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Abstract. With manufacturing companies outsourcing to each other, multi-
echelon supply chain networks emerge in which risks can propagate over multiple
entities. Considerable structural and organizational barriers hamper obtaining
the supply chain visibility that would be required for a company to monitor and
mitigate these risks. Our work proposes to combine the automated extraction of
supply chain relations from web data using NLP with augmenting the results
using link prediction. For this, the first graph neural network based approach
to model uncertainty in supply chain knowledge graph reasoning is shown. We
illustrate our approach on a novel dataset and manage to improve the state-of-
the-art performance by 60% in uncertainty link prediction. Generated confidence
scores support real-world decision-making. This is a work-in-progress paper.

1 Introduction

Outsourcing value generation can bring a competitive advantage to a manufacturing
company. The impact of this practice has even greater potential once supplier relation-
ships emerge beyond national borders. The benefits of a global supply chain include
access to more favourable buying conditions for raw materials, cheaper labour, and
arbitrage opportunities [1]. With supplier companies engaging in outsourcing themselves,
multi-echelon and globally distributed supply chains emerge.

The interdependency that results from obtaining goods and services from another
firm exposes a company to a multitude of supply chain risks, as illustrated in Figure
1. A low-frequency-high-impact event can cause a disruption to a higher-tier supplier
and, as a result of manufacturers depending on upstream entities, propagate through a
supply chain [2]. This is known as the ripple effect [3]. Similarly, the chain liability effect
occurs when a company suffers damage to its reputation through an upstream entity
as the result of consumers not differentiating between individual members of a supply
chain in matters of ESG misconduct [4]. It is further possible that a complex supply
chain structure obscures the concentration in the production of a critical sub-component
or material.

Supply Chain Risk Management (SCRM) is entrusted with reducing a firm’s vul-
nerability to supply chain risks. Decisive for the success of SCRM is the supply chain
visibility that a company can obtain. Whereas a manufacturer naturally has a certain
oversight over the operations of its direct suppliers, this might not necessarily be true
beyond that. Increasing supply chain visibility requires the collaboration of partners. In
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Fig. 1: Supply Chain Network around a focal firm F with visible suppliers in dark
blue and three type of risks; A: Ripple Effect, B: Chain Liability Effect, C: Critical
Concentration

practice, organizational and structural challenges often prohibit that [5]. Approaches
such as track-and-trace RFID and blockchain thus have only limited viability. To address
this, a company can engage in Digital Supply Chain Surveillance (DSCS) and obtain
knowledge about its supply chain network by proactively monitoring digital data [6].

In a recent DSCS approach, researchers have shown that multiple types of supply
chain relations can be extracted from unstructured web data using Natural Language
Processing (NLP) [7]. The result is a graph-structure mapping of a supply chain network
with confidence scores expressing the classification uncertainty of the Machine Learning
model attached to its different relations. This form of data representation is known
as an uncertain knowledge graph. Another approach to DSCS uses link prediction on
an existing but incomplete graph representation of a supply chain network. This was
first realised by [8] considering relational features of entities that were identified as
relevant based on domain knowledge. Limitations of this approach due to the required
knowledge were addressed by [9] using Graph Neural Networks to automatically encode
a node’s neighbourhood. This work was extended to knowledge graphs by [10] and [11].

The link prediction approaches as described above could bring a considerable benefit
when applied to the supply chain data that was cost-effectively extracted using NLP. This,
however, is not possible as they lack the capability to encode the inherent uncertainty
of the extracted relation. Whereas there is literature on embedding uncertain knowledge
graphs in the wider computer science domain [12], there has not been an application in
a supply chain context. This paper proposes to fill this gap and use GNN to perform
link prediction on an uncertain supply chain knowledge graph. In particular, our two
contributions are:

1. Combining NLP and knowledge graph reasoning.
2. Performing link prediction on a uncertain graph in a supply chain context

The paper is structured as follows. Chapter 2 discusses existing literature on enhanc-
ing Supply Chain Visibility using ML as well as giving an introduction to knowledge
graphs and their embedding with attached uncertainty. Chapter 3 introduces our pro-
posed approach. Chapter 4 presents the dataset from VersedAI and the results of our
experiments. Lastly, Chapter 5 proposes limitations and future research directions.
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2 Background and Related Works

2.1 ML to enhance supply chain visibility

Supply Chain Visibility can be enhanced by creating a systematic mapping of company
relations. [7] proposed a way in which this can be done by inferring supply chain
relations from publicly available web data using NLP. To do this, a classification
task was performed on text corpus taken from websites to decide whether they imply
a relationship between two companies. Furthermore, different company-to-company
affiliations were identified like supplier relationships or the ownership of an entity
by another. Before supply chain relations could be inferred, manual training of the
classifier was required. Relationship data generated in this way has uncertainty about a
classification being correct attached to it which can be expressed by a confidence score.

Supply chain visibility can also be enhanced by predicting unknown relationships
between companies based on existing but incomplete knowledge of the supply chain
network. This was first done by [8] with the Supply Network Link Predictor (SNLP)
model. For this approach, a classifier was trained on four relational features that were
deemed relevant for the likelihood of an existing supplier relationship by domain experts.
Although this method showed promising results, it relies on the manual selection of
features. Obtaining such specialised knowledge can involve considerable costs and the
insights are not necessarily transferable to other fields. To alleviate the need for manually
selected features, [9] introduced Graph Neural Networks for an automated approach
to link prediction. This special form of Neural Network works on graph data and can
consider a node’s neighbourhood when creating the latent vector representation of it.
This allows the model to learn from a company’s position in the supply chain network
without the need for manually defined relational features. [10] developed this approach
further by using GNNs on knowledge graphs containing supply network information. A
knowledge graph features multiple types of edges to encode information beyond simple
buyer-seller relationships like the affiliation of a company with producing a certain item.
As a result, more complex queries can be facilitated based on this graph structure.

2.2 Knowledge Graphs

A knowledge graph G is a multi-relational and directed graph structure [13](Figure 2A).
It is made of a set of facts F represented by triplets (h, r, t) that consist of a head entity
h, a tail entity t and a connecting relation r. The graph can be denoted as G = (E,R, F )
with E and R being the sets of included entities and relations. Knowledge graphs are
a structured representation of knowledge. Depending on their type, entities can be
real-world objects or concepts. In a supply chain context, this means facts can describe,
for example, a supplier relationship between two real-world objects like companies or an
affiliation of a company with a concept like a business sector. In an uncertain knowledge
graph the triplets (h, r, t, s) are weighted by a confidence score s.

2.3 Uncertain Knowledge Graph Embeddings

The objective of Graph Representation Learning is to encode the nodes and, in some
cases, also the edges of a graph in low-dimensional space. This should be done whilst
preserving structural information and, in the case of uncertain knowledge graphs,
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Fig. 2: Uncertain Supply Chain Knowledge Graph with corresponding Ontology

also confidence scores. For deterministic knowledge graphs, there is an abundance of
embedding models including TransE [14], with the group of models derived from it
referred to as TransX, and ComplEx [15]. Similar, uncertain graphs can be embedded
using models like URGE [16]. The selection of models for embedding uncertain knowledge
graphs, however, is still limited with the first algorithm of this kind, UKGE, proposed
by [12].

UKGE embeds all three elements of a triplet as vectors and uses Probabilistic
Soft Logic to infer training label scores for sampled negative edges [12]. To derive a
plausibility score, the product of the embedding vectors is calculated. PrTransX also
embeds all triplet elements but uses the geometric distance between them to initially
calculate a not normalised plausibility score [17]. An alternative approach is BUErRE,
a model that embeds only the head and tail entities as hyper-rectangles allowing it
to use their intersection as a proxy for the plausibility score [18]. In all three models,
the plausibility scores are normalised to a confidence score before the loss is calculated.
The uncertain knowledge graph embedding model that shows the best results when
tested on benchmark sets is UKGEbert [19]. Similar to its predecessor UKGsE [20] a
transformer is used for the embedding of the triplets that are interpreted as three-word
sentences. The corresponding confidence score is learned in an LSTM. An exception
among the uncertain knowledge graph embedding models is FocusE [21], an add-on layer
that allows deterministic knowledge graph embedding models to include uncertainty by
using it as a weight when calculating loss.

While uncertain knowledge graph embeddings have been explored in other domains,
these methods have not been applied to a supply chain knowledge graph.

2.4 Research Gaps

Our literature review has shown that while there have been several supply chain link
prediction works, some gaps are remaining, especially when comparing research in
supply chain knowledge graph embedding compared to the wider computer science
domain. Our paper addresses the gap in uncertainty modelling in knowledge graphs. In
particular, our two contributions are as follows.

1. Link prediction performed on an uncertain knowledge graph (obtained from NLP
data extraction) representing a supply chain network

2. Embedding an uncertain knowledge graph considering node neighbourhood and
topology, to perform inductive link prediction
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3 Our Approach

3.1 Benchmark Model

This approach is based on the graph neural network model that was proposed in [10]
and [11]. The model not only shows good performance on supply chain knowledge
graphs but also has the ability to encode a nodes surrounding topology. For this reason,
this model was chosen over established uncertain knowledge graph embedding models
that do not possess this characteristic. This model is made of an encoder and decoder.
The former is a heterogeneous, multi-relational GNN where weights are learned for
every relation type, with aggregation function similar to [22] and [23]. While the latter
is a doot product of the head and tail embeddings output fed into a sigmoid function
to minimise Binary Cross Entropy loss.

3.2 Modification of the graph convolution model

To address the research gaps listed above the model must be modified to facilitate the
embedding of an uncertain knowledge graph. Further changes were made to improve
the performance of the model and to estimate how relevant the contribution is to
operational SCRM.

Regression A Classification task is appropriate for link prediction on a deterministic
graph as the structure indicates the existence of relations between entities. The aim of
the model, therefore, is to decide whether there is a relation or not. In an uncertain
knowledge graph, however, information about the likelihood of a relation is encoded.
Predicting priorly unknown edges must therefore be done by estimating the likelihood
of their existence. This makes the link prediction a regression task. Similar to other
models the likelihood is quantified by a probability and thus the values range between
0 and 1. The change from a classification to a regression task requires an adjustment
to how loss is calculated. The model described above uses Binary Cross-Entropy Loss
and whereas this is common practice for classification tasks the regression requires a
different loss function. Staying in line with the objective of the regression, the Mean
Squared Error (MSE) is chosen to determine the loss.

ReLU and Cosine Similarity The combination of decoding with the dot product
and normalising using a sigmoid function was found to be problematic for the regression.
This is due to the strong bias of a sigmoid function for giving values close to its horizontal
asymptotes, in this case, 0 and 1. As an alternative, the cosine-similarity was used as
a decoder. The cosine similarity between two vectors always belongs to the interval
[-1,1]. To obtain values between 0 and 1, as desired to represent a probability, the
ReLU-function was used after each convolutional layer on all elements of an embedding
vector. This forces all vectors to be located in the first quadrant. The maximum angle
between vectors with this constraint is π

2 restricting the output values to the interval
[0,1]. Regardless of the entity types in the triplet, only a single type of convolutional
layer was used. We chose a layer that follows the algorithm as proposed by [24].
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Entity Type Number Edge Type Number

Company 13770 supplies to 69779
Country 180 domiciled in 7235
Industry Group 61 industry group 5364
Business Sector 32 business sector 5364
Economic Sector 13 economic sector 5364

Table 1: Number of Unique Graph Features

Ensembling Among the multiple approaches that were trialled to increase the per-
formance of the model, ensembling showed the best results. This is also aligned with
existing works in the knowledge graph literature such as molecule property prediction
[25]. Ensembling is the combination of weak learners to increase performance. In this
case, two parallel GNNs of an identical architecture were implemented to generate
embeddings independent from each other. The various ways how the embeddings can
be combined are discussed with the results in the next chapter.

4 Experiments and Results

4.1 Dataset

For the experiments, an anonymised real-world supply chain dataset extracted using
NLP was provided by Versed AI Limited, a supply chain analytics firm based in the
United Kingdom. 43.000 facts in the dataset encode supply chain information for
more than 13.000 companies. In the dataset, a distinction is made between five entity
types (Company, Country, Industry Group, Business Sector, Economic Sector) and
five relation types (supplies to, domiciled in, industry group, business sector, economic
sector). Following the ontology illustrated in Figure 2B a knowledge graph can be
constructed. Table 1 gives the number of unique graph features for each entity and
relation type. An important characteristic of the dataset is that it is not limited to a
specific industry or geographic region.

As a result of a classifier being used on natural language text to extract the given
triplets from web data, there is uncertainty attached to some of them. This is the case
for the majority of triplets containing information about a supplier relationship between
two companies. All other triplets do not have an uncertainty value attached to them
and were assumed to be ”certain”. These triplets were given an uncertainty value of 1
causing a peak in the histogram illustrating the distribution of the values as shown in
Figure 3.

4.2 Experiment Preparations

In order to prepare the data for the experiments, first, a fraction of the nodes (20%) and
all edges connecting to them are excluded to be used later in testing the inductive link
prediction performance. The remaining triplets are split into three sets, an initial graph
(60%), the training set (30%) and the testing set (10%). The set of triplets forming
the initial graph is required by the model to determine which nodes are connected
and therefore how embeddings are convoluted. The training set is used to train the
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Fig. 3: Histogram of uncertainty values attached to triplets of the type (Company,
supplies to, Company)

learnable weights of the model and the test set to measure transductive link prediction
performance. Transductive performance is measured by predicting confidence values for
unseen edges between nodes that are part of the initial graph. In contrast, inductive
performance is the prediction accuracy on unseen edges between those nodes that were
initially excluded from the graph. To train the model to differentiate between existing
and non-existing edges, negative triplets are sampled. Negative triplets are created by
corrupting the tail of a positive triplet and given an uncertainty value of 0. The new
tail entity is selected among an entity type which is already present in another triplet
containing this head entity to retain the underlying ontology. Within this constraint,
the maximum number of negative triplets connecting from one node can be varied. For
the experiments, a maximum positive to negative ratio of 1:4 was chosen.

Mean Squared Error (MSE) and Mean Absolute Error (MAE), the commonly used
standard metrics for regression, were calculated to quantify the model performance. In
the following, MSE is chosen for the comparison of the models instead of MAE as it
has a higher tolerance for small divergences and reacts more sensitive to outliers. This
is assumed to be preferable from a real-world perspective because small divergences in
the predictions would not harm the quality of decision-making to an extent in which an
outlier in the prediction could. Similarly, the comparison is made based on the inductive
link prediction performance. This is done based on the assumption that link prediction
applied in SCRM would have to deal with a changing supply chain network in which
companies join and leave.

All experiments were repeated ten times with randomly determined splits of edges
and triplets.

4.3 Results

In this section, we compare the performance of the benchmark approach on the VersedAI
dataset, with our proposed models. The results are shown in Figure 4.

Benchmark Model As expected, using the benchmark model to inductively predict
uncertainty scores for unseen triplets leads to weak results. A MSE of 0.228 indicates no
significant difference from what could be expected from a random guess. An explanation
for this decrease in performance compared to the good results obtained in a classification
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Fig. 4: Mean Squared Error for A: Benchmark; B: Cosine-Similarity with ReLU; C:
Standard Ensembling; D: AB-Ensembling

task is the normalisation of scores using a sigmoid function. Whereas the bias of the
sigmoid function towards its horizontal asymptotes works in favour of a classification
with only zeros and ones as targets, it makes it hard to output values between that as
required by the regression.

Cosine Similarity with ReLU Addressing the unfavorable bias introduced by the
sigmoid function, cosine similarity was used on embedding vectors that were restricted
to be located in the first quadrant by an elementwise application of the ReLU function.
MSE decreases by 30% to 0.159 in this approach. Also contributing to the improvement
could be cosine-similarity being used as decoder. With the dot-product calculated as ||a||
||b|| cos(Θ) it is possible that this leads to a conflict whether to optimise the embedding
vectors magnitude or the angle between them.

Standard Ensembling There is empirical evidence that ensemble learning can increase
predictive performance but to the best of the authors’ knowledge, this method has not
yet been used in a supply chain context. In this approach, the plausibility score of two
identical GNNs was averaged. However, applied to the model using cosine similarity and
ReLU it only leads to a non-significant decrease of the MSE to 0.156 and an increase in
the standard deviation from 46 to 68 basis points.

AB Ensembling In another approach to ensemble learning, the model uses the output
of the two identical GNNs but combines them before a final score is calculated. Both
GNNs generate an embedding for the tail and the head entity of a triplet. When
combining the head entity from GNN A with the tail entity from GNN B and vice versa
to calculate the confidence score, the MSE drops to 0.075 with a standard deviation of
18 basis points.
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4.4 Managerial Insights

We have shown that using our model, we obtain a more accurate link prediction score.
Unlike existing literature, our score spans between 0 and 1 (not binary), hence supply
chain risk managers can obtain more information about the certainty of the model
output. For instance, if the output is close to 0.5 (uncertain), the risk managers can
decide to not fully trust the model. This is a desirable feature of a supply chain decision
support system.

5 Conclusions and Future Work

Outsourcing value generation leaves a company vulnerable to risks that primarily affect
its direct and indirect suppliers. Monitoring these risks becomes increasingly difficult
the more complex and geographically distributed a supply chain network is. This is
partly because obtaining insight into the wider supply chain network usually requires
the collaboration of other firms in the network. An incentive for this is not always
present. Digital Supply Chain Surveillance (DSCS) tries to address this issue by using
data to gain insights about the network without relying on third-party collaboration.

One approach to DSCS is the extraction of supply chain network information from
publicly available web data. This is facilitated by using ML to automatically infer
relations between entities from text snippets. Because these entities can not only be
companies but also concepts like economic sectors, a knowledge graph can be created
based on the extracted data. Another approach is, again using ML, to predict links
based on existing but incomplete knowledge of the supply chain network. Previous work
shows that link prediction can also be applied successfully on supply chain knowledge
graphs.

Both approaches described above could be combined to maximise their impact.
However, the data extracted using NLP has uncertainty attached to it resulting in
an uncertain knowledge graph created from it. To the best of the authors’ knowledge,
there has been no work done performing a link prediction on an uncertain supply
chain knowledge graph. This work contributes by proposing an ML model that can
successfully augment uncertain knowledge graphs representing supply chain network
knowledge. Using a GNN architecture for the model also shows how the surrounding
topology of a node can be considered when embedding an uncertain knowledge graph.

Experiments were done using a real-world dataset that was automatically extracted
from web data using NLP. The Experiments show that missing links in the supply chain
knowledge graph can be predicted with an MSE of only 0.075 even if the connected
entities were not known at the time of training the model. This has the potential to
significantly support decision-making in SCRM.

We propose two directions for future works. First, transformed-based models could be
explored that have shown to outperform other models on benchmark datasets. However,
this would require unanonymised data, which is not available to us at the moment.
Second, explainability needs to be further explored as supply chain risk managers would
like to trace why the model is uncertain about a particular link prediction i.e. which
evidence were used to produce such output.
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