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ABSTRACT
Background  Epithelial tubo-ovarian cancer (EOC) has 
high mortality partly due to late diagnosis. Prevention 
is available but may be associated with adverse effects. 
A multifactorial risk model based on known genetic 
and epidemiological risk factors (RFs) for EOC can help 
identify women at higher risk who could benefit from 
targeted screening and prevention.
Methods  We developed a multifactorial EOC risk 
model for women of European ancestry incorporating the 
effects of pathogenic variants (PVs) in BRCA1, BRCA2, 
RAD51C, RAD51D and BRIP1, a Polygenic Risk Score 
(PRS) of arbitrary size, the effects of RFs and explicit 
family history (FH) using a synthetic model approach. The 
PRS, PV and RFs were assumed to act multiplicatively.
Results  Based on a currently available PRS for EOC 
that explains 5% of the EOC polygenic variance, the 
estimated lifetime risks under the multifactorial model in 
the general population vary from 0.5% to 4.6% for the 
first to 99th percentiles of the EOC risk distribution. The 
corresponding range for women with an affected first-
degree relative is 1.9%–10.3%. Based on the combined 
risk distribution, 33% of RAD51D PV carriers are 
expected to have a lifetime EOC risk of less than 10%. 
RFs provided the widest distribution, followed by the 
PRS. In an independent partial model validation, absolute 
and relative 5-year risks were well calibrated in quintiles 
of predicted risk.
Conclusion  This multifactorial risk model can facilitate 
stratification, in particular among women with FH of 
cancer and/or moderate-risk and high-risk PVs. The 
model is available via the CanRisk Tool (www.canrisk.​
org).

INTRODUCTION
Epithelial tubo-ovarian cancer (EOC), the seventh 
most common cancer in women globally, is often 
diagnosed at late stage and is associated with high 
mortality. There were 7443 new cases of EOC 
and 4116 deaths from EOC annually in the UK in 
2015–2017.1 Early detection could lead to an early-
stage diagnosis, enabling curative treatment and 
reducing mortality. Annual multimodal screening 

using a longitudinal serum CA125 algorithm in 
women from the general population resulted in 
significantly more women diagnosed with early-
stage disease but without a significant reduction 
in mortality.2 Four-monthly screening using the 
same multimodal approach also resulted in a stage 
shift in women at high risk (>10% lifetime risk of 
EOC).3 Currently, risk-reducing bilateral salpingo-
oophorectomy (RRSO), on completion of their 
families, remains the most effective prevention 
option,4 and it has been recently suggested that 
RRSO would be cost-effective in postmenopausal 
women at >4% lifetime EOC risk.5 6 Beyond 
surgical risk, bilateral oophorectomy may be asso-
ciated with increased cardiovascular mortality7 and 
a potential increased risk of other morbidities such 
as parkinsonism, dementia, cardiovascular disease 
and osteoporosis,8 9 particularly in those who do 
not take menopausal hormone therapy (MHT).10 
Therefore, it is important to target such prevention 
approaches to those at increased risk who are most 
likely to benefit.

Over the last decade, there have been significant 
advances in our understanding of susceptibility to 
EOC. After age, family history (FH) is the most 
important risk factor (RF) for the disease. Approx-
imately 35% of the observed familial relative risk 
(FRR) can be explained by rare pathogenic variants 
(PVs) in the BRCA1, BRCA2, RAD51C, RAD51D 
and BRIP1 genes.11–14 Recent evidence suggests 
that PALB2, ATM, MLH1, MSH2 and MSH6 are 
also involved in the EOC genetic susceptibility.14–18 
Common variants, each of small effect, identified 
through genome-wide association studies,19 20 
explain a further 4%. Several epidemiological RFs 
are also known to be associated with EOC risk, 
including use of MHT, Body Mass Index (BMI), 
history of endometriosis, use of oral contracep-
tion, tubal ligation and parity.21–26 Despite these 
advances, those at high risk of developing EOC 
are currently identified mainly through FH of the 
disease or on the basis of having PVs in BRCA1 and 
BRCA2. However, more personalised risk predic-
tion could be achieved by combining data on all 
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known epidemiological and genetic RFs. The published EOC 
prediction models consider either RFs24 25 27 or common vari-
ants.24 28 No published EOC risk prediction model takes into 
account the simultaneous effects of the established EOC suscep-
tibility genetic variants (rare and common), residual FH and 
other known RFs.

Using complex segregation analysis, we previously developed 
an EOC risk prediction algorithm that considered the effects of 
PVs in BRCA1 and BRCA2 and explicit FH of EOC and breast 
cancer (BC).11 The algorithm modelled the residual, unexplained 
familial aggregation using a polygenic model that captured other 
unobserved genetic effects. The model did not explicitly include 
the effects of other established intermediate-risk PVs in genes 
such as RAD51C, RAD51D and BRIP1,12–14 29 which are now 
included on routine gene panel tests, the effects of recently 
developed EOC Polygenic Risk Scores (PRSs) or the known RFs.

Here we present a methodological framework for extending 
this model to incorporate the explicit effects of PVs in RAD51C, 
RAD51D and BRIP1 for which reliable age-specific EOC risk 
estimates are currently available, up-to-date PRSs and the known 
EOC RFs (table 1). We used this multifactorial model to evaluate 
the impact of negative predictive testing in families with rare PVs 
and to assess the extent of EOC risk stratification that can be 
achieved in the general population, women with a FH of EOC 
and those carrying rare PVs. We evaluated the performance of 
a subset of this model in the UK Collaborative Trial of Ovarian 
Cancer Screening (UKCTOCS),2 where women from the general 
population were followed up prospectively.

METHODS
EOC risk prediction model development
No large datasets are currently available that include data on 
all known genetic and other EOC RFs. Therefore, we used a 
synthetic approach, described previously,30 to extend our 
previous EOC model11 by capitalising on published estimates of 
the associations of each RF with EOC. This approach was shown 
to provide valid risk estimates in the case of BC.30–32

Under the assumption that the effects of rare PVs, RFs and 
polygenic component are multiplicative on EOC risk, the inci-
dence at age ‍t‍ for individual i was modelled as
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RFρ‍ is the corresponding indicator vari-
able showing the category of risk-factor ‍ρ‍ for the individual. The 
baseline incidence was determined by constraining the overall 
incidences to agree with the population EOC incidence. To 
allow appropriately for missing RF information, only those RFs 
measured on a given individual are considered.

Major gene (MG) effects
To include the effects of RAD51D, RAD51C and BRIP1, we 
used the approach described previously where PVs in these 
genes were assumed to be risk alleles of a single MG locus.33 
A dominant model of inheritance was assumed for all rare PVs. 

To define the penetrance, we assumed the following order of 
dominance when an individual carried more than one PV (ie, the 
risk was determined by the highest-risk PV and any lower-risk 
PVs ignored): BRCA1, BRCA2, RAD51D, RAD51C and BRIP1.33 
The population allele frequencies for RAD51D, RAD51C 
and BRIP1 and EOC relative risks (RRs) were obtained from 
published data (online supplemental table S3).14 29 Although PVs 
in PALB2, ATM, MLH1, MSH2 and MSH6 have been reported 
to be associated with EOC risk, PVs in MLH1, MHS2 and MSH6 
are primarily associated with risk of specific subtypes of EOC 
(endometrioid and clear cell),17 and at the time of development, 
precise EOC age-specific risk estimates for PALB2 and ATM PV 
carriers were not available. Therefore, these were not considered 
at this stage.

Table 1  Summary of components of the EOC risk model

RF group RF category Comments

FH Explicit FH of ovarian and other 
cancers (breast, prostate, male breast 
and pancreatic)

Considers families 
of arbitrary size and 
structure, including 
affected and unaffected 
relatives

Sex  �  Sex of all family members

Age  �  Ages at cancer diagnosis 
or current ages/age at 
death of family members

Genetic factors

 � Rare 
truncating/
pathogenic 
variants

BRCA1  �

BRCA2  �

RAD51D  �

RAD51C  �

BRIP1  �

 � Common 
genetic 
variants

Polygenic Risk Score Explaining 5% of the 
polygenic variance

 � Unobserved 
genetic effects

Residual polygenic component Accounts for the residual 
familial aggregation of 
EOC

Lifestyle/hormonal/reproductive

 �  Height Measured in cm (five 
categories)

Body Mass Index Measured in kg/m2 (three 
categories)

Parity Number of live births 
(three categories)

Endometriosis Yes/no

Use of oral contraception Years of use (five 
categories)

Use of hormone replacement therapy Never/ever

Tubal ligation Yes/no

Breast tumour 
pathology

Oestrogen, progesterone, HER2 
receptor, CK14, CK5/6 status

As implemented in the 
BOADICEA breast cancer 
model

Demographic factors

 � Country of 
origin

Country Defines the underlying 
incidences used

 � Birth cohort Defined by the person’s year of birth Eight calendar year-
specific sets of incidences

 � Family 
ethnicity

Ashkenazi Jewish origin  �

BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation 
Algorithm; EOC, epithelial tubo-ovarian cancer; FH, family history; RF, risk factor.
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Epidemiological RFs
The RFs incorporated into the model include parity, use of oral 
contraception and MHT, endometriosis, tubal ligation, BMI and 
height. We assumed that the RFs were categorical and that indi-
viduals’ categories were fixed for their lifetime, although the RRs 
were allowed to vary with age. The RR estimates used in equa-
tion (1) and population distributions for each RF were obtained 
from large-scale external studies and from national surveillance 
data sources using a synthetic approach as previously described.30 
Where possible, we used RR estimates that were adjusted for 
the other RFs included in the model and distributions from the 
UK. Details of the population distributions and RRs used in 
the model are given in online supplemental table S2. As in the 
Breast and Ovarian Analysis of Disease Incidence and Carrier 
Estimation Algorithm (BOADICEA),30 in order to decrease the 
runtime, we combined the RFs with age-independent RRs into 
a single factor (specifically parity, tubal ligation, endometriosis, 
BMI and height).

Incorporating PRSs
We included an EOC susceptibility PRS, assumed to form part 
of the polygene, using the methods previously developed.11 30 
The polygenic component decomposes into a measured compo-
nent due to the PRS (‍xPRS‍) and an unmeasured component repre-
senting other familial effects (‍xR‍):
	﻿‍ xP = xPRS + xR.‍� (2)

‍xPRS‍summarises the effects of multiple common variants and 
is assumed normally distributed with mean 0 and variance ﻿‍α2‍ in 
the general population, with ‍0 ≤ α ≤ 1‍. The parameter ﻿‍α2‍ is the 
proportion of the overall polygenic variance (after excluding the 
effects of all MGs) explained by the PRS. ‍xR‍ is normally distrib-
uted with mean 0 and variance ‍1− α2‍ . The approach used to 
calculate ﻿‍α2‍ is described in the online supplemental material. 
This implementation allows the effect size of the PRS to be 
dynamically varied, allowing an arbitrary PRS.

Here, to illustrate the model’s risk-stratification potential, 
we considered the latest validated EOC PRS developed by the 
Ovarian Cancer Association Consortium,34 which is composed 
of 36 variants (online supplemental table S1) and has a log vari-
ance of 0.099, accounting for 5.0% of the overall polygenic vari-
ance in the model. This 36-variant PRS was found to perform 
equally well as those comprising more variants based on penal-
ised regression or Bayesian approaches.34

Other model components
The previous version11 modelled the incidence of EOC and first 
female BC. To align with BOADICEA,30 the model was extended 
to take account of female contralateral BC and the associations 
of BRCA1/2 PVs with pancreatic cancer, male BC and prostate 
cancer (online supplemental methods).

Model validation
Study subjects
A partial model validation was carried out in a nested case–
control sample of women of self-reported European ancestry 
participating in UKCTOCS. Based on the data available, we were 
able to validate the model on the basis of FH, PRS and RFs. 
Details of the UKCTOCS study design, blood sampling process, 
DNA extraction and processing, variant selection, genotyping 
and data processing are described in the online supplemental 
Methods and published elsewhere.35 Women with an FH of 
two or more relatives with EOC or who were known carriers of 
BRCA1/2 PVs were not eligible to participate in UKCTOCS. In 

summary, the following self-reported information was collected 
at recruitment and used for model validation: parity, use of oral 
contraception and MHT, tubal ligation, BMI and height (online 
supplemental table S4). As the study participants were genotyped 
for only 15 Single Nucleotide Polymorphisms (SNPs) known 
at the time to be associated with EOC risk, it was not possible 
to use the more recently developed PRS for model validation. 
Instead, as the model can accommodate an arbitrary PRS, a PRS 
based on the 15 available SNPs was used35 (online supplemental 
table S5), for which ‍α2 = 0.037‍. The UKCTOCS study partici-
pants were independent of the sets used to generate this PRS.35 
Study participants were not screened for PVs in BRCA1, BRCA2, 
RAD51C, RAD51D or BRIP1.

Pedigree construction
The UKCTOCS recruitment questionnaire collected only 
summary data on FH of BC and EOC. Since the risk algorithm 
uses explicit FH information, these data were used to recon-
struct the pedigrees, which included information on incidences 
in the first-degree and second-degree relatives (online supple-
mental methods).

Statistical analysis
All UKCTOCS participants were followed up using electronic 
health record linkage to national cancer and death registries. 
For this study, they were censored at either their age at EOC, 
their age at other (non-EOC) first cancer diagnosis, their age at 
death or age 79. To assess the model performance, a weighted 
approach was used whereby each participant was assigned a 
sampling weight based on the inverse of the probability of being 
included in the nested case–control study, given their disease 
status. Since all incident cancer cases were included, cases were 
assigned a weight of 1. The cases were matched to two random 
controls (women with no EOC cancer) recruited at the same 
regional centre, age at randomisation and year at recruitment.

We assessed the model calibration and discrimination of the 
predicted 5-year risks. Women older than 74 years at entry 
were excluded. Cases that developed EOC beyond 5 years were 
treated as unaffected. For controls with a less than 5 years of 
follow-up, we predicted the EOC risks to the age at censoring. 
For all other controls and cases, we predicted 5-year risks.

To assess model calibration, we partitioned the weighted 
sample into quintiles of predicted risk. Within each quintile, we 
compared the weighted mean of predicted risk to the weighted 
observed incidence using the Hosmer-Lemeshow (HL) χ2 test.36 
To assess RR calibration, the predicted and observed RRs were 
calculated relative to the corresponding means of risks over all 
quintiles. We also compared the expected (E) with the observed 
(O) EOC risk within the prediction interval by calculating the 
ratio of expected to observed cases (E/O). The 95% CI for the 
ratio was calculated assuming a Poisson distribution.37

We assessed the model discrimination between women who 
developed and did not develop EOC within 5 years using the 
area under the receiver operating characteristic curve (AUC) 
(online supplemental methods).

RESULTS
Model description
RAD51D, RAD51C and BRIP1, based on the assumed allele 
frequencies and RRs, account for 2.5% of the overall model 
polygenic variance. Figure  1 shows the predicted EOC risks 
for carriers of PVs in BRCA1, BRCA2, RAD51D, RAD51C 
and BRIP1 for various FH scenarios. With unknown FH, the 
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risks for carriers of PVs in RAD51D, RAD51C and BRIP1 are 
13%, 11% and 6%, respectively. For example, for a BRIP1 PV 
carrier, the risk varies from 6% for a woman without EOC FH 
to 18% for a woman with two affected first-degree relatives. 
The model can also be used to predict risks in families in which 
PVs are identified but where other family members test nega-
tive (online supplemental figure S1). For women with an FH 
of EOC, the reduction in EOC risk after negative predictive 
testing is greatest for BRCA1 PVs, with the risks being close to 
(though still somewhat greater than) population risk. This effect 

was most noticeable for women with a strong FH. Although a 
risk reduction is also seen for women whose mother carried a 
PV in BRCA2, RAD51D, RAD51C or BRIP1, the reduction is 
less marked. As expected, the predicted risks are still elevated 
compared with the population.

Figure  2 and online supplemental figure S2 show distribu-
tions of lifetime risk and risk by age 50, respectively, for women 
untested for PVs, based on RFs and PRS, for two FH scenarios: 
(1) unknown FH (ie, equivalent to a woman from the general 
population); and (2) having a mother diagnosed with EOC at 

Figure 1  Predicted lifetime (age 20–80 years) EOC risk by PV and family history. Each fgure shows the risks assuming the woman is untested, has no PVs 
or carries a PV in BRCA1, BRCA2, RAD51D, RAD51C or BRIP1. (A) Assuming an unknown family history. (B–E) Assuming an increasing number of affected 
first-degree relatives, as indicated by the pedigree diagram inserts. Predictions are based on UK EOC population incidence. EOC, epithelial tubo-ovarian 
cancer; PV, pathogenic variant.
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age 50. Table 2 shows the corresponding proportion of women 
falling into different risk categories. The variation in risk is 
greatest when including both the RFs and PRS. When consid-
ered separately, the distribution is widest for the RFs. Using the 
RFs and PRS combined, predicted lifetime risks vary from 0.5% 
for the first percentile to 4.6% for the 99th for a woman with 
unknown FH and from 1.9% to 10.3% for a woman with an 
affected mother.

Figure 3 shows the predicted lifetime EOC risk for carriers of 
PVs in BRCA1, BRCA2, RAD51D, RAD51C and BRIP1 based on 
RFs and PRS for two FH scenarios. Taking a RAD51D PV carrier, 
for example, based on PV testing and FH alone, the predicted 
risks are 13% when FH is unknown and 23% when having a 
mother diagnosed with EOC at age 50. When RFs and the PRS 
are considered jointly, risks vary from 4% for those at the 1st 
percentile to 28% for the 99th with unknown FH and from 9% 
to 43% with an affected mother. Table 1 shows the proportion of 
women with PVs falling into different risk categories. Based on 
the combined distribution, 33% of RAD51D PV carriers in the 
population are expected to have a lifetime EOC risk of less than 
10%. Similarly, the distributions of risk for BRIP1 PV carriers are 
shown in figure 3I,J and in table 1. Based on the combined RFs 
and PRS distributions, 46% of BRIP1 PV carriers in the popula-
tion are expected to have lifetime risks of less than 5%; 47% to 
have risks between 5% and 10%, and 7% to have risks of 10% 

or greater. A BRIP1 PV carrier with an affected mother, on the 
basis of FH alone, has a lifetime risk of 11%. However, when the 
RFs and PRS are considered, 50% of those would be reclassified 
as having lifetime risks of less than 10%.

Online supplemental figures S4 and S5 show the probability 
trees describing the reclassification of women as more informa-
tion (RFs, PRS and testing for PVs in the MGs) is added to the 
model for a woman with unknown FH and a woman with a 
mother diagnosed at age 50, respectively, based on the predicted 
lifetime risks. Online supplemental figures S4A and S5A show 
the reclassification resulting from adding RFs, MG and PRS 
sequentially, while online supplemental figures S4B and S5B 
assume the order RFs, PRS and then MG. Assuming the three 
risk categories for lifetime risks are <5% and ≥5% but <10% 
and≥10%, there is significant reclassification as more informa-
tion is added.

Model validation
After censoring, 1961 participants with 374 incident cases and 
1587 controls met the 5-year risk prediction eligibility criteria. 
Online supplemental table S5 summarises their characteristics at 
baseline.

The model considering FH, the 15-variant PRS and a subset 
of the RFs (but not including testing for PVs in the MGs) 

Figure 2  Predicted lifetime (age 20–80 years) EOC risk for a woman untested for PVs based on the different predictors of risk (RFs and PRS). (A,C) Risk 
for a woman with an unknown family history (equivalent to the distribution of risk in the population); (B,D) risk for a woman with a mother affected at age 
50. (A,B) Probability density function against absolute risk; (C,D) absolute risk against cumulative distribution. The vertical line (A) and the horizontal line (C) 
(labelled ‘no RFs or PRS’) are equivalent to the population risk of EOC. The ‘population’ risk is shown separately in (B,D). Predictions are based on UK EOC 
population incidences. EOC, epithelial tubo-ovarian cancer; PRS, Polygenic Risk Score; RF, risk factor.
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demonstrated good calibration in both absolute and relative 
predicted risk (figure  4). Over the 5-year period, the model 
predicted 391 EOCs, close to the 374 observed (E/O=1.05, 
95% CI: 0.94 to 1.16). The model was well calibrated across 
the quintiles of predicted risk (HL p=0.08), although there was 
a suggestion of an underprediction of risk in the lowest quintile 
(absolute risk E/O=0.66, 95% CI: 0.52 to 0.91; RR E/O=0.63, 
95% CI: 0.42 to 0.95). The AUC for assessing discrimination of 
these model components was 0.61 (95% CI: 0.58 to 0.64).

When looking at individual factors, FH predicted the widest 
5 year risk variability (SD=0.0013; range: 0.04% to 4.0%), 
followed by RFs (SD=0.0010; range: 0.02% to 0.7%) and PRS 
(SD=0.0009; range: 0.05% to 1.0%, online supplemental figure 
S6). As expected, their sequential inclusion increased the vari-
ability (SD=0.0018; online supplemental figure S6).

DISCUSSION
The EOC risk prediction model presented here combines the 
effects of FH, the explicit effects of rare moderate-risk to high-
risk PVs in five established EOC susceptibility genes, a 36-variant 
PRS and other clinical and epidemiological factors (table  1). 
The model provides a consistent approach for estimating EOC 
risk on the basis of all known factors and allows for prevention 
approaches to be targeted at those at highest risk.

The results demonstrate that in the general population 
(unknown FH), the existing PRS and RF alone identify 0.6% 
of women who have a lifetime risk of >5% (table 2). On the 
other hand, for women with FH, 37.1% of women would have 
a predicted risk between 5% and 10% and 1.2% would have 
an EOC risk of ≥10% (table 2). The results show that the RFs 

Table 2  Percentage of women falling in different risk categories by status of PV in one of the high-risk or intermediate-risk genes included in the 
model and family history of cancer

PV status Family history Risk categories

Lifetime risk Risk to age 50

Ref fig.RF PRS RF and PRS RF PRS RF and PRS

Untested NA Population 99.9 100.0 99.4 100.0 100.0 100.0 Figure 2A,C and online 
supplemental figure S2A,CModerate 0.1 0.0 0.6 0.0 0.0 0.0

High 0.0 0.0 0.0 0.0 0.0 0.0

M 50 Population 59.1 61.8 61.7 100.0 100.0 100.0 Figure 2B,D and online 
supplemental figure S2B,DModerate 40.3 38.2 37.1 0.0 0.0 0.0

High 0.6 0.0 1.2 0.0 0.0 0.0

BRCA1 NA Population 0.0 0.0 0.0 0.0 0.0 0.3 Figure 3A and online 
supplemental figure S3AModerate 0.0 0.0 0.0 1.5 0.1 4.1

High 100.0 100.0 100.0 98.5 99.9 95.6

M 50 Population 0.0 0.0 0.0 0.0 0.0 0.0 Figure 3B and online 
supplemental figure S3BModerate 0.0 0.0 0.0 0.0 0.0 0.2

High 100.0 100.0 100.0 100.0 100.0 99.8

BRCA2 NA Population 1.6 0.1 4.7 100.0 100.0 99.9 Figure 3C and online 
supplemental figure S3CModerate 42.8 37.7 42.3 0.0 0.0 0.1

High 55.6 62.2 52.9 0.0 0.0 0.0

M 50 Population 0.0 0.0 0.1 95.9 99.9 95.3 Figure 3D and online 
supplemental figure S3DModerate 1.9 0.1 4.7 4.0 0.1 4.5

High 98.1 99.9 95.3 0.0 0.0 0.2

RAD51D NA Population 0.6 0.0 2.1 100.0 100.0 99.8 Figure 3E and online 
supplemental figure S3EModerate 24.5 18.3 30.8 0.0 0.0 0.2

High 75.0 81.7 67.1 0.0 0.0 0.0

M 50 Population 0.0 0.0 0.0 93.5 99.6 92.6 Figure 3F and online 
supplemental figure S3FModerate 0.6 0.0 2.0 6.3 0.4 7.0

High 99.4 100.0 98.0 0.2 0.0 0.4

RAD51C NA Population 1.8 0.1 4.9 99.8 100.0 99.3 Figure 3G and online 
supplemental figure S3GModerate 44.4 39.3 43.1 0.2 0.0 0.7

High 53.7 60.6 52.0 0.0 0.0 0.0

M 50 Population 0.0 0.0 0.1 85.8 96.2 85.0 Figure 3H and online 
supplemental figure S3HModerate 2.0 0.1 5.0 13.6 3.8 13.7

High 98.0 99.9 95.0 0.6 0.0 1.3

BRIP1 NA Population 43.6 34.0 45.7 100.0 100.0 99.7 Figure 3I and online 
supplemental figure 3IModerate 52.3 65.0 47.4 0.0 0.0 0.3

High 4.1 1.0 6.9 0.0 0.0 0.0

M 50 Population 2.1 0.1 4.8 93.0 99.3 91.4 Figure 3J and online 
supplemental figure 3JModerate 43.5 38.9 44.5 6.8 0.7 8.1

High 54.5 61.1 50.7 0.3 0.0 0.5

The ‘population’ risk category is defined as lifetime risk of <5% and risk to age 50 of <3%. ‘Moderate’ risk category is defined as a lifetime risk of 5% or greater but less 
than 10% and a risk to age 50 of 3% or greater but less than 5%. ‘High’ risk category is defined as a lifetime risk of 10% or greater and a risk to age 50 of 5% or greater. The 
population lifetime risk is 1.8%, and the population risk to age 50 is 0.27%
EOC, epithelial tubo-ovarian cancer; M 50, mother diagnosed with EOC at age 50; NA, unknown family history; PV, pathogenic variant.
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Figure 3  Predicted lifetime EOC risk for a woman who has a PV in one of the high-risk or intermediate-risk genes included in the model, based on the 
different predictors of risk (RFs and PRS), for two family histories. (A,B) Lifetime risk for a carrier of a PV in BRCA1; (C,D) lifetime risk for a carrier of a PV in 
BRCA2; (E,F) lifetime risk for a carrier of a PV in RAD51D; (G,H) lifetime risk for a carrier of a PV in RAD51C; (I,J) lifetime risk for a carrier of a PV in BRIP1. 
(A,C,E,G,I) Risks for an unknown family history; (B,D,F,H,J) risks for a woman whose mother is diagnosed with EOC at age 50. Predictions based on UK 
ovarian cancer incidences. EOC, epithelial tubo-ovarian cancer; PRS, Polygenic Risk Score; PV, pathogenic variant; RF, risk factor.
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provide a somewhat greater level of risk stratification than 
the 36-variant PRS. However, discrimination is greater when 
both are considered jointly. These results were in line with the 
observed risk distributions in the validation dataset, but direct 
comparisons were not possible due to the different variants 
included in the PRSs and limited RFs in the validation study. 
The results also show that significant levels of risk recategorisa-
tion can occur for carriers of PVs in moderate-risk or high-risk 
susceptibility genes.

The comprehensive risk model is based on a synthetic approach 
previously used for BC30 and makes several assumptions. In 
particular, we assumed that the risks associated with known 
RFs and the PRS combine multiplicatively. We have not assessed 
this assumption in the present study; however, published studies 
found no evidence of deviations from the multiplicative model 
for the combined effect of the RFs and the PRS,28 suggesting 
that this assumption is reasonable. The model assumes that the 
RFs are also independent of the residual polygenic component 
that captures the effect of FH. However, for the RFs included, 
we used estimates from published studies that have adjusted for 
the other known EOC RFs. The observation that the model was 
calibrated on the RR scale in the UKCTOCS validation study 
also suggests that these assumptions are broadly valid.

Similarly, the model assumes that the relative effect-sizes of 
RFs and the PRS are similar in women carrying PVs in BRCA1, 
BRCA2, RAD51C, RAD51D and BRIP1 to those without PVs in 
these genes. Evidence from studies of BRCA1 and BRCA2 PV 
carriers suggests that this assumption is plausible: PRSs for EOC 
have been shown to be associated with similar RRs in the general 
population and in BRCA1 and BRCA2 PV carriers.34 38 39 The 
current evidence also suggests that known RFs have similar effect 
sizes in BRCA1 and BRCA2 PV carriers as in non-carriers.40 41 
No studies have so far assessed the joint effects of RAD51C, 
RAD51D and BRIP1 PVs with the PRS, but the observation that 
FH modifies EOC risk for RAD51C/D PV carriers29 suggests that 
similar arguments are likely to apply. Large prospective studies 
are required to address these questions in more detail. We were 
not able to validate these assumptions explicitly in UKCTOCS 
because gene-panel testing data were not available.

Other RFs for EOC that have been reported in the literature 
include breast feeding42 and age at menarche and menopause.25 
However, the evidence for these RFs is still limited. Our model 
is flexible enough to allow for additional RFs to be incorporated 
in the future.

We validated the 5-year predicted risks on the basis of FH, RFs 
and PRS available in an independent dataset from a prospective 
trial.2 A key strength was that EOC was a primary outcome in 
UKCTOCS. All cases were reviewed and confirmed by an inde-
pendent outcome review committee.2 The results indicated that 
absolute and RRs were well calibrated overall and in the top 
quintiles of predicted risk. However, there was some underpre-
diction of EOC in the bottom quintile. This could be due to 
differences in the RF distributions in those who volunteer to 
participate in research (self-selected more healthy individuals43) 
compared with the general population or due to random varia-
tions in the effects of the RFs in UKCTOCS compared with other 
studies. Alternatively, the multiplicative assumption may break 
down in the lowest-risk category. Further, large prospective 
cohorts will be required to determine whether the underpredic-
tion in the lowest risk category reflects a systematic miscalibra-
tion of the model or is due to chance. Although the AUC based 
on model components in this validation study was modest; it is 
not surprising given that only a subset of the model predictors 
were used, and UKCTOCS recruited primarily low-risk women. 
Inclusion of the optimal PRS,34 all RFs and information on PVs 
in the five genes that account for a large fraction of the EOC 
FRR are expected to lead to an increase in AUC.

The current validation study has some limitations. The under-
lying model accounts for FH information on both affected and 
unaffected family members, but the UKCTOCS recruitment 
questionnaire did not include information on unaffected family 
members. Family sizes and ages for unobserved family members 
were imputed using demographic data. In addition, since infor-
mation on whether the affected family members were from the 
paternal or maternal side was absent, we assumed all the affected 
family members were from the same (maternal) side. This may 
result in inaccuracies in risk predictions. A further limitation is 
that UKCTOCS was undertaken to assess screening of low-risk 

Figure 4  Calibration of the absolute and relative predicted 5-year EOC risks, showing the observed and expected risks by quintile. The bars show the 95% 
CIs for the observed risks. Relative risks were calculated relative to the overall mean of observed and predicted risks. AUC, area under the receiver operating 
characteristic curve.
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women and therefore is not necessarily representative of a true 
population cohort, as women with a FH of two or more relatives 
with EOC or who were known carriers of BRCA1/2 PVs were 
not eligible to participate in the randomised controlled trial. 
Data were not available on the rare moderate-risk and high-risk 
PVs, and we were only able to assess a PRS with 15 variants, 
rather than the more informative 36-variant PRS. Therefore, it 
has not been possible to validate the full model presented here. 
Future analyses in other cohorts will be required to further vali-
date the full model.

In summary, we have presented a methodological framework 
for a comprehensive EOC risk prediction model that considers 
the currently known genetic and epidemiological RFs and 
explicit FH. The model allows users to obtain consistent, indi-
vidualised EOC risks. It can also be used to identify target popu-
lations for studies to assess novel prevention strategies (such 
as salpingectomy) or early detection approaches by identifying 
those at higher risk of developing the disease for enrolment into 
such studies. Future independent studies should aim to validate 
the full model, including the full PRS and rare PVs in diverse 
settings. The model is available via the CanRisk Tool (www.​
canrisk.org), a user-friendly web tool that allows users to obtain 
future risks of developing EOC.
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