄𝑎
(6)

.  However, 𝑄𝑏
(7)

 will contain an 

additional tone of cos ((
𝜔𝐷

2
+ 2(𝜔𝑃 − 𝜔𝐷)) 𝑡) through the term 𝑄𝑎

(5)
𝑄𝑏

(1)
.  

 

Hence, 𝑄𝑎
(7)

 will consist of the tones cos(𝜔𝐷𝑡) , cos ((𝜔𝐷 + (𝜔𝑃 − 𝜔𝐷))𝑡)  and cos ((𝜔𝐷 +

2(𝜔𝑃 − 𝜔𝐷))𝑡)  and 𝑄𝑏
(7)

 will consist of the tones cos ((
𝜔𝐷

2
− (𝜔𝑃 − 𝜔𝐷)) 𝑡) , cos (

𝜔𝐷

2
𝑡) , 

cos ((
𝜔𝐷

2
+ (𝜔𝑃 − 𝜔𝐷)) 𝑡) and cos ((

𝜔𝐷

2
+ 2(𝜔𝑃 − 𝜔𝐷)) 𝑡). 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(𝑛)

+ ∑ �̃�𝑎,𝑛1
2 𝜕𝜏𝑎

2 𝑄𝑎
(𝑛2)

𝑛1+𝑛2=𝑛

+ 𝜔𝑎
2𝑄𝑎

(𝑛)
+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑏 ∑ 𝑄𝑏

(𝑛1)
𝑄𝑏

(𝑛2)

𝑛1+𝑛2=𝑛−1

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) + 𝑃𝑃 cos (

𝜔𝑃

�̃�𝑎
𝜏𝑎) 

(C.22) 
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𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(𝑛)

+ ∑ �̃�𝑏,𝑛1

2 𝜕𝜏𝑏
2 𝑄𝑏

(𝑛2)

𝑛1+𝑛2=𝑛

+ 𝜔𝑏
2𝑄𝑏

(𝑛)
+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑏 ∑ 𝑄𝑎

(𝑛1)
𝑄𝑏

(𝑛2)

𝑛1+𝑛2=𝑛−1

= 0 (C.23) 

 

By sequentially solving the equations C.22 and C.23, high-order solutions 𝑄𝑎
(𝑛>7)

 and 𝑄𝑏
(𝑛>7)

 

can be obtained. Through these iterations, a series of near-resonant tones cos ((𝜔𝐷 +

𝑝(𝜔𝑃 − 𝜔𝐷))𝑡) & cos ((
𝜔𝐷

2
+ 𝑝(𝜔𝑃 − 𝜔𝐷)) 𝑡) ; 𝑝 ∈ 𝑍  can be generated. Hence, the general 

solution for 𝑄𝑎(𝑏) is given by  

 

𝑄𝑎 = 𝐴0
(𝑎)

cos(𝜔𝐷𝑡) + ∑ 𝐴𝑝
(𝑎)

𝑝≠0

cos((𝜔𝐷 + 𝑝Δ𝜔)𝑡) (C.24) 

𝑄𝑏 = 𝐴0
(𝑏)

cos (
𝜔𝐷

2
𝑡) + ∑ 𝐴𝑝

(𝑏)

𝑝≠0

cos ((
𝜔𝐷

2
+ 𝑝Δ𝜔) 𝑡) (C.25) 

 

with the amplitude |𝐴𝑝
(𝑎)

| ~[(�̃�𝑎
2 − (𝜔𝐷 + 𝑝Δ𝜔)2)2 + 4휁𝑎

2(𝜔𝐷 + 𝑝Δ𝜔)2]−
1

2; |𝐴𝑝
(𝑏)

| ~ [(�̃�𝑏
2 −

(
𝜔𝐷

2
+ 𝑝Δ𝜔)

2
)

2

+ 4휁𝑏
2 (

𝜔𝐷

2
+ 𝑝Δ𝜔)

2
]

−
1

2

; 𝑝 ∈ 𝑍 and Δ𝜔 = |𝜔𝑃 − 𝜔𝐷|.  
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Appendix D 

 

Analytical Formulation of Three-Mode Four-Wave 

Mixing 

 

Motivated by the experimental results presented in Section 5.4, let us consider a truncated 

phase space spanning three normal modes 𝑄𝑎 , 𝑄𝑏 , 𝑄𝑐. 

 

�̈�𝑎 + 𝜔𝑎
2𝑄𝑎 + 2휁𝑎�̇�𝑎 + 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑐𝑄𝑏𝑄𝑐 = 𝑃𝐷 cos(𝜔𝐷𝑡) (D.1) 

�̈�𝑏 + 𝜔𝑏
2𝑄𝑏 + 2휁𝑏�̇�𝑏 + 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐𝑄𝑎𝑄𝑐 = 0 (D.2) 

�̈�𝑐 + 𝜔𝑐
2𝑄𝑐 + 2휁𝑐�̇�𝑐 + 𝛼𝐹𝑃𝑈𝐴𝑐,𝑎,𝑏𝑄𝑎𝑄𝑏 = 0 (D.3) 

 

Now, based on the principles of PL method, the time 𝑡 is first re-scaled to 𝜏𝑞; 𝑞 ∈ {𝑎, 𝑏, 𝑐} as 

𝜏𝑞 = �̃�𝑞𝑡. Consequently, the time derivative 𝜕𝑡
2 is re-written in terms of the derivative with 

respect to 𝜏𝑞 as 𝜕𝑡
2 = �̃�𝑞

2𝜕𝜏𝑞
2 . After substituting these, the equations D.1-D-3 become 

 

�̃�𝑎
2𝜕𝜏𝑎

2 𝑄𝑎 + 𝜔𝑎
2𝑄𝑎 + 2𝑗휁𝑎𝜕𝜏𝑎

�̃�𝑎𝑄𝑎 + 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑐𝑄𝑏𝑄𝑐 = 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) (D.4) 

�̃�𝑏
2𝜕𝜏𝑏

2 𝑄𝑏 + 𝜔𝑏
2𝑄𝑏 + 2𝑗휁𝑏𝜕𝜏𝑏

�̃�𝑏𝑄𝑏 + 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐𝑄𝑎𝑄𝑐 = 0 (D.5) 

�̃�𝑐
2𝜕𝜏𝑐

2 𝑄𝑐 + 𝜔𝑐
2𝑄𝑐 + 2𝑗휁𝑐𝜕𝜏𝑐

�̃�𝑐𝑄𝑐 + 𝛼𝐹𝑃𝑈𝐴𝑐,𝑎,𝑏𝑄𝑎𝑄𝑏 = 0 (D.6) 

 

We now set the variables 𝑄𝑞 and �̃�𝑞 in terms of 휀 as, 

 

𝑄𝑞 = ∑ 휀𝑛𝑄𝑞
(𝑛)

𝑛=0

; �̃�𝑞
2 = 𝜔𝑞

2 + ∑ 휀𝑛�̃�𝑞,𝑛
2

𝑛=1

 (D.7) 

 

𝑄𝑎
(0)

, 𝑄𝑏
(0)

 and 𝑄𝑐
(0)

 correspond to the solutions of equations D.4-D.7 in the absence of 

nonlinear coupling terms respectively. 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(0)
+ 2𝑗휁𝑎𝜔𝑎𝜕𝜏𝑎

𝑄𝑎
(0)

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) (D.8) 
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𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(0)
+ 2𝑗휁𝑏𝜔𝑏𝜕𝜏𝑏

𝑄𝑏
(0)

= 0 (D.9) 

𝜔𝑐
2𝜕𝜏𝑐

2 𝑄𝑐
(0)

+ 𝜔𝑐
2𝑄𝑐

(0)
+ 2𝑗휁𝑐𝜔𝑐𝜕𝜏𝑐

𝑄𝑐
(0)

= 0 (D.10) 

 

That is, 𝑄𝑎
(0)

 will simply be cos(𝜔𝐷𝑡) with amplitude 
𝑃𝐷

𝜔𝑎
2−𝜔𝐷

2 +2𝑗𝜁𝜔𝐷
. cos(𝜔𝐷𝑡). However, 𝑄𝑏

(0)
=

𝑄𝑐
(0)

= 0. 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(1)
+ 2𝑗휁𝑎𝜔𝑎𝜕𝜏𝑎

𝑄𝑎
(1)

+ 2𝑗휁𝑎�̃�𝑎,1𝜕𝜏𝑎
𝑄𝑎

(0)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑐𝑄𝑏
(0)

𝑄𝑐
(0)

 = 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(D.11) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(1)
+ 2𝑗휁𝑏𝜔𝑏𝜕𝜏𝑏

𝑄𝑏
(1)

+ 2𝑗휁𝑏�̃�𝑏,1𝜕𝜏𝑏
𝑄𝑏

(0)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐𝑄𝑎
(0) 

𝑄𝑐
(0)

= 0 
(D.12) 

𝜔𝑐
2𝜕𝜏𝑐

2 𝑄𝑐
(1)

+ �̃�𝑐,2
2 𝜕𝜏𝑐

2 𝑄𝑐
(0)

+ 𝜔𝑐
2𝑄𝑐

(1)
+ 2𝑗휁𝑐𝜔𝑐𝜕𝜏𝑐

𝑄𝑐
(1)

+ 2𝑗휁𝑐�̃�𝑐,1𝜕𝜏𝑐
𝑄𝑐

(0)

+ 𝛼𝐹𝑃𝑈𝐴𝑐,𝑎,𝑏𝑄𝑎
(0)

𝑄𝑏
(0)

= 0 
(D.13) 

 

Motivated by the experimental results, the solution 𝑄𝑏
(1)

 and 𝑄𝑐
(1)

 are assumed to contain the 

tones cos(𝜔𝑚𝑡) and cos(𝜔𝑛𝑡) respectively such that 𝜔𝑚 + 𝜔𝑛 = �̃�𝑎. The amplitudes of these 

tones will then be proportional to  [(�̃�𝑏
2 − 𝜔𝑚

2 )
2

+ 4휁𝑏
2𝜔𝑚

2 ]
−

1

2
 and [(�̃�𝑏

2 − 𝜔𝑛
2)

2
+ 4휁𝑏

2𝜔𝑛
2]

−
1

2
 

respectively. The solution 𝑄𝑎
(1)

 continues to contain only cos(𝜔𝐷𝑡).  

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(2)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑐 [𝑄𝑏
(0)

𝑄𝑐
(1)

+ 𝑄𝑏
(1)

𝑄𝑐
(0)

]  = 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(D.14) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(2)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐 [𝑄𝑎
(0)

𝑄𝑐
(1)

+ 𝑄𝑎
(1)

𝑄𝑐
(0)

] = 0 
(D.15) 

𝜔𝑐
2𝜕𝜏𝑐

2 𝑄𝑐
(2)

+ �̃�𝑐,0
2 𝜕𝜏𝑐

2 𝑄𝑐
(2)

+ �̃�𝑐,1
2 𝜕𝜏𝑐

2 𝑄𝑐
(1)

+ �̃�𝑐,2
2 𝜕𝜏𝑐

2 𝑄𝑐
(0)

+ 𝜔𝑐
2𝑄𝑐

(2)

+ 𝛼𝐹𝑃𝑈𝐴𝑐,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(1)

+ 𝑄𝑎
(1)

𝑄𝑏
(0)

] = 0 
(D.16) 

 

𝑄𝑎
(2)

 will still be a single tone solution of cos(𝜔𝐷𝑡). 𝑄𝑏
(2)

 and 𝑄𝑐
(2)

 will however contain the 

additional tones cos((𝜔𝐷 − 𝜔𝑛)𝑡)  and cos((𝜔𝐷 − 𝜔𝑚)𝑡)  respectively. These tones are 

generated through 𝑄𝑎
(0)

𝑄𝑐
(1)

 and 𝑄𝑎
(0)

𝑄𝑏
(1)

 respectively. 

 



100 
 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(3)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑐 [𝑄𝑏
(0)

𝑄𝑐
(2)

+ 𝑄𝑏
(1)

𝑄𝑐
(1)

+ 𝑄𝑏
(2)

𝑄𝑐
(0)

]  = 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(D.17) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(3)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐 [𝑄𝑎
(0)

𝑄𝑐
(2)

+ 𝑄𝑎
(1)

𝑄𝑐
(1)

+ 𝑄𝑎
(2)

𝑄𝑐
(0)

] = 0 
(D.18) 

𝜔𝑐
2𝜕𝜏𝑐

2 𝑄𝑐
(3)

+ �̃�𝑐,0
2 𝜕𝜏𝑐

2 𝑄𝑐
(3)

+ �̃�𝑐,1
2 𝜕𝜏𝑐

2 𝑄𝑐
(2)

+ �̃�𝑐,2
2 𝜕𝜏𝑐

2 𝑄𝑐
(1)

+ �̃�𝑐,3
2 𝜕𝜏𝑐

2 𝑄𝑐
(0)

+ 𝜔𝑐
2𝑄𝑐

(3)

+ 𝛼𝐹𝑃𝑈𝐴𝑐,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(2)

+ 𝑄𝑎
(1)

𝑄𝑏
(1)

+ 𝑄𝑎
(2)

𝑄𝑏
(0)

] = 0 
(D.19) 

 

Now, 𝑄𝑎
(3)

 will also contain the tone cos(�̃�𝑎𝑡) which is generated through 𝑄𝑏
(1)

𝑄𝑐
(1)

. 𝑄𝑏
(3)

 and  

𝑄𝑐
(3)

 will however not contain any additional tones compared to 𝑄𝑏
(2)

 and 𝑄𝑐
(2)

 respectively. 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(4)
+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑐 [𝑄𝑏

(0)
𝑄𝑐

(3)
+ 𝑄𝑏

(1)
𝑄𝑐

(2)
+ 𝑄𝑏

(2)
𝑄𝑐

(1)
+ 𝑄𝑏

(3)
𝑄𝑐

(0)
]  

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(D.20) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(4)
+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐 [𝑄𝑎

(0)
𝑄𝑐

(3)
+ 𝑄𝑎

(1)
𝑄𝑐

(2)
+ 𝑄𝑎

(2)
𝑄𝑐

(1)
+ 𝑄𝑎

(3)
𝑄𝑐

(0)
] = 0 

(D.21) 

𝜔𝑐
2𝜕𝜏𝑐

2 𝑄𝑐
(4)

+ �̃�𝑐,0
2 𝜕𝜏𝑐

2 𝑄𝑐
(4)

+ �̃�𝑐,1
2 𝜕𝜏𝑐

2 𝑄𝑐
(3)

+ �̃�𝑐,2
2 𝜕𝜏𝑐

2 𝑄𝑐
(2)

+ �̃�𝑐,3
2 𝜕𝜏𝑐

2 𝑄𝑐
(1)

+ �̃�𝑐,4
2 𝜕𝜏𝑐

2 𝑄𝑐
(0)

+ 𝜔𝑐
2𝑄𝑐

(4)
+ 𝛼𝐹𝑃𝑈𝐴𝑐,𝑎,𝑏 [𝑄𝑎

(0)
𝑄𝑏

(3)
+ 𝑄𝑎

(1)
𝑄𝑏

(2)
+ 𝑄𝑎

(2)
𝑄𝑏

(1)
+ 𝑄𝑎

(3)
𝑄𝑏

(0)
] = 0 

(D.22) 

 

𝑄𝑎
(4)

 and 𝑄𝑏
(4)

 will not contain any additional terms compared to 𝑄𝑎
(3)

 to 𝑄𝑏
(3)

 respectively.  

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,5
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(5)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑐 [𝑄𝑏
(0)

𝑄𝑐
(4)

+ 𝑄𝑏
(1)

𝑄𝑐
(3)

+ 𝑄𝑏
(2)

𝑄𝑐
(2)

+ 𝑄𝑏
(3)

𝑄𝑐
(1)

+ 𝑄𝑏
(4)

𝑄𝑐
(0)

]  

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(D.23) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,5
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(5)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐 [𝑄𝑎
(0)

𝑄𝑐
(4)

+ 𝑄𝑎
(1)

𝑄𝑐
(3)

+ 𝑄𝑎
(2)

𝑄𝑐
(2)

+ 𝑄𝑎
(3)

𝑄𝑐
(1)

+ 𝑄𝑎
(4)

𝑄𝑐
(0)

] = 0 

(D.24) 
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𝜔𝑐
2𝜕𝜏𝑐

2 𝑄𝑐
(5)

+ �̃�𝑐,0
2 𝜕𝜏𝑐

2 𝑄𝑐
(5)

+ �̃�𝑐,1
2 𝜕𝜏𝑐

2 𝑄𝑐
(4)

+ �̃�𝑐,2
2 𝜕𝜏𝑐

2 𝑄𝑐
(3)

+ �̃�𝑐,3
2 𝜕𝜏𝑐

2 𝑄𝑐
(2)

+ �̃�𝑐,4
2 𝜕𝜏𝑐

2 𝑄𝑐
(1)

+ �̃�𝑐,5
2 𝜕𝜏𝑐

2 𝑄𝑐
(0)

+ 𝜔𝑐
2𝑄𝑐

(5)

+ 𝛼𝐹𝑃𝑈𝐴𝑐,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(4)

+ 𝑄𝑎
(1)

𝑄𝑏
(3)

+ 𝑄𝑎
(2)

𝑄𝑏
(2)

+ 𝑄𝑎
(3)

𝑄𝑏
(1)

+ 𝑄𝑎
(4)

𝑄𝑏
(0)

] = 0 

(D.25) 

 

𝑄𝑎
(5)

 will contain the tone cos((2𝜔𝐷 − �̃�𝑎)𝑡) = cos ((�̃�𝑎 + 2(𝜔𝐷 − �̃�𝑎))𝑡)  in addition to 

cos (�̃�𝑎𝑡)  and cos(𝜔𝐷𝑡) = cos ((�̃�𝑎 + (𝜔𝐷 − �̃�𝑎))𝑡)  and is generated through 𝑄𝑏
(2)

𝑄𝑐
(2)

. 𝑄𝑏
(5)

 

and 𝑄𝑐
(5)

 will not contain any additional tones compared to 𝑄𝑏
(4)

 and 𝑄𝑐
(4)

 respectively.  

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(6)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(6)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,5
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,6
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(6)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑐 [𝑄𝑏
(0)

𝑄𝑐
(5)

+ 𝑄𝑏
(1)

𝑄𝑐
(4)

+ 𝑄𝑏
(2)

𝑄𝑐
(3)

+ 𝑄𝑏
(3)

𝑄𝑐
(2)

+ 𝑄𝑏
(4)

𝑄𝑐
(1)

+ 𝑄𝑏
(5)

𝑄𝑐
(0)

]  = 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(D.26) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(6)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(6)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,5
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,6
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(6)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐 [𝑄𝑎
(0)

𝑄𝑐
(5)

+ 𝑄𝑎
(1)

𝑄𝑐
(4)

+ 𝑄𝑎
(2)

𝑄𝑐
(3)

+ 𝑄𝑎
(3)

𝑄𝑐
(2)

+ 𝑄𝑎
(4)

𝑄𝑐
(1)

+ 𝑄𝑏
(5)

𝑄𝑐
(0)

] = 0 

(D.27) 

𝜔𝑐
2𝜕𝜏𝑐

2 𝑄𝑐
(6)

+ �̃�𝑐,0
2 𝜕𝜏𝑐

2 𝑄𝑐
(6)

+ �̃�𝑐,1
2 𝜕𝜏𝑐

2 𝑄𝑐
(5)

+ �̃�𝑐,2
2 𝜕𝜏𝑐

2 𝑄𝑐
(4)

+ �̃�𝑐,3
2 𝜕𝜏𝑐

2 𝑄𝑐
(3)

+ �̃�𝑐,4
2 𝜕𝜏𝑐

2 𝑄𝑐
(2)

+ �̃�𝑐,5
2 𝜕𝜏𝑐

2 𝑄𝑐
(1)

+ �̃�𝑐,6
2 𝜕𝜏𝑐

2 𝑄𝑐
(0)

+ 𝜔𝑐
2𝑄𝑐

(6)

+ 𝛼𝐹𝑃𝑈𝐴𝑐,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(5)

+ 𝑄𝑎
(1)

𝑄𝑏
(4)

+ 𝑄𝑎
(2)

𝑄𝑏
(3)

+ 𝑄𝑎
(3)

𝑄𝑏
(2)

+ 𝑄𝑎
(4)

𝑄𝑏
(1)

+ 𝑄𝑎
(5)

𝑄𝑏
(0)

] = 0 

(D.28) 

 

𝑄𝑎
(6)

 will not contain any additional tones compared to 𝑄𝑎
(5)

.  However, 𝑄𝑏
(6)

 will contain an 

additional tone of cos ((𝜔𝑚 − (𝜔𝐷 − �̃�𝑎))𝑡) through the term 𝑄𝑎
(3)

𝑄𝑐
(2)

 and 𝑄𝑐
(6)

 will contain 

an additional tone of cos ((𝜔𝑛 − (𝜔𝐷 − �̃�𝑎))𝑡) through the term 𝑄𝑎
(3)

𝑄𝑏
(2)

. 
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𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(7)

+ �̃�𝑎,0
2 𝜕𝜏𝑎

2 𝑄𝑎
(7)

+ �̃�𝑎,1
2 𝜕𝜏𝑎

2 𝑄𝑎
(6)

+ �̃�𝑎,2
2 𝜕𝜏𝑎

2 𝑄𝑎
(5)

+ �̃�𝑎,3
2 𝜕𝜏𝑎

2 𝑄𝑎
(4)

+ �̃�𝑎,4
2 𝜕𝜏𝑎

2 𝑄𝑎
(3)

+ �̃�𝑎,5
2 𝜕𝜏𝑎

2 𝑄𝑎
(2)

+ �̃�𝑎,6
2 𝜕𝜏𝑎

2 𝑄𝑎
(1)

+ �̃�𝑎,7
2 𝜕𝜏𝑎

2 𝑄𝑎
(0)

+ 𝜔𝑎
2𝑄𝑎

(7)

+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑐 [𝑄𝑏
(0)

𝑄𝑐
(6)

+ 𝑄𝑏
(1)

𝑄𝑐
(5)

+ 𝑄𝑏
(2)

𝑄𝑐
(4)

+ 𝑄𝑏
(3)

𝑄𝑐
(3)

+ 𝑄𝑏
(4)

𝑄𝑐
(2)

+ 𝑄𝑏
(5)

𝑄𝑐
(1)

+ 𝑄𝑏
(6)

𝑄𝑐
(0)

]  = 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(D.29) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(7)

+ �̃�𝑏,0
2 𝜕𝜏𝑏

2 𝑄𝑏
(7)

+ �̃�𝑏,1
2 𝜕𝜏𝑏

2 𝑄𝑏
(6)

+ �̃�𝑏,2
2 𝜕𝜏𝑏

2 𝑄𝑏
(5)

+ �̃�𝑏,3
2 𝜕𝜏𝑏

2 𝑄𝑏
(4)

+ �̃�𝑏,4
2 𝜕𝜏𝑏

2 𝑄𝑏
(3)

+ �̃�𝑏,5
2 𝜕𝜏𝑏

2 𝑄𝑏
(2)

+ �̃�𝑏,6
2 𝜕𝜏𝑏

2 𝑄𝑏
(1)

+ �̃�𝑏,7
2 𝜕𝜏𝑏

2 𝑄𝑏
(0)

+ 𝜔𝑏
2𝑄𝑏

(7)

+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐 [𝑄𝑎
(0)

𝑄𝑐
(6)

+ 𝑄𝑎
(1)

𝑄𝑐
(5)

+ 𝑄𝑎
(2)

𝑄𝑐
(4)

+ 𝑄𝑎
(3)

𝑄𝑐
(3)

+ 𝑄𝑎
(4)

𝑄𝑐
(2)

+ 𝑄𝑏
(5)

𝑄𝑐
(1)

+ 𝑄𝑏
(6)

𝑄𝑐
(0)

] = 0 

(D.30) 

𝜔𝑐
2𝜕𝜏𝑐

2 𝑄𝑐
(7)

+ �̃�𝑐,0
2 𝜕𝜏𝑐

2 𝑄𝑐
(7)

+ �̃�𝑐,1
2 𝜕𝜏𝑐

2 𝑄𝑐
(6)

+ �̃�𝑐,2
2 𝜕𝜏𝑐

2 𝑄𝑐
(5)

+ �̃�𝑐,3
2 𝜕𝜏𝑐

2 𝑄𝑐
(4)

+ �̃�𝑐,4
2 𝜕𝜏𝑐

2 𝑄𝑐
(3)

+ �̃�𝑐,5
2 𝜕𝜏𝑐

2 𝑄𝑐
(2)

+ �̃�𝑐,6
2 𝜕𝜏𝑐

2 𝑄𝑐
(1)

+ �̃�𝑐,7
2 𝜕𝜏𝑐

2 𝑄𝑐
(0)

+ 𝜔𝑐
2𝑄𝑐

(7)

+ 𝛼𝐹𝑃𝑈𝐴𝑐,𝑎,𝑏 [𝑄𝑎
(0)

𝑄𝑏
(6)

+ 𝑄𝑎
(1)

𝑄𝑏
(5)

+ 𝑄𝑎
(2)

𝑄𝑏
(4)

+ 𝑄𝑎
(3)

𝑄𝑏
(3)

+ 𝑄𝑎
(4)

𝑄𝑏
(2)

+ 𝑄𝑎
(5)

𝑄𝑏
(1)

+ 𝑄𝑎
(6)

𝑄𝑏
(0)

] = 0 

(D.31) 

 

𝑄𝑎
(7)

 will not contain any additional tones compared to 𝑄𝑎
(6)

.  However, 𝑄𝑏
(7)

 will contain an 

additional tone of cos ((𝜔𝑚 + 2(𝜔𝐷 − �̃�𝑎))𝑡) through the term 𝑄𝑎
(5)

𝑄𝑐
(1)

 and 𝑄𝑐
(7)

 will contain 

an additional tone of cos ((𝜔𝑛 + 2(𝜔𝐷 − �̃�𝑎))𝑡) through the term 𝑄𝑎
(5)

𝑄𝑏
(1)

.  

 

Hence, 𝑄𝑎
(7)

 will consist of the tones cos(�̃�𝑎𝑡) , cos ((�̃�𝑎 + (𝜔𝐷 − �̃�𝑎))𝑡)  and cos ((�̃�𝑎 +

2(𝜔𝐷 − �̃�𝑎))𝑡), 𝑄𝑏
(7)

 will consist of the tones cos ((𝜔𝑚 − (𝜔𝐷 − �̃�𝑎))𝑡), cos(𝜔𝑚𝑡), cos ((𝜔𝑚 +

(𝜔𝐷 − �̃�𝑎))𝑡) and cos ((𝜔𝑚 + 2(𝜔𝐷 − �̃�𝑎))𝑡)  and 𝑄𝑐
(7)

 will consist of the tones cos ((𝜔𝑛 −

(𝜔𝐷 − �̃�𝑎))𝑡), cos(�̃�𝑛𝑡), cos ((𝜔𝑛 + (𝜔𝐷 − �̃�𝑎))𝑡) and cos ((𝜔𝑛 + 2(𝜔𝐷 − �̃�𝑎))𝑡). 

 

𝜔𝑎
2𝜕𝜏𝑎

2 𝑄𝑎
(𝑛)

+ ∑ �̃�𝑎,𝑛1
2 𝜕𝜏𝑎

2 𝑄𝑎
(𝑛2)

𝑛1+𝑛2=𝑛

+ 𝜔𝑎
2𝑄𝑎

(𝑛)
+ 𝛼𝐹𝑃𝑈𝐴𝑎,𝑏,𝑐 ∑ 𝑄𝑏

(𝑛1)
𝑄𝑐

(𝑛2)

𝑛1+𝑛2=𝑛−1

= 𝑃𝐷 cos (
𝜔𝐷

�̃�𝑎
𝜏𝑎) 

(D.32) 

𝜔𝑏
2𝜕𝜏𝑏

2 𝑄𝑏
(𝑛)

+ ∑ �̃�𝑏,𝑛1

2 𝜕𝜏𝑏
2 𝑄𝑏

(𝑛2)

𝑛1+𝑛2=𝑛

+ 𝜔𝑏
2𝑄𝑏

(𝑛)
+ 𝛼𝐹𝑃𝑈𝐴𝑏,𝑎,𝑐 ∑ 𝑄𝑎

(𝑛1)
𝑄𝑐

(𝑛2)

𝑛1+𝑛2=𝑛−1

= 0 (D.33) 

𝜔𝑐
2𝜕𝜏𝑐

2 𝑄𝑐
(𝑛)

+ ∑ �̃�𝑐,𝑛1
2 𝜕𝜏𝑐

2 𝑄𝑐
(𝑛2)

𝑛1+𝑛2=𝑛

+ 𝜔𝑐
2𝑄𝑐

(𝑛)
+ 𝛼𝐹𝑃𝑈𝐴𝑐,𝑎,𝑏 ∑ 𝑄𝑎

(𝑛1)
𝑄𝑏

(𝑛2)

𝑛1+𝑛2=𝑛−1

= 0 (D.34) 
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By sequentially solving the equations D.32-D.34, high-order solutions 𝑄𝑎
(𝑛>7)

, 𝑄𝑏
(𝑛>7)

 and 

𝑄𝑐
(𝑛>7)

 can be obtained. Through these iterations, a series of near-resonant tones cos ((�̃�𝑎 ±

𝑝(𝜔𝐷 − �̃�𝑎))𝑡) , cos ((𝜔𝑚 ± 𝑝(𝜔𝐷 − �̃�𝑎))𝑡) & cos ((𝜔𝑛 ± 𝑝(𝜔𝐷 − �̃�𝑎))𝑡) ; 𝑝 ∈ 𝑍  can be 

generated. Hence, the general solutions for 𝑄𝑎, 𝑄𝑏 and 𝑄𝑐 are given by  

 

𝑄𝑎 = 𝐴0
(𝑎)

cos(�̃�𝑎𝑡) + ∑ 𝐴𝑝
(𝑎)

𝑝≠0

cos((�̃�𝑎 + 𝑝Δ𝜔)𝑡) (D.35) 

𝑄𝑏 = 𝐴0
(𝑏)

cos(𝜔𝑚𝑡) + ∑ 𝐴𝑝
(𝑏)

𝑝≠0

cos((𝜔𝑚 + 𝑝Δ𝜔)𝑡) (D.36) 

𝑄𝑐 = 𝐴0
(𝑐)

cos(𝜔𝑛𝑡) + ∑ 𝐴𝑝
(𝑐)

𝑝≠0

cos((𝜔𝑛 + 𝑝Δ𝜔)𝑡) (D.37) 

 

with the amplitude:  

|𝐴𝑝
(𝑎)

| ~[(�̃�𝑎
2 − (�̃�𝑎 + 𝑝Δ𝜔)2)2 + 4휁𝑎

2(�̃�𝑎 + 𝑝Δ𝜔)2]−
1
2; |𝐴𝑝

(𝑏)
| ~ [(�̃�𝑏

2 − (𝜔𝑚 + 𝑝Δ𝜔)2)
2

+ 4휁𝑏
2(𝜔𝑚 + 𝑝Δ𝜔)2]

−
1
2 ; |𝐴𝑝

(𝑐)
| ~[(�̃�𝑐

2 − (𝜔𝑛 + 𝑝Δ𝜔)2)2 + 4휁𝑐
2(𝜔𝑛 + 𝑝Δ𝜔)2]−

1
2 ; 𝑝

∈ 𝑍 

and the frequency spacing: Δ𝜔 = |𝜔𝐷 − �̃�𝑎|. It should be noted that �̃�𝑎, 𝜔𝑚 and 𝜔𝑛 can be 

drive amplitude dependent. While it is difficult to derive an analytical expression for such 

dependences by PL method, these can be understood by phenomenology. As shown in Figure 

5.18, �̃�𝑎 linearly increases with the electrical drive power level 𝑆𝑖𝑛. On the other hand, there 

exists a nonlinear relationship between 𝜔𝑚(𝑛) with 𝑆𝑖𝑛 (Figure 5.17).  
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