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Mechanism of two-step vapour–crystal nucleation in a pore
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We present a numerical study of the effect of hemispherical pores on the nucleation of Lennard–Jones crystals from the
vapour phase. As predicted by Page and Sear, there is a narrow range of pore radii, where vapour–liquid nucleation can
become a two-step process. A similar observation was made for different pore geometries by Giacomello et al. We find that
the maximum nucleation rate depends on both the size and the adsorption strength of the pore. Moreover, a poe can be more
effective than a planar wall with the same strength of attraction. Pore-induced vapour–liquid nucleation turns out to be the
rate-limiting step for crystal nucleation. This implies that crystal nucleation can be enhanced by a judicious choice of the
wetting properties of a microporous nucleating agent.

Keywords: nucleation; wetting; crystallisation; Monte Carlo simulation

1. Introduction

Freezing in three-dimensional systems is a first-order phase
transition. As a consequence, it is possible to supercool or
super-compress the liquid parent phase until crystallisation
happens spontaneously on the timescale of the experiment.
Often the crystallisation process starts with a nucleation
step during which a crystalline nucleus is formed that can
then grow to macroscopic size, and the overall rate of crys-
tallisation is determined frequently by the nucleation step.
Moreover, the structure of the crystal that grows to macro-
scopic size is often determined by the structure of the crys-
tal nucleus that forms during the rate-limiting step. For this
reason, it is of both fundamental and practical interest to
gain insight into the mechanisms that can be used to control
the rate and the pathway of crystal nucleation.

Nucleation can proceed either homogeneously, that is,
in the bulk of the parent phase, far away from walls or other
external influences, or heterogeneously at the surface of a
‘seed’. In most cases of practical interest, heterogeneous
nucleation dominates the rate of crystal formation [1].

For this reason, heterogeneous crystal nucleation has
been studied extensively ever since the early work of Ost-
wald [2]. In recent years, there has been something of a
revival of studies of heterogeneous nucleation both from
a theoretical/numerical perspective and from experiments.
This renewed interest was stimulated, on the one hand, by
the availability of suitable colloidal model systems that
make it possible to follow the dynamics of individual parti-
cles during nucleation in real space and real time [3,4] and,
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on the other hand, by the development of novel computa-
tional techniques that made it possible to study the early
stages of crystal nucleation in great detail [5,6].

Heterogeneous nucleation of liquids and crystals has
been studied both theoretically and in simulation for a
variety of geometries such as nucleation on planar walls
[7,8] and in slit pores [9–12], on cylinders [13–15], patches
[16,17], patterned templates [18–21], spheres [22–24] and
in pores [25–28]. Experimental studies include colloidal
crystallisation on patterned templates [4,29,30] and spher-
ical impurities [31,32]. However, in many cases, a detailed
description of the nucleation pathway or a quantitative anal-
ysis of the nucleation rates is still lacking. For a detailed
discussion, we refer the reader to the reviews by Gelb et al.
[33] and Sear [26].

Experiments by Chayen and co-workers [34,35] on the
crystallisation behaviour of a number of different proteins
demonstrated that the rate of protein crystallisation can
be strongly enhanced in the presence of a microporous
medium. This intriguing observation stimulated subsequent
theoretical work by Page and Sear [25], who studied the
nucleation behaviour of a (two-dimensional) Ising model
in a rectangular indentation in a wall. This lattice model
did indeed show that pores can enhance nucleation and
that this effect depends strongly on the pore diameter.
The key findings of Page and Sear [25] were reproduced
in the subsequent lattice density functional theory of Liu
et al. [27]. More recently, extensive numerical simulations
of Giacamello et al. [28] have further elucidated the

C© 2015 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/Licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Molecular Physics 2743

mechanism of two-step vapour–liquid nucleation for
a variety of pore geometries. Turning now to crystal
nucleation, it is clear that a lattice model such as the one
used in [25] cannot capture one of the most interesting
features of protein crystallisation, namely that it is often
most effective in a temperature– concentration range where
the protein solution is close to liquid–liquid demixing
[36–38]: the Ising model does not distinguish between the
liquid and the crystalline state. It is, therefore, of interest to
expand the pore nucleation studies to an off-lattice model
for which the liquid and the crystalline states are distinct.
With such a model study, we can look in more detail at the
ways in which a porous medium affects the pathway for
crystallisation. In particular, we can address questions such
as: does a crystal form immediately in the pore or does
crystallisation proceed via an intermediate liquid phase?
Another advantage of an off-lattice model is the fact that
the diameter of the pore needs not be commensurable
with the lattice spacing of the crystal (in a normal lattice
model, this commensurability is inevitable). If a crystal
does not ‘fit’ optimally in a pore, one might expect that this
could affect the free-energy barrier for crystal nucleation.
In an earlier publication [39], we provided evidence that
capillary condensation in a pore may speed up crystal
nucleation. The present paper describes a systematic study
of the effect of pore shape, size and interaction strength.

In the present study, we first investigate the effect of a
hemispherical pore on the nucleation pathway for vapour–
liquid nucleation. In Section 3.1, we explore nucleation at
a planar (weakly) attractive wall. Next, we consider nu-
cleation on a planar circular attractive patch, and finally,
we consider a pore. Section 3.2 focuses on liquid– crystal
nucleation. We find that, as in the case of homogeneous nu-
cleation, this is an independent nucleation event that can be
treated separately. Finally, Section 4 integrates the resulting
picture for the overall nucleation pathway in systems with
surface heterogeneities.

2. Simulation details

The present study is based on Metropolis Monte Carlo sim-
ulations of a model system consisting of particles interact-
ing through a truncated and shifted Lennard–Jones (LJ) pair
potential [40]:

U (r) =
{

ULJ(r) − ULJ(rc); r ≤ rc

0; r > rc,

where the full (i.e. not truncated) LJ interaction is given by

ULJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

.

Here ε is the unit of energy, σ is the unit of length and rc the
interaction cut-off distance. Note that the choice of interac-

rc

R

Figure 1. Schematic side view of a pore. The dark grey area
indicates the space that is inaccessible to LJ particles due to the
presence of a hard wall. The range of the weak attraction is de-
picted in light grey. Molecules in the white area are outside the
range of interaction of the wall. The radius of the pore is denoted
by R and the range of attraction of the pore walls is denoted by rc.

tion cut-off has a significant effect on the free energy of the
system and on properties such as coexistence curves and
surface tensions [41,42]. However, the qualitative features
of the phase diagram remain unaffected. Hence, the model
that we use is adequate for the present study that focuses on
generic effects, rather than on the properties of a specific
experimental system.

Three different geometries were used to study hetero-
geneous nucleation: a planar wall, a planar circular patch
and a hemispherical pore. Both the circular patch and the
hemispherical pore are embedded in an otherwise purely
repulsive substrate. Figure 1 depicts a schematic side view
of such a pore, which consists of an open half-sphere em-
bedded in a hard wall. It shows the relevant parameters: the
pore radius R and the pore’s interaction range rc. All sur-
face geometries are weakly adsorbing due to an effective
potential given by the LJ 9-3 potential,

Uw(r) =
{

εw

[
(σ/r)9 − (σ/r)3

] + Uw(rc); r < rc

0; r ≥ rc

}
,

which results from integration of the pair interactions over
the half-space, assuming a constant particle density. Here, r
is defined as the distance perpendicular to the surface. The
potential Uw(r) was cut and shifted at a distance rc, and we
choose rc and σ to be the same for both Uw(r) and U(r).

In what follows, we use reduced units. We define the re-
duced distance as r∗ = r/σ and the reduced potential energy
as u∗ = U/ε. All other reduced quantities (e.g. the pressure
P∗ = Pσ 3ε−1, the density ρ∗ = ρσ 3 and the temperature
T∗ = kBTε−1) follow. All quantities reported in this work
are expressed in these reduced units. Therefore, we omit
the superscript asterisk (*) from here on.

We performed all vapour–liquid simulations in the
grand canonical ensemble, where temperature, volume and
the chemical potential are kept constant, and the particle
number is allowed to fluctuate. This ensures a constant
vapour pressure and minimises finite size effects. In the
simulations of liquid– solid nucleation, we consider a liquid
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2744 J.A. van Meel et al.

droplet in contact with both the vapour phase and the sur-
face. These simulations were performed in the canonical
ensemble to keep the size of the liquid droplet constant.
The initial liquid droplet was taken from grand canonical
vapour–liquid simulations, then equilibrated at a high tem-
perature to remove all crystallinity, whilst constraining the
system (using umbrella sampling) to prevent evaporation.
The droplet was then quenched to T = 0.45 and equili-
brated using umbrella sampling to keep the droplet in the
metastable liquid phase. This procedure allowed us to pro-
duce metastable liquid droplets of the required size.

Periodic boundary conditions were applied in the y- and
z-directions of the cubic simulation boxes, and a planar hard
wall prevented particles from escaping in the x-direction.
For all simulations, we chose the box size to be l3 = 503 and
the particle displacement trial move size to be �x = 0.2.
In the grand canonical ensemble, each particle was moved
on average 20 times before an insertion/removal move was
performed.

Rare event sampling

In order to study the properties of the system on the path
towards nucleation, we applied an umbrella sampling [43]
(US) scheme, where a biasing potential is used to con-
strain the size of the nucleus to be close to a certain size
n0. By computing the bias-corrected cluster size proba-
bility distribution P0(n) for many different n0, a series of
overlapping windows is obtained. By fitting these windows
together, the free energy as function of cluster size can then
be computed from the overall probability histogram, G(n) =
−kBT ln P(n) + c, where c is a constant offset. To be more
precise, we define P(n) as the ratio of M(n), the number of
clusters of size n, divided by the (average) total number of
particles N. For large cluster sizes, P(n) � 1 and the prob-
ability of observing more than one cluster of this size (or
of a larger size) in a simulation is negligible. In that case,
the probability to find a cluster of size n in the system can
be approximated by the probability to find that the largest
cluster in the system contains n particles. This facilitates
the umbrella sampling because we can then apply a bias that
controls only the size of the largest cluster in the system
[6]. However, when computing P(n) for small clusters, we
cannot use this approach as there will be many clusters with
sizes comparable to, or larger than n. In that case, we sample
P(n) from an unbiased run taking all cluster sizes into ac-
count. This is important because if we would constrain the
size of the largest cluster for small n (thereby cutting off the
cluster distribution for all sizes larger than n), we would be
truncating the natural cluster size distribution in the system.
As a consequence, the free energy of the system would then
appear to increase as n → 1, and as a result, there would
be a spurious (and system-size-dependent) minimum in the
free energy G(n) at small n.

For the computation of the vapour–liquid nucleation
free-energy barriers, we started from the pure vapour

phase. For the liquid–crystal nucleation, we first equili-
brated a liquid droplet of nl ≈ 700 particles, biasing the
system to prevent any crystallisation. Then, we performed
US simulations in the constant number, volume and
temperature (NVT) ensemble to compute the nucleation
free-energy barrier.

Order parameters

For the vapour–liquid nucleation, we used an order parame-
ter based on Stillinger’s overlapping spheres criterion [44].
It defines a particle to be in a high-density phase, if it has
at least one neighbour within a distance 1.5 corresponding
roughly to the first minimum of the pair correlation function
of a bulk liquid. Then, a cluster analysis is performed on
all high-density particles and the number of particles in the
largest cluster is taken as the order parameter. Note that this
order parameter does not distinguish between an ordered
or disordered high-density phase, and therefore, does not
favour one phase (liquid or crystal) over the other. For a
detailed description of this order parameter, we refer the
reader to [45,46].

As order parameter for the liquid–solid nucleation, we
applied the local bond-order parameter [6,47]. This order
parameter assigns each particle a 13-dimensional vector
capturing its local environment:

(
q6(i)

)
m

= 1

Nb(i)

∑
j

Y6m(	̂rij ), (1)

where Y6m denotes a sixth-order spherical harmonic with
components m ranging from −6 ≤ m ≤ 6. Nb(i) is the
number of nearest neighbours of particle i, and 	̂rij a unit
vector connecting the centres of mass of particles i and j.
The sum is overall neighbouring particles j within a cut-off
distance r = 1.5. In the second step, the order parameter
computes the dot product 	q6(i) · 	q6(j ) between each particle
i and all its neighbours j, effectively comparing the parti-
cles’ neighbourhoods. If 	q6(i) · 	q6(j ) exceeds a threshold
of 0.65, particles i and j are considered to form a ‘link’.
Only if a particle’s total number of links n(i) exceeds five,
it is considered to be solid-like. In the final step, Stillinger’s
criterion is applied to all solid-like particles to identify the
number of particles in the largest solid-like cluster, which
is used as order parameter. All parameters for this order pa-
rameter can be obtained by minimising the overlap between
distributions of an equilibrated bulk solid and a metastable
bulk liquid at working conditions. We note that neither the
nucleation rate nor the nucleation pathway of our simula-
tions was sensitive to (moderate) variations in the definition
of the order parameters. However, such changes do affect
the apparent size of the clusters that we detect, including
the critical cluster size.

The local bond-order parameter that we used was orig-
inally designed to detect nucleation in the bulk. In order to
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Molecular Physics 2745

verify that nucleation at the droplet surface is still properly
detected, we also performed simulations with the modified
local bond-order parameter used by Mendez-Villuendas and
Bowles [48]. This modification ensures that surface parti-
cles, too, can be identified as solid-like particles and are
taken into account properly. However, no significant differ-
ences were observed.

For all simulations involving a heterogeneity, the order
parameter is adapted to identify only clusters in contact with
the heterogeneity. This means that in addition to the proce-
dure mentioned above, only those clusters are considered
that contain at least one particle that is within the effec-
tive interaction range of the surface heterogeneity. We refer
to this modification as a restricted order parameter (rOP).
rOPs were applied to detect heterogeneous vapour–liquid
and liquid–crystal nucleation.

Simulation conditions

We truncated and shifted the LJ potential at rc = 2.5. van
Meel et al. [49] report the coexistence data and vapour–
liquid surface tension for this model system in the relevant
temperature range. As in [49], we fix the temperature at
T = 0.45, in which case the vapour–liquid and vapour–
crystal coexistence pressures are P coex

vl = 4.28 × 10−5 and
P coex

vx = 2.28 × 10−5, respectively, and the vapour–liquid
surface tension is γ vl = 1.07.

We present results for two vapour pressures, Pv =
1 × 10−4 and Pv = 3 × 10−4, with the corresponding bulk
densities ρL = 0.905 for the liquid and ρS = 0.989 for the
fcc solid [49]. For both the liquid and solid phases, Table 1
lists the associated vapour supersaturation and the differ-
ence in chemical potential to the vapour phase. At such
low pressures, the free energy of the high-density phases
does not change noticeably with pressure. Therefore, once
the coexistence pressure is known, the difference in chem-
ical potential can be computed directly from the vapour
supersaturation.

3. Results

As was shown in [49,50], the bulk vapour–crystal
nucleation for the present model system proceeds via

Table 1. For the two vapour pressures used in this work, the
vapour supersaturation S = P/Pcoex and the difference in chemical
potential �μ with respect to the vapour phase are presented for
both the liquid (subscript l) and the fcc solid (subscript s) phases.
The vapour–liquid coexistence pressure is P coex

vl = 4.28 × 10−5

and the vapour–solid coexistence pressure is P coex
vs = 2.28 × 10−5.

The difference in chemical potential between fcc solid and liquid
is �μsl = μs − μl = −0.29.

Pv Ss Sl �μs �μl

1.0 × 10−4 4.39 2.33 −0.67 −0.38
3.0 × 10−4 13.16 7.00 −1.16 −0.88

two independent nucleation events. First, a metastable
liquid droplet nucleates directly from the vapour phase.
Subsequently, a crystal nucleus emerges within the liquid
droplet. The two events happen on very different timescales
and are, therefore, effectively decoupled except that the
droplet needs to exceed a minimum size in order to sustain
a stable crystal nucleus. As we show below, the pathway
for heterogeneous nucleation follows essentially the same
route as its homogeneous analogue, which means that the
nucleation of the liquid and of the crystal are decoupled
and can be treated independently.

3.1. Vapour–liquid nucleation

As a first step, we compute the vapour density as function of
the distance perpendicular to a planar wall for various wall–
particle interaction strengths ε. This computation is per-
formed with a supersaturated vapour under the same condi-
tions used in the subsequent nucleation studies. From this
preliminary calculation, we can estimate the range of ad-
sorption strengths for which heterogeneous liquid–vapour
nucleation (and, a fortiori, liquid–crystal nucleation) is neg-
ligible on the timescale of our simulations. The results are
presented in Figure 2 for a vapour pressure Pv = 3 × 10−4

(left) and Pv = 1 × 10−4 (right). The vapour density is re-
scaled by the bulk vapour density ρ0(P). As is to be expected
for a dilute vapour, we find the vapour density to scale with
the wall potential Uw(R) according to the Boltzmann fac-
tor, ρ(R) = ρ0(P) exp {− β Uw(R)} (data not shown). For
stronger adsorption, where the vapour density is strongly
increased, this expression requires corrections to capture
the increasing inter-particle correlations. For wall–particle
interaction strengths ε > 5 (Pv = 3 × 10−4, left) and ε >

7 (Pv = 1 × 10−4, right) spontaneous vapour–liquid nucle-
ation was observed.

Next, we compute the free-energy barriers for hetero-
geneous nucleation on a planar weakly attractive wall. It is
important to note that the definition of a free-energy barrier
for heterogeneous nucleation requires some care as, unlike
the nucleation rate, it is not an experimental observable: the
height of the free-energy barrier may depend on the choice
of the reaction coordinate, in particular when different
reaction coordinates are not linearly related (see e.g. [51]).
However, if we choose the number of particles in the
nucleus as reaction coordinate, then the free-energy barrier
provides us with a measure of the probability to observe
a nucleus of size n in a given system. This probability is
made intensive by dividing the expected number of nuclei
of size n by N, the number of particles in the system
where nucleation takes place. If nucleation takes place
in the bulk, N is simply the total number of particles in
the system. However, if nucleation occurs on a wall, a
result independent of system volume can be obtained by
dividing the number of nuclei of size n that are formed
on the wall by the total number of particles in contact
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Figure 2. (Colour online) Vapour density perpendicular to a weakly attractive planar wall for various wall–particle interaction strengths
ε at a vapour pressure Pv = 3 × 10−4 (left) and Pv = 1 × 10−4 (right). For reference, a purely repulsive wall (Rep.) is shown. The repulsive
potential has the same functional form as the attractive potential, but is truncated and shifted at the potential minimum to remove the
attractive part.

with the wall. When comparing the rates of homogeneous
and heterogeneous nucleation, one should then take into
account how many particles in the system are in contact
with the wall. In this way, one accounts for the fact that the
rate of heterogeneous nucleation is proportional to the total
‘active’ surface area in the system (in other words, that it
is proportional to the density of seeds). In what follows,
we follow the above approach and define the barrier for
heterogeneous nucleation as �Ghet(n) = −kBT ln Phet(n),
where we define Phet(n) as the ratio of Mhet(n), the number
of clusters with size n in contact with the heterogeneity,
divided by the (average) total number of particles in
contact with the heterogeneity, Nhet. We identify a particle
or cluster to be in contact with the heterogeneity using the
restricted order parameter as described in Section 2.

The resulting free-energy barriers are presented in
Figure 3 as function of droplet volume (to be more precise,
we show the barrier as a function of the cube root of this
volume. In what follows, we denote this quantity as the ‘ef-
fective droplet radius’). The volume V is defined as the ratio
of the number of particles n in the liquid nucleus, divided
by the bulk density of the liquid ρL = 0.905 (see Section 2
and [49]). Again, the vapour pressures are Pv = 3 × 10−4

and Pv = 1 × 10−4 for the left and right panels, respectively.
When the attraction due to the wall is very weak, the com-
puted barriers converge to the homogeneous case, as is to be
expected. The barrier for homogeneous nucleation is plot-
ted for the sake of comparison in Figure 3. With increasing
attraction, the liquid–vapour nucleation barrier decreases
until spontaneous nucleation occurs (not shown–as, in this
case, it becomes impossible to measure a free-energy bar-
rier). For the rest of this work, we choose our interaction
strengths to be ε = 5 for Pv = 3 × 10−4 and ε = 7 for Pv =
1 × 10−4. Outside the patches, the wall is purely repulsive.

Under these conditions, the size of the critical nucleus is
still sufficiently small to be studied in US simulations for
the system sizes that we used.

To obtain a rough estimate of the wall–liquid con-
tact angle, we fit the expression from the classi-
cal nucleation theory (CNT) [52] with our simulation
data (see Appendix 1 for details on the CNT ex-
pression), which yields � = 0.33π (Pv = 1 × 10−4,
ε = 7) and � = 0.43π (Pv = 3 × 10−4, ε = 5). The CNT es-
timates for the heterogeneous nucleation barrier discussed
below are based on these estimates of the contact angle. As
our estimates of the contact angles are not very accurate,
the comparison with our simulation results is mainly in-
tended to gain a qualitative understanding of the observed
trends. Several previous studies reveal that the CNT still
hold for heterogenous nucleation on a planar wall if line-
tension effects are considered [53,54]. Thus, a quantitative
comparison would require more precise knowledge of the
contact angles and the solid–liquid–vapour line tensions.

Having established the limiting cases, i.e. homogeneous
nucleation and heterogeneous nucleation on a planar wall,
we focus on the effect of a planar circular weakly adsorbing
patch on the nucleation rate. In particular, we are interested
in the dependence of the nucleation rate on the radius of the
patch. Figure 4 shows the nucleation barriers as function
of the effective droplet radius V1/3. The theoretical CNT
prediction is shown in the left panel and our simulation
results in the right panel, both for a vapour pressure PV =
1 × 10−4. Valencia and Lipowsky [17] predicted (on the ba-
sis of CNT) that nucleation could be a two-step process with
a metastable intermediate state under certain conditions. A
similar conclusion was reached by Smorodin [16] on the
basis of similar theoretical arguments and these intriguing
observations stimulated recent theoretical explanation of
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Figure 3. (Colour online) Vapour–liquid free-energy barriers as function of effective droplet radius V1/3 for nucleation on a weakly
attractive planar wall with varying wall strength ε at a vapour pressure Pv = 3 × 10−4 (left) and Pv = 1 × 10−4 (right). The barrier for
homogeneous nucleation is shown for reference.

contact line pinning effects for nanobubble stability [55].
Indeed, under the conditions studied in the present sim-
ulations, CNT predicts a two-step barrier for the vapour
density Pv = 1 × 10−4 and a patch radius around R = 6.0,
as depicted by the inset in left panel of Figure 4. However,
our CNT results suggest that the metastable intermediate is
likely to be found in a narrow range of patch radii that mod-
ulation of the barrier height is very small compared to the
barrier height. In fact, the simulation results displayed in
the same figure show no evidence for a two-step nucleation
process.

The dependence of the height of the nucleation barrier
on the patch radius is presented in Figure 5. The nucle-
ation barrier decreases monotonically from the homoge-
neous limit for a very small patch radius to the heteroge-
neous planar wall limit for large patch radii. The planar

wall limit is reached at a patch radius Rmax ≈ R∗
homo sin �,

which corresponds to the contact circle radius of a critical
nucleus on a planar wall. The CNT predictions are shown
for reference. Qualitatively, the CNT predictions agree well
with our simulations results.

Finally, we consider a pore geometry as shown in
Figure 1, which is modelled as an open, weakly attrac-
tive hemispherical cavity embedded in an otherwise purely
repulsive (i.e. hard) planar wall. Figure 6 presents the nucle-
ation free-energy barriers as function of the effective droplet
diameter for a vapour pressure PV = 1 × 10−4. Again, the
left panel contains the CNT prediction, and the right panel
the simulation results. As expected, the nucleation barriers
approach the corresponding limiting cases for very large
and very small pores. Interestingly, for intermediate pore
sizes, CNT predicts a double barrier corresponding to a
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Figure 4. (Colour online) Vapour–liquid free-energy barriers as function of effective droplet radius V1/3 for nucleation on a weakly
attractive circular patch at vapour pressure Pv = 1 × 10−4. Left: CNT prediction for various patch radii. The inset shows a close-up on
a weakly double-peaked barrier predicted for R = 6. Right: the simulation results, although superficially similar to the CNT predictions,
show no evidence for a two-step process.
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Figure 5. (Colour online) Vapour–liquid free-energy barrier heights for nucleation on a weakly attractive circular patch at vapour
pressures Pv = 3 × 10−4 (left) and Pv = 1 × 10−4 (right) as function of patch radius RPatch (filled circles). The limiting cases of
homogeneous nucleation and nucleation on a planar weakly attractive wall are presented for reference (horizontal lines), as well as the
theoretical predictions using CNT (open circles).

two-step process, and this feature is indeed reproduced by
our simulations. From a visual inspection of simulation
snapshots of configurations at the local and global maxi-
mum of the free-energy barrier, we identify the first step
to be a pore-filling event and the second step to be the nu-
cleation out of the pore into the bulk. Figure 7 presents
simulation snapshots along such a pathway. It shows that
first a critical nucleus is required to nucleate a liquid inside
the pore (left), the system then spends a certain time in the
metastable filled pore state (centre), and finally, a second
nucleation event is required to break out of the pore (right).
This observation supports the predictions of Page and Sear
for nucleation in a pore for an Ising model system [25].

The heights of the nucleation free-energy barrier are
shown in Figure 8 as function of pore size, for both Pv =
3 × 10−4 (left) and Pv = 1 × 10−4 (right). The bottleneck
for the overall nucleation rate is the crossing of the higher

free-energy barrier shown in this plot. Again, good qual-
itative agreement with CNT is found. For nucleation in a
pore, the dependence on the pore radius R is clearly non-
monotonic, featuring a global minimum of the free-energy
barrier. This finding supports the suggestion by Chayen
and co-workers [35] that, in a porous medium with a broad
distribution of pore sizes, only a small number of pores
(namely those that correspond to the minimum in the overall
nucleation barrier) dominate the overall nucleation process.

3.2. Liquid–crystal nucleation

We now focus on the liquid–crystal nucleation. van Meel
et al. and Chen et al. [49,50] showed that, in the case of ho-
mogeneous nucleation, the nucleation of a crystal in a pre-
viously nucleated droplet is relatively fast. In other words,
the liquid–crystal nucleation event is not the rate-limiting
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Figure 6. (Colour online) Vapour–liquid free-energy barriers as function of effective droplet radius V1/3 for nucleation in a weakly
attractive spherical pore at vapour pressure Pv = 1 × 10−4. Left: CNT prediction. Right: simulation results.
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Figure 7. Snapshots from the two-step nucleation process in a pore (Pv = 1 × 10−4, R = 5.5). From left to right: critical nucleus for pore
filling (n∗

1 ≈ 50), metastable filled pore (n ≈ 270) and the critical nucleus for growing out of the pore (n∗
2 ≈ 650).

step. Moreover, van Meel et al. and Chen et al. [49,50]
found that a droplet of a minimum size is required to host
a crystal nucleus, and that this is approximately the size of
a supercritical crystal nucleus plus a liquid mono-layer.

Following the same procedure as in the case of vapour–
liquid nucleation, we first assess the limiting cases: homoge-
neous nucleation and heterogeneous nucleation on a planar
wall. The crystallisation rate within a liquid droplet was
reported in [49] and found to be independent of the droplet
size and vapour pressure. For the sake of completeness,
we here compute the crystallisation free-energy barrier for
homogeneous nucleation in a bulk liquid in the constant
number, pressure and temperature (NpT) ensemble. When
we compare the present results with those reported in [49],
we find good agreement.

For the crystal nucleation on a planar wall, we find that
our system crystallises spontaneously on the timescale of
our simulations for both attraction strengths, ε = 5 and ε =
7. Similar behaviour was observed in a study by Page and
Sear on the pre-freezing transition of the same model sys-
tem [56]. This high rate of spontaneous crystal nucleation

implies that crystallisation may take place during US simu-
lations that probe the free-energy barrier for vapour–liquid
nucleation. To find out whether this is indeed the case, we
analysed whether the configurations generated during the
US simulations of the pathway for vapour–liquid nucle-
ation contained any crystalline particles. In the left panel
of Figure 9, we plot the number of crystalline particles
nx, identified using bond-order parameters [6], versus the
number of liquid particles nl, identified using Stillinger’s
overlapping spheres criterion [44]. Two observations can
be made. First of all, all larger droplets (nl > 200) con-
tained a crystalline cluster. If we consider that a crystal
is always covered by a thin layer of liquid, as was found in
[49], we can fit the results to an empirical formula assuming
that the crystal takes the same shape as the liquid droplet,

nx = [
(nl)

1/3 − a
]3 + c

where c is a constant offset and the difference in density
between the liquid and the crystal is ignored. The thickness
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Figure 8. (Colour online) Vapour–liquid free-energy barrier heights for nucleation in a weakly attractive spherical pore at vapour
pressures Pv = 3 × 10−4 (left) and Pv = 1 × 10−4 (right) as function of pore radius RPore (filled circles). The limiting cases of homogeneous
nucleation and nucleation on a planar weakly attractive wall are presented for reference (horizontal lines), as well as the theoretical
predictions using CNT (open circles).
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Figure 9. (Colour online) Analysis of the US data for nucleation on a planar wall. Left: largest cluster size nx using bond-order parameters
versus the largest cluster size nl using a liquid-order parameter. A minimum droplet size of nl ≈ 200 is required to host a stable crystal.
Large droplets consist of a crystal cluster covered by a liquid mono-layer. The solid line is a fit to an empirical formula for a crystal with
a liquid mono-layer (see main text for details). Right: the difference in the cube root of the cluster size between liquid and solid clusters,
n

1/3
l − n1/3

x . This difference converges to a constant value for large clusters indicating that the crystal surface is covered by a liquid layer
of constant thickness.

� of the liquid layer can then be extracted by dividing a
by the geometrical prefactor linking the droplet volume to
the radius of a spherical cap with liquid–wall contact angle

�, � = a
[

π
3 (1 − cos �)2(2 + cos �)

]−1/3
. Our fit yields

a = 0.748 ± 0.1. Assuming a wall–liquid contact angle of
� = 0.33π , obtained from matching the simulation barrier
height for vapour–liquid nucleation on a planar wall to the
CNT prediction, we arrive at a thickness of � ≈ 0.88, which
agrees well with the assumption of a liquid mono-layer
surrounding the crystallite. The difference a = n

1/3
l − n

1/3
x

is also plotted in the right panel of Figure 9 and appears to
converge to a constant value for large clusters.

Second, we observe that small droplets, n < 200, con-
tain very little crystalline order. This means that for these
small droplet sizes, crystallisation will not affect the com-
puted vapour–liquid free-energy curve. As in the case of
homogeneous nucleation, the liquid droplet has to exceed
a critical size before crystals can form easily within it. In
view of the high (spontaneous) crystal nucleation rate in
large droplets, this might seem to be a rather surprising
result, because the crystal critical nucleus is expected to be
very small. However, due to the small wall–liquid contact
angle, a droplet with n ≈ 200 is only a few layers thick.
Crystal nucleation in such a pancake-shaped droplet is not
determined by the total number of particles in the droplet,
but by its thickness. Inside thin droplets, liquid–crystal nu-
cleation is expected to be strongly suppressed, and that is
indeed what we observe.

Next, we assess crystal nucleation in a finite-sized cir-
cular patch. Again, we observe spontaneous crystal nucle-
ation for all but the smallest patch radii. Using US, we
estimated the crystal nucleation barrier to be very small
(�G∗ < 10kBT). Figure 10 shows the results from analysis

of the crystallinity inside the liquid clusters. From the plot
we conclude that, as in the case of nucleation on a pla-
nar wall, a minimum droplet size is required to support a
stable crystal. As before, we find that the resulting crystal
fills the droplet except for a liquid mono-layer. The fact
that spontaneous crystal nucleation in larger droplets is ob-
served even for the smallest patch radii (i.e. R = 3) suggests
that the structure of the substrate strongly influences crystal
nucleation.

For crystallisation in a pore, the curvature can cause
stress and frustration for a regular arrangement of parti-
cles, and thus might inhibit crystal nucleation. Therefore,
we computed the free-energy barrier for crystal nucleation
for those systems within a pore filled with a metastable
droplet (data not shown). For small pores, no stable crystal
grows in these droplets. For the largest pore that can con-
tain metastable liquid droplets (R = 6), we observe a low
crystal nucleation barrier of �G∗ ≈ 7.5kBT. This barrier
height is slightly less than the nucleation barrier for grow-
ing out of the pore (�G∗ ≈ 10kBT). To identify whether
crystallisation precedes pore break-out, we need to com-
pare transition rates rather than free-energy barriers. Using
a diffusive kinetic prefactor, which reflects the diffusive na-
ture of our Monte Carlo simulations, we can express the
rate according to [49]:

J =
√

|�μ|
6πT N∗ ρDR∗Ne−β�G∗

(2)

Here D is the self-diffusion coefficient, ρ the density of
the parent phase and N refers to the number of monomers
that can initiate the transition. Note that in the case of
crystallisation, N equals the number of particles in the liquid
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Figure 10. (Colour online) Analysis of the US data for nucleation on a planar patch. Different symbols correspond to different patch
radii. Left: largest cluster size nx using bond-order parameters versus the largest cluster size nl using a liquid-order parameter. A minimum
droplet size of nl ≈ 200 is required to host a stable crystal. Large droplets consist of a crystal cluster covered by a liquid mono-layer. Right:
the difference in the cube root of the cluster size between liquid and solid clusters, n

1/3
l − n1/3

x . This difference converges to a constant
value for large clusters indicating that the crystal surface is covered by a liquid layer of constant thickness.

phase, whereas in the case of pore break-out, the droplet
counts as a single ‘monomer’ that can initiate the transition;
hence N = 1. The diffusion constant can be approximated
by the simulation step size squared per Monte Carlo cycle,
D ≈ �x2/τ . This leads to a pore break-out rate for the
liquid of Jl ≈ 4 × 10−11τ−1 and a crystallisation rate of
Jc ≈ 4 × 10−5τ−1. Hence in these pores, crystallisation
is expected to precede pore break-out. This prediction is
confirmed by direct simulations. The resulting stable crystal
contains approximately n = 140 particles.

For pore radii R > 6, a fully filled pore is not even
metastable and the liquid continuously grows into the bulk.
In this situation, the pore’s attraction and curvature can still
influence the rate for crystal nucleation, but this step is
never rate-limiting.

4. Conclusion

The focus of the present paper is on heterogeneous nucle-
ation of liquids and crystals. We studied nucleation on a
planar wall, on a planar circular patch and in a hemispheri-
cal pore. For all surface geometries, we find the nucleation
pathway to follow the homogeneous two-step route, with the
vapour–liquid nucleation as rate-limiting step. Comparing
the simulation results to the corresponding CNT predic-
tions, we find good qualitative agreement. However, a truly
quantitative comparison was not possible due to the fact
that the wall–liquid and wall–crystal surface tensions are
not known with sufficient accuracy, and the line tensions
of the nuclei on the surface are unknown. Yet line tensions
are known to have a pronounced effect on the nucleation
barrier [8,53,57,58].

For a planar circular patch, the free-energy barrier for
vapour–liquid nucleation shows a monotonic decrease with

increasing patch radius, interpolating between the barrier
for homogeneous nucleation and the one for nucleation
on a planar wall. For the parameter range studied in our
simulations, we did not observe two-step vapour–liquid
nucleation. Moreover, CNT calculations using as input,
the parameters that characterise the systems that we stud-
ied in the simulations also failed to exhibit two-step nu-
cleation. These findings indicate that the two-step nucle-
ation scenario on a planar circular patch that was predicted
in [16,17] occurs for conditions that are outside the do-
main that we could study in our simulations. Furthermore,
our simulations show that liquid–crystal nucleation hap-
pens spontaneously for large patches and at a planar wall,
provided that the liquid droplet exceeds a minimum size of
n ≈ 200 particles.

For a hemispherical pore we find a richer behaviour.
Very small and very large pores exhibit a vapour–liquid
nucleation free-energy barrier that approaches the ones for
homogeneous nucleation and heterogeneous nucleation on
a planar wall, respectively. For intermediately sized pores,
the liquid nucleation itself is a two-step process. In the first
nucleation event, a droplet nucleates inside the pore and
grows to fill the entire pore. From this metastable state, a
second nucleation event is required to grow out of the pore.
The overall nucleation rate shows a non-monotonic depen-
dence on the pore radius with an optimum pore size for
which the barrier is the lowest. This observation corrobo-
rates a previous study on nucleation in and out of pores for
an Ising model system [25]. Depending on the strength of
attraction, the minimum barrier can be even lower than for
nucleation on a planar wall. The liquid–crystal nucleation
typically follows once the droplet is large enough. For a
small pore, the droplet extends into the bulk and the crys-
tal nucleation is homogeneous. For large pores, the crystal

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
9:

59
 0

2 
N

ov
em

be
r 

20
15

 



2752 J.A. van Meel et al.

forms in contact with the pore surface at a very high rate
– in practice, there is no nucleation barrier. Only for the
largest pore within which a metastable droplet could be
maintained, we did find the filled pore to be large enough to
host a stable crystallite. In that case, the liquid crystallises
before it grows out of the pore.

In conclusion, our simulations show that a weakly at-
tractive circular patch or hemispherical pore on an oth-
erwise non-adsorbing substrate can reduce significantly
the free-energy barrier for nucleation. Both geometries are
most efficient if their radius is close to or slightly larger than
the critical radius for homogeneous nucleation, at which
point they strongly accelerate the formation of exactly one
nucleus. A widely spaced array of adsorbing patches or
pores with a broad distribution of radii crafted on an oth-
erwise non-adsorbing surface should, therefore, make an
efficient nucleation agent for the formation of high-quality
crystals. We point out that the present work is limited to
smooth surfaces. Further research is required on (crystal)
nucleation at surfaces that are rough on the scale of a par-
ticle diameter. In such cases, roughness is expected to have
a pronounced effect on the free-energy barrier for crystal
nucleation.
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Appendix 1. CNT derivation

Assume a droplet in contact with an attractive planar wall as
depicted in the left panel of Figure A1. We denote the surface
tension between the wall–vapour, wall–liquid and vapour–liquid

R
R−h

h
a

θ
h

h

1

2

θ
θ2

1

R1

θ a

Figure A1. Left: liquid droplet on a planar surface, surrounded
by vapour. The droplet’s shape corresponds to a spherical cap
where the geometrical parameters are the droplet radius R, the
contact angle �, the height of the droplet h and the radius a of the
contact circle between droplet and surface. Right: liquid droplet in
a spherical pore, surrounded by vapour. The droplet is composed
of two spherical caps with the corresponding parameters Ri, ai,
hi and �i, with i = 1 for the lower cap and i = 2 for the upper
cap. The contact angle is denoted � (without subscript). For the
relation between these parameters, see the main text.

interfaces by σ wg, σ wl and σ lg, respectively, and the contact angle
by �. The CNT expression for the free energy of this droplet is
given by [1]

�G = σlgAlg − |�μ|ρVl + (
σwl − σwg

)
Awl,

where Alg and Awl refer to the vapour–liquid and wall–liquid sur-
face areas, respectively, Vl to the droplet volume, ρ to the bulk
liquid density and �μ to the difference in chemical potential be-
tween the bulk vapour and bulk liquid. Using the Young–Dupré
relation for the contact angle, σ wg = σ wl + σ lgcos �, we obtain

�G = σlgAlg − |�μ|ρVl − σlgAwl cos � (A1)

The volume and the surface area of this droplet are given by the
expression for a spherical cap:

Vcap(R, �) = 1

4
(1 − cos �)2(2 + cos �)

4π

3
R3

= �V (�)Vs(R)

Acap(R, �) = 1

2
(1 − cos �)4πR2

= �A(�)As(R),

where Vs(R) = 4π /3R3 and As(R) = 4πR2 is the volume and
surface area, respectively, of a full sphere with radius R, and
�V(�) = 0.25(1 − cos �)2(2 + cos �) and �A(�) = 0.5(1 −
cos �) are contact-angle-dependent volume and surface modifiers,
respectively. Inserting the volume and area of our spherical cap
in the CNT expression yields the barrier height and critical radius
for nucleation on a planar attractive wall [1]:

�G∗ = �G∗
homo�V (�), (A2)

with �G∗
homo = 16π/3σ 3

lgρ
−2|�μ|−2 the critical CNT barrier

height for homogeneous nucleation. The critical nucleus radius
is the same for both homogeneous nucleation and nucleation on a
planar wall, R∗ = 2γ ρ−1|�μ|−1, and the radius of the wall–liquid
contact circle is R = R∗sin �.

Circular patch
For an attractive circular patch with radius RP, the free energy
has to be slightly modified. We can identify three distinct regions
[16,17,59]: in regime I (R < RP/sin �P), the droplet is small enough
to fit entirely on the circular patch with the natural patch–liquid
contact angle �P. Regime II applies if the droplet covers the entire
patch with a contact angle �P < � < �W, where �W is the wall–
liquid contact angle. In the final regime III (R > RP/sin �W), the
droplet extends beyond the circular patch, and the contact angle
is that with the wall. The CNT expression for the free energy
difference is hence

�GI(R) = σlgAS(R)�A(�P)

−σlgπR2 sin2 �P cos �P

−|�μ|ρVS(R)�V (�P)

�GII(�) = σlgAS(RP/ sin �)�A(�)

−σlgπR2
P cos �P

−|�μ|ρVS(RP/ sin �P)�V (�)
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�GIII(R) = σlgAS(R)�A(�W)

−σlgπR2
P cos �P

−σlgπ (R sin �W − RP)2 cos �W

−|�μ|ρVS(R)�V (�W)

Hemispherical pore
Next, consider a droplet in a hemispherical pore, as sketched in
the right panel of Figure A1. The droplet volume consists of two
spherical caps, each with its own radius Ri and contact angle �i.
From the figure, it is obvious that �P = �1 + �2, where �P

is the liquid–pore contact angle. The lower cap has the curvature
of the spherical pore, so R1 = RP. Both caps share the radius of
the circle where they meet, so a1 = a2 ≡ a. The radius Ri of a
cap is related to a by a = Risin �i, so the radii are related by
R2 = RPsin �1/sin �2 = RPsin �1/sin �P − �1. Analogous to the
droplet on a circular patch, we identify three regimes: in regime I,
the droplet does not fill the pore, i.e. �1 < π /2. Note that this is
independent of the actual contact angle �P. In the second regime,
the droplet fills the pore, �1 = π /2, and grows until the upper cap
angle �2 reaches the contact angle with the surrounding wall, �P

− π /2 ≤ �2 ≤ �W. Here, we point out that for intermediately to
strongly wetting pores, �P < π /2, the upper cap angle �2 = �P −

π /2 starts out negative. In regime III, the upper cap grows beyond
the pore onto the surrounding wall, taking a mushroom-like shape,
R > RP. Computing the free energy for the three different regimes
then yields

�GI(�1) = σlgAS(RP)
�A(�P − �1) sin2 �1

sin2 �P − �1

−σlgAS(RP)�A(�1) cos �P

−|�μ|ρVS(RP)
�V (�P − �1) sin3 �1

sin3 �P − �1

−|�μ|ρVS(RP)�V (�1)

�GII(�2) = σlgAS(RP)�A(�2) sin−2 �2

−σlgAS(RP)�A(�1) cos �P

−|�μ|ρVS(RP)�V (�2) sin−3 �2

−|�μ|ρVS(RP)�V (�1)

�GIII(R) = σlgAS(R)�A(�W)

−σlgπ (R2 − R2
P) cos �W

−σlg
1

2
AS(RP) cos �P

−
(

1

2
VS(RP) + VS(R)�V (�W)

)
ρ|�μ|.
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