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Abstract

Since the discovery of the cosmic microwave background (CMB), our understanding of the cosmos
has been rapidly evolving. Detailed measurements of the CMB temperature fluctuations have led
to a standard cosmological model, which traces the origin of the large-scale structure of the
universe to quantum fluctuations during inflation. Although the basic framework of inflationary
cosmology is now well-established, the microphysical mechanism responsible for the accelerated
expansion remains a mystery. In this thesis, we describe how the physics underlying inflation
can be probed using two cosmological observables: higher-order correlations of primordial density
perturbations (non-Gaussianity) and primordial gravitational waves (tensor modes).

In the first part of the thesis, we explore novel signatures of high-energy physics in higher-
order correlation functions of inflationary perturbations. First, we use causality and unitarity to
make connections between cosmological observations and the underlying short-distance dynamics
of single-field inflation. We obtain a constraint on the size and the sign of the four-point function
in terms of the amplitude of the three-point function. We then study the imprints of extra massive
particles of arbitrary spin on the three-point function. We classify the couplings of these particles
to inflationary scalar and tensor perturbations and derive explicit shape functions for their three-
point functions that can serve as templates for future observational searches. Establishing the
particle content during inflation would provide important hints for the microscopic theory of
inflation.

In the second part, we study ways of testing the nature of inflation using inflationary tensor
modes. We consider effects of gravitational corrections to Einstein gravity in models of high-scale
inflation. We show that these scenarios can lead to a violation of the tensor consistency condition
(i.e. the relation between the amplitude and the scale-dependence of the tensor two-point function)
that is satisfied by canonical single-field inflationary models. Finally, we consider the prospects for
measuring the inflationary superhorizon signature in future observations. We define an estimator
that captures superhorizon correlations and present forecasts for the detectability of the signal
with future CMB polarization experiments.
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1. Introduction

Cosmology is the study of the birth, evolution, and fate of the universe. This intriguing subject
has been pondered upon by humankind since ancient times and become a proper branch of science
thanks to intellectual giants such as Galileo, Kepler, and Newton. Yet, it was not until the last
century that we have witnessed paradigm-shifting revolutions in the field of cosmology and formed
a realistic picture of the cosmos.

The first of these revolutions was Einstein’s general theory of relativity [5]. This extended
Newtonian gravity and provided a mathematical framework that can be used to describe the
geometry of spacetime and the evolution of the universe. Major contributions to cosmology were
made by Friedmann [6] and Lemaître [7] in the subsequent period, who found an exact solution
to Einstein’s field equations that described an expanding universe. Although the idea that the
universe is expanding was considered rather preposterous at the time, Hubble soon confirmed this
through the discovery of the relationship between distances to galaxies and their redshifts [8].
This gave birth to the Big Bang theory of the universe.

The second revolution builds on the development of the hot Big Bang theory by Gamow
and collaborators, including their pioneering work on the Big Bang nucleosynthesis (BBN)—a
theory regarding the production of light elements in the universe. One of their most important
predictions was the existence of a relic background cosmic radiation left over from the hot phase
of the universe [9]. This was soon confirmed by the landmark discovery of the cosmic microwave
background (CMB) by Penzias and Wilson in 1964 [10]. Together with the observed abundances
of light elements that matched the prediction from the BBN, the Big Bang theory of the universe
was firmly established.

The next revolution was the advent of the era of precision cosmology. Our understanding of
the universe has been greatly advanced in the last several decades, both theoretically and obser-
vationally, thanks to the series of high-precision satellite missions. In 1992, the Cosmic Back-
ground Explorer (COBE) measured the near-perfect blackbody spectrum of the CMB with tiny
anisotropies [11]; the Wilkinson Microwave Anisotropy Probe (WMAP) provided a significantly
improved measurement of the CMB anisotropies in 2003 [12]; the data from the Planck satellite
in 2013 further refined the measurements of the CMB anisotropies [13] (see Fig. 1.1), providing
state-of-the-art constraints on cosmological parameters. On another observational front, direct
evidence for an accelerated expansion of the universe today came from observations of type Ia
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Introduction

supernovae by the High-Z Supernova Search Team [14] and the Supernova Cosmology Project [15].
All of these observations have led to significant developments of the Big Bang theory, culminating
in the establishment of the standard model of cosmology, the ΛCDM model.

The ΛCDM model is the simplest parameterization that accounts for all current cosmological
observations. This is based on general relativity and contains two extra ingredients beyond the
Standard Model (SM) of particle physics: a cosmological constant Λ, which is a constant energy
density associated with dark energy driving the current accelerated expansion of the universe,
and non-baryonic cold dark matter (CDM), which provides extra mass density that accounts for
gravitational lensing and various other astrophysical phenomena. According to this model, the
universe today consists of 68% dark energy, 25% dark matter, 5% baryonic matter, and 0.1%
radiation, with the observable size of the universe being ten billion light-years.

Figure 1.1: The anisotropies of the CMB as observed by the Planck satellite.1 The variations in the CMB
temperature across the sky reflect the density perturbations at recombination.

Our journey to understand the cosmos is not complete, however. Despite the spectacular
empirical success of the ΛCDM model, it also comes with a number of shortcomings, including
the apparent fine-tuning of the initial conditions of the universe. The extreme isotropy of the
observed CMB implies that different regions of the universe should have been in causal contact
in the early universe. However, this turns out to be strictly forbidden between regions that are
separated by more than 2 degrees on the sky, if the universe was dominated by ordinary matter
and radiation before the CMB was generated. This points towards a very special initial condition
of the universe that was homogeneous and isotropic to an extreme degree.

The most popular solution to the puzzles associated with the standard Big Bang cosmology
is inflation [16]. The inflationary paradigm posits a phase of exponential expansion in the early
universe driven by a hypothetical scalar field called the inflaton. During inflation, an initial
causal patch quickly leaves the cosmological horizon due to the exponential expansion, which
explains how apparently causally disconnected regions that come into view in the matter- and
radiation-dominated universe could have once communicated with each other.

1http://www.esa.int/spaceinimages/Images/2013/03/Planck_CMB
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1.1. Outline of the thesis

The status of primordial cosmology today can be compared with the pre-LHC era in elementary
particle physics. Although the SM of particle physics was formulated many decades ago, the
mechanism for electroweak symmetry breaking remained unproven until the eventual discovery
of the Higgs boson in 2013 [17]. Similarly, the basic framework of inflationary cosmology is now
well-established, but the precise microscopic mechanism that was responsible for inflation is still
elusive. A plentitude of inflationary models exist on the market, yet the current observational
constraints are not strong enough to distinguish between many of them. Upcoming cosmological
experiments will provide critical observational tests of the inflationary paradigm and help us
analyze inflation in a more quantitative manner.

Inflation describes the earliest stage in the history of the universe, governed by physics at
ultra-high energy scales. Understanding the inflationary universe thus involves an interplay of the
pillars of modern physics—general relativity and quantum physics—as well as ideas from modern
high-energy physics. As with other branches of physics, this can be pursued in two complementary
ways. In the top-down approach, one constructs explicit models of inflation from the underlying
physics at high energies. In particular, string theory has led to new insights and approaches to
inflationary model building. In the bottom-up approach, one instead starts from the most general
phenomenological model of inflation valid at low energies. This is useful in characterizing all
possible experimental signatures in a systematic manner.

A key challenge in the bottom-up approach to inflation is to extract information about the
fundamental physics that governed inflation at high energies with access only to observables in
the low-energy theory. In this thesis, we will follow the bottom-up approach and explore novel
signatures of new physics during inflation using two important cosmological observables: higher-
order correlation functions of density perturbations (non-Gaussianity) and primordial gravita-
tional waves (tensor modes). We will search in these observables for clues about the physics that
drove the inflationary expansion.

1.1 Outline of the thesis

We start by providing an overview of the theoretical basis. In Chapter 2, we review the inflationary
paradigm. We first give a brief account of the basic aspects of Big Bang cosmology and present
its classic conundrums motivating the need for inflation. We then provide a short review on
inflationary cosmology and its observational status. Chapter 3 focuses on effective theories of
inflation. We first present the well-known ultraviolet (UV) sensitivity of inflation to Planck-scale
physics. We then review two types of the effective theories of inflation, which are constructed
from the background and perturbation perspectives.

The remaining chapters consist of the main works of the author. In Chapter 4, we use causality
and unitarity to understand the implications of the underlying short-distance dynamics of inflation
on cosmological observables. We obtain a consistency condition for primordial non-Gaussianity,
which constrains the size and the sign of the four-point function in terms of the amplitude of the
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three-point function. In Chapter 5, we study the imprints of massive particles with arbitrary spin
on cosmological correlators. Using the framework of the effective theory of inflation, we classify the
interactions of these particles. We then derive explicit shape functions for non-Gaussianity, which
can serve as templates for future observational searches. In Chapter 6, we explore a novel obser-
vational signature of gravitational corrections during slow-roll inflation. We study the coupling
of the inflaton field to higher-curvature tensors in models with a minimal breaking of conformal
symmetry. Here, we show that these scenarios lead to a correction to the tilt of the tensor power
spectrum and hence a violation of the tensor consistency condition. In Chapter 7, we introduce a
method for measuring the inflationary superhorizon signature in the CMB polarization. We define
an estimator that captures superhorizon correlations and present forecasts for the detectability of
the signal with future CMB polarization experiments. We conclude in Chapter 8.

Finally, a number of appendices contain technical details of the results presented in the main
text. In Appendix A, we provide further details to the calculations shown in Chapter 4. In
Appendix B, we solve the equations of motion for massive fields with arbitrary spin in de Sitter
space. The derivation of the shape functions introduced in Chapter 5 is given in Appendix C.
In Appendix D, we make a few supplementary remarks to the results of Chapter 6. Appendix E
contains additional reference material related to Chapter 7.

1.2 Notation and conventions

We will use natural units in which the speed of light, c, and Planck’s constant, ~, are set to
unity, c = ~ = 1, with reduced Planck mass M2

pl = 1/8πG = 2.4 × 1018 GeV, where G denotes
Newton’s constant. Our metric signature is (−+ + +). We will use Greek letters for spacetime
indices, µ, ν, . . . = 0, 1, 2, 3, and Latin letters for spatial indices, i, j, . . . = 1, 2, 3. Repeated
indices are summed, unless otherwise stated. Spatial three-dimensional vectors are written in
boldface, k, and unit vectors are hatted, k̂. The complex conjugate (Hermitian adjoint) of a
function (operator) f is denoted by f∗ (f †). A shorthand for the symmetrization of tensor indices
is a(µbν) ≡ 1

2(aµbν + aνbµ). Overdots and primes will denote derivatives with respect to physical
time x0 ≡ t and conformal time xη ≡ η, respectively. The symbols ∇µ and ∂µ denote the covariant
and partial derivatives with respect to the coordinate xµ, respectively. The notation (∂f)2 means
gµν∂µf∂νf . Our Fourier convention is

fk =

∫
d3x f(x)eik·x , f(x) =

1

(2π)3

∫
d3k fke

−ik·x . (1.1)

The dimensionless power spectrum of a Fourier mode fk is defined as

∆2
f (k) ≡ k3

2π2
〈fkfk′〉′ , (1.2)

where the prime on the expectation value indicates that the overall momentum-conserving delta
function (2π)3δ(k + k′) has been dropped.
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2. Inflationary paradigm

Inflation is a hypothesized period in the very early universe, during which the universe expanded
at an accelerating rate. This seemingly simple idea has deep implications and is one of the
cornerstones of modern cosmology.

In the early 1980s, the first generation of inflationary scenarios was born. The original model
by Guth [16] called old inflation was based on the first-order phase transition from a metastable
false vacuum to the true lower-energy vacuum, forming bubbles that led to the present universe.
This scenario, however, generated too much inhomogeneities by the bubble collision after the end
of inflation, leading to what is known as the graceful exit problem. A new inflation scenario based
on second-order phase transition was subsequently proposed by Linde [18] and independently by
Albrecht and Steinhardt [19]. Although this scenario addressed some problems of the original
inflation model, it also faced a fine-tuning issue of the initial condition.

An improved model of new inflation was then proposed by Linde [20], which did not share the
problems of old and new inflation. This inflationary scenario, called chaotic inflation, does not
rely on phase transitions from a special thermal state. Instead, the universe inflates as a scalar
field slowly rolls down a sufficiently flat potential (in Planck units) towards the global minimum
under fairly natural initial conditions. The success of this scenario opened up a new window of
inflationary model-building based on the existence of the slow-roll regime, which has become the
standard picture of inflation today.

Nearly three decades have passed since the birth of inflationary cosmology, during which
theorists’ inventiveness has led to the construction of a slew of inflationary models. In principle,
the energy scale during inflation can be as high as 1016 GeV, making the inflationary universe
the ultimate testing ground for theories of high-energy physics. A complete story of inflation will
involve a full-fledged model constructed from Planck-scale physics, which must also successfully
lead to the production of all particles of the SM after inflation. We are currently far from
achieving such a grand goal, and inflation in its current state exists as a paradigm, which allows
various constructions within a flexible framework. Nevertheless, despite the absence of the precise
knowledge of its microscopic mechanism, the basic consequences of the inflationary paradigm are
rather robust.

Although inflation was originally designed to address the classic problems of the Big Bang
cosmology, it has even further-reaching implications. Most importantly, it provides a dynami-
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cal mechanism for generating primordial density perturbations that gave rise to the temperature
fluctuations in the CMB and provided seeds for the large-scale structure of the universe. The
subtle features of the observed CMB anisotropies—small deviations from scale invariance, adia-
baticity, and Gaussianity—are in excellent agreement with the basic predictions of the inflationary
paradigm. Thanks to experimentalists’ efforts, we have recently entered a theoretically interesting
regime where we started ruling out some of the canonical models of inflation.

In this chapter, we will give an overview of the general properties and observational conse-
quences of inflation. We start in §2.1 by reviewing the basic elements of Big Bang cosmology.
We also discuss its classic problems and describe how inflation successfully addresses them. In
§2.2, we present the main idea of inflation in the homogeneous limit and then review the basics of
quantum fluctuations during inflation in §2.3. Finally, we show the current observational status
of the inflationary paradigm in §2.4.

2.1 Big Bang cosmology

A well-established edifice of modern cosmology upon which inflation is based is the hot Big Bang
model. This picture is supported by a wealth of observational evidence, including the CMB, the
abundances of light elements, and the accelerated expansion of the universe. In this section, we
will briefly review the successful story of the standard Big Bang cosmology.

2.1.1 A brief cosmic history

A summary of main events in the history of the universe is presented in Table 2.1. Due to the
incessant expansion of spacetime, the energy density of the universe has been diluted ever since
the Big Bang, and different physics and matter content were responsible for driving the expansion
at different times. In essence, the history of the universe can be divided into three main eras, as
we describe in the following.

Speculative epoch. Physics of energy scales up to about 1 TeV has been probed by the LHC.
Unfortunately, energy scales much higher than 1 TeV cannot be probed by terrestrial experiments.
Due to the lack of experimental data in this high-energy regime, the physics responsible for the
very first moment of the Big Bang is rather uncertain. The standard picture is that there was
a brief period of inflation, during which the universe underwent an accelerated expansion and
primordial fluctuations were generated. The non-detection of primordial gravitational waves puts
an upper bound of 1016 GeV on the inflationary energy scale, as we shall see below. Inflation is
expected to be followed by a period of reheating, during which the familiar particles of the SM
were produced and a smooth transition to a radiated-dominated universe happened.

Thermal epoch. This thermal epoch is a cornerstone of Big Bang cosmology. At high temper-
atures, all relativistic species were in thermal equilibrium. As the universe expanded and cooled,
some particles started to become decoupled from the equilibrium.

6



2.1. Big Bang cosmology

Event Time t Redshift z Density ρ1/4 Temperature T

Quantum gravity? 10−43 s - 1019 GeV -

Grand unification? 10−36 s - 1016 GeV -

Inflation? > 10−36 s - < 1016 GeV -

EW symmetry breaking 10−12 s 1015 100 GeV 1015 K

QCD phase transition 10−6 s 1012 100 MeV 1012 K

ν decoupling 1 s 1010 1 MeV 1010 K

e± annihilation 3 s 6 · 109 0.5 MeV 5 · 109 K

Big Bang nucleosynthesis 300 s 4 · 108 0.1 MeV 109 K

Ωm domination 70 kyr 3400 1 eV 104 K

Recombination 300 kyr 1300 0.3 eV 3600 K

γ decoupling 380 kyr 1100 0.26 eV 3000 K

Reionization 10 Myr 9 2.3 meV 27 K

ΩΛ domination 900 Myr 0.4 0.32 meV 3.7 K

t0 14 Gyr 0 0.23 meV 2.7 K

Table 2.1: Chronology of the universe. The last two columns show the energy density of the universe and
the photon temperature, respectively.

At 100 GeV, the electroweak symmetry became spontaneously broken and particles acquired
mass through the Higgs mechanism. At the QCD scale of 100 MeV, there was a quark-gluon phase
transition and composite hadronic particles were formed. When the age of the universe was of
about 1 second, the weak interaction became sufficiently weak so that neutrinos decoupled from
the rest of the plasma. The temperature subsequently fell below the electron mass, after which
electron-positron annihilation occurred. Around a few minutes after the Big Bang, protons and
neutrons were bound together to form the first light elements—primarily hydrogen and helium-
4—through the BBN.

Cold epoch. We are currently living in the cold epoch, in which the energy density from
radiation is negligible. At 1 eV, pressureless matter became the dominant source to the energy
density of the universe. An important event called recombination then happened at around 0.3 eV,
which was when electrons and protons combined to form hydrogen atoms. Subsequently, the
number of free electrons dropped rapidly, and the photon mean free path became longer than
the horizon distance. In other words, photons became completely decoupled from matter at this
point, and the universe became transparent. We see these relics of photons as the CMB today.

Small irregularities in the matter density became more pronounced due to gravitational at-
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Inflationary paradigm

traction. As time went by, this gravitational instability led to the formation of structures such
as galaxies. Beyond the galactic scale, we observe the uneven distribution of matter in the form
of walls, filaments, and voids. The universe recently entered a dark-energy-dominated era and
started expanding at an accelerating rate. The current estimated age of the universe is 13.8 billion
years [21].

2.1.2 FLRW background

Since the time of Copernicus, we have learned that Earth does not occupy a privileged location
in the universe, neither do our Solar System and the Milky Way. In modern cosmology, we
assume that the matter distribution in our universe is spatially homogeneous and isotropic on
sufficiently large scales—a notion referred to as the cosmological principle. Stated in simple
terms, the universe looks essentially the same at any location and in all directions. This is
not merely a philosophical assertion, but is heavily evidenced by the near uniformity of the
observed CMB temperature and the large-scale structure in the universe. Mathematically, the
cosmological principle imposes a stringent restriction on the possible types of spatial geometry.
These are labelled by the curvature κ, categorized into flat (κ= 0), closed (κ> 0) and open
(κ< 0) spaces. The Friedmann–Lemaître–Robertson–Walker (FLRW) line element that describes
the homogeneous and isotropic spatial geometry in spherical polar coordinates is

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

2

]
, (2.1)

where dΩ2
2 ≡ dθ2 + sin2θdϕ2 is the line element of a 2-sphere. The symmetries of spatial trans-

lations and rotations are enough to fully specify the metric up to a scale factor a(t) and the
parameter κ. Introducing conformal time η, which is related to physical time t by

dη =
dt

a(t)
, (2.2)

the FLRW line element also can be written as

ds2 = a2(η)

[
dη2 +

dr2

1− κr2
+ r2dΩ2

2

]
. (2.3)

This is conformal to the line element in flat spacetime and hence particularly convenient for
describing the propagation of light and the causal structure of spacetime.

Perfect fluids provide an idealized yet good description of the matter distribution in the uni-
verse. The energy-momentum tensor of a relativistic perfect fluid takes the form

Tµν = (ρ+ P )uµuν + Pgµν , (2.4)

where ρ is the energy density and P is the pressure of the fluid in its local rest frame, and uµ

is the 4-velocity of the fluid with respect to a comoving observer. The time-time component of

8



2.1. Big Bang cosmology

Einstein’s field equations gives the Friedmann equation:

Rµν −
1

2
Rgµν = 8πGTµν ⇒ H2 =

8πG

3
ρ− κ

a2
, (2.5)

where Rµν is the Ricci tensor, R ≡ Rµµ is the Ricci scalar, and the Hubble parameter is defined
by H = ȧ/a, with an overdot denoting the derivative with respect to physical time t. The
conservation of the energy-momentum tensor in the local frame leads to the continuity equation:

∇µTµν = 0 ⇒ ρ̇ = −3H(ρ+ P ) . (2.6)

The continuity equation together with the equation of state for the fluid determines the cosmo-
logical evolution of the fluid:

P = wρ ⇒ ρ ∝ a−3(1+w) , (2.7)

where w is a dimensionless parameter. The three main matter components of our universe are
radiation, pressureless matter, and dark energy. Observations indicate that dark energy can be
described by a cosmological constant Λ, which contributes to the energy-momentum tensor as

Tµν =
Λ

8πG
gµν . (2.8)

A summary of the equations of state and expansion rates for different matter components is given
in Table 2.2.

w ρ(a) a(t) a(η)

radiation 1
3 a−4 t1/2 η

matter 0 a−3 t2/3 η2

dark energy −1 a0 eHt −η−1

Table 2.2: Summary of equations of state and expansion rates in single-component universes.

It is convenient to define the critical density as

ρc ≡
3H2

8πG
, (2.9)

and the dimensionless density parameters by

Ωr ≡
ρr
ρc
, Ωm =

ρm
ρc

, Ωκ ≡ −
κ

H2a2
, ΩΛ ≡

Λ

3H2
, (2.10)

for radiation, matter, curvature, and dark energy, respectively. In terms of these quantities, we
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can recast the Friedmann equation (2.5) in the form

H2 = H2
0

[
Ωr,0

(a0

a

)4
+ Ωm,0

(a0

a

)3
+ Ωκ,0

(a0

a

)2
+ ΩΛ,0

]
, (2.11)

where the subscript ‘0’ indicates that the quantity is evaluated today.

2.1.3 Big Bang puzzles

Despite the empirical success of the standard hot Big Bang model, it has major shortcomings in
its failure to provide an explanation for the apparent fine-tuning of the initial conditions. We
describe below the two most notable problems and show how inflation provides a natural solution
to these problems.

Flatness problem. In the previous section, we saw that there are three unique geometries
describing the spatial slices of the universe, characterized by the sign of κ. Observations are
consistent with a negligible contribution to the effective energy density from curvature today,
|Ωκ,0| . 0.005 [21], i.e. the current universe looks highly flat. This puts a tremendous constraint
on its initial value: for example, we require |Ωκ| . 10−16 at the time of nucleosynthesis, and
even smaller at earlier times. Otherwise, the universe would have either recollapsed (κ> 0) or
expanded too quickly (κ< 0). This apparent fine-tuning of the initial geometry of the universe is
called the flatness problem. In Newtonian gravity, the curvature can be interpreted as the total
energy of particles in a uniform expanding medium. The flatness problem can then be rephrased
as a problem associated with their initial velocities, because it requires an exquisite cancellation
between the kinetic and potential energies of particles in the early universe.

In order to understand the flatness problem in more mathematical terms, let us use the
Friedmann and continuity equations to express the evolution for Ωκ as

dΩκ

d ln a
= (1 + 3w)Ωκ(1− Ωκ) . (2.12)

We have set ΩΛ = 0, which is a good approximation for most of the history of the universe, and
assumed that the universe is dominated by a single fluid with an equation of state P = wρ. By
examining the sign of the right-hand side of the above equation, we see that Ωκ = 0 is an unstable
fixed point for w ≥ −1/3, while Ωκ = 0 becomes an attractor for w < −1/3. Moreover, the
rate of change is exponential in Hubble time. This implies that the curvature component grows
exponentially in a universe dominated by ordinary fluids such as radiation or pressureless matter.
On the other hand, an expansion driven by a fluid component that violates the strong energy
condition (SEC), w < −1/3, will drive Ωκ effectively to zero. The acceleration equation

ä

a
= −4πG

3
(1 + 3w)ρ , (2.13)

tells us that this corresponds to having an accelerated expansion. The Hubble rate is almost
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2.1. Big Bang cosmology

constant during inflation, which implies that w ≈ −1. This in turn implies that Ωκ ∝ e−2N ,
where N ∝ ln a is the number of e-folds during inflation. If we suppose that |Ωκ| ∼ 1 at the
beginning of inflation, then we require inflation to last at least N = 60 e-folds in order to ensure
that |Ωκ| < 10−50 at the end of inflation and thereby solve the flatness problem.

Horizon problem. Causality plays a crucial role in all branches of physics. For example, black
holes have an event horizon, the surface beyond which causal contact with outside observers is
lost. In cosmology, there exists a notion of a particle horizon, which is the maximum distance
that particles can have travelled within the age of the universe.

The observed CMB is extremely isotropic (with the level of anisotropy being one part in 104),
which implies that photons had been in causal contact before the time of photon decoupling. Let
us define

χ(t1, t2) ≡
∫ a(t2)

a(t1)

da

a

1

aH
. (2.14)

The particle horizon at the time of last scattering, tL, is then given by dH ≡ χ(0, tL). Let us
assume that the universe has evolved according to the standard history of the hot Big Bang without
inflation. Before last scattering, the universe was dominated either by radiation or matter, during
which the Hubble rate evolved as H ∝ a−2 and H ∝ a−3/2, respectively. For these normal matter
contents, the integral is dominated by late times, since (aH)−1 is monotonically increasing. In this
case, dH will be finite and small. Note that comoving distances that are separated by more than
dH cannot have been in causal contact. The angle subtended by the comoving particle horizon
at recombination is θH ≡ dH/dA, where dA ≡ χ(tL, t0) is the angular diameter distance to the
surface of last scattering in a flat universe. Numerically, we obtain θH ≈ 1◦, which implies that
the near-uniform surface of last scattering was made out of 104 causally disconnected regions.
This apparent fine-tuning of the initial condition of the universe is called the horizon problem.

Now, suppose that there was an era of inflation, during which the universe expanded as
a(t) ∝ eHt, before radiation came to dominate the universe. In that case, the integral for dH
becomes dominated by the period of inflation at early times, in contrast to what the naive ex-
trapolation above suggests. The condition that all regions of the surface of last scattering have
been in causal contact then translates to

dH > dA ⇒ eN &
a∗H∗
a0H0

, (2.15)

where the subscript ‘∗’ indicates that the quantity is evaluated at the end of inflation, and we
used the fact that the integral for dA is dominated by the matter-dominated era. In other words,
we require inflation to have lasted sufficiently long, so that the comoving Hubble radius (aH)−1

today is smaller than its size at the end of inflation. This is satisfied if inflation lasted at least
N & 60 e-folds.1

1This is a conservative bound assuming ρ1/4
∗ ∼ 1016 GeV, and the exact number of required N depends on the
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2.2 Inflation I: homogeneous limit

As we have seen above, positing a period of inflation can resolve the classic shortcomings of Big
Bang cosmology. In this section, we describe the basic elements of the homogeneous limit of
inflation.

Definitions. We begin by describing several equivalent definitions of inflation. In the simplest
form, inflation is just a period of accelerated expansion, ä > 0. As we have seen, this implies that
the fluid that drives the expansion violates the SEC, w < −1/3. If w ≈ −1, then the space will
expand quasi-exponentially. More exotic theories allow a violation of the null energy condition
(NEC), w < −1, but we will assume that the NEC always holds.2

Inflation can also be characterized in terms of the evolution of the comoving Hubble radius
(aH)−1. In particular, since

d

dt
(aH)−1 = − ä

ȧ2
< 0 , (2.16)

the comoving Hubble radius decreases during inflation. From (2.14), we see that the comoving
Hubble radius has the notion of an instantaneous cosmological horizon, in the sense that the
distances that are separated by greater than the Hubble radius cannot be in causal contact at a
particular moment. The observable universe therefore becomes smaller during inflation.

The condition of having an accelerated expansion furthermore implies

ε ≡ − Ḣ

H2
= 1− äa

ȧ2
< 1 . (2.17)

Notice than an exponential expansion is achieved by taking the limit

ε→ 0 ⇒ H → const. , a(t)→ eHt . (2.18)

The exact ε = 0 case corresponds to having a de Sitter background, which is a vacuum solution of
the Einstein equations with a positive cosmological constant. A summary of the four widely-used
equivalent definitions of inflation is shown in Table 2.3.

accelerated expansion violation of SEC shrinking Hubble radius slowly varying H

ä > 0 P < −1

3
ρ

d

dt
(aH)−1 < 0 ε = − Ḣ

H2
< 1

Table 2.3: Equivalent definitions of inflation

energy scale at the end of inflation and the details of the subsequent cosmological evolution.
2More precisely, the NEC requires that the energy-momentum tensor satisfies Tµνnµnν ≥ 0 for any null

vector nµ.
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2.2. Inflation I: homogeneous limit

Slow-roll inflation. The exponential expansion of inflation would never end, if the universe
were in a perfect de Sitter phase. For realistic inflationary scenarios, we instead consider a quasi-
de Sitter phase, for which the expansion rate is almost—but not exactly—exponential. This is no
longer a vacuum solution of Einstein’s field equations, which means that we must add a matter
content to drive inflation—in particular, one that violates the SEC. This can be achieved by a
scalar field φ, called the inflaton, whose action with minimal coupling to gravity is

S =

∫
d4x
√−g

[
1

2
M2

plR−
1

2
(∂φ)2 − V (φ)

]
, (2.19)

where V (φ) is the inflaton potential. In a pure FLRW background, φ is a function only of time.
The variation of this action with respect to φ yields the equation of motion

φ̈+ 3Hφ̇ = −V ′(φ) , (2.20)

with a prime on V (φ) denoting the derivative with respect to φ. Moreover, the Friedmann equation
implies3

H2 =
1

3M2
pl

[
1

2
φ̇2 + V (φ)

]
. (2.21)

Differentiating this with respect to time and using (2.20), we get 2M2
plḢ = −φ̇2. In order to

have a nearly exponential expansion for a sufficient period, we require that the following slow-roll
conditions to be satisfied:

ε =
φ̇2

2H2M2
pl

� 1 , η̃ ≡ ε̇

Hε
� 1 . (2.22)

These conditions imply that the potential energy dominates the kinetic energy, 1
2 φ̇

2 � V (φ), for
a sufficient period, and, as a result, that the scalar field slowly rolls down the potential. In this
regime, the equivalent slow-roll conditions can also be defined in terms of the potential as

εV ≡
M2

pl

2

(
V ′

V

)2

� 1 , ηV ≡M2
pl

V ′′

V
� 1 . (2.23)

These conditions state that the first and second derivatives of the potential are small in Planck
units, and we will refer to these as the flatness conditions. For example, one of the simplest
potentials that satisfy the flatness conditions is V (φ) = 1

2m
2φ2 with φ�Mpl.

3We will henceforth switch from using G toMpl = 1/
√

8πG, which is more convenient to use in the high-energy
regime.
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2.3 Inflation II: quantum fluctuations

We know that the universe is not perfectly homogeneous and isotropic because we see structures
around us. One of the beautiful aspects of inflation is that it provides a natural mechanism for
generating primordial density perturbations.

Observations of the CMB anisotropies provide information about several important properties
of the primordial density perturbations: that they are nearly (i) adiabatic, meaning that no
fluctuations were in composition, (ii) scale invariant, implying that the variance is constant across
logarithmic k-intervals, and (iii) Gaussian, so that their statistical distribution follows entirely
from their two-point function. All of these are predicted features in the simplest picture of slow-
roll inflation, where these perturbations were generated from quantum fluctuations of the scalar
field driving the accelerated expansion.

The inflaton can be expressed as φ(t,x) = φ̄(t) + δφ(t,x), where φ̄ denotes the homogeneous
background solution (the one studied in the previous section) and δφ is a spacetime-dependent
perturbation. The latter arises from vacuum fluctuations of the inflaton, which “freeze” on su-
perhorizon scales and become classical perturbations. These then lead to inhomogeneities in the
energy density after inflation and ultimately to the observed anisotropies of the CMB. In this
section, we will give a lightening review of quantum fluctuations during inflation.

Inflaton perturbations. Due to one of the flatness conditions, ηV � 1, we require the inflaton
to be sufficiently light. For simplicity, let us take the inflaton to be massless. The linearized
equation of motion for δφ in an unperturbed de Sitter background is

δ̈φ+ 3H ˙δφ− a−2∇2δφ = 0 . (2.24)

In Fourier space, this equation expressed in terms of conformal time is

δφ′′k −
2

η
δφ′k +

k2

H2η2
δφk = 0 . (2.25)

We now follow the standard procedure of quantization by promoting δφ to an operator and
expanding it in terms of time-dependent mode functions

δφk = δφk(η)ak + δφ∗k(η)a†−k . (2.26)

The momentum-dependent coefficients ak and a†k play the role of the annihilation and creation
operators, respectively, which satisfy the canonical commutation relations

[ak, a
†
k′ ] = (2π)3δ(k + k′) , [ak, a

†
k′ ] = [a†k, a

†
k′ ] = 0 . (2.27)

The vacuum is a state satisfying ak|0〉 = 0. The canonical commutation relations (2.27) impose
the normalization condition a2(δφ′kδφ

∗
k − δφkδφ

∗
k
′) = i on the mode functions, known as the
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Wronskian condition. The normalized solution of the equation (2.25) is

δφk(η) =
iH√
2k3

(1 + ikη)e−ikη , (2.28)

where we have imposed the Bunch-Davies initial condition, so that it reduces to the correct vacuum
solution in the far past.4 At late times when the modes have exited the horizon, |kη| � 1, the
power spectrum of the inflaton perturbations becomes

Pδφ(k) = 〈δφkδφ−k〉′ = |δφk|2 =
H2

2k3
. (2.29)

Note that this is time independent and exactly scale invariant.

A few comments are in order. The above analysis was carried out in a fixed de Sitter back-
ground and ignored the coupling to metric fluctuations. However, for true inflationary solutions,
the perturbations of the spacetime metric need to be taken into account as well. The full grav-
itational dynamics is most conveniently described by using the Arnowitt-Deser-Misner (ADM)
formalism [24], where the metric takes the form

ds2 = −N2dt2 + hij(N
idt+ dxi)(N jdt+ dxj) . (2.30)

Neglecting the tensor fluctuations inside hij for the moment (which we will describe below), we
can fix the gauge by setting φ = φ̄ + δφ and hij = a2δij . This is called spatially flat gauge, in
which the scalar degree of freedom is solely described by δφ. The ADM formalism is designed
so that when the above metric is substituted into the action (2.19), N and N i act as Lagrange
multipliers. Solving for the constraints, we will find that N = 1 and N i = 0 at leading order
with corrections that are suppressed by slow-roll parameters [25]. Therefore, the result (2.29)
is correct up to slow-roll-suppressed gravitational corrections. On the other hand, the slow-roll
approximation breaks down at sufficiently late times, and, as a result, the inflaton fluctuations
evolve on superhorizon scales. This means that the above result should only be trusted up to a
few e-folds after the horizon exit. On superhorizon scales, it is more convenient to describe the
scalar degree of freedom in a different gauge, which we will describe below.

Metric perturbations. Another convenient choice of gauge is comoving gauge, where (after
reintroducing tensor fluctuations) we set

φ = φ̄ , hij = a2e2ζ [eγ ]ij , ∂iγij = 0 , γii = 0 . (2.31)

This choice completely fixes the gauge freedom at non-zero momentum.5 In this gauge, the scalar

4There exists a one-parameter family of de Sitter-invariant states called the α-vacua, which makes the choice of
a vacuum state in de Sitter space ambiguous. However, since the mode does not feel any curvature in the limit of
short wavelength (the equivalence principle), there is a particular de Sitter-invariant state called the Bunch-Davies
vacuum that reduces to the Minkowski vacuum in the asymptotic past [22, 23].

5At zero momentum, there are residual symmetries involving gauge transformations that do not fall off at
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fluctuations are fully described by the gauge-invariant variable ζ [27, 28] called the (comoving)
curvature perturbation, while the tensor fluctuations are captured by the tensor perturbation γij .
Expanding the action (2.19) up to second order in ζ, we obtain [25]

S = M2
pl

∫
dtd3x a3ε

[
ζ̇2 + a−2(∂iζ)2

]
. (2.32)

No slow-roll approximation is required for deriving this action, so it remains valid even at the
end of inflation. Note that, due to the appearance of ε in the overall normalization, the action
vanishes in the exact de Sitter limit ε = 0. This means that ζ becomes a pure gauge mode in
an exact de Sitter background, as it should for a vacuum solution of Einstein’s field equations.
Variation of the above action with respect to ζ yields the equation of motion

ζ̈ + 3H(1 + η̃)ζ̇ − a−2∂2
i ζ = 0 . (2.33)

We can solve this equation by going to Fourier space and follow the standard quantization pro-
cedure for ζ as before.6 At leading order in the slow-roll approximation, we can neglect η̃ in the
friction term, after which the equation takes the same form as (2.24). The resulting scalar power
spectrum is then

Pζ(k) =
H2

4εM2
pl

1

k3
. (2.34)

The extra factors in the denominator appears relative to (2.29) because ζ is not canonically
normalized. Although the slow-roll approximation is made in deriving the time-independent
result (2.34), we can show that the exact equation (2.33) always has a constant ζ solution on
superhorizon scales.7 To compare the results between comoving and spatially flat gauges, we note
that a time reparametrization of the form

t → t+ ξ(t,x) , with ξ = −δφ
˙̄φ

+O(δφ2) , (2.36)

takes us from spatially flat gauge to comoving gauge. This gives the following relation between ζ
in comoving gauge and δφ in spatially flat gauge:

ζ = −Hδφ
˙̄φ

+O(δφ2) . (2.37)

infinity [26]. As we will describe in §3.3.2, these are conformal transformations that are non-linearly realized by ζ
and γij .

6This needs to take into account the fact that ζ is not canonically normalized.
7Let us consider the behavior of ζ outside the horizon. On superhorizon scales, we can neglect the gradient

term in (2.33), and the general solution is

ζ(t) = c1 + c2

∫ t

dt1 exp

[
−
∫ t1

dt2 (3 + η̃)H

]
. (2.35)

We see that there is a constant solution with c1 6= 0. The other solution with c2 6= 0 decays as long as η̃ > −3.
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Using this relation and ε = ˙̄φ2/2H2M2
pl, it is straightforward to see that (2.29) and (2.34) are

equivalent at leading order. Since (2.29) is only valid in the slow-roll regime, the conversion from
spatially flat to comoving gauge should be made shortly after the mode exits the horizon.

In an inflationary background, the power spectrum (2.34) is not exactly scale invariant because
the Hubble parameter slowly evolves with time. The small deviation from scale invariance is
characterized by the scalar spectral index ns, defined by

ns − 1 ≡ d ln k3Pζ(k)

d ln k
. (2.38)

Evaluating the power spectrum at horizon crossing, k = aH, and using the relation d ln k ≈ Hdt,
we obtain ns − 1 = −2ε− η̃ to first order in the slow-roll approximation.8

Apart from the scalar fluctuations, inflation also predicts a stochastic background of tensor
perturbations or primordial gravitational waves. Expanding the action (2.19) up to second order
in γ, we obtain

S =
1

4
M2

pl

∫
dtd3x a3

[
γ̇2
ij − a−2(∂kγij)

2
]
. (2.39)

The transverse and traceless conditions (2.31) imply that γ contains two physical degrees of
freedom, which in Fourier space can be decomposed into definite polarization modes as

γij,k =
∑
λ=±2

ελijγ
λ
k , (2.40)

where ελij is the spin-2 transverse polarization tensor that satisfies ελii = 0, kiελij = 0, and
ελijε

λ′
ij = 4δλλ′ .9 Each polarization mode then obeys the same equation of motion as a mass-

less scalar field studied in the previous section. Following the same quantization procedure as
before, it can be shown that the tensor power spectrum is [32]

Pγ(k) = 〈γij,kγij,−k〉′ =
H2

M2
pl

4

k3
. (2.41)

This is exactly scale invariant in the de Sitter limit, but a small deviation from scale invariance
in inflation is quantified by the tensor tilt nt, defined by

nt ≡
d ln k3Pγ(k)

d ln k
. (2.42)

Primordial gravitational waves from inflation in Einstein gravity give nt = −2ε.

8The exact scale-invariant case, called the Harrison-Zeldovich spectrum, was proposed well before inflation
[29–31]. Inflation provides a physical mechanism that naturally realizes the scale-invariant spectrum at leading
order.

9Notice that we adopt a slightly different normalization of the polarization tensor from the more common
convention εsijεs

′
ij = 2δss′ .
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2.4 Observational status of the paradigm

We have seen that there exist two fundamental fluctuations created during inflation: the curvature
perturbation ζ and the tensor perturbation γij . In this section, we show how these fluctuations
lead to the CMB anisotropies and review the current observational status of the inflationary
paradigm.

2.4.1 CMB anisotropies

Although the temperature of the CMB is extremely isotropic with the mean blackbody tem-
perature of T = 2.7255 ± 0.0006 K [33], there are small anisotropies in one part in 104. The
temperature variation δT is a function of the direction on the sky, n. Since we observe the CMB
on the celestial sphere, we can expand the CMB anisotropy Θ ≡ δT (n)/T in terms of spherical
harmonics as

Θ(n) =
∑
`m

a`mY`m(n) . (2.43)

Assuming that the initial perturbations are statistically isotropic, the two-point correlation of the
expansion coefficients a`m becomes diagonal:

〈a`ma∗`′m′〉 = C`δ``′δmm′ . (2.44)

The CMB angular power spectrum is related to the primordial power spectrum by

C` = 4π

∫ ∞
0

dk

k
T 2
` (k)Pζ(k) , (2.45)

where T`(k) is the transfer function that encodes the cosmological evolution and projection effects.
Since the transfer function can be computed using known physics, an accurate measurement of
the angular power spectrum allows us to reconstruct the shape of the primordial power spectrum.

Figure 2.1 shows the latest measurement of the CMB temperature power spectrum by Planck
and the best fit to the ΛCDM model. On large scales, the modes are still outside the horizon, and
the angular power spectrum stays approximately constant, reflecting the scale invariance of the
initial spectrum. On small scales, we see acoustic oscillations due to the gravitational compression
and radiative pressure felt by the photon-baryon fluid. Crucially, the very fact that we see these
acoustic peaks implies that the modes had coherent initial phases, which would be the case for
perturbations generated during inflation [34]. In contrast, generic post-inflationary mechanisms
produce modes with random phases, resulting in a featureless power spectrum. These properties
of the observed CMB provide compelling qualitative evidence for inflation.
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Figure 2.1: The Planck 2015 temperature power spectrum D` ≡ `(` + 1)C`/2π. The upper and lower
panels show the best fit to the ΛCDM model and the residuals with respect to this fit, respectively. The
error bars show 1σ uncertainties. (Figure adapted from [21].)

2.4.2 Constraints on inflation

The latest constraints on the six parameters of the ΛCDM model are quoted in Table 2.4. Four
of these parameters describe the composition of the late-time universe, and two parameters set
the initial conditions for the density perturbations: the amplitude of the scalar power spectrum,
As, and the spectral index, ns. We consider a phenomenological parameterization of the power
spectrum by defining a dimensionless power spectrum

∆2
ζ(k) ≡ k3

2π2
Pζ(k) = As

(
k

k∗

)ns−1

, (2.46)

where k∗ is a pivot scale (e.g. k∗= 0.05 Mpc−1 for Planck). This parameterization takes into
account the fact that the scalar power spectrum in (2.34) is not exactly scale invariant during
inflation, and the ns = 1 case corresponds to the scale-invariant spectrum in de Sitter space.

The observed broken scale-invariant spectrum provides a strong quantitative evidence for
inflation, with the exact scale invariance now being disfavored at slightly more than 5σ [35]. Un-
fortunately, the value of ns alone contains limited information about the dynamics of inflation.
In order to further elucidate the physics of inflation, it is imperative to measure other cosmolog-
ical observables which encode richer information about the primordial universe. Below we will
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highlight two important cosmological observables that have the potential to probe the detailed
physics of inflation.

H0 Ωc,0h
2 Ωb,0h

2 τ ln(1010As) ns

67.74± 0.46 0.1188± 0.0010 0.02230± 0.00014 0.066± 0.012 3.064± 0.023 0.9667± 0.0040

Table 2.4: Six independent parameters of the ΛCDM model at the 1σ level from Planck in combination
with external data [21]. The symbols Ωc,0 and Ωb,0 denote the cold dark matter and baryonic matter
densities, respectively, τ is the optical depth, and h ≡ H0/100 km s−1Mpc−1.

Non-Gaussianity. If the curvature perturbations were perfectly Gaussian, then their statistical
properties would be completely dictated by their two-point correlation function or power spectrum.
Although the power spectrum is very tightly constrained due to its near scale invariance, higher-
order correlation functions are more model specific and thus can serve as powerful discriminants for
inflationary models. Due to the highly Gaussian nature of the observed density perturbations, the
three-point function or its Fourier counterpart, the bispectrum, is the leading-order statistics that
can distinguish between Gaussian and non-Gaussian perturbations. The primordial bispectrum
is defined by

〈ζk1ζk2ζk3〉 = (2π)3δ(k1 + k2 + k3)Bζ(k1, k2, k3) . (2.47)

The delta function enforces momentum conservation, and the function Bζ(k1, k2, k3) depends on
the shape of the triangle formed by the three momentum vectors. The size of the bispectrum is
customarily characterized by the non-linearity parameter

fNL ≡
5

18

Bζ(k, k, k)

Pζ(k)2
, (2.48)

which is its normalized amplitude in the equilateral configuration k1 = k2 = k3 = k.

In standard single-field slow-roll inflation, gravitational non-linearities are the main source
of non-Gaussianity. The level of non-Gaussianity in these scenarios is very small, due to the
sheer weakness of gravitational interactions. On the other hand, there exist a large number of
well-motivated extensions to single-field slow-roll inflation that can accommodate a detectable
amplitude of non-Gaussianity, each of which predict a distinct shape for the bispectrum. We will
briefly review three of the most-studied shapes below.

In single-field inflation, higher-derivative interactions of the inflaton can induce a non-trivial
sound speed cs for the curvature perturbation. At leading order in derivatives, the dominant
contribution to the bispectrum is produced by the two cubic self-interactions ζ̇3 and ζ̇(∂iζ)2, with
the size of the latter being tied to the deviation of cs from unity [36]. Although the former is
an independent operator, radiative corrections naturally give it a size of the same order [37].
These interactions give rise to two independent non-Gaussian shapes which are both peaked in
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the equilateral configuration. For actual data analysis, it is convenient to work with templates
that are computationally more efficient, rather than dealing with the exact shapes. The original
shapes from the cubic interactions are well-captured by a linear combination of the two templates
called equilateral and orthogonal shapes, defined by [38, 39]

Bequil
ζ =

3

5
f equil

NL

[(
P1P

2
2P

3
3

)1/3 − 2 (P1P2P3)2/3 − P1P2 + perms.
]
, (2.49)

Bortho
ζ =

3

5
fortho

NL

[
3(P1P

2
2P

3
3 )1/3 − 3P1P2 − 8 (P1P2P3)2/3 + perms.

]
, (2.50)

where Pi ≡ Pζ(ki). The amplitude of the equilateral non-Gaussianity typically scales as f equil
NL ∼ c−2

s

for small cs.

The class of inflationary models which involves additional light scalar fields is called multi-field
inflation. In this scenario, extra scalar perturbations can transfer their non-Gaussianity to the
curvature perturbation. This transfer happens locally on superhorizon scales, and thus the type
of non-Gaussianity generated in this scenario is called local non-Gaussianity. The bispectrum in
this scenario takes the form [12]

Blocal
ζ =

6

5
f local

NL

(
P1P2 + perms.

)
. (2.51)

As opposed to the equilateral shape, the local shape is peaked in the squeezed configuration,
where one side of the triangle is taken to be much smaller than the other two.

Current observational constraints on the size of the local, equilateral, and orthogonal non-
Gaussian shapes are [40]

f local
NL = 0.8± 5.0 , f equil

NL = −4± 43 , fortho
NL = −26± 21 (68% CL) . (2.52)

These constraints can be compared with the minimal amount of non-Gaussianity expected in
single-field slow-roll inflation, fNL = O(ε, η̃) = O(10−2) [25, 41], and a natural theoretical thresh-
old, fNL = O(1) [1, 42] (see Chapter 4). There exist many different shapes of non-Gaussianity
that arise from other physical inflationary scenarios. We will explore primordial non-Gaussianity
more in Chapters 4 and 5.

Tensor modes. Primordial gravitational waves are arguably the most quintessential prediction
of inflation. Similar to the scalar power spectrum, we consider the following phenomenological
parametrization of the tensor power spectrum:

∆2
γ(k) ≡ k3

2π2
Pγ(k) = At

(
k

k∗

)nt
. (2.53)

Again, due to the expected near scale invariance, this is characterized by two numbers: the tensor
amplitude, At, and the tensor tilt, nt. We conventionally characterize the size of the tensor power
spectrum by the tensor-to-scalar ratio, r, defined as the ratio of the amplitudes of the tensor and
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scalar power spectra

r ≡
∆2
γ

∆2
ζ

= 16ε . (2.54)

Constraints on r can be placed both indirectly from the CMB temperature power spectrum and
directly from the CMB B-mode polarization (see Chapter 7). Figure 2.2 shows the constraints
on r and ns from the joint analysis of BICEP2/Keck Array and Planck [43]. We see that the φ2

model of inflation is now ruled out at the 2σ level.

φ2

0.95 0.96 0.97 0.98 0.99 1.00
0.00

0.05

0.10

0.15

0.20

0.25

φ

Figure 2.2: Current constraints in the r vs. ns plane at the pivot scale k∗ = 0.002 Mpc−1. The yellow
contour represents the combined constraint from Planck plus external data, while the blue contour also
includes the BICEP2/Keck Array data. The dotted lines show lines of constant number of e-folds, N , for
power-law potentials, and the solid lines show the r-ns relation for linear and quadratic potentials. (Figure
adapted from [43].)

From (2.41), we see that the tensor amplitude is a direct measure of the Hubble scale during
inflation. In the slow-roll regime, this is related to the energy density ρ ≈ V during inflation by
the Friedmann equation 3H2M2

pl ≈ V . Using the known value for Mpl, we can thus express ρ in
terms of r as

ρ1/4 ≈
( r

0.01

)1/4
× 1016 GeV . (2.55)

With the next generation of ground-based, balloon, and satellite CMB experiments, we expect to
be able to reach r ∼ 10−3 [44, 45]. Thus, a detection of primordial gravitational waves in the near
future would be the tell-tale signature that inflation occurred near the grand unification scale.
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In single-field slow-roll inflation, the tensor tilt is given by nt = −2ε = 2Ḣ/H2. Note that nt
must be negative, if the NEC is satisfied, Ḣ ≤ 0. Moreover, nt is not an independent parameter,
but is related to r in the following way:

nt
r

= −1

8
. (2.56)

This is known as the tensor consistency condition and is obeyed by all conventional single-field
slow-roll inflationary models. In single-field models with non-trivial sound speed or multi-field
inflation, we instead have nt/r > −1/8. We will study inflationary tensor modes in more detail
in Chapters 6 and 7.
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3. Effective theories of inflation

Nature consists of many different length scales: from the very small—the quantum realm of
particles—to the very large—the size of the cosmic horizon. Fortunately, describing a particular
physical phenomenon does not require us to know physics at all scales at once. For instance, one
does not speak of quantum chromodynamics when doing atomic spectroscopy or quantum me-
chanics when describing the motions of planets. Essentially all the relevant macroscopic dynamics
at some length scale can be described without knowing the detailed microscopic description at a
shorter scale, as long as the separation of these scales is sufficiently large. This is the essence of
effective field theory (EFT).

In physical systems with a separation of scales, the effects of the short-distance physics on
the long-wavelength dynamics are said to decouple, up to corrections that are suppressed by
the hierarchy of scales.1 Moreover, the higher-order corrections in the EFT can be classified
by the symmetries of the problem. This allows us to parameterize our ignorance about the
microscopic theory in a systematic way. Furthermore, in order to compute observables at a
finite level of accuracy, only a finite number of corrections need to be included, making the EFT
a predictive framework. Precision measurements of these higher-order corrections can provide
important theoretical hints for the structure of the underlying theory.

The methods of EFT allow us to study the physics of inflation in a model-insensitive way.
In the simplest setting, the low-energy theory of inflation is described by a single scalar degree
of freedom, consisting of a homogeneous time-dependent background solution and spacetime-
dependent perturbations. In this case, one can consider effective descriptions for the background
and perturbations separately. The former provides a useful framework for inflationary model-
building, whereas the latter allows us to describe the phenomenology of single-field inflation in
the most general way.

This chapter is organized as follows. We begin by describing the general philosophy of EFT in
§3.1. Next, we give details of EFT approaches to inflation from the perspectives of the background
field and that of the perturbations. In §3.2, we provide an overview of Weinberg’s work on the EFT

1The multipole expansion in gravity or electrodynamics provides a good illustration for the idea. Sufficiently
far from a a distribution of masses or charges, the potential can be approximated by a monopole (point source),
while higher-order terms in the expansion can be systematically incorporated. The amplitudes of the higher-order
moments (dipole, quadrupole, etc.) are suppressed by a ratio of scales: the size of the extended source over the
distance to the source.



3.1. EFT philosophy

of slow-roll inflation [46] and comment on the sensitivity of this EFT to Planck-scale corrections.
In §3.3, we review the EFT of inflationary perturbations developed by Cheung et al. [36].

3.1 EFT philosophy

In this section, we describe the basic philosophy of EFT from the two perspectives: the top-down
and bottom-up approaches.

Top down. Imagine performing experiments at an energy scale E. Let the full theory consist
of a heavy and a light field labelled by Ψ and φ, with masses M > E and m < E, respectively.
The Lagrangian of the theory can be expressed as

L[Ψ, φ] = LΨ[Ψ] + Lφ[φ] + Lmix[Ψ, φ] , (3.1)

where LΨ and Lφ denote renormalizable terms for the individual fields, and Lmix includes inter-
actions between the two fields. We would like to describe the dynamics of this theory using only
the low-energy degrees of freedom that are active at E < M . The Wilsonian effective action,
Seff , is obtained by performing the following functional integral over the heavy field (and the
high-frequency modes of the light field):

eiSeff [φ] =

∫
DΨ eiS[Ψ,φ] . (3.2)

In this case, the heavy field is said to have been integrated out. This effective action describes the
low-energy dynamics of the theory, which incorporates the effects of the heavy modes above E.
The functional integral is often evaluated using a saddle-point approximation, which is equivalent
to replacing Ψ by its classical solution. The resulting effective action will formally be non-local,
but becomes (approximately) local, once expanded in inverse powers of the heavy scale.

To better illustrate these abstract concepts, consider a toy example with the following two-field
Lagrangian for the full theory:

L[Ψ, φ] = −1

2
(∂φ)2 − 1

2
m2φ2 − 1

2
(∂Ψ)2 − 1

2
M2Ψ2 + gφ2Ψ , (3.3)

where g is a dimensionful coupling constant. We expect the heavy field to be approximately
non-dynamical at low energies, E � M , meaning that to leading order we can use the classical
equations of motion for Ψ, namely (−� + M2)Ψ = gφ2, as a constraint. When the classical
solution of Ψ is substituted back to the above Lagrangian, it will yield an effective Lagrangian
for φ only

Leff [φ] = −1

2
(∂φ)2 − 1

2
m2φ2 +

1

2
g2φ2 1

−�+M2
φ2 . (3.4)

Note that formally this Lagrangian contains a non-local term. However, at low energies, we can
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take an expansion in powers of 1/M , which gives a series of local operators

Leff [φ] = −1

2
(∂φ)2 − 1

2
m2φ2 +

1

2

g2φ2

M2

∞∑
n=0

(
�
M2

)n
φ2 . (3.5)

As long as the derivative expansion is valid, the infinite series of higher-derivative terms can be
safely truncated, so that the effective Lagrangian becomes local. At which order one truncates
the series depends on the required precision.

Bottom up. It is often impossible to derive an effective Lagrangian in the above manner from
the top down, either due to the intricacy of the calculation or because the UV theory is unknown.
In those cases, we can parameterize our ignorance about the UV dynamics and construct an EFT
from the bottom up. After identifying the relevant degrees of freedom (in this case φ) and the
symmetries in question (e.g. Lorentz invariance, internal symmetries), we write down the most
general effective Lagrangian consistent with these symmetries

Leff [φ] = Lδ≤4[φ] +
∑
i

ci
Oi[φ]

Λδi−4
, (3.6)

where Oi is a set of local operators of mass dimension δi > 4. The part of the Lagrangian
denoted Lδ≤4 contains a finite number of renormalizable interactions, including the kinetic and
mass terms. The rest of the Lagrangian consists of an infinite series of higher-dimensional, or
non-renormalizable, interactions. These are weighted by inverse powers of a cutoff scale, Λ, which
is assumed to be higher than the typical energy scales of interest. In this bottom-up construction
of an EFT, the Wilson coefficients ci are free parameters that need to be fixed by experiments,
but we typically expect these coefficients to be of order unity.2 Naively, the presence of an infinite
number of terms seems to suggest that theoretical predictability is lost. However, because only a
finite number of non-renormalizable interactions have the same dimension, we can truncate the
series and make predictions with a finite precision.

The algorithm for constructing an EFT from the bottom up can be summarized as follows:
(i) identify the physical degrees of freedom and symmetries relevant at a chosen energy scale, (ii)
write down the most general effective Lagrangian consistent with these symmetries up to some
chosen order, and (iii) fix the parameters of the EFT by comparing with experimental data. We
will later apply these steps to construct effective theories of inflation.

Naturalness. Having light scalar fields in an EFT seems problematic, once quantum correc-
tions are included.3 By dimensional analysis, the prefactor of an operator Oi receives radiative
corrections proportional to Λ4−δi . This implies that the mass parameter will receive a correction,

2We use the term “order unity” in the loose sense, referring to some small range around unity, say, from 10−2

to 102. For order one Wilson coefficients, we also assume that dimensionless parameters in the UV theory are also
of order one.

3We will focus on the naturalness issue of light scalar fields, but the following discussion applies more generally
to relevant operators whose mass dimensions are less than four.
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∆m2 ∼ Λ2, that is quadratically dependent on the cutoff.4 In other words, quantum corrections
tend to drive the masses of scalar fields towards the scale of the heavy physics that has been
integrated out. This is problematic, since it violates the starting assumption for having an EFT,
namely the presence of a hierarchy of scales. The apparent sensitivity of the masses of scalar fields
to UV physics is a naturalness problem. Symmetries can help to protect the masses of scalar fields
against large quantum corrections, while the absence of such symmetries invokes a fine-tuning of
parameters.5

3.2 Effective theory of slow-roll inflation

The observed size of the CMB temperature fluctuations indicates that the physical wavenumber
of the curvature perturbation during inflation had the value k/a = H ∼ √ε×1014 GeV at horizon
exit. Note that this is much lower than the (reduced) Planck scale Mpl ∼ 1018 GeV, which is the
natural scale at which quantum gravitational effects become important. However, new physics
may appear at a scale much closer to the Hubble scale, in which case higher-dimensional operators
may play an important phenomenological role. An EFT can be used to describe these interactions
in a systematic manner.

In this section, we introduce an EFT for the inflationary background. We take the relevant
low-energy degree of freedom to be a real scalar field φ, the inflaton. The effective Lagrangian for
the inflaton will have the structure

Leff [φ] = Lδ≤4[φ] +
∞∑
n=1

(
cn
φ4+n

Λn
+ dn

(∂φ)2φn

Λn
+ · · ·

)
, (3.7)

where cn and dn are Wilson coefficients and the ellipses denote higher-derivative terms. We
first describe the UV sensitivity of the inflationary observables in the context of this EFT. We
then generalize the EFT by allowing for couplings to curvature tensors and consider the leading
derivative interactions, following the work of Weinberg [46].

3.2.1 Ultraviolet sensitivity

Inflation is distinct from many other models in particle physics, in that it intrinsically involves
gravitational dynamics. An unusual feature of low-energy inflationary observables is that they
can be extremely sensitive to high-scale physics through higher-dimensional operators. Some of
these operators are relevant even when they are suppressed by the Planck scale—a phenomenon
known as the UV sensitivity of inflation. We illustrate this issue with two examples below.

4In fact, the quadratic divergence in Λ carries no physical meaning as it depends on the regularization scheme.
For example, power law dependences on the cutoff do not appear in dimensional regularization. However, a physical
scale M (e.g. the mass of a heavy particle in the UV theory) in general will still lead to a contribution ∆m2 ∼M2

to the renormalized mass parameter. We therefore use the unphysical Λ2 divergence as a proxy for the expected
physical dependence on M2.

5Fields with non-zero spin do not receive quadratically divergent corrections, as their masses are protected by
symmetries, namely gauge invariance or chiral symmetry.
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Eta problem. Consider a dimension-6 operator in the effective Lagrangian of the form

Leff ⊃ cV0(φ)
φ2

Λ2
, (3.8)

where c is a dimensionless coefficient, V0(φ) denotes the renormalizable part of the inflaton po-
tential, and Λ� H is the cutoff. This operator does not violate any obvious symmetry and thus
should be present in a generic EFT.6 The eta parameter, ηV , defined in (2.23) then receives the
following correction:

∆ηV ≈ 2c
M2

pl

Λ2
. (3.9)

Since Λ ≤Mpl and c is typically of order one, we find ∆ηV & 1. This is problematic as it violates
one of the inflationary flatness conditions, ηV � 1. In particular, we see that the problem remains
even when we take Λ→Mpl. This striking sensitivity of the eta parameter to Planck-scale physics
is called the eta problem.7

As with other fine-tuning problems, the eta problem is not a fundamental problem of inflation
itself. Rather, it highlights the lack of our current understanding of the microscopic theory
underlying inflation, such as its symmetry structure. For example, imposing a shift symmetry
of the inflaton, φ → φ + const., will ensure that dangerous terms which can give rise to large
corrections to the eta parameter are absent in the effective Lagrangian. Having said that, it is
also believed that continuous global symmetries cannot exist in quantum gravity [48]. This implies
that such a shift symmetry cannot be an exact symmetry and must be broken by non-perturbative
gravitational effects. It is currently unclear what the typical size of these symmetry-breaking
effects are. Addressing the eta problem therefore requires an advancement in our understanding of
quantum gravity and a proper quantification of these non-perturbative effects (although see [49]).

Large-field inflation. Another prominent problem arises in models of large-field inflation, for
which the inflaton field undergoes a super-Planckian excursion during inflation, ∆φ > Mpl. A

6For example, such an operator appear in generic supergravity models of inflation [47].
7The radiative stability of the inflaton mass also leads to an eta problem. As we have seen, radiative corrections

will tend to drive the inflaton mass towards the cutoff, ∆m2 ∼ Λ2. This in turn lead to the following large correction
to the eta parameter:

∆ηV =
Λ2

3H2
> 1 . (3.10)

Unless protected by some symmetry, the mass of the inflaton need be fine-tuned to ensure that inflation lasts
sufficiently long. For example, supersymmetry can partially address the issue. Although necessarily broken during
inflation due to the positive vacuum energy, supersymmetry still leads to the cancellation between the quantum
contributions from bosons and fermions at high energies above the Hubble scale. As a consequence, the inflaton
gains a mass of order H or ∆ηV ∼ 1, meaning that a relatively minor fine-tuning of a part in 100 is required to
solve the eta problem.
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lower bound on the inflaton field excursion is given by the so-called Lyth bound [50]

∆φ

Mpl
& N

√
r

8
≈
( r

10−3

)1/2
(
N

10

)
, (3.11)

where 60 > N > 40 is the number of e-folds between the time observable scales exit the horizon
and the end of inflation. The tensor-to-scalar ratio, r = 16ε, was assumed to be nearly constant
during inflation. Observable tensor modes, r & 10−3, therefore implies a super-Planckian field
excursion, ∆φ & Mpl. To see the ramification of this, consider a generic form of the inflaton
potential

V (φ) = V0(φ) +
∞∑
n=1

cn
φ4+n

Λn
, (3.12)

which is a subset of the effective Lagrangian (3.7) involving non-derivative terms. We see that if
the inflaton has a super-Planckian field value, then the perturbative expansion becomes no longer
valid, even when Λ→ Mpl. Fine-tuning is not an option this time, since it would require tuning
of an infinite number of parameters. Imposing shift symmetry is therefore the only possibility
to ensure that these dangerous interactions are not present. As with the eta problem, building
a consistent UV-completion of large-field inflation is a challenge in inflationary model-building.
Attempts to address this in string theory are described in [51].

3.2.2 Higher-curvature action

Besides self-interactions of the inflaton, there can also be contributions to the effective theory
of inflation from gravitational corrections. Any gravitational theory should reduce to Einstein
gravity at low energies, but new gravitational physics may enter at a scale much below the Planck
scale (e.g. the string scale in string theory). How low, then, could the scale of new physics be,
while an effective description of inflation remains valid? For a valid perturbative expansion, the
cutoff scale Λ must be larger than any physical scale that is intrinsic to the low-energy system.
During inflation, the inflaton acquires a time-dependent background value, with ˙̄φ =

√
2εHMpl,

which suggests that the cutoff should be larger than this scale, Λ2 � ˙̄φ.8 This will ensure that,
for instance, the dimension-8 operator (∂φ)4/Λ4 leads to a perturbative correction to the kinetic
term for the inflaton perturbation, ˙̄φ2(∂δφ)2/Λ4 � (∂δφ)2.

Assuming that the cutoff scale is above ˙̄φ, so that we can use an effective treatment of the
background field, let us write down the leading corrections to the slow-roll action (2.19). This

8As we will see in the next section, in the EFT of inflationary perturbations we consider a derivative expansion,
not of the background inflaton field in spatially flat gauge, but of the metric fluctuations in comoving gauge. The
power counting then changes dramatically, and the cutoff can be made lower than ˙̄φ.
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was systematically studied by Weinberg in [46] and is given by

∆S =

∫
d4x
√−g

[
f1(ϕ)(∂ϕ)4 + f2(ϕ)(∂ϕ)2�ϕ+ f3(ϕ)(�ϕ)2 + f4(ϕ)Rµν∂µϕ∂νϕ

+f5(ϕ)R(∂ϕ)2 + f6(ϕ)R�ϕ+ f7(ϕ)R2 + f8(ϕ)RµνRµν + f9(ϕ)W 2 + f10(ϕ)WW̃
]
, (3.13)

where we have introduced the dimensionless field ϕ ≡ φ/Λ. We have decided to express the last
two terms in the action (3.13) in terms of the Weyl tensor

Wµνρσ ≡ Rµνρσ −
1

2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +

R

6
(gµρgνσ − gνρgµσ) . (3.14)

This can always be done by redefining other coefficients, since

W 2 ≡Wµν ρσWµν ρσ = Rµν ρσRµν ρσ − 2RµνRµν +
1

3
R2 , (3.15)

and similarly for the parity-violating term WW̃ ≡ (
√−g)−1/2εµν ρσWµν

κλWρσκλ.

Due to the presence of higher-derivative terms, the full action will inevitably contain ghost
degrees of freedom with negative kinetic terms, corresponding to poles with wrong signs. However,
we emphasize that this form of the effective action is valid for inflationary models with Λ > ˙̄ϕ,
i.e. when ∆S is treated as a perturbative correction to the leading action given in (2.19). This
means that we can use the field equations from the leading action, and the wrong-sign poles will
arise for energy scales greater than Λ, beyond the validity of the effective action. The leading-order
field equations are

Λ2�ϕ = U ′(ϕ) , M2
plRµν = −Λ2∂µϕ∂νϕ− U(ϕ)gµν , (3.16)

with U(ϕ) ≡ V (Λϕ). We can further use field redefinitions to simplify the action. Physical observ-
ables such as scattering amplitudes or correlation functions are not affected by such changes of the
field variables. This is because local non-linear field redefinitions—in the form of ϕ→ ϕ+ F (ϕ),
where the function F involves at least two powers of the ϕ field—do not affect the quadratic
action and thus leave the asymptotic states intact. After using the field equations and suitable
field redefinitions, one arrives at the simple action [46]

∆S =

∫
d4x
√−g

[
f1(ϕ)(∂ϕ)4 + f9(ϕ)W 2 + f10(ϕ)WW̃

]
, (3.17)

where the effects of other higher-curvature terms have been absorbed into the inflaton potential.
The first term in the above action is a higher-derivative self-interaction of the inflaton that ap-
pears e.g. in models of k-inflation [52]. The Weyl tensors vanish in FLRW backgrounds, so the
corrections from the last two terms start at quadratic order in fluctuations. We will analyze the
perturbations of this action in Chapter 6.
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3.3 Effective theory of cosmological perturbations

We now turn our attention to a general framework of describing cosmological perturbations. We
focus on the light degree of freedom that arises because the time dependence of the inflationary
background breaks some of the symmetries of the idealized de Sitter limit. The effective theory
for the Goldstone boson corresponding to this symmetry breaking provides a systematic way to
characterize the dynamics of inflationary fluctuations. The key advantage of this approach is that
it allows us to remain agnostic about the mechanism that creates the inflationary background.

The outline of the section is as follows. We first describe the basic concepts of spontaneous
symmetry breaking and their applications to inflation. We then review the EFT of the Goldstone
boson of broken time translations—often just referred to as the EFT of inflation—which was
originally developed in [36, 53] (see [51, 54] for recent reviews).

3.3.1 Spontaneous symmetry breaking

If the symmetries of the action do not leave the ground state of the theory invariant, then we
say that these symmetries are spontaneously broken. For systems with spontaneously broken
symmetries, there is an immensely useful way of describing the low-energy dynamics of the system.
This makes use of an EFT in the broken symmetry phase, whose construction relies solely on the
symmetry breaking pattern without the need to know the mechanism responsible for the breaking.

Internal symmetries. Consider a theory consisting of a set of scalar fields collectively denoted
by Φ, whose action is invariant under an internal symmetry group G. Group elements act on the
fields by

Φ → eiθ
aTaΦ , (3.18)

where θa are parameters and T a are the generators of G, with a = 1, ..., dimG. Suppose that the
fields acquire vacuum expectation values, 〈Φ〉 ≡ Φ̄, which are only invariant under the subgroup
K ⊂ G, but transform non-trivially under the coset G/K. In this case, we say that the symmetry
group G is spontaneously broken to K, and the low-energy action is determined purely by the
symmetry breaking pattern. Goldstone’s theorem states that spontaneous symmetry breaking
leads to the excitation of massless scalar particles called Goldstone bosons [55, 56]. There are in
total dimG/K Goldstone bosons, one for each broken symmetry generator.9

Under the action of the coset, a vacuum state gets transformed into another degenerate vacuum
state. This implies the presence of flat directions in the field space, along which the energy of the
state stays constant. A coset element is represented by

U(x) ≡ eiπa(x)τa , (3.19)

9This is true for relativistic systems. The counting of Goldstone bosons is more subtle for non-relativistic
systems (see e.g. [57]).
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where πa are the Goldstone bosons that parameterize the space of degenerate vacuum states
and τa are the broken symmetry generators. The unbroken symmetries acts linearly on the
Goldstone bosons, while the broken symmetries act non-linearly.10 In particular, the non-linear
transformation involves a constant shift at leading order. This implies that the Goldstone bosons
are massless and that they only involve derivative interactions. Since the excitations along the
non-flat directions are massive, the dynamics of the Goldstone bosons are decoupled at sufficiently
low energies.

To describe the low-energy degrees of freedom in the broken symmetry phase, we write down
the most general Lagrangian that is invariant under G and built out of the coset element U defined
in (3.19):

Leff = − f
2
π

4
Tr
(
∂µU∂

µU †
)

+ c1Tr
(
∂µU∂

µU †∂νU∂νU †
)

+ c2Tr
(
∂µU∂νU

†)Tr
(
∂µU∂νU †

)
+ c3

[
Tr
(
∂µU∂

µU †
)]2

+ · · · , (3.20)

where ci are dimensionless constants and Tr(· · · ) denotes a trace. We have omitted terms with
more than four derivatives and with more than single derivative acting on U . The parameter fπ
with dimension of mass is included on dimensional grounds. The Goldstone Lagrangian can be
obtained by expanding in π. For example, the two-derivative term gives

−f
2
π

4
Tr
(
∂µU∂

µU †
)

= −1

2
∂µπ

a
c∂

µπac −
1

6f2
π

[
(πac∂µπ

a
c )2 − π2

c (∂µπ
a
c∂

µπac )
]

+ · · · , (3.21)

where πac ≡ fππ
a are the canonically normalized fields.11 We see that two-derivative interac-

tions of πa are completely fixed by the condition that πa must transform non-linearly under the
broken symmetries. After canonical normalization, these interactions consist of a series of non-
renormalizable terms suppressed by powers of fπ. This scale is fixed by the vacuum expectation
value of the original theory and is called the symmetry breaking scale.12 At energies above fπ,
the perturbative expansion in terms of the Goldstone boson breaks down, and the symmetries
get restored. By dimensional analysis, the perturbative expansion for the four-derivative terms in
(3.20) will break down at E ∼ Λ, where Λ4 ≡ f4

π/ci, which is below fπ for ci > 1. This means that
the inclusion of higher-derivative terms can lower the scale at which the perturbative expansion
breaks down.

Spacetime symmetries. For cosmological applications, we will be interested in spontaneously
broken spacetime symmetries. While most of the concepts discussed above for internal symmetries
also apply for spacetime symmetries, there is also a crucial difference. For spontaneous spacetime
symmetry breaking, the spectrum of Goldstone modes is more subtle, and the number of broken

10The Goldstone bosons are said to transform linearly if πa → π′a = Aabπ
b for some constant matrix Aab.

Otherwise, they are said to transform non-linearly.
11Our normalization convention is Tr(τaτ b) = δab/2.
12For instance, the scale fπ plays the role of the pion decay constant in the Chiral Lagrangian [58].
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symmetry generators in general does not match the number of Goldstone bosons [59]. This is
because the generators of local spacetime symmetries can be linearly dependent on each other,
so that some of them may not give rise to independent Goldstone bosons. A classic example is
phonons in solids. In that case, there are three Goldstone bosons although six isometries (three
translations and three rotations) are spontaneously broken.

Let us explicitly demonstrate the relationship between broken spacetime symmetries. For
example, consider a scalar field φ with a spacetime-dependent vacuum expectation value

〈φ〉 = cµx
µ , (3.22)

where cµ is a constant vector. Due to the explicit appearance of the spacetime coordinate xµ,
this configuration spontaneously breaks diffeomorphism invariance. Note that we can also express
the above as 〈∂µφ〉 = cµ. Let us introduce a vierbein eaµ, whose indices, a = 0, ... , 3, are raised
and lowered by a local Minkowski metric ηab. Using the vierbein, the components of ∂µφ in a
coordinate basis can then be related to the components of ∂aφ in a local Lorentz frame

〈∂aφ〉 = eµa〈∂µφ〉 = cµe
µ
a . (3.23)

This shows that spontaneously broken diffeomorphism invariance implies spontaneously broken
local Lorentz invariance (and vice versa). The same argument applies to arbitrary tensors Tµν···
with constant vacuum expectation values.

3.3.2 Symmetries in inflation

Inflation is described by a quasi-de Sitter phase, so it does not retain all of the isometries of de
Sitter space. Before developing an effective theory describing the symmetry breaking, we review
the symmetries of de Sitter space and show how they are broken during inflation.

de Sitter isometries. De Sitter space is a maximally symmetric vacuum solution to Einstein
gravity with a positive cosmological constant. The corresponding line element is

ds2 =
1

H2η2
(−dη2 + dx2) , (3.24)

where a(η) = −1/Hη and the range of conformal time is η ∈ (−∞, 0). Inspection of (3.24) reveals
the isometries of the de Sitter spacetime: in addition to spatial rotations and translations, these
include a dilatation (D) and three special conformal transformations (SCTs)

D : η → (1 + λ)η , x → (1 + λ)x ,

SCTs : η → (1− 2b · x)η , x → x− 2(b · x)x + (x2 − η2)b ,
(3.25)

where λ and b are infinitesimal parameters. In total, de Sitter space therefore has 10 isometries
constituting the isometry group SO(1,4). Correspondingly, de Sitter space possesses 10 Killing
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vectors or generators of the isometry group.13 Of particular interest is the Killing vector for the
dilatation, ξµ = (−η,x), which is locally timelike:

ξµξµ =
1

H2η2
(−η2 + x2) < 0 for a|x| < H−1 . (3.26)

We can therefore think of de Sitter space as being time-translation symmetric within a finite
causal patch of radius H−1.

Symmetry breaking in inflation. Because inflation needs to end, it cannot be described by
a pure de Sitter space. There must be a physical “clock” that keeps track of the remaining period
of inflation, which can be associated e.g. with a set of time-dependent homogeneous background
matter fields φ̄m (e.g. φ̄m = φ̄ for single-field slow-roll inflation) or the energy density of the
background.14 This time dependence induces a preferred time slicing of the spacetime in terms of
constant-φ̄m hypersurfaces and breaks time diffeomorphism invariance (see Fig. 3.1). We therefore
expect the existence of a corresponding Goldstone boson, π, that encodes fluctuations along the
direction of the broken symmetry. This is introduced as a spacetime-dependent shift of the time
coordinate [53]

U(t,x) ≡ t+ π(t,x) . (3.27)

The Goldstone boson is defined so that it transforms non-linearly π → π − ξ(t,x) under a time
diffeomorphism t→ t+ ξ(t,x). The action expressed in terms of U will thus be invariant under
full spacetime diffeomorphisms, thus “restoring” the broken symmetry.15 An important property of
the field π is that it can be identified with so-called adiabatic perturbations, i.e. with perturbations
induced by a synchronized, spacetime-dependent local time shift of the background matter fields:

δφm(t,x) ≡ φ̄m
(
t+ π(t,x)

)
− φ̄m(t) . (3.28)

In spatially flat gauge, the Goldstone π captures all the information contained in the cosmological
perturbations.

Alternatively, we can think of the symmetry breaking in terms of the isometry group of the
background spacetime. The symmetry breaking pattern that leads to inflation is

SO(1, 4) → ISO(3) , (3.29)

13The vector ξµ is a Killing vector if the Lie derivative of the metric with respect to ξµ vanishes, which amounts
to the Killing equation ∇(µξν) = 0.

14One does not need to postulate a fundamental scalar field for this purpose. For example, it could be some
strongly coupled dynamics that give rise to the time dependence during inflation.

15Like gauge invariance, the diffeomorphism group of general relativity consists of local transformations and
hence is not a true symmetry—instead, it reflects a redundancy in our description. We can always reintroduce
local symmetries by explicitly introducing new degrees of freedom.
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Figure 3.1: Penrose diagram for de Sitter space. The spacelike future boundary at η = 0 is denoted by
I+. Time-dependent background fields, φ̄m(t), induce a preferred time foliation of de Sitter space.

where ISO(3) is the 3-dimensional Euclidean group consisting of spatial rotations and translations.
This spontaneously breaks four isometries of de Sitter space: dilatation and three SCTs. To see
this, let us perform a time reparameterization t→ t−π(t,x) to go to unitary gauge, in which the
clock is set to be homogeneous (δφm = 0) and the information is now captured by the curvature
perturbation, ζ. (This equivalent to comoving gauge (2.31), where the clock was chosen to be
the background inflaton field.) While spatial rotations and translations are linearly realized by ζ,
under infinitesimal spatial dilatation and SCTs (3.25), ζ transforms as [26, 60, 61]

D : ζ → λ(1 + x · ∇ζ) ,

SCTs : ζ → 2b · x +
[
2(b · x)x− x2b

]
· ∇ζ .

(3.30)

Notice the ζ-independent shifts under these transformations. In this gauge, ζ acts as the Goldstone
boson that non-linearly realizes the broken symmetries during inflation.

Both of the above descriptions are useful for different purposes. For example, the parameter-
ization of the broken dilatation and SCTs in terms of the field ζ has been particularly useful in
deriving the behavior of the soft limits of inflationary correlation functions [26, 60, 61]. In the
following, we will instead mostly use the language of the Goldstone boson π, which is more ap-
propriate for formulating an EFT. The relation between π in spatially flat gauge and ζ in unitary
gauge is given by

ζ = −Hπ +O(π2) . (3.31)

The non-linear part of the relation contributes to correlation functions at subleading order in the
slow-roll approximation and can therefore be neglected [62].16 Since H is nearly constant during
inflation, the two fields are approximately proportional to each other, which allows us to easily
translate results from one gauge to the other.

16This is true when the Bunch-Davies initial condition is imposed, which we do throughout the thesis. For
generic excited initial states, the non-linear relation between π and ζ may produce non-trivial effects on correlation
functions [63].
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3.3.3 EFT of inflation

We would like to derive the action for the Goldstone boson of time translations introduced above.
One way to proceed is by using the method outlined in §3.3.1, that is by writing down the most
general action in terms U = t + π and then expanding in π. In this subsection, we instead
construct the EFT by starting from a more geometric picture, following the work of [53, 62]. We
write down the effective actions for both the Goldstone boson and the graviton.

Unitary gauge. In unitary gauge, the time coordinate t itself is chosen to be the clock,
and fluctuations in the clock are eaten by the metric. The action is then no longer invariant
under full diffeomorphism invariance, but only under time-dependent spatial diffeomorphisms,
xi → xi + ξi(t,x). The time slicing induced by the clock has a timelike gradient, and the unit
vector perpendicular to the surface of constant t is

nµ ≡ −
δ0
µ√
−g00

. (3.32)

The induced spatial metric on the slicing is hµν ≡ gµν + nµnν . Geometric objects living on
the hypersurfaces can be constructed from hµν and nµ. Examples are the intrinsic curvature,
(3)Rµνρσ[h], and the extrinsic curvature, Kµν ≡ h(µ

ρ∇ρnν). Using the Gauss-Codazzi relation,
the intrinsic curvature can be written in terms of (the projection of) the four-dimensional Riemann
tensor Rµνρσ and the extrinsic curvature Kµν .

Following the EFT philosophy, we construct an effective action by writing down all operators
that are compatible with the remaining symmetries. The reduced symmetry of the system now
allows many new terms in the action, which can be categorized as follows:

• Terms that are invariant under all diffeomorphisms. These include curvature invariants like
the Ricci scalar, R, and contractions of Riemann tensors such as RµνρσRµνρσ.

• Operators with uncontracted upper 0 indices, such as g00 and R00. These are generated by
contracting covariant tensors with nµ. It is easy to check that these are scalars under spatial
diffeomorphisms. In general, products of any four-dimensional covariant tensors with free
upper 0 indices are allowed operators, while all spatial indices need to be contracted.

• Operators made out of the three-dimensional quantities describing the geometry of the
spatial hypersurfaces. Since these are related to each other by the Gauss-Codazzi relation,
we can choose to work with one of them (e.g. Kµν).

• Higher-derivative operators constructed by acting the covariant derivative ∇µ on other
terms.

• Arbitrary functions of time t. All operators are therefore allowed to have time-dependent
coefficients.
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The most general action constructed from these ingredients is [36]

S =

∫
d4x
√−gL(g00,Kµν , Rµνρσ,∇µ, . . . , t) , (3.33)

where the only free indices entering L are upper 0’s. The spacetime indices are contracted with the
four-dimensional metric gµν . Terms involving explicit contractions of the induced metric hµν do
not lead to new operators. Since terms involving curvature tensors are higher order in derivatives,
the most general action at leading order can be written in terms of g00 alone,

S =

∫
d4x
√−g

[
1

2
M2

plR+M2
plḢg

00 −M2
pl(3H

2 + Ḣ) +
∞∑
n=2

M4
n(t)

n!
(δg00)n

]
, (3.34)

where δg00 ≡ g00 + 1 and the time-dependent parameters Mn have mass dimension one. Instead
of expanding in powers of g00, we have expressed the action in such a way that only the first three
terms contain linear perturbations of the metric, while the rest of the action involves perturbations
that are explicitly quadratic order or higher. The coefficients of the operators 1 and g00 have been
fixed by the requirement that we are expanding around the correct FLRW background with a given
expansion rate H(t). This removes all tadpoles, and the action starts quadratic in fluctuations.
In the above language, slow-roll inflation corresponds to taking a special limit when Mn → 0. To
see this, notice that in unitary gauge, φ = φ̄(t), the slow-roll action becomes∫

d4x
√−g

[
−1

2
gµν∂µφ∂νφ− V (φ)

]
=

∫
d4x
√−g

[
−1

2
˙̄φ2g00 − V (φ̄)

]
. (3.35)

By using the relation ˙̄φ2 = −2M2
plḢ and the Friedmann equation V (φ̄) = M2

pl(3H
2 + Ḣ), we see

that this indeed corresponds to the leading part of (3.34).

Goldstone action. To make the dynamics of the theory defined by (3.34) more transparent, we
introduce the Goldstone boson, π, associated with the spontaneous breaking of time translations.
Specifically, we perform a spacetime-dependent time reparameterization, t→ t = t+ π(t,x), and
then promote π to a scalar field that non-linearly realizes time diffeomorphisms and restores full
diffeomorphism invariance of the action. The metric transforms in the usual way—e.g.

g00 → g00 + 2g0µ∂µπ + gµν∂µπ∂νπ . (3.36)

Applying this procedure to (3.34) leads to the following action for the Goldstone boson at leading
order in derivatives:

S =

∫
d4x
√−g

[
1

2
M2

plR+M2
plḢ(t+ π)(g00 + 2g0µ∂µπ + gµν∂µπ∂νπ)

−M2
pl

(
3H2(t+ π) + Ḣ(t+ π)

)
+
∞∑
n=2

M4
n(t+ π)

n!
(δg00 + 2g0µ∂µπ + gµν∂µπ∂νπ)n

]
. (3.37)
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In general, this action involves a complicated mixing between the Goldstone mode and metric
fluctuations. However, for most applications of interest, we can take the so-called decoupling
limit (Mpl → ∞, Ḣ → 0, with M2

plḢ fixed) and evaluate the Goldstone action in the un-
perturbed background [36], gµν → ḡµν .17 In this case, the transformation (3.36) reduces to
g00 → −1− 2π̇ + ḡµν∂µπ∂νπ, and the Goldstone Lagrangian becomes

Lπ = M2
plḢ(∂µπ)2 + 2M4

2

[
π̇2 − a−2π̇(∂iπ)2

]
+

(
2M4

2 −
4

3
M4

3

)
π̇3 + · · · . (3.38)

We see that M2 6= 0 induces a nontrivial sound speed for the Goldstone boson,

c2
s ≡

M2
plḢ

M2
plḢ − 2M4

2

. (3.39)

A small value of cs (large value of M2) is correlated with an enhanced cubic interaction π̇(∂iπ)2

through a non-linearly realized symmetry. The Planck constraints on primordial non-Gaussianity
imply cs ≥ 0.024 [35].

While the Goldstone boson is massless in the decoupling limit, it has a mass of order
√
εH

when the mixing with the metric perturbations is taken into account. The small mass for π means
that it evolves slightly outside the horizon. To describe observable quantities, it is more convenient
to use curvature perturbation, ζ. The field ζ is exactly massless and becomes constant outside
the horizon, even for large ε. Using the relation (3.31) between ζ and π, the power spectrum of
ζ is found to be

∆2
ζ =

k3

2π2
Pζ(k) =

1

4π2

(
H

fπ

)4

, (3.40)

where f4
π ≡ 2M2

pl|Ḣ|cs is the symmetry breaking scale [64], which is equal to ˙̄φ2 in slow-roll
inflation. The observed amplitude of the power spectrum ∆2

ζ = (2.14± 0.05)× 10−9 [21], implies
that fπ ≈ 59H.

Graviton action. We can also systematically include terms that give rise to tensor pertur-
bations. At quadratic order in γij , the leading correction to the Einstein-Hilbert action can be
written as

S =

∫
d4x
√−g

[
1

2
M2

plR+ M̂2
2

(
δKµνδKµν − δK2

)]
. (3.41)

The perturbed part of the extrinsic curvature contains

δKi
j ⊃

1

2
γ̇ij +O(γ2) . (3.42)

The trace term δK2 only contains scalar fluctuations, and the combination of extrinsic curvature

17 It can be shown that the leading quadratic mixing between π and the metric perturbations can be neglected for
energies above Emix ≡ |Ḣ|1/2 =

√
εH (see [51] for a derivation). Since we are interested in computing observables

at E = H � Emix, any corrections to taking the decoupling limit will be of order Emix/H ∼
√
ε [36].
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tensors in the above action was chosen in a way that doesn’t modify the dispersion relation of the
Goldstone boson π. Expanding the action in γij , we find

Lγ =
M2

pl

8

1

c2
t

[
γ̇2
ij − c2

ta
−2(∂kγij)

2
]

+ · · · , (3.43)

where we have defined the tensor sound speed

c2
t ≡

M2
pl

M2
pl + 2M̂2

2

. (3.44)

For sizable deviation of the tensor sound speed from unity, we require the scale M̂2 to be compa-
rable to the Planck scale. The power spectrum of γij is then given by

∆2
γ =

k3

2π2
Pγ(k) =

2

π2

1

ct

H2

M2
pl

. (3.45)

Compared to (2.41), this has an extra factor of 1/ct. We will describe the observational conse-
quences of having a non-trivial tensor sound speed in Chapter 6.
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In the previous chapter, we reviewed how the study of cosmological perturbations in single-field
inflation can be embedded in an EFT framework. This involved first identifying the symmetries
of the problem and then systematically writing down all possible interactions that are consistent
with these symmetries. However, even if EFTs constructed in this manner can be sensible theories
on their own, it is known that not every EFT can be UV-completed into a full theory that respects
basic physical principles, such as causality and Lorentz invariance [65].

Causality is one of the fundamental principles of any physical theory. Requiring the response
of a system to be causal connects seemingly different phenomena, such as fluctuations and dissipa-
tion, or the speed and the attenuation of light in a medium. These connections are most manifest
in frequency space, where causality is encoded in the analyticity of the response function. Non-
trivial relations between physical observables are then simply a consequence of Cauchy’s integral
theorem, which relates the real and imaginary parts of the response function, as in the Kramers-
Kronig relation. Similar considerations apply to scattering amplitudes: it is widely believed that
(micro)causality is reflected in the analytic properties of the S-matrix. In this case, Cauchy’s
theorem provides a link between the low-energy, infrared (IR) limit of the scattering amplitude
and its UV behavior. In this chapter, we use analyticity (causality) to derive analogous relations
between cosmological observables and the underlying physics of inflation.

The outline of this chapter is as follows. In §4.1, we review the analytic properties of relativistic
and non-relativistic scattering amplitudes. We derive a sum rule which relates the real part of
the forward amplitude at low energies to an integral over its imaginary part. In §4.2, we assume
positivity of the integral to derive constraints on a combination of the parameters of the EFT of
inflation, including a consistency condition relating the quartic and cubic couplings. Moreover,
armed with the full amplitude, we present an improved derivation of the critical sound speed for
which the EFT admits a perturbative UV completion [42]. In §4.3, we explicitly demonstrate the
validity of the sum rule for the weakly coupled completion of [66]. We show that the positivity
constraints are satisfied, and argue that this is a generic feature of a large class of weakly coupled
UV completions of the EFT of inflation. We also provide evidence for the conjecture that cs = 1 is
only compatible with slow-roll inflation. We discuss the observational implications of our results
in §4.4. Technical details are relegated to Appendix A.



4.1. Analyticity and sum rules

4.1 Analyticity and sum rules

In this section, we will review the standard analyticity arguments for relativistic scattering, see
e.g. [67], and then discuss the additional subtleties that arise if the low-energy limit breaks Lorentz
invariance. Some details of the discussion are relegated to Appendix A. In §4.2, we will apply the
formalism to the EFT of inflation.

4.1.1 Relativistic scattering

For relativistic interactions, it is natural to consider the amplitude of 2 → 2 scattering to be a
function of the Mandelstam variables s and t, i.e.M(s, t) ≡M(s, θ(s, t)), where θ is the scattering
angle.1 A minimal amount of non-analytic behavior ofM(s, t) for complex s at fixed t is required
by unitarity of the S-matrix: SS† = 1 [69]. In particular, for forward scattering, t → 0, the
optical theorem allows us to write the imaginary part of the amplitude as

2 Im[A(s)] =
∑
I

∫
dΠI |M(p1, p2 → I)|2 , (4.4)

where I stands collectively for all possible intermediate states, each with a differential phase space
element of dΠI . Using Hermitian analyticity, A(s) = A∗(s∗), one may also write

2i Im[A(s)] ≡ A(s+ iε)−A∗(s+ iε)

= A(s+ iε)−A(s− iε) ≡ Disc[A(s)] , (4.5)

where Disc[A(s)] denotes the discontinuity of A(s) across the real axis. The hypothesis of maximal
analyticity2 then assumes that A(s) is non-analytic only when Im[A(s)] 6= 0 along the real axis,
i.e. when the right-hand side of (4.4) is non-zero above the mass thresholds for the states I. For
the physical domain s > 0, this determines the locations of poles and branch cuts in terms of the
energies of the states I. Moreover, the non-analytic behavior of A(s) for the unphysical values
s < 0 is dictated by crossing symmetry. Specifically, there is a connection between the amplitude

1We follow the conventions of [68] and write the S-matrix as

〈p3p4|S|p1p2〉 = (2π)4δ(p1 + p2 − p3 − p4)
[
1 + iM(s, θ)

]
, (4.1)

where pa = (ωa,ka) denote four-momenta and cos θ ≡ k̂1 · k̂3 is the scattering angle. We denote the amplitude in
the forward limit by

A(s) ≡ lim
θ→0
M(s, θ) . (4.2)

The Mandelstam variables are defined by

s ≡ −(p1 + p2)2 , t ≡ −(p1 − p3)2 , u ≡ −(p1 − p4)2 . (4.3)

The variable s is the square of the center-of-mass energy and t is the square of the momentum transfer. The
momentum conservation and on-shell condition imply that the three variables are not all independent, but related
to each other by s+ t+ u =

∑4
a=1 m

2
a.

2This hypothesis can be demonstrated in perturbation theory—see [69]. However, one cannot rule out the
possibility of non-trivial analytic behavior due to non-perturbative physics (e.g. [70]).
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at s + iε (above the branch cuts) and that at −s − iε (below the branch cuts), which may be
shown to exist even for massless particles [71]. For identical particles, this implies that the forward
amplitude is an even function, i.e. A(s) = A(−s), and the singularities in the complex s-plane
can all be accounted for in terms of s- and u-channel exchanges.

Figure 4.1: Illustration of the choice of contour in (4.6).

When the intermediate states I are massive, there is a gap between the singularities on the
real axis. Considering the function A(s)/s3, Cauchy’s theorem then implies the following sum
rule

1

2
A′′(s→ 0) =

∮
C

ds

2πi

A(s)

s3
, (4.6)

whereA′′(s) ≡ ∂2
sA(s) and C is the contour illustrated in Fig. 4.1. The Froissart-Martin bound [72,

73], |A(s)| ≤ const. × s ln2 s, for |s| → ∞, lets us drop the contour at infinity, and only the
discontinuities across the branch cuts, Disc[A(s)] ≡ 2iIm[A(s)], contribute to the right-hand side
of (4.6),

A′′(s→ 0) =
2

π

(∫ 0

−∞
+

∫ ∞
0

)
ds

Im[A(s)]

s3
. (4.7)

The Froissart-Martin bound may be violated when massless particles are present.3 However, in
our case, the sum rule in (4.7) still applies. As we shall see, this is because the forward scattering
limit happens to be free of singularities,4 which permits the application of standard techniques to

3In general the amplitude remains polynomially bounded on the physical sheet [70], so that an integral similar
to (4.6) can be written for some n-th derivative of the amplitude.

4Let us remark that turning on gravitational interactions unavoidably induces divergences in the forward
direction. While this is a general problem— gravity is universal—we expect the proper treatment of these effects
to be highly suppressed in the cosmological setting, H/Mpl � 1, and not to modify significantly the results derived

42



4.1. Analyticity and sum rules

derive the number of necessary subtractions, e.g. [74].5

Using (4.4) to write the imaginary part of the amplitude in terms of the cross section,
i.e. Im[A(s)] ≡ sσ(s), and crossing symmetry which relates the integrals on the positive and
negative axes, Im[A(−s)] = −Im[A(s)], we get the sum rule in its final form:

A′′(s→ 0) =
4

π

∫ ∞
0

ds
σ(s)

s2
. (4.8)

The right-hand side of (4.8) is manifestly positive, which is a consequence of unitarity. Extensions
to non-forward scattering are possible, even for unphysical values of t [74]. However, except for a
speculative conjecture in §4.3.2, we will concentrate on forward scattering.

4.1.2 Non-relativistic scattering

We now consider the extension to non-relativistic scattering. We assume that the theory is Lorentz
invariant in the UV, but allow for a non-trivial sound speed cs 6= 1, as well as other Lorentz-
symmetry breaking interactions, in the IR. For simplicity, we will work in the center-of-mass frame,
where the forward amplitude Acm becomes a function of the square of the center-of-mass energy,
4ω2, which also coincides with the Mandelstam variable s in this particular frame. To match the
low-energy and high-energy behaviors of the scattering amplitude, we write A(s) ≡ Acm(4ω2).
We suppress the ‘cm’ subscript from now on. However, as we describe in Appendix A, away from
the center-of-mass frame, the forward scattering amplitude in non-relativistic theories is typically
not a function of only the Mandelstam variable s.

The argument for analyticity of the scattering amplitude off the real axis is similar to the
relativistic case. However, for non-relativistic theories, the amplitude A(s) is not guaranteed to
be symmetric under s→ −s. Hence, the sum rule (4.7) still applies, but the relationship between
the contributions for positive and negative s needs to be reconsidered. In particular, the behavior
for s < 0 is not directly determined (via crossing symmetry) by that at s > 0. We discuss the
subtleties of the non-relativistic case in detail and illustrate the novel features in a specific example
in Appendix A. Here, we just summarize the main results.

We will assume the existence of a high-energy scale, ρ, above which the theory becomes rela-
tivistic. As a consequence, A(s) satisfies the relativistic crossing symmetry for |s| � ρ2. The con-
tribution to the integral in (4.7) from s ∈ (−∞,−ρ2] can therefore be mapped to s ∈ [+ρ2,+∞),
and we can write the sum rule as

A′′(s→ 0) =
2

π

(∫ ∞
0

+

∫ ∞
ρ2

)
ds

Im[A(s)]

s3︸ ︷︷ ︸
>0

+
2

π

∫ 0

−ρ2

ds
Im[A(s)]

s3︸ ︷︷ ︸
?

. (4.9)

from forward scattering. A similar attitude is used to ignore singularities from photon exchanges in QCD processes.
5Alternatively, we could introduce a small mass and later send it to zero. For scalar particles this does not

modify the structure of the theory nor the UV behavior, which therefore still obeys the Froissart-Martin bound.
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The integral above ρ2 is positive definite, since it corresponds to the cross section to produce
high-energy states in the theory, which we assume is dominated by relativistic interactions.6

Furthermore, for derivatively-coupled theories like the EFT we study in §4.2, the leading order
amplitude at low energies, 0 < s � ρ2, is analytic in s. This is because particle production will
be suppressed by extra factors of s over the cutoff scale of the EFT.7 In other words, the tree
level contribution dominates the amplitude since A(s) ∝ s2 and Im[A] ∝ |A|2 ∝ s4. Therefore,
at leading order, the branch cuts induced by loops of light particles do not contribute to Im[A].
As we will see, other singularities for 0 < s < ρ2 (e.g. poles) do not appear unless extra light
degrees of freedom are present. We therefore conclude that the first term on the right-hand side
of (4.9) is manifestly positive. Only the region −ρ2 < s < 0 may potentially lead to a negative
contribution to the sum rule. In §4.3.1, we study an explicit example, in which an extra pole
appears in the region −ρ2 � s < 0. Nevertheless, positivity is still preserved in this example, and
more generally for a large class of weakly coupled completions of small-cs theories. In general,
violations of positivity require large contributions from the u-channel whose signs are not fixed by
the equivalent s-channel exchange. Although we cannot rule out such exotic (plausibly strongly
coupled) possibilities, we are yet to encounter an explicit example. Nonetheless, we will take an
agnostic attitude towards positivity, and in §4.2 we will derive constraints on the EFT of inflation
by assuming a positive right-hand side of the sum rule. We believe these to be valuable consistency
conditions on a vast class of single-field models with Lorentz-invariant UV completions. The same
way a violation of the consistency condition derived in [25, 77] would require us to abandon the
single-field hypothesis, violations of the positivity constraints we find here, although unlikely,
would require us to incorporate the rather peculiar behavior we have identified in a full theory of
inflation.

4.2 Implications for single-field inflation

In this section, we show how analyticity and unitarity of ππ→ ππ scattering constrains the pa-
rameters of the EFT of inflation. In §4.2.1, we present the effective Lagrangian for the Goldstone
boson π, at leading order in derivatives and to quartic order in fluctuations. We use this La-
grangian,8 in §4.2.2, to compute the low-energy limit of the scattering of π-particles, and derive
a positivity bound on the EFT parameters. In §4.2.3, we discuss perturbative unitarity of the
scattering amplitude, in terms of its partial wave decomposition. We show that d-wave scat-
tering leads to an improved derivation of the critical sound speed for which the EFT admits a
perturbative UV completion [42].

6As we shall see, the forward scattering amplitude in the EFT is dominated by contact terms without long-range
interactions, and therefore high energies are directly connected with short distances. In general, high-energy (e.g.
super-Planckian) exchanges may still remain in a non-relativistic regime for very large impact parameters [75, 76].

7As we will discuss, the cutoff scale of the EFT, Λ, may be different from ρ.
8Following [78–80], it is in principle possible to extend our analysis to dissipative single-clock models or theories

with excited initial states. However, extra care is required when computing scattering amplitudes for particle
excitations in non-vacuum states. We leave this for future work.
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4.2. Implications for single-field inflation

4.2.1 Goldstone dynamics

In §3.3, we reviewed the basic elements of the EFT of inflation—an effective theory of the Gold-
stone boson, π, associated with the breaking of time translations in a quasi-de Sitter background.
To relate the low-energy limit of the theory to its high-energy behavior, we will consider the scat-
tering of π-particles. To perform the computations, we will exploit the natural hierarchy of scales
in the problem (see Fig. 4.2). Since Goldstone bosons are derivatively coupled, their scattering
amplitudes are dominated by high-energy (short-distance) processes near the cutoff scale Λ of the
EFT. Moreover, at lower energies, only a handful of terms contribute since higher-order terms are
suppressed by inverse powers of the cutoff. These features will allow us to work in the flat space
limit (H → 0) and compute scattering amplitudes without taking into account the cosmological
expansion.9

subhorizonsuperhorizon

freeze-out

scattering 
energy

mixing with gravity cutoff

Figure 4.2: Illustration of the relevant energy scales of the EFT. The flat space approximation applies for
scattering energies above the Hubble scale, ω2 > H2. The decoupling limit captures the regime ω2 > |Ḣ|.
The hierarchy H2 � Λ2 is guaranteed by the high degree of Gaussianity of the primordial perturbations,
while |Ḣ| � H2 holds as a condition for inflation and is supported by observations of the spectral index.

We will also take the decoupling limit (M2
pl → ∞, Ḣ → 0, with M2

plḢ fixed), in which
the mixing between π and gravitational perturbations vanishes. Computations performed in
the decoupling limit will be accurate up to corrections that scale as Ḣ/H2 and ω2/M2

pl.
10 The

Goldstone action at lowest order in derivatives was given in (3.37). The effective action, in
principle, includes higher-derivative terms which we did not display [36]. However, in the flat
space and decoupling limits, these terms are subdominant at low energies, ω/Λ � 1, and will
not contribute significantly to the left-hand side of the sum rule we derive in this paper. We will
also be interested in the case where Ḣ(t) = Ḣ and M4

n(t) = M4
n are independent of time. This

captures the behavior of the EFT of inflation in the limit of exact scale invariance. Deviations
from scale-invariance can be treated perturbatively, but won’t be relevant in this work.

Expanding the Goldstone action (3.37) up to quartic order in powers of π in the flat space

9This allow us to apply the sum rule (4.9) to the EFT of inflation. In a derivative expansion, the error induced
in the left-hand side of (4.9) will be of order H2/Λ2. (This uses the fact that Goldstone bosons are only derivatively
coupled.) The flat space approximation is more accurate on the right-hand side of (4.9). This is because the part
of the integral which can be computed within the EFT is dominated by short-distance processes near the cutoff
Λ� H. In addition, the rest of the integral includes contributions from higher energies, ω � Λ, where the effects
of the cosmological expansion are even less relevant.

10A somewhat unusual fact of the flat space and decoupling limits is that slow-roll inflation turns into a free
theory—i.e. the inflaton potential V (φ) becomes constant and gravitational interactions are turned off. When these
limits are taken, ππ → ππ scattering therefore has a trivial scattering amplitude for slow-roll inflation.
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and decoupling limits, we get

L2 = M2
pl|Ḣ|

(
π̇2 − (∇π)2

)
+ 2M4

2 π̇
2 , (4.10)

L3 =

(
2M4

2 −
4

3
M4

3

)
π̇3 − 2M4

2 π̇(∇π)2 , (4.11)

L4 =

(
1

2
M4

2 − 2M4
3 +

2

3
M4

4

)
π̇4 −

(
M2

2 − 2M4
3

)
π̇2(∇π)2 +

1

2
M4

2 (∇π)4 , (4.12)

where (∇π)2 ≡ δij∂iπ∂jπ. If M2 6= 0, then the Goldstone mode propagates with a non-trivial
sound speed, cs, defined in (3.39). Sometimes it will be convenient to rescale the spatial coordinate
as x̃i = xi/cs, so that (fake) Lorentz invariance is restored in the quadratic part of the action

L̃2 ≡ c3
sL2 = −f

4
π

2
(∂̃π)2 . (4.13)

We will find it convenient to normalize the EFT parameters Mn relative to fπ:

M4
n ≡ cn

f4
π

c2n−1
s

, (4.14)

where c2 ≡ 1
4(1 − c2

s). The factors of cs in (4.14) ensure that cn = O(1) are natural parameter
values even for cs � 1. For instance, in DBI inflation [81, 82], all cn are determined by cs alone—
in particular, c3 = −6c2

2 and c4 = 60c3
2. Observational constraints on the parameters (cs, c3, c4)

will be presented in §4.4. In the following, we will be concerned with theoretical bounds.

It will be convenient to write the effective Lagrangian in terms of the canonically normalized
field πc ≡ f2

ππ:

L̃ = −1

2
(∂̃πc)

2 +
1

Λ2

[
α1 π̇

3
c − α2 π̇c(∂̃πc)

2
]

+
1

Λ4

[
β1 π̇

4
c − β2 π̇

2
c (∂̃πc)

2 + β3(∂̃πc)
4
]
, (4.15)

where we have introduced the cutoff scale Λ ≡ fπcs and defined the following auxiliary parameters

α1 ≡ −2c2(1− c2
s)−

4

3
c3 , α2 ≡ 2c2 , (4.16)

β1 ≡
1

2
c2(1− c2

s)
2 + 2c3(1− c2

s) +
2

3
c4 , β2 ≡ −c2(1− c2

s)− 2c3 , β3 ≡
1

2
c2 . (4.17)

The organization of the effective Lagrangian (4.15) is somewhat unconventional: we have written
all interactions in terms of the ‘relativistic invariant’ (∂̃πc)

2 and pure time derivatives π̇c. This is
motivated by the analytic structure of scattering amplitudes, as discussed in Appendix A. The key
point is that the ‘relativistic’ part will manifestly behave in a Lorentz-invariant manner, so we can
trace all the subtleties of working in a non-Lorentz-invariant theory to the pure time derivatives.
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4.2. Implications for single-field inflation

4.2.2 Bounds from positivity

In what follows, we will derive a number of constraints on the Lagrangian parameters cn (or
equivalentlyMn) from the requirements of analyticity and unitarity of ππ→ππ scattering. Details
of the computations are given in Appendix A.

To gain intuition for the origin of the bounds, we first consider the special case |c4| � |c3| � 1.
In [37], it was shown that this parameter regime is technically natural, so it is of a partic-
ular observational relevance. In this limit, the cubic Lagrangian is dominated by the π̇3 in-
teraction (since |α1| → 4

3 |c3| � α2), and the quartic Lagrangian is domination by π̇4 (since
|β1| → 2

3 |c4| � |β2| � |β3|). The effective Lagrangian (4.15) then reduces to

L̃ → −1

2
(∂̃πc)

2 − 4

3

c3

Λ2
π̇3
c +

2

3

c4

Λ4
π̇4
c . (4.18)

Computing the forward scattering amplitude in the center-of-mass frame, we find

A(s) =
(
c4 − (2c3)2

) s2

Λ4
, (4.19)

and positivity, A′′ > 0, implies

c4 > (2c3)2 , for |c4| � |c3| � 1. (4.20)

We see that positivity simply requires that the contribution from the contact diagram (∝ c4)
dominates over that from the exchange diagram (∝ c2

3). While either sign of c4 is consistent with
naturalness, only positive values satisfy the bound (4.20).

It is straightforward to repeat the analysis for the complete Lagrangian (4.15), i.e. without
taking a special limit of the EFT parameters. From the cubic interactions, we get

Mπ̇3 = −9

4
α2

1

s2

Λ4
, Mπ̇(∂π)2 = −4α2

2

s2

Λ4
, Mπ̇(∂π)2×π̇3 = −6α1α2

s2

Λ4
, (4.21)

while the quartic interactions lead to

Mπ̇4 =
3

2
β1

s2

Λ4
, Mπ̇2(∂π)2 = 2β2

s2

Λ4
, M(∂π)4 = β3 (3 + cos2 θ)

s2

Λ4
. (4.22)

Despite the fact that we have included diagrams that exchange massless particles, we see that
the tree level amplitudes are analytic in s. Since these are the lowest dimension operators we
could add to the EFT of inflation, any non-analytic behavior in the low-energy limit must enter
at higher order in s. Notice also that the amplitude has no divergences as θ → 0 (due to the
derivative nature of the Goldstone interactions) and therefore has a well-defined forward limit:

A(s) =
∑
N

MN (s, 0)
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=

(
−9

4
α2

1 − 4α2
2 − 6α1α2 +

3

2
β1 + 2β2 + 4β3

)
s2

Λ4

=

(
c4 + 1−

(
(2c3 + 1)− a(cs)

)2
− b(cs)

)
s2

Λ4
, (4.23)

where we defined

a(cs) ≡
1− c2

s

4
(4 + 3c2

s) , b(cs) ≡
1− c2

s

16
(14 + 19c2

s + 15c4
s) . (4.24)

Positivity now implies that

c4 + 1 >
(

(2c3 + 1)− a(cs)
)2

+ b(cs) . (4.25)

Notice that b(cs) ≥ 0, for all cs ∈ [0, 1]. The right-hand side of (4.25) is therefore positive
semi-definite, and we conclude that

c4 + 1 > 0 , for all values of c3 and cs. (4.26)

Moreover, in the limit cs → 1, (4.25) becomes

c4 + 1 > (2c3 + 1)2 , for cs = 1. (4.27)

As we will see in §4.3.2, the last constraint can be reproduced by requiring the absence of super-
luminality around non-trivial backgrounds (with the additional requirement that c3 = 0).

4.2.3 Perturbative unitarity

Given the full amplitude,M(s, θ), we can learn more about the possible UV completions of the
EFT by considering the perturbative unitarity of the partial wave amplitudes [42]. Perturbative
unitarity will determine the scale at which the EFT becomes strongly coupled, and therefore
sets an upper limit on the scale at which new physics must enter in a weakly coupled theory.
These constraints are qualitatively different from the constraints from analyticity which must be
satisfied at s = 0 for self-consistancy of the EFT. In contrast, perturbative unitarity constrains
the extrapolation of the EFT to higher energies from the growth of the amplitude with s.

For this purpose, we write the amplitude in the following form

M(s, θ) =

[
f(cs, c3, c4) +

1− c2
s

12
P2(cos θ)

]
s2

Λ4
≡ 16π

∑
`

(2`+ 1)a`(s)P`(cos θ) . (4.28)

Unitarity of the S-matrix requires that Im[a`] = |a`|2, which is only consistent if |Re[a`]| < 1
2 .

When the tree level amplitude violates this condition, it means that loop corrections must be large
and hence the theory is strongly coupled. We say that the theory violates ‘perturbative unitarity’.
Since the amplitude is a function of energy, this determines the energy scale at which perturbation
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theory breaks down. For s-wave scattering, |Re[a0]| < 1
2 can by achieved at all energies, by tuning

the parameters in the function f(cs, c3, c4). However, d-wave scattering only involves the sound
speed as a parameter and |Re[a2]| < 1

2 implies

1

60π

1− c2
s

c4
s

ω4

f4
π

<
1

2
. (4.29)

For a given value of cs, perturbative unitarity will be violated at a specific energy ω?(cs). Con-
versely, requiring the theory to be weakly coupled up to the symmetry breaking scale fπ, leads to
a critical value of the sound speed

(cs)? = 0.31 . (4.30)

For cs < (cs)? the EFT becomes strongly coupled below the symmetry breaking scale. In other
words, weakly coupled theories cannot produce cs ≤ (cs)? without the appearance of additional
degrees of freedom below fπ. New physics of this type cannot occur in slow-roll inflationary models,
which thus would be ruled out by a detection of cs < c?.11 Notice that, while our conclusions do
not rely on the specific value of c?, the one in (4.30) is somewhat smaller than the value found
in [42], (cs)? = 0.47. The latter was derived from a partial answer to the s-wave amplitude, with
c3 = c4 = 0. Unlike our previous result, the critical value reported here in (4.30) is more robust,
and can only be modified by contributions that are higher order in ω.

4.3 Sum rule and positivity at work

The sum rule and positivity bounds discussed in the previous section are very general, but also
quite abstract. At the same time, many aspects of scattering are subtle and counterintuitive in
the non-relativistic context. Nevertheless, we have succeeded in deriving a sum rule relating the
IR parameters of the EFT of inflation to the high-energy scattering amplitude

1

Λ4

(
c4 + 1−

(
(2c3 + 1)− a(cs)

)2
− b(cs)

)
=

1

π

∫ ∞
−∞

ds
Im[A(s)]

s3
. (4.31)

A further understanding of the physical connection between the low-energy and high-energy be-
haviors will require a more intuitive understanding of Im[A(s)] in realistic theories. In this section,
we will therefore study specific examples of models that UV-complete the cs � 1 and cs = 1 limits
of the EFT. We will find that all examples are consistent with our positivity constraints. When
cs � 1, we will also see how the sum rule works explicitly. For cs = 1, we will find that the posi-
tivity constraints are weaker than those derived from requiring subluminality around non-trivial
background. We suggest that looking at non-forward scattering would lead to stronger constraints.

11The current bound cs ≥ 0.024 (95% CL) [83] still allows for either new (weakly coupled) physics or non-
perturbative effects below (or at) fπ. This is similar to the situation in the pre-LHC/pre-Higgs era in particle
physics. For further discussion see [42].
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Based on those considerations, we will conjecture that cs = 1 is always UV-completed by slow-roll
inflation—i.e. a free scalar field in the flat space and decoupling limits.

4.3.1 Perturbative example with cs � 1

The canonical example of inflation with a small sound speed is DBI inflation [81, 82]. While it is
easy to show that the positivity bound (4.25) is satisfied for DBI inflation, it is less straightforward
to study the high-energy scattering in this theory. To gain more intuition for how our sum
rule works and how positivity arises, it will be instructive to study an example that remains
perturbative up to high energies, ω � fπ.

πσ-model. A reduced sound speed arises for fluctuations around curved trajectories in higher-
dimensional field spaces. A simple two-field model that describes such dynamics is [66] (see
also [64, 84–93]):

L = −1

2
k(σ)(∂φ)2 − 1

2
(∂σ)2 − V (σ) , (4.32)

where

k(σ) ≡ 1 +
σ

M
+ · · · , V (σ) ≡ 1

2
m2σ2 +

1

3!
µσ3 + · · · . (4.33)

We have suppressed additional terms in the potential for σ which stabilize the second field at
σ0 � M (see [84, 92]). The Lagrangian in (4.32) is itself only an EFT, valid at first order in a
derivative expansion and up to energies of order M . The scale M thus becomes the new cutoff of
the theory, which allows for perturbative control provided ω2 < M2.

Perturbing around the background solution φ̄(t), i.e. writing φ(t,x) ≡ φ̄(t) + ˙̄φπ(t,x), we get
a Lagrangian for the Goldstone fluctuations π, coupled to the additional field σ:

L = −1

2
| ˙̄φ|2

(
1 +

σ

M

) [
− 2π̇ + (∂π)2

]
− 1

2
(∂σ)2 − 1

2
m2σ2 − 1

3!
µσ3 ,

= −1

2
(∂π̄)2 − 1

2
(∂σ)2 − ρσ ˙̄π − σ(∂π̄)2

2M
− 1

2
m2σ2 − 1

3!
µσ3 , (4.34)

where we have only kept the leading order terms. In the second line, we have defined π̄ = | ˙̄φ|π
and ρ ≡ | ˙̄φ|/M . In the following, we will assume the hierarchy of scales

µ2 . m2 � ρ2 . (4.35)

The dynamics of the Lagrangian (4.34) are discussed in detail in [64, 92]. At high energies,
ω > ρ, the theory describes two relativistic scalars, whose interaction can be treated as a small
perturbation. Below ω = ρ, the mixing becomes relevant and the theory reduces to a single
propagating degree of freedom. For m < k < ρ, the dispersion relation of the Goldstone π is
nonlinear, ω = k2/ρ. As explained in [64], integrating out the field σ produces a non-local action
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Figure 4.3: Illustration of the pole structure of the amplitude in (4.38).

for π, which is not captured by (3.37). In order to have a local description requires keeping the
field σ, even though it then plays the role of an auxiliary field.12 For k < m (or ω . csm), the
dispersion relation becomes linear, and the low-energy EFT is characterized by a reduced sound
speed

c2
s =

m2

m2 + ρ2
' m2

ρ2
. (4.36)

The effective theory is thus described in terms of (3.37) without reference to σ. Notice that,
for cs � 1, the range of validity of the single-field EFT description is smaller than the naive
expectation, which associates the cutoff of the EFT with the mass of the particle that has been
integrated out. As explained in [64], this lower scale appears as a result of the ρ� m hierarchy,
which creates the window with a nonlinear dispersion for csm < ω < ρ. The relevance of the
new scale csm can be seen, for instance, by the presence of a pole at negative frequencies in the
scattering amplitude (see Fig. 4.3).

To match the parameters of the model to the EFT parameters in §4.2, we note that

M2
pl|Ḣ| =

1

2
| ˙̄φ|2 , f4

π =
m

ρ
| ˙̄φ|2 , Λ4 =

m5

ρ5
| ˙̄φ|2 . (4.37)

We now compute ππ→ ππ scattering in the πσ-model and show how it fits into the analysis of
the previous sections.

µ = 0. Let us first consider the special case µ = 0. When s � c2
sm

2, the 2 → 2 scattering
amplitude for the gapless mode of the system should match the results of §4.2.2, after using (4.36)

12Let us emphasize that most of these features appear because Lorentz invariance is spontaneously broken, and
are commonplace, for example, in non-relativistic condensed matter systems.
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and (4.37). The calculation of the amplitude is technically straightforward and is performed in
Appendix A. The result in the forward limit is

A = −Z
4(ω)

M2

{
(ω2 + k2)2

[
1

4ω2 −m2 − ρ2
− 1

4k2 +m2

]
− (ω2 − k2)2 1

m2

}
, (4.38)

where Z(ω) is the relative normalization between π̄ and the scattering state of the gapless mode,
and is given in (A.20). In the low-energy limit, k � m, we have Z(ω → 0) → cs, and it is easy
to check that the result in (4.38) matches13 the scattering amplitude computed in the EFT after
expanding in k/m.

For µ = 0, we have M4
n>2 = 0 and the amplitude trivially satisfies the positivity constraint.

Nevertheless, the analytic structure and the validity of the sum rule (4.31) arise quite non-trivially.
Equation (4.38) has two poles, one at s = m2 + ρ2 ' ρ2 and another at s = −3

4c
2
sm

2 (or
k2 = −1

4m
2). These two poles are related by crossing symmetry, but the pole on the negative

axis is shifted relative to the location of the new physical state on the positive axis. In the limit
cs � 1, the pole at s = −3

4c
2
sm

2 dominates the right-hand side of (4.31). In fact, it is the only
contribution at leading order in cs (see Appendix A).

µ 6= 0. For µ 6= 0, we will generate non-zeroM4
3 andM4

4 after integrating out σ. For sufficiently
large µ, we expect the low-energy contributions to M4

3 and M4
4 to dominate over M4

2 . In the
following, we will work in the same limit as at the beginning of §4.2.2, namely |c4| � |c3| � c2.
This case is particularly interesting because not every choice of c3 and c4 is consistent with
positivity. As a result, this case offers a non-trivial test of our bounds.

The most reliable way to determine the low-energy behavior is to compute the forward am-
plitude and match to the EFT at low energies. This calculation is performed in Appendix A. At
leading order in cs � 1, the amplitude in the low-energy limit, s� Λ2, becomes

Aµ2 → 1

8

µ2

m6
s2 , (4.39)

which matches the energy scaling of the EFT computation, as it should. More importantly, the
result in (4.39) is manifestly positive. This means that any choice of µ will produce a combination
of c3 and c4 which is consistent with the bound in (4.20):

c4 − (2c3)2 =
1

8

µ2M2

m4
> 0 . (4.40)

Although expected, the result is non-trivial. Naively, it might have seemed possible14 that the
cubic interaction would generate large values for c3 (� 1), while keeping c4 = 0. This, however,

13To directly compare the results one must account for the rescaling x̃i = xi/cs that we used previously.
14Given that the potential for σ is unstable without including a quartic interaction, one might have imagined

that positivity of the amplitude is enforced through stability. Perhaps unsurprisingly, positivity is a more robust
feature of perturbation theory that holds for any µ.
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would be inconsistent with positivity.

We have found that the πσ-model always produces a value of c4 that is in agreement with
our consistency condition. As we discuss in more detail in Appendix A, this is a generic feature
of a large class of models. In particular, this holds for all weakly coupled theories in which the
2→ 2 scattering of the gapless mode is dominated by the exchange of a single heavy state at low
energies.

4.3.2 Conjecture for cs = 1

Single-field slow-roll inflation famously leads to cs = 1 and produces little non-Gaussianity [25].
In fact, in the flat space and decoupling limits that we have been discussing, the Lagrangian
for slow-roll inflation becomes that of a free field, L = −1

2(∂φ)2. This theory trivially saturates
our positivity constraints because M4

n≥2 = 0 and A(s) = 0. However, while slow-roll inflation
is consistent with our bound, it is difficult to find an explicit example of a UV-complete theory
with cs = 1, but c3, c4 6= 0. (For example, in DBI inflation we have cn≥2 → 0 when cs → 1.) In
this section, we will provide suggestive evidence for the conjecture that theories with cs = 1 are
always UV-completed by slow-roll inflation, without higher-order Goldstone self-interactions. If
proven, such a result would allow us to directly link constraints on cs to the unique mechanism
for inflation.

First, we will show that the positivity bound from the previous section, c4 +1 > (2c3 +1)2 (for
cs = 1), is weaker than the constraint that derives from imposing subluminal speed of propagation
in non-trivial backgrounds. For this purpose, we return to the Goldstone Lagrangian in the form

L
f4
π

= −1

2
(∂π)2 +

∞∑
n=3

cn
n!

[
−2π̇ + (∂π)2

]n
, (4.41)

where we have set c2 = 0 since we are concerned with the cs = 1 limit. A trivial solution to the
linearized equations for motion is π = αµx

µ + β. For timelike xµ, we can choose αµ = (α, 0, 0, 0)

and β = 0. At leading order in small α, the quadratic Lagrangian for the fluctuations, ϕ, around
this background (i.e. π = −αt+ ϕ) is given by

L2

f4
π

= −1

2
(∂ϕ)2 + 4αc3 ϕ̇

2 +O(α2) , (4.42)

where we have dropped total derivative terms. Around the new background, the speed of propa-
gation is

c2
s,ϕ = 1 + 8αc3 +O(α2) . (4.43)

Since α can have either sign, we require c3 = 0 to avoid superluminal speed. Going to next order
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in α, we find

c2
s,ϕ = 1− 4α2c4 +O(α3) , (4.44)

and superluminality is avoided iff c4 ≥ 0. It may be surprising that in this limit the constraint
from subluminality (c3 = 0, c4 ≥ 0) is stronger than that from positivity (c4 + 1 > (2c3 + 1)2).
However, a similar observation was made in [94]. In a relativistic EFT, it was observed that
positivity of forward scattering gave qualitatively different bounds from requiring subluminal
propagation around non-trivial backgrounds, and stronger results could be derived from sum
rules involving non-forward scattering amplitudes. This suggests that a stronger bound may arise
for fixed-angle scattering.

Inspection of the full amplitude computed in (4.21) and (4.22), shows that the only term with
angular dependence is the one proportional to β3 ≡ 1

8(1 − c2
s). This d-wave contribution can

be isolated for instance by decomposing the amplitude in partial waves—cf. (4.28)—such that
a2(s) ∝ (1− c2

s)s
2. One may then hope to derive a sum rule for the d-wave amplitude (and hence

the value of cs):

1− c2
s

c4
s

?
=

∫
ds f(s) , (4.45)

where the function f(s) would be related to the partial wave amplitudes. Isolating partial waves
via non-forward dispersion relations is common in relativistic theories (e.g. [95]), so it seems
feasible to derive a similar expression in the non-relativistic regime. Positivity of the sum rule
(4.45), would simply correspond to subluminality of the speed of propagation at low energies, as
is expected for all consistent (and Lorentz-invariant) UV theories. At the same time, provided
the right-hand-side of (4.45) is positive, the vanishing of the left-hand-side for cs = 1 would imply
that f(s) must vanish.15 This would be true (almost by definition) for a free theory, which would
then constrain all interactions of the EFT to vanish. Hence, it seems likely that a sum rule which
isolates β3 = 0 (or cs = 1) would ultimately force cn>2 = 0.

Unfortunately, writing a sum rule for the partial waves introduces new challenges that are
not present for the full amplitude at forward scattering. First of all, the analytic properties of
the scattering amplitude are less understood for non-relativistic scattering at fixed angle (or fixed
transfer momentum). Furthermore, going from the amplitude to the partial waves requires an
integration over angles, which in many cases alters the (non-)analytic behavior. Some of these
shortcomings may be circumvented in the relativistic context, mostly because of the extensive use
of (s, t, u) crossing symmetry [95], which is not available in non-relativistic theories.

An alternative is to adapt the derivation of the Kramers-Kronig relation for the refraction
index, n(ω) ≡ c−1

s (ω), to our case. If n(ω) is analytic in the upper-half plane (as it is for light in

15Ideally, the function f(s) would be linked to the imaginary part of the partial wave amplitude which, due to
unitarity and the optical theorem, carries information about the scattering and production of intermediate states
in an interacting theory. A vanishing imaginary part would correspond to a free theory.
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a medium), and it satisfies the limit n(ω � Λ) → 1, then the equivalent of the Kramers-Kronig
dispersion relation holds

Re[n(0)]− 1
?
=

∫ ∞
0

Im[n(ω)]

ω
. (4.46)

We notice that (4.46) is qualitatively similar to (4.45). In particular, if cs = 1 at low energies
(i.e. Re[n(0)] → 1), then the dispersive term on the right-hand side again vanishes. One of the
obstacles in this derivation is establishing the off-shell frequency/momentum dependence of the
Green’s function. Although causality guarantees certain properties for the Green’s function, these
are not translated as easily into the analytic behavior of n(ω) as in the electromagnetic case.
While we do not think that the problems described above are insurmountable, they make the
status of non-relativistic sum rules for partial wave amplitudes, or the refraction index, somewhat
uncertain. We will return to these issues in future work.

4.4 Conclusions

In this chapter, we used causality (and unitarity) to link cosmological observables, and the related
coefficients in the IR theory, to the unknown UV dynamics of inflation. For single-field inflation,
EFT parameters that higher-order correlations can measure (or constrain) include the sound
speed, cs, as well as a cubic coupling, c3, and a quartic coupling, c4. The latest constraints on the
parameters cs and c3 from the CMB bispectrum [83] are shown in Fig. 4.4. The first constraint
on the parameter c4 has recently been derived from measurements of the CMB trispectrum [83]
(see also [96–98])

−8.3× 107 <
c4

c4
s

< 7.4× 107 (95%CL). (4.47)

Let us note that this limit assumes c3 = 0, and a dedicated analysis of the CMB bispectrum
and trispectrum for general cs, c3 and c4 is still lacking. However, we already see that much
of the parameter space remains to be observationally explored. The theoretical bounds that we
discussed in this chapter are therefore very relevant.

We showed that analyticity of the 2→ 2 scattering amplitude for the Goldstone boson implies
a sum rule that relates a combination of the parameters (cs, c3, c4) to an integral over the
high-energy spectrum of the scattering amplitude—cf. (4.31). Hence, the EFT parameters are
connected to specific features of scattering processes in the UV completion of inflation. Assuming
positivity of the sum rule, we then derived a new consistency condition which bounds the size of the
four-point function in terms of the square of the three-point function for equilateral configurations.
This consistency condition restricts the size and the sign of the quartic coupling c4. While we have
not been able to construct an explicit example in which our bound is violated, we have isolated
the necessary ingredients. We have also argued that our consistency condition is a generic feature
in weakly coupled theories. Hence, finding large negative values of c4 would point towards less
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DBI

Planck

Figure 4.4: Observational constraints on the EFT parameters cs and c3 [83].

conventional (plausibly strongly coupled) theories of inflation, or more radically to violations of
basic properties of scattering amplitudes (e.g. [69]).

We consider the analysis presented in this chapter to be only a first and modest step towards
a more complete understanding of the IR/UV connections between cosmological observations and
the underlying physics of inflation. Many future directions suggest themselves. For instance,
we may hope to find sum rules for individual parameters of the EFT, rather than just for a
special combination of several of them. This may be possible by extending our analysis to non-
forward scattering, or through generalized Kramers-Kronig relations for the Green’s functions.
We have speculated that such an analysis would allow us to derive a sum rule for cs, the speed
of propagation of the Goldstone mode. In this case, positivity would correspond to the expected
subluminality condition: cs < 1. On the other hand, in the limit cs → 1, the sum rule would
constrain the total amplitude to vanish. This has led us to conjecture that theories with cs = 1

can only be UV completed by slow-roll inflation. While, so far, we have only given suggestive
evidence for this intriguing conjecture, we hope to provide a positive answer to this question in
the near future.
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5. Non-Gaussianity as a particle detector

We have so far studied inflationary dynamics in the context of single-field inflation, involving
two massless fields that are guaranteed to exist during inflation: the curvature perturbation, ζ
(or the Goldstone boson of broken time translations, π), and the graviton, γij . Establishing the
field content during inflation beyond this minimal context, however, is a fundamental challenge of
primordial cosmology. While at present there is no evidence for additional degrees of freedom [40],
the imprints of extra particles can be subtle, so it remains important to fully characterize their
effects and compare them to observations. Moreover, massive particles are important probes of
the UV completion of inflation. For example, in string theory, massive particles in the low-energy
effective theory encode physics at the string and Kaluza-Klein scales [51]. If these scales aren’t
too far from the inflationary Hubble scale, then their influence may be observable (although the
experimental challenge could be enormous).

Figure 5.1: Diagrams contributing to 〈ζζζ〉 and 〈γζζ〉. The solid, dashed, and wavy lines represent the
curvature perturbation ζ, a massive spin-s field σi1···is , and the graviton γij , respectively.

Since massive particles decay outside of the horizon during inflation, they cannot be observed
directly in late-time correlation functions. Instead, the presence of massive particles has to be
inferred from their indirect effects on the correlation functions of ζ and γij (see Fig. 5.1). Some
of these effects can be mimicked by adding a local vertex in the low-energy effective Lagrangian,
which is the result of integrating out the heavy fields. On the other hand, massive particles
may spontaneously be created in an expanding spacetime [99–101], an effect which cannot be
represented by adding a local vertex to the effective Lagrangian [102]. The role of these non-
local effects as a means of detecting massive particles during inflation was recently highlighted by
Arkani-Hamed and Maldacena [102]: the spontaneous particle creation allows us to probe massive
fields during inflation, even though we are only observing the late-time expectation values of light
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fields. The rate of particle production in de Sitter space is exponentially suppressed as a function
of mass, e−m/TdS , with TdS ≡ H/2π, so their imprints will only be detectable if their masses are
not too far above the Hubble rate H.1 Since the inflationary scale may be as high as 1014 GeV,
this nevertheless provides an opportunity to probe massive particles far beyond the reach of
conventional particle colliders.

In this chapter, we analyze the allowed couplings of massive particles with spin to the Gold-
stone boson of broken time translations and the graviton, and discuss their observational signa-
tures. In §5.1, we first collect the equations of motion for massive fields with spin in de Sitter
space, whose solutions are presented in Appendix B. In §5.2, we then construct the effective
action for the leading interactions between the Goldstone boson π, the graviton γij , and mas-
sive spinning fields σµ1...µs . We analyze under what conditions the theory is under perturbative
control and discuss various constraints on the sizes of the couplings. In §5.3, we compute the
correlation functions associated with the interactions of §5.2. We estimate the maximal amount
of non-Gaussianity that is consistent with the constraints on the couplings of the effective theory.
Details of the in-in computation are relegated to Appendix C, including the analytic results for
soft limits. The conclusions are presented in §5.4.

5.1 Spin in de Sitter space

We begin by reviewing a few elementary facts about massive fields with spin in four-dimensional
de Sitter space, dS4.

Spin-1. The quadratic action of a massive spin-1 field σµ in de Sitter space is

S1 =

∫
d4x
√−g

[
−1

2
∇µσν∇µσν +

1

2
(∇µσµ)2 − 1

2
m2

1σ
µσµ

]
, (5.1)

where m2
1 ≡ m2 + 3H2, with m being the mass of the field.2 The structure of the action (5.1) is

uniquely fixed by requiring the absence of ghost degrees of freedom.3 Up to integration by parts,
this is equivalent to the Proca action. Variation of the action yields the equation of motion,
�σµ − ∇µ∇νσν −m2

1σµ = 0, where � ≡ ∇µ∇µ denotes the Laplace-Beltrami operator on dS4.
Taking the divergence of this equation gives the constraint ∇µσµ = 0. The on-shell equation of
motion then becomes (

�−m2
1

)
σµ = 0 . (5.2)

1If the extra fields have strongly time-dependent masses, whose Fourier transforms have support at a fre-
quency ω̂, then non-adiabatic particle production occurs at a rate proportional to e−m/ω̂ [103]. The scale ω̂ may
be as large as ˙̄φ1/2 = 58H without spoiling the slow-roll dynamics. In models with these types of time-dependent
couplings, the detectable range of particle masses is somewhat enlarged.

2We define the mass parameter in such a way that the action acquires a gauge invariance in the massless limit,
m = 0. This is required in order for massless spinning fields to propagate the right number of degrees of freedom.
The mass defined in this way can also be identified as the mass of the field in the flat space limit [104].

3The ghost-free structure of the quadratic action will remain valid as long as nonlinear interactions can be
treated perturbatively.
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5.1. Spin in de Sitter space

In Appendix B, we derive the solutions to this equation for the different helicity components of
the field.

Spin-2. The unique ghost-free quadratic action of a massive spin-2 field σµν in de Sitter space
is [105]

S2 =

∫
d4x
√−g

[
− 1

2
∇ασµν∇ασµν +∇µσµν∇ασαν −∇µσµν∇ν σ̃ +

1

2
∇µσ̃∇µσ̃

− 1

2
m2

2(σµνσµν − σ̃2)− 3

2
H2σ̃2

]
, (5.3)

where m2
2 ≡ m2 + 2H2 and σ̃ ≡ σµµ denotes the trace. Varying the action with respect to σµν ,

we obtain

�σµν − 2∇(µ∇ασν)α +∇µ∇ν σ̃ + gµν(∇α∇βσαβ −�σ̃)−m2
2σµν + (m2

2 − 3H2)gµν σ̃ = 0 . (5.4)

Taking the divergence gives ∇µσµν = ∇ν σ̃, and plugging this back into the equation yields
(m2 − 2H2)σ̃ = 0. For m2 6= 2H2, the equation of motion and the constraints satisfied by the
field σµν are4

(
�−m2

2

)
σµν = 0 , ∇µσµν = 0 , σ̃ = 0 . (5.5)

In Appendix B, we derive the solutions to the on-shell conditions (5.5).

Spin-s. The Lagrangian for massive fields with arbitrary spin in flat space was constructed
in [107, 108], and generalized to (A)dS spaces in [109]. For massive fields with spin greater
than 2, the action is rather complex and requires introducing auxiliary fields of lower spins. An
alternative, which we will follow, is to use a group theoretical approach to find the equations of
motion directly [110]. A massive bosonic spin-s field is described by a totally symmetric rank-s
tensor, σµ1···µs , subject to the constraints

∇µ1σµ1···µs = 0 , σµµµ3···µs = 0 . (5.6)

The conditions in (5.6) project out the components of the tensor which transform as fields with
lower spins. The Casimir eigenvalue equation of the de Sitter group then gives the wave equation
satisfied by these fields:

(
�−m2

s

)
σµ1···µs = 0 , (5.7)

where m2
s ≡ m2 − (s2 − 2s− 2)H2. The shift in the mass arises from the mismatch between the

Casimir and Laplace-Beltrami operators in de Sitter space and is necessary to describe the correct

4For m2 = 2H2, the system enjoys a (partial) gauge invariance σµν → σµν + ∇(µ∇ν)ξ, and the longitudinal
(helicity-0) mode becomes non-dynamical [106].
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representations for massless fields. Equivalently, it is required by imposing gauge invariance in
the massless limit, m = 0. Solutions to equation (5.7) are obtained in Appendix B.

Following Wigner [111], we identify the spectrum of particles by the unitary irreducible repre-
sentations of the spacetime isometry group. For the de Sitter group SO(1, 4), these representations
fall into three distinct categories [112, 113]:

principal series complementary series discrete series

m2

H2
≥
(
s− 1

2

)2

s(s− 1) <
m2

H2
<

(
s− 1

2

)2
m2

H2
= s(s− 1)− t(t+ 1)

for t = 0, 1, 2, ..., s − 1. Masses that are not associated with one of the above categories are for-
bidden and correspond to non-unitary representations. At the specific mass values corresponding
to the discrete series, the system gains an additional gauge invariance and some of the lowest
helicity modes become pure gauge modes—this phenomenon is called partial masslessness [114].
The spectrum of massive particles is contained in the principal and complementary series. We see
that unitarity demands the existence of a lower bound, m2 > s(s− 1)H2, on the masses of fields
that belong to this spectrum. For s = 2, this is known as the Higuchi bound [105].

In the late-time limit, the generators of the de Sitter isometries form the 3-dimensional con-
formal group. The asymptotic scaling of a spin-s field is

lim
η→0

σi1···is(η,x) = σ+
i1···is(x) η∆+

s −s + σ−i1···is(x) η∆−s −s , (5.8)

where the conformal weight of the field is defined as5

∆±s =
3

2
± iµs , with µs ≡

√
m2

H2
−
(
s− 1

2

)2

. (5.9)

In this chapter, we will deal mostly with particles belonging to the principal series which covers
the largest mass range and corresponds to µs ≥ 0. For real µs, the asymptotic scaling is given by
a complex-conjugate pair, resulting in a wavefunction that oscillates logarithmically in conformal
time. The complementary series has imaginary µs and corresponds to the interval −iµs ∈ (0, 1/2).
In that case, only the growing mode survives in the late-time limit.

5.2 Spin in the effective theory of inflation

In this section, we will construct the leading interactions between the Goldstone boson of broken
time translations π, the graviton γij , and massive spinning fields σµ1...µs .6 We will also consider

5Notice that for s = 0, the case m = 0 corresponds to a conformally coupled scalar field. For a minimally-
coupled massless scalar, one should instead use m2 → m2 − 2H2 in (5.9).

6For constructions of the EFT of inflation with extra scalar fields, see [115, 116].
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self-interactions of the massive spinning fields, and focus on terms which contribute to the corre-
lation functions 〈ζζζ〉 and 〈γζζ〉 at tree level and at leading order in derivatives. Moreover, we
will restrict our presentation to the subset of interactions which give rise to a distinctive angular
dependence due to the exchange of the spinning fields.

In §5.2.1 and §5.2.2, we introduce the couplings of massive particles with spin to the Goldstone
and the graviton, respectively; first for the special cases s = 1 and 2, and then for arbitrary spin.
In §5.2.3, we discuss how large the mixing interactions can be made while keeping the effective
theory under theoretical control.

5.2.1 Couplings to the Goldstone

We reviewed the construction of the effective actions for the Goldstone boson and the graviton
in Chapter 3. The construction of the effective action for couplings between the Goldstone and
spinning fields proceeds similarly. We first write down all operators consistent with the symme-
tries. Amongst them will be tadpole terms, which must add up to zero. In unitary gauge, the
basic building blocks involving spinning fields are σ0···0 and all Lorentz-invariant self-interactions,
e.g. σµ1···µsσµ1···µs . The latter are invariant under all diffeomorphisms, so they don’t lead to a
coupling to π after the Stückelberg trick, whereas the former transform as

σ0···0 → (δ0
µ1

+ ∂µ1π) · · · (δ0
µs + ∂µsπ)σµ1···µs . (5.10)

We may also have contractions with the curvature tensors, which appear at higher order in
derivatives.

Spin-1. We first analyze the couplings between a massive spin-1 field σµ and the Goldstone
boson π. In unitary gauge, the operators of the effective action involve g00 and σ0. In order not
to alter the background solution, these operators have to start at quadratic order in fluctuations.

• At leading order in derivatives and to linear order in σµ, the mixing Lagrangian is7

L(1)
πσ = ω3

1 δg
00σ0 + ω3

2 (δg00)2σ0 . (5.11)

Introducing π using (3.36) and (5.10), we get

L(1)
πσ = ω3

1 a
−2
(
2∂iπσi − (∂iπ)2σ0 − 2π̇∂iπσi

)
+ (3ω3

1 + 4ω3
2) π̇2σ0 + · · · , (5.12)

where we have taken the decoupling limit so that couplings to metric fluctuations become
irrelevant.8 We also used the constraint ∇µσµ = 0, which we assume to hold at the back-

7Note that there are no terms involving δg0µσµ in the effective action. This is because this operator does not
satisfy the symmetries of the EFT, since the background value ḡ0µσµ = −σ0 transforms nontrivially under spatial
diffeomorphisms (and so does the fluctuation).

8The decoupling limit is not affected by the inclusion of mixing interactions, provided that we are in the
perturbative regime. This can be shown by an ADM analysis of the metric perturbations [116, 117].
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ground level, to replace π̇σ0 by ∂iπσi. Since only the cubic mixing π̇∂iπσi will lead to the
characteristic angular structure in the resulting correlation functions (see §5.3.2), we will
focus on the bispectrum created by the combination of π̇∂iπσi and ∂iπσi. Note that there
is a single parameter ω1 controlling the size of these two interactions. This is a consequence
of the nonlinearly-realized time translation symmetry.

• At quadratic order in σµ, the mixing Lagrangian is

L(1)
πσ2 = ω2

3 δg
00(σ0)2 + ω2

4 δg
00σµσµ (5.13)

→ −2(ω2
3 − ω2

4)π̇σ0σ0 − 2ω2
4a
−2π̇σiσi , (5.14)

where in the second line we have introduced the Goldstone and taken the decoupling limit.
We see that, this time, the size of the cubic interaction π̇σiσi is independent from the
quadratic mixing term.

Combining the above, we can write

L(1)
mix =

1

a2

(
ρ1∂iπcσi +

1

Λ1
π̇c∂iπcσi + λ1 π̇cσiσi

)
, (5.15)

where πc ≡ f2
π π is the canonically normalized Goldstone boson, and we defined

ρ1 ≡
2ω3

1

f2
π

, Λ1 ≡ −
f2
π

ρ1
, λ1 ≡ −

2ω2
4

f2
π

. (5.16)

We note that ρ1 and Λ1 are correlated, since they are both determined by the parameter ω1.

Spin-2. Next, we consider the mixing between a massive spin-2 field and the Goldstone boson.

• At linear order in σµν , the mixing Lagrangian is

L(2)
πσ = ω̃3

1 δg
00σ00 + ω̃3

2 (δg00)2σ00 + ω̃2
3 δKµνσ

µν + ω̃2
4 δg

00δKµνσ
µν , (5.17)

where it was necessary to include higher-derivative operators to get the relevant interactions
for the spatial components σij . In the decoupling limit, the mixing with the Goldstone
boson is

L(2)
πσ = ω̃3

1

[
−2π̇σ00 + a−2(∂iπ)2σ00 + 4a−2π̇∂iπσ0i

]
− (5ω̃3

1 − 4ω̃3
2) π̇2σ00

− ω̃2
3 a
−4∂i∂jπσij + 2ω̃2

4 a
−4π̇∂i∂jπσij + · · · . (5.18)

We will focus on the traceless part of σij , which we denote by σ̂ij . Only the cubic mixing
π̇∂i∂jπσ̂ij will lead to the characteristic angular structure in the bispectrum. Since the
quadratic mixing does not affect the angular structure, we will simply choose ∂i∂jπσij as a
representative example. Unlike the spin-1 case, the sizes of the quadratic and cubic mixing
operators are controlled by two independent parameters, ω̃3 and ω̃4.
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• At quadratic order in σµν , the mixing Lagrangian is

L(2)
πσ2 = ω̃2

5 δg
00(σ00)2 + ω̃2

6 δg
00σµνσµν , (5.19)

→ −(2ω̃2
5 + 2ω̃2

6) π̇σ2
00 − 2ω̃2

6

[
2a−2π̇σ0iσ0i + a−4π̇σijσij

]
+ · · · , (5.20)

where the last term in (5.20) will lead to the angular structure that we are interested in.

We will study the following mixing Lagrangian

L(2)
mix =

1

a4

(
ρ2∂i∂jπcσ̂ij +

1

Λ2
2

π̇c∂i∂jπcσ̂ij + λ2 π̇cσ̂ij σ̂ij

)
, (5.21)

where we defined

ρ2 ≡ −
ω̃2

3

f2
π

, Λ2 ≡
f2
π√

2ω̃4

, λ2 ≡ −
2ω̃2

6

f2
π

. (5.22)

This is similar to the spin-1 mixing Lagrangian (5.15), except that the quadratic and cubic mixing
parameters, ρ2 and Λ2, are now independent.

Spin-s. Performing the same analysis for a field with arbitrary spin s > 2, we find the following
mixing Lagrangian

L(s)
mix =

1

a2s

(
ρs∂i1···isπcσ̂i1···is +

1

Λss
π̇c∂i1···isπcσ̂i1···is + λs π̇cσ̂

2
i1···is

)
, (5.23)

where ∂i1···is ≡ ∂i1 · · · ∂is . As in the case of spin-2, these interactions generically arise from
independent operators, i.e. ρs, Λs, and λs are independent parameters.

The mixing in (5.23) can convert hidden non-Gaussianity in the σ-sector into visible non-
Gaussianity in the π-sector. To allow for this possibility, we add cubic self-interactions to the
action for σ, which schematically we can write as

a3sL(s)
σ3 ≡

ξs σ̂ · σ̂ · σ̂ s even,

ξs σ̂ · σ̂ · (∂σ̂) s odd,
(5.24)

with suitable symmetric contractions of spatial indices.

5.2.2 Couplings to the graviton

We will also be interested in the couplings between massive spinning fields and the graviton, γij .
For simplicity, we will only consider linear couplings to γij , but the generalization to higher orders
will essentially be straightforward.
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Spin-1. The leading couplings to the graviton arise from

L(1)
γπσ = ω2

5 δg
00gµν∇µσν −

m2
1

2
σµνσµν . (5.25)

Note that, in our perturbative treatment, the on-shell conditions for σµ hold at the background
level, so that ḡµν∇µσν = 0. The first term in (5.25) is thus proportional to gµν∇µσν = δgµν∇µσν
and starts at cubic order in fluctuations. In terms of π and γij , the mixing Lagrangian becomes

L(1)
γπσ =

1

a2

1

Mpl

(
τ1 π̇cγ

c
ij∂iσj +m2

1γ
c
ijσiσj

)
, (5.26)

where τ1 ≡ 4ω2
5/f

2
π and γcij ≡ 1

2Mplγij denotes the canonically normalized graviton. While the
first term in (5.26) is higher order in derivatives than γij∂iπσj , the latter only arises from the
tadpole σ0, and is therefore required to have a vanishing coefficient. Moreover, a quadratic mixing
between the spin-1 field and the graviton is forbidden by kinematics: any such mixing will involve
spatial gradients and hence must vanish because the graviton is transverse, ∂iγij = 0.

Spin-2. The couplings between a massive spin-2 field and the graviton follow from

L(2)
γπσ = ω̃2

3 δKµνσ
µν + ω̃3

7 δg
00gµνσµν −

m2
2

2
σµνσµν . (5.27)

Note that we have already encountered the operator δKµνσ
µν in (5.17). In our perturbative treat-

ment, the on-shell traceless condition holds at the background level, ḡµνσµν = 0, which implies
that gµνσµν = δgµνσµν , so that the second term in (5.27) starts at cubic order in fluctuations.
The cubic operator δg00δgµν∇µσν0 will not be considered, since its effects are indistinguishable
from those of the first term in (5.26). Introducing π and γij , the mixing Lagrangian becomes

L(2)
γπσ =

1

a2

1

Mpl

(
ρ̃2 γ̇

c
ij σ̂ij + τ2 π̇cγ

c
ij σ̂ij +

m2
2

a2
γcij σ̂ikσ̂kj

)
, (5.28)

where ρ̃2 ≡ −ρ2f
2
π and τ2 ≡ 4ω̃3

7/f
2
π . Note that we have only kept the spatial components in the

coupling to the mass term. Unlike in the spin-1 case, there is now a quadratic mixing between the
spin-2 field and the graviton, whose size is correlated with the π-σ mixing in (5.21). The other
possible form of mixing γijσij comes from the tadpole σ̃ and is thus absent.

Spin-s. For arbitrary spin s > 2, the leading interactions with the graviton and the Goldstone
take the following form

L(s)
γπσ =

1

a2s−2

1

Mpl

(
ρ̃s∂i3···is γ̇

c
i1i2 σ̂i1···is + τsγ

c
i1i2∂i3···isπcσ̂i1···is +

m2
s

a2
γci1j1 σ̂i1···is σ̂j1···is

)
, (5.29)

where ρ̃s ≡ −ρsf2
π . Again, we have only kept interactions that involve the purely spatial compo-

nents of the field. In practice, there are other low-dimensional operators that can also contribute
to the correlator 〈γζζ〉 with the same angular structure, such as γ̇ijσij0···0.
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5.2.3 Bounds on mixing coefficients

It is important to determine how large the mixing interactions of the previous section can be made
while keeping the effective theory under theoretical control. In this section, we will discuss bounds
arising from i) the requirement that the mixing interactions can be treated perturbatively and ii)
the absence of superluminal propagation. Finally, we also consider what range of coefficients yields
a technically natural effective field theory, in the sense of stability under radiative corrections. In
§5.3, we will consider the implications of these constraints on the size of non-Gaussianities.

Perturbativity. We wish to treat the mixing interactions as perturbative corrections to the
free-field actions for the Goldstone boson and the massive spinning fields. Since massive particles
decay outside the horizon and oscillate rapidly inside the horizon, the dominant contributions
to correlation functions will occur at horizon crossing of the Goldstone boson, corresponding to
frequencies of order H. Consistency of the perturbative description therefore requires that the
sizes of the mixing interactions at ω ∼ H are smaller than the terms in the free-field actions. This
puts constraints on the couplings in the mixing Lagrangians discussed in the previous section. For
cπ = 1,9 the criteria for a consistent perturbative treatment require little more than dimensional
analysis. The dimensionful couplings of relevant interactions have to be less than H, while those
of irrelevant interactions have to be greater than H. The dimensionless couplings of marginal
interactions have to be less than unity. For example, for the couplings appearing in (5.21), we
require {ρ2, λ2} < 1 and Λ2 > H. Similar considerations apply for the couplings in (5.15) and
(5.23). For cπ 6= 1, determining the perturbativity constraints on the mixing parameters requires
a more careful analysis. Spatial gradients of the Goldstone mode are enhanced and the correlation
functions can receive contributions from a second time scale, the time of crossing of the sound
horizon. We will return to this complication in §5.3.

Superluminality. The breaking of time diffeomorphism invariance can modify the actions for
spinning fields of §5.1 by introducing additional non-Lorentz-invariant interactions. For concrete-
ness, we will confine our discussion in this subsection to the case of spin one, but we expect similar
results to hold for higher spins. In unitary gauge, the most general quadratic action for a spin-1
field is

Sσ =

∫
d4x
√−g

[
−1

4
FµνFµν +

a1

2
F 0µF 0

µ −
1

2
m2(σµσµ − a0 σ

0σ0)

]
, (5.30)

where Fµν ≡ ∂µσν −∂νσµ, and the structure of the kinetic part is enforced by gauge invariance in
the massless limit. The departure from the Lorentz-invariant action is characterized by the param-
eters a0 and a1, which lead to nontrivial sound speeds for the longitudinal mode, c0 ≡ 1/

√
1 + a0,

and for the transverse mode, c1 ≡ 1/
√

1 + a1. To see this, we consider the on-shell equations of

9In this chapter and Appendices B and C only, we will use the notation cπ (instead of cs) for the sound speed
of the Goldstone boson to avoid possible confusion of identifying s as a spin label.
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motion in the flat-space limit,

σ̈0 − c2
0∇2σ0 +m2σ0 = 0 , (5.31)

σ̈t
i − c2

1∇2σt
i +m2σt

i = 0 , (5.32)

where ∇2 ≡ ∂i∂i is the spatial Laplacian, and σt
i denotes the transverse mode, ∂iσt

i = 0. The
components of the spin-1 field propagate subluminally with no gradient instability as long as
{a0, a1} ≥ 0. A tachyonic instability is avoided for m2 > 0.

Even if the spin-1 field propagates subluminally, the mixing with the Goldstone boson π can
lead to superluminal propagation in the coupled system. Requiring the absence of superluminality
imposes a constraint on the size of the quadratic mixing term in (5.15). To derive this constraint,
we consider the on-shell equations of motion for the coupled system,

σ̈0 − c2
0∇2σ0 +m2σ0 = −c2

0ρ1m
−2∇2π̇c , (5.33)

σ̈t
i − c2

1∇2σt
i +m2σt

i = 0 , (5.34)

π̈c − c2
π∇2πc = −c3

πρ1 (c−2
0 σ̇0 − ρ1m

−2∇2πc) . (5.35)

We see that the transverse mode does not mix with π, and hence its dispersion relation is unmod-
ified. After diagonalizing the coupled π-σ system, the dispersion relations obeyed by the normal
modes are

ω2
± =

1

2

[(
c2

0 + c2
π(1 + 2δ2)

)
k2 +m2 ±

√[
(c2

0 − c2
π)k2 +m2

]2
+ 4c4

πk
4δ2(1 + δ2)

]
, (5.36)

where δ2 ≡ c3
πρ

2
1/m

2. For large k, subluminality implies the following constraint

ρ2
1

m2
≤ 1− c2

0

2− c2
0

1− c2
π

c3
π

. (5.37)

Note that the mixing is required to vanish if either cπ or c0 are equal to 1. (A similar result for
the mixing with a scalar field was found in [118].) However, even a relatively small deviation of
cπ and c0 from 1 is sufficient to allow ρ1 to be of order H (i.e. of order the maximal size allowed
by perturbativity). For simplicity, we will therefore work with c0 = c1 ≈ 1, but incorporating
nontrivial sound speeds for the spin-1 field could be done straightforwardly using modifications of
the mode functions given in Appendix B. Similarly, we will assume that all spinning fields obey
a relativistic dispersion relation.

Naturalness. Finally, we will consider constraints arising from the radiative stability of the
effective theory. This is more of a philosophic criterion rather than a strict consistency condition.

• Let us consider the interaction π̇c∂i1···isπcσi1···is in (5.23), suppressed by the scale Λs. At one

66



5.2. Spin in the effective theory of inflation

loop, this term generates the following correction to the non-Lorentz-invariant mass term,

δm2
σi1···is

∼ 1

Λ2s
s

∫
dωd3k

ω2k2s

[c−3
π (ω2 − c2

πk
2)]2

∼ c3−2s
π

Λ2s+2

Λ2s
s

. (5.38)

Naturalness of the mass of the spinning field requires δm2
σi1···is

. m2
s ∼ H2. To estimate the

size of (5.38), we take the cutoff of the π-loop to be of order the strong coupling scale of the
Goldstone sector. For cπ = 1, we can, in principle, extend the π-loop up to the symmetry
breaking scale, i.e. Λ ∼ fπ, while, for cπ � 1, the effective theory of the Goldstone becomes
strongly coupled at Λ ∼ fπcπ. We will therefore use Λ ∼ fπcπ for all values of cπ. The
condition for radiative stability then becomes

(
H

Λs

)s
.

(
(2π∆ζ)

s+1

c5
π

)1/2

. (5.39)

Typically, this constraint requires Λs to be slightly larger than fπ.

• Next, we consider the interaction λs π̇cσ2
i1···is in (5.23). This leads to the following radiative

correction to the non-Lorentz-invariant mass term,

δm2
σi1···is

∼ λ2
s

∫
dωd3k

ω2

c−3
π (ω2 − c2

πk
2)(ω2 − k2 −m2)

∼ c2
πλ

2
sΛ2 . (5.40)

Cutting off the loop at Λ ∼ fπcπ, we obtain the following constraint for radiative stability:

λs .
(2π∆ζ)

1/2

c2
π

. (5.41)

The interaction λs π̇cσ2
i1···is can also give a correction to the kinetic term for the Goldstone.

However, on dimensional grounds, it is easy to see that this interaction only contributes a
negligible correction to the sound speed of π.

• Lastly, the radiative correction generated by the cubic self-interaction of the spinning fields is

δm2
σi1···is

∼

ξ2
s s even,

ξ2
sΛ2 s odd,

(5.42)

where the couplings ξs are of dimensions zero and one for odd and even spins, respectively—
cf. (5.24). For even spins, we only get a fixed finite correction to the mass term. Since we
require ξs < H for perturbative control, the loop contribution is guaranteed to be small.
For odd spins, it is natural to take the cutoff for the σ-loop to be Λs. We then get

ξ2
s .

H2

Λ2
s

.

(
(2π∆ζ)

s+1

c5
π

)1/s

, (5.43)

where we have used the naturalness constraint (5.39) on Λs in the second inequality.
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5.3 Imprints on cosmological correlators

We will now compute the effects of massive particles with spin on the correlation functions of the
Goldstone boson and the graviton. Following [102], we will study separately the contributions
from local and non-local processes. Local processes are, by definition, those whose imprint can
be mimicked by adding a local operator in the low-energy effective theory of the light fields
alone. Non-local processes, on the other hand, capture particle production effects which cannot
be mimicked by additional local operators. While the latter are the distinctive signature of extra
particles during inflation, the amplitude of such effects is exponentially suppressed for masses
above the Hubble scale. We will discover that the sound speed of the Goldstone boson plays a
crucial role in controlling the relative size of the local and non-local processes.

5.3.1 〈ζζ〉

Before discussing a potentially richer structure in the bispectra, we will gain some useful insights
by first examining the effect of massive particles on the power spectrum 〈ζζ〉 (see Fig. 5.2). We
will separate the correlation function into distinct contributions coming from local and non-local
processes.

Figure 5.2: Tree-level diagram contributing to the two-point function 〈ζζ〉. The solid and dashed lines
represent the curvature perturbation ζ and a massive spin-s field σi1···is , respectively.

Spin doesn’t play a big role in the correction to the power spectrum, so for simplicity we will
consider a minimally-coupled massive scalar field σ, whose two-point function in de Sitter space
is

〈σk(η)σ−k(η′)〉′ = π

4
H2(ηη′)3/2e−πµHiµ(−kη)H∗iµ(−kη′) , (5.44)

where Hiµ ≡ H
(1)
iµ is the Hankel function of the first kind and µ ≡

√
m2/H2 − 9/4. We will

focus on massive particles belonging to the principal series, so that µ ≥ 0. The local part of the
two-point function has support only at coincident points in position space, while the non-local
part describes correlations over long distances. In Fourier space, the local and non-local parts
of the two-point function are analytic and non-analytic in the momentum k, respectively. In the
late-time limit, we have

lim
η,η′→0

〈σk(η)σ−k(η′)〉′local =
H2(ηη′)3/2

4π
Γ(−iµ)Γ(iµ)

[
eπµ
( η
η′

)iµ
+ e−πµ

( η
η′

)−iµ]
, (5.45)
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lim
η,η′→0

〈σk(η)σ−k(η′)〉′non-local =
H2(ηη′)3/2

4π

[
Γ(−iµ)2

(k2ηη′

4

)iµ
+ Γ(iµ)2

(k2ηη′

4

)−iµ]
. (5.46)

Away from the late-time limit, we use a series expansion of the Hankel function,

Hiµ(x) =
∞∑
n=0

∑
±
c±n (µ, x) , c±n (µ, x) ≡ ±(−1)n

n!

eπµ(1±1)/2

sinhπµ

(x/2)2n±iµ

Γ(n+ 1± iµ)
, (5.47)

to decompose the two-point function (5.44) into its local and non-local pieces. Summing over the
set of local and non-local contributions, the two-point function can be split into10

〈σk(η)σ−k(η′)〉′local =
π

4

H2(ηη′)3/2

sinh2 πµ

[
eπµJiµ(−kη)J∗iµ(−kη′) + e−πµJ∗iµ(−kη)Jiµ(−kη′)

]
, (5.48)

〈σk(η)σ−k(η′)〉′non-local =
π

4

H2(ηη′)3/2

sinh2 πµ

[
Jiµ(−kη)Jiµ(−kη′) + J∗iµ(−kη)J∗iµ(−kη′)

]
, (5.49)

where Jiµ denotes the Bessel function of the first kind.

To illustrate the distinct roles played by local and non-local parts, let us consider a coupling
between π and σ of the form

∫
d4x a3ρπ̇cσ [91, 119]. At tree level, this produces the following

correction to the power spectrum of ζ:

〈ζkζ−k〉′ = Pζ(k)

[
1 +

c2
πρ

2

H2

(
C1 + C2

)]
, (5.50)

where

C1 ≡
π

4
e−πµ

∣∣∣∣ ∫ ∞
0

dx

x

√
xHiµ(x)eicπx

∣∣∣∣2 , (5.51)

C2 ≡ −
π

2
e−πµ Re

[∫ ∞
0

dx√
x
Hiµ(x)e−icπx

∫ ∞
x

dy√
y
H∗iµ(y)e−icπy

]
. (5.52)

These represent the non-time-ordered and time-ordered integrals that arise from performing the
in-in calculation. The integral in (5.51) can be evaluated analytically to give

C1 =
π2

2 cosh2 πµ
2F1

(
1

2
− iµ , 1

2
+ iµ , 1 ,

1− cπ
2

)2

, (5.53)

where 2F1 is the hypergeometric function. It is instructive to consider the cπ → 1 and cπ → 0

limits of this result:

• For cπ = 1, the hypergeometric function becomes unity, and (5.53) scales as e−2πµ for
large µ, as expected for the pair-production of massive particles.

10Away from the late-time limit, we are summing an infinite series of local/non-local elements for the propagator,
in which case the distinction between the local and non-local parts is not as sharp. Nevertheless, we will see that
this decomposition still leads to some useful insights.
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Figure 5.3: Pictorial representations of the horizon crossing scale of the Goldstone boson (solid) and the
scale associated with the turning point in the dynamics of a massive particle (dashed), with the left (right)
diagram corresponding to cπ = 1 (cπ < µ−1). The Hubble radius is denoted by rH ≡ H−1. We see that
for cπ < µ−1 the horizon crossing of the Goldstone boson occurs before the turning point of the massive
particles, while for cπ = 1 it occurs after.

• In the limit cπ → 0, we instead get

lim
cπ→0

C1 =
π2

2 cosh2 πµ
× π

Γ(3
4 + iµ

2 )2 Γ(3
4 −

iµ
2 )2

, (5.54)

which scales as e−πµ for large µ instead of the usual Boltzmann factor e−2πµ.

To see why the exponential suppression of C1 changes for cπ � 1, we need to consider the
change in the dynamics of σ and π. There are two relevant timescales in the problem:

i) at the turning point, |kη| ∼ µ, the mode function of the massive particle starts to decay,

ii) at the sound horizon crossing, |kη| ∼ c−1
π , the Goldstone boson freezes.

For cπ = 1, event i) occurs before ii), while for cπ < µ−1, the order is reversed (see Fig. 5.3). As
a consequence, the integral in (5.51) is dominated at the horizon crossing of π for cπ = 1, while
it is dominated by the turning point of σ for cπ < µ−1. This is illustrated in Fig. 5.4, where we
show the Wick-rotated integrand of the integral in (5.51) as a function of x = |kη|. A notable
feature is the peak at x ∼ µ, which increases for small cπ. For cπ = 1, the turning point occurs
before horizon crossing and the overlap between π and σ is suppressed. For cπ < µ−1, on the
other hand, the turning point occurs after the freeze-out of the Goldstone, which enhances the
feature at x ∼ µ. This qualitatively explains the boost in the amplitude of C1 for small cπ.

Let us now consider the time-ordered integral C2 in (5.52). For general cπ, it cannot be
evaluated analytically, but some insights can be obtained by taking the limits cπ → 1 and cπ → 0:

• For cπ = 1, the above decomposition of the σ-propagator into local and non-local pieces
leads to [91]

C2|local =
eπµ

8 sinhπµ
Re

[
ψ(1)

(
3

4
+
iµ

2

)
− ψ(1)

(
1

4
+
iµ

2

)]
− e−2πµ (iµ↔ −iµ) , (5.55)
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Figure 5.4: Wick-rotated integrand of the integral in (5.51) as a function of x = |kη| and for µ = 5. The
vertical dotted lines indicate the times of sound horizon crossing of π, i.e. x = c−1

π , for each value of cπ.
The solid vertical line marks the turning point of σ, i.e. x = µ.

C2|non-local = 0 , (5.56)

where ψ(1)(z) = ∂2
z ln Γ(z) is the polygamma function of order 1.11 For large µ, the first

term in (5.55) scales as µ−2, which has a simple interpretation: a heavy field contributes
to non-renormalizable interactions in the low-energy effective theory of the light fields with
coefficients given by inverse powers of the mass of the heavy field. The second term is instead
suppressed by e−2πµ, describing an effect which cannot be captured by a local Lagrangian
of the light fields alone. Finally, we see that the non-local part of the σ-propagator does not
contribute to the correction to the power spectrum.

• In the limit cπ → 0, we find

lim
cπ→0

C2|local = 0 , (5.57)

lim
cπ→0

C2|non-local = − π2

2 cosh2 πµ
× π

Γ(3
4 + iµ

2 )2 Γ(3
4 −

iµ
2 )2

. (5.58)

We wish to highlight several features of this result. First, the local contribution to C2 van-
ishes. This follows from the simple fact that the Goldstone bosons become non-propagating
when cπ = 0; hence, they can only communicate to each other through non-local effects.
Second, the non-local contributions to C1 and C2 precisely cancel each other, implying that
the correction to the two-point function (5.50) vanishes faster than c2

π in the limit cπ → 0.
This is the result of the cancellation between the contributions from the forward and back-

11There are also logarithmically divergent terms within the separate integrals for the local and non-local parts.
These are the result of an imperfect decomposition between the two terms away from the late-time limit and the
fact that we are integrating over time. However, these terms exactly cancel in the sum over all contributions, so
that the final result remains finite.
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ward branches of the integration contour. A way to see this is to drop the exponentials
in cπ in (5.51) and (5.52), and notice that C1 + C2 is now proportional to the sum of all
Schwinger-Keldysh propagators for the σ field; these propagators add up to zero. Of course,
for small (but finite) cπ, we do not expect this cancellation to be exact.

10−6 10−4 10−2 1

cπ

10−8

10−6

10−4

10−2

1
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1
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|

Figure 5.5: C1 and C2 as functions of cπ for µ = 1 (black) and µ = 3 (red). The solid and dotted lines
denote C1 and C2, respectively.

To understand how the result for general cπ interpolates between these two limiting behaviours,
we evaluate C2 numerically. Figure 5.5 shows the analytical result (5.53) for C1 and a numerical
computation of C2, both as functions of cπ. As cπ is lowered, the exponential dependence on
µ for both of the integrals changes. For C1, this happens relatively quickly when cπ . µ−1,
agreeing with the intuition that reversing the ordering of the turning point of σ and the horizon
exit of π changes the solution qualitatively. On the other hand, the transition in the exponential
behavior for C2 only occurs for very small cπ, typically much smaller than the lower limit required
for perturbative control of the non-renormalizable interaction π̇(∂iπ)2 associated with cπ. This
implies that, while for C2 the dependence on µ > 1 will not change much within the allowed range
of cπ > 10−2, the exponential suppression e−2πµ of C1 can be reduced to e−πµ when cπ < µ−1.

5.3.2 〈ζζζ〉

Next, we consider the imprints of massive spinning particles on the three-point function 〈ζζζ〉. In
single-field inflation, a long-wavelength curvature perturbation locally corresponds to a rescaling
of the background experienced by short-wavelength fluctuations. As a result, the bispectrum
〈ζζζ〉 satisfies a consistency relation for the squeezed limit [25, 62, 77]. In particular, we can write
a Taylor expansion around the squeezed limit,

lim
k1�k3

〈ζk1ζk2ζk3〉′ = Pζ(k1)Pζ(k3)
∞∑
n=0

bn

(
k1

k3

)n
, (5.59)
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where the leading coefficient is determined by the tilt of the scalar power spectrum, b0 = −(ns−1).
The consistency condition furthermore fixes the coefficient of the linear term, b1, and partially
constrains higher-order coefficients [26, 60, 120–123]. Since the contributions coming from b0 and
b1 cannot be measured by a local observer [124, 125], any physical effect will only appear at order
(k1/k3)2 [126]. A crucial consequence of the consistency relation is the existence of the Taylor
expansion (5.59) with only integer powers of k1/k3. Interesting non-analytic deviations from
(5.59), however, are known to arise in the presence of additional fields. For example, fractional
powers (k1/k3)ν can be present in quasi-single-field inflation [84], with scaling 0 < ν ≤ 3/2 in
between the fully constrained (k1/k3)0 term and the physical (k1/k3)2 term. In this section, we
will study such deviations for additional fields that carry spin.

Figure 5.6 shows all possible tree-level contributions to 〈ζζζ〉. The three diagrams share
many qualitative features, so to avoid repetition we will mostly concentrate on the analysis of
the single-exchange diagram [(a)], and only highlight the differences that arise for the other two
diagrams [(b,c)]. We will split the contributions to the bispectrum into its local and non-local
parts. To avoid confusion with the alternative usage of “local non-Gaussianity", we will refer to
these contributions as analytic and non-analytic, respectively. (This terminology highlights the
distinctive scaling behavior in the squeezed limit.) Although we will ultimately be interested in
the behavior of the latter, the observability of the signal will depend on the full bispectrum, so
we will present the results for both types of contributions. As before, we will mostly restrict our
analysis to particles in the principal series, with µs ≥ 0.

(a) (b) (c)

Figure 5.6: Tree-level diagrams contributing to 〈ζζζ〉. The solid and dashed lines represent the curvature
perturbation ζ and a spinning field σi1···is , respectively.

Single-exchange diagram. We will first compute the bispectrum associated with the exchange
of a single spinning field (Fig. 5.6a). The relevant interaction Lagrangian is (cf. (5.23))

LI =
1

a2s

(
ρs∂i1···isπcσ̂i1···is +

1

Λss
π̇c∂i1···isπcσ̂i1···is

)
. (5.60)

We obtain the following bispectrum

〈ζk1ζk2ζk3〉′
∆4
ζ

= αs∆
−1
ζ × Ps(k̂1 · k̂3)× I(s)(µs, cπ, k1, k2, k3) + 5 perms. , (5.61)

where an integral representation of the function I(s) is given in Appendix C. The dimensionless
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parameters αs are

αs ≡
1

c
s−3/2
π

ρs
H2−s

(
H

Λs

)s
. (5.62)

where we have included powers of cπ in αs, so that the function I(s) does not scale parametrically
with cπ. By this we mean that I(s) saturates to a constant value in the limit of small cπ, similar
to the behavior of the integrals (5.51) and (5.52). The requirement of a perturbative treatment
of non-Gaussianity implies that

αs < 1 . (5.63)

Notice that we have a stronger perturbativity condition on the bare parameters ρs and Λs for
subluminal cπ, which takes into account the fact that the dispersion relation, ω = cπk, is non-
relativistic.

Size of NG. It is customary to quantify the size of non-Gaussianity by the parameter

fNL ≡
5

18

〈ζk1ζk2ζk3〉′
P 2
ζ (k)

, (5.64)

where the bispectrum is evaluated in the equilateral configuration, k1 = k2 = k3 ≡ k. The overall
size of the non-Gaussianity can only partially be read off from the prefactor in (5.61), since there
is a hidden dependence on µs in the function I(s). An estimate for the size of non-Gaussian
signal is

fNL ∼ f(µs)αs∆
−1
ζ , (5.65)

where f(µs) gives the appropriate mass suppressions for the analytic and non-analytic parts12, 13

f(µs) ≡


µ−2
s analytic,

e−πµs non-analytic, cπ = 1,

e−πµs/2 non-analytic, cπ < µ−1
s .

(5.66)

We see that there are two sources of suppression in the signal: the mass suppression as a function
of µs and the mixing efficiency parameterized by αs. At the same time, there is a ∆−1

ζ ≈ 105

enhancement in the signal. It is this large factor that can, in principle, allow for observable non-
Gaussianity even in the presence of the above suppressions. The size of the analytic part is only
power-law suppressed and thus dominates for large mass, whereas the non-analytic part is always
accompanied by an exponential Boltzmann suppression. For cπ = 1, the dominant non-analytic
term is suppressed by e−πµs . As explained in [102, 127], this arises from the quantum interference
of two wavefunctions: Ψ[2σ] ∝ e−πµs for pair-produced massive particles and Ψ[0σ] for the wave-

12The displayed µs scalings are the asymptotic behaviors for large µs. There is also a polynomial dependence
in µs for the non-analytic part which competes with the exponential suppression for intermediate values of µs.

13It is more useful to consider this separation of the signal in the squeezed limit, where the distinction between
the analytic and non-analytic parts becomes sharp, as we will show below.
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function involving no spontaneously created massive particles.14 This interference contribution is
larger than the probability of pair-producing massive particles, which is |Ψ[2σ]|2 ∝ e−2πµs . For
cπ < µ−1

s � 1, the exponential suppression of the non-analytic part changes to e−πµs/2. We have
already encountered this phenomenon in §5.3.1: for small cπ the horizon crossing of the Goldstone
boson occurs before the turning point in the mode function of the massive particle. In this case,
we are picking out the contribution of the wavefunction for a pair of massive particles not in the
late-time limit, but at the turning point, which comes with a different exponential factor.

In §5.2.3, we derived naturalness constraints on the mixing parameters of the effective theory.
For the parameter αs in (5.62), the radiative stability of the mass (5.39) implies

αs .

(
2π∆ζ

c2
π

)(s+1)/2

. (5.67)

For cπ = 1, this naturalness constraint is rather strong, implying that large non-Gaussianity,
fNL > 1, is only possible if additional physics, such as supersymmetry, stabilizes the mass of
the spinning particle, or if the mass term is fine-tuned. For cπ 6= 1, the current observational
constraint cπ ≥ 0.024 [35] still allows for naturally large non-Gaussianity, although within a rather
narrow range in the small cπ regime.

Some comments are in order concerning the observability of particles with odd spins. In [102],
it was shown that the diagram due to the exchange of an odd-spin particle vanish exactly at
leading order in the weak breaking of conformal symmetry. At subleading orders, however, there
are non-zero contributions from odd-spin particles.15 When conformal symmetry is strongly
broken, these terms become as important as the leading ones, and odd-spin particles can leave
an equally relevant imprint on the correlation function 〈ζζζ〉. Nevertheless, the amplitude of the
bispectrum with an intermediate spin-1 particle is

fNL ∼ f(µ1)
√
cπ

ρ2
1

H2
. (5.70)

As long as the mixing is perturbative, ρ1 < H, this non-Gaussianity is constrained to be less than

14Potential tests of the quantum nature of cosmological fluctuations have also been discussed in [128–132].
15When the approximate conformal invariance is valid, we can think of this in terms of correlation functions of

the inflaton φ(t,x) = φ̄(t) + δφ(t,x), where ˙̄φ 6= 0 characterizes the weak breaking of conformal symmetry. The
leading three-point function for the inflaton perturbation δφ will be given by the four-point function of Φ with one
external leg set to ˙̄φ:

〈δφδφδφ〉′ ∝ 〈δφδφσ〉′〈σδφ ˙̄φ〉′ ∝ ˙̄φ〈δφδφσ〉′〈σδφ〉′inf , (5.68)

where 〈· · · 〉inf denotes an inflationary correlation function which breaks conformal symmetry [133]. However, in
the conformally symmetric case, 〈δφδφσ〉 vanishes when σ has odd spin [134]. The next-to-leading order result is
given by the six-point function with three insertions of ˙̄φ,

〈δφδφδφ〉′ ∝ 〈 ˙̄φδφδφσ〉′〈σδφ ˙̄φ2〉′ ∝ ˙̄φ3〈δφδφσ〉′inf〈σδφ〉′inf . (5.69)

This is suppressed by an additional factor of ˙̄φ2, but notice that the correlator 〈δφδφσ〉inf , not being constrained
by conformal symmetry, does not have to vanish for odd-spin σ.
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unity. We see that a spin-1 particle cannot lead to large non-Gaussianity because the size of the
cubic vertex in (5.15) is tied to the quadratic mixing coefficient. In fact, the same reasoning applies
to the coupling to scalar fields, which is why the single-exchange diagram has been neglected in the
context of quasi-single-field inflation [84, 118]. This fact, however, is only tied to spins zero and
one, and the bispectrum does not have to be suppressed for higher odd-spin particles. Moreover,
we will see that the diagrams involving more than a single exchange can allow for observable
non-Gaussianity, even for spin one.

Shape of NG. Before considering the general shape of the bispectrum, we will first analyze the
singular behavior of the bispectrum in the squeezed limit, mainly concentrating on particles with
even spins. We will quote results whose derivations can be found in Appendix C.

• For the analytic part of the bispectrum, we get

lim
k1�k3

〈ζk1ζk2ζk3〉′ ∝
1

k3
1k

3
3

(
k1

k3

)2

. (5.71)

We see that the local effects of massive particles lead to the same squeezed limit behavior
as for single-field inflation—cf. (5.59). This is expected, since the massive particle can be
integrated out for large µs, producing an effective cubic vertex of the form π̇(∂̂i1···isπ)2. The
presence of extra particles therefore cannot be inferred from this part of the signal. Although
the analytic part of the non-Gaussianity is itself interesting and more information can be
gained by analyzing its shape for general momentum configurations, we have to treat it as
an effective noise in the squeezed limit as far as the detection of extra particles is concerned.

• For the non-analytic part, we find

lim
k1�k3

〈ζk1ζk2ζk3〉′ ∝
1

k3
1k

3
3

(
k1

k3

)3/2

Ps(k̂1 · k̂3) cos

[
µs ln

(
k1

k3

)
+ φs

]
, (5.72)

where the phase φs is uniquely fixed in terms of µs and cπ (see Appendix C). The suppression
factor (k1/k3)3/2 represents the dilution of the physical particle number density due to the
volume expansion. This non-analytic scaling in the squeezed limit, corresponding to an
intrinsically non-local process, cannot be mimicked by a local interaction within the effective
theory of a single field. The signal contains oscillations in ln(k1/k3), with a frequency set by
the mass of the spinning particle. This is due to the fact that the wavefunctions of massive
particles oscillate logarithmically in time on superhorizon scales. The spin of the extra
particle is reflected in the angular dependence, which is given by a Legendre polynomial of
the angle between the short and long momenta.

The above behavior applies for particles in the principal series, for which µs ≥ 0. For
particles in the complementary series, µs becomes imaginary and the scaling of the squeezed
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bispectrum changes to

lim
k1�k3

〈ζk1ζk2ζk3〉′ ∝
1

k3
1k

3
3

(
k1

k3

)3/2−νs
Ps(k̂1 · k̂3) , (5.73)

with νs ≡ −iµs real. For s ≥ 2, unitarity implies νs ∈ [0, 1/2), and the singular behavior
in the squeezed limit is suppressed by at least k1/k3 compared to the leading term in the
consistency relation (5.59).

The fact that the polarization tensors corresponding to odd-spin particles are odd under the
exchange of two short momenta, together with momentum conservation, implies that the
signal will gain an extra suppression factor of k1/k3 in the squeezed limit compared to the
case of even spin. This means that the non-analytic part due to odd-spin particles scales as
(k1/k3)5/2 in the squeezed limit, which is more suppressed than the analytic part that scales
as (k1/k3)2. The latter, however, have an analytic dependence on momenta and correspond
to local correlations in position space. Thus, the presence of odd-spin particles could still
be inferred from long-distance correlations, although it might be subdominant compared to
other non-local effects.

It is possible to understand the different behaviors in the squeezed limit intuitively. For con-
creteness, let us consider the exchange of a spin-2 field involving the interactions ∂i∂jπσ̂ij and
π̇∂i∂jπσ̂ij . The bispectrum in the isosceles-triangle configuration, k2 = k3, consists of three
different permutations of the external legs:

〈ζk1ζk2ζk3〉′ ∝

︸ ︷︷ ︸
I1≡I(k1,k3,k3)

+

︸ ︷︷ ︸
I2≡I(k3,k1,k3)

+

︸ ︷︷ ︸
I3≡I(k3,k3,k1)

, (5.74)

where πn ≡ π(kn), σn ≡ σij(kn) and I(k1, k2, k3) ∝ P2(k̂1 · k̂3) I(2)(µ2, cπ, k1, k2, k3). The non-
analytic squeezed limit (5.72) arises if the massive exchange particle carries the soft momentum,
corresponding to the contribution I1 in (5.74). This describes a non-local conversion process
between the massive particle and the Goldstone boson between the horizon crossing times of
the long and short modes. However, when the mass of the extra particle becomes large, it
can be integrated out and the same effect will be captured by a local vertex. In that case,
the bispectrum should become indistinguishable from that produced by a self-interaction of π,
namely π̇(∂̂ijπ)2. Note, in particular, that this interaction is symmetric under the exchange of the
momenta associated with the two external legs with spatial gradients. This allows us to gauge
how well the interaction is approximated by a local vertex by looking at how similar the terms I1

and I2 are. Both I2 and I3 will lead to analytic scalings in the squeezed limit, where the latter
produces (5.71).
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To analyze the shape of the bispectrum for general momentum configurations, we proceed
numerically. For this purpose, it is convenient to define a dimensionless shape function

S(k1, k2, k3) ≡ k2
1k

2
2k

2
3

(2π)4

〈ζk1ζk2ζk3〉′
∆4
ζ

. (5.75)

Figure 5.7 shows two-dimensional projections of the shape function for spin 2 with µ2 = 3, 5, 7

and cπ = 1, 0.1 in the isosceles-triangle configuration, k2 = k3. For the reasons explained in
the previous paragraph, in Fig. 5.7 we have shown separately the shape functions corresponding
to the contributions I1 and I2 in (5.74).16 As anticipated, these contributions exhibit different
scalings in the squeezed limit. The plots show (k3/k1)× S, so that the analytic part is expected
to approach a constant in the squeezed limit, while the non-analytic part grows as (k1/k3)−1/2

for small k1. We see that the shape of the bispectrum is mostly governed by the non-analytic
part for small mass, giving almost pure oscillations. The amplitude of this effect, however, goes
as e−πµ2 for large µ2. The analytic part, being power-law suppressed, therefore takes over in
size as the mass increases, and the shape approaches the equilateral form in the limit of large
mass. For large mass, it is clear that the non-Gaussianity is dominated by the analytic piece, with
small oscillations coming from the non-analytic piece indicating the presence of a heavy mode.
For cπ = 1, the contributions I1 and I2 lead to the same shape of the bispectrum for µ2 = 7,
indicating that the π-σ conversion process has become local. Indeed, in this case the bispectrum
precisely overlaps with that of the local interaction π̇(∂̂ijπ)2. For small cπ, we have argued that
the exponential suppression is instead e−πµ2/2. The fact that we see more pronounced oscillations
for cπ = 0.1 is a consequence of this. Moreover, for small cπ, the shapes of the contributions
I1 and I2 are no longer identical. Note that, in order for the massive particle to be integrated
out, the time of its turning point should be much earlier than the time at which the Goldstone
boson crosses its sound horizon, which translates into the condition cπ > µ−1

2 . For cπ = 0.1, this
condition is not satisfied for the list of mass parameters used in the figure, which is the reason
why we do not see the convergence to the local behavior. We have checked that the convergence
does indeed happen for sufficiently large µ2 > c−1

π .

Another characteristic of the signal due to spinning particles is its angular dependence. Fig-
ure 5.8 shows the shape function of the total signal as a function of the angle between the long
and short momenta, θ ≡ cos−1(k̂1 · k̂3), for a range of momentum configurations with fixed k1/k3.
For visualization purposes, the plot has been rescaled so that it can be compared more easily to
the Legendre polynomial P2(cos θ). As expected, the angular dependence converges to the pure
Legendre behavior as the triangle becomes squeezed, k1/k3 � 1. The non-zero offset is due to
the analytic part which doesn’t carry any angular dependence. We also see that the angular
dependence deviates from the pure Legendre behavior as the triangle approaches the equilateral
shape. Still, the peak around the flat triangle (θ = 180◦) remains prominent regardless of the

16We have omitted I3 in the plots, which has the same analytic scaling as in (5.71) and thus shows no interesting
features. Of course, this contribution should be added in order to obtain the full bispectrum.
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Figure 5.7: Shape functions (in units of α2∆−1
ζ ) for the spin-2 single-exchange diagram in the isosceles-

triangle configuration, k2 = k3, with µ2 = 3 (top), µ2 = 5 (middle), and µ2 = 7 (bottom) for cπ = 1 (left)
and cπ = 0.1 (right). The solid and dashed lines correspond to the numerical results for the parts of the
signal corresponding to the terms I1 and I2 in (5.74), respectively. Not shown in the figure is the term
I3, which produces an analytic scaling in the squeezed limit and is needed to obtain the full bispectrum.
Convergence of the solid and dashed lines indicates that the same effect can be captured by a local vertex
π̇(∂̂ijπ)2 in the single-field EFT. The dotted lines show the analytical predictions for the non-analytic
part.
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Figure 5.8: Shape functions of the spin-2 single-exchange diagram with µ2 = 5 and cπ = 1 as a function
of the base angle θ = cos−1(k̂1 · k̂3) for fixed ratios of k1/k3. For easy comparison, the plot has been
normalized such that the height difference between θ = 90◦ and θ = 180◦ of each curve is fixed to 3/2.

momentum configuration. This suggests that the information about a particle’s spin can still be
inferred without necessarily going to very squeezed momentum configurations, since the width
of the peak is still fixed by the polarization tensor of the spinning particle. This property can
serve as an important tool for detecting odd-spin particles, whose signal in the squeezed limit
necessarily gains an extra suppression in the soft momentum.

Double-exchange diagram. The bispectrum for the double-exchange diagram (Fig. 5.6b) is

〈ζk1ζk2ζk3〉′
∆4
ζ

= α̃s∆
−1
ζ × Ps(k̂2 · k̂3)× J (s)(µs, cπ, k1, k2, k3) + 5 perms. , (5.76)

where the function J (s) is given explicitly in Appendix C, and the dimensionless parameters α̃s
are

α̃s ≡ λs
( ρs
H2−s

)2
< 1 , (5.77)

with λs and ρs defined in (5.23).

The size of the non-Gaussianity associated with the double-exchange diagram can be read
off from (5.65) after replacing αs by α̃s, but with an extra suppression of µ−2

s , because this
diagram involves another particle exchange. The condition for radiative stability (5.41) imposes
the following upper limit on the size of the mixing parameter:

α̃s .
(2π∆ζ)

1/2

c2
π

. (5.78)

Notice that this is a much weaker constraint than the corresponding constraint for the single-
exchange diagram (5.67). Depending on the values of cπ, this may or may not be stronger
than the requirement for perturbativity, fNL < ∆−1

ζ . This diagram can thus naturally produce
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detectable levels of non-Gaussianity, even for cπ = 1.

Note that this diagram involves two π-σ conversion processes. When one of these processes
becomes local, the double-exchange diagram becomes essentially equivalent to the single-exchange
diagram. This can be seen by replacing one of the σ̂i1···is legs in the cubic vertex π̇σ̂2

i1···is by ∂i1···isπ,
after which the interaction becomes the same as the cubic vertex for the single-exchange diagram.
As a result, the squeezed-limit behavior for this diagram is essentially the same as that of the
single-exchange diagram. Hence, the analysis we have presented for the single-exchange diagram
applies also to the double-exchange diagram.

Triple-exchange diagram. As indicated in (5.23), there is a slight difference between the form
of the cubic self-interaction of spinning fields for even and odd spins. For concreteness, we will
present the results for the former. The bispectrum for the triple-exchange diagram (Fig. 5.6c) is

〈ζk1ζk2ζk3〉′
∆4
ζ

= α̂s∆
−1
ζ × P (k̂1, k̂2, k̂3)×K(s)(µs, cπ, k1, k2, k3) + 5 perms. , (5.79)

where P (k̂1, k̂2, k̂3) ≡ ε0(k̂1) ·ε0(k̂2) ·ε0(k̂3) is a symmetric contraction of the longitudinal polar-
ization tensors ε0

i1···is (see Appendix B for the precise definition of the polarization tensor) that
reduces to Ps(k̂1 · k̂3) in the squeezed limit. The couplings α̂s are

α̂s ≡ ξs
( ρs
H2−s

)2
< 1 , (5.80)

where ξs was introduced in (5.23). The function K(s) can be found in Appendix C.

The size of the non-Gaussianity associated with this diagram can, again, be read off from (5.65),
with αs replaced by α̂s, and taking into account an extra suppression of µ−4

s . Although the qual-
itative features of the non-analytic signal will be similar to that of the other diagrams, there are
some relevant differences. First, as shown in §5.2.3, naturalness does not constrain the size of
the coupling ξs, so the triple-exchange diagram allows for a naturally large non-Gaussianity. This
is to be contrasted especially with the single-exchange diagram, where the naturalness criterion
imposed a strong constraint on the size of the corresponding non-Gaussianity. Second, when the
mass of the particle becomes large, the bispectrum is well-captured by a local vertex, namely
(∂̂i1···isπ)3 with symmetric contraction of indices. Notice that, due to the number of spatial gra-
dients, for s > 2 the squeezed-limit bispectrum is suppressed by more than (k1/k3)2 for small
k1. This makes the non-analytic part, scaling as (k1/k3)3/2, a rather clean signal in the squeezed
limit.

Summary. All diagrams in Fig. 5.6, except for the single-exchange diagram for spin one, can
yield sizable non-Gaussianities within the perturbative regime. In order for this to be natural, the
single-exchange diagram requires new physics or fine-tuning to stabilize the mass of the spinning
particle, whereas both the double- and triple-exchange diagrams can naturally produce large non-
Gaussianities. The non-analytic part of the bispectrum is suppressed by e−πµs for cπ = 1, but
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only by e−πµs/2 for small cπ. Typically, we find that fNL & O(1) from the non-analytic part is
possible if µs . 5 for cπ = 1 and µs . 10 for cπ � 1.

5.3.3 〈γζζ〉

Lastly, we consider the tensor-scalar-scalar correlation function 〈γζζ〉. In single-field inflation,
a long-wavelength tensor fluctuation is locally equivalent to a spatially anisotropic coordinate
transformation. Again, we can Taylor expand the expectation value around the squeezed limit,
thus obtaining

lim
k1�k3

〈γλk1
ζk2

ζk3
〉′ = Pγ(k1)Pζ(k3)

∞∑
n=0

dn

(
k1

k3

)n
, (5.81)

where γλ, with λ = ±2, denotes the positive or negative helicity components of the graviton. As
in the case of the scalar bispectrum, the leading coefficients are determined by the single-field
consistency relation [25] (see also [26, 60]). In particular, d0 in (5.81) is given by

d0 =
1

16
Eλ2 (k̂1 · k̂3)

[
3− (ns − 1)

]
, (5.82)

where Eλ2 (k̂1 · k̂3) ≡ k̂i3 k̂
j
3ε
λ
ij(k̂1), with ελijε

λ∗
ij = 4. When the consistency relation holds, it also

completely fixes the linear term d1 in (5.81), and physical effects appear at order (k1/k3)2. The
presence of new particles during inflation invalidates the Taylor expansion and leads to non-
analytic scalings in (5.81). Our goal in this section is to study these characteristic signatures of
massive spinning particles.

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Tree-level diagrams contributing to 〈γζζ〉. The solid, dashed, and wavy lines represent the
curvature perturbation ζ, a spinning field σi1···is , and the graviton γij , respectively.

All tree-level diagrams contributing to 〈γζζ〉 are shown in Fig. 5.9. Not all of these diagrams
can lead to a nontrivial deviation from the consistency relation. For the diagrams [(a-c)] the
same symmetry that generates the tensor consistency relation enforces corrections to the power
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spectrum, so that the relation in (5.81) and (5.82) is preserved [135]. Only the diagrams [(d-f)],
which involve a quadratic mixing between the graviton and the intermediate particle, can lead to
such a deviation. These diagrams have the same structure as those in Fig. 5.6, except that one
of the legs in the quadratic mixing is replaced by an external graviton, so that the exchanging
particle must carry the same helicity as the graviton. In the following, we will present results
for the diagrams [(d-f)], mostly focusing on the single-exchange diagram [(d)] to avoid repetition.
The quadratic γ-σ mixing vanishes for spins 0 and 1, so only particles with s ≥ 2 will contribute.

Single-exchange diagram. We first consider the single-exchange diagram (Fig. 5.9d). The
relevant interaction Lagrangian is (cf. (5.23) and (5.29))

LI =
1

a2s

(
− f2

π

Mpl
ρsa

2∂i3···is γ̇
c
i1i2 σ̂i1···is +

1

Λss
π̇c∂i1···isπcσ̂i1···is

)
. (5.83)

Using (3.40) and (3.45), we can write the coefficient of the quadratic mixing term as −ρs
√
r/8H.

The perturbativity condition on the π-σ mixing, ρs < 1, implies that the γ-σ mixing carries an
extra suppression factor of

√
r/8. The bispectrum corresponding to the single-exchange diagram is

〈γλk1
ζk2

ζk3
〉′

∆γ∆3
ζ

= α2

√
r∆−1

ζ × Eλ2 (k̂1 · k̂3)P̂ λs (k̂1 · k̂3)× B(s)(µs, cπ, k1, k2, k3) + (k2 ↔ k3) , (5.84)

where P̂ λs ≡ (1 − x2)−λ/2P λs , with P λs being the associated Legendre polynomial. The function
B(s) is given explicitly in Appendix C.

Size of NG. We quantify the size of the tensor-scalar-scalar bispectrum by

fγζζNL ≡
6

17

∑
λ=±2

〈γλk1
ζk2

ζk3
〉′

P
1/2
γ (k)P

3/2
ζ (k)

, (5.85)

where the bispectrum is evaluated in the equilateral configuration, k1 = k2 = k3 ≡ k, with vectors
maximally aligned with the polarization tensor. This choice of normalization agrees with that
adopted in [136] and implies fγζζNL =

√
r/16 for single-field slow-roll inflation [25]. An estimate of

the size of the non-Gaussianity from the single-exchange diagram is

fγζζNL ∼ g(µs)αs
√
r∆−1

ζ , (5.86)

where g(µs) denotes the appropriate mass suppressions for the analytic and non-analytic parts,
which in the large µs limit scale as17

g(µs) ≡

µ−2
s analytic,

e−πµs non-analytic.
(5.87)

17The exponential suppression of the non-analytic part of the signal applies to particles in the principal series.
For particles belonging to the complementary series, the non-analytic part of the signal would not be exponentially
suppressed.
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Unlike the scalar case, this exponential suppression cannot be reduced to e−πµs/2, since the gravi-
ton propagates with ct = 1. The enhancement of fγζζNL by the large factor ∆−1

ζ means that, in
principle, the signal could be significantly larger than the one predicted from single-field slow-roll
inflation, fγζζNL �

√
r/16, even in the perturbative regime. As in the scalar case, the condition

for radiative stability gives a rather strong constraint on the naturally allowed size of the bispec-
trum associated with the single-exchange diagram—cf. (5.67). Future constraints on fγζζNL from
observations of the 〈BTT 〉 correlator of CMB anisotropies were discussed in [136]. The proposed
CMB Stage IV experiments [137] will have the sensitivity to reach σ(

√
rfγζζNL ) ∼ 0.1, which sug-

gests that the tensor non-Gaussianity due to massive spinning particles might be detectable for
r & 10−6 [g(µs)αs]

−1.18

Shape of NG. In the squeezed limit, 〈γζζ〉 behaves in the following ways:

• The analytic part scales as

lim
k1�k3

〈γλk1
ζk2

ζk3
〉′ ∝ 1

k3
1k

3
3

(
k1

k3

)s
Eλ2 (k̂1 · k̂3)P̂ λs (k̂1 · k̂3) . (5.88)

Notice that the suppression of the analytic part in the squeezed limit increases with spin.
This can be understood by looking at the form of the local vertex after integrating out the
massive particle, which becomes π̇∂i1···isπ∂i3···is γ̇i1i2 . As we will see below, this means that
the analytic part of the signal will be subdominant compared to its non-analytic counterpart
in the soft graviton limit.

• For µs ≥ 0, the squeezed limit of the non-analytic part of the bispectrum scales as

lim
k1�k3

〈γλk1
ζk2

ζk3
〉′ ∝ 1

k3
1k

3
3

(
k1

k3

)3/2

Eλ2 (k̂1 · k̂3)P̂ λs (k̂1 · k̂3) cos

[
µs ln

(
k1

k3

)
+ φ̃s

]
, (5.89)

where the phase φ̃s is a function of µs and cπ (see Appendix C). Coupling to a particle with
spin greater than two induces an extra angular structure. For imaginary µs, we instead have

lim
k1�k3

〈γλk1
ζk2

ζk3
〉′ ∝ 1

k3
1k

3
3

(
k1

k3

)3/2−νs
Eλ2 (k̂1 · k̂3)P̂ λs (k̂1 · k̂3) , (5.90)

with νs ≡ −iµs ∈ [0, 1/2). This gives a non-analytic (k1/k3)3/2−νs correction to the leading
term of the consistency relation (5.81). Since unitarity implies νs < 1/2, the squeezed-limit
bispectrum due to massive spinning particles will be suppressed by at least k1/k3 compared
to the leading term in the tensor consistency relation.19

18Producing a large tensor contribution while keeping the scalar contribution small may require some fine-tuned
cancellation between interactions in the scalar sector. This is because the interaction vertices in (5.83) and (5.60)
arise from the same operators in unitary gauge. Suppressing the effects of the interactions in (5.60) would require
balancing them against additional interactions such as π̇σ0···0.

19A deviation from the leading term of the consistency relation due to spinning particles can arise in a number
of ways: First, the unitarity bound can be evaded if the de Sitter isometries are not fully respected in the quadratic
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Other diagrams. The extensions to the diagrams [(e,f)] are completely analogous to the scalar
case. These diagrams have the advantage that they are less constrained by naturalness consider-
ations.

5.4 Conclusions

In this chapter, we have studied the imprints of massive particles with spin on cosmological
correlators using the framework of the effective field theory of inflation [36]. This generalizes
the work of Arkani-Hamed and Maldacena (AHM) [102] to cases where conformal symmetry is
strongly broken. Let us summarize our results and contrast them with the conclusions of AHM:

• In AHM’s more conservative analysis, the overall size of non-Gaussianity was too small to
be observable even in the most optimistic experimental scenarios. Our results are cautiously
more optimistic. Within the regime of validity of the effective field theory, we can accom-
modate observable non-Gaussianity as long as the masses of the new particles aren’t too far
above the Hubble scale during inflation.

• The key spectroscopic features of massive particles with spin do not rely on conformal
invariance and therefore continue to hold in our analysis. As explained in [102], the masses
and spins of extra particles during inflation can be extracted by measuring the momentum
dependence in the squeezed limit.

• Our systematic effective field theory treatment of massive spinning particles during inflation
allows for a complete characterization of their effects on non-Gaussian cosmological correla-
tors, including their imprints beyond the squeezed limit. We showed that the characteristic
angular dependence resulting from the presence of particles with spin persists even for more
general momentum configurations. Having access to the complete correlation functions will
be valuable for future data analysis.

• We also studied the effects of an explicit breaking of special conformal symmetry by in-
troducing a sound speed cπ for the Goldstone fluctuations. We found that, for cπ < µ−1

s ,
the exponential suppression in the production of the massive particles, e−πµs , is changed
to e−πµs/2. For a given mass, the size of non-Gaussianity is therefore enhanced (or less
suppressed) for small cπ.

• Finally, we showed that particles with spin greater than or equal to two lead to a signature
in the squeezed limit of 〈γζζ〉. This signal may be observable in the 〈BTT 〉 correlator of
CMB anisotropies [136].

action of the spinning field [138, 139]. Another possibility involves partially massless fields with spin greater than
two, since the late-time behavior of these fields does not obey the same restrictions as for the massive case. It
would be interesting to explore these possibilities further [140].
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6. Tensors beyond Einstein gravity

Our primary goal in Chapters 4 and 5 was to look for signatures of UV physics encoded in
correlation functions of scalar perturbations. Another fundamental prediction of inflation, which
is the subject of this chapter, is a stochastic background of primordial tensor modes. If the
inflationary scale is sufficiently high, tensor modes may be sensitive to higher-curvature corrections
from the UV completion of gravity such as string theory. In particular, in [141], it was shown
that higher-curvature corrections give rise to a new structure in the tensor three-point function.
While the analysis of the tensor three-point function is particularly clean and model-insensitive,
it is also hard to verify in observations, since tensor non-Gaussianities are likely to be very small.
In this chapter, we will discuss a potentially larger signature of higher-curvature corrections in
the tensor two-point function.

The tensor power spectrum is characterized by an amplitude (r) and a tilt (nt). In single-field
slow-roll inflation, minimally coupled to Einstein gravity, these two parameters are related by a
consistency condition [142], r=−8nt. We will show that the leading higher-curvature corrections
to the gravitational action lead to a violation of this consistency condition (see also [143]). We
will arrive at this conclusion from two different perspectives: from the inflationary action and the
wavefunction of the universe.

The outline of the chapter is as follows. In §6.1, we introduce a simple action in which higher-
curvature corrections lead to a violation of the tensor consistency condition. We emphasize that
the effect arises at leading order in the breaking of the de Sitter isometries. In §6.2, we confirm
this conclusion with an analysis of the stress tensor two-point function in a perturbed conformal
field theory. Our conclusions are summarized in §6.3, and some technical details are contained in
Appendix D.

6.1 High-scale inflation

In this section, we motivate a scenario in which the inflaton breaks the isometries of de Sitter
space by a minimal amount, and analyze the consequences for the scalar and tensor two-point
functions. We show that a coupling to the Weyl tensor leads to a violation of the tensor consistency
condition.



6.1. High-scale inflation

6.1.1 Weakly broken conformal symmetry

In a realistic inflationary model, the de Sitter symmetries need to be broken. For this purpose, we
introduce the dynamical inflaton field φ. We give it a potential, M2

plH
2 → V (φ), so that the field

acquires a time-dependent expectation value φ = φ̄(t). This provides a natural clock measuring
the time to the end of inflation. The expansion rate is now time dependent, H → H(t), and the
inflationary slow-roll parameter can then be written as ε = ˙̄φ2/2M2

plH
2. The size of ε controls

the breaking of the conformal symmetries of de Sitter, with the symmetries being restored in the
limit ε→ 0.

We will assume that inflaton self-interactions are suppressed by a relatively large mass scale,
Λ2 � ˙̄φ, while gravitational interactions are controlled by a lower scale, ˙̄φ > M2 & H2. The
hierarchy Λ�M is protected because the gravitational coupling to the scalar sector is small.1 In
that case, the leading breaking of the conformal symmetry comes from the inflaton potential, while
higher-derivative interactions, like (∂φ)4/Λ4, will be suppressed2 by powers of ˙̄φ/Λ2 � H2/M2. In
addition, we may have functions of φ coupled to curvature tensors. These couplings were discussed
systematically by Weinberg in [46] and was reviewed in §3.2. Like Weinberg, we consider these
terms to be perturbative corrections to the Einstein-Hilbert action. This ensures that any ghost
instabilities are moved outside the regime of validity of the effective theory. Using the field
equations of the leading terms in the action, all inflaton-curvature couplings can be written in
terms of couplings to the Weyl tensor. We will therefore study the following action

S =

∫
d4x

(
Lφ + Lg

)
, with

Lφ =
√−g

[
−1

2
(∂φ)2 − V (φ)

]
,

Lg =
√−g

M2
pl

2

[
R+ f(φ)

W 2

M2
+ h(φ)

WW̃

M2

]
.

(6.1)

Higher powers of the Weyl tensor will contribute to higher-point correlation functions, and are
not relevant for the considerations of this chapter. Notice that we have factored out the scale
M2

pl in Lg. This is consistent with the structure expected in string effective actions [51], with
M playing the role of the string scale or the Kaluza-Klein scale. Since the Weyl tensor vanishes
for any homogeneous FLRW metric, the background slow-roll solution is still determined by the
Einstein-Hilbert part of Lg.

The effects of the parity-violating term h(φ)WW̃ have been studied in [144–147]. SinceWW̃ is
a total derivative, this term vanishes if h(φ) is a constant. The correction to the tensor two-point

1To see this, consider, for instance, higher-curvature terms of the form ∆L ≡ M2
plR

2/M2. Using the leading-
order equation of motion [46], M2

plRµν = −∂µφ∂νφ−V (φ)gµν , one finds ∆L ⊂ (∂φ)4/Λ4, with Λ ≡
√
MplM �M .

We see that the effective cutoff of the scalar sector is enhanced by the large ratio Mpl/M .
2If the scale controlling inflaton interactions is smaller than ˙̄φ, then the power counting of the EFT changes

significantly [36]. In this limit, inflaton fluctuations can propagate with a non-trivial sound speed, cs � 1. In
Appendix D, we show that a small sound speed induces a much stronger breaking of conformal symmetry than we
wish to consider in this chapter. Conversely, if we demand that the conformal symmetry is only broken by effects
of order ε, then these symmetry-breaking operators have to be highly suppressed.
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function therefore comes from the field-dependent variation of h(φ). This leads to a difference in
the amplitudes of the two chiralities of the tensor modes of order

√
εH2/M2. In this chapter, we

will be interested in the effects of the coupling f(φ)W 2. We will show that the field-dependent
variation3 of f(φ) induces a sound speed for tensor fluctuations and a contribution to the tensor
tilt of order

√
εH2/M2.

Interestingly, the f(φ)W 2 term in (6.1) is similar to a term in the effective action of the original
Starobinsky model [149]. In these models, inflation is driven by a large number of conformally
coupled fields whose stress tensor is induced by the conformal anomaly [150], 〈Tµµ 〉 ⊃ cW 2. The
effective action that reproduces the conformal anomaly [151] includes the Weyl-squared term. It
is not hard to imagine that variations of the model could contain a term of the form f(φ)W 2. For
example, such a term arises if one introduces the dilaton. It would be interesting to make this
connection more precise [152].4

6.1.2 Violation of the consistency condition

We will now compute the scalar and tensor power spectra resulting from the action (6.1). We will
use the standard ADM decomposition of the metric (2.30) and work in comoving gauge, defined
in (2.31). At leading order, the curvature perturbation, ζ, and the tensor mode, γij , decouple and
can be treated separately.

Scalars. We first consider the spectrum of the curvature perturbation ζ. Since WW̃ vanishes
for scalar fluctuations, only f(φ)W 2 contributes. At linear order in ζ, the non-zero components
of the Weyl tensor are5

W 0i
0j =

1

2

(
∂i∂j −

δij
3
∂2
k

)(
εζ

a2
+ ∂−2

l

d

dt
(aεζ̇)

)
≡ Fij ,

W ij
kl = δikFjl + δjlFik − δilFjk − δjkFil ,

(6.2)

and hence W 2 = 8F 2
ij . To eliminate terms with second-order time derivatives in the Weyl tensor,

we use the leading-order equation of motion (2.33). The quadratic action can then be written in
the following form

Lζ
M2

pl

=
a3ε

c2
s

[
ζ̇2 − a−2c2

s(∂iζ)2
]
, (6.3)

3For constant f(φ), the Weyl-squared term, W 2, can be put into the Gauss-Bonnet form, R2
µν ρσ − 4R2

µν +R2,
via the field redefinition gµν → gµν + fM−2

pl (−2Rµν + 5
3
gµνR) [148]. Since the Gauss-Bonnet term is a total

derivative, it only contributes a boundary term. However, the field redefinition also changes the inflaton kinetic
term and the normalization of the Einstein-Hilbert action, so the constant part of the function f(φ) is still physical.

4We thank Juan Maldacena for this suggestion.
5To arrive at (6.2), we have used the linearized solutions to the Einstein constraint equations [25]: δN = ζ̇/H

and ∂iN i = εζ̇ − a−2∂2
i ζ/H.
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where we have introduced the sound speed

1

c2
s

− 1 ≡ 8

3
εf(φ̄)

H2

M2
. (6.4)

If we had kept the couplings of the inflaton to R2 and R2
µν , we would have found additional

corrections to cs of the same order. Since the deviation from cs = 1 is suppressed by a factor
of ε � 1, it will not play a significant role for the rest of this chapter. For simplicity, we will
therefore take cs ≈ 1, and write the power spectrum of ζ in the standard slow-roll form

∆2
ζ ≈

1

8π2

1

ε

H2

M2
pl

, (6.5)

where the right-hand side is evaluated at horizon crossing, k = aH. We conclude that the coupling
to the Weyl tensor has very little effect on the scalar power spectrum, and its main effect is a
correction to the tensors.

Tensors. The linearized equation of motion for tensor fluctuations in Einstein gravity is

γ̈ij + 3Hγ̇ij − a−2∂2
kγij = 0 . (6.6)

We will use this to simplify some of the perturbative corrections to the quadratic action for γ. At
linear order in γ, the components of the Weyl tensor are

W 0i
0j =

1

4

(
γ̈ij +Hγ̇ij + a−2∂2

kγij
)
,

W 0i
jk =

1

2a

(
γ̇ik,j − γ̇ij,k

)
,

W jk
0i =

1

2a

(
γ̇ij,k − γ̇ik,j

)
, (6.7)

W ij
kl =

1

2

{
a−2 (γil,jk + γjk,il − γik,jl − γjl,ik)

+
1

2

[
δil
(
γ̈jk +Hγ̇jk − a−2∂2

mγjk
)

+ δjk
(
γ̈il +Hγ̇il − a−2∂2

mγil
)
− (i↔ j)

]}
.

Substituting this into W 2, we get

Wµν
ρσW

ρσ
µν = 4W 0i

0jW
0j

0i + 4W 0i
jkW

jk
0i +W ij

klW
kl
ij

= 2
(
γ̈ij +Hγ̇ij + a−2∂2

kγij
)2

+ 2a−2∂2
k(γ̇2

ij) . (6.8)

Using (6.6), this can be brought into the form of eq. (21) in [46]. After a few integrations by
parts, we obtain

Lγ
M2

pl

=
a3

8c2
t

[
γ̇2
ij − c2

ta
−2(∂kγij)

2
]
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− 2
a3

M2
f(φ̄)

[
γija

−2∂2
k

(
γ̈ij + 3Hγ̇ij − a−2∂2

l γij
)]

− 2
a

M2

df(φ̄)

dt
γij∂

2
k γ̇ij −

4

M2

dh(φ̄)

dt
εijk0 γil∂j∂

2
mγkl . (6.9)

The second line in (6.9) vanishes after using the equation of motion (6.6) once more. The last
line is proportional to ˙̄φ and hence is suppressed in the slow-roll limit.6 This leaves the first line,
which is the quadratic action for tensors with a non-trivial sound speed

1

c2
t

− 1 ≡ 8f(φ̄)
H2

M2
. (6.10)

In [153], it was shown that a tensor sound speed can always be set to unity by a disformal
transformation [154], followed by a Weyl rescaling to take the action to Einstein frame. These
two metric transformations trade the non-trivial tensor sound speed for a scalar sound speed, c̃s,
and a modified Hubble rate, H̃(t̃). In the new frame, the tensor spectrum takes the standard
form, ∆2

γ ∝ H̃2/M2
pl, but the scalar spectrum is modified. Of course, predictions for observables

are frame-independent [153, 155], so the choice of frame is simply a matter of convenience. In
particular, the violation of the consistency condition that we will find is a frame-independent
conclusion. We leave the details to Appendix D, but one point is worth emphasizing here. The
violation of the consistency condition in the new frame is not the same as that found in P (X)-
theories [156]. Rather, it is the time derivative of c̃s that modifies the tensor-to-scalar ratio.

The tensor sound speed leads to a simple rescaling of the standard tensor power spectrum.
Summing over the two graviton polarizations, we obtain (cf. (3.45))

∆2
γ =

2

π2

H2

M2
pl

1

ct
, (6.11)

where the right-hand side is evaluated at ctk = aH. If the inflaton-Weyl coupling is a small
correction to the leading gravitational action—as we are assuming in order to avoid propagating
ghost degrees of freedom—then ct can’t deviate much from unity. The main effect is not the size
of ct, but its time dependence.7 In particular, the tensor-to-scalar ratio approximately still takes
the form predicted by standard slow-roll inflation (cf. (2.54))

r ≡
∆2
γ

∆2
ζ

=
16ε

ct
≈ 16ε . (6.12)

However, the tensor tilt can still receive an important correction due to the time dependence of ct.
Crucially, the evolution of ct(t) is coupled to that of φ̄(t). This will induce a tilt of the tensor

6The last term in (6.9), although slow-roll suppressed, is phenomenologically interesting because it leads to
chiral gravitational waves [144–147]. Incidentally, the size of the chiral splitting,

√
εH2/M2, is of the same order

as the correction to the tensor tilt that we will get from the rest of the action.
7The fact that ct is never allowed to deviate too far from unity puts a constraint on the time dependence of

ct, and hence on the function f(φ) in (6.10).
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spectrum proportional to ˙̄φ ∝ √ε. To see this, let us define a slow-variation parameter for the
tensor sound speed, εt, and express it in terms of the slow-roll parameter ε:

εt ≡
ċt
Hct

= ∓4c2
t b
√

2ε
H2

M2
+ (1− c2

t )ε , (6.13)

where b ≡Mplf
′ is a dimensionless constant. Taking the scale of variation of f(φ) to be of order Λ,

we get b ∼ Mpl/Λ, which may be large if Λ � Mpl. The fractional change of (6.11) per Hubble
time then determines the tensor tilt

nt ≡
d ln ∆2

γ

d ln k
= −2ε− εt ≈ −2ε ± 4b

√
2ε
H2

M2
, (6.14)

where we have ignored a small shift in the coefficient of the standard contribution, −2ε. Notice
that the correction has undetermined sign, so it seems to allow a blue tilt for the tensor spectrum,
even without a violation of the NEC.8 The second term in (6.14) leads to a modification of the
tensor consistency condition

−8nt
r

= 1∓ 4b√
2ε

H2

M2
. (6.15)

We see that the violation of the relation nt = −r/8 is enhanced for small ε (and large b), but
suppressed by H2/M2. In the stringy regime of inflation, H2/M2 can be of order one9 and our
proposed modification of the tensor spectrum could be a significant effect.

Testing the tensor consistency condition observationally is challenging (see [158, 159] for a
recent discussion). Naturally, the observational prospects improve for large tensor-to-scalar ratio
and if a large range of scales can be accessed (maybe with futuristic direct detection experi-
ments [160–162]). A blue tensor spectrum would be easier to detect.

6.2 Dual interpretation

The freeze-out of quantum fluctuations during inflation allows us to recast cosmological expecta-
tion values in terms of the ‘wavefunction of the universe’, Ψ[ζ, γ]. This wavefunction computes
late-time expectation values of superhorizon fluctuations. The isometries of de Sitter space imply
that the coefficients of the wavefunction can be interpreted as correlation functions of the stress
tensor in a putative conformal field theory [25, 163]. The small breaking of conformal symmetry
during inflation is modelled as a small deformation of the CFT, which can be treated perturba-
tively [164]. In this section, we will show that this alternative point of view reproduces the results
of the previous section.

8In the Einstein frame, with c̃t = 1, a blue tilt still corresponds to a violation of the NEC, ˙̃H > 0, but without
inducing the gradient instability that this usually implies [53, 153].

9WhenM is the string scale, the ratioH/M is constrained by the fact that we require the Hagedorn temperature
to remain above the de Sitter temperature in order to avoid a phase transition of the system [157].
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6.2.1 Wavefunction of the universe

The wavefunction of the universe can be computed by a saddle-point approximation, Ψ ≈ eiScl ,
where the action Scl is evaluated for a classical solution with certain Dirichlet boundary condi-
tions [25]. The result takes the following form

Ψ = eiSdiveW0[ζ,γ] , with W0 =
1

2

∫
d3k

(
ζk ζ−k 〈TkT−k〉′ +

∑
s

γskγ
s
−k 〈T skT s−k〉′

)
. (6.16)

The local divergent piece, eiSdiv , is a pure phase factor, and thus drops out of expectation values.
The coefficient functions 〈TkT−k〉′ and 〈T skT s−k〉′ may be interpreted as the correlation functions
of the trace and the trace-free part of the stress tensor Tij of a dual field theory [25, 163, 165].10

The power spectra of ζ and γ are then computed by a simple Gaussian integration

〈ζk ζ−k〉′ =

∫
Dζ ζk ζ−k |Ψ[ζ]|2 = − 1

2Re〈TkT−k〉′
, (6.17)

〈γskγs−k〉′ =

∫
Dγs γskγs−k |Ψ[γs]|2 = − 1

2Re〈T skT s−k〉′
. (6.18)

The diffeomorphism invariance of gravitational theories implies that the generators of coordinate
transformations act as constraints on the wavefunction [166]. These constraint equations are the
conformal Ward identities of the coefficient functions 〈TkT−k〉′ and 〈T skT s−k〉′. In a CFT, these
constraints imply

〈TkT−k〉′ = 0 , 〈T skT s−k〉′ = cTk
3 , (6.19)

where cT is the central charge. We see that there are no ζ-fluctuations and the gravitational
sector consists only of gravitons. In terms of bulk quantities, the central charge is

cT = −1

4

M2
pl

H2
. (6.20)

In a quasi-de Sitter background, with finite slow-roll parameter ε, some of the conformal sym-
metries are softly broken (see Appendix D). The effects of this weak symmetry breaking can be
treated perturbatively.

6.2.2 Conformal perturbation theory

A suitable framework for analyzing field theories that are almost conformal is conformal per-
turbation theory [164]. We now wish to show that such an analysis reproduces the results of
§6.1.

10The CFT that describes the de Sitter cosmology is not unitary and has some unusual features, mostly related
to the spectrum of the dimensions of operators. Our analysis will only use the mapping of the symmetries between
the bulk and the boundary, and does not rely on a deeper meaning of dS/CFT.
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6.2. Dual interpretation

We deform the CFT by a local primary operator [167]11

S = SCFT + β

∫
d3zO(z) , (6.21)

where β is a small coupling.12 We take the perturbing operator to be marginally relevant, so its
dimension is ∆ ≡ 3 − λ, with 0 < λ � 1. The small expansion parameter dual to

√
ε will be a

combination of β and λ. For convenience, we normalize the two-point function of O by the central
charge

〈OkO−k〉′ = cT k
3−2λ . (6.22)

For small β, the two-point function of the stress tensor can be computed perturbatively as

〈TijTkl〉 =
〈
TijTkl e

−β
∫

d3zO〉
0

=
〈
TijTkl

〉
0
− β

∫
d3z

〈
TijTklO(z)

〉
0

+
β2

2

∫
d3z d3w

〈
TijTklO(z)O(w)

〉
0

+ · · · , (6.23)

where the expectation values 〈TijTkl . . .O〉0 are computed using the CFT operator algebra, and
in general are constrained by Ward identities. We will use the following trace Ward identities
obeyed by the stress tensor

〈
T ii(x)Tkl(y)O(z)

〉
0

= λ δ(x− z)
〈
Tkl(y)O(z)

〉
0

= 0 , (6.24)

〈
T ii(x)Tkl(y)O(z)O(w)

〉
0

= λ
[
δ(x− z)

〈
Tkl(y)O(z)O(w)

〉
0

+ (z↔ w)
]
, (6.25)

〈
T ii(x)T kk(y)O(z)O(w)

〉
0

= λ2
[
δ(x− z) δ(y −w)

〈
O(z)O(w)

〉
0

+ (z↔ w)
]
, (6.26)

where, in the last identity, we have dropped an irrelevant contact term, with support when x = y.
In a reparametrization invariant theory, ∇i〈Tij〉 = 0, we furthermore have ki〈Tij(k)Tkl(−k)〉′ = 0.
Imposing this constraint implies that 〈TijTkl〉 has the following form

〈Tij,kTkl,−k〉′ =
1

4

[
δ⊥ijδ

⊥
kl〈TkT−k〉′ +

(
δ⊥ikδ

⊥
jl + δ⊥il δ

⊥
jk − δ⊥ijδ⊥kl

)
〈T skT s−k〉′

]
, (6.27)

where δ⊥ij ≡ δij − kikj/k2.

In general, 〈T skT s−k〉′ and 〈TkT−k〉′ are arbitrary functions of k, but in a theory with approxi-

11Of course, CFTs are characterized by a set of correlation functions rather than by an action. Here, SCFT is
simply a metaphoric way of characterizing the content of the original CFT. In practice, calculations in conformal
perturbation theory are always performed at the level of correlation functions.

12In conformal perturbation theory, one usually tunes the perturbation so that the beta function vanishes and
the theory flows to a new conformal fixed point [164]. Since we are mainly interested in the parametric scaling of the
corrections, we will not perform this additional step and thus we do not worry about the particular renormalization
group flow.
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mate conformal symmetry, we expect them to be approximately scale invariant. The breaking of
scale invariance can be studied in powers of β:

• First, let us look at the two-point function of the trace, 〈TkT−k〉. It follows from the trace
Ward identity (6.24) that this vanishes at order β. The scalar two-point function is therefore
only generated at order β2. Using (6.25) and (6.26), we find

〈TkT−k〉′ = β2λ2〈OkO−k〉′ = cT β
2λ2 k3−2λ . (6.28)

The tensor-to-scalar ratio therefore is

r ≡ 〈TkT−k〉
′

〈T skT s−k〉′
= β2λ2 . (6.29)

Comparing this to the bulk result, r = 16ε, we identify the duality map βλ↔ ±4
√
ε.

• Next, we consider the correction to 〈T skT s−k〉′. At O(β), we require the integral of the
three-point function 〈T sT sO〉0. In position space, we have

〈
Tij(x)Tkl(y)O(z)

〉′
0

= cT fTTO Tijkl(x− y,y − z, z− x) , (6.30)

where an explicit expression for the tensor structure Tij kl can be found in the classic work
of Osborn and Petkou [168]—cf. eqs. (3.3)–(3.6). We have identified cT fTTO with the
coefficient a of eq. (3.4) in [168]. Integrating (6.30) over z, and transforming to momentum
space, we get 〈

T skT
s
−kO(0)

〉′
0

= cT α(λ)fTTO k3−λ , (6.31)

where α(λ) is a numerical coefficient. We have confirmed by explicit integration that α(λ)

is finite, even in the limit λ → 0.13 This implies that Tij doesn’t need to be renormalized,
and also means that perturbing the CFT by an exactly marginal operator simply shifts the
coefficient of the stress tensor two-point function. Substituting (6.31) into (6.23), we get

〈T skT s−k〉′ = cTk
3
(
1− nt ln k + · · ·

)
, (6.32)

where we have dropped a small O(β) shift of the amplitude, and defined

nt ≡ −βλα(λ) fTTO . (6.33)

This reproduces the O(
√
ε) contribution in the bulk result (6.14), if we make the following

identification: α(λ)fTTO ↔
√

2bH2/M2. The O(β2) term in the 〈T skT s−k〉 correlator con-
tains the standard tensor tilt proportional to ε. This contribution depends on the details of
the CFT and its various OPE coefficients.

13We also found that α(λ) vanishes for a two-dimensional CFT. This is to be expected from the c-theorem in
two dimensions. It is also consistent with our bulk interpretation, since the Weyl tensor vanishes identically in
three dimensions.
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6.3. Conclusions

The main result of this section was the confirmation that a tensor tilt is generated at O(β),
while the tensor-to-scalar ratio is only non-zero at O(β2). The tensor tilt comes from a specific
three-point function, whose size is set by fTTO in the boundary CFT, and by H2/M2 in the bulk
action. The standard result of Einstein gravity is recovered for fTTO → 0, or M →∞.

6.3 Conclusions

The weak breaking of conformal symmetry during inflation can be used to constrain the predictions
for cosmological correlators—e.g. [102, 141, 169]. This is especially relevant in inflationary models
in which the scale suppressing higher-curvature corrections is close to the Hubble scale. In this
chapter, we have studied the coupling of the inflaton field to higher-curvature tensors in models
with a minimal breaking of conformal symmetry. We showed that the most general correction to
the tensor two-point function is captured by a coupling to the square of the Weyl tensor. This
interaction modifies the consistency condition of single-field slow-roll inflation

− 8nt
r

= 1∓ 4b√
2ε

H2

M2
. (6.34)

The correction can have either sign, and may dominate over the prediction from Einstein gravity
if H/M is not too small. We consider this an interesting signature of higher-curvature corrections
during inflation. We have left a few open questions for future work:

• What is the precise connection between our effective action (6.1) and the original Starobinsky
model [149]? Both models rely on softly broken conformal invariance, and the effective
actions even contain some terms of the same functional form. Making this relationship
more precise would be very interesting [152].

• How naturally does our scenario arise in explicit string compactifications? Under which
circumstances is a weakly broken conformal symmetry maintained in the four-dimensional
effective theory? Is there a relation to conformal supergravity [170–172]?

• If a violation of the tensor consistency condition were to be observed, how would we convince
ourselves that it comes from higher-curvature effects? In particular, it is well-known that a
violation of r = −8nt can also arise from modifications of the scalar spectrum in models with
a non-trivial scalar sound speed [156] and/or isocurvature fluctuations [173]. However, in
that case we also expect strong interactions in the scalar sector. In contrast, in our proposal
we do not predict a strong counterpart in scalar non-Gaussianity. A positive test of our
scenario would be looking for correlated signatures of a low string scale, such as angular
dependence in the scalar bispectrum [102] and specific forms of tensor non-Gaussianity [141].

• Can we get blue tensors? Our analysis determines neither the sign of the coupling to the
Weyl tensor, nor its time dependence. While the sign may be constrained by requiring
tensors to propagate subluminally, we see no a priori way to constrain the rate of change of
the coupling. At the moment, blue tensors therefore seem to be a legitimate possibility.
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7. Detecting primordial tensors

A distinguished feature of inflationary perturbations is the fact that they are correlated over
apparently acausal scales. For scalar perturbations, this leads to a distinctive cross-correlation in
the CMB between temperature perturbations and E-mode polarization [174]. The detection of
superhorizon TE correlations by WMAP [175] is arguably the most convincing piece of evidence
that the observed density perturbations were generated during inflation [34, 176]. In [177], it was
pointed out that an analogous causality test can be performed for inflationary tensor modes. These
leave a distinct swirl pattern (B-mode) in the polarization of the cosmic microwave background.
In this chapter, we revisit and refine this proposal.

Figure 7.1: Local B-mode correlation function predicted by inflation for r = 0.13. The dashed and solid
parts of the curve represent subhorizon and superhorizon scales, respectively.

The conventional E- and B-modes [178, 179] are ill-suited to address questions of causality,
since they are defined non-locally in terms of the Stokes parameters of the radiation field. We will
therefore work with a local alternative [180] to the standard E- and B-modes which we will denote
by E and B. In the flat-sky limit, we have E = ∇2E and B = ∇2B, where∇2 is the two-dimensional
Laplacian in the plane orthogonal to the line-of-sight. Figure 7.1 shows the inflationary prediction
for the B-mode correlation function in real space. Unlike the correlation functions sourced by
scalar fluctuations, the signal does not have a peak at the acoustic scale (2θa ∼ 1.2◦). Instead the
tensor-induced signal peaks around the horizon scale (θc ≡ 2θH ∼ 2.3◦) corresponding to the time



7.1. Superhorizon B-modes

when the inflationary gravitational waves re-entered the horizon and started oscillating. Causality
forbids superhorizon correlations above the horizon scale for any post-inflationary mechanism for
gravitational wave production [176, 181], such as phase transitions [182] or defects [183, 184]. A
measurement of B-mode correlations above 2 degrees therefore constitutes an important test for
the inflationary origin of the signal.

This chapter is organized as follows. In §7.1, we review the concept of the local B-modes
and present the superhorizon B-mode signal predicted by inflation. In §7.2, we examine all
potential sources of noise. We show that subhorizon modes can contaminate the superhorizon
signal, especially if smoothing is applied to the data to suppress small-scale noise. In §7.4, we
introduce an estimator of the superhorizon part of the signal and define the signal-to-noise ratio.
We also present a measure for the amount of contamination from spurious subhorizon modes
and describe ways to minimize their effects. In §7.5, we provide forecasts for the detectability of
the superhorizon nature of inflationary B-modes for both current and future CMB polarization
experiments. Our conclusions are stated in §7.6, and additional reference material is contained in
Appendix E.

7.1 Superhorizon B-modes

We begin with a brief review of the superhorizon signature of inflationary B-modes [177].

Local B-modes. The polarization of the CMB is characterized by a symmetric, traceless rank-2
tensor defined in the plane perpendicular to the line-of-sight n̂:

Pij = Uσ
(1)
ij +Qσ

(3)
ij , (7.1)

where σ(I)
ij denotes the Pauli matrices. Since the Stokes parameters Q and U transform non-

trivially under rotations of the coordinates, it is more convenient to work with two invariants
that can be constructed from the polarization tensor: a scalar E ≡ ∂i∂jPij and a pseudo-scalar
B ≡ εkj∂k∂iPij , corresponding to the gradient and curl parts of the polarization tensor, respec-
tively. In the flat-sky limit, these E- and B-modes are related to the Stokes parameters and the
ordinary E- and B-modes by [185]

E(x) = ∇2E(x) = (∂2
x − ∂2

y)Q(x) + 2∂x∂yU(x) , (7.2)

B(x) = ∇2B(x) = (∂2
x − ∂2

y)U(x)− 2∂x∂yQ(x) . (7.3)

By construction, E and B are local functions of the Stokes parameters, whereas E and B are
defined non-locally in terms of Q and U . Being just a linear transformation of the conventional
B-modes, the local B-modes are also a signature of tensor (and vector) modes in the initial
conditions.

Any scalar field on the celestial sphere can be expanded in terms of spherical harmonics, so
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we write

X(n̂) ≡
∑
`m

aX,`mY`m(n̂) , (7.4)

where X = {T, E ,B}. Assuming statistical isotropy, the two-point statistics of the multipole
moments are described in terms of the angular power spectrum:

〈aX,`ma∗X,`′m′〉 = CX` δ``′δmm′ , (7.5)

where the angle brackets denote the ensemble average. The late-time power spectrum, CX` ,
can be related to quantum zero-point fluctuations in both the spacetime metric and the matter
fields during inflation [186]. Given a measurement of the harmonic coefficients aX,`m, we define
estimators of the angular power spectra as

ĈX` ≡
1

2`+ 1

∑
m

aX,`ma
∗
X,`m . (7.6)

The power spectrum of the local B-modes is related to that of the conventional B-modes by [177,
187]

CB` = n2
`C

B
` , (7.7)

where n` ≡
√

(`+ 2)!/(`− 2)! . A harmonic transformation gives the corresponding correlation
function in real space:

CB(θ) =
∑
`

2`+ 1

4π
CB` P`(cos θ) , (7.8)

where θ is the angle between pairs of line-of-sight directions n̂1 and n̂2, i.e. cos θ ≡ n̂1 · n̂2. The
relation between (7.8) and the correlation function of the conventional B-modes is

CB(θ) = ∇2(∇2 + 2)CB(θ) . (7.9)

Again, the non-local nature of the ordinary B-modes is manifest: (7.9) implies that CB vanishes
for any CB living in the kernel of ∇2(∇2 + 2), even if CB is non-zero.

Superhorizon signal. Having defined the local B-modes, we can analyze causality constraints
on their correlation functions. The superhorizon part of the two-point correlation function is
identified most directly in real space:1

SB(θ) ≡ Θ(θ − θc)CB(θ) , (7.10)

where Θ is the Heaviside step function and θc ' 2.3◦ is (twice) the angle subtended by the particle

1This is the unique definition of the superhorizon signal, defined in reference to the horizon scale at recombina-
tion. In processing the data, it is possible to introduce a smoother filter to this definition, though not mandatory
since there are effectively no ringing artifacts when the signal (7.10) is transformed to harmonic space.
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7.1. Superhorizon B-modes

Figure 7.2: The superhorizon B-mode power spectrum (solid) and the full B-mode power spectrum (dashed)
for r = 0.13 (without lensing).

horizon at recombination. The corresponding signal in harmonic space is

SB` = 2π

∫ 1

−1
d cos θ SB(θ)P`(cos θ)

=
∑
`′

M``′C
B
`′ , (7.11)

where the mode-coupling matrix M``′ is

M``′ ≡
2`′ + 1

2

∫ xc

−1
P`(x)P`′(x)dx︸ ︷︷ ︸
≡ I``′

, (7.12)

with xc ≡ cos θc. We label the complementary subhorizon signal as (SB` )† ≡ CB` − SB` . The
mode-coupling integrals I``′ can be calculated analytically. The off-diagonal terms are given by

I``′ =
(`− `′)xcP`P`′ + `′P`P`′−1 − `P`−1P`′

`(`+ 1)− `′(`′ + 1)
, (7.13)

where the Legendre polynomials are evaluated at xc, while the diagonal terms are determined by
the recursion relation

I`` =
2`− 1

2`+ 1
I`−1,`−1 +

2`− 1

2`+ 1

`+ 1

`
I`+1,`−1 −

`− 1

`
I`,`−2 . (7.14)

We can think of the kernel (7.12) as an operator projecting the power spectrum onto its super-
horizon subspace. In Fig. 7.2, we show the superhorizon part of the power spectrum predicted by
inflation. We see that the features of the real space correlation function above θc are encoded in
the oscillations of the power spectrum, where the frequency of the oscillations corresponds to the
horizon size at recombination.
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θb [′] fsky [%] ∆P,eff [µK′] sP,eff [µK′]

BICEP2 29 2.4 5.2 33.6

Keck Array 29 2.4 2.2 14.2

PolarBeaR-2 4 20 10.7 23.9

Simons Array 3 20 6.3 14.1

SPTPol 1 6 4.4 17.8

LiteBIRD 16 70 1.8 2.2

COrE 1 70 1.8 2.2

Table 7.1: Instrumental specifications for current and upcoming CMB polarization experiments [190–196].

7.2 Noise and leakage

Next, we describe the sources of noise and leakage that we will take into account in our analysis.

Instrumental noise. We represent instrumental noise by an uncorrelated Gaussian random
field. Assuming white noise in the Stokes parameters, the noise power spectrum for B-modes can
be expressed as [188]

NB
` = ∆2

P e
`(`+1)/`2b , (7.15)

where ∆P is the noise level of polarization sensitive detectors. The exponential factor in (7.15)
represents the effect of deconvolving the Gaussian beam effect from the signal, with `b ≡

√
8 ln 2/θb

and θb the full width at half maximum of the beam. The noise level is determined by

∆2
P =

2NET2Ωsky

NdettobsY
≡ s2

P fsky , (7.16)

where NET is the noise equivalent temperature of detectors, Ndet denotes the number of detectors,
tobs is the time of observation, Y characterizes the detector yield, and Ωsky = 4πfsky is the observed
sky area.2 We will find it useful to consider the effective sensitivity of a full-sky experiment, sP ,
and rescale it by the observed sky fraction, fsky. In an experiment with multiple frequency
channels, a heuristic measure of the effective noise level is

∆2
P,eff =

[∑
i

1

∆2
P,i

]−1

, (7.17)

where ∆P,i denotes the noise level of channel i. The instrumental specifications and the effective
noise levels for a selection of current and upcoming B-mode experiments are listed in Table 7.1
and in more detail in Appendix E.

2The current generation of experiments achieves NET = 350µK
√
s and Y = 0.25, with Ndet ∼ O(103) [189].

In [137] ground-based experiments have been classified by the number of detectors as Stage-II, Stage-III and
Stage-IV for Ndet ∼ 103, 104 and 105, respectively.
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7.2. Noise and leakage

As can be seen from (7.3), a measurement of B-modes effectively involves taking derivatives of
both the signal and the noise. This has the benefit that the observables become local quantities,
but at the same time the noise spectrum for B-modes acquires a factor of n2

` ∼ `4 relative to the
noise for a B-mode measurement. White noise spectra for the Stokes parameters then translate
into a blue spectrum for B-modes, NB` ∼ `4, implying a large contribution from small-scale noise.
Because of the drastic difference in the properties of the noise, it is important to analyze the
detectability of B-modes separately, adopting a different strategy from measurements of B-modes
if necessary.

In order to compensate for the blue noise spectrum, we will apply a low-pass filtering to both
the signal and the noise:3

CB` ≡ f`CB` , NB` ≡ f`NB` , (7.18)

where f` denotes a filtering function. In real space, the procedure (7.18) corresponds to a convo-
lution with a certain window function

f(θ, θ′) =
∑
`

2`+ 1

2
f`P`(cos θ)P`(cos θ′) . (7.19)

Depending on the experimental strategy, different window functions may be more suitable. For
our purposes, there are several conditions that the filtering function f` needs to satisfy: (i) it needs
to be sufficiently smooth to avoid the Gibbs phenomenon, (ii) it should decay early enough to
suppress the small-scale noise efficiently, and (iii) it should retain the shape of the power spectrum
up to ` ∼ 100 in order not to cause any distortion of the superhorizon features. A simple choice
which satisfies the above requirements is a Gaussian filtering function:

f` = e−`(`+1)/`2s , (7.20)

where `s defines the smoothing scale. To satisfy the second and third conditions, we choose
100 < `s < `b, in which case the first condition is automatically satisfied.

Leakage. The filtering of the B-mode spectrum is a necessary evil. An inevitable consequence of
the filtering process is a transfer of part of the subhorizon signal to superhorizon scales (and vice
versa). For lack of a better term, we will call this contamination leakage. Since the spurious modes
due to leakage can confuse the detection of the true superhorizon signal, it will be important to
treat them carefully in our analysis.

In Fig. 7.3, we show the filtered subhorizon and superhorizon B-mode correlation functions.
As we can see, there is a non-negligible amount of leakage around θ ∼ 2◦. On the other hand,
the positive peak of the superhorizon signal at θ ∼ 3◦ is relatively clean and still serves as an
unambiguous test of the inflationary superhorizon spectrum. When we want to make sure that we
do not suffer from a large amount of leakage, we therefore focus on correlations with θ & θ0 ≡ 2.6◦.

3Calligraphic font will from now on denote filtered quantities.
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Figure 7.3: Local B-mode correlation function for r = 0.13 using the Gaussian filter (7.20) with `s = 200.
The solid and dashed lines correspond to the superhorizon and subhorizon signals, respectively.

Moreover, at fixed θ, the leakage can be reduced by working with larger values of `s. However,
making `s too large will reduce the signal-to-noise of the signal we wish to measure. In §7.5, we
will discuss the optimal balance between minimal leakage and maximal signal-to-noise.

7.3 Foregrounds and lensing

Our ability to detect the primordial B-mode signal depends crucially on how well we can separate
the signal from foreground contamination. The two major sources of foregrounds in the microwave
range are polarized emissions from synchrotron and thermal dust. Their distinct frequency de-
pendences, in principle, allow them to be distinguished from the primary CMB signal.

Synchrotron. Synchrotron radiation arises from the acceleration of relativistic cosmic-ray elec-
trons in the magnetic field of the Galaxy. This is the dominant contribution to the polarized
foreground emission below 70 GHz.

If the electrons have a power law distribution of energies, N(E) ∝ E−p, then the antenna
temperature4 of the signal is predicted to have a power-law dependence on frequency, T (ν) ∝ νβs ,
with βs = −1

2(p + 3). This simple ansatz for the frequency spectrum fits observations rather
well with βs ' −2.9 [197]. The variation of the spectral index across the sky is of order 10%.
The angular spectrum of the synchrotron emission is found to obey an approximate power law,
F s,B` ∝ `αs , with αs ' −2.6 [198].

Combining the above facts, we are led to the following ansatz for the synchrotron B-mode

4Antenna temperature units are defined in reference to the Rayleigh-Jeans law, whereas thermodynamic tem-
perature units are defined as the blackbody temperature obeying Planck’s law. We calibrate quantities in thermo-
dynamic temperature units, so that the primary CMB spectrum is frequency-independent.
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power spectrum in thermodynamic temperature units [199]:

F s,B` (ν) = As
(
`

`0

)αs
hs(ν, ν0) , (7.21)

where As is the amplitude of synchrotron emission defined at a reference frequency ν0 and a
reference scale `0. The function

hs(ν, ν ′) ≡
( ν
ν ′

)2βs
(
f(ν)

f(ν ′)

)2

(7.22)

encapsulates the spectral dependence, where the factor f(ν) accounts for the conversion from
antenna temperature to thermodynamic temperature [200]:

f(ν) ≡ (ex − 1)2

x2ex
, x ≡ hν

kTcmb
≈ ν

56.8 GHz
, (7.23)

where Tcmb = 2.725 K is the CMB blackbody temperature [33].

Thermal dust. Thermal emission from interstellar dust grains aligned with the Galactic mag-
netic field produces the dominant polarized foreground above 70 GHz.

The frequency dependence of the dust intensity takes the form of a modified blackbody,
Iν ∝ νβdBν(Td), where the Planck spectrum Bν(Td) is determined by the observed dust tem-
perature, Td ' 19.7 K [201]. The mean spectral index is found to be βd ' 1.5 at microwave
frequencies [197], with a variation of about 1% across the sky (much less than the variation of the
synchrotron spectral index). The angular spectrum again satisfies a power law, F d,B` ∝ `αd , with
αd ' −2.3 [202]. The dust B-mode power spectrum can therefore be modelled as [199]

F d,B` (ν) = Ad
(
`

`0

)αd
hd(ν, ν0) , (7.24)

where Ad is the amplitude of the polarized dust emission defined at a reference frequency ν0 and
a reference scale `0. The spectral function for dust is5

hd(ν, ν ′) ≡
( ν
ν ′

)2βd
(
Bν(Td)

Bν′(Td)

g(ν)

g(ν ′)

)2

, (7.25)

where g(ν) is the conversion factor from intensity to thermodynamic temperature units [200],

g(ν) ≡ f(ν)

ν2
. (7.26)

The amplitude in (7.24) can be written as Ad = p2Id, where Id is the unpolarized dust intensity
and p is the polarization fraction. Both p and Id can vary significantly across the sky.6 The

5Eq. (7.25) corrects a typo in [203, 204].
6The latest Planck measurements suggest that the mean polarization fractions over most parts of the sky
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precise amount of foreground contamination, therefore, depends on the region of the sky under
consideration. In §7.5, we will consider a few different choices for the amplitude of the dust
polarization, and allow for the relatively large uncertainties that still exist.

Foreground residuals. Multi-frequency observations allow some degree of foreground cleaning
based on the distinct frequency dependence of the foregrounds. Detailed algorithms for foreground
cleaning are discussed in [207]. Following [199, 204], we will assume that the foregrounds can
be subtracted by the template cleaning method (e.g. [208, 209]), and simply parameterize the
foreground residuals by rescaling the foreground amplitudes by two scale-independent factors,
εx ∈ [0, 1], with x = {s, d} denoting synchrotron and dust, respectively. We propagate the
noise of the template map into the foreground residuals. After cleaning, the residual foreground
spectrum, then, is [203, 204]

RB` ≡
∑
x

[
εxF

x,B
` + Nx,B` hx(ν, νxref)

]
, (7.27)

where νxref is the reference frequency used as the template and Nx,B` is the noise level of the
template map for x.

We treat the foreground residuals as additional sources of uncorrelated noise (see Appendix E
for a discussion). For an experiment with multiple frequency channels, we seek to find a linear
combination of the maps with weightings chosen in such a way to minimize the variance of the
power spectrum [200]. In Appendix E, we derive the optimal weighting scheme and show that the
effective noise of the combined map is [199]

NB
eff,` =

[∑
i

1

NB
i,` +RBi,`

]−1

, (7.28)

where the subscript i denotes the value at frequency νi. Appendix E also explains that any
correlations between the foreground residuals at different frequencies tend to reduce the effective
noise level, so working with (7.28) is a conservative choice.

Lensing. Even in the absence of primordial B-modes, a curl component of CMB polarization
is generated by the lensing of primordial E-modes [210, 211]. This effect has to be considered an
additional source of noise for the signal we are trying to measure.

On large angular scales, the lensing B-modes act like white noise with an effective amplitude
of 4.4µK′. In the low-noise regime (. 5µK′), the lensing effect provides a significant limitation
to a measurement of the primordial signal, especially for low values of r. Since lensing does not
induce any spectral distortions to the primary CMB, multi-frequency observations do not help to
distinguish between these two signals. However, several methods have been proposed to reduce

(including highly polarized regions) fall in the range of 3 to 14% [205]. The dust intensity is constrained by the
Finkbeiner-Davis-Schlegel (FDS) dust map [206].
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the lensing noise statistically [212, 213] (see [214] for a comprehensive discussion). The most
promising delensing procedure involves reconstructing the lensing potential from measurements
of small-scale CMB polarization, which is subsequently used to remove the lensing contribution to
the large-scale B-mode signal. This requires CMB experiments with high sensitivity and resolution
(small beam size). Details of this approach to delensing can be found e.g. in [215].

In the absence of sky cuts, foregrounds, and instrumental systematics, a detection of the
primordial tensor amplitude down to r ∼ 10−6, in principle, is achievable [216]. Nevertheless, ex-
perimental limitations and the presence of foregrounds practically limit an accurate quantification
of the residual lensing, resulting in a possible bias in the estimator of the lensing potential. To
avoid these practical uncertainties, we assume that the lensing estimator is unbiased, or that any
significant biases are known and can be eliminated. Thus, the residual lensing contributes only
to the variance, and does not bias the signal. The issue of potential lensing bias is the subject of
many investigations in the literature, e.g. [217–223], but is beyond the scope of the present work.

We consider delensing in a heuristic way by multiplying the amplitude of the lensing B-modes
LB` by a scale-independent delensing fraction,

LB` → εLL
B
` , (7.29)

where εL ∈ [0, 1], and treat it as an additional noise. On large scales, both the residual spectrum
and the original spectrum are approximately white noise (see e.g. Fig. 1 in [224]). Therefore, the
ansatz (7.29) is a sufficiently good approximation to more sophisticated expressions for the lensing
residuals found in Appendix A of [215]. The residual lensing power spectrum is then incorporated
into the effective noise as

NB
eff,` =

[∑
i

1

NB
i,` +RBi,`

]−1

+ εLL
B
` . (7.30)

Further justification for this formula is given in Appendix E.

7.4 Methodology

We now describe our method for quantifying the detectability of the superhorizon B-mode signal.
We first construct an estimator of the signal and then use it to define the signal-to-noise ratio of
the measurement. We will explain that leakage introduces a bias in the estimator and describe
a simple debiasing procedure. The methodology in this section and the next will be formulated
mostly in real space, but see Appendix E for an equivalent treatment in harmonic space.

Superhorizon estimator. We would like to define an estimator of the superhorizon sig-
nal (7.10), given an estimator Ĉ` for the total B-mode power spectrum after filtering, which
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satisfies 〈Ĉ`〉 = CB` ≡ f`CB` . The associated covariance matrix is7

C [Ĉ`, Ĉ`′ ] =
2

(2`+ 1)fsky

(
CB` +NBeff,`

)2
δ``′ . (7.31)

Selecting the total signal in the angular interval Θ ≡ [θmin, θmax], with θmin ≥ θc, defines an
estimator of the superhorizon signal8

Ŝ(θ; θmin) ≡
∑
`

2`+ 1

4π
Ĉ`P`(cos θ)Π(θ) , (7.32)

where

Π(θ) ≡


1 θ ∈ [θmin, θmax]

0 otherwise
. (7.33)

For now, we will keep θmin general. The precise definition of θmax is not important, but will
be limited by the maximum angular extent of a partial sky observation. The covariance of the
estimator is given by

C [Ŝ(θ), Ŝ(θ′)] =
∑
``′

2`+ 1

4π

2`′ + 1

4π
C [Ĉ`, Ĉ`′ ]P`(cos θ)P`′(cos θ′)Π(θ)Π(θ′) . (7.34)

We emphasize that the estimator (7.32) is biased, since the total signal contains spurious contri-
butions from the filtered subhorizon modes (see §7.2). We will quantify this bias and define a
debiased version of the estimator below.

Signal-to-noise. To define the signal-to-noise of the measurement, we discretize (7.32) and
(7.34), and split the signal into N uniformly spaced angular bins Θb ≡ {θ(b) ± 1

2∆θ}, for
b = 1, . . . , N . A natural sampling interval is ∆θ ' 180◦/`?, where `? is the multipole mo-
ment at which the covariance matrix (7.34) converges.9 The average signal assigned to each bin
is

Ŝb ≡
1

Zb

∫
Θb

dθ sin θ Ŝ(θ) , (7.35)

7Lensing induces a non-Gaussian contribution to the covariance matrix whose explicit expression can be found
in [225]. We have checked that the degradation caused by the non-Gaussian lensing covariance is much smaller
than the systematic uncertainties due to the leakage.

8In Appendix E, we define the harmonic space equivalent of the estimator (7.32).
9The convergence of (7.34) at `? means that we effectively take into account `? independent modes of CB` , in

which case the rank of the matrix (7.31) is `?. Since the transformation from harmonic space to real space is linear,
the rank of the corresponding covariance matrix in real space is also `?. By restricting to a proper subinterval,
Θ ≡ [θmin, θmax], we effectively reduce the rank by a factor of ∼ 180◦/(θmax − θmin). Thus, a natural sampling
interval is ∆θ = 180◦/`?. (In practice, the optimal ∆θ is slightly larger, since the signal decays before it reaches `?
and we also include the non-Gaussian part of the covariance.) Errors at different angular separations are strongly
correlated within the interval Θ, and oversampling will result in an ill-behaved covariance matrix.
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where Zb ≡
∫

Θb
dθ sin θ is a normalization factor. The binned covariance matrix is given by

Cbb′ ≡
1

ZbZb′

∫
Θb

∫
Θb′

dθdθ′ sin θ sin θ′ C [Ŝ(θ), Ŝ(θ′)] , (7.36)

and the signal-to-noise ratio is defined as

(S/N)2 =
∑
bb′

ŜbC−1
bb′ Ŝb′ , (7.37)

where C−1
bb′ is the inverse of (7.36). In §7.5, we will evaluate (7.37) for various experimental

configurations.

Leakage and debiasing. Since the total signal S(θ) contains spurious modes from the leakage of
the filtered subhorizon modes, Ŝ(θ) is a biased estimator of the true superhorizon signal (7.10).10

We will quantify this bias by comparing the signal-to-noise of the expected total signal with that
of the spurious subhorizon modes.

Let us write the estimator (7.32) as Ŝ(θ) = S̃(θ) + S†(θ), where S̃(θ) denotes the unbiased
estimator (i.e. the estimator of the pure superhorizon component) and S†(θ) is the subhorizon
signal. The total signal-to-noise (7.37) can then be written as

(S/N)2 =
∑
bb′

(
S̃bC−1

bb′ S̃b′ + 2 S̃bC−1
bb′ S

†
b′ + S

†
b C−1

bb′ S
†
b′

)
≡ (S/N)2

+ + (S/N)2
× + (S/N)2

− , (7.38)

where (S/N)+ and (S/N)− denote the parts coming from the true superhorizon modes and the
subhorizon leakage, respectively, while (S/N)× stands for their cross-correlation. We will use

δ ≡ (S/N)−
S/N

(7.39)

as a diagnostic tool for quantifying the amount of leakage and, hence, the bias in the estima-
tor (7.32). For small values of δ, we know that the expected signal is dominated by the true
superhorizon modes. We will consider optimizing the analysis (e.g. by adjusting `s and θmin),
so that we get the maximum signal-to-noise while keeping the leakage fraction (7.39) small. We
typically take an acceptable leakage fraction to be δ ≤ 0.1.

Alternatively, we can correct for the bias of the estimator (7.32) through a simple debiasing
procedure. Subtracting the expected ensemble average of the spurious subhorizon mode from the
estimator (7.32) leads to an unbiased estimator of the pure superhorizon signal:

S̃(θ) ≡ Ŝ(θ)− S†(θ) . (7.40)

10Another type of bias arises from the E-B mixing in partial sky observations. This bias is well-understood and
can be treated by substituting the pseudo-C` estimators considered in [226] for ĈB` .
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In this case, we can treat the subhorizon signal as an extra source of noise. Applying this debiasing
procedure, we may improve the signal-to-noise by allowing a smaller smoothing scale `s and/or a
larger angular interval Θ.

7.5 Signal-to-noise forecasts

Finally, we are ready to investigate the detectability of the superhorizon B-mode signal for current
and future experiments. The signal-to-noise will, of course, depend on the tensor-to-scalar ratio of
the primordial fluctuations. We will consider both a fiducial value of r = 0.13 (which corresponds
to the canonical value ofm2φ2 chaotic inflation [20] and is chosen as a representative of the typical
values predicted in large-field models of inflation), as well as the wider range r = [0.001, 0.2]. When
interpreting the presented forecasts, one should keep in mind that the value r = 0.13 is disfavored
at more than 2σ by the current constraint r < 0.07 (95% CL) [43].

All CMB spectra are computed with CAMB [227] using the best-fit parameters of the ΛCDM
model from the Planck 2013 results [228]: h = 0.67, Ωb,0h

2 = 0.022, Ωc,0h
2 = 0.12, τ = 0.093,

As = 2.2 × 10−9, and ns = 0.96.11 For simplicity, the primordial tensor spectrum is taken to be
scale-invariant, nt = 0.

Preliminaries. We will use the estimators (7.32) and (7.40) defined on the interval Θ = [θmin, θmax],
with ∆θ = 0.30◦. For simplicity, we will fix θmax = 6.0◦ throughout. For θmin, we will consider
two different choices:

(I) For the biased estimator (7.32), we compute the signal-to-noise on an interval with θmin = 2.6◦,
where the leakage from subhorizon modes is guaranteed to be small and constrained by
causality.

(II) For the debiased estimator (7.40), we compute the signal-to-noise on an extended interval
with θmin = 1.0◦, which is where the filtered pure superhorizon signal12 starts to become
appreciable (cf. Fig. 7.3).

The estimator (I) is clearly more conservative, but also rejects a significant fraction of the inflation-
ary superhorizon signal. The estimator (II), on the other hand, includes all superhorizon modes,
but is less immune to spurious subhorizon contamination due to leakage. Although the known
bias due to the inflationary subhorizon modes has been corrected for in the estimator (7.40), a
signal on the interval [1◦, 2◦] from non-inflationary sources is strictly speaking not forbidden by
causality. To perform a true causality test of inflationary tensor modes, we therefore aim to detect
the signal with the estimator (I). Nevertheless, we will also show results for the estimator (II)

11Notice that these (possibly with the exception of the optical depth, τ) are not substantially different from the
parameters from the Planck 2015 results [21] shown in Table. 2.4.

12Below we will show that the Gaussian (7.20) with `s = 200 is a conservative filter function. We will take
this as our fiducial choice of filtering, but also investigate the possibility of optimizing the smoothing scheme in
particular examples.
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which quantifies the signal-to-noise of the total superhorizon signal from inflation. In that case,
the caveat that we just stated should be kept in mind.

We will consider two sets of foreground models:

• Ground-based experiments (§7.5.1) can target small, but exceptionally clean, patches of the
sky, and lower estimates for the foreground amplitudes are therefore appropriate.

• Space-based all-sky experiments (§7.5.2) can’t use the cleanest patches only, so we will use
higher foreground levels in those cases.

Our precise choices for the foreground amplitudes will depend on the experiment under consider-
ation and will be presented in the following sections.

7.5.1 Ground-based experiments

We first consider the capabilities of ground-based experiments, as illustrated by a few represen-
tative examples.

Keck Array. The BICEP2 experiment has recently been upgraded to the Keck Array [229].
The Keck Array, unlike BICEP2, has multiple frequency channels, and the combination of its 95,
150, and 220 GHz detectors yields an effective noise of ∆P,eff = 2.2µK′ (sP,eff = 14.2µK′). In
the near future, the BICEP3 experiment [230] will start to observe the same part of the sky, with
higher sensitivity at 95 GHz. In combination with the Keck Array, the effective noise will then
reduce to ∆P,eff = 1.4µK′ (sP,eff = 9µK′). In the following, we will refer to this combination of
the Keck Array and BICEP3 simply as the ‘Keck Array’.

Like for BICEP2, observations are made in the “Southern Hole” (fsky = 0.024), a region
where both galactic and extragalactic foreground emissions are expected to be very low. For the
foreground amplitudes in the Southern Hole, we will use the estimates given in [231]:

As = ξs × (1.5× 10−7 µK2) , (7.41)

Ad = ξd × (1.8× 10−6 µK2) , (7.42)

where these amplitudes are measured at ν0 = 100 GHz and `0 = 100. The parameters ξs and
ξd allow for our uncertainties concerning the synchrotron and dust amplitudes in the Southern
Hole. We will use ξs ∈ [0.67, 1.33] and ξd ∈ [0.33, 1.67] which corresponds to the 1σ uncertainties
in [231].

Using the 220 GHz map of the Keck Array as a template, internal foreground removal of polar-
ized dust emission at lower frequencies will be possible to some extent. This requires the spectral
index of the dust signal to be well-constrained, which will be the case if external information from
Planck is folded in. Our uncertainty in the level of foreground residuals that can ultimately be
achieved will be characterized by the parameters εs and εd in (7.27).
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The large beam size of the Keck Array (θb ∼ 30′) means that internal delensing will not
be possible. Yet, a joint analysis with a higher resolution experiment observing the same part
of the sky may allow some modest amount of delensing. SPTPol [232] is indeed also observing
in the Southern Hole, but its current sensitivity is not at a level that would make delensing a
realistic possibility. In the following, we will therefore assume Keck Array observations without
any delensing as the default, i.e. εL = 1 in (7.29), but also give results invoking a small amount
of delensing, εL = {0.5, 0.3}, as might become possible with an upgrade of SPTPol.

Simons Array. The Simons Array [233] is a planned successor of the PolarBeaR experi-
ment [192, 195]. Located in the Atacama desert in Chile, it will provide high-resolution obser-
vations of a relatively large fraction of the sky (fsky = 0.2). The frequency bands of the Simons
Array are the same as those of the Keck Array: 95, 150, 220 GHz. The effective noise level is
∆P,eff = 6.3µK′ (sP,eff = 14.1µK′).

In the absence of detailed information about the polarized emission in the region observed by
the Simons Array, we will use the same foreground levels (7.41) and (7.42) as for the Keck Array,
with the same, relatively large, uncertainties. Its small beam size (θb = 2.7′ at 220 GHz) allows
the Simons Array to serve as a useful probe to the gravitational lensing of the CMB on small
angular scales, and internal delensing will be possible to some degree. We will thus show results
for εL = {0.5, 0.3}.

Results. In Fig. 7.4, we present results for the signal-to-noise achievable by the Keck Array and
the Simons Array for the fiducial value r = 0.13 as a function of the level of foreground cleaning
εd. Shown are various levels of the delensing fraction εL = {1, 0.5, 0.3}. We see that a 3σ detection
will marginally be possible with the Simons Array if both delensing and foreground cleaning can
be achieved to a relatively high standard. On the other hand, a detection with the Keck Array
does not look feasible.

The above results were derived using our canonical choice of filtering: the Gaussian filter
(7.20) with `s = 200. Slight improvements in the signal-to-noise are possible by optimizing the
smoothing scheme. Figure 7.5 shows the dependence of the signal-to-noise and the leakage fraction
on the smoothing parameter `s for r = 0.13 and εL = {εs, εd} = 0.5. We see that the signal-
to-noise initially increases with `s, reaches a maximum at `s ' 120, and then decreases as more
small-scale noise is allowed for higher `s. At the maximum, S/N = 2.2 and 3.8 for the Keck Array
and the Simons Array, respectively. The leakage fraction at the maximum is δ = 0.11.

For optimal results, we pick the smoothing scale in such a way that it maximizes the signal-
to-noise while keeping δ < 0.1 for all values of r that yield S/N > 3. The optimal smoothing scale
for both experiments is then `s = 150, giving a 15% increase in the signal-to-noise (see Fig. 7.5).13

13We have also tested other forms of filtering functions. For example, using a tanh-filter, we were able to achieve
a 10 to 20% improvement on the overall signal-to-noise with similar degrees of leakage for various parameters and
values of r. This is because the tanh-filter is characterized by two smoothing parameters (the cut-off scale and the
width), and this extra degree of freedom allows us to control the filtering process more precisely, giving us more
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Figure 7.4: Signal-to-noise on the interval [2.6◦, 6.0◦] for r = 0.13 as a function of εd. The plot shows
experiments with Keck Array (bottom) and Simons Array (top) specifications for three different delensing
fractions: εL = 1.0 (yellow, dot-dashed), εL = 0.5 (dashed, blue), and εL = 0.3 (solid, gray). The bands
correspond to the uncertainty in the foreground amplitudes, ξs = [0.67, 1.33] and ξd = [0.33, 1.67].

With this optimization, a more than 3σ detection becomes possible with the Simons Array even
for only modest amounts of cleaning, εL = {εs, εd} = 0.5. To achieve a similar level of significance
with the Keck Array, we still require a high level of cleaning, εL = {εs, εd} = 0.1.

One may argue that we have been too conservative by choosing θmin = 2.6◦ as our criterion for
the superhorizon signal. In particular, as can be seen from Fig. 7.3, a large part of the inflationary
superhorizon signal is not captured by this definition. In order to quantify the size of the total
signal, we therefore also consider the extended interval with θmin = 1◦. We use the debiased
estimator so that the known leakage of inflationary subhorizon modes is corrected for. Figure 7.6
shows the signal-to-noise on the interval [1.0◦, 6.0◦] as a function of r without optimization of the
filtering. We see that a 3σ detection will be possible if r & 0.1 and 0.04 for the Keck Array and
the Simons Array, respectively, assuming a modest amount of delensing and foreground removal
of 50%. With the optimization described above, we get S/N > 3 if r & 0.05 and 0.025 for the
Keck Array and the Simons Array, respectively. While this detection wouldn’t constitute a perfect
causality test, it would still be a strong indication for inflationary superhorizon tensors. Moreover,
at sufficiently high S/N it will be possible to measure the shape of the signal in Fig. 7.3, which
would further strengthen this interpretation.

optimized results. However, for simplicity of presentation, all the results in the chapter were produced with the
Gaussian filter (7.20).
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Figure 7.5: Signal-to-noise (solid) and leakage fraction (dashed) for r = 0.13 as a function of `s for
experiments with Keck Array (red) and Simons Array (black) specifications. Only a single curve is shown
for δ because the curves for the Keck Array and the Simons Array are almost identical. The plot assumes
εL = {εs, εd} = 0.5. Decreasing the smoothing scale from `s = 200 to `s = 150 increases the signal-to-noise
by about 15%. The leakage fraction δ is less than 10% as long as `s & 140.

7.5.2 Space-based experiments

To perform a true causality test, the B-mode signal has to be measured above θmin = 2.6◦. We
have seen that, for r > 0.1, this is (marginally) possible with ground-based experiments. For
r < 0.1, on the other hand, a future satellite mission will be required. For purposes of illustration,
we now examine the LiteBIRD [196] and COrE [193] proposals.14

All-sky surveys don’t have the luxury of observing only the cleanest patches of the sky, so we
need to adjust our estimates for the expected foreground levels accordingly. The level of polarized
synchrotron emission is constrained by the WMAP polarization measurements between 23 and
94 GHz [198]. Those results imply

As ' 5.8× 10−7 µK2 , (7.43)

which is comparable to the 95% upper limit of the synchrotron amplitude determined by DASI [235].
For polarized dust emission, we take the template used by the Planck collaboration in [197, 202]
which, for fsky = 0.7, gives

Ad ' 5.5× 10−5 µK2 . (7.44)

This choice is consistent with the FDS model [206] with an average polarization fraction of
about 7%. Both of the above amplitudes are defined with respect to ν0 = 100 GHz and `0 = 100.

LiteBIRD. LiteBIRD [196] is a next-generation full-sky satellite experiment, optimized to probe

14For our analysis, we will use the experimental configurations of the COrE mission proposed in 2011 [193]. The
experimental speculations of the recent CORE proposal can be found in [234].
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Figure 7.6: Signal-to-noise on the extended interval [1.0◦, 6.0◦] as a function of r for experiments with
Keck Array (red) and Simons Array (black) specifications. The foreground amplitudes have been fixed
to the mean values in (7.41) and (7.42). The different curves correspond to εL = {εs, εd} = 0.1 (solid),
εL = 0.5, {εs, εd} = 0.1 (dashed), and εL = {εs, εd} = 0.5 (dot-dashed).

large-scale B-mode polarization. It is equipped with six frequency bands in the range from 60 to
280 GHz. This frequency coverage is wide enough to perform a high level of foreground removal
of both synchrotron and dust [236]. We will therefore consider relatively small values of εs and
εd, namely 0.1 (realistic) and 0.01 (optimistic). The large beams of the LiteBIRD experiment
mean that delensing will only be possible in a joint analysis with external data sets [237]. We will
assume that this will be possible only to a modest degree, εL ≥ 0.5.

COrE. COrE [193] is a proposed space mission which is anticipated to deliver a full-sky CMB
polarization map with a sensitivity 10 to 30 times better than its predecessor Planck. With 15
frequency bands between 45 and 795 GHz, COrE will allow a very high degree of foreground
cleaning, so we will consider {εs, εd} = 0.1 (pessimistic) and 0.01 (realistic). The small beams of
COrE also mean that a significant amount of internal delensing can be achieved, so we take a
delensing fraction of εL = 0.1 as a realistic assumption [193].

Results. Figure 7.7 displays the signal-to-noise for LiteBIRD and COrE as a function of r.
We see that a 3σ detection will be possible if r > 0.04 (0.01) with {εs, εd} = 0.1, and r > 0.02

(0.007) with {εs, εd} = 0.01, for LiteBIRD (COrE). Depending on the actual delensing level
attained by these experiments, the detection bounds stated above may shift slightly. In any case,
incorporating the optimization scheme described earlier, the signal-to-noise can be improved by
about 20%. Thus, both LiteBIRD and COrE are capable of detecting the superhorizon B-mode
signal for r & 0.01, in most realistic scenarios. For 0.001 < r < 0.01, a statistically significant
detection will only be possible if the extended interval [1.0◦, 6.0◦] is used.

Summary. The conclusions of this section are summarized in Fig. 7.8, which shows the signal-
to-noise on the interval [2.6◦, 6.0◦] for r = 0.13 as a function of the sky fraction fsky and the

113



Detecting primordial tensors

Figure 7.7: Signal-to-noise on the interval [2.6◦, 6.0◦] as a function of r for experiments with COrE (black)
and LiteBIRD (red) specifications. The solid lines correspond to {εs, εd} = 0.01, while the dashed lines
assume {εs, εd} = 0.1. The delensing fractions have been fixed to εL = 0.5 and εL = 0.1 for LiteBIRD and
COrE, respectively.

effective instrumental sensitivity sP,eff . This time the residual foreground amplitudes have been
fixed to As = 5.8 × 10−9 µK2 and Ad = 5.5 × 10−7 µK2 at ν0 = 100 GHz, `0 = 100. As we can
see, for experiments with high instrumental sensitivity, sP,eff . 20µK′, sky coverage is the main
factor determining whether the signal is detectable. This is because S/N ∝

√
fsky in the cosmic

variance limit, whereas S/N ∝ 1/s2
P,eff for experiments dominated by instrumental noise. Hence,

full-sky satellite missions have the best prospects for measuring the superhorizon B-mode signal,
though ground-based experiments such as the Simons Array can be feasible, if r & 0.1.

7.6 Conclusions

The significance of a detection of primordial B-modes cannot be overstated [42, 51, 199, 238].
However, even if the signal is established to be of primordial origin, we still wish to determine
whether it was generated by vacuum fluctuations during inflation or has an alternative, post-
inflationary origin.

In this chapter, we have revisited the proposal of [177] for using the superhorizon part of
the B-mode spectrum in real space as a model-insensitive diagnostic of inflationary gravitational
waves. We found that the causality test for B-modes in its original form is not unambiguous,
since we must deal with the issue of the mixing between subhorizon and superhorizon modes that
is induced by the finite resolution of the experiment and the smoothing of the raw data. We
have quantified this effect and shown how future experiments have to be designed in order to
maximize the signal-to-noise of the superhorizon signal while rejecting unwanted contaminations
from spurious subhorizon modes.

We have found that future ground-based experiments are capable of detecting the superhorizon
B-mode signal at more than 3σ significance, if the tensor-to-scalar ratio is as large as what can
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Figure 7.8: Signal-to-noise on the interval [2.6◦, 6.0◦] for r = 0.13 as a function of fsky and sP,eff . The plot
was created using the optimized Gaussian filter with `s = 150 and assumes 50% delensing. Moreover, it
assumes a fixed beam size characteristic of Keck Array, Simons Array and LiteBIRD. Not shown therefore
is the result for COrE which has smaller beams and therefore increased sensitivity to the signal (see
Fig. 7.7). The dashed line indicates the 3σ detection bound.

be allowed by the current constraint [239], i.e. if r & 0.1. If the value of r is significantly smaller,
then the measurement will require a full-sky survey. We have found that a 3σ detection is possible
with LiteBIRD and COrE as long as r & 0.01, and if 90% foreground cleaning and more than
50% delensing can be achieved.
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8. Discussion

Observations of the CMB anisotropies can be traced back to the moment of horizon crossing during
inflation. These observations therefore probe energies of order the inflationary Hubble scale. One
of the key challenges in cosmology is to relate these measurements to the unknown UV dynamics
of inflation. In this thesis, we have approached the problem using the framework of effective field
theory, which has allowed us to describe the inflationary dynamics in a model-insensitive way. We
have explored tests of the physics of inflation using two cosmological observables: non-Gaussianity
and tensor modes. In this final chapter, we will summarize the main results obtained in this thesis
and make some remarks on their implications for future research.

8.1 Summary of the main results

Our strategy to understand the nature of inflation in this thesis involved two concepts: causality
constraints1 and phenomenology of inflationary models motivated by string theory.2 As we will
recapitulate in the following, the former puts non-trivial constraints on cosmological observables,
whereas the latter can provide important hints for the UV completion of inflation.

. Causality constraints. The analyticity of response functions and scattering amplitudes implies
powerful relations between low-energy observables and the underlying short-distance dynamics. In
Chapter 4, we derived similar connections in inflation and obtained a new consistency condition
in single-field inflation that constrains the size and sign of the four-point function in terms of
the amplitude of the three-point function. A violation of this consistency condition would point
towards less conventional models of inflation, and open a new window for model-building in
inflation. More drastically, a violation could signal the breakdown of some basic properties of the
UV completion of the EFT of inflation, such as causality, unitarity and Lorentz invariance. Hence,
testing our consistency condition will provide useful information about the physics of inflation.

1Note that we considered two different implications of causality. In Chapter 4, we utilized causality in the UV
theory of inflation to place non-trivial constraints on the parameters of the EFT of inflation. In Chapter 7, we
used the causal structure of the spacetime to demand that distances that are separated by more than the horizon
are out of causal contact.

2In Chapters 5 and 6, we considered models without a large hierarchy between the string scale and the Hubble
scale. Inflationary models of this kind are hard to construct, since they would likely involve strongly-coupled
dynamics for the background. On the other hand, these are the models that can lead to the most dramatic
imprints of stringy effects. In this thesis, we have opted for a bottom-up approach and focused on the characteristic
signatures of these effects on cosmological observables.
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. Particle spectroscopy. The presence of extra fields is generically expected in realistic inflationary
scenarios embedded in a concrete UV theory. For example, models of inflation in string theory
typically involve a plentitude of moduli fields and Kaluza-Klein modes. In Chapter 5, we discussed
the imprints of higher-spin particles—the low-energy manifestations of string excitations—on the
non-Gaussianity of inflationary perturbations. Using the framework of the EFT of inflation, we
classified the couplings of these particles to the Goldstone boson of broken time translations
and the graviton. We found that these particles lead to distinct oscillations and an angular
dependence in the correlation functions arising from the masses and the spins of the particles,
respectively. We showed that it is possible to generate observable non-Gaussianity within the
regime of validity of the effective theory, as long as the masses of the particles are close to the
Hubble scale and their interactions break the approximate conformal symmetry of the inflationary
background. Observing signatures of these higher-spin particles would be fascinating, since it
would be indicative of inflation originating from string theory.

. Higher-curvature effects. Single-field slow-roll models of inflation predict a specific relation be-
tween the amplitude and scale-dependence of the tensor power spectrum, r=−8nt. In Chapter 6,
we showed that the coupling of the inflaton field to higher-curvature tensors can lead to a viola-
tion of this consistency condition. The correction to the tensor tilt from higher-curvature terms
scales parametrically different (∝√εH2/M2) from the contribution from Einstein gravity (∝ε)
and can be the dominant effect if H/M is not too small. Moreover, the correction can have either
sign, meaning that the tensor spectrum can have a blue tilt without necessarily violating the null
energy condition. Together with the imprints of higher-spin fields on non-Gaussianity, observing
higher-curvature corrections to the tensor spectrum would constitute an interesting way to probe
stringy effects during inflation.

. Superhorizon test for tensors. To search for signatures of new physics in the tensor power
spectrum, it would be helpful to first firmly establish the inflationary origin of B-modes. In the
absence of inflation, correlations that are separated by more than the horizon scale at recombi-
nation, θc ≈ 2.3◦, are strictly forbidden by causality, while such superhorizon correlations are a
characteristic of inflationary perturbations. In Chapter 7, we considered the prospects for mea-
suring the inflationary superhorizon signature in future observations. This involves measuring
the precise shape of the tensor power spectrum. We explained that the finite resolution of an
experiment and the filtering of the raw data induces a transfer of spurious subhorizon power to
superhorizon scales, and described ways to correct for it. We also provided a detailed treatment
of possible sources of noise in the measurement, and presented forecasts for the detectability of
the signal with future CMB polarization experiments. We consider this as a powerful model-
independent way to test for the inflationary origin of tensor modes.

8.2 Outlook

The measurement of the CMB blackbody spectrum by COBE [11] marked the beginning of the
era of precision cosmology. Since then, the CMB temperature power spectrum has been measured
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at an unprecedented level of accuracy [13], saturating the cosmic variance limit over a vast range
of scales. Nevertheless, the information about the primordial density perturbations that can be
extracted from the two-point function of temperature fluctuations is limited, being characterized
by just two numbers: the amplitude, As, and the scale-dependence, ns. Although in a remarkable
agreement with the basic predictions of inflation, the measurement of these two parameters alone
is insufficient to unravel the mysteries of the microscopic mechanism responsible for inflation,
making the need to detect other cosmological observables essential. In particular, primordial non-
Gaussianity and tensor fluctuations can serve as powerful discriminators of models of inflation,
and thereby have the potential to significantly enrich our understanding about the physics of
inflation.

To date, observations are consistent with (nearly) Gaussian primordial density perturba-
tions [40], as expected in single-field slow-roll inflation [25, 41]. Yet, many theoretically well-
motivated models beyond this minimal paradigm naturally lead to higher levels of non-Gaussianity
(see e.g. [240] for a review). Figure 8.1 is a schematic illustration of current and future constraints
on (scale-invariant) primordial non-Gaussianities. We see that the perturbatively interesting
regime spans about seven orders of magnitude in fNL. Of this regime, three orders of magnitude
have been ruled out by current CMB observations, leaving a window of opportunity of about four
orders of magnitude. Accessing these low levels of non-Gaussianity will be challenging. Even
optimistic projections for future CMB observations won’t reduce the constraints by more than an
order of magnitude. Digging deeper will require new cosmological probes, such as observations of
the large-scale structure (LSS) of the universe [241] and the tomography of the 21cm transition
of neutral hydrogen gas [242]. The existing forecasts (e.g. [243]) suggest that one may hope to
eventually verify the single-field slow-roll paradigm with futuristic 21cm surveys (and a lot of
optimism!).

non-perturbativegravitational floor ruled out by 
Planck

accessible with future CMB

future LSS?

21cm?

Figure 8.1: Schematic illustration of current and future constraints on (scale-invariant) primordial non-
Gaussianity. The “gravitational floor" denotes the minimal level of non-Gaussianity created by purely
gravitational interactions during inflation [25, 41].

On another observational front, large experimental efforts are currently underway to detect
primordial gravitational waves (see [244] for a recent review). At present, the best constraint on
r comes from the joint analysis of BICEP2/Keck Array and Planck [43], with an upper bound
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of r < 0.07. Our knowledge on primordial tensors will be significantly improved by the next
generation of B-mode experiments that have the sensitivity to reach r = O(10−3) [44, 45]: a
natural threshold for a large class of inflationary models. A detection of primordial tensors
would tell us two pivotal facts about inflation: that it occurred near the grand unification scale
of 1016 GeV and that the inflaton underwent a super-Planckian excursion. This incredible feat
would have a significant impact on our understanding of the microscopic origin of inflation and
foster deeper connections between high-energy physics and cosmology.

With the advent of highly sensitive cosmological experiments, it is timely to ask how to put di-
verse models of inflation to the observational test. The landscape of inflationary scenarios is vast,
which makes testing for individual models difficult. Moreover, the fact that the explicit construc-
tion of these models require the background description to be weakly coupled for theoretical control
means that it does not entirely cover the perturbatively allowed regime for perturbations. As we
described in this thesis, the methods of effective field theory offer a model-independent framework
to describe interactions during inflation. In particular, we focused on imposing model-insensitive
constraints on cosmological observables and finding distinctive UV signatures of inflation. To
efficiently search for new physics in the upcoming observational data, a further exploration in this
direction would be illuminating. To this end, we will present a list of possible avenues for future
research, which stem from the work described in this thesis.

. Veneziano correlator. In analogy to scattering amplitudes being the tool for analyzing particle
interactions in colliders, cosmological correlation functions can be used to probe the particle
content during inflation. In Chapter 5, we studied the impact of individual higher-spin particles on
cosmological correlation functions. However, the string spectrum in fact contains an infinite tower
of higher-spin excitations of ever growing mass and spin, which restricts their scattering amplitude
to take a unique form, the Veneziano amplitude. Similarly, one may expect the cosmological
correlators to take a unique form when incorporating the infinite tower of intermediate higher-
spin states [102, 245]. It would be interesting to see whether a characteristic trait of the string
spectrum shows up in the squeezed limit of the bispectrum. Additionally, many aspects of this
derivation may also shed light on the intriguing conjecture that string theory is the unique theory
of massive higher-spin particles [246].

. (Partially) massless higher-spin fields. Another interesting generalization of our work would in-
volve investigating the phenomenology of partially massless higher-spin fields during inflation [114]
(see also [247]). These intriguing particles have no flat space analogs and possess extra symmetries
that constrain their interactions. Unlike ordinary massive particles, their production rate is not
exponentially suppressed and they may survive until late times, suggesting that they can have a
more dramatic impact on cosmological observables. Moreover, it would be interesting to study
the dynamics of purely massless higher-spin fields, whose interacting structure in de Sitter space
is described by Vasiliev theory [248–251]. Coupling these fields to the inflaton may lead to a rich
phenomenology and interesting applications to inflationary consistency relations [140].
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. Cosmological bootstrap. Correlation functions in fact contain a much richer structure than
scattering amplitudes,3 so a natural extension of the work described in Chapter 4 is to directly
analyze the consistency conditions on the former. In recent years, there has been great progress
in using the conformal bootstrap to constrain conformal field theories (see e.g. [253] for a review).
Since in an inflationary spacetime the de Sitter isometries act as conformal symmetries on the
spatial boundary at late times, it would be interesting to use similar techniques to constrain
inflationary observables. One of the technical challenges for cosmological applications is the
necessity for a momentum-space formulation, which is customary in cosmological analyses as it
makes spatial homogeneity manifest. Although the conformal three-point function in momentum
space has been derived before [141, 254–257], the corresponding formula for the four-point function
is currently lacking. The challenge would be to derive this and study the analogs of conformal
blocks in the collapsed limit, for which the internal momentum is taken to be soft. This symmetry-
based approach can offer a powerful model-independent way to constrain cosmological correlators,
even in the non-perturbative regime.

. Superhorizon test for NG. With upcoming experiments, we will soon enter an observational
regime where primordial density perturbations would no longer be the dominant source of non-
Gaussianity in the CMB anisotropies. For example, second-order effects at recombination con-
tribute to local non-Gaussianity at order fNL = O(1) (see e.g. [258–260]). In the presence of such
a contamination (along with foregrounds and other systematics), it would be nice to have a clean
way of testing for the inflationary origin of subdominant non-Gaussian signals. As explained in
Chapter 5, inflation gives rise to superhorizon correlations at recombination that are otherwise
forbidden by causality. The superhorizon part of higher-point functions can thus be used as a
model-independent diagnostic of the inflationary nature of non-Gaussian correlations.

The importance of unveiling the precise microphysical mechanism of inflation cannot be over-
stated. Pursuing this goal requires both advancing our understanding of the theoretical foun-
dations of inflationary cosmology and developing precise observational tests. In this thesis, we
have made modest steps towards deciphering the intimate, yet subtle, link between high-energy
physics and inflationary cosmology. We believe that the results presented in this thesis will help
to find optimal observational strategies for extracting subtle signatures of the microscopic theory
of inflation.

3This is due to the following non-trivial property that connects between correlation functions and scattering
amplitudes: after analytic continuation of the momenta, the residue of the leading pole at zero total momentum
reproduces the high-energy limit of the flat-space scattering amplitude [252].
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A. Goldstone scattering

In this appendix, we provide supplementary material to Chapter 4. We first discuss the analytic
properties of ππ → ππ scattering in §A.1. In §A.2, we present details of the analysis of the weakly
coupled example of §4.3.1. Specifically, we will show how the sum rule (4.31) is realized in this
particular example and demonstrate explicitly that it satisfies our positivity bound. In §A.3, we
compute the low-energy amplitude of ππ → ππ scattering in the EFT of inflation at leading order
in the derivative expansion.

A.1 Analyticity and polology

Without loss of generality, the non-forward scattering amplitudeM may be written as a function
of the following variables:

ω12 ≡ ω1 + ω2 , k12 ≡ k1 + k2 ,

ω13 ≡ ω1 − ω3 , k13 ≡ k1 − k3 ,

ω14 ≡ ω1 − ω4 , k14 ≡ k1 − k4 . (A.1)

In the UV, i.e. for ωa � ρ, we expect the amplitude to become a function of the standard
Mandelstam variables (s, t, u). Moreover, in the low-energy theory, some of the contributions to
M may simplify to expressions in terms of the re-defined Mandelstam variables (s̃, t̃, ũ) associated
with the re-scaled momenta, p̃a ≡ (ωa, cs(ωa)ka). These contributions come from the terms in the
effective action that mimic relativistic interactions after the rescaling of the spatial coordinates,
e.g. (∂̃π)4. The general expression for M in the non-relativistic regime may (and will) contain
additional Lorentz symmetry breaking combinations.

At low energies, the scattering amplitude computed in the EFT description must, of course,
match the one computed in the full theory. Analyzing this matching in general may be cum-
bersome. However, for forward scattering in the center-of-mass frame (kab = 0, ω13 = ω14 = 0,
ω12 ≡ 2ω) some simplifications occur. In particular, the amplitude Acm can be expressed in terms
of the square of the center-of-mass energy, ω2

12 = 4ω2, which in this frame is equal to both s

and s̃. For notational simplicity, we will write the forward scattering amplitude in the center-of-
mass frame as Acm(s) ≡ Acm(4ω2). In the main text, we dropped the subscript ‘cm’, but here
we keep it explicit in order to highlight expressions which are only valid in a fixed frame. The
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distinction becomes important when studying the implications of crossing symmetry, since these
are better described in a frame-independent manner and dropping the ‘cm’ subscript could lead
to confusion.

The standard properties of the relativistic formalism (cf. §4.1.1) apply to the full amplitude
in the UV. This means that any singularities in Acm(s) off the real axis, if present, would have to
come from the non-relativistic low-energy behavior of the amplitude. On the one hand, for positive
real s, the argument that restricts the non-analytic behavior to a minimum (to be consistent with
unitarity and the optical theorem) remains unchanged. Moreover, for s < −ρ2, crossing symmetry
relates the amplitudes in the s- and u-channels, where similar considerations apply. On the other
hand, for −ρ2 < s < 0, we will demonstrate that crossing symmetry does not simply relate Acm(s)

to Acm(−s), as in the relativistic case. However, except for some rather peculiar behavior, which
we will discuss later, singularities for unphysical values of s will be associated with physical poles
and/or branch cuts for physical values of s (albeit not directly symmetric points). We therefore do
expect the Mandelstam hypothesis of maximal analyticity to hold, and any non-analytic behavior
to be restricted to the real s-axis. It remains to be analyzed whether these singularities along the
negative real axis, especially in the region −ρ2 < s < 0, could jeopardize positivity of the sum
rule discussed in §4.1.2. As we shall see, crossing symmetry still plays a major role in determining
the location of the non-analytic behavior.

In quantum field theory, crossing symmetry follows from the properties of the Green’s functions
and the LSZ reduction formula [261]. Put simply, field operators may create an incoming particle
or an outgoing anti-particle out of the vacuum. For a relativistic theory with identical scalar
particles, it is easy to use this property to connect regions of the scattering amplitude when
(s, t, u) are exchanged. For non-relativistic theories, the LSZ formula still applies at low energies,
but the relation between the different channels becomes more subtle. In particular, for energies
near the cutoff Λ and below the UV scale ρ, extra poles or cuts may develop. The computation in
terms of field operators implies that the crossing symmetry between the s- and u-channels relates
the scattering amplitude under the exchange ω2 ↔ −ω4 and k2 ↔ −k4. At forward scattering,
this transformation implies

s̃ ≡ ω2
12 − c2

sk
2
12 = 4ω2 ↔ ũ ≡ ω2

14 − c2
sk

2
14 = −4ω2 = −s̃ , (A.2)

where we have evaluated the expressions on-shell. The part of the amplitude that is only a
function of s̃ (in a generic frame) is therefore an even function of s̃. However, in principle the
scattering amplitude M also has contributions that do not transform as easily. For instance,
ω12 ↔ ω14 under the crossing symmetry, but ω14 vanishes in the center-of-mass frame, while
s̃ = ω2

12 prior to the crossing transformation. Terms that vanish in the center-of-mass frame,
e.g. those proportional to ω14, play a vital role in making crossing symmetry manifest. For this
reason, it is useful to distinguish functional dependence on s̃ from explicit functions of ω12.

To illustrate these considerations, let us study the exchange of a heavy state in the s-channel,
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away from forward scattering and in a generic frame. Using standard ‘polology’ arguments [261],
we expect the amplitude to take the following form

Ms ⊂
Z(ωab,kab · kcd)

ω2
12 − c2

rk
2
12 −M2 + iε

, (A.3)

where M is the energy of the intermediate state, cr ≡ cr(ω12) is its speed of propagation, and Z
is some unknown function of the quantities defined in (A.1). This expression must be symmetric
with respect to permutations of the momenta that leave the s-channel fixed: i.e. {1 ↔ 2} and
{3 ↔ 4}. It is useful to write the amplitude in terms of variables that make this invariance
manifest (after using the on-shell conditions), namely1

Z(ωab,kab · kcd) ≡ Z(s̃, ω2
12, ω

2
13 + ω2

14, k13 · k14, ω13ω14) , (A.4)

where we have chosen to express k 2
12 in terms of s̃ and ω12. We can then use crossing symmetry

to determine the location of the pole in the u-channel, which we denote by Mu. Putting both
contributions together, we find

M = Ms +Mu

⊂ Z(s̃, ω2
12, ω

2
13 + ω2

14, k13 · k14, ω13ω14)

ω2
12 − c2

rk
2
12 −M2 + iε

+
Z(ũ, ω2

14, ω
2
13 + ω2

12, k13 · k12, ω13ω12)

ω2
14 − c2

rk
2
14 −M2 + iε

. (A.5)

Taking the forward limit, k13 → 0 — but still in a generic frame — we get

A ⊂ Z(s̃, ω2
12, ω

2
14)

ω2
12 − c2

rk
2
12 −M2 + iε

+
Z(−s̃, ω2

14, ω
2
12)

ω2
14 − c2

rk
2
14 −M2 + iε

, (A.6)

where Z(x, y, z) ≡ Z(x, y, z, 0, 0). At high energies, ω � ρ, Lorentz invariance is restored and we
expect crossing symmetry to act in the familiar way. To see this, we note that cs(ω), cr(ω) → 1

and s̃ → s in the UV. Moreover, the amplitude will be dominated by a relativistically invariant
function,

Z(s̃, . . .)
ω�ρ−−−−→ Z(s, . . .) = ZUV(s)

(
1 +O(ρ/ω)

)
, (A.7)

where ZUV(s) = ZUV(−s), as required by crossing symmetry when the theory becomes rela-
tivistic. As expected, the expression in (A.6) therefore becomes symmetric under s → −s (and
ε→ −ε). This is also manifest in the center-of-mass frame, where we have

Acm(s) ⊂ ZUV
cm (s)

s−M2 + iε
+

ZUV
cm (−s)

−s−M2 + iε
, for s� ρ2 . (A.8)

At low energies, on the other hand, crossing symmetry does not guaranteed that Acm(s) is an

1To avoid a proliferation of different names we abuse notation and denote both functions in (A.4) by Z(· · · ).
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even function of s. Instead, we have

Acm(s) ⊂ Zcm(s, s, 0)

s−M2 + iε
+

Zcm(−s, 0, s)
−c2

rc
−2
s s−M2 + iε

, for s < ρ2 , (A.9)

and the two terms are not necessarily related by reflection. First of all, when cr 6= cs, the location
and residue of the pole on the negative axis is not the symmetric counterpart of the one on the
positive axis. (This is seen explicitly in the perturbative example discussed in §4.3.1 and §A.2)
Furthermore, while the optical theorem forces the residue of the s-channel pole in (A.9) to be
positive, this does not imply positivity of the residue of the u-channel pole. Unitarity alone is
not sufficient to guarantee positivity because the function Zcm(x, y, z) is evaluated for different
arguments in the s- and u-channels. We may then worry that the residue from the negative s-axis
may be negative, and dominate over the positive contribution from the s-channel. Fortunately,
in many circumstances we find that Z is invariant under permutations of ωa, such that

Z → Z(s̃, ω1ω2ω3ω4) . (A.10)

For example, this property arises when time derivatives act on the external legs. In the center-
of-mass frame, this means that2

Z(s̃, ω1ω2ω3ω4) → Zcm(s, ω4) = Zcm(s, s2) , (A.11)

which extends the original form of the crossing symmetry to all energies. The residues on the
positive and negative s-axes are therefore related, and both constrained to be positive by the
optical theorem. This is also manifestly true in the example of §4.3.1 and a large class of weakly
coupled extensions.

The above reasoning takes into account poles and branch cuts that originate in the s-channel.
There is, however, a final subtlety to be discussed. Since Lorentz invariance is broken, interactions
can in principle have an unequal number of time and space derivatives. For example, a quartic
interaction with three time derivatives and two spatial derivatives can be consistent with the
symmetries of the EFT. This could in principle produce contributions in the low-energy limit of
the form

A ∝ ω5
12 = (ω2

12)5/2 → Acm ∝ s5/2 . (A.12)

To be consistent with unitarity, we must choose these cuts to run along the negative axis. Notice,
however, that in a generic frame crossing symmetry maps ω12 → ω14 → 0. Therefore these type
of singularities do not have an s-channel counterpart. Furthermore, while potentially dangerous,
these terms are always subdominant in perturbation theory, since they involve higher powers of s.
Moreover, they must be absent in the UV theory, which is dominated by relativistic interactions.

2In a perturbative setting, attempts to put an unequal number of time derivatives on each leg fail to produce
singularities from the u-channel in the center-of-mass frame. After summing over permutations, the u-channel
amplitude becomes a function of ω14, which vanishes when ω1 = ω4 = ω.
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Hence, at lowest order in s, these rather peculiar singularities do not present a problem for our
positivity argument.

A.2 Positivity in the πσ-model

For convenience, we recall the Lagrangian for the πσ-model:

L = −1

2
(∂π̄)2 − 1

2
(∂σ)2 − ρσ ˙̄π − σ(∂π̄)2

2M
− 1

2
m2σ2 − 1

3!
µσ3 . (A.13)

In the flat space limit, the linearized equations of motion are given by

(ω2 − k2)π + iρωσ = 0 , (A.14)

(ω2 − k2 −m2)σ − iρωπ̄ = 0 , (A.15)

so that the propagator for φ ≡ (π̄ σ) is

〈T (φpφ
T
−p)〉 =

i

(ω2 − k2)(ω2 − k2 −m2)− ω2ρ2 + iε

ω2 − k2 −m2 −iρω
iρω ω2 − k2

 . (A.16)

The poles of the propagator are associated with the non-trivial solutions for π̄ and σ, which satisfy

ω2
± = k2 + 1

2(ρ2 +m2)±
√
ρ2k2 + 1

4(ρ2 +m2)2 . (A.17)

The mixing of π̄ and σ presents an additional complication because at low energies neither π̄ nor
σ creates an energy eigenstate. To correct for this, we will compute the S-matrix elements using
the LSZ formula [68]:

S =

(
4∏

a=1

lim
ωa→Ea

ω2
a − E2

a

Z(ωa)

)
〈T (πp1πp2πp3πp4)〉 , (A.18)

where Ea is the energy of the gapless state. The function Z(ω) is the relative normalization
between π̄ and the canonically normalized energy eigenmode,

〈T (π̄pπ̄−p)〉 =
Z2(ω)

ω2 − E2(k)
, (A.19)

which in this particular case is given by

Z(ωa = Ea(ka)) =

(
m2 − ρ2 +

√
4k2ρ2 + (m2 + ρ2)2

2
√

4k2ρ2 + (m2 + ρ2)2

)1/2

. (A.20)

µ = 0. We first consider the special case µ = 0. The forward scattering amplitude gets contri-
butions from exchange diagrams that include all the matrix elements in the propagator (A.16).
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There are three classes of these diagrams: σ-exchange, π-exchange and πσ-exchange. At low
energies, and for cs � 1, the σ-exchange contribution dominates the amplitude. In the forward
limit, we then find the following amplitude in the center-of-mass frame

A = −Z
4(k2)

M2

{
(ω2 + k2)2

[
1

4ω2 −m2 − ρ2
− 1

4k2 +m2

]
− (ω2 − k2)2 1

m2

}
, (A.21)

where the last term is from the t-channel exchange. In the limit ω → 0, this amplitude in-
deed matches the result of the EFT computation. We see that the amplitude has poles at
4ω2 = m2 + ρ2 ' ρ2 and 4k2 = −m2 (or 4ω2 ' −3

4c
4
sρ

2); cf. Fig. 4.3. For small cs, the
pole on the negative axis is located much closer to the origin than that on the positive axis.

We wish to see how the sum rule (4.31) works for the amplitude (A.21). It is easy to see that
the residue of the pole on the negative axis dominates: the pole on the positive axis is suppressed
by a factor of c2

s, while the relativistic regime, M > ω � ρ, only contributes ln(M/ρ)/M4. Using
that the imaginary part associated with the pole on the negative axis is

Im[A(s < 0)] =
Z4(k2)

M2
(ω2 + k2)2 π δ(−4k2 −m2) , (A.22)

the sum rule can be written as

1

2
A′′(s→ 0) =

1

π

∫ 0

−∞

ds

s3
Im[A(s)] =

∫ ∞
0

dq
s′(q)
s3(q)

Z4(q)

M2

q2

16
δ(q −m2) , (A.23)

where q = −4k2 and

s(q) ≡ −q + 2(m2 + ρ2)− 2
√
−qρ2 + (m2 + ρ2)2 , (A.24)

s′(q) ≡ ds

dq
= −1 +

ρ2√
−qρ2 + (m2 + ρ2)2

. (A.25)

At leading order in cs = m/ρ� 1, we have

s(q = m2) = −3

4
c2
s , s′(q = m2) = −3

2
c2
s , Z2(q = m2) =

3

4
c2
s . (A.26)

Substituting this into (A.23), we find

1

2
A′′(s→ 0) =

1

8m2M2
=

1

8| ˙̄φ|2c2
s

, (A.27)

where we have used m = csρ and ρ = |φ̇0|/M . The left-hand side of (A.27) can also be computed
directly in the EFT for the canonically normalized field πc = csπ/|φ̇0| (after integrating out σ).
In the limit cs � 1, eq. (4.23) becomes

1

2
A′′(s→ 0) = c3

s ×
1

8

1

Λ4
=

1

8| ˙̄φ|2c2
s

, (A.28)
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where we used Λ = fπcs and f4
π = | ˙̄φ|2cs.3 We thus find exact agreement, at leading order in

cs � 1, with the single pole contribution to the dispersion relation.

µ 6= 0. Finally, we compute the forward scattering amplitude for µ 6= 0. We will assume that µ
is sufficiently large that we can neglect all other cubic terms. This example generates large c3 and
c4 in the EFT. We wish to determine whether the derived EFT parameters satisfy our positivity
constraint. A similar computation to the one above gives the O(µ2) contribution to the forward
amplitude

Aµ2 = − µ2

Z4(ω)

(
ωρ√

4p2ρ2 + (m2 + ρ2)2

)4 [
1

4ω2 −m2 − ρ2
− 1

4p2 +m2
− 1

m2

]
. (A.29)

The analytic properties of this amplitude are similar to the previous case with poles located at
4ω2 = m2 + ρ2 ' ρ2 and 4k2 = −m2. In the limit ω → 0, we get

Aµ2 → 1

8

µ2

m6
s2 , (A.30)

which is manifestly positive.

Although the analysis of this section was a non-trivial check of our positivity constraint, the
underlying reason for the positivity was already anticipated in §A.1. Specifically, the low-energy
amplitude was UV completed through the exchange of a single heavy state. As a result, the
coefficient function, Z, must scale as s2 in order to match the low-energy scaling of the EFT.4 It
is clear that this scaling arises from a single derivative acting on each external leg and therefore
Z is manifestly crossing symmetric. As a result, the residues of the u- and s-channel poles must
have the same sign, and therefore the forward amplitude must be positive. One can check that
this conclusion cannot be altered by changing the form of the interactions or of the mixing term.
We conclude that positivity of the sum rule is a generic feature of weakly coupled UV completions
of the EFT of inflation.

A.3 Computation of the amplitude

At tree level, we have two types of diagrams: (i) exchange diagrams involving the combination of
two cubic vertices and (ii) contact diagrams involving quartic vertices. We will treat these two
scattering processes in turn.

3In §4.2, we rescaled the coordinates by x̃i = xi/cs. This rescaling changes the normalization of the amplitude.
We have corrected for this difference by rescaling the result of §4.2 by a factor of c3s.

4One may also have Z ∝ s in such a way that the leading contributions to the s- and u-channels cancel in the
limit s → 0, leaving A(s) ∝ s2, as required. Such a cancelation will only occur when the sign of the u-channel
term is consistent with a positive contribution to our sum rule and therefore does not present a loophole to this
argument.
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Exchange diagrams. The Lagrangian at cubic order is

L̃3 =
1

Λ2

[
α1 π̇

3
c − α2 π̇c(∂̃πc)

2
]
, (A.31)

where the parameters αi are defined in (4.16). For each exchange diagram, we get factors of 1
2 i

2

from the two vertices, i3(−i)3 from the six momenta, and i from the propagator, leading to an
overall factor of −1

2 i. The two interactions in (A.31) lead to three different types of exchange
diagrams:

• π̇3 × π̇3. We first consider the diagram involving two factors of the interaction π̇3. The
internal contraction for this diagram only involves time derivatives, which implies that only
the s-channel is non-vanishing in the center-of-mass frame (using ω13 = ω14 = 0). There are
32 = 9 ways of choosing this internal contraction and 4× 2 = 8 diagrams for the s-channel;
hence the symmetry factor in this case is 72. The vertices give a factor of α2

1/Λ
4, and we

get

iMπ̇3 = −1

2
i · 72 · α

2
1

Λ4
·
[
ω2(2ω)

] 1

s

[
ω2(2ω)

]
= −9i

4
α2

1

s2

Λ4
, (A.32)

where the final equality holds in the center-of-mass frame.

• π̇(∂π)2 × π̇(∂π)2. The computation of the diagram involving two factors of π̇(∂π)2 is
slightly more involved. Now there are three possible internal contractions:

− π̇π̇. This internal contraction consists of time derivatives only, so only the s-channel
survives. Since there is only one way of choosing the internal contraction, the symmetry
factor is 8 and we get

iMπ̇(∂π)2,a = −1

2
i · 8 · (−α2)2

Λ4

[
(p̃1 · p̃2)2ω

] 1

s

[
(p̃3 · p̃4)2ω

]
= −i α2

2

s2

Λ4
. (A.33)

− π̇∂π. Again, only the s-channel contributes, but now there are 4 possible ways of choos-
ing the internal contraction, giving a symmetry factor of 8 × 4 = 32. The amplitude
is

iMπ̇(∂π)2,b = −1

2
i · 32 · (−α2)2

Λ4

[
ω p̃1 · (p̃1 + p̃2)

] 1

s

[
2ω(p̃3 · p̃4)

]
= −2i α2

2

s2

Λ4
. (A.34)

− ∂π∂π. Since there are no time derivatives appearing in the internal contraction this
time, naively we would expect that both the t- and u-channels would contribute. How-
ever, it turns out that both vanish in this case too. To see this, note that the scattering
amplitude in the t-channel contains terms such as (p̃1− p̃3) ·(p̃1 + p̃3) = 0 (and similarly
for the u-channel), giving zero amplitude.5 Noting that the symmetry factor for the

5The absence of low-energy poles is a genuine feature for all tree level exchange diagrams in the EFT of

128



A.3. Computation of the amplitude

s-channel is again 32, we find

iMπ̇(∂π)2,c = −1

2
i ·32 · (−α2)2

Λ4

[
ω p̃1 · (p̃1 + p̃2)

] 1

s

[
(p̃3 + p̃4) · p̃3 ω

]
= −i α2

2

s2

Λ4
. (A.35)

• π̇3 × π̇(∂π)2. Finally, we consider the exchange diagram involving both interactions, π̇3

and π̇(∂π)2. There are two such cross-terms, each with amplitude proportional to α1α2/Λ
4.

We have two types of internal contractions:

− π̇π̇. There are three ways of obtaining this internal contraction, giving the symmetry
factor of 3× 8 = 24 for the s-channel. We therefore have

iMπ̇3×π̇(∂π)2,a = −i1
2
· 2 · 24 · −α1α2

Λ4

[
(p̃1 · p̃2)2ω

] 1

s

[
2ωω2

]
= −3i α1α2

s2

Λ4
. (A.36)

− π̇∂π. The number of terms with this internal contraction is 3×2 = 6, so the symmetry
factor is 6× 8 = 48. We get

iMπ̇3×π̇(∂π)2,b = −i1
2
·2 ·48 · −α1α2

Λ4

[
ωp̃1 · (p̃1 + p̃2)

] 1

s

[
2ωω2

]
= −3i α1α2

s2

Λ4
. (A.37)

Contact diagrams. The Lagrangian at quartic order is

L̃4 =
1

Λ4

[
β1 π̇

4
c − β2 π̇

2
c (∂̃πc)

2 + β3 (∂̃πc)
4
]
, (A.38)

where the parameters βi are defined in (4.17). For each contact diagram, we get an overall factor
of i(−i)2i2 = i. The three interactions in (A.38) lead to the following amplitudes:

• π̇4. In the center-of-mass frame, this quartic interaction has equal contributions from s-, t-
and u-channels, and comes with a symmetry factor of 24, giving

iMπ̇4 = i · 24 · β1

Λ4
ω4 =

3i

2
β1

s2

Λ4
. (A.39)

• π̇2(∂π)2. For this interaction each channel comes with a symmetry factor of 8, and we get

iMπ̇2(∂π)2 = i · 8 · −β2

Λ4

[
ω2(p̃1 · p̃2) + ω2(p̃1 · p̃3) + ω2(p̃1 · p̃4)

]
= i β2

s(s− t̃− ũ)

Λ4
= 2i β2

s2

Λ4
, (A.40)

inflation, so that the forward scattering limit is well-defined in spite of π being massless. To see this, first note
that any internal contraction involving time derivative operators will vanish in the t-channel, and moreover those
involving box operators will bring up factors of t, cancelling with the poles in the denominator. The remaining
contractions then involve terms of the form ∂µ1···µnπ∂ν1···νmπ. However, since these indices must be contracted
with external legs, they will again induce factors of t, either cancelling within themselves due to antisymmetry
to give zero contribution (as in our case) or with the poles to yield non-zero but pole-free amplitudes. Similar
arguments hold for the absence of s- and u-channel poles.
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where we used the relation s+ t̃+ ũ = 0 to represent the result in terms of s only.

• (∂π)4. The symmetry factor for this interaction is again 8 for each channel, giving

iM(∂π)4 = i · 8 · β3

Λ4

[
(p̃1 · p̃2)(p̃3 · p̃4) + (p̃1 · p̃3)(p̃2 · p̃4) + (p̃1 · p̃4)(p̃2 · p̃3)

]
= 2i β3

(s2 + t̃2 + ũ2)

Λ4
. (A.41)

Notice that this is the only amplitude with a non-trivial angular dependence.

Total amplitude. Adding the above results, gives the total amplitude

M(s, t̃) =

(
−9

4
α2

1 − 4α2
2 − 6α1α2 +

3

2
β1 + 2β2

)
s2

Λ4
+ 2β3

(s2 + t̃2 + ũ2)

Λ4
. (A.42)

In the forward limit, t̃→ 0, we find

A(s) =

(
−9

4
α2

1 − 4α2
2 − 6α1α2 +

3

2
β1 + 2β2 + 4β3

)
s2

Λ4
. (A.43)
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B. Particles in de Sitter space

In this appendix, we will derive various mathematical results that have been used in Chapter 5.
In §B.1, we obtain the mode functions for massive spinning fields in de Sitter space by solving
their equations of motion. We then derive the formula for their two-point function in §B.2.

Preliminaries. We will work with the components of the spinning field σµ1···µs projected onto
spatial slices, i.e. σi1···inη···η. We will find it convenient to write these as

σi1···inη···η =
∑
λ

σλn,sε
λ
i1···in , (B.1)

where ελi1···in is a suitably normalized polarization tensor (see insert below). The sub/superscripts
on the mode functions σλn,s label three “quantum numbers”: s is the spin (or the rank) of the
spacetime tensor field, n is its “spatial" spin, and λ is the helicity component of the spatial spin.

Polarization tensors.—In this insert, we will derive explicit expressions for the polarization tensors
of arbitrary spin and helicity. The longitudinal polarization tensors are functions of k̂, while the
transverse polarization tensors in addition depend on two polarization directions ε̂±, with k̂ · ε̂± = 0.
Since ε̂+ and ε̂− are related to each other by the reality condition ε̂+ = (ε̂−)∗, let us denote one of
them by ε̂. The polarization tensors of helicity λ satisfy the following conditions:

i) symmetric: ελi1···is = ελ(i1···is).

ii) traceless: ελiii3···is = 0.

iii) transverse: k̂i1 · · · k̂inελi1···is = 0, when n > s− λ.

The last condition implies that the polarization tensor is of the form

ελi1···is(k̂, ε̂) = ελ(i1···iλ(ε̂) fiλ+1···is)(k̂) , (B.2)

where k̂i1ελi1···iλ(ε̂) = 0 and fi1···is−λ is some tensor. Let us contract with vectors q and define

Fλs (x, y, z) ≡ qi1 · · · qisελi1···is(k̂, ε̂) , (B.3)

where we have defined x ≡ q2, y ≡ q · k̂, and z ≡ qi1 · · · qiλελi1···iλ . The function Fλs is a homogeneous
polynomial in q, so that

2xFλs,x + yFλs,y + λzFλs,z = sFλs . (B.4)



Particles in de Sitter space

The transverse and traceless conditions translate into

zFλs,z = Fλs , (B.5)

4xFλs,xx + 4yFλs,xy + 4λzFλs,xz + 2dFλs,x + Fλs,yy = 0 , (B.6)

where d is the number of spatial dimensions. Taking derivatives of (B.4) and (B.5), and substituting
into (B.6), we get

(x− y2)Fλs,yy − (2λ+ d− 1)yFλs,y + (s− λ)(s+ λ+ d− 2)Fλs = 0 . (B.7)

Without loss of generality, we now set x = q2 ≡ 1. The solution to (B.5) and (B.7) is

Fλs (y, z) ∝ zP̂ βλβs (y) , (B.8)

where P̂ βλβs is part of the associated Legendre polynomial P βλβs of degree βs ≡ 1
2 (2s+ d− 3) and order

βλ ≡ 1
2 (2λ + d − 3), defined by P βλβs (y) = (1 − y2)βλ/2P̂ βλβs . We will set P βλs ≡ P

|βλ|
s and distinguish

the opposite helicities only by the phase. For d = 3, this reduces to

Fλs (y, z) ∝ zP̂λs (y) . (B.9)

This result includes longitudinal polarization tensors for λ = 0 and z = 1. It is straightforward to
obtain explicit expressions for the polarization tensors by stripping off the contractions with q in (B.9)
and symmetrizing the indices:

ελi1···is(k̂, ε̂) =
1

(2λ− 1)!!

s−λ∑
n=0

Bn ε
λ
(i1···iλ(ε̂) k̂iλ+1

· · · k̂iλ+nδiλ+n+1···is) , (B.10)

where

Bn ≡
2s

n!(s− n− λ)!

Γ[ 1
2 (n+ λ+ 1 + s)]

Γ[ 1
2 (n+ λ+ 1− s)] , δi1···in ≡

δi1i2 · · · δin−1in n even

0 n odd
. (B.11)

The self-contraction of the polarization tensors can be written as

ελi1···isε
λ∗
i1···is =

(2s− 1)!!(s+ λ)!

2λ[(2λ− 1)!!]2s!(s− λ)!
ελi1···iλε

λ∗
i1···iλ . (B.12)

When choosing the orthogonal direction to be in, say, the z-direction, there will be in total of 2s

non-zero components for the polarized tensor εsi1···is , which are ±1 or ±i up to a phase. This means

that εsi1···isε
s∗
i1···is = 2s with some overall normalization which we set to unity for convenience.

B.1 Mode functions

In this section, we will derive the de Sitter mode functions for fields with spin. We will explicitly
derive the mode functions for fields with spins 1 and 2, and present the results for arbitrary spin
at the end.
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Spin-1. The equation of motion of a massive spin-1 field σµ is

(�−m2
1)σµ = 0 , (B.13)

with∇µσµ = 0 andm2
1 = m2+3H2. The equation of motion expressed in terms of the components

ση and σi are

σ′′η −
(
∂2
j −

m2/H2 − 2

η2

)
ση =

2

η
∂iσi , (B.14)

σ′′i −
(
∂2
j −

m2/H2

η2

)
σi =

2

η
∂iση , (B.15)

where a prime denotes a derivative with respect to conformal time, and the transverse condition
gives

σ′η −
2

η
ση = ∂iσi . (B.16)

In order to decouple the equations (B.14) and (B.15), we expand the field σµ into its different
helicity components,

σµ =

1∑
λ=−1

σ(λ)
µ , (B.17)

where

σ(0)
η = σ0

0,1 , σ(±1)
η = 0 , (B.18)

σ
(0)
i = σ0

1,1ε
0
i , σ

(±1)
i = σ±1

1,1ε
±1
i . (B.19)

We demand that the polarization vectors ελi (k̂) satisfy

k̂iε
0
i = 1 , k̂iε

±1
i = 0 , ε±1

i = ε∓1∗
i , ε±1

i ε±1∗
i = 2 . (B.20)

The choice of the normalization (B.20) uniquely fixes the longitudinal polarization vector to be
ε0
i (k̂) = k̂i, and the transverse polarization vectors are fixed up to a phase. For momentum along
the z-direction, they can be chosen to be ε±1

i (ẑ) = (1,±i, 0).

In terms of the mode functions defined in (B.18) and (B.19), the equations (B.14) and (B.15)
decouple

σ0
0,1
′′ − 2

η
σ0

0,1
′
+

(
k2 +

m2/H2 + 2

η2

)
σ0

0,1 = 0 , (B.21)

σ0
1,1
′′ − k2η2

k2η2 +m2/H2

2

η
σ0

1,1
′
+

(
k2 +

m2/H2

η2

)
σ0

1,1 = 0 , (B.22)

σ±1
1,1
′′

+

(
k2 +

m2/H2

η2

)
σ±1

1,1 = 0 , (B.23)
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and the transverse condition (B.16) becomes

σ0
1,1 = − i

k

(
σ0

0,1
′ − 2

η
σ0

0,1

)
. (B.24)

The solutions to these equations with the Bunch-Davies initial condition are

σ0
0,1 = A1N1(−kη)3/2Hiµ1 , (B.25)

σ0
1,1 =

i

2
A1N1(−kη)1/2

[
kη
(
Hiµ1+1 −Hiµ1−1

)
−Hiµ1

]
, (B.26)

σ±1
1,1 = A1Z

±1
1 (−kη)1/2Hiµ1 , (B.27)

where A1 ≡ eiπ/4e−πµ1/2 and Z±1
1 denotes the normalization constant for the helicity-±1 mode of

the spin-1 field. We have also suppressed the argument −kη of the Hankel functions Hiµ1 ≡ H
(1)
iµ1

for brevity.

A few comments are in order. First, note that for m = 0 equation (B.23) for the transverse
mode becomes the flat space wave equation, whose solutions are simply plane waves. This is
because the action of a massless spin-1 field is conformally invariant, so the mode in de Sitter
space behaves as if it were in flat space. On the other hand, we do not see this behavior for
the longitudinal mode. In particular, the longitudinal mode blows up relative to the transverse
mode as we go to the infinite past η → −∞. We can understand this as follows. The mass term
m2/H2η2 in the action (5.1) is time dependent, so the spin-1 field is effectively massless in the
infinite past, in which case the longitudinal mode turns into a pure gauge mode.

We still need to determine the normalization constants N1 and Z±1
1 . This is done by imposing

orthonormality of mode functions under the inner product〈
σ(λ)
µ (k, η)eik·x, σ(λ′)

ν (k′, η)eik
′·x
〉

= δλλ′δ(k− k′) . (B.28)

This orthonormality condition guarantees that we get the standard equal-time commutation re-
lation upon canonical quantization. We have〈

σ(0)
µ (k, η)eik·x, σ(0)

ν (k′, η)eik
′·x
〉

= −iηµν
∫

d3x
[
σ(0)
µ σ(0)∗

ν

′ − σ(0)
µ

′
σ(0)∗
ν

]
ei(k−k

′)·x

= −i
[
−W(σ0

0,1, σ
0∗
0,1) +W(σ0

1,1, σ
0∗
1,1)
]
δ(k− k′) , (B.29)

where W denotes the Wronskian. Substituting (B.25) and (B.27), we obtain

W(σ0
0,1, σ

0∗
0,1) =

4ik3η2

π
×N2

1 , (B.30)

W(σ0
1,1, σ

0∗
1,1) =

4ik(k2η2 + 1/4 + µ2
1)

π
×N2

1 . (B.31)

Note that the time dependences in (B.30) and (B.31) cancel in (B.29). Imposing (B.28), we then
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get

N1 =

√
π

2

1√
2k

1

(1/4 + µ2
1)1/2

=

√
π

2

1√
2k

H

m
. (B.32)

The normalization for the transverse mode can be determined in a similar way. We get

Z±1
1 =

√
π

2

1√
2k

. (B.33)

Notice that the normalization for the longitudinal mode blows up when m = 0, which, again, does
not signal any pathologies, since the longitudinal mode becomes a pure gauge mode in this limit.

Spin-2. The equations of motion and the constraints satisfied by a massive spin-2 field σµν are

(�−m2 − 2H2)σµν = 0 , ∇µσµν = 0 , σ̃ ≡ σµµ = 0 . (B.34)

In terms of components, these are

σ′′ηη +
2

η
σ′ηη −

(
∂2
k −

m2/H2 − 6

η2

)
σηη =

4

η
∂iσiη +

2

η2
σii , (B.35)

σ′′iη +
2

η
σ′iη −

(
∂2
k −

m2/H2 − 6

η2

)
σiη =

2

η
∂iσηη +

2

η
∂jσij , (B.36)

σ′′ij +
2

η
σ′ij −

(
∂2
k −

m2/H2 − 2

η2

)
σij =

4

η
∂(iσj)η +

2

η2
σηηδij , (B.37)

and

σ′ηη − ∂iσiη −
1

η
σηη −

1

η
σii = 0 , (B.38)

σ′iη − ∂jσij −
2

η
σiη = 0 , (B.39)

σηη − σii = 0 . (B.40)

As before, we expand the Fourier modes into helicity eigenstates

σµν =
2∑

λ=−2

σ(λ)
µν . (B.41)

Let us denote the traceless part of the spatial tensor by σ̂ij , so that σij = σ̂ij + 1
3σηηδij , and

decompose the mode functions into different helicities:

σ(0)
ηη = σ0

0,2 , σ(±1)
ηη = 0 , σ(±2)

ηη = 0 , (B.42)

σ
(0)
iη = σ0

1,2ε
0
i , σ

(±1)
iη = σ±1

1,2 ε
±1
i , σ

(±2)
iη = 0 , (B.43)

σ̂
(0)
ij = σ0

2,2ε
0
ij , σ̂

(±1)
ij = σ±1

2,2 ε
±1
ij , σ̂

(±2)
ij = σ±2

2,2 ε
±2
ij . (B.44)
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Demanding that the polarization tensors satisfy

k̂iε
0
ij = ε0

j , k̂iε
±1
ij =

3

2
ε±1
j , kiε

±2
ij = 0 , ε±2

ij = ε∓2∗
ij , ε±2

ij ε
±2∗
ij = 4 , (B.45)

leads to

ε0
ij =

3

2

(
k̂ik̂j −

1

3
δij

)
, ε±1

ij =
3

2

(
k̂iε
±1
j + k̂jε

±1
i

)
, (B.46)

and fixes ε±2
ij up to a phase. For k̂ along the z-direction, this can be chosen to be

ε±2
ij (ẑ) =

 1 ±i 0

±i −1 0

0 0 0

 . (B.47)

The equations satisfied by the different helicity modes are

σ0
0,2
′′ − 2

η
σ0

0,2
′
+

(
k2 +

m2/H2

η2

)
σ0

0,2 = 0 , (B.48)

σ±1
1,2
′′

+

(
k2 +

m2/H2 − 2

η2

)
σ±1

1,2 = 0 , (B.49)

σ±2
2,2
′′

+
2

η
σ±2

2,2
′
+

(
k2 +

m2/H2 − 2

η2

)
σ±2

2,2 = 0 , (B.50)

subject to the transverse conditions

σ0
1,2 = − i

k

(
σ0

0,2
′ − 2

η
σ0

0,2

)
, σ0

2,2 = − i
k

(
σ0

1,2
′ − 2

η
σ0

1,2

)
− 1

3
σ0

0,2 , (B.51)

σ±1
2,2 = − i

k

(
σ±1

1,2
′ − 2

η
σ±1

1,2

)
. (B.52)

The solutions with Bunch-Davies initial conditions are

σ0
0,2 = A2N2(−kη)3/2Hiµ2 , (B.53)

σ0
1,2 =

i

2
A2N2(−kη)1/2

[
kη
(
Hiµ2+1 −Hiµ2−1

)
−Hiµ2

]
, (B.54)

σ0
2,2 =

1

12
A2N2(−kη)−1/2

[
6kη

(
(2 + iµ2)Hiµ2+1 − (2− iµ)Hiµ2−1

)
− (9− 8k2η2)Hiµ2

]
, (B.55)

for the longitudinal modes, and

σ±1
1,2 = A2Z

±1
2 (−kη)1/2Hiµ2 , (B.56)

σ±1
2,2 =

i

2
A2Z

±1
2 (−kη)−1/2

[
kη
(
Hiµ2+1 −Hiµ2−1

)
− 3Hiµ2

]
, (B.57)

σ±2
2,2 = A2Z

±2
2 (−kη)−1/2Hiµ2 , (B.58)
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for the higher-helicity modes.

To fix the normalization, we again impose orthonormality of the mode functions〈
σ(λ)
µα (k, η)eik·x, σ(λ′)

νβ (k′, η)eik
′·x
〉

= δλλ′δ(k− k′) . (B.59)

We have〈
σ(0)
µα(k, η)eik·x, σ(0)

νβ (k′, η)eik
′·x
〉

= − i

a2
ηµνηαβ

∫
d3x

[
σ(0)
µασ

(0)∗′
νβ − σ(0)′

µα σ
(0)∗
νβ

]
ei(k−k

′)·x

= − i

a2

[
4

3
W(σ0

0,2, σ
0∗
0,2)− 2W(σ0

1,2, σ
0∗
1,2) +

3

2
W(σ0

2,2, σ
0∗
2,2)

]
δ(k− k′) , (B.60)

where

W(σ0
0,2, σ

0∗
0,2) =

4ik3η2

π
×N2

2 , (B.61)

W(σ0
1,2, σ

0∗
1,2) =

4ik(k2η2 + 1/4 + µ2
2)

π
×N2

2 , (B.62)

W(σ0
2,2, σ

0∗
2,2) =

i[32k4η4 + 96k2η2(1/4 + µ2
2) + 72(1/4 + µ2

2)(9/4 + µ2
2)]

18πkη2
×N2

2 . (B.63)

The condition (B.60) then sets the normalization constant to be

N2 =

√
π

3

1√
2k

k

H

1[
(1/4 + µ2

2)(9/4 + µ2
2)
]1/2 . (B.64)

We see that this diverges at m2 = 0 and m2 = 2H2. This is again to be expected. For m = 0,
the action gains gauge invariance, in which case only the helicity-±2 modes are physical. For
m2 = 2H2, the field becomes partially massless, and the number of propagating degrees of free-
dom becomes four. In both cases, the longitudinal mode becomes a pure gauge mode. Finally,
determining the normalizations of the transverse modes in an analogous way, we get

Z±1
2 =

√
π

3

1√
2k

k

H

1

(9/4 + µ2
2)1/2

, Z±2
2 =

√
π

2

1√
2k

k

H
. (B.65)

In the massless limit, Z±1
2 diverges and only Z±2

2 remains finite.

Spin-s. For spins higher than two, we need to solve the on-shell equations (5.7). In order to
decouple these equations, we expand the field σµ1···µs into its different helicity components

σµ1···µs =

s∑
λ=−s

σ
(λ)
µ1···µs . (B.66)

A mode of helicity λ and n polarization directions can be written as

σ
(λ)
i1···inη···η = σλn,sε

λ
i1···in , (B.67)
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where σλn,s = 0 for n < |λ|. The helicity-λ mode function with n = |λ| number of polarization
directions satisfies

σλ|λ|,s
′′ − 2(1− λ)

η
σλ|λ|,s

′
+

(
k2 +

m2/H2 − (s+ λ− 2)(s− λ+ 1)

η2

)
σλ|λ|,s = 0 , (B.68)

whose solution is given by

σλ|λ|,s = AsZλs (−kη)3/2−λHiµs . (B.69)

The other mode functions can then be obtained iteratively using the following recursion relation:

σλn+1,s = − i
k

(
σλn,s

′ − 2

η
σλn,s

)
−

n∑
m=|λ|

Bm,n+1σ
λ
m,s , (B.70)

where

Bm,n ≡
2nn!

m!(n−m)!(2n− 1)!!

Γ[1
2(1 +m+ n)]

Γ[1
2(1 +m− n)]

. (B.71)

Having obtained the formula that enables us to compute the mode functions of arbitrary spin and
helicity, let us now fix their normalization constants. In order to do so, we first define an inner
product between two mode functions. Note that if fµ1···µs and hν1···µs are two solutions to (5.7),
then the current

Jµ ≡ fν1···νs∇µh∗ν1···νs − h∗ν1···νs∇µfν1···νs , (B.72)

is conserved, ∇µJµ = 0. This means that we can define an inner product of two solutions

〈fµ1···µs , hν1···νs〉 ≡ −igµ1ν1 · · · gµsνs
∫

dΣnλ
√
ĝ
[
fµ1···µs∇λh∗ν1···νs − h∗ν1···νs∇λfµ1···µs

]
, (B.73)

where Σ denotes a spacelike hypersurface, ĝ is the determinant of the spatial metric, and nµ is
the timelike unit vector orthogonal to Σ. The conservation of the current (B.72) implies that the
inner product is time independent. For the FRW metric, the above inner product reduces to

〈fµ1···µs , hν1···νs〉 = − i

a2(s−1)
ηµ1ν1 · · · ηµsνs

∫
d3x

[
fµ1···µsh

∗′
ν1···νs − f ′µ1···µsh

∗
ν1···νs

]
. (B.74)

The normalization in (B.69) is then determined by imposing orthonormality under the inner
product (B.74): 〈

σ
(λ)
µ1···µs(k, η)eik·x, σ(λ′)

ν1···νs(k
′, η)eik

′·x
〉

= δλλ′δ(k− k′) . (B.75)

Since the inner product is time independent, it does not matter which time slice we choose to
evaluate the integral on. We will therefore evaluate the integral on the future boundary by taking
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the limit η → 0. From (B.70), we note that σλn1,s is subleading compared to σλn2,s in the limit
η → 0 for all n1 < n2, so we simply need to compute the Wronskian of the mode with the highest
number of polarization directions, σλs,s. If we had kept all the Wronskians, then the subleading
time-dependent terms would cancel. Note also that the trace terms in (B.70) become subleading
in the limit η → 0, so we will drop these terms. Since (B.74) is a constant, the leading term in
the Wronskian must scale as η2(1−s) to cancel off the factor a2(1−s). In the insert below, we will
show that the orthonormality condition fixes the normalization constant to be

(Zλs )2 =
1

k

(
k

H

)2s−2

(Zλs )2 , (B.76)

(Zλs )2 ≡ π

4

[(2λ− 1)!!]2s!(s− λ)!

(2s− 1)!!(s+ λ)!

Γ(1
2 + λ+ iµs)Γ(1

2 + λ− iµs)
Γ(1

2 + s+ iµs)Γ(1
2 + s− iµs)

. (B.77)

Note that the normalization constant has poles at µ2
s = {−(n+ 1

2)2}sn=λ, at which the spinning field
becomes (partially) massless and some of the helicity modes become unphysical. For convenience,
we will denote the normalization of the longitudinal mode by Ns ≡ Z0

s (Ns ≡ Z0
s ).

Derivation of (B.76).—First, note that the n-th mode function can be cast in the form

σλn,s = AsZλs (−kη)3/2−n
[
(xn + iyn)Hiµs + (wn + izn)kηHiµs+1

]
, (B.78)

by use of the recursion relation Hiµs+1(x) + Hiµs−1(x) = (2iµs/x)Hiµs(x). The coefficients xn, yn,
wn, and zn can in general depend on time, but are constant in the limit η → 0. The Wronskian is

W
[
σλn,s, σ

λ∗
n,s

]
=

4ik(Zλs )2

π(kη)2(n−1)

[
Xn − 2µsYn(cothπµs − 1)

]
, (B.79)

where

Xn ≡ x2
n + y2

n , Yn ≡ xnzn − ynwn + (w2
n + z2

n)µs . (B.80)

Let us show that in fact Yn = 0 for any n-th order mode function. We do this by induction. First, it
is trivial to check that this is satisfied by the mode (B.69). Now, assume that Yn = 0 is satisfied at
some n-th order. Using the recursion relation (B.70), and taking the limit η → 0, we get

σλn+1,s = A(µs)Z
λ
s (−kη)1/2−n

[
(xn+1 + iyn+1)Hiµs + (wn+1 + izn+1)kηHiµs+1

]
, (B.81)

where

2xn+1 = −2µsxn + (2n+ 1)yn , 2yn+1 = −(2n+ 1)xn − 2µsyn ,

2wn+1 = −2yn + 2µswn + (2n+ 1)zn , 2zn+1 = 2xn − (2n+ 1)wn + 2µszn . (B.82)

These coefficients then give

Xn+1 =
[
(n+ 1

2 )2 + µ2
s

]
Xn , Yn+1 =

[
(n+ 1

2 )2 + µ2
s

]
Yn . (B.83)
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Hence, Yn+1 = 0. Since n was arbitrary, we conclude that Yn = 0 for all n. Next, we show that the
Wronskian of the n-th longitudinal mode function has the form

W
[
σλn,s, σ

λ∗
n,s

]
=

4ik(Zλs )2

π(kη)2(n−1)

Γ( 1
2 + n+ iµs)Γ( 1

2 + n− iµs)
Γ( 1

2 + λ+ iµs)Γ( 1
2 + λ− iµs)

. (B.84)

The Wronskian of the mode function (B.69) is

W
[
σλλ,s, σ

λ∗
λ,s

]
=

4ik(Zλs )2

π(kη)2(λ−1)
, (B.85)

and hence satisfies (B.84). Assuming that (B.84) is true at n-th order and using (B.83), we get

W
[
σλn+1,s, σ

λ∗
n+1,s

]
=

4ik(Zλs )2

π(kη)2n
Xn+1 =

[
(n+ 1

2 )2 + µ2
s

]
(kη)2

4ik(Zλs )2

π(kη)2(n−1)
Xn

=

[
(n+ 1

2 )2 + µ2
s

]
(kη)2

W
[
σλn,s, σ

λ∗
n,s

]
=

4ik(Zλs )2

π(kη)2n

Γ( 3
2 + n+ iµs)Γ( 3

2 + n− iµs)
Γ( 1

2 + λ+ iµs)Γ( 1
2 + λ− iµs)

, (B.86)

where in the last line we have use the fact that

Γ( 3
2 + n+ iµs)Γ( 3

2 + n− iµs)
Γ( 1

2 + n+ iµs)Γ( 1
2 + n− iµs)

= (n+ 1
2 )2 + µ2

s . (B.87)

Thus, we have proven (B.84). Finally, the inner product (B.74) is given by〈
σ

(λ)
µ1···µs(k, η)eik·x, σ

(λ)
ν1···νs(k

′, η)eik
′·x
〉

= − i

a2(s−1)
ηµ1ν1 · · · ηµsνs

∫
d3x

[
σ

(λ)
µ1···µsσ

(λ)∗′
ν1···νs − σ(λ)′

µ1···µsσ
(λ)∗
ν1···νs

]
ei(k−k

′)·x

= −i(−Hη)2(s−1)W
[
σλs,s, σ

λ∗
s,s

]
ελi1···isε

λ∗
i1···isδ(k− k′)

=
4k(Zλs )2

π

(
H

k

)2(s−1) Γ( 1
2 + s+ iµs)Γ( 1

2 + s− iµs)
Γ( 1

2 + λ+ iµs)Γ( 1
2 + λ− iµs)

ελi1···isε
λ∗
i1···isδ(k− k′) . (B.88)

Note that our final normalization depends on the normalization of the polarization tensors. This does

not affect correlation functions, however, as we show in the next section. Plugging (B.12) into (B.88)

and imposing (B.75), we obtain (B.76).

B.2 Two-point function

In this section, we will compute the two-point functions of spinning fields. For this purpose, it
will be convenient to contract free indices of the spinning fields with auxiliary vectors. In other
words, we will compute

〈
(n · σ)2

〉′
s
≡
〈
(ni1 · · ·nisσi1···is(η))

(
ñj1 · · · ñjsσj1···js(η′)

)〉′
, (B.89)
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where n ≡ (cosα, sinα, i) and ñ ≡ (cosβ, sinβ,−i) are null vectors. For generic η and η′, the
two-point function is

〈
(n · σ)2

〉′
s

=
s∑

λ=−s
eiλχ

[
(2s− 1)!!

(2λ− 1)!!(s− λ)!

]2

σλs,s(−kη)σλ∗s,s(−kη′) , (B.90)

where χ ≡ α − β. In the late-time limit (or the long-wavelength limit), the two-point function
simplifies considerably. We get

lim
η,η′→0

〈
(n · σ)2

〉′
s

=
(H2ηη′)3/2−s

4πH

s∑
λ=−s

eiλχ

[
C(µs, λ, s) Γ(−iµs)2

(
k2ηη′

4

)iµs
+ c.c.

]
, (B.91)

where

C(µs, λ, s) ≡
(2s− 1)!!s!

(s− λ)!(s+ λ)!

Γ(1
2 + s− iµs)Γ(1

2 + λ+ iµs)

Γ(1
2 + s+ iµs)Γ(1

2 + λ− iµs)
. (B.92)

This late-time expectation value matches the two-point function of a spin-s field of a conformal
field theory living on the future boundary, which have been computed in [102].

Derivation of (B.91).—The two-point function (B.89) can be written as

〈(n · σ)2〉′s =

s∑
λ=−s

(ni1 · · ·nisελi1···is)(ñj1 · · · ñjsελ∗j1···js)σλs,sσλ∗s,s . (B.93)

Let us compute σλs,sσλ∗s,s in the late-time limit. First, recall that we can cast the mode function in the
form

σλn,s = AsZλs (−kη)3/2−n
[
(xn + iyn)Hiµs + (wn + izn)kηHiµs+1

]
. (B.94)

Taking the asymptotic limits of the Hankel functions, we get

σλn,sσ
λ∗
n,s

∣∣∣
η,η′→0

= (Zλs )2 (k2ηη′)3/2−n

π2

[
Wn Γ(−iµs)2

(
k2ηη′

4

)iµs
+ c.c.

]
+ local terms , (B.95)

where

Wn ≡ x2
n + y2

n + 2µs(xn + iyn)(iwn + zn) . (B.96)

Using (B.82), we obtain the recursion relation

Wn+1 =
(
n+ 1

2 − iµs
)2
Wn . (B.97)

Following similar arguments as in the previous section, it can then be shown that

Wn =
Γ( 1

2 + s− iµs)2

Γ( 1
2 + λ− iµs)2

. (B.98)
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Substituting (B.76), (B.95), and (B.98) into (B.93), we obtain

〈(n · σ)2〉′s =
(H2ηη′)3/2−s

4πH

s∑
λ=−s

Iλs (n, ñ)

[
D(s, λ, µs)Γ(−iµs)2

(
k2ηη′

4

)iµs
+ c.c.

]
, (B.99)

where we have dropped the local terms and defined

Iλs (n, ñ) ≡ (ni1 · · ·nisελi1···is)(ñi1 · · · ñisελ∗i1···is)
ελi1···isε

λ∗
i1···is

, (B.100)

D(s, λ, µs) ≡
Γ( 1

2 + s− iµs)Γ( 1
2 + λ+ iµs)

Γ( 1
2 + s+ iµs)Γ( 1

2 + λ− iµs)
. (B.101)

To obtain an expression for Iλs , let us first recall that the structure of the polarization tensors are
given by the (associated) Legendre polynomials. Contracting with null vectors, only the term with the
leading power in k survives (with no Kronecker delta’s), whose coefficient is (2s−1)!!/[(2λ−1)!!(s−λ)!].
This means that

(ni1 · · ·nisελi1···is)(ñi1 · · · ñisελ∗i1···is) =

[
(2s− 1)!!

(2λ− 1)!!(s− λ)!

]2

eisχ , (B.102)

where we used the fact that we get one factor of eiα for each contraction with a null vector,
i.e. ni1 · · ·nisεsi1···is = eisα. Combining (B.102) and (B.12), we get

Iλs (n, ñ) =
(2s− 1)!!s!

(s− λ)!(s+ λ)!
eiλχ . (B.103)

Substituting this into (B.99), we obtain (B.91).
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In this appendix, we present details of the in-in computations of Chapter 5. In particular, we will
give explicit expressions for the shape functions introduced in (5.61), (5.76), (5.79) and (5.84).

Preliminaries. The expectation value of an operator Q is computed by

〈Q(η)〉 = 〈0|
[
T̄ei

∫ η
−∞ dη′ĤI(η′)

]
Q(η)

[
Te−i

∫ η
−∞ dη′ĤI(η′)

]
|0〉 , (C.1)

where |0〉 is the vacuum state of the free theory, T and T̄ denote time-ordering and anti-time-
ordering, respectively, and ĤI is the interaction Hamiltonian. To compute the quantum expecta-
tion values, we promote the fields π, γ, σ to operators and expand in Fourier space

π(k, η) = πk(η)a(k) + h.c. , γij(k, η) =
∑
λ=±2

ελij(k)γλk (η)b(k, λ) + h.c. , (C.2)

σ̂i1···is(k, η) =
s∑

λ=−s
ελi1···is(k)σλs,s(k, η)bs(k, λ) + h.c. , (C.3)

where the creation and annihilation operators obey the usual canonical commutation relations

[a(k), a†(k′)] = (2π)3δ(k− k′) , (C.4)

[b(k, λ), b†(k′, λ′)] = [bs(k, λ), b†s(k
′, λ′)] = (2π)3δ(k− k′)δλλ′ . (C.5)

The mode functions for the Goldstone and the graviton are

πk(η) =
H

f2
π

i√
2k3

(1 + icπkη)e−icπkη , γλk (η) =
H

Mpl

i√
2k3

(1 + ikη)e−ikη . (C.6)

The mode functions σλs,s(k, η) were derived in Appendix B. It will be convenient to write the
longitudinal and helicity-±2 mode functions as

σ0
s,s(−kη) = Ns(−kη)3/2−sG(s)

iµs
(−kη) , σ±2

s,s (−kη) = Z±2
s (−kη)3/2−s G̃(s)

iµs
(−kη) , (C.7)

where the functions G(s)
iµs
≡ G

(s,λ=0,n=s)
iµs

and G̃
(s)
iµs
≡ G

(s,λ=±2,n=s)
iµs

can be obtained recursively
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using (B.70), or

G
(s,λ,n+1)
iµs

(x) =
i

2

[
2x∂xG

(s,λ,n)
iµs

(x) + (1− 2n)G
(s,λ,n)
iµs

(x)
]
−

s∑
m=λ

Bm,n+1G
(s,λ,m)
iµs

(x) , (C.8)

given G(s,λ,λ)
iµs

(x) = AsHiµs(x). For s = 1 and 2, we get

G
(1)
iµ1

(x) ≡ i

2
A1

[
x
(
Hiµ1−1(x)−Hiµ1+1(x)

)
−Hiµ1(x)

]
, (C.9)

G
(2)
iµ2

(x) ≡ 1

12
A2

[
6x
[
(2− iµ2)Hiµ2−1(x)− (2 + iµ2)Hiµ2+1(x)

]
− (9− 8x2)Hiµ2(x)

]
. (C.10)

C.1 Integral expressions

In §5.3, the results for the bispectra were defined in terms of a number of momentum-dependent
functions. In the following, we give explicit integral expressions for these functions:

• For s ≥ 2, the functions I(s) in (5.61) are given by

I(s) ≡
3∑
j=1

2π3N 2
s

k
3/2
1 k

7/2
2 k3

Re[I(s)
j ] , (C.11)

I(s)
1 ≡ −

∫ ∞
0

dx T̃ (s)∗
iµs

(cπ, k1, k2, k3, x)

∫ ∞
0

dy F̃ (s)
iµs

(cπ, y) , (C.12)

I(s)
2 ≡

∫ ∞
0

dx T (s)
iµs

(cπ, k1, k2, k3, x)

∫ ∞
κ12x/cπ

dy F̃ (s)
iµs

(cπ, y) , (C.13)

I(s)
3 ≡

∫ ∞
0

dx F (s)
iµs

(cπ, x)

∫ ∞
cπκ21x

dy T̃ (s)
iµs

(cπ, k1, k2, k3, y) , (C.14)

where κij ≡ ki/kj and Ns ≡ Z0
s is the normalization constant defined in (B.77). The integrands

are represented by the functions

F (s)
iµs

(cπ, x) ≡ xs−5/2(1 + icπx)G
(s)
iµs

(y)e−icπx , (C.15)

F̃ (s)
iµs

(cπ, x) ≡ xs−5/2(1 + icπx)G
(s)∗
iµs

(y)e−icπx , (C.16)

T (s)
iµs

(cπ, k1, k2, k3, x) ≡ xs−1/2 (1 + ix)G
(s)
iµs

(xk1/cπk2)e−ix(1+k3/k2) , (C.17)

T̃ (s)
iµs

(cπ, k1, k2, k3, x) ≡ xs−1/2 (1 + ix)G
(s)∗
iµs

(xk1/cπk2)e−ix(1+k3/k2) , (C.18)

where G(s)
iµs

was defined in (C.7). The integral
∫∞

0 dxF (1)
iµ1

is in fact IR divergent. To avoid this

issue, we integrate by parts and work with F (1)
iµ1
→ x1/2Hiµ1(x)eix and F̃ (1)

iµ1
→ x1/2Hiµ1(x)e−ix.

• The functions J (s) in (5.76) are given by

J (s) =
6∑
j=1

2π3N 4
s

k3
1k

3/2
2 k

3/2
3

Im[J (s)
j ] , (C.19)
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C.1. Integral expressions

J (s)
1 ≡ −

∫ ∞
0

dx Ĝ(s)∗
iµs

(cπ, k1, k2, k3, x)

∫ ∞
0

dy F̃ (s)
iµs

(cπ, y)

∫ ∞
κ32y

dz F̃ (s)
iµs

(cπ, z) , (C.20)

J (s)
2 ≡ −

∫ ∞
0

dx F̃ (s)∗
iµs

(cπ, x)

∫ ∞
0

dy G̃(s)
iµs

(cπ, k1, k2, k3, y)

∫ ∞
κ31y/cπ

dz F̃ (s)
iµs

(cπ, z) , (C.21)

J (s)
3 ≡ −

∫ ∞
0

dx F̃ (s)∗
iµs

(cπ, x)

∫ ∞
0

dy F̃ (s)
iµs

(cπ, y)

∫ ∞
cπκ12y

dz Ĝ(s)
iµs

(cπ, k1, k2, k3, z) , (C.22)

J (s)
4 ≡

∫ ∞
0

dxG(s)
iµs

(cπ, k1, k2, k3, x)

∫ ∞
κ12x/cπ

dy F̃ (s)
iµs

(cπ, y)

∫ ∞
κ31y

dz F̃ (s)
iµs

(cπ, z) , (C.23)

J (s)
5 ≡

∫ ∞
0

dxF (s)
iµs

(cπ, x)

∫ ∞
cπκ32x

dy G̃(s)
iµs

(cπ, k1, k2, k3, y)

∫ ∞
κ12y/cπ

dz F̃ (s)
iµs

(cπ, z) , (C.24)

J (s)
6 ≡

∫ ∞
0

dxF (s)
iµs

(cπ, x)

∫ ∞
κ21x

dyF (s)
iµs

(cπ, y)

∫ ∞
cπκ32y

dz Ĝ(s)
iµs

(cπ, k1, k2, k3, z) , (C.25)

where

G(s)
iµs

(cπ, k1, k2, k3, x) ≡ xG(s)
iµs

(xk2/cπk1)G
(s)
iµs

(xk3/cπk1)e−ix , (C.26)

G̃(s)
iµs

(cπ, k1, k2, k3, x) ≡ xG(s)∗
iµs

(xk2/cπk1)G
(s)
iµs

(xk3/cπk1)e−ix , (C.27)

Ĝ(s)
iµs

(cπ, k1, k2, k3, x) ≡ xG(s)∗
iµs

(xk2/cπk1)G
(s)∗
iµs

(xk3/cπk1)e−ix . (C.28)

• The functions K(s) in (5.79) are given by

K(s) =
10∑
j=1

2π3N 6
s

k3
1k

3/2
2 k

3/2
3

Re[K(s)
j ] , (C.29)

K(s)
1 ≡ −

∫ ∞
0

dwH(s)
iµs

(k1, k2, k3, w)

∫ ∞
w

dxF (s)∗
iµs

∫ ∞
0

dyF (s)∗
iµs

∫ ∞
κ32y

dzF (s)∗
iµs

, (C.30)

K(s)
2 ≡ −

∫ ∞
0

dw F̃ (s)∗
iµs

∫ ∞
w

dx H̃(s)
iµs

(k1, k2, k3, x)

∫ ∞
0

dyF (s)∗
iµs

∫ ∞
κ32y

dzF (s)∗
iµs

, (C.31)

K(s)
3 ≡

∫ ∞
0

dwH(s)
iµs

(k1, k2, k3, w)

∫ ∞
0

dx F̃ (s)
iµs

∫ ∞
κ21x

dy F̃ (s)
iµs

∫ ∞
κ32y

dz F̃ (s)
iµs

, (C.32)

K(s)
4 ≡

∫ ∞
0

dw F̃ (s)∗
iµs

∫ ∞
0

dx H̃(s)
iµs

(k1, k2, k3, x)

∫ ∞
κ21x

dy F̃ (s)
iµs

∫ ∞
κ32y

dz F̃ (s)
iµs

, (C.33)

K(s)
5 ≡

∫ ∞
0

dw F̃ (s)∗
iµs

∫ ∞
0

dxF (s)
iµs

∫ ∞
κ12x

dy Ĥ(s)
iµs

(k1, k2, k3, y)

∫ ∞
κ31y

dz F̃ (s)
iµs

, (C.34)

K(s)
6 ≡

∫ ∞
0

dw F̃ (s)∗
iµs

∫ ∞
0

dxF (s)
iµs

∫ ∞
κ32x

dyF (s)
iµs

∫ ∞
κ13y

dz H̄(s)
iµs

(k1, k2, k3, w) , (C.35)

K(s)
7 ≡ −

∫ ∞
0

dwH(s)
iµs

(k1, k2, k3, w)

∫ ∞
w

dx F̃ (s)
iµs

∫ ∞
κ21x

dy F̃ (s)
iµs

∫ ∞
κ32y

dz F̃ (s)
iµs

, (C.36)

K(s)
8 ≡ −

∫ ∞
0

dwF (s)
iµs

∫ ∞
w

dx H̃(s)
iµs

(k1, k2, k3, x)

∫ ∞
κ21x

dy F̃ (s)
iµs

∫ ∞
κ32y

dz F̃ (s)
iµs

, (C.37)

K(s)
9 ≡ −

∫ ∞
0

dwF (s)
iµs

∫ ∞
κ21w

dxF (s)
iµs

∫ ∞
κ12x

dy Ĥ(s)
iµs

(k1, k2, k3, y)

∫ ∞
κ31y

dz F̃ (s)
iµs

, (C.38)
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Details of in-in computations

K(s)
10 ≡ −

∫ ∞
0

dwF (s)
iµs

∫ ∞
κ21w

dxF (s)
iµs

∫ ∞
κ32x

dyF (s)
iµs

∫ ∞
κ13y

dz H̄(s)
iµs

(k1, k2, k3, w) , (C.39)

where we have suppressed some arguments and defined

H(s)
iµs

(k1, k2, k3, x) ≡ x1/2G
(s)
iµs

(x)G
(s)
iµs

(k2x/k1)G
(s)
iµs

(k3x/k1) , (C.40)

H̃(s)
iµs

(k1, k2, k3, x) ≡ x1/2G
(s)∗
iµs

(x)G
(s)
iµs

(k2x/k1)G
(s)
iµs

(k3x/k1) , (C.41)

Ĥ(s)
iµs

(k1, k2, k3, x) ≡ x1/2G
(s)∗
iµs

(x)G
(s)∗
iµs

(k2x/k1)G
(s)
iµs

(k3x/k1) , (C.42)

H̄(s)
iµs

(k1, k2, k3, x) ≡ x1/2G
(s)∗
iµs

(x)G
(s)∗
iµs

(k2x/k1)G
(s)∗
iµs

(k3x/k1) . (C.43)

• The functions B(s) in (5.84) are given by

B(s) ≡
3∑
i=1

π3Ñ 2
s

4k
3/2
1 k

7/2
2 k3

Re[B(s)
i ] , (C.44)

B(s)
1 = −

∫ ∞
0

dx R̃(s)∗
iµs

(cπ, k1, k2, k3, x)

∫ ∞
0

dy ys−5/2G̃
(s)∗
iµ2

(y)e−iy , (C.45)

B(s)
2 =

∫ ∞
0

dxR(s)
iµs

(cπ, k1, k2, k3, x)

∫ ∞
κ13x/cπ

dy ys−5/2G̃
(s)∗
iµ2

(y)e−iy , (C.46)

B(s)
3 =

∫ ∞
0

dxxs−5/2G̃
(s)
iµ2

(x)e−ix
∫ ∞
cπκ31x

dy R̃(s)
iµs

(cπ, k1, k2, k3, x) . (C.47)

where Ñs ≡ Z±2
s is the normalization constant defined in (B.77) and

R(s)
iµs

(cπ, k1, k2, k3, x) ≡ xs−1/2 (1 + ix)G̃
(s)
iµs

(xk1/cπk2)e−ix(1+k3/k2) , (C.48)

R̃(s)
iµs

(cπ, k1, k2, k3, x) ≡ xs−1/2 (1 + ix)G̃
(s)∗
iµs

(xk1/cπk2)e−ix(1+k3/k2) . (C.49)

C.2 Soft limits

In this section, we will derive analytic formulas for the soft limits of the non-analytic parts of all
correlation functions that we considered in this work.

〈ζζζ〉. We will focus on the squeezed limit of the scalar three-point function for the single-
exchange diagram (cf. Fig. 5.6a), and consider even spins first. This leads to a non-analytic
behavior if the quadratic mixing leg is taken to be soft. In the squeezed limit, k1 � k2 ≈ k3, this
contribution is given by

lim
k1�k3

〈ζk1ζk2ζk3〉′
∆4
ζ

= αs∆
−1
ζ × Ps(k̂1 · k̂3)× I(s)(µs, cπ, k1, k3, k3) + (k2 ↔ k3) , (C.50)

where the functions I(s) are given by

I(s) ≡ −(2π)3c
s−3/2
π H5−2s

8

∑
±±

(±iks−3
1 )(±ic2

πk
s−4
3 ) I(s)

±± , (C.51)
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C.2. Soft limits

I(s)
±± ≡

∫ 0

−∞

dη

a2s−3
η (1∓ icπk3η)e±2icπk3η

∫ 0

−∞

dη̃

a2s−4
(1∓ icπk1η̃)e±icπqη̃ G±±(k1, η, η̃) . (C.52)

In (C.52) we introduced the time-ordered Green’s functions on the Schwinger-Keldysh contours

G++(k, η, η̃) = G>(k, η, η̃)Θ(η − η̃) +G<(k, η, η̃)Θ(η̃ − η) , (C.53)

G+−(k, η, η̃) = G<(k, η, η̃) , (C.54)

G−+(k, η, η̃) = G>(k, η, η̃) , (C.55)

G−−(k, η, η̃) = G<(k, η, η̃)Θ(η − η̃) +G>(k, η, η̃)Θ(η̃ − η) , (C.56)

where

G>(k, η, η̃) = σ0
s,s(−kη)σ0∗

s,s(−kη̃) , G<(k, η, η̃) = σ0∗
s,s(−kη)σ0

s,s(−kη̃) , (C.57)

denote the Wightman functions of the longitudinal mode of a spin-s field, and ± indicates the
(anti-)time-ordering along the integration contour. The non-local part of the Green’s function
is independent of the sign of the time difference, in which case the time-ordered Green’s can
be replaced with the non-time-ordered ones, G+± = G−±. The integrals thus factorize, and
substituting for the σ mode functions, the integral (C.51) becomes

I(s) = N (s)
∑
±

(±ks−3
1 ks−4

3 )P(s)
± (k1, cπk3)Q(s)∗(cπ, k1) + c.c. , (C.58)

where we used the fact that I(s)
+± = I(s)∗

−∓ and defined

N (s) ≡ − s!π
5c
s+1/2
π

4(2s− 1)!!

sechπµs

Γ(1
2 + s− iµs)Γ(1

2 + s+ iµs)
, (C.59)

P(s)
± (k1, cπk3) ≡ e−πµs/2

∫ ∞
0

dxxs−1/2(1∓ icπk3x)G
(s)
iµs

(k1x)e±2icπk3x , (C.60)

Q(s)∗(cπ, k1) ≡ e−πµs/2
∫ ∞

0
dxxs−5/2(1 + icπk1x)G

(s)∗
iµs

(k1x)e−icπk1x , (C.61)

with G(s)
iµs

introduced in (C.7). The integrals in (C.60) and (C.61) can be computed analytically
for arbitrary cπ. To derive the results below, we will use the formula

e−πµs/2
∫ ∞

0
dxxnHiµs(bx)eiax =

(i/2)n√
πbn+1

F21(n+ 3/2, µs, (b− a)/2b) , (C.62)

where

F21(a, µs, z) ≡
Γ(a− 1

2 − iµs)Γ(a− 1
2 + iµs)

Γ(a)
2F1

(
a− 1

2
− iµs, a−

1

2
+ iµs, a+ s, z

)
. (C.63)
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Details of in-in computations

In the squeezed limit, k1 � cπk3, the result for (C.60) is

lim
k1�cπk3

P(s)
± (k1, cπk3) =

(−i)1/2e(1∓1)πµs/2Γ(1
2 + s+ iµs)Γ(1

2 + s− iµs)
4π(±2cπk3)1/2+s

×
(

k1

4cπk3

)iµs
(5 + 2s+ 2iµs)

Γ(−iµs)
Γ(1

2 − iµs)
∓ ie−(1∓1)πµs × c.c. . (C.64)

Since we cannot take a soft limit of the integral (C.61), its general expression is rather complicated.
For simplicity, let us display the results for the two limiting cases, cπ = 1 and cπ � 1, for which
(C.61) reduces to

Q(s)∗(cπ = 1, k1) = f (s)(1)× i(2ik1)3/2−s
√
πΓ(s)

Γ(1
2 + s− iµs)Γ(1

2 + s+ iµs)

(s− 3
2)2 + µ2

s

, (C.65)

Q(s)∗(cπ � 1, k1) = f (s)(0)× 2i(ik1/2)3/2−s

π

Γ[1
2(1

2 + s+ iµs)]Γ[1
2(1

2 + s− iµs)]
(s− 3

2)2 + µ2
s

. (C.66)

Notice that the mixing integral becomes independent of cπ in the small cπ limit. The function
f (s)(cπ) is precisely the difference between evaluating the integral (C.61) with the mode function
G

(s)
iµs

and a simple Hankel function Hiµs . Since the mode function is a linear combination of
Hankel functions, f (s) is a simple polynomial. The result for s = 2 is

f (2)(1) = −985− 664µ2
2 + 16µ4

2

576
, (C.67)

f (2)(0) = −23− 4µ2
2

12
. (C.68)

Summing (C.65) and (C.60) and focusing on terms which are non-analytic in momentum, we find

lim
k1�cπk3

I(s)(µs, cπ, k1, k3, k3) =
As
k3

1k
3
3

(
k1

k3

)3/2

cos

[
µs ln

(
k1

k3

)
+ φs

]
, (C.69)

where the amplitude and the phase are given by

As = |Ãs| ×


f (s)(1)×

√
π

22s−2 Γ(s)

Γ(1
2 + s− iµs)Γ(1

2 + s+ iµs)

(s− 3
2)2 + µ2

s

∝ e−πµs cπ = 1

f (s)(0)× Γ[1
2(1

2 + s+ iµs)]Γ[1
2(1

2 + s− iµs)]
(s− 3

2)2 + µ2
s

∝ e−πµs/2 cπ � 1

, (C.70)

φs ≡ arg Ãs − µs ln 4cπ , (C.71)

with

Ãs ≡
isπ3s!

8(2s− 1)!!

(5 + 2s+ 2iµs)(1 + isinhπµs)

coshπµs

Γ(−iµs)
Γ(1

2 − iµs)
, (C.72)

for even spins, whereas the result for odd spins is given by replacing 1 + isinhπµs → i coshπµs.
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C.2. Soft limits

The final answer is then obtained by summing the permutations (k2 ↔ k3) in (C.50). Momentum
conservation implies

k̂1 · k̂2 = −k̂1 · k̂3 −
k1

k3

[
1− (k̂1 · k̂3)2

]
+O(k2

1/k
2
3) . (C.73)

Writing the spin as s = 2`+ 1 for odd spins, with ` an integer, we get

P2`+1(k̂1 · k̂3) + (k2 ↔ k3)

= −(2`+ 1)
k1

k3

[
P2`(k̂1 · k̂3)− (k̂1 · k̂3)P2`+1(k̂1 · k̂3)

]
+O(k2

1/k
2
3) . (C.74)

For odd spins, the leading terms cancel in the sum over the two permutations, and the squeezed
limit scales as (k1/k3)5/2. Note that the right-hand side of (C.74) is an even-degree polynomial
of the angle. For even spin s = 2`, we have instead (see also [262])

P2`(k̂1 · k̂3) + (k2 ↔ k3) =

= 2P2`(k̂1 · k̂3)− 2`
k1

k3

[
P2`−1(k̂1 · k̂3)− (k̂1 · k̂3)P2`(k̂1 · k̂3)

]
+O(k2

1/k
2
3) , (C.75)

where the leading terms add up and thus scale as (k1/k3)3/2. The next-to-leading term at order
(k1/k3)5/2 is an odd-degree polynomial of the angle.

〈γζζ〉. We also studied the tensor-scalar-scalar bispectrum 〈γζζ〉. Its squeezed limit can be
written as

lim
k1�k3

〈γλk1
ζk2

ζk3
〉′

∆γ∆3
ζ

= αs
√
r∆−1

ζ Eλ2 (k̂1 · k̂3)P̂ λs (k̂1 · k̂3)B(s)(µs, cπ, k1, k3, k3) + (k2 ↔ k3) , (C.76)

where

B(s) ≡ −π
3c
s−3/2
π

8

∑
±±

(±iks−3
1 )(±ic2

πk
s−4
3 )B±± , (C.77)

B(s)
±± ≡

∫ 0

−∞

dη

η2−2s
(1∓ icπk3η)e±2icπk3η

∫ 0

−∞
dη̃ e±ik1η̃ G̃±±(k1, η, η̃) , (C.78)

with G̃±± the Green’s functions for the helicity-±2 mode, σ±2
s,s . Following the same steps as in

the scalar case, we obtain the following factorized form of the integrals

B(s) = Ñ (s)
∑
±

(±ks−3
1 ks−4

3 )P̃±(k1, cπk3)Q̃∗(k1) + c.c. , (C.79)

where

Ñ (s) ≡ −9π4c
s+1/2
π

32

(s− 2)!s!

(s+ 2)!(2s− 1)!!

Γ(5
2 − iµs)Γ(5

2 + iµs)

Γ(1
2 + s− iµs)Γ(1

2 + s+ iµs)
, (C.80)
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Details of in-in computations

P̃±(k1, cπk3) ≡ e−πµs/2
∫ ∞

0
dxxs−1/2(1∓ icπk3x)G̃

(s)
iµs

(k1x)e±2icπk3x , (C.81)

Q̃∗(k1) ≡ e−πµs/2
∫ ∞

0
dxxs−5/2G̃

(s)∗
iµs

(k1x)e−ik1x , (C.82)

with G̃(s)
iµs

defined in (C.7). In the squeezed limit, k1 � cπk3, the integral (C.81) becomes

lim
k1�cπk3

P̃(s)
± (k1, cπk3) =

i3/2e(1∓1)πµs/2Γ(1
2 + s+ iµs)Γ(1

2 + s− iµs)
4π(±2cπk3)1/2+s

×
(

k1

4cπk3

)iµs
(5 + 2s+ 2iµs)

Γ(−iµs)
Γ(5

2 − iµs)
∓ ie−(1∓1)πµs × c.c. . (C.83)

The integral (C.82) is given by

Q̃(s)∗(k1) = f̃ (s) × 2i(2ik1)3/2−s
√
πΓ(s− 1)

Γ(1
2 + s− iµ2)Γ(1

2 + s− iµ2)(
(s− 3

2)2 + µ2
s

)(
(s− 1

2)2 + µ2
s

) , (C.84)

where f̃ (s) a polynomial of µs that encodes the difference between evaluating the integral with
G̃

(s)
iµs

and Hiµs . For spin-2, this is simply f̃ (2) = 1. The bispectrum is then given by

B(s)(µs, cπ, k1, k3, k3) =
|Bs|
k3

1k
3
3

(
k1

k3

)3/2

cos

[
µs ln

(
k1

k3

)
+ φ̃s

]
, (C.85)

where

Bs ≡ −f̃ (s) × 9isπ7/2

22s+4

(5 + 2s+ 2iµs)(1 + i sinhπµs)

(s+ 1)(s+ 2)(2s− 1)!! coshπµs

Γ(−3
2 + s− iµs)Γ(−3

2 + s+ iµs)

Γ(−iµs)−1Γ(−3
2 − iµs)

, (C.86)

φ̃s ≡ argBs − µs ln 4cπ , (C.87)

for even spins. The result for odd spins requires the replacement 1 + isinhπµs → coshπµs. The
final bispectrum is then obtained by summing over the permutations (k2 ↔ k3).

150



D. Tensors and conformal symmetry

In this appendix, we provide supplementary details of the analysis presented in Chapter 6. In
§D.1, we make a few remarks on the breaking of conformal symmetry in theories with a non-trivial
sound speed. In §D.2, we review the argument of [153], showing that a non-trivial tensor spectrum
can be mapped to a non-trivial scalar spectrum by a disformal transformation [154].

D.1 Breaking conformal symmetry

We will show that dilatations and special conformal transformations are broken by an amount
controlled by ε = −Ḣ/H2. Moreover, we will demonstrate that in theories with non-trivial sound
speed, cs � 1, special conformal symmetry is broken even in the limit ε→ 0.

• First, let us consider a massless scalar field ϕ in pure de Sitter space

SdS =
1

2

∫
d4x

ϕ′2 − (∇ϕ)2

H2η2
. (D.1)

Conformal transformations (3.25) act on ϕ as follows:

δλϕ = λ
(
ηϕ′ + x · ∇ϕ

)
, (D.2)

δbϕ = 2b · x
(
ηϕ′ + x · ∇ϕ

)
+ (η2 − x2)b · ∇ϕ . (D.3)

It is straightforward to check that the action (D.1) is invariant under these transformations.

• Next, let us repeat the analysis for an inflationary background. The action of a massless
scalar in quasi-de Sitter space is

Sinf =
1

2

∫
d4xa2(η)

[
ϕ′2 − (∇ϕ)2

]
≡
∫

d4xLinf , a(η) = − 1

Hη(1− ε) . (D.4)

After integrations by parts, we obtain the following variations of the action

δλSinf = 2λ

∫
d4x εLinf , (D.5)

δbSinf = 2

∫
d4x (b · x) εLinf . (D.6)

As advertised, dilatations and SCTs are broken by an amount proportional to ε.



Tensors and conformal symmetry

• Finally, we consider a massless scalar field with a non-trivial speed of sound in a de Sitter
background

Scs =
1

2

∫
d4x

1

c2
s

ϕ′2 − c2
s(∇ϕ)2

H2η2
. (D.7)

Assuming cs is a constant for simplicity, the variation of the action gives

δλScs = 0 , (D.8)

δbScs = 2

∫
d4x

1− c2
s

c2
s

ηϕ′b · ∇ϕ
H2η2

. (D.9)

We see that scale invariance is retained, while special conformal invariance is broken.
For time-dependent cs(t), dilatations would be broken as well.1

D.2 Disformal transformation

In [153], it was shown that a non-trivial tensor sound speed can be set to unity by a disformal
transformation [154]. This is followed by a conformal transformation, which brings the action
back to Einstein frame. The combined transformation is given by

gµν → c−1
t

[
gµν + (1− c2

t )nµnν
]
, (D.10)

where nµ ∝ ∂µφ is the unit vector orthogonal to the constant-time hypersurfaces. The action in
the new frame then has a trivial sound speed for tensors, c̃t = 1, but a non-trivial sound speed
for scalars, c̃s = c−1

t . In this section, we show that observables are the same in both frames. In
particular, we will find that the modification to the consistency condition (6.15) is still present in
the new frame.

Consider the action (6.1) in comoving gauge. At quadratic order in fluctuations and at leading
order in slow-roll, we get

S =
M2

pl

8

∫
dtd3x

(
Lζ + Lγ

)
, with

Lζ = 8a3ε
[
ζ̇2 − a−2(∇ζ)2

]
,

Lγ = a3 c−2
t

[
γ̇2
ij − a−2c2

t (∇γij)2
]
.

(D.11)

After performing the disformal transformation (D.10), the background line element becomes
ds2 = −ctdt2 + c−1

t a2dx2. Rescaling the time and the scale factor,

dt̃ = c
1/2
t (t) dt , ã(t̃) = c

−1/2
t (t) a(t) , (D.12)

we get ds2 = −dt̃2 + ã2dx2. The curvature perturbation ζ and the tensor fluctuations γij

1Moreover, one can show that scale invariance remains unbroken by the inclusion of higher-order interactions
that break Lorentz invariance, such as ϕ′3 and ϕ′(∇ϕ)2.

152



D.2. Disformal transformation

transform as spacetime scalars, so the action (D.11) takes the form

S =
1

8
M2

pl

∫
dt̃d3x

(
L̃ζ̃ + L̃γ̃

)
, with

L̃ζ̃ = 8 ã3ε
[
c2
t (∂t̃ ζ̃)2 − ã−2(∇ζ̃)2

]
,

L̃γ̃ = ã3
[
(∂t̃ γ̃ij)

2 − ã−2(∇γ̃ij)2
]
.

(D.13)

Hence, in the new frame, the tensors propagate with a trivial sound speed, c̃t = 1, but the scalars
have a modified sound speed, c̃s = c−1

t . Notice that ct < 1 implies c̃s > 1. It is not unusual that
a non-local field redefinition maps a purely luminal theory to one with apparent superluminality
(e.g. [263–265]). In such a situation, the presence of a superluminal mode does not imply a
violation of relativistic causality.

At leading order in slow-roll, the tensor power spectrum takes the standard form

∆2
γ =

2

π2

H̃2

M2
pl

, (D.14)

in terms of the new Hubble parameter H̃ ≡ ∂t̃ ln ã ≈ c
−1/2
t H. The tensor tilt is hence also of

the usual form, nt = −2ε̃, and all non-trivial features have been moved to the scalar sector. The
power spectrum of curvature perturbations is

∆2
ζ =

1

8π2

1

εc̃s

H̃2

M2
pl

, (D.15)

where
ε = ε̃+

1

2
ε̃s , with ε̃s = −εt . (D.16)

If we neglect the small shift in the amplitude due to c̃s ≈ 1, then the tensor-to-scalar ratio is

r ≈ 16

[
ε̃+

1

2
ε̃s

]
. (D.17)

Hence, although the tensor tilt is standard in the new frame, the tensor-to-scalar ratio now is
non-standard. The tensor consistency condition is then given by

− 8nt
r

=
ε̃

ε̃+ 1
2 ε̃s

(
= 1 +

1

2

εt
ε

)
. (D.18)

We see that the consistency condition is still modified in the new frame, but now the effect comes
from the time dependence of a scalar sound speed, ε̃s 6= 1. Substituting ε̃ and ε̃s in terms of
the parameters in the original frame, ε and εt, we find complete agreement with our previous
result (6.15).

153



E. Details of the superhorizon test

In this appendix, we provide supplementary material to Chapter 7. In §E.1, we provide details of
a similar analysis in harmonic space. In §E.2, we present the derivation of the effective noise in
multi-frequency experiments. The instrumental specifications of the CMB experiments considered
in Chapter 7 are listed in §E.3.

E.1 Analysis in harmonic space

The analysis in §7.4 and §7.5 was presented mostly in real space. In this section, we give a few
details of an equivalent formulation in harmonic space.

Superhorizon estimator. Transforming (7.32) to harmonic space, we obtain an estimator of
the superhorizon part of the B-mode power spectrum

Ŝ` =
∑
`′

M``′ Ĉ`′ , (E.1)

where M``′ denotes a generalization of the kernel (7.12) to the interval Θ = [θmin, θmax],

M``′ ≡
2`′ + 1

2

∫ cos θmin

cos θmax

P`(x)P`′(x)dx︸ ︷︷ ︸
≡ I``′

. (E.2)

The off-diagonal terms of I``′ are given by

I``′ =

[
(`− `′)xP`P`′ + `′P`P`′−1 − `P`−1P`′

`(`+ 1)− `′(`′ + 1)

]cos θmin

cos θmax

, (E.3)

while the diagonal terms still obey the recursion relation (7.14). The covariance matrix of the
estimator (E.1) is then given by

C [Ŝ`, Ŝ`′ ] =
∑
ll′

C [Ĉl, Ĉl′ ]M`lMl′`′ , (E.4)

where C [Ĉl, Ĉl′ ] was given in (7.31). Figure E.1 shows the filtered superhorizon and subhorizon
B-mode spectra projected onto the interval [2.6◦, 6.0◦].



E.1. Analysis in harmonic space

Figure E.1: Local B-mode power spectrum for r = 0.13 using the Gaussian filter (7.20) with `s = 200

projected onto the interval [2.6◦, 6.0◦]. The solid and dashed lines correspond to the superhorizon and
subhorizon modes, respectively.

Signal-to-noise. We define the binned signal as

Ŝb ≡
∑
`

Bb` Ŝ` , (E.5)

where Bb` is a binning matrix with uniform weight:

Bb` ≡


(`(b+1) − `(b))−1 `(b) ≤ ` < `(b+1)

0 otherwise
. (E.6)

The binned covariance matrix is given by

Cbb′ ≡
∑
``′

C [Ŝ`, Ŝ`′ ]Bb`B`′b′ , (E.7)

and the signal-to-noise is
(S/N)2 =

∑
bb′

ŜbC−1
bb′ Ŝb′ , (E.8)

where C−1
bb′ is the inverse of (E.7). As in the real space treatment, one has to choose the binning

sensibly in order to sample the signal and the covariance well. A natural bandwidth in this case
is ∆` ' 180◦/(θmax − θmin).

We have computed the signal-to-noise (E.8) and compared it with the real space results quoted
in §7.5. Since both treatments produce very similar results, we have chosen only to present the
real space analysis in the main text. The agreement is expected as (E.1) is an exact harmonic
counterpart of the estimator (7.32). A slight difference arises from the choice of binning, since
uniform binning in real space does not correspond to uniform binning in harmonic space.
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Details of the superhorizon test

E.2 Multi-frequency effective noise

Observations of the CMB anisotropies at multiple frequencies allow for foreground cleaning be-
cause the foreground contaminations have spectral distributions that are different from the Planck
spectrum of the primordial CMB signal. In general, the different frequency channels have differ-
ent noise power spectra, and the effective noise level of a multi-frequency experiment is given by
taking a weighted combination which minimizes the variance [200]. In this section, we assume
that foreground cleaning has been performed down to a given level, and derive the effective noise
for the combined foreground-cleaned CMB map.

The harmonic coefficients of a CMB map measured at frequencies νi can be written as

ai,`m = aCMB
i,`m + aRi,`m + aNi,`m , (E.9)

where aCMB
i,`m denotes the sum of the primary CMB and the lensing-induced signal (which are both

frequency-independent in thermodynamic temperature units), while aRi,`m and aNi,`m stand for the
foreground residuals and instrumental noise, respectively. We assume that the CMB signals, the
foreground residuals, and the instrumental noise are uncorrelated, i.e. for any frequency channels
i and j, we have

〈aCMB
i,`m aNj,`m〉 = 〈aCMB

i,`m aRj,`m〉 = 〈aNi,`maRj,`m〉 = 0 . (E.10)

Moreover, we assume that instrumental noise at different channels are uncorrelated, so that the
noise cross-power spectrum is defined as

〈aNi,`maN∗j,`′m′〉 = Ni,`δ``′δmm′δij . (E.11)

Although foregrounds are in general correlated among different channels—a fact that is exploited
in component separation methods for foreground subtraction—we treat the foreground residuals
as an extra source of uncorrelated noise. Thus, we have

〈aRi,`maR∗j,`′m′〉 = Ri,`δ``′δmm′δij . (E.12)

Defining an estimator of the cross-power spectrum of the primary CMB as

Ĉij,` ≡
∑
m

ai,`ma
∗
j,`m

2`+ 1
− L` − δij(Ni,` +Ri,`) , (E.13)

the covariance matrix is

C [Ĉij,`, Ĉi′j′,`′ ] =
δ``′

2`+ 1

{[
C`+L`+δii′(Ni,`+Ri,`)

][
C`+L`+δjj′(Nj,`+Rj,`)

]
+ i′↔ j′

}
. (E.14)

The estimator of the power spectrum of a linearly combined foreground-cleaned map can then be
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E.2. Multi-frequency effective noise

expressed as

Ĉ` ≡
1

Z`

∑
ij

ωij,` Ĉij,` , (E.15)

where Z` ≡
∑

ij ωij,`. The optimal weights ωij,` are determined by minimizing the variance of Ĉ`.
A straightforward computation leads to

ωij,` =
1

(Ni,` +Ri,`)(Nj,` +Rj,`)
. (E.16)

The minimum variance of the combined CMB map is then

Var[Ĉ`] =
2

2`+ 1

(
C` + L` +N eff

`

)2
, (E.17)

where the effective noise power spectrum is defined as

N eff
` ≡

1√
Z`

=

[∑
i

1

Ni,` +Ri,`

]−1

. (E.18)

This recovers eq. (117) of [199].
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Details of the superhorizon test

E.3 Experimental specifications

fsky [%] ν [GHz] θb [′] Ndet ∆P [µK′] ∆P,eff [µK′] sP,eff [µK′]

BICEP2 2.4 150 29 512 5.2

Keck Array 95 29 576 9.0

150 29 2560 2.3

220 29 1536 10.2

BICEP3 95 29 2560 2.0 1.4 9.0

SPTPol 6 90 1.6 360 9.0

150 1.0 1176 5.0 4.4 17.8

PolarBeaR-2 20 95 5.2 3794 15.1

150 3.5 3794 15.1 10.7 23.9

Simons Array 20 95 5.2 7588 10.7

150 3.5 11382 8.7

220 2.7 3794 16.7 6.3 14.1

LiteBIRD 70 60 32 304 10.3

78 58 304 6.5

100 45 304 4.7

140 32 370 3.7

195 24 370 3.1

280 16 370 3.8 1.8 2.2

COrE 70 45 23.3 64 9.1

75 14.0 300 4.7

105 10.0 400 4.6

135 7.8 550 4.6

165 6.4 750 4.6

195 5.4 1150 4.5

225 4.7 1800 4.6

255 4.1 575 10.5

285 3.7 375 17.4

315 3.3 100 46.6

375 2.8 64 19.0

435 2.4 64 258.0

555 1.9 64 626.0

675 1.6 64 3640.0

795 1.3 64 22200.0 1.8 2.2

Table E.1: Instrumental specifications for current and planned CMB polarization experiments [190–196].
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