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Abstract 

The primary barrier to wider commercial adoption of graphene lies in reducing the sheet 

resistance of the transferred material without compromising its high broad-band optical 

transparency, ideally through the use of novel transfer techniques and doping strategies. 

Here, chemical vapour deposited graphene was uniformly transferred to polymer supports by 

thermal and UV approaches and the time-dependent evolution of the opto-electronic 

performance was assessed following exposure to three kinds of common graphene dopants. 

Doping with FeCl3 and SnCl2 showed minor, and notably time unstable, enhancement in the 

σopt/σdc figure of merit, whilst AuCl3-doping markedly reduced the sheet resistance by 91.5% 

to 0.29 kΩ/sq for thermally transferred samples and by 34.4% to 0.62 kΩ/sq for UV 
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transferred samples offering a means to fabricating viable transparent flexible conductors 

that near the indium tin oxide benchmark.  
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Introduction 

Graphene, a two-dimensional honeycomb of single carbon atoms, has a myriad of 

impressive, novel optical and electrical properties [1, 2]. As such, it has attracted much 

attention as a promising material to complement indium tin oxide in large area transparent 

electrodes for many applications including organic light emitting diodes, [3-6] touch screens, 

[5, 7, 8] and photovoltaic cells. [9-11] Graphene is mechanically flexible, does not readily 

form micro-cracks when strained and, when coupled with suitable substrates, provides an 

exciting and paradigm shifting technological platform for future flexible transparent electronic 

devices. Though mechanically and chemically exfoliated graphene, and inks based thereon, 

have made some progress towards truly flexible, high form factor, transparent conductors, 

the intrinsic disorder and sub-micron grain sizes associated with such approaches limit their 
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practicality. [12-15] Chemical vapour deposition (CVD) has thusly supplanted exfoliation as 

the fabrication procedure of choice, particularly given recent technological advances and 

associated cost reductions in growth allowing for truly monolayer material of near-equivalent 

quality to mechanically exfoliated graphene along with substantially higher yields. [16-21] 

Unlike exfoliated approaches, CVD graphene is large-area compatible and offers electrical 

continuity and optical uniformity without the use of aggressive chemical treatments. 

Nevertheless, for CVD graphene to be industrially viable, it must be transferred to arbitrary 

substrates from the optically opaque catalyst on which it was grown. Though the native 

properties of graphene are central to its function in a wide range of applications, the transfer 

method plays an equally important role in realizing useful devices. Several transfer methods 

have been reported with hot and cold lamination being two such methods that have shown 

significant promise due to their facile processing, low-cost and large-area compatibility.  

 Polymers such as poly-methyl methacrylate (PMMA) and polydimethylsiloxane are 

commonly used to mediate the transfer process. Here, the polymer supports the graphene 

while the catalyst is etched. [22-26] The PMMA/graphene stack is then located onto an 

arbitrary target substrate and the PMMA removed, typically in an acetone bath. [22-27] 

Though the value of this technique to the global research community is unrivalled, it lacks the 

fundamental commercial scalability required for an emerging material to gain industrial 

traction. Handling the polymer-support, on areas greater than a few centimetres square, is 
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challenging and requires significant training and associated expense [22, 28, 29]. 

Alternatives must be sought. In 2010 Bae et al. transferred large-area CVD graphene using 

thermal release tape.[5] In this study Cu-foil-catalysed CVD graphene was attached to 

thermal release tape and the Cu etched in aqueous ammonium persulphate ((NH4)2S2O8). 

The graphene was then transferred using a roll-to-roll system and the thermal release tape 

removed by heating to 100oC. [5] This approach allowed graphene transfer, layer-by-layer, 

onto arbitrary substrates. Nevertheless, this method cannot be applied to many low-cost and 

widely available polymeric substrates given the limited thermal budget of many such 

materials and the potentially high mismatch in thermal expansion coefficient between the 

graphene and the substrate which may induce crack formation, thereby compromising the 

films opto-electronic properties.  

 To overcome these drawbacks we have investigated alternative transfer techniques 

and have studied the temporal variation of the opto-electronic properties of facile and 

mechanically stable thermal lamination and UV-curable adhesion transferred films. At present 

the sheet resistance (Rs) of single-layer graphene is of the order of a few kΩ/sq; an order of 

magnitude too high to be an effective transparent conductive electrode in most applications. 

Chemical doping is considered the most appropriate means to decrease Rs without 

significantly compromising the optical transmission. [30-36] In this study we investigated the 

opto-electronic spatial uniformity and time dependent behaviour of chemically doped 
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polymer-supported graphene films under ambient conditions following exposure to three 

common chloride-based graphitic nanocarbon dopants; ferric chloride (FeCl3), tin chloride 

(SnCl2) and gold chloride (AuCl3).  

 

Experimental  

 Graphene was grown, as reported in detail elsewhere [37], using a commercially 

available Aixtron Black Magic Pro, hot-walled thermal CVD system on 25 µm Cu foil 

(99.999% Alfa Aesar) under 5 sccm CH4 (99.5%) at 1000°C in Ar: H2 (960 (99.9997%): 40 

(99.9992%) sccm) at 25 mbar. Following 15 minutes growth, samples were quenched under 

2000 sccm N2 (99.99%) to 250°C and were removed from the reactor. Graphene grains were 

approximately 10-100 µm in diameter with a mean area of 400 µm2 which coalesced to form 

a large area, few layer polycrystalline graphene film. As-grown graphene was inspected by 

selected area electron diffraction (SAED) recorded using a FEI Philips Tecnai operated at 

200 keV. The SAED patterns were assessed relative to a thallium chloride calibration 

standard. Weak patterns from the supporting grid and residual organics were present. Six-

fold symmetry, characteristic of the graphites and graphenes, was clearly noted. It is possible 

that the multiple, unassigned spots are associated with turbostratic alignment, though film 

discontinuity and polycrystallinity makes verification of this challenging. Certainly the 1010 to 

2 110 intensity ratio (
1010 2110

/I I ), deviates somewhat from that of A-A or A-B (Bernal) 
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stacking, suggesting a turbostratic multi-layered film [38-40]. 

 

Fig. 1: Schematic depiction of graphene transfer by; a) thermal lamination, and b) UV-curable 

adhesive. c) Optical images of graphene transferred on PET (top) and laminate (bottom) (Scale 

bar: 10 mm). d) Raman spectra (457 nm) of the nascent Cu-foil catalysed graphene by thermal 

CVD, as-received PET and laminate substrates, and transferred graphene on PET and laminate. 

e) Energy-dispersive Xray spectra of a blank laminate, a blank PET, and transferred graphene 

on Laminate and PET. 

 

 To hot-press laminate the graphene-on-catalyst samples, commercially available 

thermally-activated ethylene vinyl acetate (EVA) treated polyethylene terephthalate (PET) 

substrates were used (GBC Co.). This hot-press lamination process, termed ‘laminate’ 

hereafter, is illustrated in Figure 1a). First, graphene grown on Cu foil was sandwiched 

between two laminates (1) and passed through a dual roller laminator, heated to 120 ̊C (2). 
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Following thermal lamination, the backside laminate was detached (3) and the Cu etched in 

(NH4)2S2O8 in DI water (1M) for 12 hours (4). Following the etching, samples were rinsed with 

DI water and dried in high-purity N2 (5). We have transferred areas of up to 10 cm x 10 cm 

successfully using this method. Figure 1b) describes the UV-cured adhesive transfer 

approach. The UV-curable adhesive was first coated onto acetone cleaned PET (1). The as-

grown graphene on Cu was then placed on the adhesive and pressed at around 0.2 MPa, 

ensuring that all air is removed from the graphene-adhesive interface (2). Plastic protective 

films were used to cover both sides of the Cu foil and the PET substrate. To cure the 

adhesive, the backside of the PET substrate was exposed to a UV optical source (365 nm, 

222 Wm-2) for 15 minutes (3). Following UV curing the Cu foil was etched in aqueous 

(NH4)2S2O8 for 12 hours (4) and rinsed in DI water and dried in high-purity N2 as before (5). 

Both transfer methods are rapid, inexpensive, large-area compatible and provide strong, 

long-lasting robust adhesion between the substrate and the graphene – critical for high form 

factor electronics. Figure 1c) shows optical micrographs of transferred samples. 

Results 

 Figure 1d) shows a typical Raman spectrum (457 nm, Renishaw InVia) of the as-

grown CVD graphene. The ID/IG ratio was 0.12±0.05 suggesting a highly crystalline, well-

graphitised material [41, 42] with an I2D/IG ratio of 2.33±0.6 indicating bilayers. Repeated 

point measurements over large-areas suggested the presence, on average, of 3-4 layers. [14, 
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41, 42] The full-width at half-maximum (FWHM) of the 2D peak was narrow; 45-55 cm-1, 

further suggesting high graphitisation. [41, 42] Additional spatially resolved Raman analysis, 

under 532 nm and 633 nm excitation, revealed a <I2D/IG> of 1.3 - 2.2, with the number of 

layers per unit area being relatively uniform with 79% coverage of 3-4 graphene layers, 14% 

bilayer, and 7% monolayer. Raman spectra of the transferred graphene on laminate and PET 

showed no notable D, G or 2D peaks with the characteristic graphene spectra being 

indistinguishable from that of the polymer support. Nevertheless, Energy-dispersive X-ray 

(EDX) analysis of the blank laminate, blank PET, graphene-on-laminate (Laminate) and 

graphene-on-PET (PET) samples, as shown in Figure 1e), evidences the distinct absence of 

any Cu suggesting that only the transferred carbon (C) from the as-grown graphene 

mediates the observed conductivity enhancement. The conductive carbon allotrope is most 

likely graphitic given the comparatively low transfer temperatures. EDX also revealed, in the 

case of the graphene-on-PET, significant sulphur (S) and oxygen (O) peaks, which we 

believe are most likely from the (NH4)2S2O8 exposure during the Cu-etch. Interestingly, such 

peaks were not observed for the laminate samples. Sulphur is a well-known potent dopant of 

graphitic nanocarbons. [43, 44] Evidently the Cu etching produces significant unintentional, 

but nevertheless advantageous doping prior to any further chemical treatments. As discussed 

in detail later, this doping degrades with time. This is attributed to thermally activated 

desorption of the weakly surface bound species. [36, 45-48]  
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Fig. 2: a) Typical optical transmittance spectra of graphene transferred to Laminate and PET. 

Optical transmittance maps (550 nm) of graphene on; b) laminate and c) PET.  

 

Figure 2a) shows the optical transmittance spectra (%T) for graphene transferred to 

laminate and PET substrates (ATI, Unicam UV2). The transmittance (550 nm) of graphene 

on PET and on laminate was 10% and 12% lower than the as-received PET and laminate, 

respectively. The high optical absorption suggests around four layer coverage on average on 

for the PET samples and five layer coverage for the laminate [49, 50], consistent with earlier 

Raman maps of the nascent material. As shown in Figure 2b) and c), the spatially averaged 
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transmittance of the graphene/laminate and graphene/PET at 550 nm was 58.6±3.6% and 

76.5±3.8%, respectively. The PET transfer was around 18.1% more transparent than the 

laminate, though both transfer techniques afforded equivalent areal uniformity of < 4.0%. The 

modest increase in absorption between the two samples is likely due to folding and wrinkling 

of the graphene during the transfer process, as clearly depicted in the SEM micrographs 

(Hitachi, S4700SEM) of Figure 3a) and b) and the AFM micrographs (Agilent, 5400SPM) in 

Figure 3c) and d). Certainly hot-press lamination is more aggressive in terms of augmenting 

the morphology of the as-grown graphene. Indeed, the root mean square (RMS) surface 

roughness of the graphene on the laminates was 161 nm, some 26% higher than the PET 

(119 nm). The maximum perturbation for the graphene on laminate and PET was 949 nm 

and 551 nm, respectively. As eluded to prior, wrinkling increases the optical diffusivity but will, 

conversely, enhance the mechanical flexing performance of the electrodes.  
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Fig. 3: Scanning electron micrographs of the transferred graphene on; a) Laminate and b) PET 

(Scale bar 20 μm). Atomic force micrographs of graphene on; c) Laminate and d) PET (Scale 

bar 10 μm). Spatially resolved sheet resistance of graphene on; e) Laminate and f) PET. 

 

Prior to the metal-chloride doping the sheet resistance for the as-grown graphene-

laminate samples was 9.9±3.8 kΩ/sq, whilst for the PET it was 3.5±2.3 kΩ/sq (Figure 3e) 

and f)); PET samples showed a markedly lower Rs due to the notable sulphur doping. The 

growth and transfer process showed high reproducibility though some slight variation in 

sheet resistance and transmission between samples was observed. The sheet resistance of 

the as-grown graphene was assessed independently by transferring equivalent as-grown 

graphene to quartz substrates, using the conventional PMMA-approach, with subsequent 

Cr/Au Van der Pauw structures deposited. This as-grown graphene showed a sheet 

resistance of 5.47±1.2 kΩ/sq. The laminate and UV-transferred samples showed an increase 
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of around 4.43 kΩ/sq and, rather interestingly, a decrease of 1.97 kΩ/sq relative to the 

conventional PMMA approach control sample, respectively. This decrease may be attributed 

to enhanced mass density and increased connectivity within the percolative network 

associated with significant wrinkling and augmentation of the as-grown morphology. Indeed, 

the transferred graphene on laminate and PET are non-contiguous. The agglomerates on the 

PET and laminate are approximately 5.5±5.6 and 7.9±3.9 μm in diameter and are most likely 

adhesive residues.  

Although stacking graphene to form artificial multi-layer materials is one possible way to 

decrease the sheet resistance, it has many intrinsic limitations; time and cost being but two. 

Alternatively, intentional chemical doping is one simple route to decrease the sheet 

resistance without the necessary complicated process and severe degradation of the optical 

transparency. In this study, to reduce the sheet resistance to a technologically relevant value 

(< 0.2 kΩ/sq) chemical doping via aqueous metal-chloride exposure of the UV and thermally 

transferred samples was investigated.  

 To assess the doping time stability three common nanocarbon dopants were 

considered; ferric chloride (FeCl3), tin chloride (SnCl2) and gold chloride (AuCl3). FeCl3 and 

SnCl2 doping solutions were dissolved in DI water at 20 mM concentration, whilst AuCl3 was 

dissolved in nitromethane (20 mM). Laminate and PET samples were dipped into the dopant 

solutions for 5 minutes and dried with N2 gas. For doping with AuCl3, as elsewhere [31, 33, 
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36], the dopant solution was spin-coated at 2000 rpm for 1 minute. Nitric Acid (HNO3), which 

has been previously reported as a p-type dopant [32, 34, 35], was also considered. However, 

the HNO3 dissolved the adhesion layer in the PET samples resulting in the removal of the 

graphene. Adhesion in the laminate samples were unaffected by the HNO3 and showed only 

a negligible decrease in Rs from 12.96 kΩ/sq to 12.5 kΩ/sq, whilst the %T decreased from 

71.5% to 61.8%.  

 

Fig. 4: Time-dependent electrical and optical properties of chemically doped graphene on 

laminate and PET substrates under ambient conditions: a) Optical transmittance (%T), b) sheet 

resistance (Rs) of doped graphene, c) Ratio of the change in transmittance (ΔT) relative to the 

transmittance of undoped graphene (T0) and d) the ratio of sheet resistance relative to the 

sheet resistance of undoped graphene (R0).  
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To assess the time evolution of the doping the optical transmittance (550 nm) and sheet 

resistance were measured immediately after doping and at fixed time points thereafter, as 

illustrated in Figure 4a) and b), respectively. An ideal transparent conductor requires time 

and ambient invariant transmittance and sheet resistance. However, as reported elsewhere 

[31, 51], although dopants reduce the sheet resistance they also often reduce optical 

transmission, both of which notably shift deleteriously with time – an effect which is 

particularly exacerbated during ambient exposure. For all samples the transmittance 

decreased following doping. The most significantly decreased transmittance (81→54%) 

occurred for SnCl3-laminate, whereas FeCl3- and AuCl3-doped graphene showed smaller 

changes (FeCl3-laminate: 86→77%, AuCl3-laminate: 81→73%). A recovery process was 

noted with the transmittance tending to increase back to the undoped state with time. The 

most substantial increase was observed for the FeCl3-doped graphene (laminate: 77→85%, 

PET: 60→66%). This increase is presumed to be due to the time-dependent desorption of 

chemisorbed dopants, activated by ambient thermal excitation. [36, 45-48] Interestingly, the 

transmittance of the undoped graphene on PET increased over time (75→80%), whereas 

there was no observable change for the graphene on laminate due to the absence of any 

significant doping during the transfer process, in contrast to the PET samples. It is unclear as 

this stage as to why the PET presented a higher inclination for sulphur binding than the 

laminate, though in order to fabricate a time-stable flexible transparent graphene-based 
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electrode what is clear is that such transient binding must be prevented even though it 

reduces the initial sheet resistance. Indeed, the metallic element within the chloride dopant is 

evidently central to the effectiveness and temporal stability of the observed doping; a detailed 

theoretical study of the underlying electron transport and its dependence on the metal type 

will be presented elsewhere. The ratio of the change in transmittance to the change in 

transmittance of the undoped graphene (∆T/T0) is illustrated in Figure 4c). ∆T/T0 for AuCl3 

and FeCl3 was < 0.1 at most time points highlighting the maintained optical quality of the 

doped films.  

The undoped graphene on laminate showed a stable sheet resistance over time 

(5.0→5.2 kΩ/sq), whilst the undoped graphene on PET increased from an initial 2.2 kΩ/sq to 

3.5 kΩ/sq, after 200 hrs, again attributed to the unintentional sulphur deposited during the 

graphene-transfer process. The AuCl3-doping dramatically reduced the sheet resistance from 

3.4 kΩ/sq to 0.29 kΩ/sq (laminate) and 1.8 kΩ/sq to 0.62 kΩ/sq (PET). Nevertheless, as 

before, the sheet resistance in the AuCl3 case still tended to increase with time, though to a 

much lesser extent, suggesting the need for polymer passivation or hermetic capping layers. 

∆R/R0, the ratio of the change in sheet resistance of doped graphene to undoped graphene, 

is the highest for the AuCl3-laminate, as shown in Figure 4d). Unlike the other dopants the 

reduced sheet resistance remains over time and only increased by 47% (laminate) and 15% 

(PET) after 200 hours. The sheet resistance was as low as 294 Ω/sq for the AuCl3-laminate, 
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which increased by only 141 Ω/sq, whilst for the AuCl3-PET it was 616 Ω/sq, and increased 

by only 92 Ω/sq after 200 hrs ambient exposure.  

 

Fig. 5. a) Ratio of optical conductivity to dc electrical conductivity and b) the comparison of the 

ratio to other conductive transparent media. [52, 53] 

 

The ratio of the optical conductance, σopt, to the DC electronic conductance, σdc, 

defines a figure of merit of their optoelectronic performance, and can be estimated from; 

22

0 1
5.1881

2
1















































dc

opt

s

opt
R

tZ
T




   (1) 

Here Z0 is the impedance of free space (377 Ω) and t is the film thickness. [53, 54] For an 

ideal transparent conductive electrode σopt/σdc→0; requiring a low sheet resistance and high 
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optical transmittance. The approximate σopt/σdc values of our transferred and doped graphene 

and other competing transparent flexible conductors are plotted in Figures 5a) and 5b), 

respectively. σopt/σdc was < 2 for the FeCl3-doped and SnCl2-doped graphene cases and < 1 

for AuCl3-doped graphene, during the entire measurement period (200 hours; AuCl3-

laminate: 0.32, and AuCl3-PET: 0.79). The conductivity ratio of AuCl3-doped graphene on 

laminate is around ten times higher than the minimum industry standard (0.029), but was 

significantly lower than the undoped graphene and even lower again than that of stacked 

graphene (2.5). [54] AuCl3 doping is a most efficient means to improve the opto-electronic 

conductivity of non-contiguous graphene on flexible and transparent substrates, and unlike 

other dopants, retains this state even after extended periods of time under ambient 

conditions. 
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Conclusion    

 Here we have detailed techniques for thermal and cold lamination of graphene onto 

flexible and transparent substrates. High transfer fidelity, indicated by high spatial uniformity, 

homogenous optical transmission and sheet resistance were noted. Cold lamination using 

UV-curable adhesive produced less wrinkling of the nascent graphene relative to the hot 

lamination with the added benefit that in the case of the cold lamination the films are doped 

with sulphur during the Cu-etch, reducing the sheet resistance without any additional doping 

processes. The reported facile transfer methods are inexpensive and reproducible. From 

time-dependent doping studies we showed that AuCl3 is a most effective dopant, even for 

non-contiguous thin films, giving sheet resistances as low as 294 Ω/sq and a σopt/σdc ~ 0.3 

after 200 hrs ambient exposure. Such facile doped graphene / polymer films are showing 

increasing promise for highly transparent and highly conductive flexible electronics which 

may ultimately find use in OLED displays and next-generation photovoltaic devices.  
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