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A Study of the Peripatetic Mechanica

Arthur Harris

Abstract

This study aims to understand the aims and methods of a less-studied work from the early
Peripatos, the Mechanica. 1 argue that the Mechanica (Mech.) was an application of natural
philosophy to the technical sphere of mechanics. The primary aim is to give causal
explanations of various puzzling phenomena in this domain. While the author uses lettered
diagrams and specialised, geometrical language to achieve this aim, the arguments should not
be described as mathematical or demonstrative. Rather, Mech.’s explanations are
fundamentally physical, causal and analogical.

In Chapter 1, I describe the structure of Mech., underscoring a degree of coherence across its
35 problems. I provide evidence for dating Mech. to the early Hellenistic period (late 4th —
early 3rd c. BCE) and against the attribution to Aristotle. I also take issue with two standard
arguments against that attribution: the claim that Mech.’s understanding of natural motion
differs from Aristotle’s, and G.E.L. Owen’s claim that Mech. applies the notion of motion
and speed at an instant. I then situate Mech. in its intellectual context through a survey of
earlier Greek mechanics and mathematical investigations of motion. At the end of the
chapter, Note A summarises Mech.’s structure, while Note B examines passages in
Aristotle’s certainly authentic works sometimes thought to represent a theory of mechanics.

In Chapter 2, I argue that Mech.’s analysis of radial rotation as the combination of two
rectilinear motions should be understood as claiming that two motions are present in a
rotating radius, rather than as treating the component motions as useful fictions. To show this,
I examine Aristotle’s approach to composed motions across several works. I argue that
Aristotle’s accounts of change in Physics 3 and 5 imply a distinctive, realist view of
component motions, according to which it is a fact that the rotating radius two simultaneous
motions rather than a single motion along the same path. I then examine supporting evidence
in passages concerning both celestial and sublunary motions.

In Chapter 3, I explore two further considerations that arise from Aristotle’s statements on
types of locomotion and their compositions. First, I consider how we should understand
Aristotle’s division of all motion into straight, circular and mixed. Then I explore the limits
of the possible presence of distinct motions in a single object, through examining Aristotle’s
claim that no contrary motions can be simultaneously present in a body.

In Chapter 4, I undertake a close reading of Mech. problem 1, showing that problem 1°s
arguments draw on the resources of geometry to support a basically physical agenda and to
deliver a causal explanation. In light of the arguments of Chapters 2-3, I argue that problem
1’s analysis targets radial rotation, which is distinguished from celestial circular motion by
the simultaneous presence of two rectilinear motions in the rotating radius. I defend the
explanatory potential of Mech.’s causal notion of constraint (§xkpovoig) and I explore an
unresolved tension between the characterisation of the motions as radial and tangential
(84926-849a19, 852a8-13) and their different representation in a diagram (849a19-849b19).



Chapter 5 studies the explanatory strategies of the less-studied problems 4-22, with a focus
on their use of lettered diagrams and specialised language. I argue that these problems
fundamentally rely on analogies, a kind of reasoning distant from formal geometry, but that
they use the specialised language and lettered diagrams of geometry to support these
analogies. Since the arguments are analogical rather than deductive, Mech.’s method should
not be identified with the demonstrative ideals of Aristotle’s Posterior Analytics.

Chapter 6 examines the paradox of Mech. problem 24, known as the Rota Aristotelis. This
paradox challenges problem 1’s claims about rotation and thus threatens to overturn Mech.’s
explanatory project. I show that the author’s aim is not to provide a geometrical explanation.
Rather, he draws two distinct puzzles from the paradoxical phenomenon and answers each of
them with a solution based on physical principles. This further substantiates my argument
over the previous chapters that Mech. is not so much a mathematical work as an application
of natural philosophy to the technical sphere of mechanics.

Chapter 7 argues that Physics 7.4’s startling claim that circular and rectilinear motions are
incomparable may represent an earlier attempt to solve the Rota Aristotelis paradox. |
criticise three alternative explanations of Phys. 7.4’s claim and show how Phys. 7.4’s
argument would make sense as a response to the paradox.

In Chapter 8, I summarise the arguments of previous chapters.
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Chapter 1: Introduction

1.1: An overview of the Mechanica

The Mechanica attributed to Aristotle teems with ideas that challenge modern conceptions of
‘Aristotelian’ science. It contains the earliest clear instantiation of what modern physicists
call the ‘parallelogram rule’, an analysis of motion on a circular path into radial and
tangential components, and the idea that diverse natural and artificial phenomena can be
brought together and understood in terms of the lever and the balance. Is this the essentially

qualitative natural philosophy of Aristotle with which we are familiar?

Few modern scholars have examined the Mechanica in detail.! This is surprising not only in
view of the inherent interest of the text, but also given the starring role allotted to mechanics
in traditional as well as more recent accounts of the Scientific Revolution and of the
differences between ancient and modern science.? The fact that the Mechanica fell in the
nineteenth century into the limbo of ‘pseudo-Aristotle’ may bear some responsibility for its
neglect. In the absence of close analysis, the Mechanica has elicited wildly differing
evaluations from modern scholars. Paul Tannery found it ‘a disorderly and unmethodical
collection of very diverse questions, in the solutions of which the author has not been able to
leave any mark of his own originality.”® For G.E.L. Owen, the Mechanica far surpasses
Aristotle in its ‘almost Newtonian insights’.* A poorly organised and derivative school text or

the research notes of a proto-Newton? The need for closer study is apparent.

! English-language studies have appeared only since the 2000s.

2 For example, Burtt 1925, Koyré 1957, Dijksterhuis 1961, Dear 1995.

3 “il s'agit d'un recueil, sans ordre et sans méthode, de questions trés diverses 4 la solution desquelles I'auteur n'a
pas su imprimer le sceau d'une originalité personnelle’ (Tannery, 1915). For similarly negative assessments, see
Montucla 1797, vol. 1, 125: ‘IIs trouveront sans doute que la pliipart des explications qu’il donne sont
entierement fausses, et que la principale et la premiére est tout-a-fait ridicule.”’; Whewell 1837, Vol.1, 51: ‘in
scarcely any one instance are the answers, which Aristotle gives to his questions, of any value.; Rose 1854, 192:
‘quaestionum minutias et confusionem’; Knorr 1982a, 101n.27: ‘the clumsy execution of the physical analyses
throughout the Mechanics would call into question its ascription to a highly competent physical thinker, as
Strato surely was... One might rather suppose that the Mechanics was produced by a scholar of no remarkable
insight under the shadow of a keen scientific intellect.’

4 Owen 1976, 8-9. For praise of the Mechanica, see also Guido Ubaldo 1577, praef.: ‘Aristotelemque potius
philosophorum coryphaeum imitemur, cuius mechanici amoris ardorem acutissimae illae mechanicae
quaestiones posteris traditae satis declarant: qua quidem laude Platonem magnifice superauit.’; Cantor 1894,
241: ‘Die sogenannte Mechanik des Aristoteles wiirde, sagen wir, seines Namens nicht unwiirdig sein. Ein
Schriftsteller des XVIII. S. [= Montucla] hat zwar dariiber so ziemlich das entgegengesetzte Urtheil gefallt,
diirfte jedoch damit vermuthlich allein stehen... ein solches Werk ist wahrlich keines antiken Schriftstellers
unwiirdig, mogen auch einige Fragen in demselben nicht richtig beantwortet sein. Zu diesen nicht richtig
beantworteten Fragen gehort eine [=problem 24], welche schon {iberhaupt gestellt zu haben einen feinen
mathematischen Geist verrdth.’; Farrington 1949, 46: “a brilliant attempt to bring a great range of human

1



The text consists of an introduction (847a11-848a38) followed by a sequence of 35 question-
and-answer units called ‘problems’ (mpopAnuata).’ These attempt to answer a broad range of

questions about the powers and effects of bodies in motion, such as:

How can a small rudder move a huge ship?

Why do things thrown from a sling travel further than things thrown by hand?

Why are pebbles on the beach round?

How do nutcrackers work?°

Many collections of ‘problems’ from Greco-Roman antiquity are rather heterogeneous. The
problems may be tied together by a general theme — Plutarch’s Platonic Questions answers
various questions about the interpretation of Plato — but each of the solutions stands alone,
without a unifying explanatory principle, or result building on result.” By comparison, the
Mechanica is remarkably unified. The introduction, itself an unusual feature in a book of
problems, lays out a clear vision of what mechanical problems are about and how they are to

be solved. First, the author describes what mechanical problems are about:

People wonder at things that occur according to nature of which the cause is
unknown, and at things that occur contrary to nature that happen through skill to the
advantage of humans...For example when the lesser overpower the greater, and what
has small natural motion moves great weights, and almost all the problems that we

call mechanical.?

activities within the scope of mathematical explanation’; De Gandt 1982, 123-24: ‘Je ne connais pas d’exemple
qui atteigne ou surpasse cette perspicacité avant le de Vi centrifuga de Huyghens et les travaux de Newton.”);
White 1984, 177: “a practical, down-to-earth writer, with a shrewd grasp of the fundamentals of his subject’.

5 The author uses the term ‘problems’ at 847a24.

® Paraphrasing problems 5, 12, 15, and 22.

7 This characterises the books of the pseudo-Aristotelian Physical Problems. On ‘problems’ as a genre in the
Peripatos, see Bodnar 2015 and Taub 2015.

8 847a11-25: Oavpdletal TV pev Katd UGty cupPovovimy, dcmv dyvoeital To aitiov, TV 8 mapd evoty, dco
yiveton 816 Tévny TPOC TO CLUPEPOV TOTC AVOPAOTOIG... TowdTa 84 0TIV &v 01¢ Té T EAATTOVO KPATEL TV
pellovov, kai T porny Exovo Kpav Kvel Bapn peydia, kol Tavio oxedov 660 Tdv TPOPANUATOV YoV
mpoocayopevopev. Translations are my own unless otherwise noted.

2



This describes with reasonable accuracy the scope of the following problems which, with
only three exceptions, aim to explain the use of human skill and craft to achieve certain ends

otherwise more difficult or impossible.” Next, the author sets out his method of explanation:

These are not entirely the same as physical problems nor separated, but common to
both the speculations of mathematics and those of natural science. For the ‘how’ (10

@¢) is clear through mathematics, the ‘about what’ (10 mepi 0) through natural science.

What happens in the balance is referred back to the circle, what happens in the lever is
referred back to the balance, and almost all other things that happen in relation to

mechanical motions are referred to the lever.!?

Again, this corresponds fairly closely to what follows. Problem 1 (‘Why are larger balances
more accurate than smaller ones?) is answered by explaining the balance in terms of what I,
adapting a phrase of Jean De Groot, shall call the ‘Rotating Radius Principle’: on a rotating
radius, a point further from the centre moves faster than a nearer point.!! Problem 3 (Why can
small forces move great weights by means of a lever?) is answered by explaining the lever in
terms of the balance.!?> Most subsequent problems (20 out of 32) offer explanations that rely

on analogies to the lever, balance, or Rotating Radius Principle.

When the Mechanica answers questions like those above (e.g. How can a small rudder move

a huge ship?), three levels of explanation are involved:

LEVEL 1. It is shown that the thing to be explained is analogous to a lever or balance

or rotating radius.

® The exceptions are problems 15, 30 and 35.

10 847a25-847b2: &ot1 62 TadTa TOI PUGTKOIG TPOPATLOCLY OUTE TODTA TAUTAY 0VTE KEYOPIGHEVO Ao, GALN
KOwa TV e pofnpatik®dv Bempnudtov kol TV QUGIKOV: TO HEV YOp O dtd TAV Labnuatik®dy 6fjAov, 10 68
TePL O S10 TV PLGIKAY. .. T8 PEV OBV TTEPL TOV {LYOV YIVOUEV €I TOV KUKAOV AvEayeToL, To 8& TEPL TOV HOYAOV
€l Tov Quydv, Ta 8’ dALa TAVTO GYESOV TO TEPL TAC KIVAGELG TAG PNYOVIKAG €l TOV poyAov. I discuss the
translation of 10 ¢ and 10 mepi 0 below.

' De Groot 2014 calls this the ‘Moving Radius Principle’; others (e.g. Krafft 1970, Bodnar 2011b) call it the
‘principle of concentric circles’. Problem 1 uses three different formulations of this principle, one comparing the
speeds of points on a single radius, one comparing the speeds of radii, one comparing the speeds of the end-
points of radii. The first of these is found only in the preface. De Groot 2014, 21-31 comments on several
formulations of the principle.

12 Whether the lever is properly explained by or reduced to the balance in problem 3 is more controversial (see
Chapter 4). At a minimum, we can say that Mech. characterises the lever as a balance with unequal arms
suspended from below.



LEVEL 2. Its properties can therefore be explained by the Rotating Radius Principle.

LEVEL 3. This principle holds because a radius’ rotation results from two motions —
one radial, one tangential. Provided they have the same radial motion, points nearer
the centre undergo more radial motion and hence their tangential motion is

proportionally reduced.

Levels 2 and 3 are provided in Problems 1-3. In answering later problems, usually only a
level 1 explanation is spelled out. But explanations at this level depend on the further levels
of explanation. Thus problems 1-3 in an important way provide the basis of the explanatory

programme.'?

At the end of this chapter, Note A provides an overview of the 35 problems and how they fit
into this programme. Problems 1-3 have a special status, setting up the foundations. Of the
remaining 32 problems, 20 offer level 1 explanations while 5 raise questions about the
underlying explanations of levels 2 and 3, even questioning the project’s legitimacy. There
are seven outlying problems that do not relate to this programme.'* These are all found
towards the end of the text, from problem 25 onwards; I will not examine them in detail. The
primary aim of this thesis is to elucidate the aims and methods of the explanatory programme
that runs through our text from the introduction to the end of problem 24. My claim that there
is a coherent plan behind Mech. is supported by a number cross-references within the

problems. !’

Although I have claimed that the Mechanica is fairly coherent down to and including

problem 24, I do not mean to imply that this text was composed by only one author. It is

13 In referring to a ‘programme’ or ‘project’ I underscore the relatively high degree of coherence of this problem
text, where most problems share the aims and methods outlined in the preface.

14 They can be loosely related to issues raised by problems within the scope of the programme, e.g. problem 25
partly concerns breaking wood (compare problems 14 and 16); problem 31’s thought that it is easier to move
something in the direction in which it is moving might recall part of problem 8; problems 32-34 discuss
projectiles, also the subject of problem 12.

15 Problem 3 refers to the introduction (850a3: ‘Why do small powers move large weights by means of the lever,
just as was said at the beginning, even when the lever has added its weight?’) and also to problem 1 (850b3-4:
‘The cause is that said before, that the [line] further from the centre describes a larger circle.”) Problem 9 refers
to problem 1 (852a19-20: ‘just as we said larger balances are more accurate than smaller ones.’). Problem 27
refers to problem 1 (857a3: ‘this has been shown earlier’). Less directly, problem 3, 850a30-32 echoes the
introduction, 847b13-16.



possible that more than one writer was responsible for problems 1-24 but, if so, those writers
shared common principles, methods, and research interests. For the sake of simplicity, I will

speak of ‘the author’ and the reader may add ‘or authors’ where appropriate.

1.2: Authorship and date

The Mechanica has been transmitted separately from most of the Aristotelian corpus in 31
manuscripts, none earlier than the late thirteenth or early fourteenth century. It is attributed to
Aristotle in most manuscripts. One manuscript, P' (Par. Graecus 2507), expresses some
scepticism.!® In the Renaissance it was generally held to be an authentic work, with only one
or two doubters.!” Valentine Rose (1854) was influential in casting doubt on the text’s
authenticity.'® Modern scholars are divided on the question of authorship, with some
favouring Aristotle, others a Peripatetic philosopher in the decades following Aristotle’s
death, and some identify Strato of Lampsacus, head of the Peripatos after Aristotle’s

immediate successor Theophrastus (from ¢.287-269 BCE).!”

Writing on mechanics was already attributed to Aristotle in antiquity.?’ The ancient lists of
Aristotle’s works in Diogenes Laertius and the Vita Hesychi, both largely derived from a
third century BCE source, mention a Mnyavikcov. An Arabic list attributed to Ptolemy al-
Gharib includes a Mechanical Problems. The Vita Marciana, which ultimately derives from
an epitome of Ptolemy al-Gharib’s Life of Aristotle, refers to Mnyoavikda tpopfAnpata. In his
commentary on the Categories, Simplicius divides Aristotle’s theoretical writings into three
groups, the theological, the natural, and ‘the mathematical, such as the geometrical and
mechanical books he wrote’.?! Olympiodorus and Elias mention works on optics and

mechanics as examples of Aristotle’s mathematical output.?? Athenaeus, a first-century BCE

16 gitiohoyia ThC @V pnyavikdv évepyeiog g tveg Aéyovot Apiototélovg. Van Leeuwen 2010, 196 (cf. 2016,
31) dates this manuscript to 1370-1380.

17 Cardano Opus novum de proportionibus numerorum, motuum, ponderum, sonorum, aliarumque rerum
mensurandarum (Basel, 1570) and Patricio Discussiones Peripateticae, Tomus I, Liber III (Venice, 1571).

18 McLaughlin 2013, 2-3 conveniently summarises Rose’s arguments.

19 Gohlke 1957, Nobis 1966, Krafft 1970, Bottecchia Deho 2000 and Van Leeuwen 2016 suggest Aristotle is the
author (Krafft thinks an early work, Golhke a late, advanced work); Forster 1913, Owen 1985, De Gandt 1981,
Schiefsky 2009, Bodnar 2011a and 2011b, and De Groot 2014 propose an early Peripatetic. Moody and Clagett
1952, Clagett 1957, Drachmann 1963a, Gottschalk 1965, Fleury 1993, Laird and Roux 2008, and Dosch and
Schmidt 2018 favour Strato. Winter 2007 implausibly suggests Archytas.

20T am here indebted to McLaughlin 2013 and Van Leeuwen 2016, 19.

2 In Cat. 4.26.

22 Olympiodorus Introduction to Aristotle’s Logic, 7 Busse: ‘the mechanical and optical problems’ (té.
Mnyavika kot ‘Ontikd tpofinuata). Elias Commentary on Porphyry’s Isagoge 116 Busse: ‘his mathematics

5



writer on war machinery, mentions Aristotle as one of several theoretical writers who might
be consulted by beginners in machine-construction but whose works have little practical
use.? Athenaeus does not, however, say that the named authors wrote books explicitly

devoted to mechanics.**

Aristotle nowhere indicates in his certainly authentic works that he had personally undertaken
to investigate mechanics. When in the Meteorology he summarises the range of natural
investigations to be undertaken, there is no trace of mechanics.?> Some scholars have argued
that Aristotle would not have been interested in mechanics. For example, Rose claimed that
Aristotle was essentially uninterested in practical matters.?¢ This kind of argument has not
found recent supporters. It assumes a questionable assessment of mechanics as practical
rather than theoretical.?” Also, regular illustrations drawn from the manual crafts in
Aristotle’s works may cast doubt on Rose’s generalisation about his interests. Setting this

argument aside, let us consider the main arguments against inauthenticity upheld today.

The Mechanica has been seen as taking un-Aristotelian positions on three theoretical issues:
(1) the meaning of katd @Oov and mapd eOov (natural and unnatural); (2) whether a body
can truly be said to be changing at an instant; (3) the nature of circular motion. None of these
points, however, is decisive. In fact, in each case I find the supposed divergence from

Aristotle’s own views has been exaggerated.

First, the issue of natural and unnatural motions. Mech. problem 1 applies the terms kot
evotv and mapa @Oty respectively to the tangential and rectilinear components of rotating

radial motion six times.?® Several scholars have claimed that this is inconsistent with

such as the Optics and Mechanics ascribed to him’ (10 6¢ pofnpotikd avtod og ta ‘Ortikd kol Mnyavikd avtd
BBAria yeypappéva).

23 Someone writing on practical matters should set to work, ‘having carefully understood himself on the basis of
the famous Delphic precept, rather than the works of Strato and Hestiaeus and Archytas and Aristotle and the
others who have written works similar to theirs. For younger devotees of knowledge they would be useful [as a
training] in elementary principles; but for those already wanting to do something they would be altogether
irrelevant and detached from practical thinking.” Trans. Whitehead and Blyth 2004.

24 As Whitehead and Blyth 2004, 69 seem to assume.

25 The same is true of other curriculum surveys, for example at the end of M4 and /4.

26 Rose 1858, 192. Cf. Forster 1913: ‘Whilst the scientific standpoint of the Mechanica is certainly Peripatetic,
the writer's interest in the practical application of the problems involved is quite un-Aristotelian.’

27 Mech. is interested in theoretical explanation rather than practical applications. The author almost never gives
details of objects material or measurements and several phenomena are described misleadingly (see Chapter 5).
28.8492a15-16, 849a19-21, 849b3-4, 849b5-6, 849b10-12, 849b18-19. The text of the first passage is disputed.
Apelt’s edition and many recent commentators adopt Van Cappelle’s conjecture. Micheli 1995, 63-74 and Van

6



Aristotle’s use of these terms.?® If the author means that the tangential component is always
natural throughout every stage of every rotation, then that is indeed a notion of natural
motion very different from Aristotle’s. On that view, the tangential component motion of a
shot whirled around in a sling is natural, whereas for Aristotle the only natural motion of a
heavy shot is towards the centre of the world. None of our later sources indicate that such a
radical re-conceptualisation of natural and unnatural change had been proposed in the
Peripatos, but then our later sources do not refer to any of Mech. problem 1’s distinctive

1deas.

In any case, there is no compelling reason for seeing this unusual notion of natural and
unnatural motion in Mech.*® The use of these terms for tangential and radial motions in
problem 1 can be understood with reference to the particular case under consideration, a
balance-arm weighed downwards from a horizontal position. In that case, the tangential
motion is ‘natural’ in precisely the Aristotelian sense, being the downwards motion of a

heavy object.!

So it is arguable that the identification of the component motions as natural and unnatural
plays no explanatory role. The terms katd Vo and moapd oy may be mere labels, with no
function in the argument.’? In all manuscripts, but not in most modern editions, the diagram

corresponding to this part of problem 1 takes the orientation of a balance-beam moving down

Leeuwen 2016, 13-18, favour the majority manuscript reading but do not, in my view, sufficiently explain the
other five references to xatd @Oov and Tapa Vo motion. I discuss this further in Chapter 4.

2 E.g. Vilain 2008, 153-54; Berryman 2009, 109; Schiefsky 2009 57n.15; Bodnar 2011a, 449.

30'We should bear in mind the introduction’s use of katd Vot and wapd evov conforms to the standard
Aristotelian use of those terms; for further commentary, see Schiefsky 2007.

31 This interpretation is favoured by Guevara 1627, 51, Krafft 1970, 33, De Gandt 1982, 122, Anders 2013, 125-
26. The cost of this interpretation is that problem 1’s explanation would need to be retouched when carried over
to other cases, such as the lever (problem 3) and the sling (problem 12), where the tangential motion is not
natural. I am arguing that such modifications are trivial, since the labels ‘natural’ and ‘unnatural’ are inessential
to the explanation.

32 Arguably, it is the radial motion’s status as constraint that matters rather than its status as unnatural.
Otherwise, what I in Chapter 4 call the ‘constraint principle’ would also apply to the quadrilateral of motions,
since at least one of the two motions to which a body is subject must be unnatural. The difficulty, to which I
shall return in Chapter 4, is that the motion will be both natural and tangential only for a moment, at the start of
the balance arm’s descent. Bodnar 201 1a, 449 writes that the use of the labels is ‘substantially different from
what we find in other Aristotelian contexts. This remains so, even if we were to admit that the use of the
expression “according to nature” is conditioned by the particular example the Mechanics sets out to explain in
this problem.” This is because ‘the contrast between the two components, between the natural tangential motion
and the radial motion contrary to nature is asserted about every phase of the motion on a circular trajectory.’ I
have not found that the labels ‘natural’ and ‘unnatural’ in the six passages cited in n.28 are directly applied to
every phase of the rotation. The mdon of 849a14 more likely means lines of every size than at every phase of
rotation.



from a horizontal position.>? If the ancient diagram took this orientation, the use of katd.
@votv and mapd ooty with reference to lines in the diagram would more clearly have been
anchored to the specific example of the balance.** Further, problem 8 offers a similar analysis
of rotation into radial and tangential component motions, but here the tangential motion is the
result of pushing and so there is no claim that this could be a natural motion.>> This suggests
that one need not see the tangential component motion as natural in such an analysis, which
could equally well procede on the assumption that both motions are unnatural. In summary, |
find that Mech.’s use of the terms kot @Ootv and mapd eOowv is less conclusive as evidence

against authenticity than some commentators have claimed.

The second supposed point of tension is whether a thing can truly be said to be changing or
resting at an instant. G.E.L. Owen claimed more than once that a major reason for the poverty
of Aristotle’s ‘dynamics’ lay in his response to Zeno’s Arrow paradox. Aristotle had said that
‘nothing is moving in an instant’.>* Owen took this as a denial that anything can truly said to

be changing or resting at an instant:

‘Unable to talk of speed at an instant, Aristotle has no room in his system for any such
concept as that of initial velocity, or what is equally important, of the force required to
start a body moving. Since he cannot recognize a moment in which the body first
moves, his idea of force is restricted to the causing of motions that are completed in a
given period of time. And, since he cannot consider any motion as caused by an initial
application of force, he does not entertain the Newtonian corollary of this, that if
some force F is sufficient to start a motion the continued application of F must
produce not just the continuance of the motion but a constant change in it, namely

acceleration.”3’

In Mech., by contrast, Owen found that ‘circular motion is resolved into two components. ..

And the remarkable suggestion is made that the proportion between these components need

33 Van Leeuwen 2016, 115, 122, 154-57, 206-9.

3% We cannot know the orientation of the diagram in antiquity, but the manuscript orientation has the virtue of
matching the subject-matter of the problem; the orientation chosen by modern editors is arbitrary. Diagrams in
Greek mathematical papyri sometimes give visual representations of the objects discussed (e.g. PSI III, 186), so
a diagram could have refocussed attention on the balance by depicting e.g. its stand and pans, but we cannot tell.
35852a11-12: tv pév yop €ic 10 mAdytov avtod kivnow @l 1o kivodv.

36 Phys. 6.3, 234a24: 000&v &v 1 VOV KiveiTat.

37 Owen, 1958, 161-62. This thesis was repeated without significant modification in Owen 1965, 148 (the denial
of motion at an instant ‘bedevilled the course of dynamics’); Owen 1970; Owen 1976; Owen 1985.
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not be maintained for any time at all, since otherwise the motion would be in a straight line.’
What is remarkable here is the idea ‘of a point having a given motion or complex of motions

at an instant and not for any period, however small.”3®

This powerful interpretation of Aristotelian mechanics can be challenged on a number of
issues.’® First, it is questionable whether rejection of change at an instant by Aristotle could
have the importance for the history of dynamics that Owen implies. Ancient mathematicians
sometimes did consider speeds at instants. Ptolemy has a procedure for calculating the speed
of the Moon at an instant.*® This did not lead the ancients or their medieval successors closer
to a Newtonian conception of force. In fact, it is arguable that Newtonian mechanics is

neutral on the issue of motion at an instant.*!

Secondly, the text of Mech. does not explicitly say that anything has a motion at an instant. In
problem 1, a rotating radius is said to move with two motions that are €&v unfevi Adym pnbéva
xpovov (‘in no ratio for any time’). The motions do not maintain a fixed ratio to each other
for any time interval. If they did, it is argued, the radius would trace a rectilinear path during
that interval. The Aristotelian term for ‘instant’ (vDv) is not applied. All that is needed is that,
whichever periods are specified, the ratio of motions will be different for any two of them.
Although the author does not put things in these terms, one might suppose that at least one of
the motions must be varying in speed during any time interval, provided their directions
remain the same. Is that any more in tension with the thesis that nothing is changing at an
instant than is the Aristotelian belief that some moving things accelerate and decelerate? I
shall return in Chapter 4 to the author’s reticence to elaborate on the implications of his claim

that the two motions are €v unfevi Adym pnbéva ypovov.

¥ Owen 1970, 256.

39 Penner 1970, Appendix Il and Sorabji 1976, 87 challenge parts of Owen’s assessment. Sherry 1986 criticises
Owen’s claim that Aristotle should have accounted for ordinary talk of instantaneous speeds as homonymous
uses of ‘motion’ (cf. Owen 1958, 161: ‘an unjustified departure from usage: it deprives us of a... common
idiom for us and for the Greeks.”) Sherry suggests that talk of motion or speed at an instant would not have been
‘common idiom’ for Greeks of Aristotle’s day.

40 Almagest 6.4. See Pedersen 2010, 90-91 for a clear exposition in modern algebraic notation.

41 White (1991, 177-79) makes this point by defining instantaneous velocity in terms of the Cauchy-Weierstrass
€-0 definition of limit. The claim is then about what modern physicists recognise as ‘Newtonian mechanics’
rather than Newton’s ideas. There is a danger to explaining the history of Greek mechanics in terms of failure to
grasp a single idea. Another common assessment (e.g. Barbour 2001, 34-41) holds that the chief obstacle to
progress was a failure to consider limiting cases such as vacuums and frictionless planes. While this may be true
for Aristotle, Hero was aware of the effects of friction and what would happen in its absence (Hero, Mechanica
1.20) and of course plenty of Greek thinkers were more willing than Aristotle to entertain the possibility of a
vacuum, the Epicureans for example. Single factor explanations seem unlikely to take us far.
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Finally, one can question whether Aristotle unequivocally denied that it makes sense to speak
of change or rest at an instant. As Benjamin Morison has pointed out, the key phrase,
‘nothing is moving i an instant’, is ambiguous. It could mean either ‘nothing is moving at an
instant’ or ‘nothing gets any motion done during an instant’, and Aristotle himself sometimes
relies on the intelligibility of talk of change and rest at an instant.*? Recent studies have
shown how Aristotle’s replies to Zeno’s paradoxes can be understood without ascribing to

him the denial of change at an instant.*’

The third issue on which Mech. has been thought to differ from Aristotle is the nature of
circular motion. In Phys. 8 and DC 1, Aristotle says that there are two types of simple
motion, circular and straight, and there is also ‘mixed’ motion. Mech. seems to take a
different view, that circular motion is a mixture of two straight motions. This is entirely at

odds with Aristotle’s conception of circular motion, so Aristotle cannot be the author.**

The key objection to this argument has been aptly articulated by Istvan Bodnar: ‘Even though
Aristotle argues in De Caelo 1 that circular motion is simple, this does not necessarily apply
to all the constrained circular motions there are. The simplicity of the natural celestial
revolutions... may very well allow for the presence of composite forced revolutions.’* My
arguments in Chapters 2-4 reinforce this point: there is a distinction to be made between true
circular motion as found in the heavens and radial rotation. To the best of my knowledge, it
has not previously been noted that this distinction is marked on the terminological level.
Aristotle calls simple circular motion either 1} KOkA® kivnoig, 1 KOKA® @opd, or KukAoopia.
Mech.’s author carefully avoids these terms. His object of analysis is not circular motion, but
N ypapovca tov koklov, ‘the [line] describing the circle’ or 1| €k ToD K€vipov yplapovca TOV
KOKAov ‘the line from the centre describing the circle’. For convenience, I refer to this as ‘the
rotating radius’. I take this as an indication that Mech.’s account of motion on a circular
path did not pose a direct challenge to received views on the simplicity of circular motion. It

is, incidentally, unlikely that Mech.’s account was intended to apply to celestial rotations. Not

42 Morison 2013, 179-80.

43 See Magidor 2008 on the Arrow paradox and Cohoe 2018 on the Dichotomy paradox.

4 Owen 1970, 256; Berryman 2009, 109.

4 Bodnar 2011a, 449.

46 There is no single term in Greek equivalent to ‘radius’. Sidoli 2003 discusses Greek expressions for ‘radius’
in plane and solid geometry.
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only is there no solid ‘radius’ connecting the heavens to their centre of rotation but, in a finite
cosmos, there is literally no place towards which a tangential component in the sphere of

fixed stars could be directed.

A terminological difference from Aristotle’s certainly authentic works has, to the best of my
knowledge, not previously been mentioned in relation to the question of authorship. Mech.’s
introduction says ‘the ‘that’ (10 ®g) is clear through mathematics, the ‘about what’ (10 mepi 0)
through natural science.” The crucial expressions, t0 g and 10 mepi O, are not applied in
Aristotle’s certainly authentic works in a similar context.*’ There are also two more minor

terminological differences from Aristotle’s works.*8

On a number of more minor issues, Mech. could be seen as departing from Aristotle’s main
line, though none of these cases is particularly persuasive. Mech.’s author thinks that there
are imperceptible motions;* his explication of ‘faster’ involves an un-Aristotelian sense of
10moc;* he thinks that when one pushes something already moving in the opposite direction,
‘some of the mover’s power is subtracted, even if it is much faster’;>! he is aporetic about the

causes of projectile motion.>

47 Aristotle’s terms for ‘explanation’ include 10 510711, O S Ti, 1| aitia, O aitiov, even 1 dpyr). The author of
Mech. knew these phrases and used them freely through the text (e.g. 848b2, 855b32). Ferrini 2010, 243
comments that ‘I’uso sostantivato di /os e del nesso peri ho ¢ raro in Aristotele’, citing EN 7.4, 1146b14-17
(‘Our investigation starts with the question whether what distinguishes the self-controlled person and the un-
self-controlled is type of object or manner (mdtepoOV O £yKpaTig Kol 0 AKpTNG €lot TA TEPL & 1) TA DG EYOVTEC
v dapopdv), I mean whether lack of self-control is marked off just by having to do with a particular type of
things, or rather just by manner, or whether it is a combination of both (nétepov 16 mepi Tadi glvan pévov
axpaTng O akpatig, fj od GAAG T® dc, | oD dAN' €€ aupoiv)’, trans. Rowe); GC 1.5, 320a26 (‘So it is obvious
that there are differences in the ways in which change occurs in things which come to be, alter, and grow, and
not only in the respects in which <such changes occur> (Sta@épet 00 povov mepi O GAAL Kol ig)’, trans.
Williams; cf. 320al1-16 where 0 tpdmog is substituted for 10 Mdg: TdTEPOV POVOG €V TA TTEPL & 6TV ADTAV M)
TPOG GAANA Srapopd. .. 1| kai O TpdTog dropépet Thg petafolfic). See also APo. 1.33, 89a36: There can be
correct and incorrect beliefs about the same object, T0 avtO yap 6T1 GvOpwTOG, T0 8” Mg o T0 a6 (‘For it is the
same because man <is the same>, but the manner is not the same’, trans. Barnes); Phys. 5.4, 228b25-27 where
10 &g of a change is ‘the manner’ (Ross) and Aristotle’s example is speed.

48 Mech. uses kvAivdw, Aristotle uses kvlvdém for ‘to roll’. In Aristotle négukev kiveicOa describes a tendency
for natural motion but in Mech. 24 it seems to describe something moving naturally (see §6.5).

4 Wardy 1990, 318n.26, commenting on Phys. 7.5’s threshold proviso, suggests that Aristotle does not
countenance imperceptible motions (‘If nothing perceptible happens, nothing happens’), but elsewhere Aristotle
seems to allow for imperceptible changes (De Sensu 6, 445b30-446al5; cf. Sorabji 2004).

50'See Note B at the end of this chapter.

5! Contrast Aristotle’s views on ‘swamping’ (see references in Hussey 1991, 221n.24); on the other hand, De
Sensu 7, 447a21-24 is close to Mech. here.

52 Problems 32-34, especially 32 858a16-17: f| &tomov 10 Todt’ dmopeiv, dpévra v dpyfv (cf. Lloyd 1987a,
155-58). Aristotle discusses projectile motion at Phys. 4.8, 215a14-19, 7.2 243a20-243b2 and 8.10, 266b27-
267al2.
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The principal reason why I think Mech.’s author is more likely an early Peripatetic than
Aristotle himself is that Mech.’s methodological terminology has no direct parallel in
Aristotle’s certainly authentic works. The appearance of various concepts in problem 1 that
are unparalleled in Aristotle’s works (e.g. motions in no ratio for any time, radial constraint,
both to be discussed extensively in Ch.4) may also suggest a different author. These
considerations are evidently not conclusive. If Mech.’s reference to temple wheels (848a23-
25) could be tied to early Hellenistic Egypt (see below), that would clearly speak in favour of

post-Aristotelian authorship.

The author probably wrote in the late fourth or early third century BCE. This early date is
suggested, though not conclusively shown, first, by Mech.’s geometrical terminology. Some
terms in Mech. are vaguer or less standardised than is typical in later writers. For example,
problem 1 refers to what is likely a rectangle using the term tetpamievpov, which for Euclid

1. 33 The author, in common

and later geometers is the most general term for a quadrilatera
with pre-Euclidean writers such as Hippocrates of Chios (fl. late fifth century BCE) and
Aristotle, often uses complex designations in referring to lettered diagrams. For example he
will designate a point by the formula 10 é9’ 00 A instead of the shorter 10 A found in Euclid
and many later authors.>* However, complex designations are also found in some post-

Euclidean writers and so cannot be used as unproblematic evidence of a date before Euclid

became influential.>?

Further, Mech. does not use the Archimedean notion of centres of weight even where it might
simplify or strengthen an argument.’® Although Archimedes’ dense and highly technical

works probably had a small readership in antiquity, later commentators on Aristotle were

53 Some further examples drawn from Heiberg 1904 and Heath 1949: problem 1 uses mepipepé for either a
general curve or for part of a circle; problem 3’s statement of inverse proportionality would be expressed
differently by Euclid; problem 5, 851a13 says an angle subtended by a certain base ‘sits’ on that base
(xaOficBar) while Euclid would have said it ‘stands’ (Befnxévar); problem 8, 851b21-24 refers to the ‘angle of
contact’ between a wheel and the surface it rolls on as an ‘angle’, but Euclid 3.6 proved that such an “angle” is
not really an angle at all; problem 8, 851b27-28 uses the expression mpog dpOrov (perpendicular) rather than
pog 0pBag or Opon TPoC.

3 Mech., like Aristotle, uses both forms.

3 Vitrac 2002, 252-4, Acerbi 2020, 51-60.

56 See Drachmann 1963b. Although it is often assumed that Archimedes developed the notion of centres of
weight, Hero Mech. 1.24 says that Archimedes refined a pre-existing theory, which, according to the Teubner
edition, Hero ascribes to the Stoic philosopher Posidonius (Nix and Schmidt, 1900, pp. 62-65). Chronologically
this is nonsense: Posidonius lived long after Archimedes. Clagett 1959, 50 rejects the Teubner emendation but
does not suggest an alternative reading. I think it is more likely that a correct name has been garbled in
transmission and translation than that Hero was seriously mistaken on the origins of the theory. Mech problem
29 might be seen as relying on an implicit, intuititive notion of centres of weight.
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familiar with Archimedes’ technical inquiries, results, and concepts, including centres of
weight.>” Yet there are no centres of weight in Mech. Other Archimedean ideas are missing
too: there are no spirals in problem 35’s discussion of whirling water, and the screw is not

among the simple machines investigated.

The late third-century BCE mechanical author Philo of Byzantium, the first-century BCE
Roman architect Vitruvius, and the (probably) first-century CE mechanical author Hero of
Alexandria all seem to draw on sources similar to Mech.’® For example, Philo in his book on
war machines recaps some ideas from his lost book on levers. In doing so, he deploys a

pattern of argument found in Mech. (Belopoeica 59):

gmel yap ol peifoveg KOKAOL KPOTODGIV TAV EAAGCOHVOV TAV TTEPL <TO> ADTO KEVTIPOV
KEWEVOV, Kabdmep &v Toig Moylkoig dnedeiEapev, i 0& TO Opotov Kol Tolg LoYAOIG
paov kvodot T Bépn, dtav mg &yyvtata Tod Pdpovg T DTopdYAoV ODCY (Exet Yap

\ ~ 7 , ’ el ‘ . , 1 2 ~ s s %
TNV TOD KEVIPOL TAEWV: TPOGAYOUEVOV 0LV TTPOS TO PBapog [6¢] EAaccol khkAov, o1’ oV
TV gukvnoiay cvpPaivel yivesOar): 0 avto o1 vontéov €0Ti kKai mepi 10 dpyavov. O
YOP AYKAOV 6T LOYAOS AVIEGTPOUUEVOS: VTTOUOYAOV LEV YO YiveTon TO &V <PESD
10D TOVOL> PEPOG aTOD, 1) 08 TOETTI veupa TO PApog, TiTig €€ Gkpov TOD AyKDVOG

Exopévn to Papog EamooTEALEL.

‘Larger circles overpower smaller ones fixed about the same centre, as we
demonstrated in our Principles of Leverage; similarly, men move loads with levers
more easily when they place the fulcrum as close as possible to the load (the fulcrum,
of course, performs the function of the centre; when brought close to the load it
decreases the circle and easy movement is the result). Therefore, the same principle
must be applied to the piece of artillery. The arm [in a catapult] is an inverted lever;
the fulcrum is the part of the arm in the middle of the string; the (apparent) load is the
bow-string, which dispatches the (actual) load and is attached to the end of the arm.’

(trans. Marsden with modifications)

57 See, for example, Simplicius On Aristotle’s De Caelo 2 543, 549-550; On Aristotle’s Physics 1, 59-60, On
Physics 7, 1110; Olympiodorus On Aristotle’s Meteorology 119, 211.
8 See especially Philo, Belopoeica 59; Vitruvius De Architectura 10, praef.-3; Hero Mech. 2.34.
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There are three points of similarity to Mech.: (i) the central role given to unequal concentric
circles in explaining the lever; (ii) the term poylog dvtestpappévog;® (iii) the practice of
supporting an argument by correlating parts of the device to be explained to parts of the lever.
This passage applies to a part of a complex machine a style of explanation that Mech. used to
understand simple machines, though that does not necessarily imply that Mech. was written
earlier. Vitruvius and Hero both include lists of question-and-answer units. Some of these
overlap in content with Mech. but dependence on Mech. itself has not been proven.®® Philo,
Hero and Pappus share that view that there are five simple machines: the wheel and axle, the
lever, the compound pulley, the wedge, and the infinite screw.%! This is a more rigid and
schematic classification of simple machines than is found in Mech., where the lever and
balance hold a privileged if rather loosely defined position. This may again suggest a date for

Mech. some time before Philo’s floruit.

The artefacts studied by Mech. are mostly very ancient, for example the oar, the sail and the
wheel.%2 Only a few post-date the earliest extant Greek literature. An artefact described in
Mech.’s introduction may potentially be helpful for dating, though it is difficult to draw firm
conclusions on the current evidence. Mech.’s author describes a system of small metal wheels
in contact such that if one wheel is turned clockwise, the adjacent wheel turns anticlockwise,
the wheel adjacent to that clockwise again, and so on.® It is unclear if the wheels have
interlocking teeth or if they work by friction. The author says such arrangements of wheels
are found in temples. In 1901, Paul Tannery suggested that the Mechanica might have been

written in Egypt, since other ancient writers refer to purifying wheels found in Egyptian

39 Mech. uses the similar term poyAdg dvestpoppévoc to describe the steelyard (854a10-11). As in the steelyard,
the effort in the catapult is input nearer to the fulcrum than the weight which is moved, which is the inverse of
what happens in a regular lever.

0 Micheli’s (1995, 115-119) scepticism is appropriate. I am also cautious not to compare too closely Mech.
problem 1 with the ‘principle of concentric circles’ attributed to Archimedes, Philo and Hero (Pappus Collectio
8, 1068.19-23: anedeiydn yop v 1@ mepil Loydv Apyyundovg kai toig Pidwvog koi "Hpwvog punyavikoic, i ot
peiloveg KOKAOL KOTOKPOTODOLY TRV EAUCCOVMVY KOKA®Y, §Tav TTEPL TO aDTO KEVTPOV 1) KOAMGIS adT®dV YiviTal.)
That principle is not in fact equivalent to any explicit statement in Mech. (Mech. problem 1 is about speeds of
radii, not powers of circles). To judge from Hero Mech. 2.7, Hero’s approach at least was very different from
Mech.’s (for a start, he does not analyse rotation into two motions).

%1 See especially Pappus Collectio, 8.31, 1115 Hultsch: ITévte toivov odedv Suvapemv 8t Gv 10 600&v Bapog Tij
do0Oeion Pig kveitat... anodédotal 6& V1O 100 “Hpwvog kai Pidwvog kol 510TL ol TPogpnUEVIL SUVAELS €lg
piav dyovtor Ooty, kaitol Tapd ToAL dtwAhdccovcat Toig oynpacty. See also Hero Mech. 2.1-20.

62 Oars were found with the Cheops ship (c.2650 BCE) and sails are depicted in Egyptian art from ¢.3100 BCE
(McGrail 2009). Some Greco-Roman writers claimed that ancient tools were relatively recent inventions. For
example, Pliny HN 7.198 makes implausible suggestion that the architect Theodorus of Samos (c.550-520 BCE)
invented the lever.

63 848a23-25: kotaokevalovot Tiveg Mot Amd WdC KIVAGE®OS ToAAODG Devavtiovg Bua KiveioOat kdrkiovg,
Momep ob¢ avoTiéacty €v Tolg 1EpOig TOMoAVTES TPOYIoKOVE YaAKODG TE KOl G101PODC.
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temples.®* In the same year, the German Egyptologist Friedrich Wilhelm von Bissing
published details of a copper wheel he had acquired ‘im Kunsthandel zu Theben’.%® The
wheel (7 cm diameter, 2.5 cm thick) is mounted on an axle in a copper box (9 cm long, 4 cm
high, 6 cm deep). A hieroglyphic inscription on the box is now all but illegible. After writing
to several museums which acquired portions of von Bissing’s collection, I found that the
wheel is now in the Museum August Kestner in Hannover. A recent exhibition catalogue
dates it to the twenty-fourth or twenty-fifth Dynasty.®® Lacking any information on its
provenance or archaeological context, it is difficult to reach firm conclusions about the

original function of this artefact.

Andrew Wilson has recently revived Tannery’s suggestion that Mech. was written in Egypt,
arguing that it was ‘probably written at Alexandria between about 280 and 260 B.C’. Wilson
adds to Tannery’s point about Egyptian temple wheels that early investigations into the
principles of gearing may have been taking place in early third-century Alexandria.®” The

caveat here is that our evidence for the early history of gearing is meagre.

64 Reprinted in Tannery 19135, citing Hero Pneumatics 1.32 and also Clement of Alexandria Stromata 5.672
(=5.8.45). Hero describes a type of wheel found ‘in Egyptian temples’ (év 10ig Aiyvrtiov iepoig) called a
‘purifier’ (ayviotnprov, 2.32); when rotated it dispensed purifying water. Clement quotes the grammarian
Dionysius Thrax (fl. ¢. 170 BCE) ‘concerning the symbol of little wheels’ (nepi 100 T®V Tpoyickmv cuppforov).
Dionysius claimed that ‘the revoling wheel in the temples of the gods, drawn from the Egyptians’ (6 e tpoyog 0
OTPEPOLEVOG €V TOIC TMV Be®dV TEPEVESTY ElAKVOUEVOC TTOpa Alyvrtiov) is a symbol. Clement then quotes some
Orphic verses which suggest an interpretation of the wheels as representing the turns of fate. It is not clear if the
verses were also quoted by Dionysius. The word tpoyickwv is the same diminutive of tpoyog used by Mech..
Outside mechanics, tpdyioxoc often means a pill or pastille. Apollodorus, Poliorcetica 155.9 uses the term for
the wheels of a ram; Blyth 2005, 135 finds this usage ‘odd’, citing Mech. as a rare parallel. The Arabic version
of Philo’s Prneumatica provides further evidence: ‘A water wheel for ablution and purification, near a mosque or
temple... [T]The wheel is of copper. The ancients used many constructions of this type. When they were about to
enter a temple, they sprinkled their robes with water from this wheel. Then they put their hands to the wheel;
they believed that touching the copper had a purifying effect. The wheel turned with regular, continuous motion,
and whistled. The motion and the whistling drew attention to it, when people entered the temple. It stopped
when one touched it; when one released i, it started again and turned as before.’ (trans. Prager 1974, 226-8). A
square copper container with a wheel in it is placed in a temple doorpost. It is powered by falling water
concealed in the doorpost: ‘People believe the movement comes from anything but the water.” (ibid.) The
authenticity of this portion of the Arabic Philo is contested, though recent studies have favoured a third-century
BCE origin (Lewis 1997, Schomberg 2008). Note that both Mech. and Philo emphasise ignorance of the cause
of motion. On the other hand, it should be noted that Hero and Philo describe single wheels, whereas Mech.
describes a system of wheels and does not say that worshipers touch them or that they are believed to purify.
Plutarch, attempting to explain Numa’s injunction to turn around while worshiping, suggests a comparison to
‘Egyptian wheels’ (Numa 14: gi un viy Aio toig Atyvrtiolg Tpoyoig aivittetai Tt Kol 51800KeL TOPAmANGLOV 1)
UETOPOAT TOD GYNLOTOG, MG 0OVIEVOC E6TMTOC TMV AvOpmmivev, dAL" dTtmg Gv oTpéen Kai dvelitty tov Biov
NuUeV 6 0gdc).

85 Capart and Bissing 1901.

% Fitzenreiter et al. 2014, Kat. 11.40, 316.

7 Wilson 2008, 338. Peripatetics had a strong presence in Alexandria in the early third century BCE. See Von
Staden 1989, 39, 97.
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These considerations do not conclusively demonstrate a terminus ante quem, but they
collectively point to a date before the mid-third century. Could the author be identified as
Strato of Lampsacus, as some have suggested? One of the few things we know about Strato’s
life is that, before leading the Lyceum from 287/86, he served as tutor to the young Ptolemy
II Philadelphus in Alexandria. If Mech.’s description of a system of wheels found in temples
can be tied to Alexandria, this might also suggest Strato or someone close to him. However, it
is difficult to say much for or against this ascription to Strato since the only independent
evidence we have of Strato’s work consists of second-hand reports and fragments. None of
the distinctive ideas known to us through these have been securely identified in the
Mechanica. The main positive consideration is that the list of Strato’s works in Diogenes

Laertius includes a Mnyavikov.®® Strato is not a bad guess, but it is little more than a guess.

1.3: Influences

Among the ancient Greek texts on mechanics still extant, the Mechanica is one of the
earliest.®” Yet it was written — if our dating is correct — several decades after the Pythagorean
philosopher and politician Archytas of Tarentum (fl. c. 400-350 BCE) is said to have founded
the mathematical discipline of mechanics. What did it owe to earlier investigations? I will
approach this question by distinguishing four possible influences: (i) mechanical inquiry; (ii)

technological advances; (iii) mathematical astronomy; and (iv) the inquiry into nature.

We are told by Diogenes Laertius that Archytas ‘was the first to bring mechanics to a system
by applying mathematical principles; and he first employed mechanical motion in a
geometrical construction, namely, when he tried, by means of a section of a half-cylinder, to

find two mean proportionals in order to duplicate the cube.’’® None of Archytas’ writings

%8 This appears in the same line as the title [Tepi tdv petallk@®v in manuscripts B and P. Some editors have
emended to [epi tdv petariic®dy pnyovnudatov. The more elaborate arguments of Gottschalk 1965 for
Stratonian authorship have been effectively dismantled by Bodnar 201 1a.

% De Groot 2014 (49) suspects that Problems 16 is earlier since Mech.’s arguments are more detailed and
involve innovative notions such as ‘constraint’. These observations are pertinent but hardly conclusive; a
relative dating of Mech. and Problems 16 may not be possible. Mech. is the earliest to describe itself as
concerned with ‘mechanics’, a term not used in Problems 16, which is entitled ‘OZA ITEPI TA AYYXA’
(‘Concerning inanimate things’)

70 Ovtog Tp@Toc ToL PMyavike ToiC HadMUATIKOAS TPOGYPNGAUEVOC Bpyaig neddSevce Kai TpdToc Kivnoty
OPYOVIKTV SLOyPALUOTL YEOUETPIKED TPOCYAYE, d10 TTG TOURG TOD NUKVAIVEpOL dV0 pEcag ave Adyov AaBely
(v gig Tov 10D KOPov dimhaciaoudv. Lives of Eminent Philosophers 8.4.83, with Kiihn’s emendation
poabnpotkaic for unyavikaic (trans. Hicks with modifications). Vitruvius De Arch 7, praef.14 and Athenaeus
Mechanicus (cited above) both mention Archytas as having contributed to mechanics but do not identify
specific achievements.
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survive intact. Our knowledge of mechanics in the fourth century BCE is dependent on later
reports which require careful handling. In addition to textual problems (did Diogenes write
‘mathematical principles’ or ‘mechanical principles’?), and the question of our sources’
reliability, there is the issue of what ‘mechanics’ meant. Derived from the noun punyovn
(‘trick’, ‘contrivance’, ‘plot’, ‘machine’), the terms pnyovikn (téxvn) and ta pnyoavika could

cover a diverse set of activities and were understood differently by different authors.

Some examples will illustrate the point. Philo of Byzantium’s Mechanical Collection
included books on levers, port construction, catapults, pneumatics, theatrical automata,
fortification, siege warfare, and military stratagems.”! The fifth-century CE Platonist Proclus
says that mechanics includes the making of war machines; the creation of marvels through
air, weights or ropes; the study of equilibria and centres of weight; sphere construction (i.e.
making models of the heavens); and ‘in general every art concerned with the moving of
material things’.”> Hero of Alexandria took a radical view on the constituent ‘parts’ of
mechanics: ‘The mechanicians around Hero say that there are a discursive and a manual part
of mechanics; the theoretical part is composed of geometry, arithmetic, astronomy and
discourses about nature, the manual part of work in metals, architecture, carpentry and
painting and of manual practice in these.”” ‘Mechanics’ in antiquity had no unifying essence
or definition and authors took widely differing views on what the various parts of the science

WwEre.

What did Diogenes mean when he said that Archytas had introduced mathematical principles
to mechanics? The slipperiness of the term ‘mechanics’ makes it impossible to answer with
certainty, but we can still consider the possibilities. He may have had in mind Archytas’
solution of the problem of doubling the cube.”® This achievement was doubly ‘mechanical’.
In the first place, the use of motions in geometrical constructions (e.g. rotating a plane figure

to construct a solid) could be seen as ‘mechanical’.”® Secondly, methods of cube duplication

"I Following the reconstruction of Drachmann 1963a.

72 Proclus Comm. in Eucl. 41, trans. Morrow.

3 Pappus Collectio 8, 1023.13-1024.2 Hultsch, trans. Cuomo 2000, 93

4 Archytas’ solution is preserved in Eutocius’ Commentary on Archimedes’ On the Sphere and Cylinder 2,
3.84.12-88.2 Heiberg. See Huffman 2005, 342—401 and Menn 2015 for commentary. In Diogenes, a kol
separates the report on the problem from the claim that Archytas systematised mechanics; this may or may not
be epexegetic.

75 Diogenes Laertius says Archytas used ‘mechanical motions’ to construct solid shapes.
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were of interest to ancient writers on the construction of war machines since one practical

context in which the problem arose was the scaling-up of model machines.”®

An alternative possibility is that Diogenes or his source meant to refer to Archytas’
investigations of motion, but here we have only a few brief and ambiguous references to go
on. Archytas reportedly claimed that motion is caused by inequality,’” and that there is a
‘proportion of equality’ present in natural motion that produces circles and curves.”® We also
know that Archytas compared the effect on acoustic pitch of striking or blowing an
instrument with varying intensity to the effect of varying strength on projectiles’ motion. The
stronger the throw, the further the distance travelled; similarly, the stronger the breath, the
higher the pitch.”” Whether these oddments are samples of a unified theory of motion is

unclear and there are various possibilities for filling in the details.®°

On any interpretation, Archytas’ attempts to explain motions in terms of quantitative relations
such as inequality and proportion may have been seen as putting mechanics on mathematical
principles. We should not assume, however, that Archytas would have recognised a distinct
inquiry by the name of ‘mechanics’ (unyavikn). When Archytas surveys the mathematical
disciplines, mechanics and optics are not mentioned: ‘Indeed concerning the speed of the
stars and their risings and settings as well as concerning geometry and numbers and not least
concerning music, they handed down to us a clear set of distinctions. For these sciences seem
to be akin.”®! It is possible that Archytas considered mechanics and optics as parts of
geometry but there is no reason to think he distinguished them as disciplines in any way, even

as sub-disciplines.??

76 Philo (Belopoeica 51-52) and Hero (Belopoeica 114-119) present methods of cube-duplication in the context
of catapult construction; cf. Pappus Collectio 8§ 1028. 18-21. Eratosthenes stressed the value of practical utility
in cube duplication methods (see below).

"7 Budemus fr. 60 Wehrli = Simplicius /n Phys. 3.2, 431.4-431.16. We do not know if Archytas connected this
to the balance.

78 ps-Aristotle Physical Problems 16.9 asks why trunks and stems of plants and limbs of animals are round in
shape. The answer (915a25-32): ‘Is it, just as Archytas said, because the proportion of equality (t1jv 10D icov
avaAoyiav) is present in natural movement (for he said that all things are moved in proportion), but that this
proportion alone bends back on itself (tadtnv 6& poévny €ig avtv dvaxdumtew), so as to make circles and curves
(kvKhove. .. Kai otpoyyOAa), whenever it comes to be.” (trans. Mayhew)

” fr. Bl.

80 See Krafft 1970 144-146; Huffman 2005, 78n.13, 516-40; and De Groot 2014, 195-213.

81 Porphyry, On Ptolemy’s Harmonics 1.3 (trans. Huffiman) nepi te 87 10 TV G0TpoV To0TATOC Kai £mITOAGY
Kol duoimv TopEdmKray apiv S1dyvooty Kol Tepl yapeTpiog Kol aptiudy kol ovy fKiota Tepi LOVOKES. TodTa
yap T podfpate Sokodvt fuev ASeAped.

82 Apuleius (Apologia 11-15) attributes to Archytas the optical theorem that the angle of incidence and angle of
reflection are equal. Huffman 2005 and Schofield 2014, 85-87 doubt the reliability of such late reports that
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Our next piece of evidence for the development of mechanical theory in the fourth century
comes from the first-century BCE Epicurean Philodemus. According to Philodemus, Plato

oversaw advances in mechanics as well as other mathematical sciences in his Academy:

‘At this time the mathematical sciences (td poOnpata) were also greatly advanced,
with Plato being the architect of this development; he set problems for the
mathematicians, who in turn eagerly studied them. In this way, metrologia (the theory
of proportions?) and research on definitions reached their peak, as Eudoxus of Cnidus
and his students completely revised the old theory of Hippocrates of Chios. Especially
great progress was made in geometry, as the methods of analysis and of diorismos

were discovered. Optics and mechanics also were not (left in contempt)...”%?

For all his interest in mathematics, Plato never refers to a science of mechanics — or optics,
for that matter.3* To what activities, then, might Philodemus be referring? Methods of cube
duplication are again a possibility. In fact, the problem of cube duplication was closely
associated with the Academy by some writers. Eratosthenes and Plutarch tell a story in which
the people of Delos were instructed by an oracle to double the size of one of their altars and
turned to the Academy for help (this is why the problem is sometimes called ‘the Delian
problem’).3> Although this story is probably a later fabrication, there were three solutions
associated with the early Academy: a solution by means of a specially designed instrument
falsely ascribed to Plato, a solution by Eudoxus, and Menaechmus’ (c.380 — 320 BCE)

solution by means of conic sections.3¢

As with Archytas, the study of motion is a second field of inquiry that may have been

perceived as contributing to mechanics. In the Academy, this took the form of the general

Archytas made significant contributions to the nascent sciences of optics and mechanics, whereas Burnyeat
2005 is willing to believe them.

8 Herc. Pap. 1021, column Y. trans. Zhmud, 1998; cf. Gaiser 1988, 152.

8 Burnyeat 2005 suggests the omission is deliberate and polemical.

85 Eratosthenes’ ‘Letter to Ptolemy’ in Eutocius’ commentary on Archimedes’ On the Sphere and the Cylinder
(Heiberg 1881, vol.3, 102-114, with the Delian story at 104.17-106.1); Plutarch On the E at Delphi 386. For
broader discussion of Eratosthenes’ letter, see Taub 2008 and Leventhal 2017.

8 On these three solution methods, and against the Platonic provenance of the method that bears his name, see
Knorr 1986, 57-66. Netz 2003, 500-509 suggests that the attribution of a duplication method to Plato was a
response to a deliberate mistake in the Divided Line analogy of Rep. 6, 509d—511e. Broadie 2020, 17n.6 claims
there is no error in the Divided Line.
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analysis of change, the classification of various kinds of spatial motion, some interest in their
properties, and the investigation of the results of composing these motions.” The last of these
is most pertinent to the Mechanica but our most detailed evidence concerning the
composition of motions in the fourth century relates to models of planetary motion. It seems
unlikely that these models as such would have been regarded as part of mechanics rather than

astronomy and I postpone discussion for the moment.

The simplest Platonic classification of motion, common to the Theaetetus (181b8-d7) and
Parmenides (138b-c), distinguishes motion from one place to another (yopav €k ydpag) from
movement in the same place by rotating about a fixed centre or central axis (&v 1@ aOT®
otpéenrar).®® In Book 10 of the Laws, Plato makes a further distinction between two kinds of
motion from one place to another (6ca opd kiveital petafaivovta gig Erepov del TOTOV):
translation (koi tot€ pev €otv 6te Paotv Evog kektnuéva Tvog kKEvTpov, ‘having a base of one
point”), and rolling (tot¢ 3¢ mheiova @ mepikvivdeicar).?” The Laws again distinguishes
from these rotation (1] T@®v £otdval Aeyopévav KOKA®V oTpépeTal Tepipopd) and,

importantly, observes a characteristic property of rotations:

Those which have the quality of being at rest at the centre move in one location, as
when the circumference of circles that are said to stand still revolves... And we
perceive that motion of this kind, which simultaneously turns in this revolution both
the largest circle and the smallest, distributes itself to small and great proportionally,
altering in proportion its own quantity; whereby it functions as the source of all such
marvels as result from its supplying great and small circles simultaneously with
harmonizing rates of slow and fast speeds—a condition of things that one might

suppose to be impossible.””

87 On these topics, see Skemp 1942 and 1967, Post 1943, Mourelatos 1981.

Post’s claim that ‘“The motion of a moving wheel was no doubt studied by Heracleides Ponticus’ (1943, 301)
relies on the assumption that Heraclides thought Venus encircled the Sun. That interpretation was first proposed
by Martin 1849, 120-121, 426-428 and developed by Schiaparelli. It is based on a misreading of Calcidius’
commentary on the Timaeus (Neugebauer 1972: Calcidius’ text is obscure but more likely means that Venus is
sometimes ahead of and sometimes behind the Sun). On Heraclides, see also Heath 1913, 249-83 and the
contributions by Bowen, Todd and Keyser in Fortenbaugh and Pender 2009.

8 Cf. Rep. 4, 436d4-¢6 on the spinning top.

% The distinction between rotating and rolling was adopted by Aristotle DC 2.8. Mech. problem 24 is a detailed
study of rolling; see Chapter 6. Whether this puzzle owes anything specifically to the Academic study of motion
is currently impossible to say.

% Laws 10, 893c-d, trans. Bury.
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This is the earliest known articulation of the Rotating Radius Principle that is so crucial to
Mech.’s explanatory programme. The claim that this property is responsible for ‘all such
marvels’ resembles the emphasis on Oadpa in Mech.’s introduction. The Laws does not say
much about the other crucial idea in Mech. problem 1, the composition of motions. There is a

brief comment on what happens when bodies moving in opposite directions collide:

And whenever one such object [= something moving from place to place] meets
another, if the other is at rest, the moving object is split up; but if they collide with
others moving to meet them from an opposite direction, they form a combination
which is midway between the two (10ig 6* dALo1G €€ évavtiag dmavidot kol

PepopéVoIg eig v yryvouevo péoa T Kol uetald v To100Tmv cuykpivetart.)’!

It is not difficult to see how such investigations of motion could have been construed as
contributions to ‘mechanics’, and they may form part of the conceptual background to Mech.
problem 1. In the Timaeus, Plato discusses other topics that could be associated with
mechanics such as weight and projectile motion.? Even so, I suspect the solutions to the
problem of cube duplication are more likely what lie behind Philodemus’ reference to

‘mechanics’.”?

In Aristotle’s works we encounter, at last, references to a field of inquiry called
‘mechanics’.”* In the Posterior Analytics, mechanics and optics are named as sciences
subordinate to geometry, just as harmonics is subordinate to arithmetic.”> Working this out in
more detail, Aristotle says that optics is subordinate to (plane) geometry and mechanics to
solid geometry (stereometria).”® The reference to solid geometry may suggest that Aristotle

had taken cube duplication as a paradigm of mathematical mechanics.”’

ol Laws 10, 893e, trans. Bury.

92 Timaeus 63b-c, 80a-c.

%3 Cube duplication is a recurring concern in Hellenistic writers on mechanics, whereas the emphasis on
motions, their path shapes, and their compositions is strong in Mech. and weaker in other authors. Plato’s
theories of weighing and projectile motion are qualitative.

%4 Besides these one should note Pol. 7.11 1331al-2, 14 mentioning recent advances in missiles and siege
engines (td BEAN kai TOG punyavag €ig akpifelav mpog tac tolopkiac) and Pol. 1336a10-12 describing the use in
some societies of mekhanika organa for straightening childrens’ limbs.

% APo. 1.9, 76a16-25. Demonstrations in subordinate sciences make use of principles from the sciences to
which they are subordinated.

% APo. 1.13, 78b32-39.

7 For cube-duplication in mechanical works, see Hero Bel. 114-9, Mech. 1.11, Philo Bel. 51-2 with 56 on
transferring from scale models to full-size machines, Pappus Coll. 8, 1070.1ff. (also 3, 30.3-68.16).
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Although it is unknown when the term ‘mechanics’ was first used to denote a mathematical
science, we have seen that there were two main strands of mathematical mechanics in the
fourth century BCE: efforts to duplicate the cube and studies of spatial motion.’® It is the
latter, including earlier formulations of the Rotating Radius Principle, that is pertinent to
Mech. Non-mathematical ideas about the operation of machines are another important part of
the background, though our information is limited. The Hippocratic On Fractures 31 (late
fifth / early fourth century BCE), describing the use of levers for reducing fractures, groups
levers together with pulleys and wedges on the basis that they allow people to accomplish
tasks otherwise difficult or impossible.”® This is similar to the account of unyavy we have

seen in Mech.’s introduction.!?

Technological change may have been one source of stimulus for the development of
mathematical and non-mathematical thought about machines in classical Greece.!"!
Architectural projects, particularly the construction of large temples, may have involved the
organised use of weight-lifting devices as early as the sixth century BCE.!?? In discussing the
pulley, Mech.’s author refers to its use ‘in construction work’.!% Later, the invention of the
catapult, traditionally dated to 399 BCE in Syracuse, may have encouraged reflection on how
machines work. Catapults of various designs quickly spread across the Greek world and there

were deliberate efforts to improve on older models and develop new ones.!** By the mid-

fourth century, the new war machines were familiar enough that references to them and to

%8 To some extent the two may have influenced each other (cf. the motions in Archytas’ cube duplication).

99 <Of all the apparatus contrived (8ppevo pepnyévntat) by men these three are the most powerful (ioyvpotara)
— the turning of the pulley, use of a lever, and use of a wedge (6vov T meplaymyn Kol poyAevoig Kol
ocpnvmotc). Without some one, indeed, or all of these, men accomplish no work requiring great force. This lever
method (1] poyAevoig), then, is not to be despised, for the bones will be reduced thus or not at all.” Trans.
Withington with modifications. The singular 6vov suggests a simple pulley (from our perspective, this does not
strictly offer mechanical advantage as such, though it makes the task of lifting easier by changing and steadying
the direction of pull). Compare On Joints 72-74: ‘It seems to me that no joint is incapable of reduction with
these mechanical forces.” (trans. Withington). Bliquez 2015, 40, 202-205 discusses ancient textual sources on
bone levers. Jackson 2005, 110-111 summarises the Roman archaeological evidence.

100 On the other hand, the Hippocratic author does not arrange the simple machines in a hierarchy as in Mech.
101 Cuomo 2007, ch.3 offers several important suggestions regarding the catapult’s impact on knowledge. See
also Schiefsky 2009, 49-50.

102 Coulton 1974 and 1977.

103 Problem 18, 853b10-11: kai év Toig oikodopikoic &pyoig peding kivodot ueydra Bapn.

104 For various reconstructions of the early history of the catapult, see Marsden 1969; Garlan 1974; Cuomo
2007, ch.3; Rihll 2007; on later catapults, Baatz 1994.
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specialists in their manufacture and operation could be found in a variety of sources,

including philosophical texts.!%

We have noted the connection between catapult-construction and the problem of cube
duplication, but the invention of the catapult and the formulation of the geometric problem
are not to be related as cause and effect. The problem predates the invention of the catapult,
and Hippocrates of Chios had by the late fifth century already made some headway by
reducing the problem of cube duplication to the problem of finding two mean proportionals.
Still, invention of the catapult may have encouraged the ongoing search for duplication
methods. Practical utility was claimed to be a desideratum for a duplication method by
Eratosthenes (¢.285 — 194 BCE), who criticises the solutions of Archytas, Eudoxus and
Menaechmus as less practical than his own method.!° How these earlier geometers saw their
solutions in relation to war machine construction is unknown, but there is no reason to think
they would have shared Eratosthenes’ negative judgement of their own achievements. Aside
from pressing in new directions the old problem of cube duplication, the catapult may, as a
particularly striking example of the increased power available through machinery, have

prompted reflection on the causes of amplified power through machines.

Our earliest texts on mechanics, Mech. and Problemata 16, do not mention catapults. It is
clear from the chronology and wide diffusion of catapults, as well as from references to
catapults elsewhere in the Aristotelian corpus, that the lack of references to advanced
technology in Mech. is an authorial choice, not the result of ignorance.!?” Perhaps it was
thought appropriate to work out the principles of the simplest machines before attempting to
understand the complex. At the same time, the author’s theoretical orientation may have

meant his interest was in answering foundational questions only. !¢ Whether Hellenistic

105 Plato Gorgias 512b refers to the unyavomoidg who sometimes saves cities (tOAelg yop Eottv &1e Hhog oMLey);
Aristotle EN 1111a10-11 uses the example of someone accidentally firing a catapult (d€iEot BovAdpevog
apegival, ®g 6 Tov katanéltv); ps-Ar Constitution of the Athenians 42.3 refers to teachers (S1dackdAiovc) of
catapult-firing (Rhodes 1992 ad loc. cites later epigraphic evidence for specialist teachers); there is a reference
to catapults at ps-Aristotle On Things Heard 880b13-14.

106 Bratosthenes (= Eutocius, 106.1-8, 112.19-114.2 Heiberg) says his method will be useful for those wanting to
construct ‘catapults and stone-throwing machines’ (kotomodtica kol ABoBora dpyavar).

107 Problems 12, 32 and 34 concern projectiles but do not mention the catapult. Later Hellenistic writers on
mechanics, such as Hero and Biton, did not always feel the need to describe the most recent technology (see
Cuomo 2002 and Rihll 2007, 142, 164-65 for different explanations).

108 Mech.’s introduction celebrates the practical advantages of unyovt, but at the same time the emphasis on
Badua (wonder) and the search for causes may signal that the investigation is theoretical rather than practical
(cf. Met. A.2,982b11-21, 983a11-23).
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mechanical theory had any appreciable impact on the technology of the Hellenistic and

Roman periods is an interesting question that I will not attempt to address.!?

A second invention may have shaped the development of mechanical theory: the steelyard, or
balance with unequal arms.!!” There are two main varieties. The so-called ‘Roman steelyard’
has a scale-pan on one arm, usually very short, and a sliding weight on the other, usually
much longer; the arms are separated by a fixed pivot. The so-called ‘Danish steelyard’ or
‘bismar’ has a scale-pan on one arm, a fixed weight on the other, and a sliding pivot. In both
types the balance-beam is gradated so the user can calculate the difference made by the
adjustment of the sliding weight or sliding pivot. The production and use of these gradations
— in either type of steelyard — requires some understanding of how equilibrium of unequal
weights results from their being positioned at precise distances from a pivot. In other words,
the steelyard is closely related to the mechanical principle now known as ‘the law of the
lever’, a precise statement of which is given in Mech. 3.'!! The invention of the steelyard in
Greece may predate the Mechanica by more than a century.!!? It has been suggested that this
technological development may have played a role in the discovery of the ‘law of the
lever’.!!® Given the lack of direct evidence for the discovery of the ‘law of the lever’, this is

an interesting and entirely plausible but ultimately speculative hypothesis.!'!*

I have already mentioned that the composition of motions was studied in fourth-century

astronomy and now it is time for a more detailed discussion. The significance for Mech. is

109 Schiirmann 1991 argues that the impact of mechanical theory has been traditionally underestimated.

119 The English term ‘steelyard’ is thought to derive from the Steelyard (stalhof) in London where Hanseatic
merchants traded (OED, ‘steelyard, n.1’, ‘steelyard, n.2’).

! The term ‘law of the lever’ is potentially misleading. Greeks generally did not use our legal metaphor in
describing natural regularities or mathematical generalities. And if the original context for the principle was the
unequal-armed balance, the association with the lever is itself an intellectual achievement (cf. Berryman 2009,
64). The principle did not have had a standard short-hand name in antiquity. Knorr 1982a uses the more suitable
term ‘general principle of equilibrium’. Micheli 1995, 83 dissents from the consensus that Mech. problem 3,
850b1-2 states the law of the lever.

112 Aristophanes seems to refer to a steelyard of the ‘Danish’ type in a play first performed 421 BCE (Peace
1240-49); the device was presumably well-known to the Athenian public that made up the audience (cf.
Schiefsky 2009, 46).

113 See in particular Heidel 1933, 62; Renn and Schemmel 2000; Biittner and Renn 2016, Renn and McLaughlin
2018. Mech. problem 20 aims to explain a kind of steelyard referred to as a dAay&, but the description does not
precisely match the Danish/bismar model. Instead of a sliding pivot, the device described seems to consist of a
bar with fixed strings attached at certain intervals; suspended by any of these and so there is a fixed number of
possible pivots (cf. Knorr 1982a, Appendix A).

114 The very fact that the ‘law of the lever’ is not attributed by any Greek or Roman source to a specific person
could be taken to suggest that its origins lay among practitioners (see Damerow et al. 2002). Some clarification
might be gained — though definitive confirmation or disconfirmation of the hypothesis seems unlikely — through
further research on the history of weighing devices. The most comprehensive history is still Ibel 1908.

24



obvious: Mech.’s explanations are based on an account of what happens when a single thing
undergoes two motions simultaneously.''> Our evidence does not allow us to determine when
and for what purpose Greek thinkers first explicitly recognised and studied the composition
of motions, but this notion clearly played a major role in mid-fourth century models of

planetary motion.!!®

Plato’s Timaeus contains a simple example of this programme: the uniform rotation of the
sphere of fixed stars from East to West (the Circle of the Same) is composed with a rotation
along the zodiac from West to East (the Circle of the Different) to yield the planets’ lagging
behind against the background of fixed stars.!!” A more elaborate model is attributed to
Eudoxus of Cnidus (¢.390—c.340). Our most detailed report comes from Simplicius, writing
about nine centuries later. Although the aims and technical details of Eudoxus’ model are
disputed, it must have involved some understanding of what results when multiple uniform
circular motions are combined.''® In particular, Eudoxus showed that a figure-of-eight shape
called the hippopede (‘horse-fetter’) could be produced by composing uniform rotations of
three spheres. If the investigation of composed motions had reached that stage by the mid-
fourth century, it seems likely that the simpler ‘parallelogram rule’ had in some form been

stated or recognised as an assumption.'”

Finally, we come to Mech.’s relation to earlier investigations of nature. I will argue in this
thesis that Mech. is more closely engaged with natural inquiry than has previously been
recognised. This engagement is apparent in the form that Mech.’s questions take, laying

stress on the challenge posed by the phenomena to a basic principle of causation that was a

115 Particularly in problem 1, but also in problems 8, 23 and 24.

116 In geometry, special curves introduced for solving problems were sometimes defined by composing two or
more motions. This practice is certainly attested from the later third century BCE, but cannot be reliably traced
back further. It was traditionally maintained that the quadratrix, a curve that can be used to trisect the angle and
square the circle, was introduced by the sophist Hippias of Elis in the fifth century BCE, since Proclus calls it
‘the quadratrix of Hippias’ (Commentary on Book 1 of Euclid’s Elements, 272 Friedlein), but Knorr (1986, 80-
86) has argued that the quadratrix was likely not introduced until the Hellenistic period.

117 Among the many studies of Plato’s accounts of the structure of the heavens, see Dicks 1970, ch.5,
Mourelatos 1980, Knorr 1990.

118 Aristotle Met. A.8 reports that he assigned a specific number of homocentric spheres to each heavenly body.
Our fullest report is due to Simplicius’ commentary on DC 2.13 (In De Caelo 492.31 ff) Eudoxus’ fragments
are collected by Lasserre 1966. Among the various reconstructions of Eudoxus’ model, see Mendell 1998 and
2000, Yavetz 1999.

119 Plutarch Marcellus 14.5-6, an unreliable source that must be handled with care, claims that the art of
mechanics was founded by Archytas and Eudoxus, but when it comes to examples, Plutarch discusses cube
duplication rather than the study of motions. Some authors saw a special connection between mechanics and
astronomy, notably Vitruvius De Architectura 10.4, and a certain Anatolius as reported in ps-Hero Definitiones,
chapter 38.7 (164.21 - 166.3 Heiberg).
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rare point of agreement among Greek investigators of nature, namely that an effect cannot be
greater than its cause.!?’ If my muscles are too feeble to lift a large rock, how am I able to
achieve this by using a lever or a pulley? The input strength is still the same, but the effect is
greater. And the longer the lever, the greater the potential effect. A remark on the lever’s
amplification of causal power is attributed to Archimedes: ‘Give me a place to stand and I
will move the Earth.”!?! But it did not take Archimedes to ask how such amplification should

be possible.

The principle that a cause cannot exceed its effect may date back as far as Xenophanes.!?? It
features in Plato’s introduction of Forms as causes in the Phaedo (99d-102a). Aristotle’s two
most explicit statements of the principle are not easily applicable to changes of place,'?* but
he can elsewhere be seen to assume that extension.!?* Mechanical phenomena form a class of
apparent counterexamples to the principle.!?> Mech.’s introduction proposes to explain cases
‘in which the lesser overpower the greater, and things with small preponderance move great
weights’.!26 The problems repeatedly emphasise the smallness of the efficient cause
compared to the magnitude of the effect. For example, Problem 5 asks ‘Why does the rudder,
which is small and at the end of the ship, have so great a power that the great magnitudes of
ships are moved by a small tiller and the capacity — and even this is slight — of a single

person?’ For all its technical and mathematical details, Mech.’s inquiry is worth the journey

120 On this principle see in particular Lloyd 1976.

121 Cf. Dijksterhuis 1958, 14-17.

122 1t is attributed to Xenophanes (late sixth — early fifth century BCE) by the pseudo-Aristotelian De
Xenophane. The argument attributed to him, that whatever exists cannot have come to be, assumes as a premiss
that the cause of something’s coming to be must be at least as great as the thing generated; cf. Barnes 1979, 88-
89.

123 4.Po. 72a29-30 and Met. o, 993b24-26.

1241t is assumed in the argument of Phys. 7.1 that if one movement results from another, then the first must be at
least as great as the second (242a47-50). It is arguably implicit in Phys. 7.5’s assumption that a given dOvaug
has a proportionate effect. See also DC 1.11, 281a6ff. on the finitude of a given power’s maximum effect.

125 This may be a reason why some have doubted Mech.’s authenticity (cf. Knorr 1982, 101n.27: ‘Aristotle
views a force as somehow inherent in the weight of a body and so naturally limited... a view clearly devoid of
the mechanician’s insight that force may be multiplied indefinitely via mechanisms.’; Berryman 2009, 187-191).
I think Knorr goes too far in suggesting Aristotle was unaware of the effects of mechanisms, even if he did not
account for them in the Physics. Aristotle mentions the lever at Physics 8.4, 255a21-22 and 8.6, 259b18-20 (cf.
MA 7, 701b24-28) and we have seen the basic idea of mechanical advantage as early as the Hippocratic On
Fractures. Berryman, following Fleury 1993, 138, sees the legend of Archimedes’ ship-hauling as a polemical
allusion to Aristotle’s alleged ignorance, citing Phys. 7.5, 250a16-19, but the story may rather recall Odysseus’
use of poyAot to bring his raft to the water (Odyssey 5.261).

126 &y oi¢ 1d 1€ éMdtTova KpaTel TdY Peldvov, kol To pomiv Exovra pkpay Kivel Papn peydro. As noted by
Vernant 1957, this is comparable to Protagoras’ characterisation of rhetoric as the art of making the weaker
argument the stronger (Aristotle Rhet. 2.24, 1402a24 = DK80 B6b: 10 10V fjtted 6¢ AdYOV Kpeittm Totelv 100t
£otwv) and Aristophanes Clouds 112-115.
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for any inquirer into nature, since defusing these problems will fortify the basic account of

causation.

A further way in which the inquiry into machines complements the inquiry into nature is by
accounting for some important models of motion.!'?” Aristotle frequently refers to ships and
their parts for the sake of illustration or analogy. Birds’ tails ‘are for directing the flight, like
rudders in ships’;'?® a bird’s breast is ‘sharp so it is strong (gbtovoc) like the prow of a light
ship... so it can drive apart the air it encounters’;'?” insects do not have tails and so each
‘moves like a rudderless ship’;!3? they use their small and weak wings ‘like a cargo ship
trying to make its journey by means of oars’.!*! Tiny motions within an animal are what
produce the perceptible movements of its parts: ‘a small change occurring in the origin [of
movement] produces many great changes further away; just as, when the tiller is moved only
momentarily, a great motion of the prow results.’!3? So long as there remains any mystery
about how ships are able to achieve these motions, the explanatory power of these analogies
will be obviously limited. Conversely, by explaining the operation of ships, Mech. (especially
problems 4-7 which focus on ships and their parts) may strengthen and enrich attempts to

understand animal motion.!33

To summarise, several references to mechanical investigations in the fourth century BCE are
likely about solutions to the geometrical problem of doubling the cube, which was important
for the construction of war machines. Military engineering was an important part of
mechanics throughout antiquity.!** Cube duplication is not a concern in the Mechanica,
which focusses on the explanation of simple machines, not war machines. Arguably, complex
military machinery should still be seen as part of the background for any writer on
‘mechanics’ in the early Hellenistic period. Further, as we have seen in Philo, accounts of

simple machines such as the lever could be applied to individual parts of complex machines,

127 See especially Bodnar 2004 on the relation of Mech. to MA and IA.

128 14 10, 710alff.

129 14 10, 710a30fT.

130 74 10, 710a8ff.

131 14 10, 710a18-20. The comparison of wings and oars was traditional (Od. 11.125 = 23.272; Hesiod Op. 628).
132 MA 7, 701b25-28. There are many more instances. For example, Phys 2.2 distinguishes knowledge of matter
from knowledge of form by contrasting the craftsman’s knowledge of the rudder, which is limited to its matter,
to the helmsman’s knowledge, which is of the appropriate form for a rudder.

133 Note that Mech. problem 30 does tackle a problem about animal motion (‘Why do people stand up by
making an acute angle between the lower leg and the thigh and between the thigh and the trunk?”).

134 The list of seven pnyavikoi in column 8 of the Laterculi Alexandrini names military engineers only (Diels
1904).
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such as catapults. But simple machines were also of interest in themselves, and it is likely
that the Mechanica built on earlier discussions that do not survive. The Hippocratic On
Fractures classified the turn of the pulley (dvov meplaymyn), ‘levering’ (uoyAevoic) and
‘wedging’ (cprivmoig) as three powerful tools that allow people to do what was otherwise
impossible, a conception echoed by Mech.’s preface. Mech.’s author takes a wider though
less clearly defined view of the tools that provide mechanical advantage, and he goes further
than the Hippocratic writer in his desire to explain and unify the power of these devices. Both
his questions and answers are clearly influenced by Aristotle’s investigations of nature. The
style of explanation pursued in problem 1 probably has significant debts to fourth-century

investigations of composed motion, about which we know relatively little.

1.4: Debts to earlier scholarship

The modern interpretation of Mech. can be said to begin with Pierre Duhem who presented
the arguments of Mech. problems 1-3 as deriving the ‘law of the lever’ from proportionalities
found in Aristotle’s Physics, especially 7.5.!% This reading held sway over many twentieth-
century historians of science, despite Carteron’s early objections.!*¢ The leading study in the
Duhemian tradition, Krafft 1970, interprets ioy0g as a notion of “effective weight”!37 and
further argues that Mech. presents mechanics as a ‘tricking of nature’ (‘Uberlistung der
Natur’).'*® Frangois De Gandt (1982) decisively criticised this approach by showing that the
language and ideas of Phys. 7.5 cannot in fact be found in Mech. problem 1.!3° Duhem's
reconstruction is a valid deduction, but it goes far beyond anything actually asserted in the

text.

If Duhem’s approach was misguided, what should replace it? The most detailed alternative so

far is due to Jean De Groot.!*° De Groot draws attention to the role of the Rotating Radius

135 Duhem 1906, vol.1, 5, 109, 357; vol.2 291-3. On Aristotle’s proportionalities, see Note B at the end of this
chapter.

136 For example, Clagett 1959, Krafft 1970, Marsden 1971, 175, and Knorr 1982a accept the main elements of
Duhem’s interpretation. Carteron 1923, cf. Carteron 1975. Drabkin 1938, n.30 expressed reservations: ‘Duhem
has shown that the law of the lever as stated... is deducible from the dynamical formulations discussed above...
It may be doubted whether Aristotle himself made this precise deduction.’

137 Thus, on Krafft’s interpretation, Mech.’s ioy0g becomes an anticipation of Jordanus Nemorarius’ gravitas
secundum situm.

138 See also Krafft 1973. Vernant 1957 saw a ‘combat de la techné contre le phusis’ in Mech.’s preface. Wardy
2005, 83 finds in Mech. ‘a refreshingly anti-natural, as it were “heroic” conception of ©€xvn’. Hadot 2004, ch.10
sees mechanics as a kind of trickery. This line has been effectively criticised by Schiefsky 2007.

139 De Gandt 1982.

140 See De Groot 2009 and 2014. Schiefsky 2009 reaches similar conclusions on some points.
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Principle in Mech.’s explanations of the balance and lever. In her view, this principle is
explained through an analysis of circular motion that is kinematic, i.e. it emphasises the
geometrical properties of motion to the exclusion of causal factors.!*! De Groot also

undertakes a sustained comparison of Mech. problem 1 and Problems 16.1%*

The studies mentioned so far have primarily been concerned with the explanations of the
balance and lever (problems 1-3). The preface and the remaining thirty-two problems have
attracted less attention. Mark Schiefsky (2009) has studied aspects of their argumentative
strategies. Michael Coxhead (2012) has argued that the quotation from Antiphon in Mech.’s
preface brings out similiarities between poetry and mechanics as fechnai. John Anders (2013)
has suggested connections with Aristotle’s comments on ‘problems’ in the Posterior
Analytics and noted a possible pun on d@in in problem 32. Monte Johnson (2017) has
raised important questions about the method of problems 4-22 and argued that they follow
the ideal of demonstration laid out in Aristotle’s Posterior Analytics. He has also
convincingly shown that Mech.’s explanations are consistent with teleology. Christopher
Frey has noted shared methods and assumptions between Mech. problem 30 and the

authentically Aristotelian 74 9, 708b26-709a7.143

There has been remarkably little analysis of Mech. problem 24, the so-called ‘Wheel of
Aristotle’. Drabkin 1939 remains the leading study; a recent paper by Dosch and Schmidt
(2018) defends the solution offered in Mech.

Van Leeuwen (2016) has recently produced a new stemma codicum and a critical edition of
all diagrams, based on a new examination of the manuscripts. At the same time, she has
shown that the archetype of the diagrams is Byzantine, so the edition cannot be used as
evidence for what the diagrams of the original text of the late fourth or early third century
BCE, although it has value both as a corrective to modern assumptions about diagrams and a
guide to the Byzantine reading of Mech. Diagrams in modern editions such as Van Capelle

1812 and Hett 1936 were based on the editors’ ideas of what the diagrams should look like

141 De Groot makes several further arguments which I cannot address here. For example, she suggests that
Aristotle’s concept of dunamis arose from studying the dunamis of mechanical devices such as the lever, and
she argues against G.E.L. Owen’s ‘endoxic’ interpretation of Aristotle’s phainomena.

142 Schiefsky 2009 reaches a similar general conclusion to De Groot on the essentially kinematic character of the
Mechanica.

143 Frey 2021, 198-200.
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rather than on the manuscript diagrams. The present thesis does not answer Van Leeuwen’s
call for a new edition, but I have borne her cautions in mind while relying primarily on
Apelt’s text.'** Hett’s Loeb translation is unreliable.!*® T have found Forster’s 1913
translation more accurate and the accompanying notes are useful. Translations of Mech. in

this thesis are my own, unless otherwise noted.

There is no full commentary in English. I have made use of two Italian commentaries.'*® Van
Capelle’s 1812 notes are still fundamental and I have found earlier commentators often

insightful, in particular Monantheuil (1599), Guevara (1627), and Zucchi (1649).!47

1.5: Chapter overview

At the start of this introduction, I distinguished three explanatory levels that operate in Mech.
At the most superficial level (‘Level 1°), in problems 4-22, explananda are shown to be
analogous to a simple model (lever, balance, or moving radius). These simple models are in
turn explained in problems 1-3 by the Rotating Radius Principle (‘Level 2’). And at the
foundation, the Rotating Radius Principle is explained through an analysis of what results
from combining two motions in one subject (‘Level 3’). The chapters of this thesis address

these levels of explanation from the bottom up, starting with the composition of motions.

Chapter 2 argues that the two motions in the Level 3 explanation of the Rotating Radius
Principle are not merely useful fictions but are rather distinct changes present in a rotating
radius. That may sound improbable to modern ears. On several modern views of what motion
is, a single body cannot literally have several simultaneous motions. By contrast, I argue, that
notion makes sense for Aristotle. I show that a distinctive approach to composed locomotions

arises from Aristotle’s account of change in the Physics: component motions are real and

144 Van Leeuwen’s chief concern is contamination by George Pachymeres’ 13th century paraphrase of Mech.
Guided by Van Leeuwen’s analysis of the tradition, I decided that Apelt’s text is sounder than the more recent
Bottecchia 1982. An advantage of the latter, however, is its critical edition of the scholia on Mech.

145 A few examples: on p.345 a gloss (‘i.e., that in which AX moves to A®) is not clearly separated from the
translation; Hett’s translation of problem 2, 850a12-14 does not match his punctuation of the Greek; p.353 has
‘equal parts’ for dvica (850a34).

146 Bottecchia Deho 2000 and Ferrini 2010.

147 Rose and Drake 1971 survey the Renaissance editions, translations and commentaries. On Mech.’s influence
in the fifteenth and sixteenth centuries, see also De Gandt 1986, Laird 1986, 2001, Helbing 2001, Hattab 2005,
Vilain 2008.
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distinct. I then examine supporting evidence from across the Physics, De Caelo, Meteorology

and Metaphysics when discussing the composition of motions.

Chapter 3 explores two further considerations that arise from Aristotle’s statements on types
of locomotion and their compositions. First, I consider how we should understand Aristotle’s
division of all motion into straight, circular and mixed. Then I explore the limits of the
possible presence of distinct motions in a single object, through examining Aristotle’s cliam

that no contrary motions can be simultaneously present in a body.

Chapter 4 argues that problem 1°s arguments draw on the resources of geometry to support a
basically physical agenda and to deliver a causal explanation. The explanations here, as
elsewhere in Mech., may be reasonably described as an application of the principles of
natural inquiry to the technical sphere of mechanics. Drawing on my conclusions about
composed motion in Chapters 2-3, I argue that problem 1’s analysis targets radial rotation,
which is distinguished from celestial circular motion by the simultaneous presence of two

rectilinear motions in the rotating radius.

Chapter 5 studies the explanatory strategies of the less-studied problems 4-22, with a focus
on their use of lettered diagrams and specialised language. I argue that these problems
fundamentally rely on analogies. Thus, the method of Mech. cannot be straightforwardly
identified with the method of demonstration outlined in Aristotle’s Posterior Analytics. This
chapter calls for an expanded view of the uses of diagrams in Greek science, beyond the

deductive geometry of Euclid, Archimedes and Apollonius.

Chapter 6 examines the paradox of Mech. problem 24, which since the Renaissance has been
known as the Rota Aristotelis (“Wheel of Aristotle’). This paradox challenges the claims
made about rotations in problem 1 and thus threatens to overturn Mech.’s explanatory
programme. The paradox is framed in geometrical terms, but I show that the author’s aim is
not to provide a mathematical explanation, as a comparison with Hero of Alexandria’s
discussion of the same paradox confirms. Rather, Mech.’s author draws two distinct puzzles
from the paradoxical phenomenon and answers each of them with a solution based on

physical principles.
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Chapter 7 returns to Aristotle’s works, arguing that Physics 7.4’s startling claim that circular
and rectilinear motions are incomparable may represent an earlier attempt to solve the Rota
Aristotelis paradox. I criticise three alternative explanations of Phys. 7.4’s claim and show

how Phys. 7.4’s argument would make sense as a response to the paradox.

I resist applying to ancient texts the modern division of mechanics into kinematics, statics
and dynamics. The Greek appearance of these terms is misleading; they are modern
coinages.'*® The Greek word duvapikog means ‘powerful’, but its use in the name of a
science — the Scientia Dynamica — is due to Leibniz.'* There is no such Greek word as
*Kivnuotikog, but there are several terms deriving from the verb kwveiv (‘to move’), such as
kivnoig (‘motion’) and kvnTkdg (‘movable’). It was from this stem that André-Marie
Ampere’s introduced the term la cinématique in his 1834 essay on the classification of the
sciences.!>? ‘Statics’ has a stronger claim to antiquity since Plato refers to a ototuch Téxvn
(Charmides 166b, Philebus 55¢), but by this he probably meant the art of determining
objects’ weights rather than a theoretical investigation of equilibrium conditions.'*! Several
historians have nevertheless taken these distinctions as a starting-point for interpreting pre-
modern mechanics. Clagett’s remark on this approach is telling: ‘In treating the content of
medieval mechanics I have adopted the convenient but somewhat anachronistic division of
mechanics into static, kinematics, and dynamics. Concepts and proofs important for all three
of these divisions often appear during the Middle Ages in the same work and are intertwined

one with another.’!>? Something similar could be said for antiquity.

148 Meli, 2006, 8 has argued that these terms should not be used for pre-nineteenth century mechanics. Schiefsky
2009, 44-45 expresses a similar view.

149 See especially his Specimen Dynamicum (1695).

150 Essai sur la philosophie des sciences, or Exposition analytique d’une classification naturelle de toutes les
connaissances humaines, vol.1, 50-53. The term Phoronomie, coined by Hermann in his Phoronomia, sive De
viribus et motibus corporum solidorum et fluidorum libri duo (1716), was used by Kant in a roughly equivalent
sense in his Metaphysische Anfangsgriinde der Naturwissenschaft (1786) — though Hermann’s original usage is
closer to our dynamics. In a letter to Nature in 1892, the Cambridge mathematician W.H. Besant argued, against
then-prevailing usage, that ‘phoronomy’ should be preferred to ‘kinematics’; approving replies were printed in
the next issue (Nature XLV, 462-63, 486). Incidentally, Besant’s main reason for preferring ‘phoronomy’ was
that over thirty years earlier ‘the late Dr. Donaldson, a well-known Greek scholar of the time’ (probably John
William Donaldson, 1811-1861) had suggested to him that ‘the word kiwvéw involved the idea of the cause of
motion, and therefore that it ought not to be used when the idea of causation is to be completely set aside.’

151 Elsewhere he uses other terms e.g. Rep. 10, 602d (ictévar).

152 Clagett 1959, xxiii.
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Note A: A key to the

1. Why are larger
balances more
accurate than smaller
ones?

problems of the Mechanica

28. Why are swing-
beams on wells made
the way they are?

2. Why does a balance
suspended from above
return to its original
position, but not one
suspended from
below?

3. Why do small
powers move great
weights through a
lever?

30. Why must people
form acute angle
between lower leg and
thigh and between
trunk and thigh to
stand up?

31. Why is it easier to
move what’s moving
than what is at rest?

32. Why do projectiles
stop?

33. Why does a body
travel when the motive
force doesn’t follow
it?

34. Why do projectiles
not travel far?

25. Why are beds built
six feet by three feet
and why are they not
corded diagonally?

Key: yellow = simple models; blue = explanation in terms of simple models; green = further study of
issues from problems 1-3; white = unrelated to main programme.
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Note B: Some comments on Aristotle’s so-called ‘mechanics’

Interpreters of Aristotle have debated whether his claims about motion that take an apparently
mathematical form constitute a theory of mechanics. It is hardly possible to write on
Aristotelian or pseudo-Aristotelian mechanics without touching on these issues, though this is

well-worn ground and I shall aim to be brief rather than comprehensive. !>

We must be doubly cautious. We must be on guard against anachronism in translating the
terms of a distant theory; this is widely appreciated for concepts such as force and mass, but
it is less often acknowledged that our notions of speed and velocity are complex historical
products.!>* We also should not assume that Aristotle shared the aims, questions or methods

of modern scientists.

First, I shall address Aristotle’s views on speed and acceleration; next, I shall consider his

statements about ‘power’ (dUvaug) and heaviness (Bapog) in relation to speed.

Speed and acceleration

Aristotle does not explicitly work out a concept of speed, let alone a vector quantity of
velocity, in terms of a relationship between time and distance (or displacement). The Greek
nouns often translated as ‘speed’ or ‘quickness’, téyog and tayvtng, are not common in
Aristotle.!>® Rather, Aristotle offers criteria for when one change is faster than, slower than,

or equally quick as another.

153 The bibliography on these topics is vast. Among the most important studies are Duhem 1906, Hardcastle
1914, Carteron 1923, Cornford 1931, Ross 1936, Drabkin 1938, Sambursky 1956, Hahm 1976, De Gandt 1982,
Knorr 1982a and 1982b, Hussey 1983, Owen 1986, Lloyd 1987a, Wardy 1990, De Gandt 1991, Hussey 1991,
White 1991, Gregory 2001, Ugaglia 2015, Rovelli 2015, Yavetz 2015. I am grateful to Henry Mendell for
sharing unpublished material on Phys. 7.5. 1 do not even touch here on such important topics as reversals of
direction and projectile motion. On the former, see Sorabji 1976, White 1991, 54-62, and Cohoe 2018. On
projectiles, see Wolff 1978, Manuwald 1985, Wolff 1987.

154 On force and mass, in addition to the contributions mentioned in the previous note, see Jammer 1957 and
1961, and Hesse 1961. Carteron’s incisive discussion of speed in Aristotle and Mech. (1923, 1-10) was
regrettably omitted in the 1975 English translation of its chapter. Clagett 1956, though primarily concerned with
a medieval author, makes several perceptive observations on Greek treatments of speed and motion (see
especially p.77: ‘Autolycus and most Greek mathematicians give comparative rather than metric definitions... It
is not surprising, then, that scarcely any of the Greek authors arrived at the idea of velocity itself as a number or
a magnitude’). Kuhn 1964/1977 studies changing notions of speed over several centuries. More recently,
Mendell 2007 and Sattler 2017 and 2020 have brought fresh insight to some of these topics. Among
commentators on the Mechanica, Krafft 1970, 71 and Micheli 1995, 52 explicitly recognise that the author does
not share our conception of speed.

155 Waschkies 1991, 171. Socrates offers a definition of Tayvtr|g at Laches 192b: ‘I call the ability to accomplish
many things in a short time ‘quickness’, whether in speech or running or all the other cases.’ (tf|v &v OAly®
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Phys. 6.2 contains the main discussion of these criteria, where they are introduced primarily
to serve in arguments for the continuity and finitude of change. At the start of the chapter, we
read that ‘necessarily, the faster moves in an equal time a greater [distance] and in less [time]
equal [distance] and in less [time] more’.!*® Here are three conditions which hold when one
moving thing is faster than another. Since if A is faster than B, B must be slower than A, the
criteria also serve to determine when one thing is slower than another. These conditions for
‘faster’ and ‘slower’ over the duration of a motion (we might say they amount to a criterion
for ‘overall’ speed) are in tension with any criterion of instantaneous speed. Contradictions
are liable to emerge in situations where something which is slower by one criterion overtakes
something that is faster by another criterion .!>” Aristotle also says that one thing is equally
quick (icotoyéc) as another when it moves an equal distance in an equal time.'*® In another
context, Aristotle first applies this criterion for being equally quick, then replaces it with a
stricter requirement: ‘but let the equally quick be undergoing the same change in an equal

time”. 1>

In either form, this sense of icotayég compares two motions, and Aristotle usually applies his
criteria to the comparison of whole changes and not subdivisions within a given change. In
another sense, icotayéc applied to one motion means motion at a constant speed. Aristotle
does not explicate that sense of the term here, although he does state a condition which could
be taken to characterise uniform motion: ‘If [the moving thing] always traverses a magnitude
equal to BE in an equal time, and this [BE] measures out the whole [i.e. the whole magnitude
traversed is an exact multiple of BE], then the whole time in which it traverses [the

magnitude] will be finite.”'®* In Phys. 6.7, icotayéc and especially the adverb icotay@g are

APOVOD TOAAL StampatTopévny Suvopty Tayvutiito Eyoye Kakd kol Tepl poviy Kol mepl Spopov Kai mepi TdAL
TavTaL.)

156 232a25-27. Aristotle adds ‘some people define ‘faster’ in this way’ (kaOdmep Opilovtoi Tiveg 10 OdTTOV).
Knorr 1982b, 120 suggests that these tiveg include Eudoxus. For parallels to Phys. 6.2°s criteria, cf. Phys. 4.10,
218b14-18; 4.14, 222b33-223a4.

157 Kuhn 1977, 254 identified this condition and called motions which satisfy it ‘quasi-uniform’. Galileo clearly
exposed the contradictions that arise when the criteria are applied to motions that do not satisfy this condition
(cf. Drake 1967, 22-27).

158 232b14-20: &11 &' &i wdv dvaykn fj v oo § &v EAdttovi fj &v mheiovt kiveioBa, kol TO pév &v mheiovi
Bpadvtepov, 10 &' &v iow iootayéc, TO 8¢ BatTov olte icoTayEG 0UTE Bpadvtepov, ovt dv &v Tow ot &v mheiovt
Kivoito 10 OditTov. Asimeton oOv &v éddttovi, GoT avéykm kod 10 Toov péyedog év ELdrtovt xpodve Suévar 1o
BartTov.

159 Phys. 7.4, 249b4-5: AL Eotw icotoyic 1O &v iom xpovo 1O antd petafdilov. Here éotm signals that a
revisionary stipulation is being introduced.

160 233b4-6: i yap el 10 Toov 1 BE péyedog &v iom ypdve dicioty, todto 8¢ katopetpel 10 6Aov,
TEMEPACUEVOC EoTaL O TAG YPOVOS &V @ SHAOEV.
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used to indicate that a change has constant speed.!¢! Other passages in the Aristotelian corpus

use a variety of terms: opotayec and opotoyde, OpotdOvVmS, and icodpoueiv.'o?

Wilbur Knorr plausibly suggested that in such passages Aristotle is borrowing from
mathematicians and astronomers rather than developing his own ideas. In particular, Phys.
6.2’s expression of the condition for uniform motion is similar to Autolycus of Pitane’s (fl.
late 4™ ¢. BCE) postulate on moving 6poA®c in his astronomical work On the Moving

Sphere,'®* and one can also compare Archimedes on moving icotayéwc in his On Spirals. 164

In Physics 4.12,220b32-221al, Aristotle claims that time, rather than speed, is the measure
of motion.!®> However, Aristotle sometimes implicitly treats speed as the measure of

motion.6®

In at least two places, Aristotle seems to treat speed or quickness (tdyoq) as a quantity. Phys.

4.8, 215b7-8 describes a ratio (Adyov) of one speed to another (10 tdyog mpdg 1O TéY0C). !¢

161 237b26-28: 611 pév odv &l Tt icoTay®dS KIvoito, Gvarykn TO TEMEPUCUEVOY &V TEMEPUCUEVD Kiveichat, STlov.
237b4-6: £4v 1€ ic0TOYNMDG EGV TE 1) I00TOYDG LETOPUANY, KOl £Gv T€ Emtteivn 1| Kivnoig £av te avif] £4v T€ pévn,
0002V firtov. In the same chapter, Aristotle also uses the terms ‘uniformly’ and ‘non-uniformly’ (6paidg and
avopdiong, 238a21-22). Uniformity is distinguished from constant speed: a motion can be of constant speed and
yet non-uniform due to its path shape. Aristotle explains what is meant by uniform and non-uniform change at
Phys. 5.5, 228b19-30. Uniform motion is important in Aristotle’s account of the heavens (cf. Phys. 8.9, 265b11-
16). Cf. De Gandt 1991, 100, 103.

162 Some examples. opotoyec: DC 2.8, 289b9, Phys. 7.4, 249a8; dpotoydg Phys. 6.6, 236b35.; dpotdvec 15.5,
911al4; icodpopeiv Problems 16.3, 913a38, 16.12, 915b10

163 Opaidg Aéyetar pépecBon onueia dtav &v o ypdve 1o te f kol Spota neyédn Sielépymron: &dv 8¢ &ni Tvog
YPOUUTIC GEPOUEVOV TL GNUETOV OUAADG 000 YPapuas S1e&EA0T, TOv antov EEet Aoyov 6 1€ YpOVOg TPOG TOV
xPOVOV v O 1O onpelov katépay TV ypoupudy SeEfA0ey kai 1) ypapur mpdg v ypopuny. (‘A point moves
uniformly when it traverses equal/similar magnitudes in equal times. If a point moving uniformly along a line
traverses two lines, then the time will have the same ratio to the time, in which the point traverses each line, as
the line to the line.”)

164 On Spirals 1, trans. Netz 2017, 36: ‘If a certain point is carried along a certain line, moved at uniform speed
with itself, and two lines are taken in it <=the original line>, the <lines> taken shall have to each other the very
same ratio which the times <have to each other, =the times>, in which the point passed through the lines.” (E{ xa
KOTO TVOG YPapupds Evexom Tt capeiov icoTayeme anto E00Td EEPOUEVOV, Kol AapOEmVTL &V 0DTd 00 Ypapad,
ai dmolagdeicon TOV antdv E0DVTL Adyov Mot dALGAOG vep ol xpdvol, &v 0ic TO GAUETOV TAC YPOUUAS
€mopevdn.) Archimedes does not explicitly define icotayéwg but assumes that what moves icotayémg covers
equal distances in equal times. Dijksterhuis 1958, 140-41 suggests the proposition follows trivially for
commensurable distances, so the point of the proof is to show that it also holds for incommensurable distances.
165 Qattler 2017 and 2020, ch.8-9 has suggested that this may in part be due to Aristotle’s account of
measurement in Met. 1.1 which can account for simple measures such as length and duration, but not complex
measures such as speed.

166 For example, in Phys. 7.4, Aristotle assumes that motions are compared in terms of their speed rather than
their times (cf. De Gandt 1991, 99-100). Sattler 2020, ch.8 argues that Aristotle’s reply to Zeno at Phys. 6.2,
232b20-233a31 ‘provides the basis for a complex measure of speed’ (384).

167 ‘et one speed have to the other the same ratio which the density of air has to the density of water.” (&yét®
81 TOV avTov Adyov Gvrep S1EGTNKEY Anp TPOg DOwP, TO Thy0g TPOG TO TAYK0G.)
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Phys. 6.2, 233b21-22 invokes a ratio of speed (6 Adyog 10D tdyovg). It would therefore be

misleading to say that Aristotle had no notion of speed.'®®

Aristotle was aware of acceleration and deceleration but did not attempt a mathematical
description.'® In Physics 6.7, he argues that a motion along a finite line cannot continue for
an infinite amount of time. He first shows that this is impossible if the motion is uniform (i.e.
of constant speed), but then incorrectly claims that it is impossible even if the speed is non-
uniform.!”? Was the failure to describe acceleration mathematically the cause of this blunder?
A similar confusion in DC 1.6, where Aristotle argues that an infinite body would necessarily
have infinite weight even if non-uniformly distributed, suggests that the source of the error is
not per se a failure to analyse acceleration. More likely, Aristotle reached his conclusion in

both cases by assuming that an infinite whole cannot have an infinite part.!”!

The author of the Mechanica shares Aristotle’s criteria for comparing speeds. In problem 1,
after stating that larger balances are more accurate because larger radii move faster, the
author comments: ‘‘Faster’ is said in two ways: for we call [something] faster both if [it]
traverses an equal place in less time, and if [it traverses] more in an equal [time].”!”? The
latter sense is pertinent to problem 1. A phrase echoing Aristotle’s formula for sameness of
speed features in Mech. 24, though whether it is an expression of the same thought or of

another idea will be discussed in Chapter 6.

To summarise briefly, Mech. has a similar conception of speed to Aristotle. Aristotle’s speed
is not the same as ours. One important difference is that Aristotle does not have theoretically

articulated notion of instantaneous speed. Yet there is no need to deny that Aristotle has any

168 Lang 1998, 141-42 goes too far in arguing that ‘Aristotle’s definition [of motion] is incompatible with the
requirements of speed as a concept.” Carteron 1923, 3 more carefully puts it that speed was not an autonomous
concept for Aristotle.

169 Among the passages in which Aristotle refers to acceleration and deceleration, see Phys. 5.6, 230b21-6; 8.9,
265b12-14; DC 1.8, 277a27-b8; 2.6, 288a19-22; 3.2, 301b16-30.

170 This is mistaken because some decelerating motions fail to traverse a particular finite distance in any finite
amount of time. For example, a motion decelerating so that in the n-th unit of time it traverses 2™ units of
distance will never traverse a distance of 1 unit.

171 Knorr 1982b argued for this interpretation. White 1991, 64-69 is in basic agreement, though he also argues
that Aristotle is correct to maintain that no finite line is traversed in an infinite time. One should compare the
argument of Phys. 3.5, 204b19-22.

172 848b5-8. This use of ‘place’ (tdmov) is surprising in light of Aristotle’s account of place (Phys. 4.1-5). Strato
apparently understood place as three-dimensional extension (Sharples 26b, 27a). Mech. applies this
understanding of ‘faster’ to the motion of a point at the tip of a rotating radius.
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notion of speed. Although he often talks in terms of ‘faster’ and ‘slower’, he sometimes

speaks of téyog which may be treated quantitatively.

Power, weight and speed

Let us turn now to Aristotle’s statements about the effects of power and weight on motion,
which have been taken by some readers form the core of a theory of ‘dynamics’. The relevant
passages are scattered across the Physics and De Caelo. Some concern natural and others
unnatural motion, some are more precise (e.g. that double the weight takes half the time)

while others are less so (e.g. that a heavier weight takes less time).!”

It must be conceded by all parties that Aristotle gives no explicit indication that he viewed
these statements as contributions to mechanics.!”* In my view, though I shall not argue the
point here, Aristotle’s statements about power, weight and speed are best understood in terms
of their immediate contexts. They are introduced to support dialectical arguments about the
principles of natural philosophy, for example to deny the possibility of a void (Phys. 4.8), or
of an infinite body (DC 1.6-7).!7

Aristotle’s precise claims about weight and speed are, of course, false. Some commentators
point out that heavier objects of the same size and shape do in fact fall faster in viscous
media, though not in a vacuum.!”® However, this line cannot make sense of Aristotle’s more
precise claim that what is twice as heavy will cover the same distance in half the time.!”’

Hussey has suggested that Aristotle may have had in mind the starting speeds of weights on

173 Imprecise statements on natural motion: DC 1.8, 277b3-5; 2.13, 294b4-6; 3.5, 304b13-19; 4.1, 308b18-19,
27-28; 4.2, 309b12-15. Precise statements on natural motion: Phys. 4.8, 216a13-16; DC 1.6, 273b30-274a2; 2.8,
290al1-2, 3.2, 301a28-32. Imprecise statements on unnatural motion: DC 1.7, 274b33-275a14, 275a20; 3.2,
301b1-16. Precise statements on unnatural motion: Phys. 7.5, 249b27-250a9; 8.10, 266a13-b24. It is important
to note that some of these passages are concerned with change in general and not only change of place (Owen
1986, 321).

174 They do fall within the exceptionally broad definition of mechanics which Pappus attributes to followers of
Hero (Collectio 8.1-2).

175 In this [ agree with Owen 1986 and Lloyd 1987a, 217-26. Owen’s (1986, 327-28) acute observation that the
proportionalities concerning forced motion are essential while those concerning natural motion are inessential
(that is, Aristotle has other equally potent arguments and so could dispense with the proportionalities), should be
borne in mind. A difficulty for this line is that Phys. 7.5’s aims are obscure. Owen’s (1986, 327) observation
that the chapter supplies a premise assumed by Phys. 8.10 does not take us far in accounting for Phys. 7.5’s
length or its details. As Owen himself notes (1986, 330), Phys. 8.10 seems to ignore the threshold proviso of
Phys. 7.5. 1 am not persuaded by Wardy’s (1990, ch.8) admittedly speculative (335) suggestion that the chapter
is a defence of 7.1’s argument against an infinite chain of changes.

176 E.g. Toulmin and Goodfield 1965, 99-102. This defence has recently been revived and clarified by Ugaglia
2015 and Rovelli 2015.

177 O’Brien 1995, 48.
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an equal-armed balance. On the balance, the stronger weight prevails and ‘in Aristotle’s
terms, this means that the rotation induced by the stronger power is faster than the other one.’
This hypothesis can account for the more precise claim, since unit weights balance one
double unit weight, so the double weight is twice as fast.!”® The suggestion is plausible, if
somewhat speculative. The behaviour of weights on the balance would have been familiar to

anyone in Aristotle’s audience and would be a good source of dialectical premises.

I shall not dwell on the various challenges that face those who would reconstruct an
Aristotelian ‘dynamics’, for example the lack of a clear explanation for acceleration in
Aristotle.!”® Those problems and a range of possible if speculative suggestions have been
discussed at length in the literature cited. Instead, I would like to address a less-discussed
issue. The precise proportions found in Aristotle played a central role in the medieval science
of weights, in the works of Jordanus de Nemore and others. Were they also applied to the

study of levers, balances and machines — in a word, mechanics — in Greek antiquity?

For the case of Aristotle, the answer seems to be ‘no’. The statements also find no application
in the Mechanica, except perhaps in an imprecise way in problem 24.'%° Pace Duhem, they
play no role in the explanations of problems 1-3. Interestingly, it is in other mechanical
authors, more distant from the Peripatos, that statements similar to Aristotle’s are applied.
Philo of Byzantium used the supposed fact that heavier weights fall more quickly as an
illustration in a dispute about the number of springs that should be used in a catapult.'8!
Hero’s Mechanica attempts to explain why greater weights fall in a shorter time.!3? However,

neither Philo nor Hero commits himself to Aristotle’s more precise claim that double the

weight falls twice as fast.

178 This is perhaps an advantage over Carteron’s hypothesis that Aristotle was generalising from observations
such as that heavier objects have greater impacts after a fall.

179 Hussey’s (1991, 238) suggestions are perhaps the best that can be done for acceleration.

180 See Chapter 6.

181 Belopoeica 69 claims that a two-mina weight falls much faster than a one-mina weight, but also faster than
two, three, or even more weights of one mina fastened together, since the combined speed of a collection of one
mina weights will not be more than the speed of a single weight. Compare Galileo’s famous thought-experiment
about falling bodies in 7wo New Sciences (Crew and Salvio 1954, 63ft.).

182 Mechanica 2.34, question d (Nix and Schmidt, 176). Hero also asks (question ) why a broad object falls
slower than a round object of equal weight. On the other hand, Hero argues against an Aristotelian view in
Mechanica 1.20.
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Some Latin and Arabic texts apply more precise Aristotelian ideas in deductions of
mechanical principles, and particularly of the so-called ‘law of the lever’. These texts have
been suspected to derive from Greek originals, but this remains controversial, and further
investigation here by Arabists is needed. Briefly, our texts are:

a) De Ponderoso et Levi, attributed to Euclid.'®?

b) Kitab al-Qarstun, attributed to Thabit ibn Qura (836-901).!%4

c) Liber Karastonis, attributed to Thabit ibn Qurra and translated by Gerard of

Cremona in the twelfth century.!®>

d) Fragment on the Roman Balance, also known as Excerptum de Libro Thebit.!%

Text (a) is a short and likely fragmentary work consisting of nine postulates and five or six
theorems.!®” The nine postulates belong in three groups of three. Each group follows the
same pattern: one postulate defines equality or sameness of a property, the next defines
inequality or difference, and the last explains what possessing a greater amount of the
property means. The first group concerns the size (magnitudo) of bodies, the second their
power (uirtus, fortitudo), and the third their kind (genus). Uirtus is defined as a property
inherent in bodies, rather than one externally applied, and may correspond to the Greek term

rhope.'88

The first theorem is similar to the statements found in Aristotle: ‘Of bodies which traverse
unequal places in equal times, that which traverses the greater place is of greater power.”!%
The subsequent theorems develop further relations between the properties defined at the
outset. While the systematisation of such ideas about motion in postulates and theorems may

recall axiomatic mathematical treatises, formal proofs are not supplied for all theorems, and

183 See the edited text in Moody and Clagett, 1952, 21-31. The Liber de Ponderoso et Levi was printed in
several early modern editions of Euclid’s works, such as David Gregory’s 1747 Euclidis quae supersunt omnia.
Sarton, 1927, 156 thought the work’s use of a notion of specific weight meant that it must postdate Archimedes.
I do not think there is anything particularly Archimedean about the work’s definition of genera corporum.
Hahm 1976 treats it as authentically Euclidean. There is an Arabic version in al-Khazini’s Book of the Balance
1.3.

134 Jaouiche 1976.

135 Moody and Clagett 1952, 77-117.

136 Moody and Clagett 1952, Appendix 1; Knorr 1982a, Appendix C.

137 The sixth theorem was edited by Buchner from a manuscript known only to him.

138 This would fit the work’s title, which means ‘Book on the Heavy and the Light’. However it is not clear from
the extant text if the author thought, like Aristotle, that there was a distinct natural motion upwards, or whether,
like Strato, he thought the upwards motion of light bodies was not due to a distinct property ‘lightness’, but
rather to displacement by heavier bodies.

139 corporum que temporibus equalibus loca pertranseunt inequalia, quod maiorem pertransit locum, maioris
esse Virtutis.
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the text does not apply these ideas to the explanation of the balance, lever, or any other

machines.!”® The diagram-letters follow the Greek alphabet, with one possible exception.!®!

Texts (b) and (c) are clearly closely related and are often described as two versions of the
same work. 12 Both aim to solve a problem about the equilibrium conditions for what is
nowadays termed a ‘Roman’ steelyard: ‘given a beam of uniform weight, suspended from a
point other than its midpoint, to determine that weight which when suspended from the end
of the shorter arm brings the beam into equilibrium.”’!** The two versions, (b) and (c), differ
in a number of respects. For example, two propositions of (¢) are missing in (b). The two
works sometimes give different proofs for the same proposition, where (b) invariably has the
more rigorous proof. For example, in the case of the crucial proposition 6, (b)’s proof is quite
precise and valid while (c)’s proof is circular.!”* Text (c) begins with a brief prefatory letter
from Thabit to an unnamed addressee (o frater). Thabit and his addressee had apparently
struggled to understand a work entitled Cause karastonis. Thabit judged that the obscurities
were due to translation and poor copyists (permutationem linguarum interpretum et
vicissitudiness [sic Moody and Clagett 1952, 88] manum scriptorium) and explains that he
has attempted to clarify the Cause karastonis in the text following his letter. There is no

prefatory letter in (b).

Despite these differences, the two versions address the same problem through roughly the

same sequence of propositions and, importantly, begin with the same theorem: ‘The ratio of
two distances traversed by two moving things in two [equal] times is equal to the ratio of the
force of one moving thing [which traverses] the uniform [= mustawiya] distance to the force

of the other moving thing.”!%> This is the same idea we saw in (a) and in Aristotle. Thabit

190 It may be that an earlier version of the Liber de Ponderoso contained proofs that were left out at some stage
in transmission. In any case they are not difficult to supply.

Y 4, B, G, D, E, Z, H, T. The exception is the letter ¥ in theorem 1. Could this be a transliteration of Arabic
wau?

192 The nature of their relation is controversial. Buchner, 1920 thought (c). was adapted by its translator but
Gerard of Cremona was typically a faithful translator. Knorr, 1982a hypothesised that (b) was an Arabic
translation of a Greek work while (c) represents Thabit’s editorial efforts on it. Brentjes 2020 suggests that (b)
and (c) are two versions of Thabit’s own work, the latter being adapted to a didactic context.

193 Knorr 1982a, 7. Knorr calls this the ‘problem of the weighted beam’.

194 See Knorr 1982a, 49-56.

195 1 translate from the French translation of Jaouiche, 1976, 147 (see also the critical notes on p.170). Compare
the corresponding postulate in L.Kar.: dico ergo quod omnium duorum spaciorum que duo mota secant in
tempore uno, proportio unius ad alterum est sicut proportio virtutis motus eius quod secat spacium unum ad
virtutem motus illius secantis spacium alterum.
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uses it to prove the so-called ‘law of the lever’ before tackling the more complex problem of

equilibrium conditions for a weighted beam of unequal arms.!*¢

Moody and Clagett suspect that text (d) is either an excerpt from Thabit or else the original
Cause karastonis which Thabit revised. It contains all but one of (c)’s propositions, but in
reverse order. Paragraphs 7-9 prove the ‘law of lever’ in the same way as (b) and (c), starting
from the proportionality of powers and distances, applying it to arcal displacements at the

ends of a balance beam, and then showing that arcs are proportional to arm lengths.

Could (b) and (c) derive from a Greek original, perhaps the Cause karastonis mentioned by
Thabit? Text (b)’s proof of theorem 6 (that equilibrium is preserved if the weight uniformly
distributed along one arm of an immaterial unequal-armed balance is replaced by an equal
weight suspended from the original weight’s midpoint) uses a sophisticated version of the so-
called method of exhaustion that has been dubbed the ‘method of compression’.!*” Wilbur
Knorr took the application of this technique to suggest that (b) represents the work of a Greek

mathematician, translated and edited by Thabit.!"®

Sonja Brentjes has criticised Knorr’s argument, observing that there are four mathematical
works by Thabit which demonstrate his competence in applying the so-called ‘method of
exhaustion’ and ‘axiom of Archimedes’.!*” In these cases Thabit uses the exhaustion
technique as the ‘method of approximation’ rather than the ‘method of compression’, yet it is
prejudiced, Brentjes suggests, to argue that Thabit could not also have applied the latter.2%

Brentjes nevertheless agrees that theorem 6 of (b) likely derives from a Greek source, but for

196 Dyuhem effectively read this method of proof of the ‘law of the lever’ back into Mech.

197 Jaouiche 1976 numbers this theorem ‘proposition IV’. The term ‘method of compression’ comes from
Dijksterhuis, 1987, 130-133 who classified the convergence methods used by Archimedes. The ‘method of
approximation’ is that found in Euclid’s Elements Book 12.2, 5, 10-12, 18 and Archimedes’ Quadrature of the
Parabola 18-24 and Measurement of the Circle 1. The ‘method of compression’ is not found earlier than
Archimedes. It involve inscribing and circumscribing sequences of rectilinear figures in and around a
curvilinear figure. Dijksterhuis distinguishes two subvarieties. In ‘compresion by difference’, it is proven that
the difference between the bounding figures can be made less than any finite magnitude (e.g. Quadrature of the
Parabola 16, Spiral Lines 21-23, Conoids and Spheroids 19-20, and Method 15). In ‘compression by ratio’, it is
proven that the ratio between the bounding figures is closer to unity than any ratio (e.g. Sphere and Cylinder
1.2-6).

198 More specifically, Knorr argued that Thabit’s Kitab al-Qarastun may derive from part of Archimedes’ lost
On Balances. For an earlier reconstruction of On Balances, see Drachmann 1963b.

199 Brentjes 2020. Brentjes refers to Thabit’s works on (i) the quadrature of the parabola; (ii) parabolic bodies of
revolution; (iii) two lines that meet when they include a non-right angle; (iv) the trisection of the angle. All are
found in MS Paris Bibliothéque nationale de France, Arabe 2457.

200 Brentjes 2020, 46.
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the different reason that she has identified a number of Graecisms in the Arabic text.2°! Since
there are no Graecisms in the early propositions of the work, her preferred hypothesis is that
Thabit edited an earlier Greek work on the unequal-armed balance which contained theorem
6, and that Thabit gave this work a new foundation by deriving the general principle of

equilibrium from the proportionality of powers and times.

Not being an Arabist, I am unable to delve deeper. It is time to reflect on this material. We
cannot rule out that some of Aristotle’s proportions were applied to the understanding of the
balance and lever in antiquity.?’? Supposing they were, what could we conclude from that?
Were writers on mechanics after Aristotle under the philosopher’s spell, or was Aristotle
himself drawing on ideas already applied by mathematicians, as he seemed to be doing in
Phys. 6.2? What it would mean for our understanding of Mech., or of Aristotle for that
matter, if we were to see the Kitab al-Qarstun as its near contemporary? So little of early
Greek mechanics has survived that is easy for us to assume that Archimedes was the first to
put mechanics on axiomatic-deductive foundations, and to see the pseudo-Aristotelian
Mechanica as a stumbling first step towards a demonstration of the conditions of equilibrium
for a balance. What if Archimedes’ proofs concerning the balance were not the first but rather
the culmination of an earlier tradition of proofs of equilibrium conditions, perhaps like the
Kitab al-Qarstun, or like another Arabic text likely derived from a Greek source, the Book on

the Balance attributed to Euclid?%%

Posing these questions forces us to recognise the differences between the projects of Mech.
and of Archimedes and other writers interested in deducing equilibrium conditions.
Archimedes in Plane Equilibria assumes that the balance beam rotates when unbalanced, but
he does not attempt to describe how or explain why this happens. He deduces from this
assumption, together with several others, the necessary and sufficient conditions for
equilibrium. Mech.’s author states the conditions of equilibrium in passing but (pace Duhem)
does not attempt a precise proof or explanation. The primary interest is finding the causes of

the motion of the balance and lever.

201 Brentjes 2020, 158 and personal communication.

202 In his commentary on Phys. 7.5, Simplicius mentions Archimedes and an instrument, Tov kaAoOpevov
xopotiova, perhaps the steelyard known to Arabic authors as the garastun (Commentary on Aristotle’s Physics,
1110, 2-5).

203 1 do not have space here to discuss this text, which offers a deduction of equilibrium conditions for a balance
that differs both from Archimedes’ proof in Plane Equilibria and from the proof in the Kitab al-Qarstun. See
the translation and commentary in Clagett 1959, 24-30 and analysis in Knorr 1981, ch.7 and Appendix F.
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Chapter 2: Aristotle on composed motions

2.1: Introduction

Mech. 1 asks, “Why are larger balances more accurate than smaller ones?’! The answer
offered suggests that a tiny angular motion is more easily noticed in a larger balance-arm
since its tip moves faster. The tip of a larger-balance arm moves faster because points further
from the centre on a rotating radius move faster. Most of Mech. 1 is devoted to explaining
this principle. Strikingly, we are told that ‘the cause of these things is that the [line]
describing a circle moves with two motions’.2 The full explanation that follows is complex
and our interpretation must wait until Chapter 4. At this early stage, however, questions
already arise. Should we understand the author’s claim literally? Can a single thing really

move with two motions at the same time? Or are these two motions mere theoretical fictions?

Our answers to the above questions will inform whether we see Mech. problem 1’s analysis
as causal or purely kinematic, and so will affect our understanding of its aims, and whether
we see it as potentially applying to the circular motions of the heavens. Since problem 1
provides the foundations for subsequent explanations, these issues will also fundamentally

shape our understanding of Mech.’s overall project.

It is the task of this chapter to offer some answers. I will argue that the component motions in
Mech.’s analysis of the balance are not theoretical fictions and hence the explanation is not
purely kinematic.? I see four possible reasons for thinking the component motions are
theoretical fictions: (i) an assumption that Mech. contains the modern ‘parallelogram of
velocities’; (i1) a reading of 847a27-847b1 as claiming that mathematics rather than physics
provides the explanations; (iii) the thought that, since a body has only one place at a time, it
can have at most one motion at a time; and (iv) concerns about the causal terminology in

Mech. 1, especially in 849a6-849a19. It should be clear that (i) is hopelessly anachronistic.* I

! The assumption that larger balances are more accurate is itself questionable (see Chapter 5).

2 848b10-11: oittov 3¢ TovTmV 8T1 PEpETOL 500 POPAG 1] YPAPOVGA TOV KOKAOV.

3 The latter conclusion follows from the Aristotelian thought that any change is driven by an efficient cause
which acts throughout the duration of the change. So if a body has a motion, there is an efficient cause of that
motion. And if a body has two distinct motions, there is an efficient cause of each motion. The doctrine is not
only Aristotle’s: it found unsually wide acceptance among Greek thinkers, the Epicureans being a notable
exception (cf. Sorabji 1988, 219).

4 See Note B to Chapter 1 and §2.2 below.
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have challenged (ii) in Chapter 1 and will continue to do so in Chapters 4-6. Part of my aim
in this chapter is to show that Aristotle and his followers would not have been persuaded by

(iii).> I will address (iv) in Chapter 4, in the course of a close reading of Mech. problem 1.

The idea that a single body can undergo multiple motions at once may sound strange, even
nonsensical, to modern ears. Yet the assumption that a body can undergo at most one motion
at a time is a historical product, the result of developments in science and philosophy since
the seventeenth century. In ordinary speech we often attribute distinct motions to a single
body at the same time, for example in describing a diver who performs a somersault while
falling towards the water. So the claim that a body can undergo at most one motion at a time
is revisionary, forcing us to abandon aspects of our everyday, pre-reflective conceptions of
the world. In section 2.2 of this chapter, I will develop this contrast further in the context of a
puzzle about composed motions. In sections 2.3-4, I will argue that Aristotle’s account of
motion in the Physics is best understood as implying that bodies can undergo several motions
simultaneously. In section 2.5, I will show that this interpretation is supported by passages
from Aristotle’s scientific works which offer explanations that rely on claims about the
number of motions that a body has. At the same time, we will see that these passages (in

contrast to Mech.) do not apply geometrically precise rules for the composition of motions.

Although there is a considerable scholarly literature examining Aristotle’s views on motion,
there have been relatively few attempts to understand his views on the composition of

motions.® A note of caution is appropriate, for two main reasons.

First, Aristotle does not address the issue of composed motions head-on and the composition
of motions plays a minor role in the Physics. This can be explained in part by the particular
aims and interests of that work. In many passages, Aristotle ignores not only the possibility of
composed motion, but also more generally the possibility for motions to have paths of
different shapes. On such occasions, he considers only the simplest case of motion along a
single linear path since this is suited to the clarification of specific concepts: time is assumed

to be one-dimensional; all examples of alteration are understood on a one-dimensional, linear

5 In §2.2-4 below 1 discuss various arguments for (iii).

® Hussey 1991, 220-222 is a notable exception; see also Carteron 1923, 5-10; Miller 2017, 161-3. Among the
numerous studies of Aristotle’s general account of change, I have particularly benefitted from Kosman 1969,
Penner 1970, Waterlow 1982, Coope 2009, Rosen 2012 and Cohoe 2018; on locomotion in particular, I am
endebted to Berti 1985, Morison 2002, Bowin 2009, and Odzuck 2013.
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model, e.g. from cold to hot, from low to high musical pitch.” There are occasional allusions
to the complexities introduced by the fact that motion takes place in three-dimensional space,
to use a modern phrase. For example, Aristotle states that motion is non-uniform if it takes a
non-uniform path, one for which it is not the case that any two equal parts are congruent, and
gives as examples ‘an angled line or a spiral’.® He considers whether sameness of path shape
is a necessary condition for the sameness in species of motions.” And he refers to circular and

‘mixed’ motion in Phys. 8.8-9, though of these only the former receives extended attention.!?

Secondly, I shall approach the topic of composed motions via Aristotle’s general account of
change outlined in the Physics. The difficulty is that there is still disagreement on the
interpretation of this account. It would be virtually impossible to remain neutral on these
issues while discussing the upshots of this account for cases of composed motions and I will
not attempt to do so. I will argue in the terms of the interpretation of the Physics account that

I favour.!!

We should not expect to recover well-worked out theory of composed motion from
Aristotle’s works. Some of the tensions and difficulties I will discuss in this chapter and
Chapter 3 may suggest otherwise. I do not pretend to have reconstructed such a theory. My
aim is to show that questions about the number of simultaneous motions occurring in a single
body are intelligible within the framework of Aristotle’s natural philosophy. Thus Mech.’s
author can be said to address an Aristotelian question in problem 1, even if his answer is not

one endorsed by Aristotle.

7 Aristotle’s theory that colours result from certain ratios of black and white is today known to be false. But it is
no problem for Aristotle’s one-dimensional treatment of alterations that he does not distinguish multiple
dimensions of colour (e.g. hue, saturation, brightness) since each dimension could be treated as a quality in its
own right.

8 Phys. 5.4, 228b15-25.

? See §2.4 below.

107 discuss Aristotle’s ‘mixed’ motion in Chapter 3.

T suspect that similar arguments could be made on the basis of other interpretations of Physics 3’s account.
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2.2: A puzzle about composed motions

A sailor walks across the deck of a cruising ship. How many motions does the sailor
undergo? We may be tempted to say two motions are involved, the ship’s and the sailor’s.
We have just referred to two ways of moving (‘a sailor walks across the deck of a moving
ship’) and it seems clear that the sailor is affected both by walking and by the ship’s motion.
So our ordinary ways of describing such situations could be taken to assume that a body can

undergo more than one motion at the same time.

Yet if a body is in only one place at a time, how can a body undergo two motions, that is two
changes of place, simultaneously? Would that not imply being in two places at a time, which
is impossible? Or, if not, what difference could there be between the two motions? Another
point of view, then, maintains that the counterpart to the truism that a body is only in one
place at a time is that a moving body passes through only one ordered succession of places,
one path, over a time interval. This is the position taken by Descartes.!? On this view, the
sailor has one motion which is not identical with either his walking or his being moved by the
ship; it is some third thing, a resultant motion, defined by the continuous succession of places
occupied by his body over time. A body can be thought of as having two simultaneous

motions, but these motions are no more than convenient fictions.

Consider again the view that the sailor truly has two motions. Does the direction in which he
walks matter? If he walks towards the stern at precisely the same uniform speed as that with
which the ship advances, he will remain in (roughly) the same place.!® Both the walking and
the ship’s motion still seem to be there, but the body which is supposed to be undergoing

both motions now remains in the same place. Can such a body be said to be moving at all? I

set this problem aside for now, and will return to it in Chapter 3.

12 Descartes Principia 11.25-32: ‘when we understand by motion that translation which takes place from the
vicinity of contiguous bodies, since only one [group of] bodies can be contiguous to the same mobile at the
same moment of time, we cannot attribute to this mobile many motions at the same time, but only one...
although it is often useful to separate in this way one motion into many parts, to perceive it more easily,
nevertheless, absolutely speaking, one should number only one motion in any body’ (trans. Mahoney). For
context, see Garber 1992, ch.6. This is not to deny that a body could be said to undergo two motions at the same
time in the sense that its parts move differently. I am focussing on the motion of the body as a whole.

13 “Roughly’ only because through walking his limbs will still swing, his head bob, and so on. One could instead
imagine the sailor carries an object perfectly level while walking as described; such an object will remain in
exactly the same place (cf. Sextus Empiricus Adv.Math. 10.55-57).
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A third possibility is that the sailor undergoes three motions: walking, being moved by the
ship, and the resultant motion of combining these two. Yet in that case, the rule for
combining motions to produce a resultant should presumably apply again to all three
motions, and so the sailor would traverse twice the distance actually moved. Thus this third

view seems initially less promising.'* In this chapter I will focus on the first two possibilities.

Whether one should view only the component motions or only the resultant motion as real
will depend in part on one’s account of what motion is. To see how one’s account of motion
may influence one’s view of component motions, consider a common modern account, the
‘at-at’ theory of change. According to the ‘at-at’ theory, ‘Motion consists merely in the fact
that bodies are sometimes in one place and sometimes in another, and that they are at
intermediate places at intermediate times.”!> On this view, the sailor’s motion consists merely
in the succession of places he occupies over time. Since the sailor is in only one place at any
time, there will be only one succession of places that he occupies over any time-interval

making up one path of motion. Thus only the resultant motion has a claim to reality.

I suspect there is another reason why many people today would tend on reflection to resist
treating component motions as real, even if they do not endorse the ‘at-at’ theory.!® We tend
to think of motion as a state of having non-zero velocity.!” We say that a body is ‘in motion’

if it has non-zero velocity and that it is ‘at rest” only if its velocity is zero.'® On such

141t is in principle possible to distinguish motions which compose according to the parallelogram rule from
motions which do not. Alternatively if, as in modern physics, the parallelogram of motions is abandoned for the
parallelogram of velocities and the parallelogram of forces, then questions about the number of motions will
have some independence from issues of composition.

15 Russell 1918, 83-84.

16 Dissenters from the ‘at-at’ theory may hold a range of views. Some might take change as primitive (e.g.
Bostock 1996, xxxi: ‘change is one of the basic and fundamental concepts in natural science, and cannot be
defined in terms of anything more fundamental’). Tooley 1988 argues that instantaneous velocity is an
irreducible intrinsic property and gives it a functional definition via the Ramsey-Lewis method (Bigelow and
Pargetter 1989 and Lowe 2002 take similar views). The main objection to such an account is that treating
velocity as intrinsic conflicts with modern physical theories in which velocity is frame-relative — not only
special relativity, but also formulations of classical mechanics in neo-Newtonian, or ‘Galilean’, spacetime; see
the detailed criticisms of Butterfield 2006. Lange has proposed treating instantaneous velocity as a dispositional
property, noting that this has the surprising consequence that ‘if a body is moving now at 5 cm/s not in virtue of
its current categorical properties, but in virtue of where it would be were it to continue to exist, then two bodies
could be thoroughly alike now, as far as their categorical properties are concerned, and yet possess different
velocities now’ (2005, 460).

17 Penner 1970, 411-424 gives a clear explanation of why Aristotle’s account of change excludes the treatment
of motion as a state.

18 This is true even if we cannot measure absolute velocities. Mutatis mutandis, it holds true for relative motion.
In speaking of the velocity of a spatially extended body, we typically focus on the velocity of its centre of mass;
there may be some vagueness in cases where the body’s centre of mass is at rest but other parts of the body are
moving.
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occasions, ‘motion’ is not used as a count noun, and asking how many motions a body has
seems to make little sense. Its velocity at any time can be decomposed into arbitrarily many
component vectors but we have no reason to privilege any of these equivalent sets of vectors,
except perhaps the single resultant vector. Our answer to the question ‘how many motions
does this moving body have?’ is therefore likely to be one, or we will deny that there is any
fact of the matter: a body is ‘in motion’ or ‘at rest’ but there is no fact about the number of

motions it has.

This does not exhaust the range of accounts of change and motion currently alive, but I think
the above are reasonably typical responses of reflective, scientifically informed people today
upon being asked how many motions a body can undergo simultaneously.!” What I wish to
emphasise is that some of the reasons for these responses are informed by modern scientific
developments.2? The one argument we have seen that does not depend on modern scientific
theory is Descartes’: a body is in only one place at a time, so it can have at most one motion
at a time. [ have not found an ancient version of this argument, yet since Aristotle accepted
the premise but (so I will argue) denied the conclusion, we should ask how he would respond
to Descartes’ argument. The key to understanding Aristotle’s view and how he might have

responded to the Cartesian argument lies in his account of change in the Physics.?!

19 Recent writers on the metaphysics of events offer alternatives. Bennett 1988, ch.10 insists that, at least in
some cases, two motions can truly be said to occur in the same spatiotemporal zone, e.g. the spin of a top and its
simultaneous movement across the table; there is, Bennett suggests, also a third event, the ‘fusion’ of these two,
the top’s whole movement. Bennett is sceptical about the possibility of a systematic theory of events (cf. the
earlier attempts of Kim 1976, Lombard 1986). By contrast, Quine’s austere account of events follows the spirit
of Russell’s account of change: ‘Physical objects...are not to be distinguished from events... Each comprises
simply the content, however heterogeneous, of some portion of space-time, however disconnected and
gerrymandered.” (Quine 1960, 70).

20 The at-at theory draws on the calculus to construct instantaneous velocity. The identification of motion with
velocity and the conception of velocity as a state are inspired by modern physical theories.

21 Although Descartes is remote in time from Aristotle, the comparison of the two is productive. Partly this is
because Descartes’ definition of motion in the Principia involves a surprisingly Aristotelian notion of place:
‘motion... is the translation of one part of matter, or of one body, from the vicinity of those bodies that are in
direct contact with it and are viewed as at rest to the vicinity of others.” (Principia §5, trans. Mahoney).
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2.3: Aristotle’s account of kivnoig

Aristotle’s views on motion are contained in his general discussion of change (kivnoig) in the
Physics.?? In contrast to the Eleatics and perhaps also to Plato, Aristotle believes that change
is a feature of reality. And in contrast to the atomists, who reduce all change to motion,
Aristotle thinks that there are many irreducibly different kinds of change. He recognises
change with respect to four categories: quality (alteration, dALoimacig), quantity (increase
abénoic and decrease @0ic1g), substance (coming-to-be yéveoig and ceasing-to-be ¢Bopa),

and place (motion, popd).>

Nevertheless, motion has a special status. Aristotle says that his general term for change,
kivnolg, is properly used only of motion.?* He argues for general conclusions about change
by taking locomotion as the paradigm case.?> And he argues that motion is prior, in several
senses of priority, to other kinds of change.?® Understanding motion is crucial for Aristotle’s
inquiry into nature. The cosmological investigations of the De Caelo focus on the natural
motions of the simple bodies — earth, water, air, fire and especially the ‘first body’ which
makes up the heavens. The Meteorology investigates the motions of winds and meteors. The
investigation of animals includes the study of their motions (De Motu Animalium, De Incessu
Animalium). Even screening off mechanics, Aristotle’s investigations of the natural world
cover a wide range of complex motions, varying not only in the range of possible destinations

but also in the multitude of ways of reaching places and passing through them.?’

22 xivnoig is traditionally translated as ‘motion’ which is misleading since in common English usage ‘motion’
exclusively means change of place. ‘Change’ is less misleading but hardly unproblematic, since there are
occurrences we might call changes that are not strictly kivijoeig in Aristotle’s sense. An important example is
substantial change (coming-to-be or ceasing-to-be) which does not count as kivnoig (Phys. 5.1 224b35ff., 5.2,
226a23). Another example is discontinuous or ‘jerky’ change (e.g. from being-in-contact to not-being-in-
contact, between which there is no continuum of intermediate states). Aristotle’s more general term for change,
covering both kivnoig and not-kivnoig, is petaforr). ‘Process’ avoids some of these problems but can sound
rather stilted and there is no corresponding verb to match kiveiv (‘procede’ means something different and in
any case cannot be transitive). I translate kivelv, kivnoig etc. as ‘change’ except where it is used exclusively for
change of place, for which I use the terms ‘locomotion’ and ‘motion’ interchangeably.

23 These are the kinds of change Aristotle recognises in Phys. 5.2. At Phys. 5.2, 226a32-226b1, Aristotle says
that popa strictly applies only to ‘things that change their place only when they have not the power to come to a
stand, and to things that do not move themselves locally.’ (trans. Hardie and Gaye). Simplicius glosses this as
‘things which change like inanimates’ (921.18-19, trans. Urmson).

24 Phys. 8.9, 266al-2.

5 See especially Phys. 6.4-5.

26 Phys. 8.7; see Odzuck, 2013.

27 Especially diversity of path-shape and means of transport. Aristotle draws attention to this diversity in
passages I consider below.
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One way to understand complex movements is through analysis into component motions.?8 It
is important to distinguish the idea that a body may undergo two or more motions at once
from the precise geometrical account of how motions compose (the ‘parallelogram rule’). I
am arguing in this chapter that Aristotle applies the former; the latter is found in Mech. but

not explicitly in Aristotle’s certainly authentic works.

According to Aristotle, change is ‘the actuality of what is potentially, as such’.?’ There is no
room here for full treatment of the interpretative challenges on this obscure expression.’® T
will only sketch my favoured interpretation. Aristotle’s idea is that things in the world have
potentials to be in different states: a lump of bronze has the potential to be a statue, my hot
cup of tea has the potential to be cold, and I have the potential to be in the University Library.
A thing is changing for Aristotle when its potential to be another state is in some sense actual.
The ‘as such’ phrase in Aristotle’s formula identifies the appropriate sense of actuality:
change is the actuality of a potential as a potential. A thing’s potential to be in a state is
actual in a different sense when the thing has reached that state. The statue is not the actuality
of the bronze’s potential to be a statue, as a potential, since when the bronze is actually a
statue it is no longer potentially a statue. When the bronze is becoming a statue, it is still
potentially a statue and not an actual statue, and its potential is actual in the sense that it is
being manifested rather than being merely dormant. So a thing is changing when its potential
for being in a state, to borrow Ursula Coope’s phrase, is making a difference in a way
directed at being in that state.?! It is for this reason that Aristotle says that change is
incomplete: it is directed at a state that lies beyond it. When that state has been obtained, the

change is no more.

Change is the incomplete fulfilment of a thing’s potential to be in a different state. So motion,
which is change of place, is the incomplete fulfilment of a thing’s potential to be in a
different place. A motion is therefore defined in part by its the place towards which it is

directed, its terminus ad quem.

28 We saw in Chapter 1 that by the mid-fourth century Greek astronomers had begun investigating the
composition of circular motions. In particular, Eudoxus showed that complex planetary motions could result
from the composition of two circular motions.

2 Phys. 3.1, 201a10-11: 1) oD duvéuet vtog dvieheygiq, 1 TotodTov.

30 In my understanding of Physics 3’s account, I follow Kosman 1969, Waterlow 1982, and Coope 2009.

31 Coope 2009, 282-83.

51



To return to our earlier example, the sailor is moving to the other side of the deck when his
potential to be on the other side of the deck is making a difference in a way that is directed at
being on the other side of the deck. And he is moving in the direction of the ship’s travel
when his potential to be at some place further along in that direction is making a difference in
a way directed at his being in that place. What is important for our immediate purposes is that
motion is not defined by the succession of places occupied by the sailor’s body over time.*?
This leaves room for questions about the number of simultaneous motions a body is
undergoing, since a body’s potential to be in one place and the same body’s potential to be in

another place might both be making a difference directed at those places at the same time.

One group of remarks in Aristotle’s general discussions of change that do not apply to change
of place are those in which Aristotle speaks of change in terms of the acquisition of form.>?
Motion does not involve acquisition of form because place is not a form. Place is not a form
because it is separable (Phys. 4.2, 209b30-31). This separability is clear in the phenomenon
of replacement. I fill the jug with water, the water replaces the air: Aristotle thinks any
satisfactory account of place must make sense of the idea that the water now occupies the
same place the air previously occupied.?* This is one reason why change of place is prior to
other kinds of change: it least affects the form of the thing changed.* This is furthermore the
reason why the heavens’ motion does not entail their destructibility: ‘for change does not
imply for them, as it does for perishable things, the potentiality for the opposite, which makes

the continuity of the motion distressing’.

32 Time is absent from Physics 3’s account of change.

33 The thesis that change involves acquisition of form should be distinguished from the thesis that it involves
transmission of form, i.e. that if @ changes b then a must already possess the form which b acquires as a result of
that change. This thesis about transmission of form, sometimes called the ‘principle of synonymy’, may have an
even more restricted scope than the thesis about acquisition of form. Met. Z.9, 1034b16-19 seems to restrict it to
substantial change only. Met. A.3, 1070a4-5 states it only for substances. See Bodnar and Pellegrin 2006; Bowin
2009, 50-55; Coope 2015, 251-53. That a’s moving b does not involve the transmission of a particular form
from a to b fits observed facts about motion. To push a cork into a bottle I do not need to have squeezed myself
in the bottle’s neck first. It is significant that motion is absent from lists of the types of change when Aristotle’s
discussion focusses on transmission of form. For example, Phys. 3.2, 202a3-11 mentions change in substance,
quality and quantity, but not in place: ‘That which produces change will always carry some form, either ‘this’ or
‘of such a kind’ or ‘so much’, which will be the principle of, and responsible for, the change, when it produces
change’ (trans. Hussey).

34 Morison 2002, 20-25.

35 Phys. 8.7, 261a20-23: fixioto tfig ovoiag SElcToTan T KIVOULEVOV TOV KIVAGE®Y &V T) eépecdat: katd novny
Yap o0dEV petaféiiel Tod sivar, Homep dALOIOLUEVOD PV TO TTOWOV, adEavouivoy 8¢ kai BivovTog O ToGoV.

36 Met. 9.8, 1050b24-27 (trans. Tredennick): o0 yap mepi v SVvapy g GvTipaceng adToic, 0lov Toig
@Buptoic, 1| kivnoic, Bote Enimovov givan TV cuvéyelay T kvioewg. Cf. Bodnar 1997, 111.

52



2.4: Identity of xivijoeig

We have now seen that Aristotle’s account of motion in terms of actuality and potentiality
allows for us to truly describe the sailor as simultaneously walking and being conveyed by
his vessel. But Physics 3’s account does not give us criteria for identifying and distinguishing
changes. Undoubtedly, the sailor is simultaneously walking and being conveyed, but it might
be thought that 'is walking’ and ‘is being conveyed’ are two descriptions of the same motion.
In this section, I will examine what Aristotle has to say about the conditions under which two

changes are the same or different. Here are the conditions as presented in Physics 5.4:

‘There are three classes of things in connexion with which we speak of motion, the
‘that which’, the ‘that in which’, and the ‘that during which’... Of these three it is the
thing in which the motion takes place that makes it one generically or specifically, it
is the thing moved that makes the motion one in subject, and it is the time that makes
it consecutive: but it is the three together that make it one without qualification: to
effect this, that in which the motion takes place (the species) must be one and
incapable of subdivision, that during which it takes place (the time) must be one and
unintermittent, and that which is in motion must be one — not in an accidental

sense.’3’

We may summarise this by saying that two changes, x and y, are one without qualification if
and only if:

(1) x and y are in the same subject non-accidentally

(i1) x and y have the same start time and the same end time

(ii1))  x and y are the same in indivisible species

What does it mean for two changes to be the same in indivisible species? In Phys. 5.4,
Aristotle mentions different levels at which changes can be classified. At the highest level are
‘differences in genus’. Aristotle’s examples are of changes in different categories: spatial
motion, qualitative alteration, quantitative growing and shrinking. Within each category there
are differences in species. Phys. 5.4 is clear that x and y are the same in indivisible species

only if x and y have the same terminus a quo and the same terminus ad quem. Hence white-

37 Phys. 5.4, 227b23-32 (trans. Hardie and Gaye)
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to-black alteration and black-to-white alteration are different in species.*® This is a necessary
condition for sameness in indivisible species, and in the categories of quality and quantity it
may also be sufficient. But in the special case of motion, Aristotle suggests that this is

insufficient for sameness in indivisible species:

One might ask whether change is one in eidos when the same changes from the same
to the same, for example one point from this place to this place again and again. But if
that were so, circular motion and straight motion would be the same [in eidos] and so

would rolling and walking.*

This passage introduces two extra considerations: the shape of the path taken between the
termini, and what we might call the ‘manner’ of travel. It is not entirely certain from the
context of Phys. 5.4 whether Aristotle takes the identity of straight and circular motion and of
rolling and walking to be a reductio ad absurdum or simply the working out of the
commitments of one possible view, though the former may seem more likely. The main
argument of Phys. 7.4 claims that rectilinear and circular motion are different in species
because straight lines and arcs are different in species (249a13-21), but that chapter is more

aporetic in tone when discussing the difference made by the manner of motion:

Spatial motion has species according to the species of the lines on which it moves
(and sometimes if the manner is different, for example if feet, walking, if wings,

flying - or is this wrong but the motion is different by its shapes?)*

However, in two other passages Aristotle straightforwardly states his allegiance to the view

that differences in manner of motion constitute differences in species of motion:

For every movement takes time and is for the sake of an end and is complete when it
has made what it aims at... In their parts and during the time they occupy, all

movements are incomplete, and are different in kind from the whole movement and

38 Phys. 5.4, 227b7-9: olov ypoduatoc pév gici Stapopai—roryapodv 8AAN 16 €18t pELOVOIC KoL AEVKAVOIC,

3 Phys. 5.4, 277b14-18 (trans. mine): dmopnficete &' &v Ti¢ €1 £1det pia (1) kivnotg, dtav £k 1o avTod 10 odTd €ig
10 o0Td petaPaAdn, olov 1 pio oTrypn £k T008e Tod ToMOV £ig TOVOE TOV TOTOV TAAY Kl AW £l 88 TodT, EoTar
1N xvKAoopia Tfj evBVPopig 1 avTr Kol 1 KOAG1IG Tf Padicet.

40 Phys. 7.4, 249a16-19 (trans. mine): kai yop 1) @opd £i0n &xet, dv &keivo &ym £idn £¢' o kveltar (0T 8¢ £dv @,
olov €1 m6deg, Padioic, &l 88 mTépuyec, MTiGIC. § 0D, GAAY TOIC GYAUAGLY 1| Popd EAAN;).
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from each other. For the fitting together of the stones is different from the fluting of
the column, and these are both different from the making of the temple... So, too in
the case of walking and all other movements. For if locomotion is a movement from
here to there, it, too, has differences in kind — flying, walking, leaping, and so on. And
not only so, but in walking itself there are such differences; for the whence and
whither are not the same in the whole racecourse and in a part of it, nor in one part
and in another, nor is it the same thing to traverse this line and that; for one traverses
not only a line but one which is in a place, and this one is in a different place from

that. 4!

Very likely, too, there are other attributes, which, though they come under the same
general head, exhibit specific differences;—for example, the locomotion of animals:
of which there are plainly more species than one—e.g. flight, swimming, walking,

creeping.*?

The indivisible species of motion is defined not only by the termini of motion, but also by the
shape of the path between them and by the particular manner of motion. We are nonetheless
left wondering how some of these finer distinctions are to be drawn. Sameness and difference
of path is reasonably clear, but what constitutes sameness or difference of manner of motion?
Is jogging down the street the same or different in manner, and so in species, from skipping

down the street? What about differences in gait? Aristotle’s answers are not clear cut.*?

41 EN 10.4, 1174a19-31 (trans. Ross): &v ypove yap ndca kivolg kai Téhovg Tivog, 0lov 1) 0ikodopiky, Kol
teheio Stay momon ol deietat. .. &v 88 Toig pépect kai T YPOve mioal ATeAEIC, kol Erepar ¢ £idet Tiig dAng kai
AAA@Y. 1) Yap TdV MOwv cvvleoic Etépa tiig Tod Kiovog papddcemc, kai avtar Thc ToD vaod mowcEMG. . .
opoimg 6¢ kai £nl Padicemg kol TV Ao@®Vv. €l yap £otv 1| @opa kivnotg moOev mot, kai TavTng dropopai Kot
£€(0m, ntioig Padiolg GAotg kai Ta TowadTa. oV povov &’ ohTwg, GALG kai &v avTf th Padicel 10 yap ndbev ol
00 TO aNTO &V T( 6Tadi® Kol &v T@ PEPEL, Kal &V ETEPM UEPEL KOl &V ETEP®, OVOE TO StelEvar TNV POV THVOE
KAKetvV- 00 pdvov Yap ypappny Stamopevetat, GAAY kol &V Tomm odoav, &v £Tépm & abtn dkeivng. U
ducpiPeiac pgv odv mepi kvioewng 8v EAlotg elpnat, Eotke 8 ovK &v EmovTt xpove tedeia glvar, GAL ai moAlod
atehels kal drapépovoar 1@ idel, eimep 10 mOOeV TOT £160TO1OV.

42 P4 1.1, 639a30-b3 (trans. Peck): &repa §” iomc dotiv 0i¢ cupfaivel Thv pév kotnyopiay g v otV
Srapépety 8¢ T kot €160¢ Srapopd, olov 1 TdV {Dwv mopeias od yap paiveton pio 6 £ider Stopépet yop TTHoIC
kai vedotg kol fadiolg kol Epyic.

43 One suggestion, due to Charles 1984, ch. 1, is that x and y are same in indivisible species if and only if x and
y are realisations of the same type of capacity, where sameness and difference of capacities is to be established
by scientific investigation, not a priori. This is an interesting suggestion, but it lacks clear textual support.
Charles cites Phys. 5.4, 228a13-14 for support, but this is inconclusive (see Heinaman 1987, 311). Aristotle’s
De Incessu Animalium could be seen as delineating different ‘manners’ of motion, but it is unclear whether the
distinctions drawn there are final.
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Phys. 5.4 also tells us that, because the same change can occur quickly or slowly, quickness
and slowness are not species or differentiae of change, and hence differences of weight or

lightness are not species or differentiae of change either.**

Having established these criteria, let us return to our sailor. His walking and his being carried
are located together in the same thing, his body. By the criteria just examined, are they the
same change or not? Arguably, the motions in our example will struggle to meet any of the

three criteria for identity.

A boat journey is of course likely to be longer than a sailor’s walk and in that case condition
(i1) will not be met. But clearly this will not hold in every case of interest, and in the case of

the sailor we can imagine a short boat journey or a slow walk.

More importantly, the motions fail to meet (i) because they are in the same subject only
accidentally. The sailor’s being carried is accidental to him. The person on a ship is one of
Aristotle’s stock examples of accidental change. Saying a sailor moves or a nail moves
because the ship moves is like saying that the pale moves because Coriscus moves.

Simplicius’ comments on this issue are helpful:

‘For when Coriscus turns black and walks, being himself numerically one, he seems
to change in two ways at once. But being one is incidental to the white Coriscus, since
Coriscus is incidentally white. That is why the changes are two, even though they
occur in a continuous time, for the thing changing also is not one as such but was
taken incidentally. For Coriscus does not change in both ways in the same respect, but
each of them in different respects, as if two things were changing. For Coriscus grows
black in respect of being white, but walks in respect of being a pedestrian, being this

as such, but white incidentally.’*

Finally, the motions are not the same in species. There are two points of difference. In the
first place, walking and being carried by the ship are surely different manners of moving,

though, as we have seen, Aristotle’ confidence in this requirement wavers. Secondly, these

4 Phys. 5.4, 228b25-30: ovk £idn Kivijcemg 00de Srapopai Téyog koi Bpadvutrg (‘quickness and slowness are
neither species nor differentiae of change’).
45 Commentary on Physics 5, 855.11-19, trans. Urmson in Lautner 2014, 85.
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changes do not share the same termini. The terminus ad quem of the sailor’s walking is the
other side of the deck. The terminus of his being carried is some place in the direction of the
ship’s travel. Although the sailor may come to occupy both places at the same time, they are

conceptually different.

The alternative would be to claim that the final location of the sailor, defined in relation to
the world as a whole, is the terminus of the single resultant motion, but this cannot be
Aristotle’s view. What one might call the ‘GPS location’ actually reached by the sailor can
play no role in explaining the process or processes which led him to it.*¢ If that GPS location
were the true terminus of his motion, that would imply that his motion would necessarily
cease at that proper place when reached, since motion is an incomplete actuality. This is not
the case. The sailor could have walked slower or faster to the other side of the deck. And in
those cases, his eventual proper place would be different since the boat would have carried
him a greater or lesser distance in its direction of travel. And yet the motion must be the same
when the sailor walks faster or slower, since we have seen that for Aristotle speed is not a
differentia of change.*” The sailor’s occupying that particular GPS location is an accidental
outcome, to be explained in terms of the composition or interference of two goal-directed

processes.*

The sailor is only one case. How far can we generalise? In particular, do motions which are
not intentional or natural retain their identity when composed? A leaf floats downstream and
is at the same time blown by the breeze towards the riverbank — one motion or two? In such
cases, my approach to these topics through Aristotle’s account of change runs into trouble.
Accidental change is an area where Aristotle’s account of change is weak.* However, other

aspects of Aristotle’s thought may suggest a similar conclusion applies. The resultant-only

46 See PA 1.1, 641b23-25 on explanatory function of the end (telos) towards which a change proceeds ‘so long
as nothing hinders it’.

47 Morison 2002, 55-66 distinguishes a ‘circumscriptive’ notion of containment (the container surrounds the
contained on all sides) from a ‘receptive’ notion (the container is a spatial interval and the contained occupies
parts of it) and argues that Aristotle is not interested in the latter, citing Aristotle’s arguments against the
diastema theory of place in Phys. 4.4. However, see Rosen 2012, 76-77: ‘[I]t is implausible that we always aim
to arrive at a definite person-sized place. Someone might walk with the aim of arriving at the Acropolis, while
being indifferent to where exactly on the Acropolis her walk will take her. If people sometimes move with a
proximate end no more specific than that of arriving in the Acropolis, then, according to the second approach,
people sometimes go to the Acropolis per se.’

48 Arguably this is an accidental outcome of the kind described in Phys. 2.5, where Aristotle’s example is one
person encountering upon another in the market and recovering his debt, though both parties went there for
shopping, not to meet each other or to settle the debt.

4 Waterlow 1982, 127-29; Coope 2009, 289.
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approach would upset the simplicity of Aristotle’s understanding of causal powers. Aristotle
thinks that an irrational causal power can bring about only one effect (Met. 0.2, 1046b4-7).
So it would be strange to say that two causal powers acting on a body from different angles
jointly realise a single change along the diagonal, because neither is a power for putting

something in that place.

To recap, motions are the same if they: (i) are in the same subject non-accidentally, (ii) have
the same start time and the same end time, (iii) are the same in indivisible species. Identity in
indivisible species requires the sameness of termini, sameness of the path between these
termini, and further the sameness of manner (which is left somewhat vague). I have argued
that, by these criteria, component motions retain their distinct identities. In particular,
component motions are typically different in species and in the same subject only

accidentally, and thus they fail to meet criteria (i) and (iii).

The topic of composed motions in Aristotle has not been extensively discussed in earlier
scholarship. The most important contributions are due to Edward Hussey, who addressed the
topic of composed motion twice. In his 1983 commentary, he referred to component motions
as ‘virtual’, but affirmed that Aristotle allows for their existence, and that ‘where there are
'powers' there are (virtual) changes, and where there are motions there are 'powers' being
applied.’>® This is close to the position for which I have been arguing. However, in his 1991

essay, Hussey took a revised position:

‘In the simple case of a man in a boat, or a sphere mounted on another sphere, there
are two things in motion, and two different component motions; here it is the
compounded motion which appears to be not real, a sort of useful fiction. But if there
is only one object, being moved in two different ways at once, the compounded

motion seems to be the only actual one.”!

Hussey still recognises that a single body can have many motions at once and that, at least in
some cases, component motions are objective features of the physical world and not the

convenient fictions of theorists. So far we are in agreement. However, Hussey’s revised

0 Hussey 1983, xviii, 197-98.
5! Hussey 1991, 221-222.
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account is more restrictive than the position I am arguing for. He requires ‘two things in
motion’ for component motions to be real and in his two examples one of these things is in or
on the other. For cases where this is not the case (‘if there is only one object’), there is at
most one motion. Hussey does not spell out in detail his reasons for this restriction. I expect

that he would justify it in terms of Aristotle’s account of place in Physics 4.1-4.32

The relevant idea here may be that a body has many per aliud places but only one per se
place; so it can have many per aliud motions but only one per se motion at a time. Aristotle
recognises that, in a sense, an object can be in many places at once. I am in the Whipple
Library, the Department of History and Philosophy of Science, the New Museums Site,
Cambridge, the United Kingdom, and so on. Only one of my many places, the smallest, is my
proper place, that which does the most to locate me and answer the question ‘Where am [?’
Aristotle identifies a thing’s proper place with the inner limit of its containing body.>* My
proper, primary, or per se place is, for example, the inner limit of the air around me in the
library. My other places are per aliud; I occupy them because I am in some intermediate

thing which is in them.>*

Thus, the sailor’s proper place (his position in relation to the ship) is different at different
times. Meanwhile his place per aliud is different at different times because the ship’s proper
place (its position in relation to the sea) is different at different times. Something moves per
se if it changes position relative to its immediate, smallest container, and moves per aliud if
one of its containers changes position relative to a further container. Schematically, a body x
has two continuous motions over a time-stretch 7 just in case (1) x isin y; (2) yisin z; (3) x’s
position in relation to y is different at every instant of 7 (4) x’s position in relation to z is
different at every instant of 7. But if x is not in a moving container, it has no per aliud
motion, hence Hussey’s restriction for the case where there ‘is only one object’. Our ultimate
interest is in such a case, the balance-beam of Mech. problem 1.>> On Hussey’s interpretation,

we would be required to treat the beam’s two motions as fictional.

52 Hussey 1991, 220n.21: ‘Aristotle grounds the distinction between absolute and relative motion, needed here,
on the theory of place (Phys. IV. 1-4).” What follows is my own reconstruction of Hussey’s line of thought.
based on this suggestion and Hussey’s (1983) comments on Phys. 4.1-4.

53 Phys. 4.4, 210b34-211al: 4&oduev 81 tOV 1OmOV Elvan Tp@TOV PEV TEPIEYOV EKeivo 0D Tomog Eoti; cf. 212a5:
70 TEPOG TOD TEPLEYOVTOS COUATOG,

54 Cf. Hussey 1983’s ad Phys. 4.2, 209a31; Morison 2002, 59-61.

55 Later problems of Mech. are typically also concerned with ‘only one object’.
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First, a comment on this rather than an objection. This interpretation relies heavily on the
notion of containing. This notion is vague, and this fact entails a particular kind of vagueness
about whether certain motions are occurring or not. When a man is inside a boat he is
surrounded by it. When he stands on the deck he is not surrounded, but presumably still
counts as in some sense ‘in’ the ship. Aristotle says that we are on the earth and at another
time that we are in the air, but we are not completely surrounded by either.>® Objects are not
always strictly encircled on all sides by a single body and Aristotle’s discussion of place

seems ill-equipped to handle this fact.

Now to the objection. The argument I have offered above for Hussey’s later interpretation
relies on essentially the same argumentative move as Descartes, to assume that the facts
about a body’s motion (or motions) are determined by the places it occupies over time. This
assumption is alien to Aristotle’s account of change. Further, the Cartesian argument seems
to assume that a body moving along a path towards its terminus is located at each
intermediate place on its path for at least an instant, though it is debatable that a moving thing
is ever actually located at the intermediate places on its path. In Aristotle’s second reply to
Zeno we read that intermediate locations are potentially but the start and end are actually.®’

As Sarah Waterlow has written:

“The rolling object is not nowhere, but nor is it at any moment somewhere either, in
the full-blooded sense in which it was and will be somewhere before and after the
passage... Rolling is an actuality whereby the subject is not actually anywhere, nor

yet nowhere, but (surely) potentially somewhere.’>®

For independent reasons, Aristotle’s account of place seems unlikely to shed light on the
trajectories of moving objects.’® Notoriously, that account struggles to make sense of
motion.%® Aristotle applies it only once in his scientific works (DC 4.3). Some commentators

have suggested that the account of place may have had a more limited aim, to define only the

56 Phys. 4.2, 209a33-b1; 4.4, 211a23-29; cf. Sedley 2012, 189-190.

57 Phys. 8.8, 262b8-264a6, especially 262b31-263al.

8 Waterlow 1982, 130.

59 Morison 2002 develops an ingenious interpretation according to which the unmoved surrounding body of
Phys. 4.4 is the universe as a whole. While this eliminates some of traditional difficulties for Aristotle’s account
of place, I doubt that it is what Aristotle had in mind. For various critical comments along these lines, see
Bostock 2006, Sedley 2012, 184-86 Algra 2014, 20-21.

0 Hussey’s own statement of the difficulties (1983, xxx, 117-118) is instructive.
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termini of motions rather than their trajectories, or perhaps only to make sense of natural

place.b!

In summary, I have argued that Aristotle’s general discussions of change in Physics 3.1-2 and
5.4 suggest that component motions should be understood as distinct processes, not as merely
useful fictions. There is nothing to prevent a single body from having several motions at the
same time. I considered and rejected Hussey’s 1991 suggestion that component motions are
actual ‘if there are two things in motion’ but fictitious ‘if there is only one object’ for reasons
connected with Aristotle’s theory of place in Physics 4.1-5. 1 objected that this would only
follow on the assumption that a body’s motion is determined by the places successively
occupied by body along its path, and that this assumption should not be attributed to
Aristotle. Let us now look beyond the Physics, to see what evidence can be found for or

against these suggestions in Aristotle’s other writings.

2.5: Multiple motions in Aristotle’s physical explanations

In this section I review several passages in Aristotle’s scientific works that speak of bodies as
undergoing many motions simultaneously. In these passages, the number of motions a body
undergoes is expressed by saying that it moves ‘n kivioelg’ or ‘n gopdg’ where # is the
specific number of motions it undergoes, or an indeterminate quantifier (e.g. ‘many’,
‘few’).52 Mech. generally follows this practice, but in one case the standard text offers the

1.9 There is no indication in

alternative form ‘év n @opaic’ for which I have found no paralle
the texts that these claims are not to be taken literally — no statement that component motions
are useful but that in reality there is only one motion at a time. I suggest that they can and

should be taken literally. The first group of passages I shall consider concern the numbers of

motions possessed by various heavenly bodies.®

The first section of DC 2.12 asks why different heavenly bodies move with different numbers
of motions, noting that there is no correspondence between a heavenly body’s place in the

heavens’ concentric ordering and its number of motions. The fixed stars have only one

61 Sedley 2012, Algra 2014.

02E.g. DC 2.12,291b29-292al, GC 2.10, 336a33.

63 Mech. Problem 1 848b24 pepdpevov &v dHo @opaic.

6 A complication is that the rotations of heavenly bodies are not directed towards end-states.
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motion, but the innermost heavenly bodies, the Sun and Moon, have fewer motions
(8AdtToUG. .. Ktvodvtal kivinoelg) than some of the planets that have an intermediate position.
Aristotle’s tentative suggestion involves an analogy between kinds of sublunary organisms
and kinds of heavenly bodies.®> We tend, he says, to think of the heavenly bodies as ‘mere
bodies or units, occurring in a certain order but completely lifeless’, but we should think of
them ‘as partaking of life and initiative’.% In the extended analogy, the Earth corresponds to
plants, which have no (or very few) motions; the Sun and Moon correspond to people who
have a relatively limited range of activities; the other planets correspond to people who
engage in a wide range of actions in pursuit of various goals; the fixed stars correspond to the
person who has just one activity, and the Unmoved Mover corresponds to a person in the best

state, who has no need to act.

This passage supports my argument in two ways. First, in this passage Aristotle takes the fact
that the heavenly bodies have different numbers of motions as a given fact in need of
explanation. Secondly, the heavenly bodies” motions are compared to animal motions which
are independent from one another. This strongly suggests that in saying that, for example, the
Moon has fewer motions than a more distant planet, Aristotle is not merely claiming that the
distant planet has a more complex (single) motion but rather that it has a larger number of
independent motions. Aristotle emphasises the variety of human actions (mpa&eic) compared
to animal actions, not the complexity of individual actions; the analogy could hold even if
animal actions were typically more complex in some sense than human actions, so long as
they did not aim at a more diverse set of ends. A planet’s several motions are as genuinely

distinct as the motions a human can undertake in pursuing various ends.

The latter part of DC 2.12 addresses a different question. Why is it that the outermost sphere
contains many fixed stars, but each of the planets moves with several motions of its own?®’

Aristotle’s answer draws on his ideas about the number of motions belonging to each body:

8 At DC 2.12, 292al5ff. Aristotle stresses the difficulty of investigating objects as distant as the heavenly
bodies. See Leunissen, 2010, pp. 165-68.

% DC 2.12,292a20-21 (trans. Guthrie). It is debatable whether Aristotle means that the spheres are literally
alive or merely that we should think of them as if they were alive.

67 It is possible to read this in terms of homocentric celestial spheres, although they are not explicitly mentioned
in this context. From that point of view, the question is why the outermost sphere contains many fixed stars but
each system of lower spheres contains only one star, attached to the innermost sphere of the system, and moving
with many motions corresponding to the spheres that make up that system.

62



“This then is Nature’s way of equalizing things and introducing order, by assigning many

bodies to one motion, and to the one body many motions.’%®

In Met. A.8 Aristotle argues that the number of unmoved movers is equal to the number of
motions in the heavenly bodies, and that in turn is equal to the number of spheres, each
performing one component motion.* If the number were simply equal to the number of
heavenly bodies, each heavenly body having only one motion, its determination would be
trivial. Yet, as Aristotle says, ‘That the motions are more in number than the things which
move, is clear even to those who have engaged in the subject to a moderate extent; for each
of the wandering stars is moved in respect of more than one motion.’’® By ‘the things which
move’, Aristotle here refers not to the spheres, which are in fact equal in number with the
movers (see 1074al14-a31), but rather to the planets and also to the fixed stars taken as a

single collective.

These passages concerning the heavenly bodies support my argument only up to a point.
Multiple motions are clearly attributed, but these are all cases where, as Hussey put it, ‘there
are two things in motion, and two different component motions’.”! These passages do not tell
us anything about cases of a single object in motion, where Hussey sees the component
motions as imaginary and I see them as real. For cases of a single object, we must turn to the

sublunary domain.

The second group of passages I will now examine concern sublunary phenomena. The
component analysis of motions is applied in this region too, and is apparently applied to cases
where only a single object is considered. In the Meteorology, Aristotle explains the path

commonly taken by shooting stars in terms of their moving with two motions:

dud 0¢ TNV Béotv TH|g dvabuvpbdoems, dmwg av TOYN KEWEVN TOD TAATOVG Koi TOD

BaBovg, oVtw eépetar 1j Gve | kAT 1 €1g TO TAGYLO0V. TO TAEToTA O €1G TO TAGYLOV O1dL

% DC 2.12, 293a2-4 (trans. Guthrie): Tt & 00V AVIGALEL 1) PUGIC KOd Ol TIveL TAEW, TH MEV Il @opd TOAAN
amodobon copata, Td &' Evi chpatt ToAldg Popdg. There are further references to the numbers of motions
possessed by heavenly bodies in 2.14, 296a34-296b6, where Aristotle argues against the hypothesis that the
earth moves.

8 Met. A.8 1074a14-22.

70 Met. A.8, 1073b8-10, trans. Judson: 811 pév odv mheiovg TV Pepopévav oi popai, ovepdV Tolg koi Hetping
nupévorg (mheiovg yop Exactov eépetat udg Tdv miavopuévey dotpov). I cannot here do justice to the
difficulties of this passage, on which see Lloyd 2000, Bodnar 2005 and Judson 2015.

" Hussey 1991, 221-222, discussed above in §2.4.
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10 dV0 PEpesBat popds, Big pev kdto, eUoel 6™ dve® TAvTa Yop KOTA TV SLAUETPOV

eépetat To TotdTa. 010 Kol TV dtafedvtav dotépmv 1 TAeiotn Aok yiyvetol opd.

“The motion is upwards, downwards or sideways according to the position of the
exhalation and whether it happens to lie vertically or horizontally. The motion is most
often sideways because it is a combination of two motions, an impressed motion
downwards and a natural motion upwards, and bodies under these conditions move

obliquely. Therefore the movement of shooting stars is commonly transverse.”’?

Clearly, Aristotle uses the idea that a thing can move with more than one motion (300
eépecBot eopag). This passage has sometimes been seen as an application of the
geometrically exact ‘parallelogram rule’, but it is unclear whether kotd v didpuetpov should
be taken as ‘along the diagonal® of a parallelogram.” There is no reference to a quadrilateral
or a lettered diagram and the component motions seem to be contrary (kdt®... dve) rather
than at angles.” It is possible that the passage was originally accompanied by a diagram; that
would be one way to make sense of the reference to a diGuetrpog.”’ But this is highly
speculative, and in any case a diagram depicting a diqpetpog may have been no less

qualitative than the text itself.

GA 5.3, 782b18-23 exemplifies how qualitative Aristotle’s explanations by composed
motions could be. Aristotle suggests that hair becomes curly by being bent by two motions
(xdumreton yap dwd 0 6vo eépecbar popdc) of the smoky exhalation within it, one earthy and
one hot.”® This unmistakably qualitative example serves as a reminder that explanations in

terms of the composition of motion need not involve geometrical precision.

Also relevant are passages where Aristotle takes care to note that a body moves with one
motion only, implying that it would be possible for such a body to move with more than one

motion. The main purpose of Meteorology 3.1 is to explain two violent wind phenomena, the

2 Mete. 1.4, 342a24-28, trans. Lee. Hussey (1983, 197 and 1991, 220) relates this to the ‘parallelogram rule’ in
Mech. problem 1.

3 Hussey 1991, 220 understands it in this way; Berryman 2009, 99-100 is more cautious.

4 Hussey notes that the violent downward motion may be only approximately downwards

5 A diagram does not need to be lettered. See Taub 2003, 103-115 and 2017, 100-110 on explanation through
diagrams in the Meteorology.

76 This is one of two explanations given for curly hair. The other suggests that hair contracts and curls when it is
dried out and loses moisture.
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gkvepiag and the Toedv.”” To begin with, however, Aristotle addresses an analogous
phenomenon which is smaller and more easily observable: eddies of wind (divot / divan
nvevpotog) which occur ‘when the wind is forced from a wide place into a narrow place, in
gateways or streets’.”® He explains that the first part of the stream of wind meets with
resistance and so cannot move forward, but it is pushed from behind by the rest of the stream
and so it is forced sideways. ‘This happens to each succeeding part of the stream, till finally it
forms one thing, and this is a circle; for any figure possessing a single motion must itself be

single.””

In all these cases, specifying the number and direction of motions involved in producing a
phenomenon is part of giving a causal explanation of that phenomenon. In the sublunary
examples, several motions are identified in situations where there is only one moving object.
In Chapter 4, I will argue that Mech.’s claim that a rotating radius undergoes two motions

simultaneously is similarly part of a causal explanation.

2.6: Conclusion

In the puzzle about the sailor, there is a tension between our ordinary ways of describing
what happens and the thought, tempting for us, that just as a body can only be in one place at
a time, so it can only undergo one change of place at a time. I suggested that modern science
and philosophy are responsible for the latter view’s appeal. I then argued that the account of
change Aristotle offers in the Physics implies a different answer, one on which component
motions are real. Next, [ argued that Aristotle adopts this approach across his works when
discussing the composition of motions (Physics, De Caelo, Meteorology, Generation of
Animals, Metaphysics). 1 also noted that, although in the case of astronomy he is influenced
by geometrical models, some of Aristotle’s component analyses of motion are vague and

imprecise and do not apply the ‘parallelogram rule’.

Aristotle was committed to a set of facts about motion that we moderns typically do not

accept. To illustrate this, each of the two diagrams below represents the uniform motion or

7 Translated by Lee as ‘hurricane’ and ‘whirlwind’ respectively.

8 Mete. 3.1, 370b18-19, trans. mine: dtav &£ e0péog gig oTevov Pralntar 6 dvepog &v mHlaug §| 680ic

7 Mete. 3.1, 370b25-27, trans. Lee with modifications: xai oBtag del 10 §xduevov, Eng av &v yévntat, 10010 &
£oTi KOKAOG 0D Ydp i popd GyruaToc, ToDTo Kai anTtd dvéykm &v sivar
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motions of a single object.®” In the left-hand diagram, the object moves along path I'; as a
result of two component motions, A and B. In the right-hand diagram, the object’s motion
along path I'2 is simple; it cannot be analysed into further components. Aristotle would say
that in the case of I'1 the object moves with two motions, but in the case of I'> the object
moves with only one motion. This because each component motion A, B of I'; is a xivnoig in
its own right, since each is the actuality of a potentiality.

T, I,

B

I'1 is the result of two efficient causes, one acting towards A, the other acting towards B,
whereas I'2 has only one efficient cause, acting towards the end-point of I'2. The peculiar
consequence is that a body can be moving with several motions yet be in almost all
observable respects identical to a body moving with only one motion. In an important way,
the truth about motions in the world is not evident to sensation. On Aristotle’s account of
change, many facts about motion will not be immediately apparent to us. The truth is
accessible, but to determine how many changes are occurring in a given situation, one needs

a broader understanding of the patterns of natural causation.

I have not addressed later developments of the topics I have discussed, but there is scope for
future work here. How did ancient commentators on Aristotle understand composite motion?
We have evidence for the views of at least Xenarchus, Alexander, Simplicius and
Philoponus. Studying their disagreements may shed further light on the development of

thought about composed motions in Greek science.®!

80 T introduce this figure for the sake of exposition. Note that Aristotle’s own discussions of composed motions
in the sublunar region are not as geometrically precise as the above diagram might suggest.

81 Xenarchus criticised Aristotle, arguing that if every simple motion belongs to a simple body, then every
mixed motion will belong to a mixed body; but there are infinitely many mixed motions and only finitely many
bodies (Simplicius, In De Caelo, 23.11-15). Simplicius responded that ‘the mixed motions are not infinite in
their forms either, unless it is because they occur again and again, as bodies do’ (ibid. 17-19); Simplicius’ point
is that Xenarchus’ conclusion is not absurd since the infinitely many bodies do not need to exist at a single time.
Commenting on DC 1.2’s reference to the mixed motions of mixed bodies, Alexander wrote that, ‘Motions are
not mixed in the same way as bodies are. For simple bodies exist together with one another in a mixture, but in
the case of motion the prior motion does not survive the second one in such a way that we can say that this has
been mixed with this.” (ibid. 17.10-14). According to Alexander, component elements in a mixed body do not
retain their individual motions as components of the mixture’s motion; one motion dominates and the other is
destroyed. Alexander’s comments on the vmékkovpa suggest that he did not oppose the idea that a single body
can have two or more motions at a time. Simplicius held that composite motion as in shooting stars is single, but
not simple (ibid. 17.5-10).
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Chapter 3: Further themes in Aristotle’s account of motions

3.1: Introduction

The previous chapter argued that Aristotle’s account of motion can make literal sense of a
body’s undergoing two or more motions simultaneously. This is the main claim that will
inform my reading of Mechanica problem 1 in Chapter 4. The discussion of Aristotle’s views
on less-examined topics such as path shape and composition of motions raise some further
considerations which, although not bearing directly on Mech. problem 1, are still relevant and
worth examining. In section 3.2, I examine Aristotle’s classification of motions as straight,
circular, and mixed. In section 3.3, I return to a question I raised in Chapter 2. Does the
orientation of one motion with respect to another affect the way in which they compose? In

particular, can something simultaneously undergo motions in contrary directions?

3.2: Classifying motions

In the Physics (8.8-9) and De Caelo (1.2), Aristotle states that every motion is either straight,
circular, or mixed.! The term here for ‘mixed’, pikty, should be distinguished from the term
ovvBéTn, sometimes translated as ‘composite’, which Aristotle applies to successive motions
that are not really unified, for example when a body moves backwards and forwards on a
finite straight path.> What is mixed motion? There seem to be two possibilities: either the
simultaneous occurrence of two or more motions, or the simultaneous action of a power that

is itself ‘mixed’. It is possible that Aristotle uses one term for both.

Although they offer similar classifications of motion, Phys. 8.8-9 and DC 1.2 differ in aims

and approach. DC 1.2 aims to show that the heavens are made from a special kind of matter

' Phys. 8.8 261b28-39: mév pév yop Kiveitol 10 gepopevov 1 kOkA® | e0deiav f pktfv. 8.9 265al13-15: mdca
Yap Qopd, Gomep Kol TpdTEPOV elmopey, T KOKA® T én” e00siog § puktn. TodTng 88 dvérykn mpoTépag elvar
éxeivag. De Caelo 1.2 268b17-21: Taca 6¢ kivnoig don katd tomov, fiv kaAodpev opav, fj evbeia fj kKo f
£k To0TOV KT Gmhad yap adton $Ho povor. Aristotle speaks of motion (kivnoig/popd) as “straight’ (00eio)
and ‘mixed’ (uktn), but ‘in a circle’ (k0kA), but we should not infer that Aristotle means. to define simple
circular motion by its path. Hence I prefer to translate ‘circular motion’ rather than ‘motion in a circle’. Cf.
Phys. 8.8 262a15-16: o0 yap tavtov kOKA® pépecbon kai kokhov; Plato, Parmenides 145b: Kol oyfjpatoc on
TVOG, MG £01Ke, To10DTOV OV PETEYXOL v TO &V, fjTol 800€0¢ 1| GTPOYYHAOL T TIVOG HEKTOD £E AUPOTV.

2 In Simplicius the distinction is blurred.

3 The latter possibility is important for the case of mixed bodies which contain tendencies for both upwards and
downwards motion, since Aristotle is thought to prohibit simultaneous contrary motions (see below). The
former possibility seems necessary if, as Aristotle’s language suggests, mixed motion is in some sense mixed
from other motions, and particularly if there are to be mixes of circular and straight motions (see below).
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that is not found in the sublunar region and that naturally moves with uniform circular motion
about the centre of the universe. In this context, Aristotle restricts his considerations to
particular subclasses of possible circular and straight motions: ‘By “circular motion” I mean
motion around the centre, by “straight,” motion up and down. “Up means away from the

centre, “down” towards the centre.’>

The overall argument of Phys. 8 aims to show that, since change in the world is eternal and
every changed thing is changed by something else, and since there cannot be an infinite
regress of movers, there must be at least one eternal unmoved mover. Phys. 8.8’s place in this
plan is as part of a sub-argument to the effect that if change is eternal there must be at least
one eternal motion. Building on 8.7’s conclusion that any eternal change must be a motion,
8.8 argues that among motions only uniform circular motion can be eternal. The argument is
more abstract than that in DC 1.2, where Aristotle quickly specifies that by ‘straight motion’
he means motion towards or away from the centre of the world while ‘circular motion’ means
motion around the centre. Phys. 8.8 assumes that the world is finite but does not rely on

further assumptions about its geometric structure or about simple bodies’ natural motions.®

The main challenge in interpreting these passages is deciding what is meant by ‘mixed’
motion. I shall focus on three possible interpretations. According to what I call the Broad
Interpretation, a body moves with mixed motion if and only if it simultaneously undergoes
two or more simple motions. These simple components need not be of different kinds. For
example, a body undergoing two rectilinear motions would count as moving with mixed
motion. This is denied by the two alternative interpretations. The Narrow Interpretation says
that a body moves with mixed motion if and only if it simultaneously undergoes two or more
motions, of which at least one must be circular and at least one must be straight. Finally, the
Line Interpretation claims that a motion is mixed if and only if it follows a mixed line (what

this means is explained below).” Let us now turn to the texts.

4 Aristotle’s preferred term for the stuff of the heavens is ‘the first body’; as DC 1.3 explains, ‘aether’ was the
traditional name. However, it has long been conventional to refer to Aristotle’s first body as ‘aether’. Aether
theory contradicted the standard view (e.g. Plato’s Timaeus) that the heavenly bodies are fiery.

5 268b20-22, trans. Guthrie: Kokho pgv obv éotiv 1) mepi 10 péoov, eddeio 8 1 évo kol kdto. Adym 8 &ve pév
TNV amo 10D PEGOV, KAT® 8¢ TV €mi 10 pécov. See Alexander’s comment (Simplicius, /n De Caelo 14.31-15.1).
® There is, for example, no reference to ‘the centre’. Phys. 3.5 effectively argued that the world is finite.

7 Proclus (In Euc. 104.1-5) seems to have held the Line Interpretation. Wildberg’s (1988) reading of DC 1.2-3
assumes a version of the Narrow Interpretation.
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Phys. 8.8 argues that only circular motion can be eternal through a process of elimination.
Since the world is finite, any rectilinear motion must have a finite path. An eternal rectilinear
motion could therefore only be a case of repeated traversal of a finite path. Most of 8.8
consists of arguments that such a motion could be continuous. Virtually no space is given to

mixed motion. Aristotle gives his reason for this imbalance at the outset:

Ot & dvdéyetar eivai tva dmepov, piav odoav Kai cuveyd, Kol abtn doTiv 1) KOKA,
Aéyopeyv vOvV. TAV PEV YOP KIVETTOL TO GEPOUEVOV T) KUKA® 1| €OV 7 kT, Got’ &l

&’ Ekelvov 1) £TEPOL GUVEYNGC, 0VOE TV £E AUOOTV 010V T  EIVOL GUYKELLEVNV.
T

Let us now say that it is possible for there to be an infinite, one, and continuous
motion, and that this is circular motion. For everything moves either in a circle or in

straight or mixed. So if one of these is not continuous, neither is that combined from
both.8

I have translated 1} KOkA® 7} €00€lav §j piktv ambiguously to reflect the Greek. The
adjectives ‘straight’ and ‘mixed’ qualify a feminine noun, but we could supply either ‘line’
(ypoppun) or ‘motion’ (kivnoig). Aristotle argues that if either circular or straight motion is
not continuous, the motion composed ‘from both’ will not be continuous.’ The sense of the
argument and the use of €& apeoiv (261b30) suggest that the composite motion of the
apodosis must be a combination of at least one circular and at least one straight motion.!° On
the other hand, it is not obvious that this is what Aristotle meant by ‘mixed’ in the tripartition
of all motion into straight, circular and mixed. For one thing, he uses different terms (piktn
versus ovykelévn). For another, if this were what he initially meant by ‘mixed’, his claim
that the classification is exhaustive (mdv... 10 pepopevov) would be false. The Sun does not
have circular motion, rectilinear motion, or a combination of these two. As we have seen,
Aristotle thinks it has a complex, spiralling motion that results from multiple circular
components. It would be strange if Aristotle’s apparently exhaustive classification of motions

failed to account for something as familiar and important as the Sun’s motion. That seems to

88.8,261b27-31 (trans. mine).

° I assume that éketvov and € augoiv refer to both circular and straight motion.

10 What in Aristotle’s world has such a motion? Only one suggestion comes to mind, but it seems unlikely
Aristotle had it in mind in Phys. 8 or DC 1. In Mete. 1.3 Aristotle describes the fiery upper region of the
atmosphere immediately below the sphere of the Moon, which he calls Orékiavpo. He claims that this is carried
in a circular motion by the heavenly rotation that touches it (340b32-41a12). Some bits of fire in or near this
region may thus experience a mixture of circular and rectilinear motion.
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be a consequence of the Narrow Interpretation. Even if the classification is only intended to

cover natural motions, the Sun’s motion would seem to be a counterexample.'!

I think it is more likely that the initial mention of ‘mixed’ motion in the tripartite
classification is more general than the mention of composed motion in the apodosis, and that
it includes circular-circular, circular-straight and straight-straight mixes. If that is right,
Aristotle takes for granted that circular-circular and straight-straight mixes will be continuous
or discontinuous according as their components are. I shall discuss these assumptions in
Chapter 4 after we have seen a possible objection. My current point is that the Broad

Interpretation offers a more charitable reading of Phys. 8.8 than the alternatives.

The opening sentences of 8.9, arguing that circular motion is prior to all other motions, are
not committed to the idea that mixed motion must involve both circular and straight

components:

‘Ot 8¢ TV popdV 1 KuKAoPopio TpdTY, dSHAoV. oo Yap Qopd, domep Kol TpdTEPOV
gimopev, 1 KOKA® 1) &1 e00siac fj pkt. TadTng 88 dvéykm mpotépog etvon Eketvag: &€

gkelvav yap cvvéotnkev. (8.9, 265a13-16)

‘It is clear that circular motion is primary among locomotions. For all locomotion, as
we have said before, is circular or on a straight line or mixed. These must be prior to

this, since it is made up from them.’ (trans. mine)

The Greek here is less ambiguous than the passage of 8.8: ) must qualify popd. This
does not decisively rule out the Line Interpretation, but we would expect pkriig if mixed
motions were defined in terms of mixed lines.!? Note also that mixed motion is said to consist
&€ éxelvov, ‘of these’, rather than &€ apgoiv ‘of both’ as Aristotle might have said if the
Narrow Reading were correct. However, this passage can be understood adequately on any of

the candidate interpretations.

1 One could defend the Narrow Interpretation by suggesting that circular-circular and straight-straight mixes are
accounted for in the categories of circular and straight motion respectively. However, Aristotle attributes
properties such as uniformity, which some circular-circular mixes do not have, to the class of circular motions
without qualification.

12 E (Par. Gr. 1853) and K (Laur. 87.24) have £00gio. for én” ed0siac,
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We now turn to DC 1.2:

[Taoa 8¢ kivnoig 6on Katd tOmov, v Kahodpev eopdv, §j evBela 1 KOKA® 1| €k ToOTOV

LKT).

All change with respect to place, which we call locomotion, is either straight or

circular or mixed from these. (268b17-18, trans. mine)

We have already seen that in, DC, ‘circular’ means around the centre, and ‘straight’ means
towards or away from the centre. In this passage, ev0gia and ikt qualify kivnoig and mixed
motion is ék toOToV rather than £ dueoiv as it might have done on the Narrow Reading.!3
Aristotle next makes a brief statement offering partial justification of his classification: ‘The

reason is that these, the straight and the circumferential, are the only simple magnitudes.”!*

The connection made between simple motions and simple lines might suggest a similar
correspondence between mixed motions and ‘mixed lines’, although Aristotle does not make
the connection. In fact neither Plato, nor Aristotle, nor Euclid explicitly use the category of a
mixed line. Proclus presents two classifications of lines due to Geminus, !> the second of
which (111.9-20, 112.16-113.3) distinguishes simple (GmAij) from mixed (puctn).!® Simple
lines are divided into ‘making a figure’ (oyfjno Toodoa), the circle, and ‘indeterminate’
(60protog), the straight line. The classification of mixed lines is much more complex and
encompasses virtually all other lines used by Greek geometers. Interestingly, the cylindrical
helix is classed as a mixed line despite being homoeomeric, as Apollonius of Perga had
proven in the late third century.!” A more decisive problem for the Line Interpretation is that
it becomes difficult to see how Phys. 8 could reach conclusions about the discontinuity of

some mixed motions from claims about the discontinuity of rectilinear motions.

13 Pace Guthrie (1939, 11: ‘either straight or circular or a compound of the two”) and Wildberg (1987, 44:
‘either rectilinear or circular or a combination of the two’).

4 Altov & 8t kai o pey£0n tadta amhd povov, § T ed0eio koi 1 meprpepng (268b19-20, trans. my own).

15 Geminus probably wrote in the early first century BCE (see Jones, 1999).

16 See the convenient tree diagram in Heath, 1956, p.161.

17 A line is homoeomeric if and only if any part can be made to coincide with any other. The circle, straight line
and cylindrical helix are the only homoeomeric lines in three dimensions. Xenarchus of Seleuceia seems to have
taken Aristotle’s ‘simple’ to mean homoeomeric (Simplicius, /n De Caelo 13.25-26).
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Aristotle next draws an analogy between simple and mixed bodies and simple and mixed
motions: ‘Since some bodies are simple and some composed of them... it must be that also
motions are some of them simple and some mixed in some way, and that the simple
[motions] belong to the simple [bodies], and the mixed to the composite, and they move in
accordance with the dominant.’!® The simple bodies indeed have motions on simple lines:
aether in a circle, the rest in straight lines up or down. The term ‘composite (cOvOeta) bodies’
is less familiar. Simplicius suggests that Aristotle here refers to the observable bodies we
commonly call earth, water, air and fire, in contrast to the pure forms of the elements which

we never observe, but it is possible that he means any inanimate body that is a mixture or

juxtaposition of elements.!”

Here again I find the Broad Interpretation (a body moves with mixed motion if and only if it
simultaneously undergoes two or more simple motions) offers the most charitable
interpretation. Scholars who have pursued the Narrow Interpretation have found Aristotle’s
arguments in DC 1.2-3 badly mistaken, if not incoherent.?’ In DC, Aristotle argues for a
sharp separation of the heavens from the sublunar world. His arguments for the aether are the
key to this cosmic diptych. But if the separation really is sharp, heavenly circular motion
would not mix with sublunary rectilinear motions. So there would be no natural mixed
motions, despite Aristotle’s claims in this chapter. A second problem is that the composite
bodies Aristotle describes would not have mixed motions since they only have rectilinear
components. And again, it is difficult to account for the composite motions of the heavenly

bodies on the Narrow Interpretation of the scheme.?!

18 "Emel 8& 16V coudtmv T pév oty amAd to 88 chvOeTa K TOOTMV. .. Gvarykn Kol TG KIVAGELS EVOL TOG P&V
QGG TOG O PUKTAC TT®G, KOl TOV UEV ATADY GTAAG, KTAC 08 TMV cLVBETOV, KiveloBat 8¢ KoTd TO EMKPOTODV.
(268b29-269a2, trans. my own).

19 Simplicius, In De Caelo, 16-17. 1 suspect the reason Aristotle uses c0vOeta rather than piktd is that he
generally reserves pukt- words for a special kind of homogeneous mixture. Here, however, he means more
generally bodies that do not consist of one element only. On the other hand, when he uses piktd in recalling the
point at 269a28. Alexander (as reported by Simplicius, In De Caelo 37.13-15) suggests the mixed bodies in
question are in the upper atmosphere, assuming the vrékkavpo theory of Mete. 1.3. This is very difficult to
integrate with DC 1’s arguments.

20 The Narrow interpretation states that a body moves with mixed motion if and only if it simultaneously
undergoes two or more motions, of which at least one must be circular and at least one must be straight.

2l Wildberg 1988 (47-48, 51) draws these conclusions but views them as defects in Aristotle’s account:
‘Aristotle speaks of composite natural movement in terms of rectilinear and circular movement. The
incompatibility is apparent, for if this view is interpreted on the level of body, a composite movement requires
an underlying body which is composed of a terrestrial and the celestial element.’
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The interpretation I favour claims that mixed motions result from the composition of two or
more simple motions, or powers for simple motions, but that these can be all straight or all
circular. If this is correct, there can be mixed motions despite the sharp separation of the
heavens and sublunar world, since a motion composed of two simple rectilinear motions is a

mixed motion.?? This makes better sense of Phys. 8 and DC 1.2 than the alternatives.?

Aristotle does not attempt to justify the classification of motions as straight, circular and
mixed, though I have noted its Platonic provenance.?* Since it features as a dialectical
premise, it should have seemed a plausible assumption. It resonates with the fundamental role
of the circle and straight line in fourth-century geometry.?> Some modern commentators
charge that the scheme is seriously mistaken and unable to account for complex curves such
as conic sections. These commentators typically assume the Narrow Interpretation.?® On the
Broad Interpretation, the objection loses its strength. Aristotle never mentions conic sections
but his scheme, on the Broad Interpretation, could at least in principle accommodate motions
along such section.?’ Parabolic motion can result from two rectilinear motions, one uniform
and one uniformly accelerating, as was shown by Galileo; and elliptical motion can be shown
to result from rectilinear motions. More generally, classical (Newtonian) mechanics accounts
for all motions in terms of rectilinear velocities and forces. A physical theory based on
straight motions alone can go a long way. The problem is not that Aristotle’s scheme cannot

accommodate such motions, but that he had no way of showing how it could.

22 This seems to be what Simplicius had in mind (In De Caelo, 16-17).

23 Philoponus In Mete. 65.37 calls the result of two rectilinear motions ‘mixed’. See also Galileo Two World
Systems: ‘This eventually forces people to say that even motion made along the same straight line is sometimes
simple, and sometimes mixed. Thus the simplicity of the motion no longer corresponds to the simplicity of the
line alone.” (trans. Drake 1967, 17).

2 Parmenides, 145b3-5, discussed in Chapter 1.

25 Mendell 1986, 363: ‘The structure of constructions as being from the simple figures and as constructible by
means of basic tools is, in part, a pragmatic fact. Until the mid-fourth century, alternatives did not exist. Among
the philosophers, this pragmatic fact of the limitations of construction becomes part of ontological fact.’

26 Graham 1999, 135: ‘But to say that all curves can somehow be derived from the straight line and the circle is
to make a bold claim which needs argument. There are of course many complex curves which cannot in any
rigorous sense be reduced to a combination of the straight line and the circle.”; Wardy 1990, 272: ‘Why then
does Aristotle introduce the notion of a kinesis which is a hybrid of motion along a line and a curve, a notion
which is apparently incoherent by his own lights? Perhaps he has carelessly confused the unnatural movement
of a projectile with the innate movement of a compound body... on any story, a ballistic parabola will prove an
embarrassment.’

27 This is an interesting omission, since the conic sections had been discovered (Mendell 1986 and 2004).
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3.3: Simultaneous contrary motions

In Chapter 2, section 2, I raised the question of whether a body can undergo motions in
opposite directions at the same time. The difficulty I shall address in this section is that
although Aristotle seems to deny that this is possible, since he denies generally that anything
can undergo opposite changes at the same time, there are nonetheless some cases where it

seems he should accept that this is what occurs.

Sextus Empiricus describes a situation in which it seems that simultaneous contrary motions
occur.?® His aim in doing so is to refute a definition of motion as ‘transition from place to
place, either of the whole body or of parts of the whole’, for in such cases the body is not
thought to go out from the place it is in.?’ Sextus gives the example of someone walking
astern on a ship, carrying an upright rod. ‘In the case thus supposed,’ he says, ‘there will
certainly be transitional motion, but the moving object will not go out from the place wherein
it is either wholly or in part... It is, then, possible for a thing which does not quit the place

wherein it is either wholly or in part to move transitionally.’3°

Galen discusses another example and offers an argument for what Sextus assumes, that the
body in question is in fact moving. In Galen’s example, there is only one object: ‘Imagine a
lofty bird which appears to be staying in the same place. Should one describe it as
motionless, as though it happened to be suspended from above, or as moving upwards to the
same extent as the weight of its body carries it downwards? I think the latter is more correct.
If you killed the bird or destroyed its muscular tension, you would see it fall quickly to the
ground. That makes it plain that the bird was evenly counterbalancing its innate downward
inclination due to the weight of its body by the upward motion resulting from its soul’s

tension.’3!

Paradoxically, the hovering bird must move to stay in the same place.’> What would Aristotle

make of these cases? On the interpretation I have presented, it seems that he should agree

28 Adv.Math. 10.55-57

2 Trans. Hankinson 2015.

30 Trans. Bury.

31 On Muscular Movement 4.402.12-403.10K = LS 47K (trans. Long and Sedley). Galen dismisses as irrelevant
a question as to whether the bird truly stays in the same place or whether it in fact is constantly vibrating with
rapid and minute up and down motions in turn.

32 ‘Well, in our country,” said Alice, still panting a little, ‘you’d generally get to somewhere else—if you ran
very fast for a long time, as we’ve been doing.” ‘A slow sort of country!” said the Queen. ‘Now, Aere, you see, it
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with Galen’s conclusion and also Galen’s argument for it. That counterfactual argument
shows that the bird’s potential to be upwards is incompletely actual: it is being manifested,
making a difference, and this is evident when its strength is destroyed. Unfortunately, our
answer cannot be so simple. Aristotle several times says that the same thing cannot undergo
contrary changes at the same time.** To understand what this claim means, and how much of
a problem it poses, we should examine its applications by turn.** First, I will consider the

applications to qualitative change, and afterwards turn to motion.

At the close of the De Anima’s account of perception, Aristotle discusses how we
discriminate between perceptible objects, both heterogeneous like white and sweet, and
homogeneous like white and black. In the first place, he argues that there must be a single
thing which distinguishes white and sweet. Next, he argues that this single thing which
distinguishes perceptible objects must be inseparable and indivisible, and that it must
discriminate perceptible objects at a single time and not at separate times. He then raises an
objection to the idea that a single thing could discriminate homogeneous perceptibles like
white and black: ‘But it is impossible for the same thing qua indivisible to be changed with

contrary changes simultaneously, and in an indivisible time.’3?

This thought is echoed in De Sensu 7, 448al-5, and here we have a brief argument for the
principle: ‘Again, if movements of contraries are themselves contrary, and if contraries
cannot subsist together in the same indivisible subject, and if contraries, e.g. sweet and bitter,
come under one and the same sense-faculty, we must conclude that it is impossible to discern

236

them simultaneously.’”° If contrary changes were in the same thing at the same time, then

contraries would be in the same thing. And, as Aristotle argues in Met. I'.3-8, that is

takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at
least twice as fast as that!” (Carroll, Through the Looking-Glass, ch.2)

33 Phys. 8.8, 264a7-22; DC 2.13 295b11-16; DA 3.2 426b29-31; De Sensu 7 448a1-5. Plato used a similar
principle to argue for the tripartition of the soul in Rep. 4. 436b-437a: ‘the same will not do or suffer contraries,
at least with regard to the same and towards the same, at the same time.” On this passage, see Robinson 1971.
34 Hussey 1983, xvii-xviii and Coope 2009, 290 see this as a significant counterexample to Aristotle’s account
of change: ‘Aristotle takes it for granted that something cannot be moving in two opposite ways at the same
time... so he cannot reply that in such a case the stone remains stationary in virtue of undergoing two opposite
motions that cancel each other out. To answer this objection Aristotle would have to spell out a sense of
“incompletely actual” in which a potential for F was incompletely actual when (and only when) there was a
change towards F.’

35 DA 3.2, 426b29-31: dALd prv ad0vatov B TG Evavtiog Kivioelg Kiveichol To avtod 1) ddiaipetov, Ko v
GO10PETH YPOVE.

36 Trans. Beare with slight modification. "Ett €1 ai t@v évovtiov kivricelg dvavtiat, bpo 62 o évavtio &v 1@
aOTH Kol ATOU 0VK EvEEyEToN DIhpyEty, VIO 82 TV aicOnoy TV piav vavtia éotiv, olov YAVKD Tikpd, ovK GV
&vdéyorto aicOavesbot Gua.
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something absolutely impossible.3” The occurrence of contrary changes in the same thing at

1338

the same time is ruled out by ‘the securest principle of all’>® since changes towards contraries

are themselves contrary.>

Let us now turn to the passages which bring the prohibition against simultaneous contrary
change to bear on spatial motion. In DC 2.13, 295b11-16, the prohibition features as a
premise in an argument that is not Aristotle’s and which he in fact rejects, so it is doubtful
that this application of the principle can offer insight into Aristotle’s positive commitments.
Anaximander and certain unnamed others claimed that the earth rests at the centre of the
world due to uniformity (6po10tng).*’ The argument from uniformity explains the earth’s
being at rest from its position at the centre of the world. What is at the centre (a) has no
impulse for motion up, down or sideways; (b) is related similarly to the limits.*! Furthermore,
(¢) it is impossible to move towards opposites simultaneously.*? Therefore, the earth, which
is at the centre, is necessarily at rest.*> Aristotle raises two objections. He alleges that (a) is
false and complains that the theory cannot explain why earth falls towards the centre when
displaced.** He does not explicitly reject (c), but the rival cosmologists are represented as
applying (c) in a way that Aristotle could fault, since the argument assumes diametrically
opposed limits of the world are opposites. Since what is at the centre is equidistant from the
world’s limits, it has no sufficient reason to move in one direction rather than another. So if it
moved in one direction it would move in all directions; but it is impossible to move towards
opposites simultaneously. Therefore it does not move at all. Aristotle would deny that
diametrically opposed limits of the world are mutual opposites; they are parts of the

periphery which is the opposite of the centre.

37 e.g. Met. .3, 1005b27-28: pr| &vdéyetar Gua Dmapyety T odTtd TévovTio.

38 Met. .3, 1005b18: nocdv BeBarotdn apyn.

39 That thought is expressed not only in De Sensu 7, but also in Categories 14, 15b1fT. (trans. Ackrill): ‘Change
in general is contrary to staying the same. As for the particular kinds, destruction is contrary to generation and
diminution to increase, while change of place seems most opposed to staying in the same place—and perhaps to
change towards the contrary place (upward change of place, for example, being opposed to downward and
downward to upward).’

40 We can only guess who else Aristotle has in mind: possibly Plato, who deploys arguments from uniformity at
Phaedo 108e4-109a7 and Timaeus 62d12-63a2.

41 dpoimg mpog T Eoyata Exov.

2 gua 8 advvarov gig T dvavtiov woigicOar TV kivnoty.

B Hor &€ avaykng pévew.

4 Aristotle rejects (a) through a thought-experiment: fire placed at the centre would not stay still but move to
the circumference. He does not explain why it would move along one radial path rather than another.
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The principle’s application in Physics 8.8 is more complex. In this chapter, Aristotle presents
five arguments to support his claim that there cannot be an eternal, continuous, and single
motion on a finite straight line. The third argument (264a7-22) may be summarised as

follows:

1) If X is moving continuously and is not deflected from its original path, and during this
motion X arrives at B, then X was moving towards B from the start of its motion.

2) If X is moving continuously and eternally back and forth along a finite straight line
from A towards T, it is also moving towards A from I".%

3) Therefore X is moving with contrary motions simultaneously, A to T and T to A.*

4) Furthermore, ‘it is moving from what it is not in’.#’ This presumably means that X,
setting out at A, simultaneously moves from I to A despite not yet being at I'.

5) ‘If, then, this is impossible (&l 00v T0DT” &4dvvarov), it must rest at I".”48

The concluding sentence of this argument is less clear than we might like. What does the
‘this’ (tod1’) pick out as impossible? Some commentators take (3) and (4) as distinct

consequences, which are both independently ruled out as impossible.*

There are two alternatives. The singular ‘this’ (tobt’) suggests that Aristotle rejects only one
conclusion as impossible. This could be either (4) or the conjunction of (3) and (4). In the
latter case, his point would be that it is impossible for a body to undergo simultaneous
contrary motions in a specific sense: one in which the start-points of the simultaneous
contrary motions are distinct. He does not mean to deny that the grey can blacken and whiten
simultaneously.>® And (4) is not a separate conclusion that Aristotle regards as impossible. Its
role in the argument is to specify that (3) describes a case of simultaneous contrary motion

that is not like the case of something grey simultaneously blackening and whitening. When

45 70 81 dmo tod A [émi 10 I'] pepdpevov, dtav &mi 1o I EA0n, mdhv fiEet €mi 10 A cuveydg kivoduevov. 8te dpa
GO 100 A @épetor mpog to I, 10Te Kol €ig 10 A pépetan v 4o tod I kivnow (264a14-17)

46 (60’ Gpa tog dvavtiog: évavtion yop oi kot’ eddeiov (264a17-18)

4T o 88 kol &k TovTov petaPdirer &v @ ovk £ty (264a18-19)

4 &1 odv 10dT’ advvaToV, Avaykn iotaco émi tod I (264a19-20)

4 For example, Graham 1999, 150-51 claims that Aristotle draws two distinct conclusions, ‘M is moving in
contrary directions’ and ‘M is moving from a point where it has not been’, and says both are impossible. Cf.
Ross 1936, 450: ‘if then rectilinear motions are contrary, and a thing cannot move with contrary motions at
once, that which is moving from A to I" cannot simultaneously be moving from I" to A’.

50 On this interpretation, Aristotle is not vulnerable to Bostock’s (1996, 296) objection: ‘We should get the
same, apparently absurd, result by applying Aristotle’s reasoning to a movement, in a single direction, from A
via C to somewhere else.’
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the grey subject simultaneously blackens and whitens, both changes have the state that the
subject is actually in, grey, as their start-point.>! That is not the case for the hypothesised
body in 8.8 and Aristotle’s reason for stating (4) is to specify carefully his objection. Phys.
8.8 does not offer incontrovertible evidence for a blanket objection to simultaneous contrary
motion, but only to simultaneous contrary changes that require their common subject to be
moving from a state which it is not in. However, even if Aristotle does make the general
assumption that the same subject cannot undergo contrary motions simultaneously (cf. Phys.
8.7, 261b5-7), that assumption is not essential to his purposes since the argument in which it

features is one of five for the same conclusion.

Let us now turn to Phys. 5.5, where Aristotle asks what it is for two changes, x and y, to be
contrary. His answer is that x and y are contrary only if their start-points are contrary and
their ends-points are contrary.>? A body subject to equal pulls in contrary directions is not
like this. It is like a body at the midpoint C of line AB that moves from C to A and moves
from C to B. Even if the two motions’ ends, A and B, are contrary, their starts certainly are
not, for they are the same, C. So far it seems that the body subject to equal pulls in contrary

directions experiences motions in contrary directions but not contrary motions.

Unfortunately, there is a complication in Phys. 5.5’s account which prevents this
straightforward solution from working. Aristotle says that changes from opposites to an
intermediate (peta&d) should also be counted as changes to opposites because the change
‘uses the intermediate as an opposite’.>®> He does not explicitly say that changes from the
intermediate to the opposites should be counted as opposite changes, but this further claim is
strongly implied by his examples: grey acts as black in grey-to-white and white-to-grey
changes, but as white in black-to-grey and grey-to-black changes (229b14-21). It may follow
that something grey cannot whiten and blacken at the same time. Although the start-point of
these changes is the same shade of grey, it acts as black for the whitening and as white for the
blackening so that the changes are opposite. Now, one might suppose that the same account

should apply to the case of the body at C undergoing a motion from C to A and an equal

5! Even if this state ‘acts as’ something different in each case (Phys. 5.5, 229b14-21; see discussion below) or
even if one were to say that each change has a different start-point.

52 kivnoig pev 81 kvioet évavtio obtmg 1) €€ évavtiov gig évavtiov tfj &€ évavtiov gig évavtiov (229b21-22).
Phys. 5.5’s arguments suggest that this is a necessary condition for contrariety. Whether it is also a sufficient
condition is less clear. DC 1.4, 271a5-10 (discussed below) suggests that other conditions must be met.

33 g évavtio yap xpfitol 16 petald 1 kivnoig (229b16).
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motion from C to B. Could one not say that the midpoint C acts as B for the C-to-A motion
and as A for the C-to-B motion? In that case, we should expect the same conclusion, that the

body at C undergoes opposite motions.

One might think that the cases are not analogous and the conclusion does not follow. The
opposition of white and black is independent of any particular change between them, but the
‘opposites’ involved in locomotion are not generally like this. Aristotle thinks the centre and
periphery of the world are naturally opposed, and so natural motions up and down are
opposite.>* But this is a special case. When a stone moves horizontally, the termini of its
motion are only coincidentally opposites. Their opposition is parasitic on the structure of
some particular change between them and it is only relative to that change that anyone has
reason to think of them as opposites.>® This seems to be the case for the termini of all finite
locomotions, except the natural motions of sublunary simple bodies.>® That this is true can be
seen from the fact that any start-point A of a motion to B can also serve as the start-point for
a motion to a third point C. Indeed anywhere can serve as the start-point for infinitely many
changes to infinitely many end-points. So if A and B’s being the termini of a change were
sufficient to establish that they were objective opposites rather than opposites relative to the
structure of the change in question, then A and B and indeed any start-point would have an
infinity of opposites. This is absurd, because each thing per se has only one opposite or
none.>’ Something can only have more than one opposite if, like grey, its role as an opposite
is relative to and dependent on particular changes. C is spatially intermediate between A and
B in the sense of occupying the middle position of a straight line between them, but there is
an infinity of pairs of points to which C bears this relation, and its bearing this relation to a
pair of points does not make them contraries, otherwise every spatial point would be the

opposite of every other, which is surely false.’®

This may sound reasonable, but it does not fit Aristotle’s earlier definition of ‘opposite’ in

change of place (Phys. 5.3, 226b32-34 trans. Waterfield): ‘In change of place, ‘opposite’

54 ‘Motions on a straight line oppose each other on account of the places: for up and down are a difference and
opposition of place.” DC 2.4, 271a3-5.

55 By ‘structure’ I have in mind two particular features of a change: (i) its having definite termini, (ii) the
ordering of before and after.

%6 1 exclude these elemental motions from the following argument.

ST AMN Bv évi évavtiov (DC 1.2, 269a14). “Doesn’t the centre of the world have multiple opposites, every place
on the periphery of the universe?” The periphery is one in definition as the natural place of fire.

58 In fact every point will be the opposite of every other point since it is possible to draw a straight line between
any two points in a sphere.
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refers to that which is furthest away in a straight line, because a straight line is the shortest
distance between two points and is therefore limited; so it acts as a measure, just as anything
limited does.” In Phys. 5.5 229b6-10 we read that ‘movement upwards is taken to be the
opposite of movement downwards (since the end-points are opposed on the dimension of
length), movement to the right is taken to be the opposite of movement to the left (since the
end-points are opposed on the dimension of breadth), and movement to the front is taken to
be the opposite of movement to the back (since here too there are opposite end-points).’
(trans. Waterfield). Here, motions are contrary although their start-points and end-points are

not opposites independently of the changes in question.

We should try a different approach. Perhaps, for the principle that nothing can undergo
simultaneous contrary motions to apply, the subject of the two motions must be the same
non-coincidentally. The sailor walking astern has two motions, but is the proper subject of
only one of them, his walking. He is only coincidentally being carried in the direction of the
ship. The bird is the proper subject of its self-motions but the proper subject of its downwards
tendency is its heavy bodily matter. The bird is not unqualifiedly the same as its matter, so
when the bird is hovering it will not be true to say without qualification that ‘the same thing

is moving with opposite motions’.>

In line with this suggestion, in Phys. 8.4 Aristotle draws a sharp contrast between an animal’s
movements and its body’s movements, noting that an animal’s self-motion is always natural

for the animal as a whole but may be unnatural for its body:

What is moved by itself is moved by nature ... That is why the animal as a whole
moves itself by nature; however, its body may be moved both by nature and contrary
to nature. For it makes a difference with what sort of movement it happens to be

moved and from what element it is composed.®°

59 DA 2.1 is the classic statement of Aristotle’s hylomorphism. For a similar dissolution of a different puzzle
about motion, see my discussion of Mech. 24 in Chapter 6.

60 Phys. 8.4, 254b14-20, trans. Graham: t6 1€ yap adTd D' 0dTOD KIvodpEvoV @UGeL Kiveltat. .. 810 10 uév (dov
6Aov @OoEL ADTO E0VTO KIVET, TO PEVTOL GO EVOEXETOL Kol POOEL KOl Tapd OO Kiveliohor: Stapépet yop
omoiav t€ av kivno Kivoduevov Thyn Kol €K Toiov 6TorKEioV GLVEGTNKAG.
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As a solution to the problem of simultaneous motion, this distinction is somewhat
speculative, since I have not found it explicitly used for that purpose in Aristotle.! It is also
only a partial solution. Cases where the contrary changes share a subject that is the same
without qualification could still pose a problem. An alternative open to Aristotle would be to
abandon the assumption that changes between contraries are contrary. I have argued that this
would have only minor consequences for his theoretical investigations.®? The issue does not
directly bear on the interpretation of Mech. problem 1, our topic in Chapter 4, since the
composed motions considered problem 1 are all orthogonal, and Aristotle is clear that

orthogonal motions are not contrary.%®

Finally, let us turn very briefly to Aristotle’s account of celestial motions, since this involves
what may appear to be simultaneous contrary motions. According to Met. A.8, 1073b38-
1074a5, the complex motions of each planet are produced by a unique system of nested
concentric spheres, with the planet attached to the innermost sphere of its system. To prevent
the motions produced by a planet’s system of spheres from being transmitted to every lower
system, there is a further system of ‘rewinding’ spheres located beneath each planetary
system which neutralise the motions of the higher planetary system.®* Rewinding spheres
achieve this by moving with two apparently opposite revolutions, one transmitted to them by
a higher sphere, and one that they perform in order to cancel this out. The motion of a
rewinding sphere and the motion inherited from the planetary sphere might seem to be
contrary, since they are circular motions of equal speed yet in opposite directions about a
common axis. If that were so, they might strengthen my suggestion about cases like the sailor
on the ship, as another case of simultaneous contrary motions in a single subject, where one

of these motions belongs to that subject properly and one has been transmitted to it.%> Yet

6! Further queries can be raised but not answered. In our discussion of species of change in Chapter 2, we saw
that sameness of start-points and end-points was sufficient for identity in categories of change other than
motion. Phys. 5.4 touched on the further conditions for the case of motion only briefly, almost as an
afterthought. Phys. 5.5’s discussion of opposite motions focusses entirely on start-points and end-points. Have
further conditions for the case of motion been overlooked in this chapter? Is a straight motion from A to B
opposed to a curved motion from B to A or only to a straight motion from B to A? In general, are the path-
shapes and manners of motions relevant to their opposition, just as they were to their identity? The distinction
drawn in Phys. 8.4, 254b14-20 also raises the question of how to understand spontaneous, automatic or reflex
motions in living things.

2 We have seen that his arguments in DC 2.13 and Phys. 8.8 do not require this principle.

3 Phys. 8.8, 262a12.

%4 See Bodnar 2005 for a discussion of some of the difficulties with this arrangement.

% The cases are not exactly analogous since the sailor need not be carried by the ship, but each celestial sphere
is necessarily carried by its higher spheres.
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Aristotle insists that ceslestial motions have no contraries and hence this case is different

from the sublunary cases I have been considering. It is worth briefly examining why.

In DC 1.4, Aristotle denies that circular motions have contraries, as part of a broader
argument for the eternity and inalterability of the heavens.®® ‘It might be thought,” Aristotle
says, ‘that the same thing which has been said of rectilinear motion applies to circular,
namely that the motion from a point A in the direction of a point B is the contrary of the
motion from B to A.”®” This is not so. For one thing, between two points there is only one
straight line but an unlimited number of circular arcs (271a9-10: the operative assumption
here is that contraries must come in pairs). For another, motion through a full circle involves
returning to the start-point, so the end-point and the start-point are the same. In that case, the
start-points and end-points cannot be contrary and so the motions cannot be contrary (recall
Phys. 5.5’s claim that two changes are contrary only if their start-points are contrary and their
end-points are contrary). Further, if there were contrary motions in the heavens, one of them

would be superfluous. But ‘God and nature do nothing in vain’ (271a33).

A different argument that celestial motions cannot have contraries could be constructed from
Phys. 8.9. Here it is claimed that celestial motions do not have distinct start-points and end-

points:

[T]he points of a circumference are undefined. For why should any point of the curve
be more of a limit than any other? Each point is at once a beginning and a middle and
an end, so that the moving body is at the beginning and the end always and never.
That is why in a sense a revolving sphere both moves and is at rest; for it occupies the
same place. The reason is that all these attributes belong to the centre point: it is the

beginning and the middle and the end of the magnitude.®®

An argument based on this would be similar to the third argument of DC 1.4 in rejecting the
contrariety of start-points and end-points in circular motion. The key difference is that an

argument based on Phys. 8.9 would assume that the circular motion is eternal, which is what

% See also DC 1.3, 270a18-21.
67 271a5-8 trans. Guthrie.
68 265a32-265b4 trans. Graham.
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is at issue in DC 1.4. Also, while Phys. 8.9 locates the start-point and end-point together at

the centre of revolution, DC 1.4 locates them on the circular path itself.

Aristotle’s rewinding spheres are automatically exempt from his ban on simultaneous
contrary motion because their motions are not truly contrary. This celestial exemption relies
on special considerations about circular motion, and so it cannot be transferred to the cases of

sublunar, rectilinear motions with which we began.

3.4: Conclusion

In this chapter I raised two questions. First, what does Aristotle mean by ‘mixed motion” and
is his classification of motions defensible? Secondly, do some simple cases such as a man
walking towards the stern of a moving ship force Aristotle to violate his prohibition against
simultaneous contrary motions in a single subject? Although it must be admitted that
definitive answers are not available, I suggested that the category of ‘mixed motion’ may be
wider than some commentators allow, and that Aristotle’s prohibition against simultaneous

contrary motions may apply only to motions that are non-accidentally in the same subject.

Several later Greek natural philosophers followed Aristotle’s classification of motions, even
as Hellenistic geometers defined and studied an expanding range of higher-order curves.®
Questions about simultaneous contrary motions seem to have continued to prompt debate in
later natural philosophy, particularly among the Stoics. On the one hand, the ‘tensile motion’
that gives material bodies their individuality and coherence was said to consist of an
outwards motion and an inwards motion.”® On the other hand, we are informed that some
Stoics took a different approach from Plato to incontinence: rather than divide the
authoritative part of the soul (10 nfyepovikcov), Chrysippus and his followers claimed that it is

indivisible and oscillates imperceptibly quickly between two alternatives.”!

% For example, Chrysippus r.492 = Stob. Ecl. 1.165.15; Apollodorus apud Stob. Ecl. I p. 166, 24.

70 There are at least three possible interpretations of tensile motion: (1) simultaneous contrary motion
(Sambursky 1959, 21-48); (2) vibration; (3) circulation (Hensley 2020).

"I Plutarch On Moral Virtue 446F—-447A, on which see Sorabji 2002. Note that Galen alluded to oscillation as a
possible solution to the puzzle of the hovering bird. A version of this rapid oscillation hypothesis relating to the
subjectively simultaneous perception of two things is dismissed in De Sensu 7 but endorsed in the pseudo-
Aristotelian De Audibilibus, 803b34-804a8.
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Chapter 4: The Balance and Lever in the Mechanica

4.1: Introduction

In this chapter I return to Mech. Problem 1. Most of Problem 1 consists of an attempt to
explain the Rotating Radius Principle through a series of claims about the results of
composing two rectilinear motions (848b9-849b19). It is this that makes Problem 1 the
longest problem in Mech.. This investigation of composed motions culminates in an
argument that every radius rotating about one of its endpoints moves with two rectilinear
motions, one tangential and one towards the centre, which are in a constantly changing ratio,
and that the shorter radius undergoes more motion towards the centre for a given amount of
tangential motion. However, the discussion begins with simpler ideas, gradually developing

ideas about the composition of two motions. We may distinguish four main claims:

1. The moved thing necessarily moves on a straight line when it moves [with two
motions that are] in a certain ratio.!
ii.  This motion is associated with the diagonal of a corresponding quadrilateral diagram,
the sides of which represent the two component motions.?
iii.  What moves with two motions that are not in any ratio for any time cannot move in a
straight line and must take a curved path.?
iv.  The [line] describing a circle moves with two motions, one radial and one tangential,

that are not in a fixed ratio for any time.*

Problem 1 is the most detailed study of composed motions in the Aristotelian corpus. It poses
a number of interpretative challenges and has been the focus of most scholarship on Mech..
The analysis of a rotation into two rectilinear motions goes against our expectations, since
Aristotle’s Physics or De Caelo emphasise the simplicity of circular motion. The striking idea
that a body could have two rectilinear motions in constantly changing ratio has been taken to
violate Aristotle’s supposed denial of motion (and so of speed) at an instant or his sharp

division between circular and rectilinear motion.>

1'848b10-11 &tav pv odv &v Adym Tvi pépntor, £’ e0deiog avaykn eEpecdal TO PEPOLEVOV.

2 848b23-25 pavepdv 0DV 811 TO K0T THY SIGUETPOV PEPOUEVOV 8V 50 Popaig AvEykm TOV TdY TAELPHY
pépecat Adyov.

3 848b34-35 mepipepeg yivetar 500 pepduevov popdg &v undevi Adym pndéva ypévov.

4 848b35-36 &1L pev Toivov 1) TOV KOKAOV Yphpovso épetal 500 Qopag Gia, Pavepov.

5 These differences were discussed in Chapter 1. To my knowledge, no other ancient author claims that a body
can move along a circular path as a result of some combination of rectilinear motions, or vice versa. In the
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One could be forgiven for thinking Mech.’s analysis appears over-complicated. Does the
Rotating Radius Principle itself not answer the question about balances? And since the truth
of this principle was widely accepted, why did it need a long and, in places, obscure
explanation? The whole problem might have been dealt with in a couple of lines by a quick
statement of the principle. Again, Physical Problems 16.3 argues that if one part of a body
travels faster than another, it must move in a circle, since this is the only shape in which
points that always remain opposite can pass along unequal lines in the same time. So one
might expect Mech.’s author to infer, from the fact that points within a rigid beam move at
different speeds (849a11-19), that they must move in a circle. Instead, we have a difficult
passage based on a claim of proportionality which is introduced without justification (849b1-

19). Why did Mech. take a more difficult path than seems necessary?

This chapter offers a close reading of Problem 1, which I have divided into five passages. I
emphasise two ideas throughout. First, one might ask if 1] ypdpovca tov kOKAoV in (iv) above
means the line (ypappn) or the motion (xivnoig) that describes a circle. The textual evidence
points towards supplying ypauun, where the line in question is a sweeping radius (rather than
the circumference).® Secondly, I will carry forward the results of Chapter 2, where 1
examined evidence for Aristotle’s ‘component realism’. I will argue that Mech. problem 1’s
claim that a balance-beam undergoes two motions simultaneously is best understood literally.
These two points have a significant upshot. They suggest that the domain of Problem 1’s
analysis may be more restricted than is usually recognised. Commentators often treat
Problem 1 as analysing a/l motion that could be described as ‘circular’.” Rather, I suspect it is
primarily a study of bodies rotating around internal points located within their surfaces.® The

analysis might not, in that case, apply to the heavens.

thirteenth century, al-Tusi showed how a body can take a rectilinear path as a result of two circular motions in a
combination that is now known as the ‘Tusi couple’.

® For example, 848b8-10 1 8¢ peilwv &v iom xpdve ypheet peilova kokhov: 6 yop Ektoc peilov tob éviog.
aitiov 6¢ TouTeV 6TL PEpeTaL dVO Popag 1 Ypapovoa Tov KOKAov. See also 849a26, 1| AB ypdpovoa kdkiov,
where AB is a radius. Krafft 1970, 81 also favours this reading. Contrast De Groot 2014, 239: ‘It seems most
likely that the author intends kinesis.’

7 A notable exception is Bodnar 2011a, 449.

8 The radius is a line within the body connecting a moving part to the relatively fixed internal centre of rotation.
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4.2: The quadrilateral of motions (848b9-848b25)

In this passage the author aims to show that something moving in a fixed ratio traverses a
rectilinear path. This basic proposition serves a springboard for the more adventurous
suggestion in the following section, that something moving with two motions that are not in

fixed ratio has a curved path.

aitiov 82 TovTmV 8T PépeTar dV0 Popac 1| Ypapovsa TOV KUKAOV. BTav HEV ovV &V
AOY® TV pépnta, €’ gvBeiag avaykn eépectat TO PepOUEVOV, Kol YIVETOL SIAUETPOG

AT TOD GYNUOTOC O oDV i £V ToVT® T® Ady® cuvtedeioat ypapLpod.

‘The reason for these things is that the [line] describing a circle moves with two
motions. When, then, the moved is carried in a certain logos, it necessarily moves on
a straight line, and this is the diameter of the figure which the lines constructed in this

logos make.””

The discussion begins without explaining what it means for something to move &v A0y® Tivi.
In mathematics, a A0yog is a ratio between two numbers or magnitudes.'® The author has just
mentioned two motions (600 @opac) and these seem to be the relata of the Adyog in question.
The lines which are in the same Adyog (év ToVT® 1@ AOY®) somehow represent those motions.
Some might interpret this Adyog as a relation between the motions’ speeds,!! but the author
does not say as much.!?> We should also note that the author does not assume that the motions

are uniform, but only the weaker condition that they are in some (constant) ratio.

The author refers to the figure as a tetpdnievpov (848b20, literally a ‘four-sider’). This term
is not found in Aristotle’s certainly authentic works.!? For Euclid, it is the most general term

for a quadrilateral.!* Several commentators have read this passage as an instantiation of the

° I assume that ypagpovoa refers to the line, not the motion (see §4.1 above).

19 Buclid, Elements 5 def. 3 Adyoc doti 00 peyeddv Opoyevdv 1) katd TnAkdTnTd Tot oyéotg (‘A ratio is a sort
of relation in respect of size between two magnitudes of the same kind.’, trans. Heath).

I Aristotle refers to a Adyog between speeds at Phys. 4.8, 216a8-11 and 6.2, 233b22, which I discussed in Note
B to Chapter 1.

12 As noted by Schiefsky 2009, 55-56n.12.

13 See Heiberg 1904, 15, who conjectures that Euclid had personally coined the term tetpdmhevpov. This is
speculative, given the loss of all complete texts of pre-Euclidean geometry.

4 Buclid Elements 1, def. 19: Zyfpoto e000ypopud £6Tt 70 VIO €001V TEPIEXOUEVE, TPITAEDPO UEV T VIO
TPIAV, TETPATAELPA OE TO VIO TEGCAPWYV, TOADTAEVPA O TA VIO TAEOV®V T TECGAP®V EVOEIDV TEPLEXOUEVA
(‘rectilineal figures are those that are bounded by straight lines: tripleura by three, tetrapleura by four, amd
polupleura by more than four straight lines.”) Euclid’s terms for defined subvarieties of quadrilateral are
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‘parallelogram rule’, though two lines in a given ratio do not determine a unique
parallelogram since the angle between them may vary. There seem to be two possibilities for
understanding the author’s tetpdmievpov. Either the author means a parallelogram, but has
omitted to discuss the role of the angle between them in determining the figure and its
diameter, or the author specifically has a rectangle in mind, in which case the discussion is

restricted to bodies undergoing motions that are perpendicular to each other.!>
A A B
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Fig. 1: Hett’s diagram for 848b9-848b25.
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Fig. 2: Van Leeuwen’s (2016, 150) reconstruction of the archetype diagram for 848b9-848b25.

One consideration that suggests the author intended a rectangle is that he claims the converse
of the initial thesis also holds: the thing moving along the diagonal with two motions must
move with the ratio of the sides.!® Unless the scope is restricted to rectangles this is false.!”
There are infinitely many parallelograms that share a given diagonal and these differ in the

ratio of their sides (see fig. 3).
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Fig. 3: Benedetti’s (1585, 152) diagram for 848b9-848b25

(Elements 1. def. 22): tetpdywvov (square), Etepounkeg (rectangle), poppoc (rhombus), poppoedeg (rhomboid)
and tpaneleiov (trapezium). He does not define the mapaiinioypappov (parallelogram) but uses the term
anyway (e.g. Elements 1.35).

15 All manuscripts have a rectangle in the diagram.

16 pavepdv ovv &T1 TO Katd THY SIGUETPOV PeEPOuEVOV £V 500 QOopoic dvirykn OV TV TAevp®dY pépecOo Adyov.
(848b23-25)

17 As was pointed out by Benedetti 1585, 152.
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Further, the author’s interest in Problem 1 is in explaining radial rotation and for this an
understanding of how perpendicular motions compose is sufficient.!® Radial rotation is
claimed to consist of a tangential motion and a radial one, and these are perpendicular. If
problem 1 focusses on the special case of a rectangle rather than a parallelogram, that is a
matter of avoiding unnecessary complications for the problem at hand. The parallelogram
features in Problem 23, which focusses on comparing the speeds of the component motions to

the speed of the resultant motion. !

Medieval manuscripts of Greek geometric texts often contain ‘overspecified’ diagrams. For
example, a theorem about triangles in general may be accompanied by a diagram of an
equilateral triangle, a theorem about all pentagons by a diagram of a regular pentagon.
Whether medieval manuscripts are a sound guide to the diagrammatic practices of the late
fourth or third century BCE is doubtful, but if this medieval practice was a continuation of
ancient practices, then a diagram depicting a rectangle would have done little to clarify the
text’s ambiguous tetpdnievpov.’ As we will see, later passages of problem 1 are terse and

their relations to each other unclear. Ambiguity may be the norm rather than the exception.?!

Three other Greek writers explain the results of combining two motions through a
quadrilateral. For two of these writers, the quadrilateral is a rectangle rather than a general
parallelogram. Thus Hero of Alexandria describes two motions of uniform speed composing

in a rectangle.?? Philoponus, commenting on the passage of Mete. 1.4 discussed in Chapter 2,

18 Cf. Mourelatos 1981, 9, n.21: ‘The text envisages only the special case of a rectangle of motions, since it uses
this construction as a step toward showing that circular motion has a tangential and a centripetal component.’

19 Problem 23 refers to its quadrilateral as a poppoc.

20 On overspecified diagrams in medieval manuscripts, see Saito and Sidoli, 2012. The oldest complete
manuscript of Euclid’s Elements, Vaticanus gr. 190, includes a rectangular diagram for Euclid 1.44, a theorem
about parallelogram. Yet we should be careful not to assume that the medieval manuscripts are a clear window
through which we can observe ancient practices, for which papyri may be our best evidence.

2! This may suggest that the Mechanica was written for a relatively small audience, for whom some of these
ambiguities would not have been so troubling, either because they shared certain assumptions with the author or
because the author was able to explain his work to them. A ‘lecture notes’ hypothesis does not seem
unreasonable for problem 1.

22 ] rely on Cohen and Drabkin’s translation from the Arabic. Hero Mechanica 1.8: ‘We shall now prove that a
point moved by two motions, each of uniform velocity, may traverse unequal distances [in a given time]. Let
ABDOC represent a rectangle with diagonal AD. Let point A move with constant velocity along line AB, and let
line AB [at the same time] move with constant velocity along lines AC and BD. Let the time which point A
takes to reach B be equal to the time which line AB takes to reach CD. I say that point A in a given time moves
along two unequal lines. Proof: When line AB has moved for a given time, and has reached the position EF,
point A, which moves along line AB, will, at the given time, also be on line EF. And there is a constant
proportion. The ratio of line AC to line AB (i.e. to line CD) is equal to the ratio of line AE to the line extending
from point E to the point moving on it. But AC:CD = AE:EH. Therfore the point moving on line AB will, at H,
be on line AD, the diagonal. Similarly it can be shown that the point moving on line AB is always moving along
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refers to a rectangle (tetpdymvov).2> And when Philoponus comments on Physics 8, 262a12
(‘sideways motion is not the opposite of upwards motion’) he illustrates Aristotle’s point by

imagining motions along the side of a rectangle.?*

By contrast, Sosigenes, as quoted by Simplicius, refers to a parallelogram. Sosigenes is
explaining the composition of motions of homocentric heavenly spheres. He starts with
examples of motions about the same pole: if two such motions are in the same direction, the
resultant motion will have the sum of their speeds. He then explains what happens if the

spheres are about different poles:

‘For then the speeds will not be compounded in this way, but in the way it is usually
proved (deikvocBat elmBev) in the case of a parallelogram (¢ €mi T0d
naporinioypdppov) where the motion along the diagonal is produced from two
motions, one of a point moving on the length of the parallelogram, and one of this
length itself drawn down in the same time through the breadth of the parallelogram.
For the point and the side of the length which has been drawn down will be together
at the other end of the diagonal; and the diagonal will not be equal to <the sum of>
both of the lines which are broken at it, but it will be less, so that also the speed of the
compound will be less <than the sum of the two speeds> although it is compounded

of the two.’?

line AD, and traverses, in a given time, both lines AB and AD. But AD and AB are unequal. Therefore a point
moving with a constant velocity will, in a given time, traverse two unequal lines. But the motion of the point on
line AB is, as we have pointed out, a simple motion, whereas its motion on diagonal AD is composed of (1) the
motion of line AB on the two lines AC and BD and (2) the motion of A along line AB. Therefore point A will in
a given time and with constant velocity traverse two unequal lines. Q.E.D.’ (trans. Cohen and Drabkin 1948,
223)

23 “Suppose you were to imagine two ants [moving] on some solid surface, coming face to face with equal force.
As they come together from opposite places, and meet, contact and push each other, they are no longer borne
along the same straight line as previously, but will be forced by the collision to move with an oblique and
crosswise motion... For the cross-section of rectangles (t1dv tetpaydvav) is crosswise with respect to the sides
by which the rectangle (10 tetpdymvov) is formed. So, he likens the sideways ejection of the shooting stars to
the motion along the cross-section of objects which previously moved along the sides of the rectangle but have
been pushed out by each other at the corner by a mutual collision so that they get carried off at a diagonal.
Assume a rectangle ABCD, with its cross-section, i.e. diagonal, AD; let two ants of equal strength be moving,
one from C to A and another, again, from B to A. When they are at A and neither gets the better of the other as
they push each other, they are shoved off the sides of the rectangle, and being deflected, they get carried off
along the cross-section AD.’ (trans. Kupreeva 2014). Proclus’ commentary on Plato’s Republic also uses the
example of an ant, though in a different way, to explain composite motion (2, 234.9).

24 in Phys. 842.18ff.: dmokeicOm yap teTpdymvov yopiov kai KivoOpevd tva T tEV &K ThG [dc mAevpdg Mg &l
TO KATO, TO 08 €K ThiG £TépOgG £ml T TAGYL0. OTa cLVEAD®GL TaDTO TEPL TNV YTV, OV GTHGOVOLY <AAANAC> GAAQ
cuVmONGoLGL Kol AOETV KIVIIGOLGL KIVIGLY KOTA TNV SLAUETPOV TOD Y®PIlov.

2 In De Caelo 200.21ff., trans. Mueller 2005.
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Interestingly, Sosigenes speaks plainly of the speeds (td téyn) where Mech. seemed reticent.
The heavenly spheres have uniform speeds, so it is clear what is meant by the tdyog of each
motion. Further, Sosigenes, like Hero, is interested in comparing the speed of the resultant to
the speeds of the components. This is not at issue in Mech. Problem 1 where the focus is on
the path-shape of the resultant motion, straight or curved, rather than on its magnitude.®
Sosigenes’ expression ‘it is usually proved’ (deikvocBat eiwBev) implies that the ideas he
describes are common knowledge. This is to some extent confirmed by the variety of the

texts [ have cited.

An aside in Plutarch’s On the Correct Manner of Listening may offer a further indication of
the familiarity of the parallelogram. Plutarch criticises young men who show off their
learning at lectures by asking hair-splitting technical questions about mathematics such as
‘what motion along the side or diagonal is’ (43A-B: tig 1] katd TAevpav 1| KT SIAUETPOV

Kivnoig), perhaps a reference to the ideas we have been examining.?’

Finally, the technique for describing the composition of motions in this passage deserves
comment. Two techniques were deployed by Greek writers when describing composed
motions. One could consider either: (1) the intersection of two moving lines; or (2) a point’s
motion along a moving line. For example, the quadratrix was described by technique (1) as
the line described by the intersection of a rotating line and a line with a certain rectilinear
motion.?® Archimedes defined the spiral by technique (2) as the line described by a point
moving along a line that is rotating.? Different passages of Mech. apply different techniques.

Problem 1 (see Figs. 1-2 above) adopts technique (1):

E€oT Yap 0 AOYOG OV PEpeTaL TO PepOpEVOV, OV Exel 1) AB mpdg v Al kol 10 pev
AT gepécbom mpog 10 B, 1 6&¢ AB vmopepécbm mpodg v HI'- évnvéxBw 8¢ 10 pev A
TpOg 1O A, 1) 8¢ 49’ 1| AB mpdg 10 E. &l ovv &mi tfig popdic 6 Adyoc v v 1) AB Eyet

npog v AL, avdyxn kol v AA pog v AE todtov Exetv 1OV Adyov.

26 The magnitude of the resultant is, however, a central issue in Mech. problem 23.

27 Contrast Babbitt’s suggestion in the Loeb: ‘When a body moves are its various positions determined by the
position of its diagonal (i.e. interior lines) or of its exterior lines?’

28 Pappus Collectio 4 prop.30 (250.33-252.25 Hultsch).

2 Archimedes Spiral Lines, preface.
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For let the logos with which the moved thing is moved be that which the [line] AB
has to the [line] AI'. And let the [line] AI' move towards the [point] B and the [line]
AB move towards the [line] HI'. And let the [point] A travel towards the [point] A and
the [line] on which [are] AB towards the [point] E. If, then, the logos of the motion is
that which the [line] AB has to the [line] AT, it is necessary that the [line] AA has this
logos to the [line] AE.

On the other hand, Problem 23 (see fig. 4 below) uses technique (2):

eepécbm yap éni thic AB 10 pév A mpdg 10 B, 10 8¢ B mpdg 10 A 1d a0Td Thiyer
eepéabm o8 kai M AB émi thig AL mapad v TA 1® avtd tdyet To0To1g. Avaykn on 10

pev A émi tfig AA dapétpov eépecbat, 10 08 B éni tiig BI'

For on the [line] AB, let A move towards B and B towards A with the same speed,
and let the [line] AB move on AI alongside I'A at the same speed as them.
Necessarily, A moves on the diagonal AA, and B on BI.

Fig. 4: Van Leeuwen’s (2016, 230) reconstruction of the archetype diagram for problem 23.
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4.3: Inconstant ratios (848b25-35)

This passage introduces the idea that the component motions could be ‘in no ratio for any
time’, and argues that the combined motion would be curved (849a34: meprpepeq).®® This is
shown indirectly, by arguing that the combined motion could not possibly be straight
(848b27: 4dvvarov evdgiav stvor THv @opdv). This argument assumes what was established in
the previous section, that if something moves with two motions along a straight line, its

component motions are in a fixed ratio.

I have presented evidence that the quadrilateral of motions was a fairly widespread idea in
Greek technical literature. By contrast I have found no parallels for the idea that a thing could
move with two motions that are in no fixed ratio for any period of time (dvo @epdpevov
Qopag v unbevi Adym punbéva ypovov). It must be emphasised that there is no attempt in
Mech. to describe precisely or even in rough quantitative terms how the ratio of component

motions varies over time. Since the argument is indirect, no example is worked out.

It has sometimes been suggested that this passage contradicts Aristotle’s views on motion at
an instant. It is assumed that the concept of motions’ being in no fixed ratio for any period of
time implies that they are in a different ratio at every instant. To make sense of that, one
would need to accept the notion of motion or speed at an instant, and yet it has traditionally
been thought that Aristotle rejected motion at in instant. Although it is true that there is no
trace in Aristotle of Mech.’s notion of motions being in no ratio for any period of time, |
argued in Chapter 1 that it is not certain that Aristotle denied that anything can truly be said
to be changing at an instant. I also argued that the claim of the present passage, that the
motions are in no fixed ratio for any period of time, does not require the introduction of a
ratio of motions at an instant. All that is needed is that, whichever periods are specified, the

ratio of motions will be different for any two of them.

30 Commentators disagree on whether mepipepég here means curves generally or circles and their arcs. The
former is of course what one should say, but I cannot see anything that settles which of these meanings our
author intended.
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4.4: A rotating radius has two motions (848b35-8492a6)

This passage argues that a rotating radius moves with two motions. There is disagreement

over the text and diagram, and therefore over the argument.

o

€

B
A D
B 5 T G A B
r
A A r A

Fig. 5: Van Leeuwen’s
(2016, 204)
reconstruction of the
archetype diagram for
848b35-849a6.

Fig. 6: Hett’s diagram for
848b35-849a6.

Fig. 7: Mendell’s
(2002) preferred
diagram for
848b35-849a6.

Fig. 8: Another
possibility, reflecting
the orientation as
the balance

Ot pév totvov 1 1oV KOKAOV Ypdpovoa gEPeTaL dVO POPAG Ao, PavePOV &K TE

T00TOV, Kai 811 TO epOUEVOV Kot €00ela &mi TV KAOeTOV APIKVEiTaL, HOTE Elval

ey adTHV 4md oD Kévipov kddetov. EoTm KuKAog 6 ABT, 10 & dxpov 10 é9’ ob B
Pepécbm £mi 10 A+ dpueveiton 8¢ mote &mi 10 . &l pév odv &v 16 Adym épépeto Ov &yt
1 BA pog v AT, épépeto dv v Stdpetpov v €9’ ) BT. viv 8¢, énsinep v oddevi

AOyo, &l TV mepLpépetay pépeton Ty £¢° ) BET.

That the [line] describing the circle moves with two movements simultaneously is
clear from these things, and that the thing moved in accordance with a straight [line]
arrives at the perpendicular [line], so that that [line] from the centre is perpendicular
again. Let there be a circle ABT’, and let the end-point on which [is] B move to the
[point] A. Then it arrives at some time at I'. If, then, it had moved in the /ogos that BA
has to A, it would have moved over the diagonal on which [are] BI'. Now since [it

moves] in no logos, it moves on the circumference on which [are] BEI'.3!

The difficulties in this passage begin with the text’s underdetermination of the diagram. We

are not told where point A is located. It is also not immediately clear where A, B, E and T lie

3! Translation adapted from Mendell 2002. Modern diagrams for this passage do not usually represent a radius
drawn from the centre of the circle to B. This might give the impression that the author is not concerned
specifically with a radius in this passage, but the reference to 0 8 xpov 10 8¢’ o0 B indicates that B is
implicitly understood as the tip of a radius.
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on the circle, though E certainly lies between B and I'. The archetype diagram is
nonsensical.>?> Van Leeuwen observes that several manuscripts read | BA ET rather than 1
BA mpog v AT'.3® She argues that the latter reading derives from Pachymeres’ paraphrase of
Mech. Van Cappelle suspected kat’ 00eiav was a corruption but also doubted earlier
emendations.** Forster and Heath proposed to delete kot’ e00<iav.?® That may be an
overreaction. The immediately preceding passage of Problem 1 argued that a body
undergoing two rectilinear motions can follow a curved path. Referring to what traverses a
circular path as 10 pepopevov kat’ €00&iav is an unusual way of putting things, and certainly
has potential to be misleading, but it is not inconsistent with the author’s line.*® T shall now

explain how I understand the argument of this passage.

We assume the end-point of the rotating radius has a tangential motion. This is represented
by the line B to A. However, it turns out that in completing this motion the end-point does not
reach the point on tangent labelled by A, but rather the point on the circumference labelled by
I'. It may seem puzzling that the motion ‘to A’ results in arrival at another point, I'. This can
be explained by assuming it underwent another, simultaneous motion, one towards the centre.
The final two sentences (&1 p&v ovv &v Td AOY... pépetar v é¢’° 1) BED) argue indirectly
that the two motions are not in a fixed ratio. If the motions had a fixed ratio, the end-point
would move from B to I along a straight line, which is called a diagonal (d1dpetpov). Since
the motion does not take a straight path, but rather a curved path along the circumference

BET’, the motions must not be in a fixed ratio.

The text tells against the interpretation of BEI as a general arc of any length (as in Hett’s
diagram, fig. 6 above), rather than a quadrant. &ni v kéOetov dpikveitor means ‘arrives at
the perpendicular [line]’. Perpendicular to what? A plausible construal is perpendicular to the

radius’ original position. In that case, the radius has traversed a quadrant (or three quadrants,

32 Of the above figures, figs. 6 and 7 are closest to my understanding of this passage, but this is only a guess.

33 Van Leeuwen, 2016, 151-54.

3% Van Cappelle, 1812 158: ‘Locus hic valde est obscurus et, ni fallor, corruptus. In variantibus lectionibus ad
calcem Editionis Syllburgianae adjectis, duae inveniuntur emendationes; nempe, ut pro 10 eepOLEVOV KT
g0Belav legatur 1 pepopévn kata v TEPLEEPELa, vel ut un eepopévn. Sed neutra lectio omnem difficultatem
tollit, etsi prior vulgatae praeferenda videatur. Hoc enim voluisse videtur Aristoteles, ideo patere radium moveri
duobus motibus, secundum et contra naturam, quoniam motu suo per circumferentiam tandem ad talem situm
perveniat, ut sit priori situi suo perpendicularis. Quod non fieret, si simplici motu per lineam rectam moveretur.’
35 Heath, 1949, 231.

36 Note that the tip of the radius is said to move to A (849a3-4: 10 §° dxpov 10 £¢’ o0 B @epécdm émi 10 A). Here
I agree with De Groot 2009, 32-33 (cf. De Groot 2014, 229-33).
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but it is clear from the rest of the passage that the author does not have this in mind).?” Hett
translates émi v KaBetoVv dkveitar as ‘is along a perpendicular’. This escapes the
conclusion that the radius has traversed a quadrant, but does not seem an acceptable

rendering of agwveitot.

The interpretation I have just offered involves two assumptions: (1) that the end-point of the
rotating radius has a tangential motion; (2) that if it does not follow a tangential path, it must
have a second motion and this motion is radial. What justifies these assumptions? The
assumption that the end-point of the rotating radius has a tangential motion may be given by
the specific example considered in Problem 1: the balance. A weight in a scale-pan naturally
moves ‘downwards’, towards the centre of the earth.?® If the radius in this passage
corresponds to one of the balance’s arms, then this basic fact about weights in balances
implies a tangential motion ‘downwards’. The diagrams of problem 1 could be drawn at an
orientation to reflect this.’® In the context of Problem 1, then, this assumption seems justified.
The assumption of radial motion towards the centre is less obvious and I take it that part of
the task of the following passage (treated below in §4.5) is to substantiate this assumption.
Furthermore, a focus on the specific case of the balance could explain why the author
discusses rotation through a quadrant: a weighted balance arm could fall through a quadrant
and arrive at a position roughly perpendicular to its original, horizontal position, but it could

not fall through just any arc.

4.5: Radial constraint (849a6-849a19)

In this section, the author suggests that the point rotating on a lesser radius is constrained

more by the centre and so moves slower. My discussion will take two stages. First, I shall
present Apelt’s text and discuss two textual issues. Secondly, I shall address the passage’s
explanatory value and the status of &kkpovoic. Here is Apelt’s text, with the controversial

passages underlined:

37 What would the diagonal (849a5: thv diGuetpov) be in that case?

38 The weight’s motion will be both natural and tangential only for an instant at the start of the its descent.

3 As suggested, for example, by Guevara 1627, 51; Krafft 1970, 26; De Gandt 1982, 122; and Van Leeuwen
2016, 153-4. Note Van Leeuwen’s caution on her reconstructed archetype diagram for 848b35-849a6 (2016,
154): ‘I will by no means argue that this is the figure intended by the author of the text.’
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€V ¢ dLOTV PePOUEVOLY ATO THG aVTHS ioYVOC TO PEV EKKPOVOLTO TAETOV, TO O
ghattov, ebAoyov Bpaditepov KivnOfjvar 10 TAglov Ekkpovdpevov Tod ELattov
EKKpovopévov: 0 dokel oupPaiverv émi thc peilovog kai EAdTTovog TV €k TOD
KEVIPOL YPOPOVGHY TOVS KUKAOVG. S1d Yap TO &yydtepov givar oD pévovtog Thg

EMATTOVOG TO dikpov 1 TO TG peilovog, MomEP AVIIGTOUEVOV EIC TOVVAVTIOV, €Ml TO

uécov Bpaditepov eépetar o TG EAATTOVOC BKPOV. TAGT UEV 0DV KOKAOV Ypapodon

10070 cvuPaivel, Kol EEPETAL KATA TNV TEPLPEPELAVY, TV UEV KOTA VOV €1G TO

TAGy1ov, TNV 8¢ Topd OO €ig 10 Kévipov. peilm 6’ del v mapd eUoY 1| ELATTOV

Pépetar- S yap TO £yyOTEPOV Elval ToD KEVIPOL TOD AVTICHMVTOS Kpateital HaAlov.

If of two [things] moved by the same strength one is constrained more and one less, it
is reasonable that the more constrained move slower than the less constrained. This
seems to happen in the greater and lesser of the [lines] describing circles from the
centre. For on account of the end-point of the lesser’s being nearer what rests than the
[end-point] of the greater, as being* restrained in a contrary direction, the end-point
of the lesser moves more slowly towards the middle. This happens in each [line]
describing a circle: it moves along the circumference, naturally sideways, non-
naturally towards the centre. The lesser always moves more non-naturally: for

because it is closer to the restraining centre it is more controlled.

The first textual issue concerns 849al13. Forster 1913 re-punctuates: Gomep AVIIGTOUEVOV EiG
Tovvavtiov €mi tO pécov, Bpadvtepov eépeTat O THG EAdTTovog dkpov ‘as if restrained in a
contrary direction, towards the middle, the end-point of the lesser moves more slowly.” This
seems preferable, and both Berryman and De Groot follow Forster too.*! The point required
by the argument is that the lesser radius’ rotational motion is slower, not that one of its

components is slower.*?

The second textual issue concerns 849a15-17. Apelt follows a conjecture due to Van
Cappelle, but most manuscripts read: pépetot TV HEV KOTA VOV KOTA TNV TEPLPEPELAY, TV

0¢ mopd VoV €ig TO TAGyoVv kol 10 k€vipov (‘It moves naturally along the circumference,

40 Alternatively, ‘as if’.

4! Berryman 2009, 110n.24; De Groot 2014, 237.

42 tovvavtiov seems to be used loosely. Cf. Phys. 8, 262a12 (‘sideways motion is not the opposite of upwards
motion’).
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unnaturally sideways and towards the centre’) and this is the reading favoured by Bekker.
Taken alone, this sentence seems to admit two interpretations depending on whether one
takes TV 8¢ mopd EVUCV €ig TO TAGYOV Kol TO k€vipov to identify one or two motions: (A)
There are only two motions, a natural motion along (or according to) the circumference and a
non-natural motion towards the centre (the centre is ‘sideways’ for what rotates around it; if I
walk clockwise round a tree it is always on my right side). (B) There are two non-natural
motions, one sideways (tangential) and one towards the centre, and one natural motion along
the circumference. Against (A), problem 1 is clearly concerned with a tangential as well as
radial motion and &ig 10 mAdylov apparently indicates tangential motion in problem 8§,

852a12-13.%

The Aldine and several later Renaissance editions (e.g. Mononatheuil 1599) contain the
reading @épetal TNV PEV KaTd UGV TNV 0€ TaPd UGV KATA TNV TEPLPEPELRY €IC TO TAUYIOV
Koi 10 kévrpov. This is also found in one manuscript, V3 (Barb. Gr. 22), and was favoured by
the most recent editor, Bottecchia Deho.** This reading leaves room for interpreting the
tangential motion as natural and the radial motion as unnatural, but does not express that idea
as clearly as van Cappelle’s conjecture. In light of Sicherl and Van Leeuwen’s arguments that

V3 is a copy of the Aldine text, it carries no independent weight.*®

Micheli and Van Leeuwen have defended the majority manuscript reading which identifies
circumferential motion as katd Vowv.*® Van Leeuwen writes, ‘The author of the Mechanics
is not concerned, however, with the natural motion of physical objects... he is interested in
finding out which motion is natural to the specific properties of a mechanical object. If we
look at circular motion in a wheel, we notice that it is natural to the properties of a round
object to move along its circumference.’*” Again, ‘In the specific context of mechanics, a
natural circular motion can be defined as a motion that is natural to the properties of a round

>4 If T understand correctly, Van Leeuwen’s suggestion is that, in addition to the sense

object.
of natural motion found in Aristotle’s natural philosophy, there are further notions of

characteristic (“natural”’) motions specific to certain kinds of objects. Objects of a certain

B v pdv yoap eic 1o mhdytov antod kivnoty @Ol TO kivodv, Ty 8¢ &mi tfig Srapétpov avtodg Kiveitor. Here,
motion &ig T0 mAdyov is the result of pushing, and so it is not claimed to be natural.

44 Bottecchia 1982, Bottecchia Deho 2000

45 Sicherl 1997, 95-96, Van Leeuwen 2013. Bottecchia thought V* was an exemplar of the Aldine.

46 Micheli 1995, 64-65; Van Leeuwen 2016, 12-18. Carteron 1923 8n.28 also favoured the ms reading.

47 Van Leeuwen 2016, 16.

48 Van Leeuwen 2016, 17.
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shape have certain characteristic ways of moving. For example, cylinders characteristically
roll (kvrivdw is the verb ‘to roll”).*” One could identify this broader notion of “natural”
motion with what Aristotle calls per se motion. Artefacts have privileged motions that they
are essentially capable of undergoing: a ship is by definition capable of travelling over water;

anything incapable of this would not count as a real ship.

The majority manuscript reading is problematic regardless. For one thing, what would the
contrasting sense of ‘unnatural’ motion be? The tangential and radial component motions
hardly seem uncharacteristic in the sense just described, since they are required if the rotation
is to happen. If the body is essentially capable of rotating, and rotation essentially involves

these tangential and radial motions, then is the body not essentially capable of them?

Further, Problem 1 goes on to use the labels ‘natural’ and ‘unnatural’ a further five times.*°
Better sense is made of these subsequent passages on the understanding of the labels ‘natural’
and ‘unnatural’ common to both those who follow Van Cappelle’s conjecture and those who

follow V3. One such passage is 849a38-849b4 (fuller discussion in §4.6 below):
v )

£ &v 60 oM xpove 1 A® v XO &vnvéyon, &v ToGoLTEO
YPOVOD €V T® KOKA® T@ peilovi peilova tiic BQ
gl ,2( 4 o . gvivekton 10 dxpov thc BA. 1 p&v yop xatd ooty
" @opa Ton, 1 8¢ mapd evov EAdttov: 1 8¢ BY 1fig ZX.
(0\ 0 \
N In the time in which A® is carried through X@, the
P Y end-point of BA has been carried more than BQ in the

Fig. 9: Van Leeuwen’s (2016, 14, 206) greater circle. For the natural motion is equal, but the

reconstruction of the archetype unnatural is less; and BY is less than ZX.

diagram for 849a19-849b19. . . . .
gram J The point of this passage is to explain why the greater

radius BA has traversed a greater arc BH than the arc X® which the smaller radius AX has
traversed in the same time. It would fail to do that if ‘the natural motion’ referred to the

traversal of the arc BH. For one thing that would be to assume what is to be explained, and

49 Mech. uses kvAivdw, Aristotle uses koAvdém (e.g. HA 9 (7), 586b26, 8 (9), 612b24). Neither Micheli nor van
Leeuwen give examples, but within Mech. one might compare 848a34-35 (todnv odv AaBdviec Vmdpyovcay &v
T} KOKA® TV Vo) and Mech. 24’s expression TEPLKeY KiveicOat.

50'849a19-21, 849b3-4, 849b5-6, 849b10-12, 849b18-19.
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for another it would falsely suggest that BH and X® are equal. Rather, ‘the natural motion’
refers to what is represented in the diagram by YQ and Z®, and ‘the unnatural motion’ refers
to what is represented by BY and ZX. In fact, this is how Van Leeuwen understands the
passage.’! The majority manuscript reading for 849a15-17 does not give the sense required

by later passages of problem 1.

Returning to the passage describing the effects of radial constraint (84926-849a19), we may
now raise the question of how it relates to the rest of problem 1. De Groot views this passage
as ‘overlaid’ on the main argument and criticises its explanatory value: ‘Yet how would a
force of constraint located at the center of the circle aid a physical explanation of the lever?
First, how does a point, the centre of the circle, constrain movement, since points have no
power? Surely it is something about the rigid beam of the lever that does the constraining.”> I
agree that there is a tension between this passage and other passages of problem 1 (see §4.9),
but I do not think its explanatory value can be so easily dismissed. Aristotle indeed denies
that extensionless points can have powers in the context of arguing against a suggestion that
the heavens are moved by the celestial poles.>® Although the unmoved mover must be
extensionless if it is to have infinite power, it cannot be a point. Thus Aristotle must deny that
a point could have a power in the way the unmoved mover must: independently and in its
own right. This might leave open the possibility that a point can have power in a dependent
sense. Imagine a perfectly sharp pin, tapering off to an exact point. The point at the end of the
pin has the power to pierce, but only because it is part of an extended material body with
certain properties (hardness, rigidity, capable of being picked up and pushed, etc.). To
transfer to the case of the balance, one could argue that the centre of the balance beam has its

power for constraining because is part of an extended material body with certain properties.

This is not to deny that Mech.’s account of kkpovcig is somewhat mysterious.>* It seems
strange to call the radial component of a solid beam’s rotation about a pivot a ‘motion’. No
part of the beam ever comes nearer to the centre of rotation, towards which the motion is

supposedly directed. Further, &kikpovoig only seems to occur when another motion, the

5'Van Leeuwen 2016, 155: ‘for the same natural motion (@Z=QY), the unnatural motion is larger in the smaller
circle (X>BY)’. Van Cappelle’s notes (1812, 159) do not object to the majority manuscript reading but rather
take issue with the vulgate of V3, the Aldine and other early editions.

32 De Groot 2014, 238.

53 MA 3, 699a20-21. See the recent discussion in Coope 2020, 256-57.

54 The term is, incidentally, a hapax in the Aristotelian corpus.
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tangential motion, is occurring in the beam. For these reasons, £ékkpovoic is an unusual kind
of motion, one that is dependent on another motion and which does not bring its subject

towards the place at which it is directed.

Why, then, does the author insist that £&kkpovoig is a motion (pop@)?>® An alternative would
be to characterise constraint in terms of a power for resistance to motion, rather than a power
for motion.>® What is important is the fact that the centre has a firmly fixed position and that
it is at rest. Would it not be more plausible to say that the centre’s power to resist being
moved from its position is responsible for é&kkpovoic? Powers to resist motion are only
manifested when some power for motion is exerted, and this seems to be the case for
gkkpovotg. The author seems to equate Ekkpovoig with dvtiondcOar, a term that elsewhere in

Mech. refers to resistance.”’

The answer may be that &xkpovoig differs from powers for resistance to motion in some way
that makes it better characterised as a motion. Powers to resist, to judge from Aristotle’s
examples, either prevent a motion from occuring at all or make it slower than it would
otherwise be. By contrast, £&kkpovoig changes the spatial path taken by the balance beam and,
while not preventing the tangential motion altogether, prevents the balance beam from
reaching any of the spatial positions it might have attained had it been subject to the
tangential motion alone. Although the tip (or any other part) of the beam does not approach
the centre, its potential to be at the centre is making a difference to its location throughout the

rotation. Thus &xkpovoig might seem less like a power to resist and more like the incomplete

55 Most clearly at 849b4.

6 On capacities for resistance to motion, see especially MA 3, 699a32-699b1: mpog 8¢ tovtoig Sei v ioydv
iodlev Tod Kvodvtog Kol TV 0D pévovtog. oty yap T TAf00g ioyvog kai duvipeng kad’ fiv pévetl 10 pévov,
domep kol kKo’ fjv Kivel to kivodv- kol EoTv Tig avaroyio €€ avaykng, domep TV Evavtiov Kivioewy, 00T Kol
TOV NPe@V. Koi ai pev ioat amadeic v’ AAANA®Y, kpatodvton 8¢ Katd TV VIepoynv. (trans. Morison: ‘And
moreover the force of the thing causing the movement and that of the thing that stays still should be equal. For
there is a certain amount of force and power on the basis of which the thing that stays still stays still, just as
there is also an amount on the basis of which the thing causing the movement causes the movement. And just as
there must be some proportion for motions which are opposed, so too for states of rest. And equal ones are
unaffected by each other, but they are overcome in cases of excess.”); cf. the comments of Lefebvre 2004, 131
and Coope 2020. Aristotle mentions powers for resistance to change, and especially to destruction, in Met. A.12,
1019a26-28 (trans. Kirwan: ‘any state in respect of which a thing is wholly unaffectable or unalterable or not
easy to change for the worse is called a capacity’) and Met. .1, 1046a13-15, (trans. Makin: ‘the state of not
being liable to be acted on for the worse and so as to be destroyed by something else or by itself qua something
else—i.e. by an origin of change”).

57.8492a30-31: d1d 10 yivesOar peiCove Thv Exxpovoty kai dvtiondcdot. Cf. Mech. 31, 858al5.

100



manifestation of a potential to be in a place.® Treating &xkpovoig as a motion makes the
principle introduced in this passage more familiar. The claim that points nearer the centre
experience more constraint is thus comparable to the Aristotelian thought that what is nearest

to the mover moves fastest.>®

Mech.’s remarks about constraint are brief and elliptical. I have argued that they represent an
effort to provide a causal explanation. I have indicated how this passage supports the
argument of what came before. It substantiates an implicit assumption of the earlier passage
848b35-849a6 (discussed in §4.4 above), that if the weight on a balance does not in fact
follow a tangential path, it must have a second motion, which happens to be radial. I also note
that 849a30 refers back to the ideas first presented in this passage. In short, this passage is

well-integrated in the argument of Problem 1.

8 Note also that the radial motion should pass Aristotle’s faster/slower test for distinguishing xivnoceic and
évépyeion (NE 10.3, 1173a31-b4), since when the radius spins faster, the radial and tangential motions should be
proportionally faster.

3 Phys. 8.10, 267b7-8: 4Ald TéyioTo. Kivelton T &yydTota Tod Kivodvtog. Aristotle uses this principle to locate
the unmoved mover at the periphery rather than the centre of the world.
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4.6: The Rotating Radius Principle (849a19-849b19)
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Fig. 9 (as above): Van Leeuwen’s Fig. 10: Hett’s diagram
(2016, 14, 206) reconstruction of for 849a19-849b19.

the archetype diagram for
849a19-849b19.

This complex passage consists of two parts. The first part (849a19-b4) argues that, for an
equal tangential motion, there is greater radial motion/constraint in the smaller radius. The
second part (849b4-19) first takes this preliminary result in conjunction with the constraint
principle examined in §4.5. Together, these imply that, given the same tangential input, the
smaller radius moves more slowly. Thus the Rotating Radius Principle has been explained.
The author then explains why, in an equal time and under the influence of the same tangential
input, the larger radius AB moves not only further than the smaller radius AX but to H in

particular.

The procedure of the first part has a roughly similar structure to that of geometrical
propositions in Euclid.®® The author begins with the following statement: ‘That, of lines from
the centre [i.e. radii] describing circles, the lesser [line] moves more contrary to nature (10
napa vowv) than the greater [line] is clear from the following.” (849a19-21). This statement
functions in the argument like a Euclidean enunciation (protasis), declaring what is to be
proved in general terms. Next, parallel to a Euclidean setting out (ekthesis), the author
constructs a diagram (849a21-27) using typical third-person imperatives ("Ecto,

gxPepobooay, tapaneninpdcdm). The author then introduces the idea that AB and AX

60 On the parts of a proposition, see Proclus, Commentary on the First Book of Euclid’s Elements, 203-210, and
Netz 1999b. Compare Wilson 2013, 252-53 on the organisation of Aristotle’s explanation of the rainbow in
Mete. 3.5.
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will each complete a full rotation, describing the whole circle (849a27-29), before restating
what is to be shown with reference to the diagram (849a30-32), as in a Euclidean
specification (diorismos) though lacking its first person Aéyw: ‘AX moves slower than AB, as
has been said, because a greater constraint occurs (yiveoBot peilova v €kkpovotv) and AX
is pulled back more (dvtiondcor parlov).’®! This is not precisely the same statement as the
‘enunciation’ which lacked the claim (though it had already suggested) that greater radial

motion entails slower rotation.

Now, the author argues that when AB and AX are subject to an equal tangential motion (QY
= ®Z), the lesser radius experiences a greater motion towards the centre (BY < XZ). At
849a32-35, the author adds four further lines required for the argument (A®H, @Z, OQ, QY,
HK), as in a construction (kataskeue). In place of a formal proof (apodeixis) that BY < XZ,
the inequality is stated (849a35-36) and briefly justified by appeal to the general proposition
that ‘in unequal circles equal straight [lines] drawn perpendicular to the diameter cut off
smaller sections of the diameter in greater circles, and QY is equal to ®Z’ (849a35-849b1).
This proposition is not found in Euclid, though a proof can be supplied making use of
Elements 3.31 and 6.8.%% It is unclear whether Mech.’s author himself was familiar with the
details of such a proof or left the inequality as evident from inspection of the diagram. There
is nothing corresponding to a Euclidean conclusion (sumperasma). We are carried on to the
second part of the passage without pause or comment. This is surprising, since the author has
now offered his justification for what is the crucial claim in Mech., the Rotating Radius

Principle.

The second part has a new aim. Given that the AB radius rotates faster when subject to the
same tangential motion, why, in the time taken for AX’s tip to move to ®, does AB’s tip end

up precisely at H? Or, to put the question in our terms, why is the angular speed the same?

The author assumes that there must be a proportionality between the natural and unnatural
motions. He argues that, if this proportionality is to be preserved, then AB must move to H.
In the first place, AB must move further than €, since if it only reached Q, the proportion

wouldn’t hold (849b1-6). Here, the proportionality is applied negatively, to rule out one

81 Or perhaps, with epexegetic xai, ‘..., which is to say AX is pulled back more.’
2 See Heath, 1949, 233.
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possibility.® Next, the proportionality is applied positively. AB arrives at H because that is
its position when the proportionality holds (849b6-10). The justification is extremely
compressed: ‘OZ is to ZX as HK is to KB. And [this is] evident if [lines] are connected from
B, X to H, ©.”% In this passage, we have a terse reference to the required construction after a
kind of specification, but there is hardly a formal proof. It is left to the reader to realise that

the proportionality must hold since triangles BHK and K®Z are similar.

The proportionality is the key to these arguments but it is introduced without justification.®
We are left wondering where it has come from. Schiefsky has offered one suggestion: ‘Here
the assumption that the two points lie along a single radius is crucial. Because we have two
points (X and B) that are fixed on the same radius, at the end of the motion, the ratio between

266 I this were

the “unnatural” and “natural” components must be the same for both points.
the author’s line of thought, we should expect a simpler argument. To be sure, the assumption
that X and B are fixed on the same radius will yield the conclusion that AB moves to H, but
this could be achieved without introducing any proportionality. The author might have said
that the relative positions of points fixed on the radius must be preserved, so if B lay on a
straight line with AX it will still do so when X has moved to ®, and therefore it must be at
H.®7 This interpretation cannot account for the line of argument in fact taken. It is also too

restrictive. The aim of problem 1 is to compare the behaviour of balances of different sizes

%3 Only one possibility is explicitly discarded this way. The author does not show why AB could not move to a
position before  or beyond H or to some position between  and H. The pattern of negative argument, once
illustrated, could be applied to any other case in which the proportionality is not satisfied, though the author
does not attempt to prove this or even point it out. At 849b17-19, the author notes that ‘if the [line] B traverses
is less or greater than HB, the result will not be the same and the natural will not be proportional to the unnatural
in both.” The emphasis on travel to € is convenient since the point has already been constructed on the diagram
and the non-proportionality of the components indicated.

64 849b14-16: Eot1 8¢ tg 10 HK mpodg 10 KB, 10 OZ mpog 10 ZX. pavepdv 8¢ &av émlevyddotv and tdv BX émi
10 H®. Diagrams in modern editions often omit the lines HB, ®X, though manuscripts display them.

%5 Van Cappelle 1812, 164: ‘Haec verba continent totius sequentis ratiocinii fundamentum, quod tamen hic sine
ulla demonstratione ab Aristotele ponitur.’

6 Schiefsky 2009, 58.

87 Generally, if three points are fixed on a line, the positions of two will determine the position of the third. This
simple form of reasoning has parallels in the Aristotelian corpus. Problems 16.3 and 12 both ask why bodies of
inhomogeneous weight such as loaded dice revolve when thrown. Both assume that if parts of a body move at
different speeds, it must be carried in a circle, and 16.12 also assumes that if all parts of a body move at the
same speed, it must move in a straight line. The underlying assumption seems to be points retain their relative
positions (see especially 16.3: éneidn &v to0t® POVE T@ oynuatt tadta del katdAAnio dvia onueia &v Ta0Td
¥POVO dvicovg diépyetan ypaupds). Though different in emphasis, MA 3, 699a18-20 is another instance of
reasoning about what we would call ‘rigid’ bodies: ‘And those who say that no part whatsoever of the sphere
which moves in a circle stays still, are correct in this proposal, at any rate: for then it would be necessary either
for the whole thing to stay still, or for its continuity to be ripped apart [1j dtacndcOat 16 cuveyeg avtiig]’ (trans.
Morison).

104



under the influence of the same motive power. It would be improper, then, to assume that the

points are fixed on the same radius.

The thought behind the proportionality may rather be that &xkpovoig is reactive in the sense |
suggested above: the capacity for €&kkpovoig is activated only when another motion occurs in
the beam. In M4 3, 699a32-699b1 (quoted in n.56), Aristotle asserts that, when a body
remains at rest despite a mover's pushing it, there must be a proportionality (tig dvaioyia €€
avdyknc) between powers for motion and powers for rest. Up to a limit, these powers balance
out (icalewv), but ‘they are overcome in states of excess’ (kpatodvTot 6€ KOTA TNV VTEPOYNV).
The idea seems to be that the mover, provided it is not overwhelmingly powerful, will bring
about the activation or exertion of a certain amount of the object’s power for rest, in
proportion to or equal to the mover’s strength.%® Mech.’s author may have followed a similar
line of thought: the mover acting tangentially to the beam will bring about the activation or
exertion of a certain amount of the beam’s power for &kkpovotg, in proportion to the
tangential motion.® In that case, it would be the dependent nature of the exertion of
gkkpovoig that accounts for the proportionality: £kkpovoig is the kind of effect that is

activated only in response to, and in proportion to, a motion.”

4.7: Dynamics or kinematics?

As I noted at the start of Chapter 2, several interpreters have taken what may be called an
instrumentalist view of problem 1’s component motions. According to this view, the
component analysis of motions is governed by geometric rules but is in a certain sense
arbitrary. A body moving along a path can be treated as having one motion along the path,
but it can also be seen as having two (or more) motions at angles to the path that compose to

produce the appropriate result. All descriptions that yield the appropriate path are equivalent

%8 If the mover is overwhelmingly powerful, then the power for rest is unable to maintain the proportion and the
other object will be moved. See Coope 2020, 262. The reference to dvoloyio might suggest that Aristotle wishes
to avoid directly comparing powers of rest with powers of motion. This could be achieved by a proportion such
as mover | : mover 2 = power of rest 1 : power of rest 2. However, in 699a37 Aristotle refers to the powers as
‘equal’ (ai pev ioon amafeic v’ GAAA®Y).

89 If, alternatively, the component motions retain their respective directions throughout (an option to be
considered in §4.9) and are only radial and tangential, another account for the proportionality will be needed.
See De Groot 2014, 195-213 for a thorough discussion of a possible connection to Archytas’ ‘proportion of
equality’ reported at ps-Aristotle Physical Problems 16.9, 915a25-32.

70 In unpublished material, Henry Mendell asks whether the proportion is nati:unnati=nat>:unnata, or
nati:nat>=unnati:unnat>. He observes that the latter is preferable if one assumes (a) that the majority manuscript
reading of 849a15-17 is correct; (b) that Mech.’s author required ratios to be homogeneous.
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and equally correct. To quote one recent advocate, ‘Briefly put, the argument of Mechanics 1
is this. Both rectilinear movement and movement in a circle, i.e., the distances covered in
each case, can be characterized as a ratio of two other movements that are identified by
straight lines.””! Again, ‘By making these points, the author shows that it is possible to
contextualize any rectilinear motion as the diagonal of a parallelogram. The parallelogram of

movements is a kinematic generalization.”’?

If this were right, Mech.’s strategy could not be to identify the motions and causes which
underlie the phenomena, since there would no privileged set of motions. The aim would
rather be to illuminate relations between kinematic facts, truths about motion that do not take
its causes into account. A surprising fact such as the Rotating Radius Principle is rendered
intelligible by showing its place in a network of facts about motion, starting from the more

readily intelligible ‘parallelogram rule’.

I have been arguing that the evidence does not support such a view. From the start of the
problem, the author emphasises that there are two motions in the rotating radius. If these were
theoretical fictions, mere instruments of kinematic analysis, we should not find efficient
causes. Yet our text does refer, however vaguely, to the causes of tangential and radial
motion, (respectively, ioyvg/Bapog and Tod KEvipov 10D dviion®dvtog). It is notable that
Mech. never claims to analyse circular motion (1] KOKA® Kivnoig, 1] KOKA® @opd, or
KuKAo@opia) but rather what I have called radial rotation (1] KOkAov ypagovoa, literally ‘the
[line] describing a circle’). The choice of terminology seems deliberate. Recent interpreters
such as De Groot and Schiefsky have rightly stressed that the notions of ‘power’ or ‘force’
involved are not highly theoretical, and this represents a real advance on Duhem, Krafft, and
other twentieth-century readers. On the other hand, I have identified two crucial roles for
radial constraint: it causes the smaller radius to move more slowly, and it is the nature of
constraint as a reactive power that is responsible for the proportionality of natural and
unnatural motions. The kinematics does not explain the dynamics, but, to repeat a point from

Chapters 1-2, the distinction between dynamics and kinematics is alien to our author.”

"I De Groot 2014, 225, emphasis mine.

2 De Groot 2014, 227, emphasis the author’s. Compare Carteron 1923, 8n.28: ‘Tout mouvement rectiligne se
décompose en deux mouvements rectilignes proportionnels (848b1-26), le mouvement circulaire se décompose
en deux mouvements rectilignes qui n’ont entre eux aucune proportion (b26-35).

3 The ambiguous status of &kikpovoig as both a motion and not a fully typical motion is another sign of this.
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4.8: Problems 2 and 3

I will now briefly examine problems 2-3, which take us from the balance to the lever. How
does the analysis of why larger radii move faster when exposed to the same tangential

influence explain how small powers can lift large weights via a lever?

Problem 2 asks why the balance suspended from below does not return to the horizontal after
being displaced, while the balance suspended from above does. In part, this problem prepares
the way for problem 3, where the lever is characterised as a balance suspended from below.
At the same time, problem 2 may show the author’s awareness of the gap between his
abstractions and physical reality.”* In problem 1, the author represented the balance by a
breadthless line. Now he explains the difference in the balance-beam’s behaviour with

reference to its breadth.”

Problem 3 turns to the lever, setting out to explain how small powers can move great weights.
In passing, the author offers what appears to be a precise statement of the ‘law of the lever’.”®
This is presented without explicit justification, although the particle odv may suggest an
inference.”” It is not unreasonable to suggest that the author may have presented it as a truth
derived from observation, perhaps through experience with steelyards, without the backing of

a mathematical derivation.”®

How successful is the explanation of the lever? I agree that the precise ‘law of the lever’ is
not explained, but what about the weaker, more qualitative principle that a power applied
further from the centre or fulcrum has a greater effect? Carteron found the explanation ‘very
weak’: “What ought to have been shown is that the mover can lift ever heavier weights, the

further it is from the centre: that is, beyond the geometrical and kinematical necessities, a

4 Cf. Aristotle MA 1’s clear comments on the differences between animal parts and their geometric
representations.

5 Homogeneous weight appears to be assumed but not stated. Similarly, problem 10, by introducing weight,
poses a challenge to problem 9’s generalisation that bigger wheels are easier to move.

76.850b1-2: & ovV TO KIvovpevoy Bapog TPdg TO Kivodv, TO pijkog Tpog to pijkog dviuénovOey. This is not the
typical, Euclidean form of expression for inverse proportionality (Heath 1949, 235). Schiefsky 2009, 64
suggests that this passage might express only the weaker idea that any change in the relationship of the weights
is compensated by the inverse change in that of the distances. Micheli 1995, 83 is even more sceptical.

77 Noted by Schiefsky 2009, 65; Renn and McLaughlin 2018, 122.

8 Micheli 1995, 83 doubts that the author could introduce the ‘law of the lever’ as an empirical assumption, but
Mech. problem 24, 855a36-37 introduces a crucial proportionality with an appeal to observation (see Chapter 6).
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principle of dynamics should have been distinguished.”” Since the same weight moves a
longer balance arm moves faster, the same weight also moves a longer balance arm more
easily. So extending the length of the lever-arm at the end at which force is applied makes the
task of raising a load easier. Carteron saw this as an application of ‘faster implies easier’, a

confusion of what we should call work and speed.®°

Perhaps the thought is rather the following. A weight applied nearer the centre is constrained
more by the centre (it is subject to more &kxkpovcig) and so exerts a weaker, and hence
slower, downward push. A mover’s strength applied further from the centre is less
constrained and so exerts a stronger downward push. There is no expansion of the mover’s
power ad infinitum. The relevant factor is the relation of the two downward pushes, and this
is determined, for a given weight and a given moving power, by the constraint to which each
is subject. The apparatus of the lever is only able to reduce effects via constraint and the
reduction of the load’s effect will be relatively greater if the load is closer to the centre than

the moving power. Still, it must be stressed that none of this is explicit in the text.

4.9: Shortcomings of the Mechanica’s analysis

In interpreting Mech. problems 1-3, I have aimed to take due account of the author’s
conceptual background and assumptions, indicating how they differ from our own.
Nevertheless, this account of the balance appears to suffer from several shortcomings, even

on its own terms.

The two motions in a rotating radius are said to be (a) tangential and radial, (b) natural and
unnatural, (c) represented by lines in the diagram. It is difficult to see how they can be all
these things. Assuming that the motion of a heavy thing is downwards, towards the centre of
the earth, there is a tension between (a) and (b): the downwards motion of the load on the
balance is only both radial and tangential at the very start of its motion, and even then only

for an instant. I have suggested that the labels ‘natural’ and ‘unnatural’ are inessential to the

79 Carteron 1923, 14. Another complaint is that the author fails to keep his promise to explain the lever in terms
of the balance (848ab12-15). Thus Schiefsky 2009, 64: ‘Despite the author's claims... the references to the
“center”... signal the circle model, and it is in fact the circular motion principle that supplies the explanation.’
Berryman (2009 64-5) claims that the author claims the lever works on the same principle as the balance, but
‘does not say how the two are connected.’

80 Carteron 1923, 15.
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explanation, that they are applied only because the author is describing a horizontal balance
about to begin its downward descent. That reading dissolves the tension between (a) and (b).
The very slight cost is that the labels ‘natural’ and ‘unnatural’ would have to be replaced by
other terms if the same explanation were to be given for a case where the tangential motion is
not natural at the initial instant.8! Deeper difficulties are posed by the tension between (a) and

(c). Let us now turn to that.

Problem 1 began by considering the quadrilateral of motions. In this case, each component
motion remains parallel to itself over time. Presumably the component motions could remain
parallel to themselves over time even if the motions did not maintain a constant ratio for any
time. We are not given a reason to doubt that they could. Yet this property is not shared by
the radial and tangential component motions of a rotating radius. Radial and tangential
motions are clearly at issue in the passage on radial constraint (849a6-849a19, examined in

§4.5). They are emphasised again in problem 8 (852a8-13):

€K 000 QOPAV yeyévntatl 6 KOKAOG... TNV L&V Yap €ig TO TAdy1ov avTod Kivnow Ol

10 Kvodv, TNV 0¢ €mi THg S10péTpov avTdg KIVETTOL.

The circle is made from two motions... for the mover drives the sideways motion, and

[the circle] itself moves with the [motion] along the diameter.

However, in both phases of the argument of 849a19-849b19 (discussed in §4.6), the
component motions of the rotating radius are treated as remaining parallel to themselves over

time. The diagram (fig. 9) still operates with the rectangular composition of two motions.

There is an apparent rift between two approaches, one which analyses rotation into tangential
and radial components, and one which analyses it in terms of rectangular composition, where
the components are only radial and tangential at the very start of the motion. Which approach

1S correct?

81 Another problem could be pressed. I have written as if there is a first instant of motion at which the tangential
motion is natural, but Aristotle denies that there is a first instant of motion. To this it could be replied that Mech.
is using the labels loosely.
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Option (A): Each component motion remains parallel to itself over time and they only align
with the circle’s radius and tangent at the start. Within the quadrant, the downward thrust
remains the same, whereas the deflecting component is greater and greater as the balance arm
descends. The advantage of this option is that it gives lines YQ2, ®Z, BY, XZ in fig.9 a
relatively straightforward interpretation. It is of course not the case that the radius moves to Q
via two motions in the ratio of BY to QY, for otherwise it would move on a straight line.
Rather, each of the lines YQQ, ®Z, BY, XZ represents the total quantity of motion during the
respective rotation. The interpretation of these lines is more problematic on Option (B), as we

shall see below. Option (A) faces three main difficulties.

First, it limits the analysis to motion within the quadrant. What happens when the radius
continues its rotation past the quadrant is unclear. Perhaps one motion ends and a new one is
acquired. In any case, the division of continuous, symmetric radial rotation into quadrants
seems to be an artificial imposition, especially for cases of horizontal rotation such as the

potter’s wheel or the sling.®?

Second, on this option, the component motions of a rotating radius are not tangential and
radial, except at the very start of the motion. This is difficult to reconcile with the emphasis

on radial and tangential motions in both problem 1, 849a6-849a19 and problem 8§, 852a8-13.

Third, this makes it harder to understand why the proportionality is introduced at 849b4-6. As
I suggested above, the proportionality could be accounted for in terms of radial constraint,
but that is only possible on Option (B). An alternative suggestion, that the proportionality is
justified because the points under discussion are fixed on a single radius, would in principle
still be open. However, as I argued above, the assumption that there is a single radius under

discussion is not supported by the context.

Option (B): One of the rotating radius’ two motions is radial, the other is tangential.
The main advantage is that this fully accommodates problem 1, 849a6-849a19 and problem
8, 852a8-13. Option (B) faces two problems.

82 At 849a27-28 the author is clear that the radius ‘returns to itself, i.e. it completes a full revolution, not just a
quarter revolution.
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First, it is unclear on this approach how the lines YQ, ®Z, BY, XZ represent the component
motions. YQ and ®Z supposedly represent the tangential motions of points B and X
respectively. Although they do not make contact with those points, they are at least parallel to
the correct direction when the radius is at B. Yet when the radius has reached Q, YQ is not
tangential.®> One suggestion would be that the lines YQ, ©®Z, BY, XZ offer an erroneous but
workable representation of the radial and tangential motions. They have the status of an
approximation or idealisation. It may be argued that, since 2, H, and ® are arbitrary within
the quadrant, any distortions introduced by treating each component as if it remained parallel
to itself over time can be minimised by making YQ, ®Z, BY, XZ arbitrarily small. Even if
that is so, it must be admitted the author has not made any attempt to explain how a
conclusion about the lines of the diagram could be transferred to radial and tangential

motions.

Second, an earlier section of the problem (848b25-35; see §4.3 above) introduced the idea of
motions in no fixed ratio for any time. How can the ratio between the radial and tangential
motions be constantly varying, given the symmetry of the circle? I see two ways in which this
question can be answered. First, one could argue that there is a break in problem 1°s
reasoning by the time we reach 849a19-849b19 and that the ‘no ratio for any time’ thesis is
quietly ignored thereafter. Perhaps that idea was mobilised in 848b26-849a6 only to argue for
the suggestion that two orthogonal rectilinear motions can compel something to move along a
circular path, while a different approach is needed once &kkpovoig is introduced (849a6),
because €kkpovoig is no ordinary motion. When &kkpovoig acts orthogonally to another
motion, it causes the moving thing to slow down rather than speed up (849a6-849a19),
whereas in the rectangle of motions, the diagonal is longer than either side and so the addition

of a motion at right angles makes the object move faster.3*

Alternatively, one could argue that the ‘no ratio for any time’ claim need not imply that at

least one of the motions involved has varying speed. It might also apply to cases where the

8 As noted by Brown, 1978, 182.

8 Hine 1984 claims that whether deflection decreases speed or not should depend on the angle between the two
motions: ‘Mech. 849a6-9... is wrong when it says that a greater deflecting force acting on a moving body results
in slower motion than a lesser deflecting force acting in the same body — for this ignored the difference made by
the angle between the two forces.” But all motions in problem 1 are orthogonal; the angle between motions is
not considered until problem 23.
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relation between the two motions cannot be characterised in terms of a ratio at all.®> What
about the proportionality between natural and unnatural motions introduced at 849b4-6? Does
that not assume that two component motions of each radius are in some ratio, albeit one that
is constantly varying? Not necessarily. The proportionality can be taken in two ways:
nat;:unnat;=nat,:unnat,, or nat;:nat;=unnat;:unnat,.3® On the latter reading, no radial motion
is claimed to be in any ratio with a tangential motion. Even if both ratios, nati:nat; and
unnat;:unnat,, are constant (and not constantly varying), as presumably they would be if they
compare, respectively, radial motions and tangential motions, the proportionality would still
serve two functions. It would identify a significant fact about how &kkpovaoig responds to the
motion that brings it about, and it would show, through the false but workable assumption
that the motions remain parallel to themselves, that, however far ® rotates due to a given
tangential input, H, when subject to the same input, will travel through an equal angular

distance.

Each of the above options faces its difficulties. The author gives us no guidance as to how the
two approaches should be reconciled or which should be given primacy. That being said, we
may not need to choose between them. The author did not resolve the tension himself. It may
be worth recalling that the Mechanica is a problem text. Like the Physical Problems, is often
aporetic in tone. Its solutions, which are typically posed as questions (‘Is it because...?’), are
not presented as definitive.®” Sometimes more than one answer is offered in response to a
single question.®® The two approaches we have identified in problem 1 may be another case
of attacking a problem from more than one angle. On the other hand, it must be admitted that

the two approaches are less clearly marked and separated.

There is a final shortcoming, not directly related to the foregoing. It is not clear how problem
1’s analysis can be extended to cases where the centre of rotation lies outside the rotating
body. Aristotle described in MA 7 a child’s toy carriage with unequal wheels which moves

around in a circle. The centre of rotation will lie somewhere beyond the smaller wheel on a

85 Monantheuil 1599, 31-33 understood the claim in this way, though for the different reason that he (like
Micheli 1995 and Van Leeuwen 2016) took the natural motion as along the circumference.

8 T owe this observation to Henry Mendell. The statement in Greek is (849b4-6): 8l 8¢ dvéhoyov glva, Mg TO
KaTd PUOLY TPOG TO KATA GUGLY, TO Tapd UGV TPOG TO Tapd GUCLY.

87 Admittedly problem 1’s solution is an exception: it is not posed as a question. Keyser 2020 88-89 suggests
that the Problems attempts not to provide definite explanations but to show that apparent anomalies can be
handled within an accepted theoretical framework.

88 This occurs in problems 12, 19, 30, 32, 34, 35
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straight line connecting the two centres of the two wheels, although Aristotle somewhat
surprisingly says that the smaller wheel itself acts like the centre.®® The author of the
Mechanica does not explain how his theory should be adapted to cases like this. Simply
asserting, like Aristotle, that the part of the body nearest to the centre of rotation is the centre

would do nothing to clarify matters.

4.10: A model for eternal motions?

Scholars have identified three main points of tension between Problem 1 and the certainly
authentic writings of Aristotle. In Chapter 1, I argued that the tension in two of these cases
may be merely apparent.”® The third point of tension is that the treatment of motion on a
circular path as a mixture of two rectilinear motions seems to go against the grain of
Aristotle’s certainly authentic works, particularly the Physics and De Caelo, where circular

motion is treated as simple and uniquely capable of continuing eternally.’!

It is important to understand the nature of the tension. We have seen that Mech.’s claim that
some unnatural motions on circular paths are mixtures of rectilinear motions could co-exist
with Aristotle’s view that the heavens’ natural rotation is simple.”?> A more interesting point is
that Phys. 8.8’s arguments that no rectilinear motion can be eternal, and that hence only
(simple) circular motion can be eternal, do not clearly rule out the possibility of eternal
rectilinear motions that are mixed in the way described by Mech. problem 1. Phys. 8.8
presents several arguments that there cannot be an eternal motion back and forth along a
finite rectilinear distance, but the radial and tangential rectilinear motions that make up
Mech.’s radial rotation are not motions back and forth along radial and tangential lines.”®
Could there be a pair of eternal motions composed in the manner described in problem 1?4

Two issues are involved here. The first is that such an arrangement would require at least one

8 MA 7, 701b4-7: xoi 10 Guéiov, dmep <6> dyovUEVOG odTOG KIVel gig €000 <mdAv> Kad whAtv, KOKAmL 3¢
Kveltan Tt avioovg Exev ToLG TpoxohE — O Yap EAdtTov domep KEVTpov yiyvetat, kabdanep &v Toig KLAIVEPOIC —,
obtm xai ta {d1o Kveltat.

%0 These two cases were Mech.’s use of the terms ‘natural’ and ‘unnatural’ and Mech.’s supposed assumption
that there is motion at an instant.

o1 Relevant passages discussed in §2.4 above.

92 This has been noted by Bodnar, 2011a, 448-449.

93 There cannot be rectilinear motion along an infinite distance since, according to Aristotle, the world is finite.
%4 I am grateful to Istvan Bodnar for his suggestions on this section.
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eternal rectilinear motion to drive it, filling the role played by the weight acting tangentially
in the case of the balance. Something like that might seem possible. Think of a water-wheel
being turned by the rectilinear motion of a river. Provided that river doesn’t cease to exist, its
rectilinear will continue eternally. The river continues to flow because it is part of a larger
system of motions in the sublunary sphere, the cycle of elements that imitates the celestial
motions.”® An eternal rectilinear motion might be possible within such a larger system, one in

which there are already eternal motions, simple, circular ones, in the celestial realm.

On the other hand, the identity of the river’s motion can be questioned by reference to the
criteria we examined in §2.4. Recall that for two motions to be identical, they must be in an
identical subject. The river with its ever-changing waters is hardly a paradigm of identity
over time. In the Topics 1.7, 103a14-23: water from the same spring (t0 dnd THg aVTHg
Kprvng Bdwp) is the same in species, because it is is very similar (16 cpodpotépav etvor TV
ouototTa), but it is nevertheless not numerically the same. If the river does not have
numerical identity over time, its motion will not either, and so the water-wheel’s rotation may
not be a single eternal motion but rather a series of overlapping or interlocking finite

motions.”®

Also relevant in this connection are two passages of the De Caelo in which Aristotle rejects
the idea of an eternal unnatural motion. In the first, his qualm is with the notion that the only
continuous and eternal motion might be unnatural: ‘it is strange, in fact quite absurd, that
being unnatural it should yet be the only continuous and eternal motion, seeing that in the rest
of nature what is unnatural is the quickest to fall into decay’.”’ The second passage, in the
course of an argument that the existence of the aether necessitates the existence of the earth,

appears to state more clearly that ‘nothing unnatural is eternal’.”®

%5 See GC 2.10-11on the cycle of sublunary elements and Mete. 1.13 on rivers in particular.

% Cf. Heraclitus DK22 B12.

97 DC 1.2, 269b7-10: Bowpactov Kol Tavtelde GAoyov To udvny eivol cuveyf] Todtny TV Kivnoy kai Gidtov,
oboav Tapd UGV eaivetal yop Ev ye Toic SALOIC TayIoTo POEIPOHEVE T TAPH PVGLY.

%8 DC 2.3, 286a17-28: 000&v yap mopd pocty Gidiov. Mete. 1.3 seems to attribute an eternal circular motion to
the highest, fiery part of the sublunary world, t0 Omékiavpa (‘fuel’, ‘the inflammable”), which modern scholars
often refer to it as the ‘firesphere’. The rotating firesphere plays a significant role in Aristotle’s explanations of
meteorological phenomena (see especially Mete. 1.4 and 1.7). Some ancient commentators, for example
Xenarchus and Philoponus, took the firesphere to vitiate DC’s arguments that the heavens are made of aether
rather than fire (see Wildberg 1988, 125-134). Others defended Aristotle. For example, Simplicius distinguished
unnatural motion that is contrary to nature (e.g. fire moving downwards) from unnatural motion that is not (e.g.
fire rotating around the centre). Simplicius calls the latter kind of non-natural motion vmep @vov. Arguably, the
firesphere, like the river, is not an eternal thing, since portions of matter constantly join and leave it. In that case,
it would have a series of finite motions, not an eternal motion.
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No justification is given but one might conjecture that one could be constructed through the
‘principle of plenitude’ and its denial that there are any eternally unrealised possibilities.

Since it is possible for a mapd eOGV to stop, it must at some time stop.

The second issue is that the material object in which the motions are instantiated, for example
the water-wheel, will, like all things in the sublunary domain, be subject to wear and tear. If
the water-wheel’s parts are gradually replaced over time, will it be the same wheel? Arguably
the refurbished wheel would be a different thing of the same form or kind, and in that case
the motions of the refurbished wheel would be different motions. However, some Aristotelian
scholars argue that form is the criterion of identity over time.”® For Frede, this is related to the
fact that Aristotle speaks of form as substance in Met. Z.!1° On that view, so long as the
water-wheel did not at any stage lose its organisation and function, it would retain its identity.
This turns on deep problems in Aristotle’s metaphysics, and for this reason, I leave as moot
the issue of whether artefacts can be eternal by retaining their identity through repair and
renovation, or whether the continuously refurbished artefact is in fact would be a series of

things of the same form or kind.

Even as we leave the second issue unsettled, our recognition of the first issue, the fact that
problem 1’s component motions depend on a rectilinear input motion, brings us some way to
seeing how Aristotle could defend his procedure in Phys. 8.8. Such an arrangement of
composite motions could only be eternal if there were an eternal rectilinear motion, which
Phys. 8.8 shows to be impossible. Aristotle does not argue against Mech.’s arrangement of
component motions in Phys. 8, but since he had the resources to show that motions in such an
arrangement could not be eternal, one cannot draw conclusions from this omission about his

awareness or ignorance of the theorising in Mech. problem 1.

% Frede 1987, 66: ‘What makes for the identity of the repaired ship with the original ship is obviously a certain
continuity. This is not the continuity of matter, or of properties, but the continuity of the organization of
changing matter, an organization which enables the object to function as a ship, to exhibit the behavior of a
ship.’

100 Frede 1987, 64-65.
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4.11: Conclusion

I have argued that problem 1 goes beyond what we find in Aristotle’s certainly authentic
works, but also that its account of composed motion can be understood in terms of Aristotle’s
account of change. One might say that Aristotle provides the conceptual starting-points and
explanatory standards, and the author of Mech. develops an innovative account of composed

motions against this backdrop.

I have argued that the author assumes what we may term realism about component motions
and aims to give a causal account of sublunary motion on a circular path, to be distinguished

from the simple circular motion of the heavens.

I have suggested that several features of Problem 1’s presentation are conditioned by the
author’s focus on the specific case of the rotating balance. The quadrilateral of motions is
likely a rectangle rather than a general parallelogram, since the problem’s explanation
involves only perpendicular component motions. The label kot Vctv corresponds to the

downwards motion of a weighted balance-arm.

The use of geometrical language and diagrams in problem 1 is relatively informal. One might
question whether this should be counted as a contribution to ‘mathematics’. It may be more
apt to say that a Peripatetic philosopher is drawing on the resources of geometry to support a
basically physical agenda and a causal explanation. A detailed comparison of Mech. problem
1 and Aristotle’s treatments of the halo and rainbow in Meteorology 3 would be
enlightening.!?! The first two diagrams of problem 1 are underdetermined by the text and
consequently the diagrams themselves must carry a substantial part of the argument’s weight.
In Chapter 5 I shall argue that the explanations of problems 4-22 also rely on visual as well as

verbal forms of argument.

101 T intend to pursue this in future work.
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Chapter 5: Analogical explanation through language and

diagrams

5.1: Introduction

The primary task of this chapter is to analyse the methods of explanation in Mech. problems
4-22."! These problems ask questions about the movements and effects of artefacts that are
answered with reference to the subjects of problems 1-3: the rotating radius, the balance, and
the lever. My first claim is that these explanations are fundamentally analogical. My second
claim is that the use of specialised geometrical language and diagrams is essential to

establishing the analogies.

My emphasis on language and diagrams recalls the work of Netz, who has argued for their
central importance in geometrical arguments.? This link to the tools of mathematics is
especially interesting in light of the methodological passage of Mech.’s introduction,
discussed in Chapter 1, which claims that ‘the ‘how’ (10 &¢) is clear through mathematics,
the ‘about what” (10 mepi 0) through physics’.> However the function of diagrams in Mech. is

considerably different from what Netz found in more purely geometrical texts.

Diagrams throughout Mech. represent a mix of both abstract (e.g. 855b5: ‘ot yap
KOKAoG...”, “for let there be a circle...”) and physical (e.g. 851a17-18: ‘€otw yap 11 AB
Kom...”, ‘for let the [line] AB be an oar...”) objects. Accordingly diagrams can function as
intermediaries between the physical explananda and the models of the lever and balance with
which they are compared. I shall suggest that visual analogy between the two classes of
diagram, physical and abstract, is a tool for securing analogies, complementary to the text’s

verbal content.

By contrast, arguments in the deductive works of Greek geometry are not based on analogy,

and no argumentative force is gained by drawing visual analogies between the diagrams

! This portion of the text has received less attention in recent scholarship (e.g. De Gandt 1982, De Groot 2009,
Schiefsky 2009) which has tended to focus on Problem 1. Van Leeuwen’s subsection on ‘Cognition of
Diagrams’ (Van Leeuwen, 2016, pp. 148-57) considers diagrams from problem 1 only. Sections 5.1, 5.3 and
parts of 5.2 and 5.5 had developed from an essay submitted in November 2018 for the MPhil in History and
Philosophy of Science and Medicine at the University of Cambridge.

2 Netz 1999a, which focuses on Euclid, Archimedes and Apollonius.

3 847a27-847b1.
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constructed in mathematical texts. The geometers do make use of analogy in a different way,
insofar as they generalise from arguments about particular diagrams to theorems and
problems about all cases of the relevant kind, for example, from a proof concerning some
triangle ABI to a conclusion about all triangles. Mueller raised the problem of the legitimacy
of such universal generalisation, which geometers do not attempt to justify.* Netz agreed that
Greek mathematicians and philosophers had offered no justification of generalisation, but
provided an explanation of why their generalisations nevertheless appeared convincing, in an
attempt to ‘unearth their unsatisfactory theory — even supplying them with the articulation
they might have lacked.’> Similarly, this chapter will explore why ‘unsatisfactory’ analogical

arguments in Mech. seemed reasonable.

In the canonical works of Greek geometry, there is a one diagram for every proposition, and
vice versa. Netz’s survey of Apollonius’ Conics 111 shows that despite much continuity of
subject matter, a diagram is constructed afresh for each proposition, including two identical
diagrams in propositions 45-46.° In Mech we shall find precisely the opposite: an economical
sharing of diagrams across problems and explananda. I suggest that this may reinforce the

text’s aim of unification.

The argument of this chapter also contributes to a discussion in the study of Peripatetic
science: to what extent did Aristotle’s accounts of syllogistic in the Prior Analytics and of
demonstration in the Posterior Analytics set the aims and methods of scientific inquiry
undertaken by Aristotle and his followers? Recent debate has largely focussed on the
zoological works.” Mechanics promises to be an especially interesting case, given its close

relation to geometry, the paradigmatic demonstrative science in antiquity.®

4 Mueller 1981, 11-14.

5 Netz 1999a, 241.

® Netz 1999a, 38-43.

7 Among some of the most important contributions arguing for reconciliation of the natural investigations and
the Analytics are Bolton 1987, Gotthelf 1987, Lennox 1987, Lennox 2001 ch.1-4, Leunissen 2010. For the
alternative view, see Barnes, 1969, Barnes 1981, Lloyd 1991, and Lloyd 1996.

8 Cf. Archimedes’ Plane Equilibria, an example of axiomatic-deductive mechanics.
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5.2: Analogy and the ideal of demonstrative science

It has recently been suggested that Mech. closely follows 4Po.’s methodological schemata.’
In its strongest form, that suggestion might seem to sit at odds with my thesis that Mech.’s
explanations rely on analogy. Before analysing the specific techniques of analogical
reasoning deployed in Mech., it is the aim of this section to argue that Mech., for all its use of

geometrical ideas, does not apply a method of demonstration.

In purely formal terms, Mech. does not have the appearance of a demonstrative text. There is
no list of first principles at the outset. Problems 4-24 do not build on one another’s
conclusions.!'? Lettered diagrams do not feature as objects of continuous deductive reasoning
— a point I will elaborate on below. There is no mention of demonstration (dm60€1£15),
definitions or syllogism.!! That there is not a single explicit syllogism in Mech. is, of course,
inconclusive, since it can be argued that APo.’s strictures require only that scientific
explanations be syllogistically formalisable and that whether the formalisation has actually
been carried through or not is of little consequence.!? Nevertheless, the assumption that
Mech.’s author was interested in formalisability is open to question. Any single valid
deductive inference can be presented in syllogistic form, when taken in isolation.!* So the
bare fact that some individual inferences in Mech. can be reformulated as syllogisms tells us

little about the author’s aims and methods.

In fact, attempting a syllogistic reformulation speaks against the suggestion that Mech.’s
explanations are demonstrative. One could represent Problem 5 of Mech. syllogistically as

follows:

9 Johnson 2017 argues that ‘the methodology of Mech. is self-consciously modelled on Aristotle’s method in the
Analytics’ (134) and that ‘Aristotle or some other philosopher self-consciously following the methodology of
APo. (and following it closer than Aristotle often seems to in other surviving scientific works) authored Mech.,
the first systematic text in the science of mechanics.” (150). See also Anders 2013. Asper 2017, 45 describes
Mech. as ‘a rigorous deductive piece that attempts to derive all solutions of physical problems from one
complicated mathematical-physical demonstration of how circles and their radiuses behave. > Further, ‘The
author’s ambition primarily focuses on subjecting phenomena to rigorous explanation. The rigour is deductive
in the sense that Euclidean exposition is.” (47).

10 Contrast Elements Book 1 where twenty propositions form a deductive chain of dependence. Longer
deductive chains are an indication that the author has attempted to economise on assumptions or first principles.
Schiefsky 2009, 52 provides a tree-diagram which shows the limited dependence relations between Mech.’s
problems.

! The only two uses of a deik- stem are inflections of deicvop (problem 25, 856b30; problem 27, 557a33),
meaning nothing more theoretical than ‘show’.

12 For arguments of this kind in relation to Aristotle’s zoological works, see Gotthelf 1987; Lennox 1987.

13 C.S. Peirce 1992, 131f. showed that any deductive inference can be cast as a syllogism in Barbara.

119



(1) All levers produce greater movement.
(2) All rudders are levers.

(3) All rudders produce greater movement. '

We have seen in the course of Chapter 4 that premise (1) is established in problems 1-3
through indirect and heuristic arguments, rather than demonstrations from first principles. !>
However, my concern in this chapter is with premise (2). Premise (2) is not a first principle
and is not demonstrated from first principles. It is secured in the text of Problem 5 through
analogical reasoning. If the premises of a syllogism are neither first principles nor
conclusions of deductions from first principles, then the syllogism is not a demonstration.
Aristotle himself classified analogical arguments as rhetorical and persuasive, sharply

distinguishing them from deductively valid syllogisms.'¢

To be sure, no explicit terms of comparison are involved in establishing (2). Artefacts
compared to levers are not said to be or behave ‘like’ levers; rather, the author says that each
is (8071, yiveton) a lever.!” The crucial point is that Mech. never even attempts to define the
lever, so (2) cannot be inferred deductively. In the paradigm case of problem 3, the lever is a
tool for lifting heavy objects, where the strength applied is on the opposite side of the fulcrum
from the load. From problem 4 onwards, the sense of ‘lever’ is stretched from this paradigm
case to devices that do not share all these properties. Consider the rudder of problem 5. The
rudder does not lift anything upwards; the helmsman and the ship he moves are on the same
side of the rudder, not on opposite sides.'® The conditions under which a device may truly be
called a lever are never specified.!” The author justifies a claim that a device is a lever only

partially, through the identification of some points of similarity.

14 Compare Johnson 2017, 136 and passim.

15 For Aristotle, indirect arguments fall short of the ideal status of 4n6dgi&ig (cf. APo. 1. 26). On the other hand,
Euclid and other geometers use indirect arguments freely.

16 See Rhetoric 2.20, 24 on argument from example, and Topics 1.13, 17-18, 8.1 on argument from likeness.

17 Hence ‘all rudders are levers’ in my example.

18 Mech., in common with later Greek writers on mechanics, does not distinguish the three classes of lever
taught to modern students of mechanics.

19 The Hippocratic On Fractures 31 gives a more detailed account of the necessary conditions for successful
application of a lever: ‘One must have iron rods (c1dnpier) made in fashion like the levers (poyAot) used by stone
masons, broader at one end and narrower at the other... Then one should use these, while extension is going on,
to make leverage (LoyAebewv), pressing the under side of the iron on the lower bone, and the upper side against
the upper bone, in a word just as if one would lever up violently a stone or log. The irons should be as strong as
possible so as not to bend... If, perchance, the upper bone over-riding the other affords no suitable hold for the
lever, but being pointed, slips past, one should cut a notch in the bone to form a secure lodgment for the lever.’
(trans. Withington with modifications). For the Hippocratic author, too, the paradigm case is lifting heavy
objects, such as stones and logs; the medical tools are ‘like’ these levers. The two necessary conditions noted are
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In each analogical explanation, parts of the phenomenon to be explained are assimilated with
parts of the relatively abstract systems of problems 1-3. As an example, here is the first
analogy to the lever, with constituent parts of the lever underlined (problem 4, ‘Why do

rowers amidships move the boat the most?’, 850b11-13):

1| O10TL 1] KOTN LOYAIS £0TIV; VTTOUOYAOV HEV YOP O OKOANOG YiveTan (LEVEL Yap O

T0070), 10 8¢ Bépog 1 Bdhatta... 6 6€ KW@V TOV HoYAOV O vadtng €oTiv.

Is it because the oar is a lever? For the thole-pin becomes a fulcrum (since it stays in

place), the sea [becomes] the weight... and the sailor is the mover of the lever.

In the following section, I shall examine the verbal and visual tools implemented to support

these non-deductive inferences.

5.3: Diagrams and technical language
In a Euclidean proof, the text always takes the reader through the construction of the diagram
using a standard set of imperatives and subjunctives. Mech. adopts a mixed practice. In some

cases the diagram is explicitly constructed using these standard construction formulae (e.g.

849a21-25):

Let there be a circle on which are BI'AE (6t x0khog £¢° o0 BI'AE), and in this
another smaller circle on which are XNMZ, [both] about the same centre A. And let
the diameters be cast out (ékBepfAncBmcav ai didpetpor): [the diameters] in the big

circle on which are I'A and BE, and the [diameters] MX, NZ in the smaller circle.

In other cases there is no explicit construction. The diagram is, as it were, taken for granted.
This is the case in two passages we examined in Chapter 4. In setting out the quadrilateral of
motions (848b13-23) the author initially only discusses lines’ relations to one another and

doesn’t confirm the overall shape until later:

(1) that the lever is rigid and does not bend; (ii) that the lever does not slip relative to the fulcrum. Condition (i)
is never implied in Mech. A gesture to something like (ii) is made at 850b12 where the analogy between the
thole-pin and the fulcrum is justified ‘péver yap omn todto’ (‘since it stays in place’), repeating almost verbatim
the phrase of 849b23. But does the thole-pin of a moving ship remain stationary? Condition (ii) is perhaps more
clearly violated in problem 17’s assertion that the wedge is a lever (see further discussion below).
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Let the ratio by which the moved-thing moves be that which the [line] AB has to the
[line] AT'.

The author presupposes a diagram is already available to his readers, and interprets it as a
representation of component motions. For readers without a reliable diagram to hand this is
initially confusing. The ambiguity is eventually settled at 848b20, which reveals in passing
that the shape is a quadrilateral.?° But in other cases the ambiguity is more serious, and the

correct diagram-construction is never resolved by the text.

Van Leeuwen gives the example of problem 1’s second diagram construction, which aims to

show that the ratio of the two rectilinear motions of a rotating object must continually vary

(849a2-3):

Let there be a circle ABT', and let the end-point on which B is be carried to the point
A.

We are never told whether the point A is inside, outside, or on the circumference of the circle,

and editors of the text have produced a range of interpretations.?!

The manuscripts offer no solution. The archetype of their diagrams is probably Byzantine,
and hence even van Leeuwen’s recent critical edition cannot tell us what the diagrams looked
like in the original text of the late fourth or third century BCE.?? Since we are concerned with
mechanical theory in its formative centuries, and not its Byzantine reception, we should

consider primarily what can be cautiously gleaned from the text itself.

One consequence of widespread under-specification is the impossibility of reconstructing
diagrams with certainty from the text alone. This is acutely problematic for our understanding

of Mech.’s diagrams since no ancient diagrams survive.?’

20 Whether this quadrilateral is a rectangle or a parallelogram is controversial; see my discussion in Chapter 4.
2! van Leeuwen 2016, 91.

22 van Leeuwen 2016, 74, 99.

23 Netz 1999, 19-26 showed that this is not unusual for diagrams in Euclid and Apollonius.
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There are references to lettered diagrams in the preface and in thirteen problems.?* Strikingly,
there are no references to diagrams throughout problems 6-16. Still, as a preliminary
assessment we may say the number of diagrams is very high for a text on natural inquiry.?®
The uneven distribution of references to lettered diagrams in Mech. raises the question of
why they are used in particular problems but not in others. Bearing this question in mind I

turn now to close readings of passages that refer to diagrams in Problems 3-22.

In Chapter 4, I showed that the diagrams of Problem 1 are K
LBl e[

of problem 3 (“Why can small forces move great weights by B

means of a lever?’) does not fit this mould. It appears at first M
H

superfluous, or at least merely illustrative and not

an essential part of that problem’s arguments. The diagram

Fig. 1. Hett's diagram for problem 3.
explanatory. The “Law of the Lever” is stated at 850b1-3,

together with the qualitative statement that ‘the greater the distance from the fulcrum, the
more easily it will move’. Only at the end of the problem, with the explanation already given,

does the text describe the construction of a diagram.

In working our way towards understanding Mech.’s practice here, let us consider a parallel
case. Problem 26 (Why is it harder to carry beams on the shoulders by the end than by the
middle?) ends with the construction of a simple diagram lettered A-I", which at first seems
merely illustrative in the same way as that of problem 3. However this diagram seems to be
shared with problem 27, which refers to letters A-I" of a diagram without constructing it
(857a30-33).2° This sharing of a diagram across discrete textual units contrasts with the one-
to-one correspondence of propositions and diagrams in later geometry. Problems 26-27
demonstrate that the author of Mech. did not abide by those constraints. Bearing this in mind,

let us return to the diagram of problem 3.

24 Problems 1-3, 5, 17, 21-27, 30.

25 There are few or no diagrams in most of Aristotle’s authentic writings on natural science — though for notable
exceptions see Taub 2017, 100-103 — and likewise in the pseudo-Aristotelian Physical Problems. Even in the
‘mathematical’ Book 15 of the Physical Problems, the density of diagrams is significantly lower than in Mech.
(3 lettered diagrams over 3 Bekker pages, against Mech.’s 17 lettered diagrams over 11 Bekker pages).

26 Problems 26-27 share a diagram in all extant manuscripts (van Leeuwen, 2016, pp. 248-250).
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I propose that problem 3’s diagram (compare Figs. 1 and 2) may be

similarly put to work in subsequent problems, and thus provide the B K
foundation for lever-based explanations. When the author offers an

explanation by analogy to the lever, the diagram of problem 3 could

serve as a visual aid to the reader trying to make the analogical

connections demanded, such as in the ship’s oar of problem 4 or the

beam of problem 16. The act of turning back from explanations of

A

sundry phenomena to the same single diagram would strongly reinforce Fig. 2. Van Lecuwen's

the unifying pattern of explanation that is characteristic of Mech. Far (2016, 215)
reconstruction of the
from being explanatorily useless, this diagram may be at the heart of Z: 2}52”5? diagram for

subsequent explanations by analogy to the lever.

Let us see how problem 3’s diagram might support a more complex analogical argument.
Problem 17 asks why small wedges split large bodies and answers by explaining that wedges
are composed of two levers. This is one of Mech.’s less felicitous explanations. A wedge for

splitting or cutting, such as that of an axe, does not behave like a lever or pair of levers.?’

Here, the diagram may have added persuasive force to a weak argument (compare Figs. 3 and

4). The construction begins, ‘Zotm c@nv 8¢’ ® ABT, 10 8¢ cenvovpuevov AEHZ’ (‘let there

be a wedge on which are ABI', and the thing-being-split A r
AEHZ’ 853a27). We have, presumably, a triangle ABI" z: ;H
representing the wedge, and a quadrilateral AEHZ \/
representing the candidate for splitting (see Figures 3-4).28 i

A E
The text then uses this lettered diagram in its analogy to the  Fig. 3. Hett's diagram for problem 17.

lever, beginning ‘poyAog on yivetor 1 AB, Bdpog 8¢ 10 tod B

KdtwOev, dmopdyAov o0& T ZA’ (‘the [line] AB becomes a lever, what is below B a weight,
and the [area] ZA a fulcrum’ 853a28). But the wedge’s edges, AB and BI', are not obviously
akin to levers. They do not pivot about the identified fulcrum. In fact, they do not seem to

rotate at all. This is especially troubling since Mech.’s account of levers is founded on the

27 Rather, it can be thought of as two inclined planes.

28 Hett curiously does not place Z and H at the corners of the quadrilateral in his diagram. This runs contrary to
our expectation that letters specify corners or ends of line-segments, and to all manuscript diagrams examined
by van Leeuwen 2016, 221-23.
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discussion of rotation in problem 1. There is no further justification in the text for this

analogy, so why should readers accept it?

The diagram is the key. If in the original diagram the triangle ABI intersected with the
quadrilateral AEHZ, as it does in the diagrams of all

manuscripts and editions, visual analogy through the lever A2 H
diagram could do the explanatory work. The lines AB and BI'

are each met somewhere along their length by a side of the > 8
quadrilateral. However the diagram was drawn, at least one of i A _

the intersections of AB and BI' must have been at an oblique

. . . Fig. 4. Van Leeuwen's (2016, 221)
angle. It is probable that problem 3’s diagram also prominently  econsiruction of the archetype

featured intersecting lines at oblique angles. Such is the case in diagram for problem 17

all manuscript diagrams (see Figure 2) which show two crossed lines AB and HK,
representing the lever-bar ‘before” and ‘after’ its action.?” In that case the visual resemblance
of problem 17’s diagram to problem 3’s may have persuaded the reader, or the writer for that
matter, to accept the analogy. We should also note that in both problems the chosen order of

lettering labels the designated lever-bar AB, bringing about a further similarity.

I suggested above that Mech.’s author allows sharing of diagrams across explananda. With
this in mind, we might find it puzzling that problems 21 and 22, on tooth-extractors and nut-

crackers respectively, do not share a diagram, since they are both analysed as double-levers.

The diagrams (Fig. 5) differ at the level of what we can make out gﬁm?ﬁﬁ;‘?
from the text. While the ‘pin’ in problem 22’s diagram is simply EA el

i
lettered A, the corresponding part of problem 21’s diagram seems

overburdened with letters: A, ® and I'. Here van Leeuwen’s study of
manuscript diagrams is suggestive. All manuscripts give the tooth-
extractor a distinctively curved form, while the nutcracker is

represented by two intersecting straight lines forming an X-shape.*

We cannot know the state of the diagrams in antiquity, but the extra Fig. 5. Diagrams for

problems 21-22 in
Codex Vat.gr. 1339
f-289r. Image from van
Leeuwen 2016, 44.

letters of problem 21 may have made more sense in a more elaborate

diagram. While our other case-studies have focused on the role of

29 van Leeuwen 2016, 215-18. This cannot be reconstructed from the text alone which designates AB as a line
but the points H and K only individually.
30 yvan Leeuwen 2016, 117, 127, a distinction erased in Hett 1936, 379.
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diagrams in establishing analogies, problems 21-22 seem to emphasise difference. This may
be due to the significant functional difference between the tools under consideration: one is

for pulling teeth, the other for cracking nuts.

Problem 5 (Why is the small rudder able to move the huge ship?) contains a series of
subsections answering different but related questions. The diagram is constructed towards the
end in answer to the puzzle ‘why the boat advances further in one direction than the oar’s
blade travels in the opposite direction’ (851a14-28). This is a surprising return to the oar of
problem 4 from the rudder with which problem 5 began. After giving a diagrammatic
explanation of the oar’s power (Fig. 6), the author declares ‘and the rudder does the same
thing too’ (851a28-29: 10 6’ adtd Kai tO TddAov motel). In the final lines of the problem, the
rudder is explained not by analogy to the lever (that came earlier at 850b31-34), but analogy
to the oar (851a32-34): ‘one must think of where the rudder is attached as the middle of a

moved object (11 Tod kivovpévov pécov), and just like the thole-pin is to the oar.’

There is only one other case of this kind of analogy in Mech. explaining one artefact not by
the lever or balance but by another artefact.?! It is likely that the reader is directed to return to
the diagram above (Fig. 6), which represents an oar,*? and reconsider it as representing a

rudder. Once again, a single diagram supports more than one explanation.

The phrase ‘10 &’ avtod koi 10 TddAov ol (‘and the rudder does B €

the same thing too’, 851a28-29) is a strategy comparable to Euclid’s

turn of phrase in Elements 1.15, ‘0poimg o1 deydnoetar, Ot Koi oi ®

oo ['EB, AEA Toou giciv’ (‘it will be shown in a similar way, that Y

also the [angles contained] by I'EB [and by] AEA are equal’). In each

case the same argument is asserted to hold in a similar case mutatis

mutandis,*® and the move is effective because the required o a
modifications are straightforward and most of the explanation or Z‘g]g ;%;];Eizxxcmn
proof's wording is left untouched, since it uses regimented technical ;’jjﬁiﬁgfe’ﬂp ¢ s

language. To translate problem 5’s diagrammatic passage (851al4-

28) to apply to the rudder, only three terms need be changed at the very start, where parts of

31 Problem 19 explains the axe in terms of the wedge: yivetan o@nyv 6 néhexvg (853b22).
32851a16-17 ot yop 1| AB ko). ..
33 For discussion of the Euclidean passage see Netz 1999a, 242-43.
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the diagram are identified with parts of the oar (851a18-19). The rest of the explanation is
couched in technical mathematical language. Indeed special care may have been taken to
avoid using oar-specific vocabulary. The author speaks of 10 év t@® mAoi® dxpov (‘the end-
point in the boat’) at 851a26-27 when referring to the diagram, while elsewhere he says 1

apym ths kdnng (‘the beginning of the oar’, 851a28).

It is surprising that in a problem principally concerned with the rudder the author should
privilege the oar in the diagram and leave the rudder’s explanation implicit. By doing so the
author directs our attention to the easier case. Rudders and steering-oars of the period came in
a variety of forms. Often in Greek art we see ships steered by not one but two anodio.
Sometimes a tiller (oia&) was used; in double-tnddiia arrangements this might yoke the two
rudders together.>* These complex arrangements bear less obvious resemblance to the
diagram’s straight lines than the simple straight rod of an oar. By considering the oar when
constructing the diagram, the author eases the process of visual analogy. Meanwhile by
simplifying the range of possible rudder-arrangements to the case of a single mnddAiov and
suppressing the tiller,* the author allows easy intersubstitution of rudder-terms and oar-

terms.

5.4: Experience and idealisation

I have touched on some ways in which Mech. simplifies its objects of study. Let us now
consider this theme more generally. Mech.’s descriptions of phenomena to be explained do
not suggest that the author has carried out careful or deliberate observations, or that he is
working from reports of observations carried out for a special purpose. On the contrary, the
explananda are described in everyday, unspecialised terms, and some of these descriptions

seem inaccurate.

Problem 1 asks why larger balances are ‘more accurate’ (dkpipéotepa). Are they? Tradesmen
such as jewellers and apothecaries who rely on precise measurement have in recent centuries

used relatively small balances.*® The author’s reason for thinking larger balances are more

3 Irby 2016.

35 The tiller is mentioned only once, in the initial posing of the question at 850b29.

36 Baldi 1621, 15. Tartaglia in Drake and Drabkin 1959, 79 concludes that the author is describing a
‘mathematical balance’. See Van Cappelle 1812, 169-74 for a clear and precise discussion the effect of weight
on the angle formed by a balance.
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accurate turns out to be that the end of a longer
balance-arm undergoes a greater absolute
displacement when tipped downwards by a small
weight. This is only true, however, if we ignore the
weight of the balance-beam itself, but in practice
larger balances are typically heavier and thus
undergo a smaller angular displacement when moved
by the same weight. Perhaps we could supply an
appropriate condition: ‘Why are larger balances more
accurate than smaller ones, when both balances are
of equal weight?’ or ‘Whenever larger balances are

more accurate than smaller ones, why is this so?” But

Mech.’s author never alludes to any such
Fig. 7: The Taleides amphora c. 540-530 specifications and the limits on his statement’s
BCE, Metropolitan Museum of Art, New York
(https://www.metmuseum.org/art/collection’se  generality. Ancient balances were sometimes very
arch/254578)
large, judging by their representations in art, e.g. the
Taleides Amphora (Fig. 7) and the Arcesilaus Cylix (mid-sixth century BCE), but this does

not solve the problem.

There is a similar difficulty in Problem 9, which asks why we move things more easily and
quickly by means of larger circles, e.g. by larger pulleys. This ignores the fact that larger
pulleys are typically heavier. Mech.’s author presents his data in a simplified manner,
abstracted from the material properties of the devices studied. We do not hear what balances,
levers, pulleys, or rudders should be made from. Yet the material composition would be
relevant not only for recognising the effect of a device’s weight on its utility, but also for

appreciating the role of rigidity in the operation of a lever.

Mech. simplifies in other ways too, besides ignoring weight or extension. Problem 6 asks
why higher sails move the ship faster. Of course, there is no use in sails lying on the deck.
They must be hoisted high to catch the wind. But raising the sails beyond a certain height will
slow the ship by causing the prow to dip into the water. The author fails to point out that what
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he attempts to explain is not universally true.>’” He seems more interested in exploring the

reach of the explanatory programme than in the details of his examples.

To be clear, the difficulty here is not abstraction per se, but rather that, by ignoring certain
factors, the author makes general claims that are false (and false in rather obvious ways) if
understood as fully universal.’® These generalisations can stand only subject to certain
qualifications and, from our perspective, the omission of such qualifications seems to pose a
problem. Does this amount to a fault on the author’s part? That is partly a question of the
pragmatics of communication. If I tell you, ‘Eating fish is healthy’, you will immediately
understand what [ mean. I do not mean that eating fish is healthy for everyone in every
situation. For instance, some people are allergic to fish. Such obvious qualifications do not,
under normal circumstances, need to be stated.’® To expect every qualification and
assumption to be made explicit is too demanding. How far such an excuse might apply to
Mech. is uncertain, as we cannot determine the extent to which our author (and his ancient
readers) would have been able, upon questioning, to acknowledge and specify the limitations
on Mech.’s claims. Thus in problems 1 and 9, we have three options: (i) the author makes an
erroneous generalisation, (ii) the author describes a weightless, ‘mathematical’
balance/pulley, (iii) the author assumes that any qualifications on his generalisations are
obvious or irrelevant. In problem 6, only (i) and (iii) are available. In light of my arguments
in Chapters 2-4, I find (ii) unlikely. It is difficult to decide between (i) and (iii) and there may

be some truth in both.

It would be too hasty to conclude from the lack of recorded observations that Mech.’s
investigations were uninformed by observation. De Groot has argued that many human
practices rely on a tacit ‘kinaesthetic awareness’ of the Rotating Radius Principle. The angler
sweeping his catch out of the water knows how a small motion in his hands will cause the rod
and line to swing through the air.** One could add that the claim that a rotating radius

undergoes a motion towards the centre of rotation (a striking claim since nothing in a rotation

37 Forster 1913 ad loc. suggests that ‘The most probable explanation is that the Greek sailor, being essentially a
coaster, preferred a high sail in order to catch the wind which might be cut off by hills and cliffs.’

38 It is not necessary, however, to interpret ‘larger balances are more accurate’ etc. as universally quantified.

39 In Grice’s terms, this exemplifies the maxim of quantity, to give as much information as is required and no
more, and perhaps also the maxim of relation, ‘be relevant’ (Grice 1989, 26-27). The standards of scientific
communication today differ from those of ordinary discourse, but it would be a mistake to expect an ancient
writer to follow our norms.

49 De Groot 2014, ch.3.
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in fact approaches the centre) may have been informed in some way by experience of
physical pulls directed towards fixed points.*! Yet there are no examples or specific
observations in problem 1. The contrast to Aristotle’s zoological investigations or to a later
mechanical author like Philo is stark. One can also contrast Physical Problems 16, which

records deliberate, precise observations of a kind not found in Mech.*?

5.5: Conclusion

The success of the explanations in problems 4-22 depends on securing analogies to the lever,
balance and rotating radius. I have argued that Mech.’s careful use of language and diagrams
provides much-needed support for these analogies. Mech. thus combines recognised styles of
reasoning in Greek science in unexpected ways. This is only to emphasise, in contrast to the
arguments of some recent scholarship, that Mech. is not a deductive text. Its explanations are
not and do not aspire to be either syllogisms nor geometric demonstrations. I do not thereby
suggest that Mech. rebelled against prescriptive rules set out in Euclid or the Posterior
Analytics. Rather, Mech. shows that the norms of demonstration were less important and
influential around 300 BCE than has sometimes been assumed, even in a field as open to

influence from mathematics as mechanics.

On the familiar account of diagrams in Greek mathematics, many diagrams in Mech. appear
merely illustrative, offering no information beyond what is contained in the text. I have
argued the diagrams in Mech. mutually interact in a form of non-verbal argumentation I have
called visual analogy. This account suggests an explanation of the diagrams’ uneven
distribution across the text: diagrams are constructed either in geometrical arguments,* or in
explanations that are particularly challenging where their construction allows visual analogies

to be drawn.

In considering problem 5, I showed how the formalised language adopted in passages of
diagrammatic reasoning allows the author simply to assert that the same explanation would

hold for another case, in a manoeuvre with parallels in Euclid.

4! Think, for example, of a dog straining against the pull of its leash.
42 See especially Problems 16.4, 6, 8, 13.
43 Problem 1.
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Although heuristically valuable, analogical reasoning is not watertight. The analogy involved
in Problem 17 is tenuous and Hero of Alexandria later provided a different account of the
wedge’s power.* The positive role of analogy in science is not to confirm theories, although
analogical arguments were undoubtedly presented by many Greek thinkers to justify their
claims, but rather to suggest new hypotheses and new problems.*> That heuristic function of
analogy, in giving a physical theory an ‘open’ and progressive character, is exemplified by
the Mechanica’s exploration of how far three simple models — the rotating radius, lever, and
balance — can be extended. It could be said that this makes intelligible the formal presentation
of Mech. as a ‘problems’ text. The ‘problems’ genre is inherently tentative and undogmatic;
answers begin ‘Is it because...?’ and qualifications or even multiple answers are not
uncommon. Further, the openness of a problems text, its essential lack of closure or a well-
defined theoretical end-point, conveys a sense of ongoing inquiry and almost invites
extension and elaboration by later hands.*® The literary form of Mech. complements the

explanatory method I have described.

In addition to shedding light on this text’s method, I hope to have shown that there may be
more to the function of diagrams in Greek scientific texts than has previously been

recognised: diagrams can work together with language to support analogical reasoning.

4 Hero Mech. 2.4; cf. Schiefsky 2007, 28-30.

45 Hesse 1963 is a classic study of the positive function of analogy in science. See also Lloyd 1966 on the uses
of analogy in Greek thought to Aristotle.

46 As certainly happened in the pseudo-Aristotelian Physical Problems. As 1 mentioned in Chapter 1, it is an
unconfirmed possibility that the transmitted text of Mech. is the work of more than one writer.
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Chapter 6: The Rota Aristotelis Paradox

6.1: Introduction

Mech.’s preface declares that mechanical ‘problems’ partake of both mathematical and
physical speculations; 10 &g (‘the how’) is clear through mathematics, 10 6¢ nepi 0 (‘the
about what’) through physics. We have seen in Chapter 4 how in problems 1-3 the author
develops models of the balance and the lever, through a study of the composition of
locomotions. In Chapter 5, I explained how in problems 4-22 the author applies these models
in an attempt to explain a variety of specific phenomena, predominantly the behaviour of
artefacts.! Problems 23-24 mark a break in this programme. These problems do not concern
the effects of particular machines but raise abstract puzzles about the geometrical treatment
of locomotions presented in problem 1, on which subsequent explanations have ultimately

depended.

I construe problem 24 as not so much demanding explanations as presenting a paradox that
threatens the explanatory programme of the Mechanica.” This paradox is traditionally known
as the Rota Aristotelis (‘Wheel of Aristotle”).? This concerns the motion of what may seem to
be the simplest machine of all, the wheel. A wheel moves by rolling.* Rather than simply
rotating on the spot, like a balance or a lever, rolling also involves linear translation; in
Peripatetic terms, it could be said to involve both circular (or rotational) and rectilinear

motion.>

! The exception is Problem 15 on pebbles; see Note A to Chapter 1.

2 Bodnar 2011b comments that problem 24 seems ‘to run counter to the Thesis of Unequal Circles itself.’
Paradoxes played an important role in Greek philosophy, from at least the time of Zeno through to the
Hellenistic schools. Some writers seem to have gathered paradoxes in collections. Zeno wrote a book (Plato,
Parmenides 127 C); Proclus mentions a collection of mathematical paradoxes by a certain Erycinus (68.6-20
Friedlein); Proclus refers to similar collections, including some by Stoic authors (Comm. in Eucl. 396-97). The
Rota paradox is less general than, Zeno’s paradoxes. It concerns a specific kind of locomotion, rolling, rather
than change, or at least motion, in general. Further, there is no philosophical doctrine associated with the Rota’s
paradoxical conclusion as Eleatic monism and the denial of change are associated with Zeno’s conclusions.

3 However, Mech. consistently refers to the rolled objects as circles (kbkot) rather than wheels (tpoyot).

4 Rolling is an exemplary kind of motion in Phys. 3.1, 201a18-19 (‘housebuilding... learning, healing, rolling,
jumping, maturing, and ageing’). In discussing the motions of the heavenly bodies, Aristotle writes that ‘there
are two per se motions of something spherical: rolling and rotating’ (DC 2.8, 290a10) but then denies that the
heavenly bodies roll because the Moon’s face is always visible (290a25ft.). It is left unclear whether there are
any natural rolling motions.

5 Rolling and rotating are distinguished in Problem 8, 851b16-22: ‘It is possible for a circle to turn in three
ways: on a felloe with the centre moving too, like the wheel of a cart turns; or about the centre only, like
pulleys, with the centre at rest; or parallel to the plane with the centre staying still, like a potter’s wheel turns.’
(Tprydg d¢ EvdéyeTan TOV KOKAOV KAGOTjvar: 1j Yap kotd tv ayida, coppetapdiiovtog tod kEvpov, homep O
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Rolling features in several problems of Physical Problems, Book 16.° Rolling is usually not a
direct concern in Mechanica_problems 1-22, although the wheel (tpdyog) and roller
(oxvtdAn) are mentioned in Problems 8-11. These are distinguished in Problem 11 by the fact
that the roller has no axle. Pulleys (tpoyoiiot) feature as examples in problems 8-9, and
problem 18 is devoted to explaining a system of two pulleys. Although the pulley-wheel is
not itself translated when in operation, an account of the pulley’s characteristic action must
consider the vertical translation of the rope and the load. With a few modifications, problem

24’s paradox could be presented for pulleys, but such a variant is not considered in Mech.

Nevertheless, problem 24’s paradox bears on problem 1’s analysis of rotation, since it
threatens to make nonsense of the Rotating Radius Principle. The paradox also poses a more
general methodological challenge to the project of explaining mechanical phenomena
through mathematical analyses of locomotion. The wheel is a very basic machine. If
mathematical models of locomotion yield contradictions when applied to the wheel’s rolling,
then the prospects look dim for Mech.’s programme of mechanics as partaking of both
mathematical and physical speculations.” This paradox’s location towards the end of Mech.
gives it a dramatic sense of urgency. The return to foundational and comparatively abstract
issues may be seen as a ring-composition technique for closure.® The seven problems of the
collection that are unrelated to the programme based on motion on a circular path announced

in the introduction appear only after problem 24.°

This lack of grand metaphysical conclusions may in part account for the Rota paradox’s
recent neglect. It was not always so. The Rota paradox stimulated lively discussion in the
sixteenth and early seventeenth centuries, more so than Zeno’s collection of arguments. In a
pathfinding study written in 1939 and published in 1950, Israel Drabkin surveyed a number
of these Renaissance responses to the paradox but gave comparatively little consideration to

the significance of the paradox in its ancient context or to the details of Mech.’s solution.

TPOYOG 0 THS ApaENG KuAieTor f mepi 10 KEVIPOV PHOVOV, BOTEP ol TPOYIAENL, TOD KEVIPOL HEVOVTOG: T| TopA TO
Eninedov, ToD KEVTPOL PEVOVTOG, MOTEP O KEPAUEIKOS TPOYOC KVAIVOETAL.)

® Problems 16.4-6.

7 Mech. 847a25-217.

8 Problem 24 is by some way the longest problem in the collection after problem 1.

® See Note A to Chapter 1.
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Almost all later studies have focussed on early modern treatments of the paradox.!® A recent
study by Dosch and Schmidt (2018) examines Mech. 24 in closer detail than previous

treatments, but several aspects of the text remain to be explored.

My primary task in this chapter is to present a historical appreciation of this neglected
paradox in the context of Peripatetic philosophy. We shall see that Mech.’s solution draws on
Aristotelian natural philosophy rather than mathematics. Besides Mech. only one other
ancient discussion of the paradox survives, in Qusta Ibn Luqga’s ninth-century Arabic
translation of Hero of Alexandria’s Mechanics (probably first century CE).!! It is natural to
ask what the relationship between these two discussions is. Did Hero derive the puzzle from
Mech. or from another source, perhaps an earlier one? The fact that we have Hero only in
Arabic translation is one major difficulty for discovering the relation between the two.
Although I have not been able to find an answer, a comparison of the two discussions is

nonetheless enlightening.

6.2: An overview of the paradox

For the sake of clarity and simplicity, let us first consider the paradox unhampered by the
complications of our historical sources. Imagine two wheels of different sizes rigidly fixed
around a common centre, with the base of the larger wheel resting on a horizontal surface.
Because they are fixed together, when the larger wheel rolls along the surface, the smaller
wheel moves with it like the hub on a car tyre. We let the smaller wheel rest on the horizontal
surface and roll it for one revolution and we find that it travels a distance equal in length to its
smaller circumference (call this Case I).!? We could check this by measuring both with a
piece of string. Next, we let the larger wheel roll across the surface until it completes one
revolution. The distance it travels across the surface in this time is equal in length to its

circumference (call this Case II).

10 See, for example, Michel 1964, De Waard 1963, 31, Le Grand 1978, Palmerino 2001, Ferraro, 2009, Arthur
2012, Levey 2020. The Renaissance commentaries themselves are still useful. The paradox features in several
publications on recreational mathematics and mathematics education, among them Menninger 1954, 218;
Costabel 1968; Ballew 1972; Bunch 1982, 3-12; Gardner 1983, 2-4; Pappas 1989, 202.

' The Greek original is lost. Some Greek fragments of Hero’s Mechanica are preserved in Pappus Collectio
Book 8.

12 Part of the larger wheel must hang below the surface; it may help to imagine the wheels as connected by an
axis.
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In Case II, where the larger wheel rolls out a length equal to its circumference, the smaller
circle also rolls out a path of equal length. But in Case I, the smaller circle traces out a
smaller path in one revolution, one equal to its own circumference; meanwhile the larger
circle traces out a path equal to the smaller circumference. So sometimes a wheel rolls out a
path equal to its circumference, but it can also be made to roll out a greater or lesser length.
Furthermore all this happens without any sliding or slipping. The smaller wheel in Case II
does not slide over any part of the line to keep pace with its larger companion, and the larger

wheel in Case I never slips on the spot. All wheels move perfectly smoothly and uniformly.

There are several ways to draw out puzzles. One way is as follows. If any wheel rolling
smoothly always traces out a path equal to its circumference, then in both cases the smaller
wheel traces out a path equal to its circumference. And in both cases the larger wheel traces
out a path equal to its circumference. So in Case II, the larger wheel traces out a path equal to
itself and the smaller wheel traces out a path equal to itself. But in either case, the lines traced
out by both wheels are equal. So in Case II both paths traced out are equal. Several
contradictory conclusions follow: that the larger circle is equal to the smaller circle, that the
larger circle is equal to the smaller path, that the larger path is equal to the smaller circle, and

that the larger path is equal to the smaller path.

Alternatively, without assuming that a smoothly-rolling always traces out a path equal to its
circumference, one can simply ask for an account of why smoothly-rolling wheels traverse
different distances in different cases. How can a tiny wheel trace out a great length in one
revolution without sliding over stretches of it? And how can a large wheel trace out a short
path in one revolution without occasionally slipping on the spot? And, if these things are
possible, why do wheels rolled independently tend to trace out paths equal to their

circumferences?

A third puzzle concerns the nature of continuous magnitudes. Rolling ‘smoothly’ means that
each point on the wheel makes contact with exactly one point on the surface. In other words,
there is a one-to-one correspondence between points on the wheel and points on its path
across the surface. Therefore, if a wheel can roll smoothly along lines of different lengths,
there is a one-to-one correspondence between the points of unequal magnitudes. But how can
this be? If I am sharing out pieces of fruit among a group of people and find there is a one-to-

one correspondence between people and pieces of fruit, it follows that were there fewer
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people there would be fruit left over, and that were there more people there would not be
enough to go around. Analogously, we might expect that if there is a one-to-one
correspondence between points on the wheel and on its path, then were the path shorter or

longer, the wheel would necessarily slip or slide.

A version of the first of these puzzles is addressed by Hero. Modern writers have tended to
focus on the second and third puzzles. Mech.’s author only addresses the second puzzle, and
even then only part of it as presented above.!? Hence Drabkin’s complaint that in Mech.

‘there is no coming to grips with all the difficulties involved... [Mech.’s treatment] does not
analyse the problem raised by the point-to-point correspondence of the two circumferences of

unequal length.” !4

6.3: The Mechanica’s statement of the paradox

Mech. problem 24 is not easy to follow. The passage of thought is seemingly repetitive and

beset by sudden shifts of focus. I offer the following analysis of the problem’s structure:

1. Introduction (855a28-855b4)

2. Cases I and II (855b5-23)

3. First puzzle: no slipping or sliding (855b23-28)

4. Second puzzle: same speed, different effect (855b28-32)

5. Answering puzzle 1: the same power causes different effects (855b32-856al)
6. Answering puzzle 1: moved and mover (856a1-32)

7. Answering puzzle 2: the centre is not unqualifiedly the same (856a32-39)

In this section, I will interpret the statement of the paradox (1-4). In the next section, I will

explore Mech.’s solution (5-7).

6.3.1: Introduction (855a28-855b4)

The author opens with a question relating to the paradox: ‘There is a puzzle why the larger

13 The author does not try to explain why a circle rolled independently traces out a distance proportional to its
size.
!4 Drabkin 1950, 168-69.
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circle rolls out a line equal to the smaller circle, when they are set about the same centre.’!>
The conventional 614 11 (“Why?”) of Peripatetic problems writing is prefixed by dmopeitan ‘it
is puzzled’. The author first develops this question by showing why the fact described is
puzzling. Unequal circles rolled separately traverse paths proportional to their sizes. In other
words, a proportionality holds between paths (D1, D2) and circle sizes (peyéon C1, C2), viz.
D1:D2=C1:C2. The passage justifying this assumption is as follows:

It is clear that the larger [circle] rolls out more. For the circumference seems to
perception to be the angle of its own diameter, the larger [circle’s being] greater, the
smaller [circle’s] smaller, so that they will have the very same ratio as the lines that

they roll out have to each other, by perception.'¢

Each ratio, that of the circles and that of their paths, is manifest to perception (katd v
aicnow).!” Whose perception of what? Possibly the reader’s perception of a diagram,
though this seems unlikely. There is no textual evidence in the ensuing diagram construction
that a diagram presenting the relevant information would have been present.!8 The phrase
Katd Vv aicOnoty more probably refers to the roots of the proportionality in observations of
physical objects like wheels. If so, it is interesting that an abstract, mathematical fact about

motion is justified by reference to perception.!'’

D\
N

15 855a28-30: Amopeitan did ti mote 6 peilmv khkhog 1@ éAdttovt KokA® Tony éEedittetar ypauprv, dtav mepi 1o
avTO KEVTpoV TebDL;.

16.855a35-855b1: 811 pév ovv peilom dkkvlieton 6 peilov, pavepdv. yovia puv yap Sokel kotd v aicOnotv givar
N TEPPEPEL £KGOTOL THG oikelog dtapéTpov, 1) ToD peilovog khkAov peilmv, 1 8¢ 10D EAdtTovog EMdTTRV, HOTE
TOV avtov TodTov £E0Vot Adyov, kKb’ Gg éEexvlictnoay al ypoppol Tpog dAAN NG Katd TV aicnoty.

17 The author here means unequal circles rolled independently (rather than concentrically), as is clear from the
later comment that unequal circles roll out equal lines when they are concentric.

18 For what they are worth, the Byzantine manuscript diagrams do not attempt to display ratios between paths.

19 Note that there was no such explicit reference in problem 1’s introduction of the quadrilateral of motions or in
problem 3’s introduction of the ‘law of the lever’.
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Fig. 1: Van Leeuwen’s (2016, 235, 240) reconstructions of the Byzantine archetypal
diagrams for problem 24. The left-hand diagram does not significantly differ from diagrams
in modern editions. The right-hand diagram may relate to 856alff., although the text

concerns two unequal circles.

The sense of the key phrase (yovia ...1 Tepipépeto EkdoTov THG Oikelog S1OUETPOV) 1S
obscure and has divided commentators. Van Cappelle, Forster and Hett take this expression
to mean the angle between the circumference and the diameter, the complement to the so-
called ‘horn angle’.?° The difficulty is that the proposition that horn angles are larger in larger
circles is strictly unsupportable. One would have to suppose that the author had instead
reached this claim informally, perhaps by observing that the two arcs diverge, which is the

case for intersecting rectilinear lines just in case they differ by a certain angle.

Fig. 2: ‘Horn’ angles between the diameters and circumferences of differently sized circles

On the other hand, Heath suggested the difficult expression means ‘angles subtended at the
centre in similar sectors or by similar arcs’.?! This reading is preferable. It avoids ascribing to
the author misconceptions about horn angles and it better matches the theoretical framework
of Mech., which is based on the principle that arcs of unequal circles in the same angle are
proportional to the radii of those circles.?? Here, the idea is that there is a proportionality
between arcs and paths traced out. The focus on the ratio of arcs rather than simply the ratio

of radii or circumferences is the source of the passage’s obscurity.

20 The horn angle is the angle contained by a circumference and its tangent, which is smaller than any acute
rectilinear angle. Its complement is the angle contained by a circumference and its diameter, which is greater
than any acute rectilinear angle but less than a right angle. Elements 3 prop. 16 is the only appearance of the
horn angle in Euclid. See also Proclus’ comments on Elements 1.def.8 (121-128 Friedlein).

2l (Heath, 1949, p. 249). A similar issue arises in the interpretation of problem 8, 851b38.

22 The Rotating Radius Principle of Problem 1
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It is interesting that the proportionality is given at all. Many modern presentations of the
paradox (including Drabkin’s and that of §5.2 above) involve the claim that a smoothly
rolling circle’s path in one revolution is equal to its circumference. This can be checked
empirically (kata v aicOnow): it is easy to compare a wheel’s circumference to its path by
using a piece of string. Mech.’s method of comparison, to take separately the ratio of circle
sizes and the ratio of path lengths, and to recognise their proportionality, adds a layer of
complexity. The reason may be that Aristotle had in Phys. 7.4 asserted that straight lines
cannot be equal to arcs or circumferences. Our author may have wanted to show that the
paradox still arises even if the lengths of straight and circular lines are not directly
compared.?® But the careful talk of proportionality sits alongside phrases that are naturally
read as direct comparisons of a straight path to a circle.?* Our other ancient source for the
paradox, Hero, compares the straight and circular lines directly. It is possible that Mech.’s

proportionality has been imposed on a problem previously formulated in such terms.

6.3.2: Cases I and II (855b5-23)

Having given an initial sketch of the paradox, the author in this section constructs a diagram
which clarifies the issue but is never referred to in the solution.?® The section is introduced
with the formulaic phrase ‘6tm yop KOKhog O peilov puév €9 od T AZI ..., where yap
signals that the diagrams will elucidate the immediately previous statement: that when the
circles are concentric they sometimes trace out a path equal to that which the larger traces
out, but sometimes one equal to that which the smaller traces out.?¢ For all its lettered
diagrams, this passage does not come close to offering a proof. Its aim may be simply to
clarify, rather than justify, the statement about concentric circles. But this is not mere
repetition of the same thought in different terms; new ideas are quietly introduced, for

example the contrast between a partial and a full revolution.

23 This could have motivated the author’s choice regardless of whether he thought Aristotle was right: the best
paradoxes start from premisses no one would immediately think to dispute. Another possible motive is a desire
to account for full revolutions of the rolling circle and also partial revolutions.

24 In the opening question we have 6 peilmwv kdxkhog T® éldrTovt KOKA® Tonv dEelitteton ypopuny (866a29-30);
see later 855b15-16: 6 Hhog kKOKAOG T@ A KOKA® Tony E€eAryOnoetan, and 855b27-28: 1oV pev peilo 1@
é\dttovt ionv die€évan, tov 8¢ @ peilovi. In each case, Forster translates ‘a path equal to that of a smaller
circle’, etc., but in the last case I find this doubtful.

25 References to the diagram are confined to 855b5-23.

26 The author presumably means equal to the paths the circles trace out when rolled independently.
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The diagram construction comes first (§855b5-8, see Fig. 1 above) and is followed by
consideration of Case I, where the smaller circle drives the motion (parallel to Case I of
§5.2). Strikingly, the author adopts the first person, (‘If I move the smaller circle’) rather than
an impersonal expression (‘If the smaller circle is moved”).2” First he considers a partial
revolution, until the radius AB of the smaller circle is parallel to the line HK along which it
rolls. The construction passage did not specify the relative positions of points on each circle,
so the angle between AH and AB, the angle of this partial revolution, may seem

indeterminate.

Modern editions and Van Leeuwen’s reconstruction of the Byzantine archetype depict a right
angle. Nothing in the passage that constructs the diagram forces this interpretation but there is
a later reference at 855b14 to a quarter revolution (tétoptov).?® The author notes that after
rolling through one quadrant, both circumferences have traversed the same distance, HK and
ZA being equal. Since a whole revolution is simply four quarter-revolutions, the author draws
the conclusion, ‘If the quarter part rolls out an equal [line], it is clear that also the whole

circle will roll out a line equal to [that rolled out by] the [other] whole circle.”)*

Next, the author considers Case II, where the larger circle drives the motion (855b17-23).
The beginning of this section is marked by another first person singular, ‘Similarly, if I move
the large circle’. The author points out that, also when the larger circle rolls, the concentric
circles revolve together and complete their revolution at the same time. No partial revolution

1s mentioned.

6.3.5: Puzzle 1: no slipping or sliding (855b23-28)
Discussion of the diagram ends here as the author returns to a general discussion of the
paradox. He sharpens the original formulation by identifying two distinct puzzles. The first

puzzle is close to the initial formulation: it is puzzling (&tomov) that the larger circle traverses

27 Excluding standard formulae (e.g. ‘I say...”), the first-person is unusual but hardly unknown in Greek
mathematical writing. Eratosthenes uses first-person verbs in finding two mean proportionals using an
instrument, the mesolabe (Eutocius, Commentary on Archimedes’ On the Sphere and the Cylinder 94.15-96.8,
with Roby 2016, 55). Cf. Cuomo 2000, 146n.53 on first-person pronouns in Pappus.

28 This is comparable to the retrospective labelling of a figure as a quadrilateral in problem 1, 848b20 (see
Chapters 4-5).

2 €1 8¢ 10 tétaptov pépog fonv é€ehittetar, dfilov 8t kai 6 BAog KdKAog T® SAm KOKAM Tonv dEchydnoetar.
Why the author begins with the case of a quarter-revolution is unclear. It may be relevant that problem 1,
849a19-849b19 focussed on rotations within a quadrant. Alternatively, the quadrant may be an illustration of
what holds for any angle less than a full revolution.
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a path equal to the smaller circle and that the smaller circle traverses a path equal to the larger
circle.®? But these facts are now presented as particularly puzzling given two specific
conditions for the rolling motions described: (i) the larger circle does not stand still for any
time at the same point for the smaller circle to catch up (it does not slip); (ii) the smaller
circle does not skip over any point (it does not slide).3! A parenthetic remark explains why
these conditions hold: ‘for both [circles] move continuously in both cases’.>? The author’s

understanding of continuous change agrees with Aristotle’s in the Physics.>?

These two conditions are the reason why the facts about rolling are so puzzling. The thought
may be this: if we roll two wheels separately, we will find it necessary either to have the
smaller wheel slide ahead or to have the larger wheel slip on the spot in order to make them

traverse equal distances in one rotation.

6.3.6: Puzzle 2: same speed, different effect (855b28-32)

The second puzzle, introduced by &1t 8¢ and following a similar phrase structure, introduces a
new focus, the common centre of the two circles.>* The author has already four times
mentioned the oneness and sameness of the circles’ centre.® Partly, this was a way to express

the circles’ concentricity, but it is now given a new significance:

&T1 8¢ LAg Kvoemg oVomG Gl TO KEVTPOV TO KIVOOUEVOV OTE UEV TNV HEYAANV OTE OE
v éLdtTova £kkvAiectatl BavpacTov. TO YOp aVTO TG AVTG TAYEL PEPOUEVOV ToTV

népuke Oegléval: 1@ avTd o8 tdyet ionv 0Tl KIVETY AUOOTEPAKIG

It is amazing that, since the motion is always one, the moved centre rolls out in one
case a large [distance], in the other case a smaller [distance]. For the same thing
moving with the same speed ought to traverse an equal [distance], and to move [it]

with the same speed is to move it an equal distance in both cases.?

30.856a27-28: tov pév pellm @ éhdrrovi ionv dickiévar, tov 88 16 peilovi, dromov.

31 856a23-26: 10 8¢ pfite o1dcEmC Yvopsvng o peilov 1@ éldttovi, Hote pévely Tval ypdvov €mt Tod avtod
onueiov. .. pn vIepmNdDVTOC T0D EAGTTOVOg UNbEv onueiov

32 856a25-26: ktvobvrat yop cuvex®dg GUem GUEOTEPAKIC

33 Cf. Phys. 5.3, 226b27-28: cuveydg 68 kiveitar o undv fi 6t dAiy1eToV Stadeimov tod mpdypoTog.

34 Both puzzles begin with a genitive absolute and close with a neuter adjective expressing puzzlement (8tomov /
Bovpaotov).

35.855a30-31: Stav mepi 10 anTd Kévipov Teddot; 855b3: Stav mepi 1O 0Td Kévipov Keipevol Mot ; 855b7:
KEVTPOV O aupoiv 10 A; 855b10: 10 00TO KEVIPOV KIV®D.

36 855b28-30.
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Apparently, the centre should travel the same distance in both cases and so the fact it does not
presents a puzzle. But it is obscure why we should expect the centre to travel the same
distance and the ambiguous wording of this passage poses challenges to interpretation. First,
what is meant by ‘the motion is always one’? There are at least four options: (a) the circles
are always concentric and thus share a single motion; (b) the motion is continuous; (c) the
motion is complete; (d) the [angular] speed is the same in both cases. Of these, (a) and (¢)
seem less likely since (a) is trivial (concentricity was assumed but unstated in puzzle 1) while
it is doubtful whether (¢) is true or relevant.’” The syntactic parallel to the genitive absolute
conditions in puzzle 1 might suggest (b), with ‘one motion’ functioning as a convenient
shorthand for what had been carefully spelt out above.*® While (a) and (b) repeat earlier
ideas, (d) would introduce a new assumption. Speed and time have not so far featured in the
presentation of the paradox; what has mattered in each case is the horizontal distance
travelled for a given angle of rotation, not the time taken. Against (d), it would be odd for the

new assumption not to be expressed more clearly in terms of sameness of speed.*”

Sameness of speed is clearly at issue in the second sentence, which attempts to explain why
we should expect the centre to traverse the same distance in each case. The reason given is
that the same thing moving with the same speed ought to traverse an equal [distance]; °...in
an equal time” may be intended, but its omission is unusual and worth noting.** However, we
are not explicitly given a reason for assuming that the centre moves with the same speed.
What is needed for the puzzle to make sense is a way of prompting the expectation that the

centre should traverse the same distance in each case.

The author might mean that the centre moves with the same angular speed. The point would
be that when the centre is rotated through the same angle (e.g. a quarter revolution or a full

revolution) in the same time, it travels a different distance in each case. But this would be a

37 For the sense in which a change is ‘one’ if it is complete, see Phys. 5.4, 228b11-15.

38 For Aristotle, every unqualifiedly one change is continuous and every continuous change is one (Phys. 5.4,
228a20ft.)

39 Sameness of speed is not one of the senses in which changes are said to be one in Phys. 5.4. Aristotle
considers the difference made by uniformity and non-uniformity of speed in a single change (228b15ft.),
concluding that non-uniform change is single (because it is continuous) but ‘less single’ than uniform change.
40 Cf. Phys. 6.2, 232b15-18: avéyxn 1 &v Tom 1i &v éLdttovt §j v mhelovi kKiveloOan, koi TO pev &v mheiovt
Bpadvtepov, 10 6’ &v iow icotayés, T 8¢ Battov olite icotaygg obte Bpaddtepov, obT’ v &v iow 0BT’ &v Theiovt
Kwolito 10 Bdttov; Phys. 7.4,248a16: dtov &v ioe ioov kivn0f], tote icotayég;, 249b4: GAN’ £otm icoToys TO
&v io® 1pove T aTo petafdAiov.

142



strange issue to raise. Again, speed seems irrelevant to the comparison of the cases; the
distance travelled matters but the time taken does not. Secondly, it seems unreasonable to
assume that the same thing will travel the same distance in the same time when moved by the
same angular speed. A rolling circle’s centre will travel a certain distance, but when the same

circle rotates on the spot with the same angular speed, its centre will not travel any distance.

Although Greek writers of the fourth and third centuries BCE (including Aristotle) implicitly
use the notion of angular speed, particularly in discussing the heavens, angular speed is
usually not explicitly distinguished from linear speed. It is possible that the puzzle relies on a

use of Tdyog that is ambiguous.*!

Another possibility is that by @ a0t® tdyet pepdpevov the author might mean ‘what is
moved by [a mover with] the same speed’.*? On this reading, what we have is the idea that if
A, moving of itself with a fixed speed, at one time pushes B and at another time pushes C,
then, if B and C are in fact the same thing, they should be moved by A an equal distance in an
equal time.* In the context of the Rota paradox, we must imagine a mover bringing about
motion at the centre of the concentric circles in Cases I and I1.#* The assumptions would be
(1) that the centre of the concentric circles constitutes a single object in the required sense; (ii)
that it takes a mover of given speed to roll the centre through a given angle in a given time in
each case. What favours this reading is the condition that the pepopevov be the same; this
would be unnecessary if the sentence were simply a statement of what it is for two things to
move at the same speed. Further, the first point the author makes in his solution (855b32-
856al, primarily addressing puzzle 1; see 6.5.1 below) is that a mover with a fixed speed
moves different objects at different speeds. The effects of movers with fixed speeds are

clearly on the agenda.

4! In that case ‘quickness’ might be a better translation.

42 Taking 1 o0t téyel as a dative of agent rather than of manner

43 This may be the case even if A continues moves at a slower speed when it is pushing another object. In fact,
that seems to be the implicature of the condition that the object be the same.

44 Recall that in Cases I and II the author used the first person in supposing he moved each circle himself. This
could be taken to underline the sameness of the mover’s speed.
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6.4: Comparison of sources
At this point it is worth comparing Hero’s statement of the paradox. Hero’s Mechanica
survives only in Arabic translation. I base the following on the available French, German and

partial English translations:*’

‘And it could also be that the movements of the large circle and the small circle are
equally swift even when both are fixed in their motions around the same centre. Let
us think of two circles fixed on the same centre, the centre a. And let there be a
tangent to the larger circle, line 5f°. And let us join the points a and . Thus line of
will be perpendicular to the line #f°. And the line S’ is parallel to the line yy’ and the
line yy’ is tangent to the smaller circle. Also let us draw from point a a line parallel to
the other two lines, and this is the line aa.’. And so if we imagine that the large circle
rolls along the line f’, the small circle passes along line yy’. And when the large
circle has already made one revolution, it will appear to us that the small circle has
made one revolution also. Thus the position of the circles will be the position of the
circles whose centre is at a’, and line aff will be in the position of the line a’5’. For
this reason line #f’ will be equal to line yy’. And line £ is the line which the larger
circle traverses when it makes a single revolution. And line yy’ is the line along which
the smaller circle is rolled in a single revolution. And so the movement of the smaller
circle is equally as fast as the movement of the larger circle, because the line " is
equal to the line yy’, and things which traverse equal distances in equal times have

movements of equal swiftness.

In thinking about it, one might consider the conclusion absurd because it is not
possible for the circumference of the larger circle to be equal to the circumference of
the smaller circle. And so we say that the circumference of the smaller circle has not
only rolled on the line yy’, but it has traversed the path of the larger circle along with
that circle. And so it happens that the movement of the smaller circle is equal in
swiftness to the movement of the larger circle as a result of the two movements. For if
we consider the larger circle rolling and the smaller circle not rolling but rather
remaining still on point y, then it will lay out the line yy’ in equal time; and the

midpoint a lays out the line aa’ in this time. But this is equal to both lines 5’ and yy .

4 Carra de Vaux 1894, Clagett 1959, Nix and Schmidt 1976, 18-23.
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Then the proceeding of the smaller circle’s rolling makes no difference to the motion
and consequently the length of the larger circle’s path is the same as that along which
the smaller circle moves. So we see that the midpoint traverses this distance without

rolling, on account of the motion in which the larger circle moves. #¢

Fig. 3: Diagram accompanying Hero's text in Nix and Schmidt 1976, 16.

Hero opens with a statement of the absurd conclusion he derives from the paradox: that
unequal concentric circles move equally quickly. This is a more explicit contradiction of the
Rotating Radius Principle than any sentence in Mech. 24’s treatment of the paradox. Next, he
constructs a diagram and explains what each line represents. BB’ represents the path traced
by the larger circle in one revolution and CC’ represents the path traced by the smaller circle
in one revolution. It is clear from the construction that BB’ and CC’ are equal. Now things
which traverse equal distances in equal times move equally quickly. The circles traverse

equal distances in an equal time. Therefore they move equally quickly.

Hero’s version of the paradox, though less detailed than Mech.’s, is more tightly composed.
Its elements are few but they work together to deliver a clearly paradoxical conclusion.
Mech.’s version lacks the same degree of clarity and coherence. This applies not only to the
sequence of discussion, which is knottier in Mech., but also to the conclusions reached.
Hero’s puzzle clearly relates the issues of the Rota to foundational principles in mechanics
such as the Rotating Radius Principle. Mech.’s discussion is less explicit about the speeds of
concentric circles and places the emphasis of its two puzzles elsewhere. The equal-speeds

principle appears in the same position in both versions, at the end of the paradox’s set-up and

46 Hero, Mechanica 1.7.
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immediately before the suggested solution. However, the principle plays a comparatively

weak role in Mech.

It is particularly interesting that Hero explicitly draws a contradiction from the phenomena of
rolling, similar to a puzzle I described in 6.2, whereas Mech.’s author notes certain features
that are puzzling without drawing a clear contradiction. It is Hero’s statement of the
contradiction that makes the connection to the Rotating Radius Principle clear. Yet whether
Hero’s version is discussion is a streamlined and clarified version of Mech.’s, or whether

Mech.’s is an elaboration on a presentation closer to Hero’s, remains uncertain.*’

6.5: The solutions in the Mechanica

Mech.’s author addresses the puzzles in the order he presented them. His answer to puzzle 1

is much longer than his answer to puzzle 2.

6.5.1: Answering puzzle 1: the same power causes different effects (855b32-856al)

The solution begins with a statement that the principle (dpyn) ‘of these things’ is the fact that
the same and equal 80vopug moves some magnitudes (uéyedoc) faster and some slower.*®
This seems to be borne out by certain ordinary experiences. A horse can pull an empty cart
faster than it can pull its full load. It is assumed without question in Phys. 7.5’s specific
assertions that an equal dvvapug moves half the weight double the distance in an equal time,

or an equal distance in half the time. Mech.’s author illustrates his point as follows:

€1 01 T €ln O un mépukev VY’ Eavtod KveiohHat, v TodTO Gpa Kol aVTO Kivi} TO
TeQLKOG KiveicOat, Ppadvtepov kivnnoetat fi el adt0 kad' avtd* éxveiro. kai o

L&V TEQLKOC 1| KtveioBon, pf cuykwvijtar 88 unbév, dcadtog EEet. kol ddvvatov &1

47 There are also questions to be asked about our text of Hero. The paradox appears near the start of Book 1, but
it is doubtful whether the beginning of this book as transmitted, on the barulkos, was the original opening of the
work. A version of the Mechanica was known in the Arabic world; al-Khazini includes a partial translation in
his Book of the Balance of Wisdom (see Abattouy 2001). One clue that Mech.’s discussion may be a revision of
an earlier presentation has been mentioned in 6.3.1 above: the author both seems to offer two different
descriptions of the phenomena, claiming both that there is a proportionality between circles and their paths
when rolled independently, and that a circle rolled independently traces out a path equal to its circumference.

48 856a32-334: dpym 8¢ Anntéa fide mepi Tiig aitiag adTdv, 61 adTH SVvapc kai Ton To pév Ppadvtepov Kivel
péyebog, 10 6& Ty vTEPOV.

49 The manuscripts have oot kKo’ odThyv.
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KiveloOat TAEov 1} TO Ktvodv: 00 yap TV aTod KIveltol Kivnow, ALY TV TOD

KIvoOVTOG.

‘If there is something which does not naturally move because of itself, and if
something that naturally moves because of itself moves this along with itself, it will
move more slowly than if it moved alone by itself. And if it moves naturally but
nothing is moved with it, the same will happen. So it is impossible for it to be moved
more than the mover, since it is not moved by its own motion but by that of the

mover.’

One object moving with its natural motion forces another object to move. Two cases are
considered. In the first, the object moved by force does not have a natural motion of its own.
In the second, it has a natural motion of its own. In both cases, the object moved cannot move

further than the object forcing it to move.

In the first case, does the author mean (a) something artificial and hence without a nature in
itself but tending to move in accordance with the natural motions of its material constituents;
(b) something with no natural motion at all, even due to its matter; or (c) something with no
capacity for self-motion (reading V¢’ ¢ovtod KiveicOot as ‘to be moved by itself’); or (d)
something which has a natural tendency to move but is not moving naturally at a particular

time?

It is difficult to see how (a) could offer an interesting contrast with the second case. And
although V@’ €avtod kiveicOou is Aristotle’s standard expression for self-motion, there is
nothing in this context to suggest that that subclass of animal motions is at issue, so (c) also

looks unlikely.

According to (b), the object hypothesised in the passage is neither heavy nor light, nor moves

naturally in a circle. >° Such a body simply rests unless it is moved by something.! The

50 For Aristotle, heaviness and lightness are tendencies to move downwards and upwards (DC 4.3).

511t is not entirely clear that a body with no natural motion would lack a nature. Nature is an inner principle of
change and rest (Phys. 2.1). The imagined object might have an inner principle of rest and could be said to have
a nature in an extended sense. However, Bodnar 1997 has convincingly argued against ‘one-sided’ natures that
would be only inner principles of motion. I suspect his considerations may be transferrable to the case of natures
that would be only inner principles of rest.
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suggestion is outlandish. In De Caelo 3.2, Aristotle claimed that there could not be a
(sublunary) body without heaviness or lightness, arguing that such a hypothesis leads to two
absurdities. The author of Mech. does not comment on its falsity or absurdity. I have found
no independent evidence that any of Aristotle’s successors in the Peripatos embraced the
notion of an independently existing body without heaviness or lightness. Even the renegade
Strato held that a// bodies are heavy, leaving no room for the kind of body imagined by
Mech. 24.52 We may of course be missing part of the story, but it is difficult to see why
anyone should have been tempted to posit such objects. If (b) were the correct reading, the
author of Mech. 24 would be engaged in what we would call a ‘thought experiment’.>® What
would be the point? Aristotle says that a body without any ponr| is unmovable and
mathematical (dxivntov xoi padnpatikdv, DC 3.6, 305a24-26), so perhaps the point would
be to convince us that the principle can be extended to mathematical entities like circles.
Alternatively, the point might be to illustrate that the weight of each wheel is irrelevant to the

problem.

All the same, (d) is a more likely interpretation. It is true that Aristotle uses the formula
népukev KiveloBou to describe capacities for natural motion, rather than things moving
naturally.>* That is the main consideration favouring (b). On the other hand, the conditionals
of our passage are less vivid (&1 61 Tt €in) and vivid (éav... ki) future, rather than unreal
(counterfactual). More importantly, the exotic hypothesis of an object with no natural motion
is not necessary for the argument. The author wishes to show that, if A moves B, then B
cannot move more than A, whether B is moving naturally or not.>> Considering a case where
B is not moving naturally is sufficient. There is no need to consider cases where B has no

natural tendency to move.

52 Strato fir. 49-50D Sharples.

53 Corcilius 2018 studies some thought experiments in Aristotle’s authentic works, noting that the Greeks had no
category corresponding to our ‘thought experiment’. On ancient thought experiments, see also Ierodiakonou
2005.

5% Phys. 8.3, 253a26-28: if it is necessary that there are always some things changing and some things at rest,
then fjtot T0 p&v Kvovpeva KiveloBar dei T & Npepodvea NPepelv, Tj TavTa Te@ukéval Opoimg KiveioOon kai
Npepeiv. DC 1.8, 276b27-29: TIdtepov odv Pig mécog Epoduey kiveicOon kai téc dvavtiog GAL & pm tépuiey
OAw¢ kveloBat, advvaTov TodTo KiveioBan Pig.

55 The claim that A will move slower if it moves B than if it moves by itself suggests that bodies have some
resistence to motion, or at least are capable of slowing motions, independently of their heaviness. See Note B to
Chapter 1.
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6.5.2: Answering puzzle 1: moved and mover (856a1-32)

In this long passage, the author considers a number of ways in which one circle could move
another. The aim, I think, is ultimately to show that Case I and Case II should be understood
in terms of one circle playing an active role and forcefully moving the other. The author will
tell us that when the smaller circle sits on the surface, the smaller circle causes the larger
circle to move, and the motion the larger circle undergoes belongs to and is determined by the

smaller circle. When the larger circle sits on the surface, it determines the motion.

What is the reason for working through several examples? Perhaps it is to show how one
circle can determine the other’s motion in cases where they are not concentric. The analysis
is less clear when they are concentric, since the two circles are harder to distinguish in
comparison to when they are sitting next to each other on the surface. The specific examples
considered are: (1) if the smaller circle pushes the larger without rolling, the larger will move
as far as the smaller; (2) if the smaller circle pushes the larger while rolling, the larger will
move as far as the smaller; (3) if the larger moves the smaller, the smaller will move as far as
the greater. The author then moves to generalising: it makes no difference whether the motion
is fast or slow; it makes no difference whether one circle surrounds the other, or is fitted
inside the other, or is in contact with its circumference. In all cases, one circle is active and
one is passive, and the passive moves just as far as the active drives it. It is ultimately this

distinction, which explains the difference between Case I and Case II.

6.5.3: Answering puzzle 2: the centre is not unqualifiedly the same (856a32-39)

In returning to puzzle 2, the author now puts it in the mouth of a ‘sophistic puzzler’ who
‘reasons fallaciously’. These terms of criticisms are suggestive.’® They may call to mind the
language of the Sophistical Refutations, a work that categorises and examines fallacious
arguments that appear to be refutations (§Aeyyot).”” But there is no more specific allusion than
this verbal echo, and the fallacy identified is one which Aristotle also discusses in several

other texts.>8

56 For other uses of mapodoyiletar, see Phys. 186al1, 239b5 (against Melissus and Zeno, respectively); Poetics
1460a25; Politics 1307b35; Problems 5.25, 883b8 and almost verbatim at 30.4, 955b16; Rhet. 1401b8;
1408a20; Soph. Ref.. 171b37. For uses of copiotikdg, compare Topics 5.4, 133b16; Rhet. 1419al4.

57 An &\eyyog is ‘a deduction to the contradictory of a given conclusion’ (Soph. Ref. 1, 165a2-3, trans. Pickard-
Cambridge). Puzzle 2 appears — and merely appears — to deduce a contradiction of the conclusion that the centre
traverses paths of different lengths.

8 E.g. Met. E.2, 1026b15fTf. In the terms of the Sophistical Refutations, it is difficult to decide whether the
fallacy identified in puzzle 2 should fall under the fallacy of accident or the fallacy of secundum quid.
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We are told that the error in puzzle 2 was the tacit assumption that the circles’ centre is one
and the same without qualification (6mA®dG). On the contrary, the centre is the same for both
circles accidentally (katd copfepniog), ‘like musical and white’ (®g povotkov Kol AeVKOV).
This elliptical comparison to the musical and white assumes familiarity on the part of the
reader with the stock examples of Aristotelian literature.>® The point of the comparison is as
follows. A person, say Socrates, who is both musical and white can be described as ‘musical’
and ‘white’. Each of those two terms can then be used to refer to one and the same thing,
Socrates. In a sense, then, the musical is white (and vice versa), but this is only true for the
sense in which ‘the musical’ refers to what musical is an accident of, namely Socrates. In the
sense in which ‘the musical’ refers to the accident itself, musicality, the musical is not
white.®® Treating the white and the musical as the same without qualification can lead to all

kinds of absurdities (e.g. that musical is a colour).

In the case of puzzle 2, there is a single point which is the subject, analogous to Socrates.
This point happens to be the centre of the smaller circle and the centre of the larger circle, so
it can be referred to as ‘the centre of the smaller circle’ and ‘the centre of the larger circle’.
But just as the musical and the white are not the same without qualification, so here the
centre of the smaller circle and the centre of the larger circle are not the same without
qualification. So from the premise that ‘the same thing moving with the same speed ought to
traverse an equal [distance]’ one cannot deduce that the centre of the larger circle and the

centre of the smaller circle ought to traverse an equal distance.®! In Case I, when the smaller

39 While neuter, povoikdv and Aevkdv do not agree with kévtpov. The kévrpov is analogous to the unmentioned
subject which possesses these attributes. Cf. Forster’s expanded rendering (my emphasis): ‘just as the same
thing may chance to be ‘musical’ and ‘white’.’

60 Aristotle frequently uses ‘musical’ and ‘white’ as examples of the accidental, in all its senses. See De Int. 11
21a7-11: ‘Of things predicated, and things they get predicated of, those which are said accidentally, either of the
same thing or of one another, will not be one. For example, a man is white and musical, but 'white' and 'musical’
are not one, because they are both accidental to the same thing.” (trans. Ackrill); Met. Z.6, 1031b19ff.; 4Po. 1.4,
73b5 on another sense of accidental: ‘what belongs in neither way [sc. of belonging to a subject essentially] I
call accidental e.g. musical or white to animal’ (trans. Barnes).

' Van Cappelle 1812, 262 gives a different interpretation, understanding kot copPepnidc in terms of
accidental predication: just as humans are not necessarily or for the most part musical or white, the point is not
necessarily or for the most part the centre of the larger circle or the centre of the smaller circle; those attributes
can be called ‘accidental’ since they are not essential. While this interpretation is consistent with mine, it does
not seem to be what the author intended by katd cuoppepnioc.

150



circle causes the motion, the centre of the smaller circle governs the motion.*? In Case II

when the larger circle causes the motion, the centre of the larger circle governs the motion.®?

This solution seems problematic. The author is quick to point out that the circles’ centres are
not absolutely the same, but does not take care to show that they are different in a way that
matters. It is not obvious that the same speeds principle requires that the subject of motion be
the same without qualification. It might seem that extensional equivalence is sufficient. After
all, items that are spatially coextensive (or co-located or co-positioned, as perhaps we should
say for extensionless points) will necessarily traverse the same distance, or remain in the

same place, in a given time.

A difficult sentence immediately following the comparison to musical and white attempts
either to justify or to clarify the point just made: T® yap givon katépov KEVIPOL TRV KOKAMV

).64 Taking 10 kévtpov as the implied subject (cf. 856a34-35),

o0 T® oVt Yptitan (856a36-37
I understand this as saying that the centre ‘uses its being the centre of each circle
differently’.%® If this is meant to show that the circles’ centres are different in a way that
should make a difference to the distance they traverse (note the use of yap), the reasoning
seems open to a charge of circularity. Why does the centre traverse different distances?
Because it has two attributes. Why do those attributes make a difference to the distance

traversed? Because the centre in fact traverses different distances.

The author does not mention in his discussion of the centre’s motion the Aristotelian doctrine
that what has no parts cannot move except per accidens.®® Perhaps the reason for this
omission is that, although problem 24’s paradox is couched in abstract, geometrical terms
(circles and centres), the author still tacitly has in view the corresponding physical objects

(wheels and axles), where the axle corresponding to the centre does have parts. Attention to

62 1t is the apyn (856a38).

63 856a38-39. For the notion that an indivisible point can be in a sense two or have two different functions,
compare Phys. 4.11,220a10-13; 8.8, 262b24-25; DA 3.2 427a9-14.

%4 I read 1@ following Apelt. This appears only in Par. A where other manuscripts have 10, which is favoured by
Hett and Bottecchia Deho.

85 Compare Hett, ‘For the fact of each circle having the same centre does not affect it in the same way in the two
cases.” and Bottecchia Deho, ‘perché I’uno e I’altro cerchio hanno si il medesimo centro, ma non usano il
medesimo.” DA 3.2 427a12-13 uses the same form of the verb (ypfitar) twice, but with the faculty of
discrimination as the subject and successively a point (onpeio) and a limit (mépatt), probably the same item, as
the objects; Phys. 8.8, 262b24-25 uses the perfect tense of the same verb.

8 Phys. 6.10.
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the partlessness of the centre would place inappropriate emphasis on a feature of the

idealisation.

A pair of recent commentators, Gilinter Dosch and Ernst Schmidt, have argued that Mech.’s
solution has been traditionally undervalued and is in fact satisfactory (befriedigend).®” As we
have seen, the author distinguishes the way a circle rolls independently from the way it rolls
when carried by another circle (856a1-32); he sometimes refers to the way a circle rolls
independently as what it does ‘naturally’ (e.g. 856a19). Dosch and Schmidt argue that calling
a circle’s motion ‘natural’ is the obvious thing to do (naheliegend) when it rolls
independently; likewise we could call a circle’s motion ‘unnatural’ when it is carried by
another circle.®® This is partly explained in terms of modern classical (= Newtonian)
mechanics. A circle rolls ‘purely’, tracing out in one revolution a path on the surface equal to
its circumference, when the instantaneous linear velocity of its point of contact with the
surface is always zero, and this typically occurs because a linear velocity of zero at the point
of contact minimises static friction. If the linear velocity at the point of contact were not zero,
constant application of force would be needed to overcome static friction, and in that case the
circle would trace out in one revolution either a greater or lesser distance than its
circumference.®’ In the context of this modern theory, the authors argue, the labels ‘natural’

and ‘unnatural’ also seem obvious (naheliegend).”

It is undoubtedly important to keep our grip on the modern analysis of rolling, and Dosch and
Schmidt’s exposition is admirably clear. Nonetheless, I cannot take comfort in the parallels
they intimate between this analysis and Mech.’s treatment of the paradox. Friction is nowhere
mentioned in Mech.’s discussion. And in the absence of a worked-out or even roughly
sketched account of the effects of static friction, how satisfactory is the part of Mech.’s
solution which is framed in terms of the way a circle moves naturally? One traditional
complaint has been that Mech.’s solutions to the paradox are empty.”! I share the view that
the author, by saying that one circle’s motion is ‘natural’ and ‘of itself” while the other is

moved by it, has essentially re-described the phenomena without accounting for them.

7 Dosch and Schmidt 2018, 228.

8 Dosch and Schmidt 2018, 222; cf. 227: ‘Die Bezeichnung. .. ist durchaus angemessen.’

% The constant application of force would of course not be necessary in the absence of friction; on an ideal,
frictionless ice rink, wheels could easily trace out in one revolution any distance we please.

70 Dosch and Schmidt 2018, 225.

" Kliigel 1803, 173: ‘Was Aristoteles selbst zur Erklirung der Schwierigkeit beibringt, lduft auf leere
Spitzfindigkeiten hinaus und ist keine wahre Auflosung derselben.’
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6.6: Conclusion

This chapter has offered a close reading of the text of problem 24. I have argued that this
problem opens by launching a subtle challenge to the Rotating Radius Principle, the keystone
of Mech.’s explanatory programme. The rest of the problem attempts to restore order. The
attempt to grapple with the problem involves several striking moves. In the response to
puzzle 1, we are invited to consider that, in general, no object that is moved by another object
can move faster or further than what is moving it. The response to puzzle 2 involves a
division, at least conceptually, of the indivisible point at the centre of the two circles. In both
cases, the paradox is resolved by appealing to ideas that belong to natural philosophy, rather

than mathematics.

This may be taken as further confirmation of a conclusion reached in the previous chapter,
that Mech.’s author did not aim to follow the methodological strictures of Aristotle’s
Posterior Analytics. In Chapter 5 I argued that Mech.’s explanations are analogical rather
than demonstrative. The present chapter suggests another element of Aristotle’s scheme has
been brushed aside. In the Posterior Analytics 1.7, Aristotle prohibits explaining the subject-
matter of one science through the principles of another. He allows for a special exception in
the cases of mechanics, optics, harmonics and astronomy, which he characterises as
subordinate, mixed sciences (1.7, 75b14—17; 1.13, 78b32—79a16). Each is subordinated to a
higher, mathematical science (e.g. geometry) one which it depends for its proofs. The lower,
physical science states the dt1, the facts or phenomena to be explained, but the higher,

mathematical science supplies the 81011, the explanation.’

Although it does not use those terms, Mech.’s preface has often, I would argue mistakenly,
been read as aligning the text with this conception of mechanics.” In Mech. 24 the
hierarchical ordering of sciences suggested in the Posterior Analytics seems to be inverted.
An ostensibly mathematical problem, at any rate a problem about circles that is stated without
reference to natures, powers, or other properties characteristic of natural inquiry, is explained
through appeal to principles that unmistakably belong to investigations of nature rather than
to geometry. The &t is stated in abstract, mathematical terms and yet Mech.’s author did not

feel the need to have the higher, mathematical science supply the d16tt. This should not be

2 For a fuller analysis, see McKirahan 1978.
310 pév yap d¢ St TV podnpotik®dy didov, o 8¢ tepi 6 10 tdv puoikdv. I cast doubt on this reading of the
preface in §1.2.
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very surprising. [ argued in Chapter 4 that problem 1’s explanation is physical and causal
rather than mathematical. The case of problem 24 is only more striking given the higher level

of abstraction at which the explanandum is described.
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Chapter 7: A new interpretation of Physics 7.4

7.1: Introduction
In the previous chapter I compared our two ancient sources for the paradox. In the present
chapter I shall show how this appreciation of the paradox may shed light on a disputed

chapter of Aristotle’s Physics.

In Physics 7.4 Aristotle asks whether all changes are comparable (cuppAntai) and answers
‘no’. Not only are changes in different categories incomparable, so that, for example, an
alteration cannot be compared with a generation, but there are also incomparable changes
within categories. Surprisingly, Aristotle says that, among changes in the category of place,
circular and rectilinear motions are incomparable. His reason for this claim has something to
do with the fact that although terms like ‘equally quick’, ‘faster’ and ‘slower’ always mean
the same thing, they are different when applied to changes in different species, and circles

and straight lines are different species of line.!

Scholars agree that Aristotle says this much, but debate his reasons for doing so. Aristotle’s
belief that there are different species of line is shared with several ancient geometers and
philosophers, but the claim that objects belonging to different species are incomparable is
not.2 Phys. 7.4 does not mention ‘mixed’ lines or motions and leaves us unsure to what extent

they might be compared.®

I shall criticise three past interpretations of Phys. 7.4 (I call these the construction, measure
and cosmological interpretations) and propose a new one. My aim is not to defend the
chapter, but to indicate some serious difficulties in influential readings and to offer an
alternative that is more charitable. I do not expect that any interpretation of this difficult text
will be free from problems, but I approach the task with three desiderata. First, we should like

our interpretation to be charitable: we should assume that Aristotle was not at odds with the

' De Caelo 1.2 makes a similar distinction between circular and straight lines, adding the further category of
‘mixed’.

2 See Heath 1956, 159-65 on ancient classifications of lines. Euclid (Elements 5.def. 3) specifies that ratio is a
relation in respect of size between two magnitudes of the same species. There are ten species: curved and
straight lines, regions, surfaces, solids and angles. By his lights, curved and straight geometric objects always
belong to different kinds so there should be no ratios between them. However the relevance of this is
questionable since cuppAnTog surely cannot mean ‘commensurable’.

3 See Chapter 3 for my discussion of mixed motions in DC 1.2 and Phys. 8.8
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geometry of his day and that he did not engage in blatant self-contradiction. Secondly, we
should like Physics 7.4 to have a point. It is possible that Physics 7 is something of a
scrapbook and I do not commit myself either way on the vexed matter of its overall
coherence and integrity. However it is clearly desirable that an interpretation of any of its
component blocks should identify a purpose in the context of Aristotle’s philosophical

agenda. Thirdly, any interpretation should naturally be historically plausible.

I shall suggest that Aristotle’s rejection of the comparability of rectilinear and circular
motions is motivated by a paradox of motion known as the ‘Wheel of Aristotle’.
Interpretative disagreement has partly concerned the correct interpretation of Aristotle’s
ovpuPintdc, a word not used by Greek mathematicians.? I shall not consider in any detail the
interpretation according to which cupufAntdc means ‘commensurable’ (cOppeTpog) in the
mathematical sense of expressibility as a ratio of two positive integers. It has been
satisfactorily shown that this interpretation must attribute to Aristotle a number of erroneous
inferences and, in any case, had Aristotle meant to speak of commensurability he could have
used ovpuetpoc, as he does elsewhere.” A similar line of criticism applies to the measure
interpretation (see below) according to which Aristotle’s use of coppAntdg means or implies
petpntéc. On the one hand, this reading would present technical problems; on the other,
Phys. 7.4 nowhere uses the terminology of measurement which we would expect, were

measurement important to his argument.

I think Aristotle’s cuppAntdg means comparable in the following straightforward sense: X
and Y are comparable if it can be truly said that X is equal to, greater than or less than Y.
Aristotle denies that the speeds of circular and rectilinear motions are comparable in this

SE€nse.

7.2: The Construction Interpretation
Some commentators believe that Aristotle makes the mathematical blunder of claiming that a
straight line cannot equal a circle in magnitude. ‘Of course the circumference is equal to a

straight line,” writes Bostock, ‘and it is astonishing that Aristotle should have thought

4 There is no entry for coupAntdg in Mugler 1958.
5 Wardy 1990, 267.
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otherwise.’® It is indeed hard to know what could motivate this belief; the construction
interpretation suggests that Aristotle thought no such line existed either because (i) none had

been constructed, or (ii) he believed none was constructible.

The construction interpretation has ancient pedigree. Alexander of Aphrodisias (as reported
by Simplicius) apologetically explained that in Aristotle’s time the geometrical problem of
squaring the circle was still under investigation.” Simplicius himself thought that the problem
had been abandoned.? It is well known that Greek geometers after Aristotle squared the circle
by means of a curve called the quadratrix (tetpaymvifovcsa). Unfortunately it is unclear when
this method of quadrature was first developed. Formerly, historians ascribed the discovery of
this curve, if not necessarily its application to the quadrature of the circle, to Hippias of Elis.
The current consensus is that the quadratrix cannot antedate the 3™ ¢. BCE.? So Alexander
may well be right that the circle had not been squared in Aristotle’s day, although there is
little ground for Simplicius’ claim that geometers had given up hope. In the Categories
Aristotle seems open-minded about the possibility of squaring the circle.!® In the Eudemian
Ethics, he seems more pessimistic — but was this because the geometers had given up hope,
or because of his own conclusions in Phys. 7.4?'! A third possibility is that Aristotle was

merely using a stock example of a pointless endeavour.'?

In any case, the relevance of circle squaring is questionable. Strictly speaking, Aristotle on
the present interpretation bans the rectification of the circle, not its quadrature. The two
problems are indeed connected. Archimedes’ Dimension of the Circle proposition 1 reduced
the problem of quadrature to the problem of rectification, demonstrating that a circle is equal

to the right-angled triangle whose perpendicular sides equal its circumference and radius. So

¢ Bostock 1996, 285.

7 < Alexander asserts that he has stated several things about noncomparable motion because it has not yet been
proved that a straight line is not equal to a curve but has remained being investigated.” (trans. Hagen 1989, 76).
8 ¢[In Aristotle’s day,] it was still being investigated whether it is possible for a straight line to be equal to a
curve, or rather it had been given up on. And hence the squaring of the circle had not yet been discovered
either,” (trans. Konstan 1989, 60-61).

® Knorr 1986, 80-86 argued that the quadratrix’s application to the problem of squaring the circle should be
dated after Aristotle.

10 Cat. 7b29ff.: émotiung 8& un obong 00d&v KoADEL EMGTNTOV Elvar: olov Kod 6 ToD KOKAOV TETPAYOVIGHOC
glye £oTv EmMoTNTOV, EMOTAUN PEV ADTOD 0VK EGTIV OVOET®, 0TO 8¢ TO EmiotnTov £otiv. (trans. Ackrill: “[I]f
there is not knowledge there is nothing to prevent there being a knowable. Take, for example, the squaring of
the circle, supposing it to be knowable; knowledge of it does not yet exist but the knowable itself exists.” )

11 EE 2.10, 1226a29-30: 810 00 Bovievopedo mepi dv &v Tvdoic, o0de ndc dv O KOKAOG TeTpaymvicdein. To pév
YOp VK £0° NWiv: 10 & 6Amg o Tpaktdv (trans. Kenny: ‘Hence we do not deliberate about the affairs of India,
nor about how to square the circle—the former are not in our power and the latter just cannot be done.”)

12 See Aristophanes Birds 1005 (first performed in 414 BCE).
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the possibility of one construction entails the possibility of the other. Was Aristotle aware
that one problem reduced to the other? Or did Alexander retroject what had become common
knowledge by the late 2" c. CE? For present purposes it does not much matter, since the
advocate of the construction interpretation might equally maintain that Aristotle denied the

possibility of rectification.!?

There are however two problems with the construction interpretation. First, the fact that a
construction had not yet been produced would not have warranted the conclusion that no such
object exists rather than that its existence had not yet been proven or disproven. Secondly,
even the impossibility of a construction would not have warranted an existential conclusion.
We have no reason to think Aristotle would have been inclined to associate constructability
and existence. It is unlikely that such a view could have been borrowed from mathematical
practice. Zeuthen’s thesis that Greek geometers viewed constructions as existence proofs,
although once dominant, is no longer widely accepted.!* Partly this is because constructions
are often better viewed as attempted for their intrinsic interest, and partly because
mathematicians sometimes assumed the existence of objects non-constructively, for example
in the Eudoxan assumption of the fourth proportional to three given magnitudes in theorems

of Elements 12, based on tacit intuitions of continuity.!>

The construction-as-existence reading, or more precisely the straightedge-and-compass-
construction-as-existence reading, provides a straightforward explanation of Aristotle’s
emphasis on the status of circular and straight lines as “simple” (and hence the only possible
paths of natural motions, cf. De Caelo 1.2, Phys. 8.8). An alternative explanation is available:

Atristotle called these simple because he believed they were the only homeomeric lines.!®

13 Mendell 2004 suspects the equivalence of rectification and quadrature was still unknown in the 4" ¢. BCE.
Simplicius later spoke of Archimedes’ rectification in SL 18 as a quadrature (Comm. in Cat. 7, 192.15-25
Kalbfleisch).

14 See Zeuthen 1896 with the criticisms of Steele 1936, Niebel 1959, Knorr 1983, and Lachterman 1989. The
debate is now conveniently summarised by Thiel 2005 who distinguishes from Zeuthen’s thesis the stronger,
intuitionistic claim of Becker that Greek geometers identified existence with constructability. From a different
angle, Harari 2003 argues that Aristotle's ontology offers no reason to think he saw constructions as existence
proofs

15 Mueller 1981, 230-32.

16 A homeomeric line is one such that any two equal parts can be made to coincide by superposition. While
Aristotle’s claim that these are the only homeomeric lines is true for plane geometry, it is false in three
dimensions since the cylindrical helix is also homeomeric. However this shape was not studied until Apollonius.
See Acerbi 2010.
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7.3: The Measurement Interpretation

The measurement interpretation may be concisely sloganised as ‘coppAntdc implies
uetpntog’, comparability implies measurability.!” It explains Aristotle’s conclusion that a
straight line cannot be compared to a circle in terms of the account of measurement
developed in Met. 10.1. According to this interpretation, two magnitudes are comparable only
if they are both measurable in terms of a common unit measure. Therefore any two straight
lines can be compared since we can use one to measure the other.!®* However we cannot
perform the required measurements to compare a curved and a straight line, since there is no
unit that fits both. It follows that Aristotle must deny the comparability of any rectilinear

geometric object with any curvilinear one.

Unfortunately this interpretation commits Aristotle to mathematical revisionism which he
would rather avoid. Aristotle does not formulate his aversion to philosophical legislation over
mathematics in the manner of a modern mathematical naturalist such as Penelope Maddy, but
a similar tendency is in evidence.!” He takes care to explain that his conclusions do not
challenge the truth of mathematical propositions or the validity of their proofs. In Phys. 2.2
we are told that ‘nothing false’ results from his account of abstraction.? In Phys. 3.8,
Aristotle claims that his rejection of actual infinity ‘does not deprive mathematicians of their
proofs’ since mathematicians only need finite lines of any desired length for their proofs, not

infinite lines.?! However if Aristotle believed that comparability implies measurability in

17 This approach has been suggested by Ross 1936, 677-78 and Lloyd (as reported by Wardy 1990, 269-70).

18 By ‘can be compared’ I do not mean commensurable in the technical sense. [ mean that we can say one is
larger than, smaller than or equal to the other. Even incommensurable lines may be comparable in this sense
(e.g. the diagonal and side of a square).

19 Maddy 1997.

20 Phys. 2.2, 193b34-35.

2L Phys. 3.7 207b27-34. Whether this is correct for the mathematics of his time remains controversial. The
traditional view is that Aristotle’s combination of a strictly finite cosmos and an abstractionist philosophy of
geometry produces a tension with geometers’ reliance on infinitely extendible lines (Cherniss 1935, 34;
Solmsen 1960, 173; Hintikka 1973, 117-9). Knorr 1982b, 122 concludes, ‘Aristotle’s theory of the infinite
shows remarkable insensitivity to the issues which must have occupied the geometers of his generation.” Hussey
1983, 93-96, 178-79 suggests that Aristotle could accommodate this cosmic upper bound on magnitudes by
revising Euclidean geometry so as to avoid references to infinitely extendible lines, by substituting Elements
1.32 (that the internal angles of a triangle are equal to two right angles) for the fifth postulate and substituting a
localised definition of ‘parallel’ (e.g. the equal angles property) for def. 23. There is no independent evidence
that Aristotle endorsed such a revision, and the proposition of Elements 1.32 is treated as a theorem to be proven
rather than a first principle at APr. 1.35, 48a29-39; APo. 1.5, 74al6; Phys. 2.9, 200a15ff. and Met. ©.9,
1051a21-31 (the wording of the last passage suggests Aristotle had in mind a proof close to Euclid’s; see Heath
1949, 40). Partly for this reason, and partly since Aristotle more than once explicitly states what is now called
the ‘Archimedean’ axiom (Phys. 8.10, 277b2-4; DC 1.5, 272al), Hussey’s ingenious suggestion seems unlikely.
A more promising approach takes issue with the traditional interpretation’s assumption that geometrical objects
should have physical instantiations from which they are abstracted: ‘the real problem here is that some of the
lines the geometer needs do not seem to be forthcoming at all... If the requisite lines do not exist, there is
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terms of a common unit, he would unambiguously be forced to reject several of the most
important mathematical principles, proofs and problems of his day with no prospect of their

reinterpretation on philosophically acceptable terms.

In the first place, the measurement interpretation commits Aristotle to the rejection of all
rectifications and quadratures of curvilinear figures. Although Aristotle may be comfortable
with dismissing the rectification and quadrature of the circle, he should have felt uneasy
about this wholesale ban in the century following Hippocrates of Chios’ seminal quadrature
of lunes. Admittedly this objection is a little difficult since some readers of Aristotle Phys.
185al4ft. and Soph. El. 171b13ff. have interpreted him as inappropriately rejecting
Hippocrates’ quadrature. However it is possible to read these passages differently: Phys.
185al4ff. rejecting another unknown mathematician’s quadrature and Soph. El. 171b13ff.

criticising as fallacious some other work of Hippocrates.>?

Secondly, Aristotle would have to reject several geometric proofs which utilise the so-called
‘method of exhaustion’ associated with Eudoxus.?* For example, the proof of Euclid
Elements 12 prop.2 (that circles are to one another as the squares on their diameters) relies on
the claim that a circle is larger than its inscribed polygon, but that by doubling the polygon’s
number of sides one may bring it arbitrarily close to the area of the circle (the ‘bisection
principle’). On the measurement interpretation Aristotle should object before Euclid even
begins bisecting, when he argues that the square inscribed in a circle is greater than half the
circle. Similar inequalities between rectilinear and curvilinear figures are crucial to the proofs

of propositions 11, 12 and 18 of Elements 12.

nothing to abstract from.” (Hintikka 1973, 22). That is a very strict abstractionist philosophy of geometry and
Aristotle’s own view may have been more relaxed. According to Met. 0.9, 1051a21-31, geometrical
propositions can be proven by constructions carried out in thought (cf. Lear 1982, 180; White 1991, 160-61).
Concepts of some basic shapes should be acquired by abstraction from their physical instantiations, but once,
for example, the straight line and circle have been thus acquired, constructions can procede in thought
irrespective of whether there are corresponding physical instantiations. For an alternative approach, compare
Kouremenos 1995, 35, 50-53 et passim. Another indication of anti-revisionism may be found in the Metaphysics
M.3 1077b31-33

22 Hippocrates® quadrature was preserved by Eudemus’ History of Geometry which was in turn quoted by
Simplicius’ commentary on Physics 1.2. For text and translation see Thomas 1939, 235-53. Mueller 1982 argues
for the interpretation given above which is also favoured by Lloyd 1987b.

23 The ascription to Eudoxus largely rests on Archimedes’ report of relevant theorems in the prefatory epistle to
Sphere and Cylinder 1.
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Thirdly, Aristotle appears familiar with the isoperimetric result that the circle bounds the
greatest area within a given perimeter length.?* However on the measurement interpretation
this proposition would be unintelligible since the area and circumference of a circle could

only be compared with those of other circles.

Fourthly, in De Caelo 2.14 Aristotle reports with implicit approval some unknown
mathematicians as estimating the earth’s circumference at 400,000 stades, i.e. as measuring
something circular in terms of a rectilinear unit of length. Indeed, if it were not possible to
measure what is curved by what is straight, it seems it would not be possible to measure any

distance over land or sea.

Finally, this interpretation would compel Aristotle to deny the comparability of unequal
circles, since the arc of a smaller circle cannot measure a larger circle. Arcs of unequal circles
are at best similar but never congruent, so they cannot measure each other. On the present
interpretation it would follow that they are incomparable. Accordingly we should expect
Aristotle to hold that a circular motion cannot be compared to a motion along the path of any
circle that is not exactly the same size. This would entail a rejection of the Rotating Radius
Principle. Yet, as we have seen, Aristotle himself endorsed the principle, and it played a

crucial role in Mech.’s explanatory programme.?’

There is no reason to think Aristotle would reject all of this: Hippocrates’ quadrature,
Eudoxan ‘methods of exhaustion’, the Rotating Radius Principle. The assumption
‘copupAntédg implies petpntdg’ would provide Aristotle with grounds for denying the
comparability of circular and rectilinear motions, but at too great a cost. It is also worth
noting that to compare sizes and to measure are not the same thing. I do not need to measure
the universe to know that it is bigger than the earth and bigger than me, nor need there be any
possible measurement procedure. Similarly, I know that the inscribed square is smaller than

the circle without measuring either.

2 An.Post. 2.13 79a15-16, DC 2.4 287a23-30. No demonstration of the result appears to have been supplied
before Zenodorus in the 2™ ¢. BCE; see Knorr 1983, 133-34; Knorr 1986, 198.

25 Plato twice (Gorgias 451¢5-9, Phaedo 98a3-5) has Socrates say that among astronomy’s primary tasks was
the determination of the relative speeds of the heavenly bodies. Whether the measurement interpretation would
also force Aristotle to give up portions of astronomy depends on whether such references are understood in
terms of angular or linear speed.
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7.4: The Cosmological Interpretation

The cosmological interpretation proposed by Wardy sees the argument of Physics 7.4 as
motivated by a desire to buttress Aristotle’s sharp separation between the celestial and
sublunary regions of the cosmos. The former is characterised by ether’s eternal circular
motion, the latter by the four traditional elements moving on rectilinear paths to their natural
places. There is no explicit indication that the circular motion in question in Phys. 7.4 is that
of the heavens. In fact there is no clear reference to the heavens in Physics 7, and mention of
the doctrine of the fifth element in any book of the Physics.? This interpretation requires a

distinctive reading of the chapter’s opening:

€l 01 €éotv TAca GLUPANTY, Kol OpoTayES TO €V 10 XPOVE Toov Kivoduevov, EoTal

nePLPEPNG TIC Tom e00eiq, kai peilwv on kol EAdTTov.

Wardy translates as follows:

‘For if indeed they are all comparable, and things changed an equal amount in equal
time are changed at the same rate, there will be a circular motion equal to a rectilinear

one, and again circular motions greater and lesser than rectilinear ones.’

The standard reading, ‘there will be a circumference equal to a straight line’, must be
rejected, since there is no straight line in Aristotle’s cosmos equal to the circumference of a
great circle of the heavenly sphere. Instead Wardy construes mepipepnc and eb0¢io as
describing types of motion (kivnoig). This may be seen as a virtue, since it avoids ascribing to
Aristotle the apparently inept claim that no straight line equals a circumference. On the other
hand, Wardy translates the same terms nepipepng and 00sia in 248a24-25 as ‘circular line’
and ‘straight one’. This is particularly problematic since in that passage Aristotle claims that
a circular line can be smaller than a straight one, which puts strain on the interpretation of

neplpepng as designating either the motion or path of the heavens.

26 Furley 1989, 194 notes the fifth element’s absence in the Physics and suggests this is a sign of early
composition; Falcon 2014, 321 suggests deliberate avoidance.
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It is a merit of the cosmological interpretation that it locates Phys. 7.4 within Aristotle’s
broader cosmological project, to the satisfaction of my second interpretative desideratum.

However, it faces three difficulties.

First, Aristotle argues for the celestial-sublunar distinction at length in De Caelo 1.2-4 and it
is doubtful that this doctrine would need further support in the Physics and in this way.
Wardy’s suggestion is that ‘since directions of movement are central defining characteristics
of Aristotelian simple bodies, he may have forbidden the comparison in question in the belief
that tolerating it would obliterate the essential difference between ‘being the stuff of the

stars’ and ‘being the stuff of the mundane elements’.”?’

However when Aristotle speaks of the comparability of changes in Phys. 7.4 he always
means the comparability of their speeds, not directions. And speed is not part of the essence
of the simple bodies which are rather defined by their natural places and directions of motion
to those places. Nothing in the essences of Aristotle’s simple bodies specifies their speed
because he does not believe that a simple body’s natural motion always has the same speed.
The speed of a naturally falling or rising body depends on at least two things: (1) the medium
through which the body travels (Phys. 4.8 215a24ff.); (2) the heaviness or lightness of the
body. Aristotle notoriously claimed that there is a simple proportionality between a body’s
heaviness or lightness and the time required for it to traverse a given distance: if you double
the weight, you halve the time. Moreover, Aristotle notes that the simple bodies’ natural
motions accelerate, so there is no fixed speed even for the same quantity of the same material

in the same medium.?8

Secondly, the cosmological interpretation does not seem to make adequate sense of
Aristotle’s analogy to uphill and downhill motions. After denying that circular and rectilinear
motions can be of equal speed, Aristotle immediately rejects the suggestion that this is

because one is necessarily faster or slower than the other (248a21-23):

dromov te yap et U Eott KOKA® Opoimg TouTi KiveloOot kKai tovTo &l Thig e00siog AAA’

€00V¢ avdyxn 7 Battov 7 Bpadvtepov, Gomep &l kbTovTeg, TO & AvaVTES.

27 Wardy 1990, 270-71.
28 On this proportionality and on acceleration, see Note B to Chapter 1.
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‘It would be absurd to suppose that the motion of one in a circle and of another in a
straight line cannot be similar, but that the one must inevitably move more quickly or
more slowly than the other, just as if the course of one were downhill and of the other

uphill.” (trans. Hardie and Gaye)

Wardy thinks this analogy draws the following contrast: the same kind of thing (a terrestrial
object) can move both downhill and uphill, but it is not the case that the same kind of thing
can move in celestial circles and rectilinear paths.? Clearly Aristotle would agree with this
latter claim, but I cannot see what this has to do with the present issue of inequalities of
speed. Why should anyone think that the fact that the heavens are necessarily faster than
sublunary bodies implies that they could exchange places? Might not Aristotle’s mention of

necessity (avéykn) speak against the possibility of such an interchange?

Thirdly, it is unlikely that Aristotle would have thought it ditomov to say that the celestial
motions are necessarily faster than any sublunary motion. Not only had earlier investigators
claimed as much, such as Anaxagoras who said that the cosmic meprywpnoig was faster than
anything among men (DK59 B9), but Aristotle himself had argued for a similar proposition.
Even if he changed his mind, he should not label the old belief absurd without good reason.
Finally, the empirical astronomical data available in the 4" c. BCE suggested that the

heavenly bodies were the fastest observable things.

Aristotle explicitly argues in DC 2.4 287a23-30 that the heavens’ motion is the fastest of all
changes and uses this thesis in one of a series of arguments for the sphericity of the cosmos.*°
He argues that (1) the heavens are the measure of all changes since their motion is uniquely
continuous, unvarying and eternal, (2) in each class of things the measure is its least member,
(3) the quickest change is the least [of all changes], therefore (4) the heavens are the quickest

of all changes.?! The difficulties in this argument betray deeper problems in Aristotle’s theory

29 “The comparison wrongly implies that the same sort of thing could engage in both types of locomotion’
(Wardy 1990, 271).

30 The thesis is also mentioned at Met. 10.1 1053a8-12.

3L 3fhov 811 tayioTn dv £ macdv TV Kivijcemy 1) Tod odpovod kivnoig (287a23-30). The argument continues:
the condition that the heavens are the fastest is best fulfilled if they enclose the cosmos with the shortest
possible path. This seems to be a form of the isoperimetric problem, later formally solved by Zenodorus (Heath
1949, 171). For premise (1) of the argument cf. Phys. 4.14 223b12-21 on the heavens as the measure of all
change.
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of measurement as applied to motion.*? Yet whatever force the argument has clearly draws on
the plausibility of (4) to Aristotle and his audience. It is supported by his observation
elsewhere that recent astronomical research has shown the earth’s size to be vanishingly

small in the cosmos as a whole.??

It appears that in Phys. 7.4 Aristotle ultimately must deny that the heavens’ motion is the
fastest of all, since he denies that circular and rectilinear motions are comparable without
naming any exceptions. But the uphill-downhill analogy appears at the point in the chapter
where that wholesale denial is the thesis to be established and hence cannot possibly serve as
his reason for dismissing the hypothesis of necessary inequality as dtomov. DC 2.4 is hard to
reconcile with any interpretation of Phys. 7.4, but especially one that claims Aristotle is
particularly concerned with the heavens.?* If Aristotle were directly to contradict DC 2.4’s

claim, he should offer reasons against it, not dismiss it out of hand as dtomov.

Although in DC 2.4 Aristotle here speaks loosely of 1) 70D 0Opavod @opd (287a23), he
presumably means the motion of the sphere of fixed stars. However it is clear that the lower
spheres of the heavens also move faster than anything on earth. For Aristotle the Moon is the
lowest and slowest part of the heavens. A quick calculation of even a lower estimate of its
speed from early Greek data shows that it moves very fast indeed. The following rough
calculation could easily have been performed by Aristotle, but my intention is not to
reconstruct an Aristotelian calculation for the Moon’s speed. We have no indication that he
ever personally studied it. I only wish to illustrate that anyone who wanted could have shown

that the Moon moves much faster than anything in our immediate surroundings.

Aristarchus of Samos (fl. c. 280 BCE) offered the surprising underestimate of the Moon’s

distance at around twenty earth radii.’® It follows that the Moon’s circular orbit is twenty

32 See Sattler 2017.

33 Mete. 1.3 339b6-9: 6 pév yap o1 tiig yiig 8ykog mmAikoc &v Tig £l mpdg Té TEPEYOVTa PEYED, ovK EdnAov:
1on yap dmron 816 TV doTtpoloyik@dy Oempnudtov Mpiv 8Tt ToAD Kai Tdv dotpov &vinv Eldttmv dotiv. (‘For
there is no doubt about the relative size of the earth and of the masses which surround it, as astronomical
researches have now made it clear that the earth is far smaller even than some of the stars’), De Caelo 2.14
297b23-30.

3% My suggestion — that the circular motion of interest in Phys. 7.4 is the rolling motion exhibited by wheels —
may dissolve this apparent contradiction, since there are no rolling motions in the heavens.

35 Admittedly, earlier thinkers of the sixth and fifth centuries may have located the Moon closer to earth. Among
the most important testimonies to early Greek estimates of the Moon’s distance, see Plutarch De Facie 925A-D,
Aetius 2.31 (a chapter titled [Tepi t@v dmootudtmv), ps.-Plutarch Placita 2.20-25, with Mansfeld 2000.
Anaximander apparently held that the Moon’s wheel is 19 times greater than the earth (DK12 A22). It is unclear
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times larger than the earth’s circumference.*® Since the Moon completes this orbit
approximately once a day, it follows that in one day the Moon travels a distance roughly
equivalent to circumnavigating the earth twenty times over.>” And this is a lower bound.
Aristarchus’ figures in On the Sizes and Distances seem deliberately inaccurate. He assumes
that the Moon’s apparent diameter is 2°, much larger than the actual value of about }%°. A
smaller and more accurate value of the Moon’s apparent diameter would increase the value of
its distance and hence any estimate of its speed. Aristarchus probably did not truly believe the
Moon’s apparent diameter was 2° and Archimedes reports that he used the value 2°. The
incorrect value in On the Sizes and Distances may have been adopted either to emphasise the
power of deductive geometrical reasoning over physical facts or to argue that the Sun's

illumination in excess of a lunar hemisphere is imperceptible.®

whether this is an estimate of the wheel’s radius, diameter, circumference, or some other property (Thibodeau
2017, 97-101 surveys the options, arguing that the estimates ‘are simply circular measures of the hoops given as
multiples of the earth-sized discs which move along them, measuring as they go’, noting that this would set the
wheel's distance at roughly 5 earth radii). Anaxagoras estimated that the Moon was the size of the Peloponnese
(see Graham 2013 for a recent reconstruction of Anaxagoras’ method; assuming an apparent diameter of /2° and
a true diameter of 100 km, this would give a lunar distance of over 10,000 km, an orbit of over 70,000 km, and
hence a speed of just under 3,000 km per hour). Empedocles apparently held that the Moon's distance from the
Sun was twice its distance from the earth. There is no space here to engage in the complex issues that arise from
reports of Presocratic views on the sizes and distances of heavenly bodies.

36 This value is close to one interpretation of the testimony for Anaximander discussed in the previous note, but
this may be coincidental.

37 Aristotle reports some unnamed mathematicians’ estimate of the earth’s circumference as 400,000 stades (DC
2.14 298a15-17). Together with Aristarchus’ estimate, this would put the Moon’s orbit at around 8,000,000
stades and hence its speed 300,000 stades per hour and over 90 stades per second. Assuming that Aristotle used
the Attic foot and stade, this is equivalent to over 55,000 km per hour and over 16 km per second.

38 Lloyd 1973, 56-57, Van Helden 1985, 8. Some of my objections to Wardy’s version of the cosmological
interpretation have been anticipated by Benedetti’s discussion in Diversarum speculationum mathematicarum et
physicarum liber (Turin, 1585), capitulum xxxv; translation from Drake and Drabkin 1969, 220-221.: ‘But if
Aristotle had said that the circular motion of the heavenly bodies was not comparable to the rectilinear motion
of the [four] elementary bodies, he would have been right — not because one of these motions is circular and the
other rectilinear, but because the celestial motion is regular, not sometimes slow and sometimes fast, but always
maintaining one and the same speed, whereas the contrary is true of the motion of the [four] elementary bodies.
And a further reason [he might have given] is that there never has been nor will there ever be any of these
natural rectilinear motions, as they are called, as swift as the motion of the heaven. For if we wish to consider
the diurnal motion of 24 hours, according to the general view, we shall find by calculation that the Moon in
quadratures with the Sun, when it is at the equator, moves 500 Italian miles or thereabouts per minute...’
Benedetti’s counterfactual (si... dixisset) indicates his suspicion that the cosmological interpretation does not
represent Aristotle’s intentions. His arguments are similar to those I have just made, although he interestingly
takes them to be in favour of the cosmological interpretation since he considers a variant which asserts that
heavenly and sublunary motions cannot be equal in speed, or cannot be equal in speed for any extended
duration.
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7.5: The Wheel Interpretation

I now propose a new interpretation of Phys. 7.4 based on the Rota paradox studied in Chapter
6. I suggest that Aristotle may have approached this puzzle in Phys. 7.4 by distinguishing the
circular and rectilinear components of the wheel’s rolling motion and arguing that an
intolerable paradox follows if we admit the comparison of the component motions’ speeds. In
contrast to the cosmological interpretation, I suggest that Aristotle is primarily concerned
with terrestrial phenomena; he rejects the comparability of circular and rectilinear motions on
pain of paradox. It is historically plausible that Aristotle was aware of the Wheel since it is
discussed at length in Mech. and I have already given reasons for thinking that Mech.’s
discussion was not the first. Furthermore, this paradox is precisely the kind of topic we
should expect to find here, between the Zenonian paradoxes in Physics 6.9 and the
anonymous further puzzles of motion in 8.8. One may well find the following analysis in
terms of speeds an unsatisfactory resolution of the paradox, but this does not invalidate the
interpretation since brilliant minds have presented dozens of unsatisfactory analyses of this

challenging puzzle.*®

The opening argument of Phys. 7.4 begins with two premises:

I.  Two things move with the same speed if and only if they move an equal distance in
an equal time (248al1-12: opotoyeg 10 v o ypdve icov Kvodpevov)

II.  Every change is comparable with every other (248al1: éotwv mdca cuuPAntn)

Aristotle accepts (I) as true, perhaps self-evidently so.*° Aristotle says that, from these

premises, there follows the conclusion, which I leave untranslated for now:

I. ot mepipepnc Tig Tom evbeiq kai peilov on kol EAdttov (248a13-14)

This is false, so Aristotle concludes that premise (II) must be false. From the present point of
view, the mepupepnic in question is the wheel’s circumference and the gvfgia is its path. So
(IIT) would follow from the premises if the speeds of the component rotation and translation
of the wheel’s rolling are taken to be comparable. But how should we understand the Greek

of the false conclusion (III)? There are two possible readings:

3% See Drabkin 1950.
40 Premise (1) is stated in Physics 6.2 without argument. We have already seen that this premise plays a vital
role in Hero’s presentation of the paradox and is also present in Mech.’s.
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IIla. There will be a circumference equal to or longer than or shorter than a straight line.
IIIb. There will be a circumference equal to and longer than and shorter than a straight

line.

Most translators have taken the xai... kai construction distributively, along the lines of
(IlTa).*! On this reading Aristotle objects to the comparability of circular and rectilinear
motions and lines because of the puzzling phenomena of the Rota paradox. Although the
(IITa) reading does little to mitigate the mathematical oddity of the chapter, and is consistent
with the construction and measurement interpretations, it does provide at least motivation for

the startling claim that different species of line cannot be compared in length.

However, (III)’s kai... kai construction can also be taken aggregately, as in (IIIb). On the
face of'it, (IIIb) seems to offer a more compelling reason for Aristotle’s rejection of premise
(I), since it involves a clear contradiction and is uncontroversially false. By contrast it strikes
many readers mathematically incompetent to judge (Illa) false. We have seen above the
difficulties faced by interpretations which would ascribe this view to Aristotle. Presumably
the reason for not adopting the conjunctive reading has been a failure to see how it could

follow from premises (I) and (II). Such an argument is possible on the wheel interpretation.

Let there be three unequal concentric circles C1, C2, C3 such that C1 < C2 < C3, rigidly
fixed about their common centre. Whenever a circle rolls smoothly for one revolution, its
centre traces out a path equal to its circumference because the rotation and translation
components of motion are equal in speed; these are instances of premises (I)-(II). So when
C1 'drives' the motion, its centre traces out path D1 in one revolution and, since the rolling
movement is smooth and doesn't involve jumps or stops, D1 is equal to C1's circumference.
Likewise for C2, C3 and paths D2, D3. Therefore D1 < D2 < D3. But by (I), the same thing
travelling with the same speed must cover the same distance. So all paths traced by the centre
in one revolution of the system of concentric circles are equal. Therefore D1 = D2 = D3.

Therefore C1 = C2 = C3. So C2's circumference equals D1, D2 and D3. So a circumference

4! ‘we may have a circumference equal to a straight line, or, of course, the one may be greater or less than the

other’(Hardie and Gaye), ‘a circular distance may be equal to a rectilinear distance, or greater or smaller’
(Wicksteed and Cornford), ‘the circumference of a circle will be equal to, or longer or shorter than, a straight
line’ (Waterfield).
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(C2) is equal to, greater than and less that a straight line (D2), which is the manifestly absurd
conclusion (IIIb). I have introduced a third circle for purposes of exposition, but it is strictly

superfluous.

O/ (T
A N
- 03 ~

Here is the argument with two circles only:

(1)C1 <C2.
(2) D1 =Cl.
(3) D2 = C2.

(4) Therefore D1 < D2 (by (1)-(3)).

(5) But D1 =D2 (by D).

(6) So C1 =C2 (by (2), (3), (5)).

(7) Then C2 < D2 (by (2), (4), (6)).

(8) And C2 > D2 (by (5), (4), (6)).

(9) It follows that C2 is equal to, greater than, and less than D2 (by (4), (7), (8)).

This interpretation allows us to make better sense of Aristotle’s uphill-downhill analogy. Let
us first emphasise that the words kdtovteg and dvavteg mean specifically ‘downhill” and
‘uphill’ respectively, not ‘up’ and ‘down’. Aristotle consistently uses kdtw and dvo to
describe the vertical movements of the sublunary simple bodies across his works. His choice
of words suggests that he wishes to direct our attention to something else: bodies travelling
up and down inclined surfaces.*? T assume that Aristotle confines his attention to heavy
bodies, since ‘uphill’ and ‘downhill’ are barely intelligible for the motions of light bodies

such as fire and air.*?

42 Compare Physics 3.3 and Met. 11.9 for the use of kdravteg and dvavteg, also Problems 26.36 which observes
that water flows more quickly downhill than over planes.
43 One could channel smoke through an inclined pipe, but it would be strange to call this uphill motion.
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It is false that anything moving downhill must be faster than any other thing moving uphill;
the tortoise crawling down the hill is slower than the hare bounding up the other side. The
uphill-downhill analogy makes sense only if we read in certain assumptions. Moving a heavy
body uphill requires more effort than sending it downhill. One might therefore suggest that
Aristotle is thinking of a single agent moving the same heavy object uphill and downhill (or

at least objects moving of the same or similar weight).

From this point of view, the analogy implies that the circular and rectilinear motions in
question are likewise moved by the same power. That is false on the cosmological
interpretation, since Aristotle believe that infinite power is required to move the heavens and
infinite powers are not found in the sublunary realm.** On the other hand, Aristotle might
have thought that the rotational and rectilinear components of rolling motion are moved by
the same power. As I argued in Chapter 6, Mech.’s author makes a similar assumption.*’
Thus it would be dtomov for one of the component motions to be necessarily faster or slower.
It would indeed seem strange if a cart-wheel spun round much faster than it proceeded
horizontally when both component motions are caused by the same straining horse. Nothing
we observe suggests this is the case. If we took the trouble to measure a wheel’s
circumference and the path traversed in one rotation we would find them roughly equal. Even
if there were some deviations from equality in our rough-and-ready measurements we should

not conclude that one is necessarily faster than the other.*®

This interpretation has a further appealing feature. Since, in the scenario of rolling concentric
circles, different circular motions correspond to the same rectilinear motion, it turns out that
the different circular motions themselves cannot be coherently compared. We begin assuming
that they are unequal, but then deduce that they must also be equal. On the interpretation [ am
suggesting, Aristotle is only able to uphold the difference between unequal circular motions

by severing this connection to rectilinear motion.

4 De Motu Animalium 3-4 argues at length that the world cannot contain a dunamis as great as that which
moves the heavens; therefore the mover of the heavens must be outside the world. Cf. Phys. 266a24-b6’s
argument that there cannot be an infinite power in a finite magnitude.

Mech. 24, 855b28-856a32.

46 Again, contrast the case of the cosmological interpretation where, as we have seen, basic data for estimating
the Moon’s distance force us to admit that the Moon must move faster than sublunary bodies rise or fall.
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7.6: Conclusion

The study of relatively peripheral works in the Aristotelian corpus may shed light on more
central works such as the Physics. In this chapter, I have suggested that Physics 7.4’s
surprising denial of the comparability of straight and circular motions may have been a
response to an earlier statement of the paradox discussed by Mech. 24. This suggestion is
somewhat speculative, since there is no direct reference to rolling in Phys. 7.4, but in this
regard it is not much worse off than the alternative interpretations which go beyond the text
to explain what drove Aristotle’s denial of comparability. I have also identified some

problems for three leading alternative interpretations.

It may be objected that (a) Mech. 24 does not draw the paradoxical consequence that unequal
circles are equal, or that unequal circles move equally quickly, and (b) Mech. 24 does not
analyse rolling as a complex of straight and circular motions. However, both the paradoxical
consequence and the analysis of rolling into two component motions are explicit in Hero’s
discussion of the paradox. Hero often drew on older sources in writing his texts. It is possible
that Hero’s discussion of the Rofa paradox derives from an earlier presentation than that of
Mech. I noted in §5.5 that Hero’s statement of the paradox is more clearly written, and its
relevance to the Rotating Radius Principle, which may be the reason why the puzzle features
in Mech., is more obvious. Drabkin (1950) suggested that Mech. 24 restated an older puzzle.
If an earlier version resembled Hero’s, then Aristotle may have had a text in front of him that
analysed rolling into two components and drew the paradoxical consequence that unequal
circles are equal, or that unequal circles move equally quickly. Obviously such speculations

go far beyond the evidence.

A final question must be raised: If Aristotle had treated the paradox, why did Mech. return to
it? Some commentators have suggested that Mech. problem 1 implicitly rejects Phys. 7.4’s
doctrine in its analysis of motion on a circular path into rectilinear components.*’ However, I
do not see Mech. problem 1 comparing a straight motion to a circular motion in terms of
faster, slower and equally quick, so I do not think Mech.’s author would necessarily reject
Phys. 7.4’s arguments on that score. What we should note is that the two puzzles Mech. 24
addresses are not the same as the puzzle addressed by Aristotle (according to my suggestion)

and Hero. The author of Mech. can thus be seen as addressing different aspects of the

47 Owen 1970, 256; Knorr 1982a, 101n.27.
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paradoxical phenomenon, rather than revising what may have been Aristotle’s solution. As is
clear from Drabkin’s 1950 article, and as I indicated in Chapter 6, the phenomenon described
by Mech. 24 does not of itself determine a single puzzle or a single question. There are
various potential puzzles and paradoxes lurking in it. It may be that once Aristotle had

addressed one paradox, Mech.’s author addressed two further puzzles.
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Chapter 8: Conclusion

8.1: Summary of the argument

I have argued that the Mechanica was an application of natural philosophy to the technical
sphere of mechanics. The author offers causal explanations of surprising phenomena
presented by machines. These explanations ultimately depend on problem 1°s analysis of the
Rotating Radius Principle. This principle arises because of the manner in which two motions
occur simultaneously in one thing. That is a claim that may strike us as strange. On several
modern views of what motion is, a body cannot literally have several simultaneous motions. I
have shown that, by contrast, this idea makes sense for Aristotle, who understood change as
the actuality of a potentiality, gua such. The two motions in the rotating radius are not
mathematical fictions, but real processes, kvnogic. Thus I distinguished radial rotation from
circular motion both theoretically as well as terminologically and suggested that Mech.’s
account of radial rotation should not be applied to heavenly circular motions. I also argued
that the notion of constraint has a more central role in problem 1’s argument than previously
recognised, since it is likely constraint that accounts for the proportionality between

tangential and radial motion.

In accounting for a broad variety of devices beyond the paradigms of the balance and lever,
Mech.’s explanations rely on the identification of functionally similar parts of seemingly
dissimilar devices. In this reliance on analogical arguments, Mech. is closer to Aristotle’s
zoological inquiries than to deductive geometry. The use of diagrams to support these
analogies is one example of the non-deductive use of lettered diagrams in ancient Greek

science.

My reading of Mech. 24 showed another way in which Mech.’s explanatory project is
physical rather than purely mathematical. In Mech. 24, a paradox challenges the Rotating
Radius Principle. I showed that the author answers the paradox by appealing to physical
principles. This further substantiates my broader argument that Mech. is not so much a
mathematical work as an application of natural philosophy to the technical sphere of

mechanics.
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Finally, I suggested that Aristotle’s claim that straight and circular motions are incomparable
(Phys. 7.4) may have been an attempt to escape the contradictions of an earlier statement of
Mech. 24’s paradox, perhaps a version of the paradox closer to that in Hero’s Mechanica.
This suggestion is tentative. We do not know what motivated Aristotle in Phys. 7.4. 1

criticised three previous interpretations.

To its modern admirers, Mech.’s analysis of what I have termed rotating radial motion is a
triumph of ancient science, ‘almost Newtonian’, as G.E.L. Owen put it. Strangely, no later
ancient writers whose works have survived used or acknowledged this analysis, even those
who echo other aspects of Mech.’s approach. For example, Vitruvius (De Architectura 10)
offers similar analogical explanations and claims that ‘circular motion’ is the basis of
mechanical phenomena. Yet he does not analyse circular motion or suggest that it is anything
other than simple, and instead compares rotations in machines to the heavenly rotations.
Similarly, Hero of Alexandria deploys analogical explanations and bases his account of the
simple machines on circular motion. Although he presents some basic ideas about the
composition of motions, circular motion is not analysed into two components. A ninth-
century Arabic paraphrase of the first part of Mech. left out the analysis of rotating radial
motion. What moderns find most praiseworthy, the ancients found least worth preserving.

This calls for explanation.

Mech.’s analysis of radial rotation was vitiated by a lack of clarity on some fundamental
issues, which I outlined in Chapter 4. It was difficult to see how the ever-changing relation
between the tangential and radial motions should be precisely characterised. How can they be
constantly changing? The circle is symmetrical and from that point of view it seems that the
same characterisation of the radius’ components should hold at every instant. Moreover, it
was unclear how to reconcile the tension between the motions’ characterisation as radial and
tangential and their representations in problem 1’s diagram. It is partly the flexibility of the
Aristotelian notion of motion (kinesis) that allowed the component analysis to be developed.
What we call velocities and what we call accelerations could sometimes fall under what
Aristotle called ‘motions’. But the analysis leads to a dead end without, at the very least, a

well worked-out mathematical theory of acceleration.!

' When, with the benefit of such a theory, circular motion was re-analysed in the seventeenth century (yielding
our familiar formula a = v*/R) none of the parties involved mentioned Aristotle. On circular motion in this later
period, see Westfall 1972; Meli 2006, ch.7.
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For all its shortcomings, Mech.’s analysis may have been valuable in part because it showed
how apparently anomalous phenomena could be incorporated within a broader cosmology.
Circular motion belongs to the heavens. Below the Moon, inanimate matter naturally rises
and falls, and animals use their muscles to push and pull. Within such a framework,
explaining how a heavy, solid rod could produce motion on a circular path was a worthwhile
task, especially since radial rotation was responsible for many striking effects. Vitruvius,
Hero, and the Arabic translator did not share the project of integrating mechanics within a

presupposed Aristotelian physical and cosmological framework.

8.2: Postscript

Tartaglia’s Quesiti, Book 7 opens with the following exchange with Don Diego Hurtado de

Mendoza, Charles V’s ambassador at Venice:

Mendoza: Tartaglia, since we took a vacation from the reading of Euclid, I have
found some new things relating to mathematics.

Tartaglia: And what has your Excellency found?

Mendoza: Aristotle’s Questions of Mechanics in Greek and in Latin.

Tartaglia: 1t is quite a while since I saw these, particularly the Latin.

Mendoza: What did you think of them?

Tartaglia: They are very good, and certainly most subtle and profound in learning.
Mendoza: 1, too, have run through them and I understood most of them; yet many

questions remained with me, which I should like to have more fully explained.?

There are still many unanswered questions about the Mechanica. This thesis has focussed on
some central questions about the text’s theory and method. In this conclusion I have indicated

some possible implications for research in history and philosophy of science more generally.

2 trans. Drake and Drabkin 1963, 104
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