CUBULATING HYPERBOLIC FREE-BY-CYCLIC GROUPS: THE
IRREDUCIBLE CASE

MARK F. HAGEN AND DANIEL T. WISE

ABSTRACT. Let V' be a finite graph and let ¢ : V — V be an irreducible train track
map whose mapping torus has word-hyperbolic fundamental group G. Then G acts freely
and cocompactly on a CAT(0) cube complex. Hence, if F is a finite-rank free group and
® : ' — F an irreducible monomorphism so that G = Fx¢ is word-hyperbolic, then G
acts freely and cocompactly on a CAT(0) cube complex. This holds in particular if ® is an
irreducible automorphism with G = F' x¢ Z word-hyperbolic.
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TABLE OF NOTATION

Since there is a great deal of recurring notation, the reader may find the following table

helpful:

Approximation map
Approximation of W
Primary busts in V', E (respectively)
Secondary busts in V|, (respectlvely)
Metric inside subspace YCX (eg,Y=V,)
Weighted metric on X 7
Metric on R-tree Y
Image in Xy, of V' x { }
Prelmage of E in X at position n + 2
(nL + )
Weight of edge e
Knockout
Quasi-isometry constants for piecewise geodesics (depends on L)
Quasi-isometry constants for forward ladders
Transition matrix for train track map ¢
Quasi-isometry constants for uniform sub-quasiconvexity
Nucleus
Forward ladder of forward path o
For Y C XorY - X 1, smallest subcomplex containing Y
Injection on finite-rank free group F
Combinatorial map (later train track map) inducing ®
Expansion constant of train track map ¢
Coordinate map onto combinatorial line; ¢ = ¢;
Forward flow map
Natural map from X to R-tree
Map “folding” subdivided star levels to rooted tree levels
Slopes
Forward path, forward path of length M determined by z)
Level (union of forward paths ending at z) in X
Level-part of a tunnel
Tunnel
Graph obtained by attaching tunnels to nucleus
Space obtained from we by folding levels according to of,
Immersed wall (component of W* in X)
Wall (image of W — X)
Mapping torus of ¢* (L >1); X = X,
Subdivision of X, from pulling back cell structure of X via oL
Base of mapping torus (a finite graph)
Preimage of V in X at g-coordinate n
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INTRODUCTION
The goal of this paper is to prove the following theorem:

Theorem A. Let F be a finite-rank free group and let & : F — F be an irreducible automor-
phism, and suppose that G = F xg Z is word-hyperbolic. Then G acts freely and cocompactly
on a CAT(0) cube complex.

This result is a special case of Corollary 6.21, which handles the more general case of a
hyperbolic ascending HNN extension of a free group by an irreducible endomorphism.

Theorem A provides a widely-studied class of hyperbolic groups for which Gromov’s ques-
tion (see [Gro87]) of whether hyperbolic groups are CAT(0) has a positive answer, but goes
further, since nonpositively-curved cube complexes enjoy numerous useful properties beyond
having universal covers that admit a CAT(0) metric. For example, combining Theorem A
with a result of [Ago12| shows that groups G of the type described in Theorem A are virtually
special in the sense of [HWO08] and therefore virtually embed in a right-angled Artin group.
This implies that G has several nice structural features, including Z-linearity.

A group G = F xg Z is word-hyperbolic exactly when & is atoroidal [BF92, Bri00], so
that Theorem A applies to all mapping tori of irreducible, atoroidal automorphisms of free
groups. More generally, ascending HNN extensions are hyperbolic precisely if they have no
Baumslag-Solitar subgroups [Kap00].

We actually prove the following more general statement:

Theorem B. Let ¢ : V — V be a train track map of a finite graph V. Suppose that ¢ is w1-
injective and that each edge of V is expanding. Moreover, suppose that the transition matriz
M of ¢ is irreducible and that the mapping torus X of ¢ has word-hyperbolic fundamental
group G. Then G acts freely and cocompactly on a CAT(0) cube complex.

Our CAT(0) cube complex arises by applying Sageev’s construction [Sag95]| to a family of
walls in the universal cover X of X. To ensure that the resulting action of G on the dual cube
complex is proper and cocompact, we show that there is a quasiconvex wall separating any
two points in dG, thus verifying the cubulation criterion in [BW13|. As train track maps are
central to the proof that there are many walls in this sense, our results build upon the work
of Bestvina, Feighn, and Handel in [BH92, BFH97].

It appears likely that in the case where ¢ is 71-surjective, the hypothesis that ¢ is irreducible
can be removed, and we are currently working on developing the methodology in this paper
to generalize Theorem A to all hyperbolic mapping tori of free group automorphisms®.

Moreover, for the construction of immersed walls in X, hyperbolicity of G plays a minor
role. It is therefore natural to wonder which free-by-cyclic groups admit free actions on
CAT(0) cube complexes arising from immersed walls constructed essentially as in Section 3.
If @ is fully irreducible and G is not hyperbolic, then ® is represented by a homeomorphism
of a surface, by [BH92, Thm. 4.1]. Consequently, in this case G acts freely on a locally
finite, finite-dimensional CAT(0) cube complex [PW]. It is reasonable to conjecture that in
general, if G = F g Z is hyperbolic relative to virtually abelian subgroups, then G acts
freely on a locally finite, finite-dimensional CAT(0) cube complex. The techniques in this
paper are largely portable to that context. However, one cannot expect to obtain cocompact
cubulations for general free-by-cyclic groups. Indeed, Gersten’s group (a,b,c,t | a' = a, b' =
ba, ¢! = ca?) is free-by-cyclic but does not act metrically properly by semisimple isometries

lwe posted a tortuous generalization eight months after submitting this paper; see [HW14].
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on a CAT(0) space |Ger94|, and hence Gersten’s group cannot act freely on a locally finite,
finite-dimensional CAT(0) cube complex. Nevertheless, Gersten’s group does act freely on
an infinite-dimensional CAT(0) cube complex [Wis|, so there is still much work to do in this
direction.

Summary of the paper. In Sections 1 and 2, we describe the mapping torus X and in-
troduce some features — levels and forward ladders — that play a role in the construction of
immersed walls in X.

In Section 3, we describe immersed walls W — X when ¢ : V — V is an arbitrary
mi-injective map sending vertices to vertices and edges to combinatorial paths, under the
additional assumptions that no power of ¢ maps an edge to itself and 7 X is hyperbolic. The
immersed wall W is homeomorphic to a graph and has two parts, the nucleus and the tunnels,
and is determined by a positive integer L and a collection of sufficiently small intervals d; C V/,
each contained in the interior of an edge. The nucleus is obtained by removing from V each
primary bust d;, along with its ¢’-preimage. The tunnels are “horizontal” immersed trees
joining endpoints of d; to endpoints of its preimage. Let W — X be a lift of the universal
cover of W and let W C X be its image. Since W — X is not in general 7i-injective, W — W
is not in general an isomorphism. However, under suitable conditions described in Section 4,
W is a wall in X whose stabilizer is a quasiconvex free subgroup of G. The immersed walls
in X are analogous to the “cross-cut surfaces” introduced in [CLR94], and Dufour used these
to cubulate hyperbolic mapping tori of self-homeomorphisms of surfaces [Dufl2].

Remark 1 (Wall-approximations). Although the goal of the paper is to produce and under-
stand walls, we study these walls by means of a contrived object of which we now warn the
reader. Specifically, to prove that the stabilizer of W is a quasiconvex subgroup, we introduce
a “combinatorial approximation” A (W) of W. This is a subspace of X obtained from W by,
roughly, applying the “forward flow” XX arising from ¢. The reason for doing this is that
it is difficult to show that W is quasiconvex, since the tunnels are not uniformly quasicon-
vex; they are rooted trees whose branches are paths that can fellow-travel in an uncontrolled

fashion. Passing to the approximation A (W) folds each tunnel into a single, uniformly qua-
siconvex path. This allows us to establish uniform quasiconvexity of A (W), whose stabilizer
coincides with that of the original wall W. We advise the reader to be alert to this distinction,

which we view as the main technical difficulty in the proof.

~_Section 5 and 6 are devoted to the proof of Theorem B. We use a continuous surjection
X — Y to an R-tree that arises in the case where ¢ is a train track representative of an
irreducible automorphism (see [BFH97]).

Acknowledgements. We thank the referees for extremely useful and detailed reports con-
taining many helpful comments and corrections that significantly improved this text. We
also thank an anonymous referee for creating the table of notation. This is based upon work
supported by the National Science Foundation under Grant Number NSF 1045119 and by
NSERC.

1. MAPPING TORI

Let V be a finite connected graph based at a vertex v, and let ¢ : V' — V be a continu-
ous, basepoint-preserving map such that ¢(w) is a vertex for each vertex w of V, and such
that ¢(e) is a combinatorial path in V for each edge e of V. This means that there is a
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subdivision of e such that vertices of the subdivision map to vertices and whose open edges
map homeomorphically to open edges. We also assume that ¢ is parametrized so that these
homeomorphisms are linear. Moreover, we require that the map ® : F' — F induced by ¢ is
injective, where F' = mV is a finite-rank free group. We note that any injective ® : F' — F
is represented by such a map ¢.

The reader should have in mind the case where ® is an irreducible automorphism of F' and
¢ is a train track map representing @, in the sense of [BH92| (we refer the reader to Section 6.2
for more on train track maps and how we use them):

Definition 1.1 (Train track map). ¢ : V — V' is a train track map if for all edges e of V and
all n > 0, the path ¢"(e) — X is immersed.

For an integer L > 1, let X, be obtained from V x [0, L] by identifying (x, L) with (¢*(z),0)
for each x € V, so that X, is the mapping torus of ¢¥, and let X = X;. See Figure 1. Let
G =mX and let G, = m; X, for each L > 1. Note that if ® i surjective then G, = F XL Z.

Vx{0} >

<— V x {L}

FiGUurRE 1. The mapping torus X.

We regard V as a subspace of Xy, and we denote by E the image in X7, of V' x {%}, the
space F plays a role in Section 3.

We now describe a cell structure on Xz. Let V x [0, L] have the product cell structure: its
vertices are VO x {0, L}, its vertical edges are the edges of V' x {0, L}, and its horizontal edges
are of the form {w} x [0, L], where w € V°. We direct each horizontal edge {w} x [0, L] from
{w} x {0} to {w} x {L}, and horizontal edges of X are directed accordingly. The 2-cells of
X1, are images of the 2-cells of V' x [0, L], which have the form e x [0, L], where e is an edge
of V.

For each vertex w € V? C X9, we let t,, denote the unique horizontal edge outgoing from w.
When L =1, let z € G be the element represented by the loop t,, where v is the ¢-invariant
basepoint of V. Note that conjugation by z induces the monomorphism ® : F' — F'. For each
vertical edge e, joining vertices a, b, there is a 2-cell R, with attaching map t;le_ltagsz(e),
where t,,t, are horizontal edges and ¢’ (e) is a combinatorial path in V.

Define a map g, : X; — X as follows. First, g restricts to the identity on V. Each
horizontal edge t,, of X[, joining w to ¢*(w) € V°, maps to the concatenation of L horizontal
edges of X beginning at w. This determines o7, : X1 — X. This map extends to the 2-skeleton
by mapping each 2-cell R, of X to a disc diagram D, — X. Specifically, for 0 < ¢ < L,
the i*" component P; of the vertical 1-skeleton of D, is the path ¢?(e), and there are strips
of 2-cells between consecutive vertical components. The boundary path of D, consists of
Py, Pr,, and the horizontal edges of X joining the initial [terminal| point of P; to the initial
[terminal| point of P4 for 0 <i < L — 1. Such a diagram D, is a long 2-cell and is depicted
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in Figure 2. Note that D, — X is an immersion when ¢ is a train track map. Otherwise,
the paths P; — X are not necessarily immersed and the map D, — X need not be locally
injective. The map Gy — G induced by o, embeds G, as an index-L subgroup of G.

A .
N N
—— Ca

5 3 \

FIGURE 2. A 2-cell of Xy, is shown at left, its image in X, is at the center,
and its image in X, which is the image of a long 2-cell in X, is shown at right.
Here L = 3. Horizontal edges have arrows and all non-arrowed edges are
vertical.

The universal cover X 1, — X, inherits a cell structure from Xj;. Let v € )~(2 be a lift of
the basepoint v € X%, and let ‘70 denote the smallest F-invariant subgraph containing the v
component of the preimage of V. Let 17n L =2"L ‘70 for n € Z.

There is a forward flow map ¢r, : X1, — X, defined as follows. For each p € V x {0}, let
Sp be the path {p} x [0,L] — Xp. The horizontal ray m, — X, at p is the concatenation
SpSpL(p)Sp2r(p) - Forp € Vil mapping to p, let m; be the lift of m,, at p. For any a € my,
the point éL(d) is defined by translating @ a positive distance L along m;. When L = 1, we
denote qEL by gE

Let Ry denote the combinatorial line with a vertex for each nL € LZ and an edge for
each [nL,nL + L] and let Sy, be a circle with a single vertex and a single edge of length L.
We define a map qr, : )~(L — R, as follows. There is a map ¢, : X; — Sz induced by the
projection V' x [0, L] — [0, L]. The map gy, lifts to the desired map qr. Note that gz sends
vertical edges to vertices and horizontal edges and 2-cells to edges of Ry,. We let R = Ry,
S =Sy, and ¢ = ¢1. The map q is the (horizontal) coordinate projection.

Let Ey,j = q;'(nL + 1). Each horizontal edge t,, = {w} x [0, L] C X, intersects E,p, at
the point {w} x {3} for a unique n € Z.

1.1. Metrics and subdivisions. For each edge e of X, let |e| be a positive real number,
with |t,,| = 1 for each horizontal edge t,,. The assignment e + |e| is a weighting of X!, and
pulls back to a G-equivariant weighting of X!, with all horizontal edges having unit weight.
Regarding e as a copy of [0, 1], the subinterval d = [a,b] C e has weight |d| = (b — a)le|.
Consider an embedded path P — X' (not necessarily combinatorial). The length |P| of P is
the sum of the weights of P N e, where e varies over all edges. This yields a geodesic metric
d on X! such that ()?1, d) is quasi-isometric to X1 with the usual combinatorial path-metric
in which edges have unit length.

Foreach L > 1, let )A(:z be the subdivision of )A(:L such that the lift gy, : )Z'L — X of or, sends
open cells homeomorphically to open cells. The resulting map )Afz — X is an isomorphism
on subspaces 17” 1, and sends 2-cells to long 2-cells. Note that 2-cells of X 1, do not immerse in
X unless ¢ is a train track map. Pulling back weights of edges in X to )N(j; yields a metric df,
on ()}2)1 with respect to which ()22)1 — X! is a distance-nonincreasing quasi-isometry. We
shall work mainly in X , except in Section 5, where it is essential to consider )?}J We refer
the reader to Figure 5 to see the differences between )Z'L, )Z'z, and X.
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Beginning in Section 3, we shall assume that G is word-hyperbolic, so that there exists
§ > 0 such that (X!, d) is 6-hyperbolic.

2. FORWARD LADDERS AND LEVELS

In this section, we define various subspaces of X needed in the construction and analysis
of quasiconvex walls in X and X7.

Definition 2.1 (Midsegment). Let R, — X be a 2-cell with boundary path tb_le_ltadg(e),
where e is a vertical edge joining vertices a,b. Regarding R, as a Euclidean trapezoid with
parallel sides of length |e| and |¢(e)|, the midsegment in R, determined by z € e is the
line segment joining x to gz;(:c) The midsegment in X determined by x is the image of the
midsegment in R, determined by x under the map R, — X , and is denoted m,. Midsegments
are directed so that x is initial and ¢(z) is terminal. The midsegment my is singular if
qz(x) € X0 and reqular otherwise. In general, R, — X is not an embedding, and there may
be distinct x,y € e with the property that the terminal points of m, and m, coincide. Note,
however, that the intersection of two midsegments contains at most one point. See Figure 3.

N
/J_’/

~)

e

FI1GURE 3. Some midsegments in the image of a 2-cell in X.

Definition 2.2 (Forward path, forward ladder). Let x € V,, for some n € Z and let M € Z.
The forward path opr(x) of length M determined by z is the embedded path that is the
concatenation of midsegments starting at  and ending at oM (z). In other words, oy (x) is
isomorphic to the combinatorial interval [0, M], whose vertices are the points ¢*(z), 0 < i < M
and whose edges are the midsegments joining ¢(x) to ¢'*'(x). Any path o of this form is a
forward path. Note that ¢ is a directed path with respect to the directions of midsegments
in the sense that each internal point in which o intersects the vertical 1-skeleton of X has
exactly one incoming and one outgoing midsegment.

The forward path o is singular if it contains a vertex and regular otherwise.

The forward ladder N (o) associated to o is the smallest subcomplex of X containing o.
The 1-skeleton N(o)! plays an important role in many arguments. See Figure 4.

i ——
[

FicUure 4. A forward ladder for a regular forward path. The forward path is
labeled with arrows.

A subgraph Y of X1is A-quasiconver if every geodesic of X! starting and ending on Y lies
in Nx(Y). We use the notation N, (Y) to denote the closed r-neighborhood of Y.
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Proposition 2.3 (Quasiconvexity of forward ladders). There exist constants A1 > 1, o > 0
such that for each regular forward path o — X, the inclusion N(o)' < X' is a (A1, \2)-quasi-

isometric embedding. Hence, if X1 s 5-hyperbolic, there exists X > 0 such that each N (o)}
A-quasiconver.

Proof. Let o join z to &M(x), so that ¢ = Mgy - Mg (y)- Let R; be the 2-cell
containing mg; (). Then a geodesic P of N(o)! joining = to ¢M(zx) has the form P =
QotoQ1t1Q2 - - - tar—1Qar, where each t; is a horizontal edge in R; and each |Q;| < max.{|¢(e)|}.
Since each m; is a midsegment, R; # R; for i # j, whence the coordinate projection ¢(P)
is a combinatorial interval of length M, and the preimage in N(c)! of each point in ¢(P) is
uniformly bounded. Hence P is a uniform quasigeodesic in X1 O

In the case that X! is d-hyperbolic, we denote by A the resulting quasiconvexity constant
of the 1-skeleton of a forward ladder. The forward ladder for a singular forward path is
also uniformly quasi-isometrically embedded, by an argument very similar to the proof of
Proposition 2.3, but we do not require this fact.

Definition 2.4 (Level). Let 2 € V,, and let L > 0. Note that the preimage (¢) " (z) is
a finite set {z;} in V1. Let or(z;) be the forward path beginning at z; and ending at x.
The level TP (x) is the subspace Ujor(z;). The point x is the root of T7(x) and L is the
length. The carrier N(T7(x)) is the smallest subcomplex of X containing T7(x). Note that
N(T?(x)) = U;N(o;), where o; varies over the finitely many maximal forward paths in 77 (x).
Note that each level has a natural directed graph structure in which edges are midsegments.

Proposition 2.5 (Properties of levels). Let T7(x) be a level. Then:

(1) TP (z) is a directed tree in which each vertex has at most one outgoing edge.

(2) If © & XO, then there exists a topological embedding T7(x) x [-1,1] — X such that
T7(x) X {0} maps isomorphically to T7(z).

(3) If L' > L, then TP (x) C Ty, (x).

Proof. T?(z) is connected since it is the union of a collection of paths, each of which terminates
at x. Each vertex of T7(x) has at most one outgoing edge. Hence any cycle in T7(x) is
directed. The map ¢ : TP(z) — R thus shows that there are no cycles in 77 (x). This
establishes assertion (1).

Let 2; € () '(x) and let o; C TP(x) be the forward path joining z; to #. Then o; is
disjoint from X9, since T7(x) is regular. Hence there exists ¢; > 0 such that N(o;) contains
an embedded copy of o; X [—€;, €;] with o; x {0} = 0, which we denote by F;. Let € = min; ¢;.
For each i, let F] C F; be 0; x [—€,€] C 0; X [—¢€;, €], and let F' = U;F]. Since 0; Noj is a
forward path for all 4, j, the subspace F' = T7(z) x [—¢, €|. See the right side of Figure 5.

Assertion (3) follows from the fact that ¢ : X — X factors as X i X ¢L—> X. O

For each L > 1, forward paths and levels are defined in precisely the same way in X L
and )Nf * A level of X, is subdivided when we formed )N( in Section 1.1. Accordingly, each
length-L level in X 7 1s isomorphic to a star whose edges are subdivided into length-L paths.
The map gy, : X 7 — X sends each length-n level of X 1, each of whose maximal forward paths
contains nL midsegments of X 7, to a length-nL level in X. Thus o1, maps subdivided stars
to rooted trees, as shown in Figure 5.
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FIGURE 5. The product neighborhood of a regular level in X is shown at
right; the corresponding level in X appears at left. In general, the product
neighborhood may contain several subintervals of each vertical edge since ¢ is
not in general an immersion on edges.

The image in Xz, of a level from Xﬁ is also referred to as a level; it will be clear from the
context whether we are working in the base space or the universal cover.

The following observation about forward ladders is required in several places in Section 4
and Section 5.

Lemma 2.6. Let o be a forward path. Then for each R > 0, there exists O > 0, independent
of o and n, such that diam(Ngr(N (o)) NNr(V,)) < O for alln € Z.

Proof. This follows from the fact that the coordinate projection ¢(V;,) = n, while the image
of q|n(s) is an interval, each of whose points has uniformly bounded preimage in N (o). O

3. IMMERSED WALLS, WALLS, AND APPROXIMATIONS

In this section, we will describe immersed walls W — X, which are determined by two
parameters. The first parameter is a collection {d;} of subintervals of edges in V, called
primary busts. The second parameter is an integer L > 1 called the tunnel length. The graph
W consists of V —U;d; —U;(¢%)~1(d;) together with a collection of rooted trees called tunnels,
and is immersed in X7. We shall show that when L is sufficiently large, W — X corresponds
to a quasiconvex codimension-1 subgroup of G.

3.1. Primary busts. Let {ej,...,ex} be edges of V C X. For each i, let €] be the image
of e; under the isomorphism V' — E given by (x,0) — (x, %) The subspaces e}, regarded as
edges of E, are primary busted edges. We will choose closed nontrivial intervals d; C Int(e}),
whose distinct endpoints we denote by p;t. The corresponding subinterval of e; is denoted
d;, and its endpoints q;t correspond to pli. Let B> = FE — UleInt(d;) and let V? denote its
preimage in V under the above isomorphism V' — E. The subspace E’ is the primary busted
space, and each d; (or d}) is a primary bust; Int(d;) (or Int(d})) is an open primary bust.

Let C be a component of V? and let C be a lift of its universal cover to some ‘7n Since
C — V — X is mi-injective, C embeds in ‘~/n Its parallel copy ' c En is a primary nucleus,
and likewise, each component of E” is a primary nucleus in X.

Remark 3.1 (Quasiconvexity of C under various conditions). In our applications, we will
require C to be quasiconvex in X!, This is achievable in several ways. Clearly, if {e;} contains
enough edges that E® is a forest, then the subspaces C C X! are finite trees and therefore
quasiconvex.

Quasiconvexity of C occurs under other circumstances. For example, suppose that ® : F' —
F is an automorphism and ¢ is a train track map that is aperiodic in the sense of [Mit99], i.e.
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¢"(e) traverses f for all edges e, f and all sufficiently large n. Then, provided {e;} contains
at least one edge corresponding to a nontrivial splitting of F', the following theorem of Mitra
(see [Mit99, Prop. 3.4|), which is an analog of a result of Scott and Swarup [SS90], ensures

that each C'is quasiconvex:

Theorem 3.2. Let @ : F' — F be an aperiodic automorphism of the finite-rank free group F.
If H < F is o finitely generated, infinite-index subgroup, then H is quasiconvex in F Xg Z.

3.2. Constructing immersed walls. We now assume that X! is d-hyperbolic. Let L > 1
be an integer, called the tunnel length. For any set {d;} of nontrivial primary busts, the spaces
E’ and V” embed in X1, by maps factoring through E < X, and V < X respectively. For
each i, let {d;;}; denote the finite set of components of (¢*)~1(d;). For each i, j, let d; be
the parallel copy of d;; in E. Each d;; or dgj is a secondary bust. In order to choose busts, we

will assume that each edge e of V is expanding in the sense that ¢*(e) # e for all k > 0. This
assumption is justified by Lemma 3.4 below (see also [BH92]).

Definition 3.3. We say x € V is periodic if ¢"(x) = x for some n > 1. A point x € V has
period m if ¢ (z) = x and ¢¥(x) # x for 0 < k < m. We then refer to z as being m-periodic.

A forward path ¢ — X is periodic if it is a subpath of a bi-infinite forward path whose
stabilizer in G is nontrivial. Note that this holds exactly when each point of X'ne projects
to a periodic point of V.

Recall that the map ¢ : V — V is irreducible if for all edges e, f, there exists n > 0 such
that ¢™(e) traverses f.

Lemma 3.4. Let F xg¢ Z be hyperbolic. Then ® : ' — F can be represented by a map
¢V — V with respect to which each edge of V is expanding and no edge is mapped to a
point. Moreover, if ® has an irreducible train track representative, then ¢ : V. — V can be
chosen to be an irreducible train track map with respect to which each edge is expanding.

Proof. We begin with a representative ¢ : V' — V', which we will adjust by contracting subtrees
of V. Let U C V be the union of all vertices and all closed edges e such that |¢*(e)| is bounded
as k — oo. First, note that ¢(U) C U. Second, each component of U is contractible, since
otherwise either ¢ is not mi-injective or X would contain an immersed torus, contradicting
hyperbolicity. We now collapse the ¢-invariant forest U as in [BH92, Page 7], resulting in
a graph V and a map ¢ : V — V representing ® (by reparametrizing, we can assume that
the restriction of ¢ to each edge is a combinatorial path). Note that either U contained no
edges (so all edges were expanding and did not map to points), or V has strictly fewer edges
than V. We repeat the above procedure finitely many times to obtain a graph V and a map
¢ : V — V such that edges map to nontrivial paths and all edges are expanding.

The collapse of U preserves the property of being a train track map. Indeed, let € be an
edge of V = V/U that is the image of an edge e of V. Let n > 0, and consider the restriction
of " to & The path ¢"(€) is obtained from the immersed path ¢™(e) by collapsing each edge
that maps to U. Let @,v be consecutive edges of ¢"(€) that fold. Then there is a subpath
u~tfv C ¢"(e), where u — 4,v + ¥ and f is an immersed path in U. Observe that f is a
closed path since u, v have the same initial point. This contradicts the fact that U is a forest.

Finally, the property of irreducibility is preserved by collapsing invariant forests. Indeed,
let €, f be edges of V that are images of edges e, f of V. Then by irreducibility of ¢, there
exists m > 0 such that ¢ (e) passes through f, and hence ¢™(€) passes through f. O
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A point y € V is singular if ¢*(y) € VO for some k.

Lemma 3.5. Let L € N. Let {e;}_, be a set of expanding edges in V, let z; € Int(e;) for
each i, and let ¢ > 0. Then there exists a collection {d,-}f'zl of closed subintervals (primary
busts), with each d; C Int(e;), such that:

(1) Uid; is disjoint from the associated secondary busts U;jd;;.

(2) Ujd;; lies in the e-neighborhood of (¢¥)~1(x;) for each i.

(8) The endpoints pii of d; are nonsingular.

(4) If z; is nonsingular and ¢*(x;) # x; then we can choose d; such that x; is an endpoint
of di, i.e. x; € {pF}.

(5) ¢ restricts to an embedding on d;, for each i.

(6) Suppose that ¢ (z;) # ¢¥(x;) for all i # j. Then ¢T(d;) N dL(d;) = 0.

Proof. We first establish the finiteness of the set S consisting of points s € e; such that
¢ (s) = 5. Each component b of e;N(¢™) 71 (e;) is the concatenation of one or more subintervals
of e;, each of which maps homeomorphically to e;. Since e; is expanding, Brouwer’s fixed point
theorem implies that each such subinterval contains a unique point s with ¢*(s) = s. As there
are finitely many such b, we conclude that S is finite.

Let z; € Int(e;) —S. There exists a nonempty closed interval h; containing z; such that
hi N (¢F)~1(h;) = 0. Indeed, if h; N (%)~ (h;) # () for each closed interval containing 2; then
there would be a sequence of points converging to z; whose ¢r-images also converge to z;,
and so z; € S. Property (1) holds whenever d; C h;.

By continuity of ¢”, there exists 6 > 0 such that Ns((¢*)~!(x;)) C (¢%) " (Ne(z;)). Prop-
erty (2) holds by choosing z; € Ns((¢")~!(x;)) and letting d; be a nontrivial component of
hi N CU(Ns((¢*)71(2;))). As there are countably many singular points, Property (3) holds
since we can assume that neither endpoint of h; is singular. Property (4) holds by letting
z; = x;, and then choosing h; above so that it has x; as an endpoint.

To prove (5), note that e; has a subdivision where the vertices are points of (¢*)~1(V9).
If d; is properly contained in a single closed edge in this subdivision, then ¢ restricts to an
embedding on d;. This can be arranged by choosing d; sufficiently small (fixing x;).

We prove (6) by induction on [{e;}|. The base case, where k = 0, is vacuous. Suppose
that dy,...,dx_1 have been chosen to satisfy (1)-(6), with each d; satisfying z, & ¢*(d;)
for 1 < i < k. Choose dj with properties (1)-(5) small enough to avoid the finitely many
ol (dy), 1 <i < k. O

Clearly d;Nd; = () for i # i, since d;, d; are contained in distinct open edges. Consequently
dij Ndyy =0 unless i =14' and j = j'.

The subspace N of E” obtained by removing the image under V= E of each open secondary
bust is the nucleus. Observe that N need not be connected. For each 4,5, let qf? be the
endpoints of d;;, which map to ql?t e V, and let pf; be the corresponding points of d;j CcC E.
See Figure 6.

For each 1, let Tfi be the image in X, of the level Tf((jli) C X, where cjii is an arbitrary
lift of q;t € d;. Recall that Ti"i is an embedded star of length L rooted at qz?t with leaves
at the various qf§ (Proposition 2.5.). Let SZ-jE be a segment in the 2-cell R, of X, that joins
qijE to p/ € E. (Note that SZ-+ joins pj to ¢; and S, joins p; to q;") The arcs SijE are
slopes. The level-part T;’i is the rooted subtree of Ti"i with leaves at pjs The subspace
TijE = Tfi U Sz-:t obtained by joining the level-part TijE and the slope along the common point
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Py —

Dyj
+5u
p”/—>

pij/—>

FIGURE 6. Constructing a wall in X7

qz is a tunnel. The space W* determined by the primary busts {d } and the tunnel length
L is the graph obtained by joining each tunnel 7= to N along {pw} U {p;}. The inclusion
N — X and the inclusions TijE — X induce a (non-combinatorial) immersion W = X L-
Note that T N TjjE = () when i # j since d; Nd; = (. Note that for each 7, the tunnels

* and T, intersect in the single point S;” N S; . Composing with the map X, — X gives
an immersion W* — X. This extends to a local homeomorphism W* x [—1,1] — X with
W* identified with W* x {0}. Indeed, we described a map T;% x [~1,1] — X earlier, and
N x [-1,1] — X is an embedding since N C E, and each Sii lies in a 2-cell. Appropriately
chosen neighborhoods T;" x [-1,1], 7, x [-1,1], and S;" x [-1,1], S; x[—1,1], and N x [—1,1]
can be glued to form W* x [—1,1] — X. These gluings can be chosen to preserve a “normal
vector” at each point of the tunnel, and hence the result is a trivial [—1, 1] bundle. The map
W* — X factors through an immersion W*® — X, where W* is obtained from we by folding
the levels according to the map oy, : X1 — X illustrated in Figure 5. The spaces W* and W*
are shown in Figure 7.

F1GURE 7. The above figure shows gy, : W* — W*. In each of the domain and
the target, identify the two starred points and the two dotted points; these are
the points in V' where the slopes, shown at the left of each picture, intersect
the levels, shown at right.

Definition 3.6. A component W of W* is an immersed wall.

3.3. Description of W. We now define a wall W in X. The map W — X lifts to a map
W — X of universal covers. For each component C' of N, the universal cover C of C lifts to
W and the restriction of w - X to each such C is an embedding. Moreover, each tunnel
lifts to W and the map W — X restricts to an embedding on each tunnel T; C W. We define
W to be im(W — X). We conclude that:

Remark 3.7. Let Hy = Stabg(W). When W is locally isomorphic to W, the trivial [—1,1]-
bundle discussed above ensures that there are exactly two components of X — W, each of
which is Hyy-invariant.
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Remark 3.8 (Future shape of W). We now describe the structure of W in the situation in
which distinct tunnels are disjoint. Note that tunnels Tii and Tji in W are disjoint when i # 7,
since they map to disjoint tunnels in im(W — X). Moreover, we shall show below that, under
certain conditions, tunnels T, 7" C W, mapping to T;“,TZ-_ respectively, are disjoint when L
is large. In this situation, W will be shown to have the structure of a tree of spaces, whose
underlying vertices are equipped with a 2-coloring (call the colors “black” and “white). Black
vertices correspond to slopes, while white vertices correspond to subspaces that are maximal
connected unions of universal covers of nuclei and lifts of level-parts. Note that W may still
fail to be simply connected — i.e. w may still fail to embed — since subspaces corresponding
to green vertices may not be simply-connected. If W contains a nucleus in En, then all nuclei
lie in Em-k L, k € Z, and any two nuclei contained in a common vertex space lie in the same
space En+kL. A heuristic picture of W is shown in Figure 8, and Figure 9 shows a part of W
inside X.

0 1/2 L L+41/2 2L
_*_.* PY 2 o

FiGURE 8. A heuristic picture of part of a wall in X and the effect of the
coordinate projection ¢ on the various parts of the wall. Points in the same
fiber of ¢ are decorated according to their g—images. The two nuclei at left,
and the arrowed levels, belong to the same knockout. This knockout does not
contain the slope or the nucleus and level at right.

— Sl
LY SN ¢
» \ >>
e —™ fx

FIGURE 9. Part of a wall W — X. The single-arrowed segments belong to a
nucleus, while the double-arrowed segments are tunnels.
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3.4. The approximation. Let N(W) denote the union of all closed 2-cells of X that inter-
sect W. We will show that N(W)! is quasiconvex in X! under certain conditions, notably
sufficiently large tunnel length. However, the quasiconvexity constant will depend on the
tunnel length. This is partly because levels are not uniformly quasiconvex and partly because
distinct levels emanating from very close secondary busts may contain long forward paths
that closely fellow-travel. To achieve uniform quasiconvexity we define the approzimation of
W, which also has the key feature that it lifts to a geometric wall in )Nfz

Definition 3.9 (Approximation). Let W — X be an immersed wall with tunnel length L
and primary busted edges {e;}. Let W be the image of a lift W — X of the universal cover
of W to X. We define a map A : W — X as follows. First, suppose that C - W is the
universal cover of a component of the nucleus of W. Let n € Z be such that Cc En, and let
C’ c V,, be the parallel copy of C. For each ¢ € C let ¢ denote the corresponding point of
C'. Then A : C — X is defined by A(c) = ¢%(¢). For each level-part T° of W, let ¢ be the
root of T°. Then A(t) = ¢ for each t € T,. Finally, let S C W be a slope, beginning at ¢
and ending on a point p in a nucleus component C. Then p is an endpoint of a primary bust
d; C En. The map A sends the slope S homeomorphically to the path d;P, where d} is the
parallel copy of d; in Vj, that joins ¢ to p’ and P is the forward path joining p’ to ¢Z(p'). See
Figure 10.

The approzimation A(W) of W is the image of W under the map A. Note that A (W)
is the union of length-L forward paths together with subspaces of ‘7”,; for each n € Z. Let
N(A(W))! be the 1-skeleton of the smallest subcomplex of X containing A (W).

| 1

-

FiGuRrE 10. Part of a wall and its approximation. The arrowed paths are the
approximations of the slopes intersecting them.

Remark 3.10. Observe that the use of slopes ensures that A (W) passes through each primary
busted edge intersecting W, which is crucial in the proof Proposition 4.6, which says that W
is actually a wall.

Remark 3.11. If 51, 6’2 are nuclei of W intersecting a level-part of a tunnel of W, then
A(Cy)N A(C~’2) £ (). For each n € Z, each component of A(W) NV, is formed as follows. A
knockout K is a maximal connected subspace of W that does not contain an interior point
of a slope. The knockout K is at position n if it is the union of nuclei in W N En 1 together
with level-parts traveling from En 1, to V,,. The knockout in Figure 8 is at position L.

To each position-n knockout K, we associate a component of AW) N Vi, namely the
one obtained from the connected subspace A(IN( ) C V,, by adding all (closed) primary bust
intervals that intersect A(K). See Figure 11.

Remark 3.12. If 57,55 are distinct slopes, rooted at primary busts dy,ds2, then A(S7) N
A(S3) = 0 by Lemma 3.5.(5)-(6).
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FiGure 11. Two nuclei intersecting a common level-part have intersecting
approximations whose union avoids primary busts.

3.5. Hypotheses on A(WW) enabling quasiconvexity. We recall that we are assuming,
for the rest of the paper, that there exists § > 0 such that X'is d-hyperbolic. The following
statements are instrumental in proving that, provided L is sufficiently large, N(A(W))! — X
is quasi-isometrically embedded, and the quasi-isometry constants are independent of L.

Definition 3.13 (Bust-quasiconvex). W is bust-quasiconves if there exist constants p, ub
such that each component in X of the preimage of V —U;Int(d;) is (14}, i} )-quasi-isometrically
embedded. For example, as noted in Remark 3.1, W is bust-quasiconvex if V” is a forest or
if ® is an aperiodic isomorphism and there is at least one bust.

Lemma 3.14 (Quasiconvexity of approximations of nuclei). Approzimations have the follow-
ing properties when W is bust-quastconves:

(1) For each nucleus C and each open primary bust d, we have A(C)Nd = 0.

(2) Let K be a knockout. Then A(K)Nd =0 for each open primary bust d.

(8) Hence there exist puy > 1, pu2 > 0 such that, for each n € Z and each component K of
Vo NA(W), the inclusion K — X' is a (u1, p2)-quasi-isometric embedding. Moreover,
w1 and po are independent of {d;} and L.

Proof.

(1) C has empty intersection with the set of open secondary busts in 17”, and hence maps
to the complement of the set of open primary busts in I7n+ L-

(2) This follows immediately from (1) because level-parts map to points.

(3) Since W is bust-quasiconvex, statement (2) implies that K is a subtree of a uni-
form neighborhood in Vj, of some A(K), and the first claim follows. Since there are
finitely many possible sets of primary busted edges, the constants uq, uo can be cho-
sen independently not only of L and {d;}, but also of {e;}. Indeed, each set {e;} of
edges yielding a bust-quasiconvex immersed wall gives rise to a pair of quasi-isometry
constants, and we take u1, o to be the maximal such constants. O

Lemma 3.14 provides uniform quasiconvexity of nucleus approximations, and Proposi-
tion 2.3 provides uniform quasiconvexity of forward ladders. Lemma 2.6 provides a bound on
the diameters of coarse intersections of nucleus approximations and carriers of approximations
of slopes. To prove quasiconvexity of N(A(W))! requires the following additional property.

Definition 3.15 (Ladder overlap property). A family of immersed walls {W; — X} has
the ladder overlap property if there exists B > 0 such that for all ¢ and all distinct tunnels
T1,T> C W; intersecting a common nucleus,

diam (M35 421 (N (A(T1))) N Nss 22 (N (A(T2)))) < B,
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where A is the constant from Proposition 2.3.

Remark 3.16. The purpose of the ladder overlap property is to guarantee that, when L is
large and W is bust-quasiconvex, paths of the form Saf’ are uniform quasigeodesics, where
B, 3" are geodesics of carriers of slope-approximations and « is a vertical geodesic in A (W).

If the interiors of 3, 8’ have disjoint images in R, Lemma 2.6 ensures that Sa’ is a uniform
quasigeodesic. The interesting situations are those in which 3, 8" are both incoming or both
outgoing with respect to the vertical part of A(W) containing a. A thin quadrilateral argu-
ment shows that in either case, the ladder overlap property ensures that 3, 3’ have uniformly
bounded coarse intersection, from which one concludes that Sa/3’ is a uniform quasigeodesic

(see Lemma 4.3 below).

4. QUASICONVEX CODIMENSION-1 SUBGROUPS FROM IMMERSED WALLS

In this section, we determine conditions ensuring that N(A(W))! is quasiconvex and W is
a wall in X, continuing to assume that X! is 6-hyperbolic.

4.1. Uniform quasiconvexity. A collection {W — X} of immersed walls is uniformly bust-
quasiconveg if there exist constants yi1, uo such that A(K) — X! is a (u1, u2)-quasi-isometric
embedding for each W and each knockout K of W. The first goal of this section is to prove:

Proposition 4.1. Let W = {W — X} be a uniformly bust-quasiconver set of immersed
walls with the ladder-overlap property. Then there exists Lo, k1, k2 such that for all W e W
with tunnel length at least Lo, the inclusion N(A(W))' — X! is a (k1, k2)-quasi-isometric
embedding.

The constants are k1 = 4\u; and kg = % + 2Lp(1 + ﬁ) Here p1, o are the
quasi-isometry constants from uniform bust-quasiconvexity, and A; is the multiplicative quasi-
isometry constant for 1-skeleta of forward ladders. We emphasize that these are independent
of L and of the collection of primary busts. We postpone the proof of Proposition 4.1 until
after the following necessary lemmas.

Lemma 4.2. Let Z be d-hyperbolic, and let P = agf1aq - - - Brag be a path in Z with all oy
and B; geodesic. Suppose there exists B > 0 such that for all i, each intersection below has
diameter < B:

Nas(Bi) N Bit1,  Nas(Bi) N, N3s(Bi) N1
Then if |B;| > 12(B + 6) for each i, then |P|| > & (Zf:o | + 3%, |5z\)
Proof. This is a standard argument. We refer, for instance, to [HW12, Thm 2.3]. O

We now promote Lemma 4.2 to a statement about piecewise-quasigeodesics.

Lemma 4.3. Let Z be §-hyperbolic and let P = agfB1ayq - - - Bray, be a path in Z such that each

Bi is a (A1, \2)-quasigeodesic and each «; is a (p1, p2)-quasigeodesic. Suppose that for each

R > 0 there exists Bg > 0 such that for all i, each intersection below has diameter < Bpg:
N3sir(Bi) N Biv1,  N3sir(Bi) Nai,  Nssir(Bi) Nair.

Then there exists Lo such that, if |Bi| > Lo for each i, then | P|| > ﬁ]ﬂ — &2,
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Proof. For each i, let &; [respectively, Bl] be a geodesic with the same endpoints as «; [respec-
tively, 5;], and let P = apBia - - - Bray be a piecewise-geodesic with the same endpoints as
P. Since Z is §-hyperbolic, there exists pu = p(p1, u2,0) such that «; and @; lie at Hausdorff
distance at most u, and there exists A = A(A1, A2, 0) such that 3; and f; lie at Hausdorff
distance at most A.

Note that if Ry < Rs, then we may assume Br, < Bg,. By hypothesis, N3siox(5;) N Bit1
has diameter < Byy. Moreover, if 3/ C §; is a subpath that 30-fellowtravels with a subpath
a' of a; or ayj_1, then B fellowtravels at distance 30 + p + A with a subpath o” of o; or a;_1,
whence || < B,4a by hypothesis. Letting Ly > 12(6 + Bj42x) and applying Lemma 4.2
shows that P is a (3, 0)-quasigeodesic, and we have:

1
(1) 121 =P =3[P
Since p11, A1 > 1, we can bound |P| as follows:
k k k k
Pl=2 1Bl + > lal = Y 78] = 2o) + 3 (o] — )
i=1 i=0 i=1 i=0

k k
[)‘11 DB =M+ p2)) + ity |Oéi|] -

v

k k
(M)~ [Z(Wi\ = Mo+ p2)) + ) !az’|] — 2.

=1 =0

If Lo > 2A1(Ag + p2) + 1, then, provided that |8;| > L > Lo, we have:

k k
— 1
P| > 4 7 — .
Pl = 55 [;;mw;(}jm r] Ha

Combining this with Equation (1) yields ||P| > 4)\ 1Pl =5 O

Proof of Proposition /.1. For a path P in )21, as usual ||P|| denotes the distance in X! be-
tween the endpoints of P. If P is a geodesic of N(A(W))!, then its edge-length |P| equals
the distance in N(A(W))! between the endpoints of P. We will show that when L > Lo,
there are constants 1, sg such that | P| > sy '|P| — k2.

Alternating geodesics: Let P’ be a geodesic in the graph N(A(W))!. Suppose P’
alternales, in the sense that P’ = agfB1aq - - - Brag, where each «; is a vertical geodesic path,
and each f3; is a geodesic of the 1-skeleton of a length-L forward ladder (and thus a (A1, \2)-
quasigeodesic). We allow the possibility that ag or aj has length 0.

Each «; is a (u1, p2)-quasigeodesic by our hypothesis that knockout-approximations are
quasi-isometrically embedded. Since W has the ladder overlap property, diam(N3zs12x(5;) N
Nssiox(Bit1)) < B. Let By = max(B, ©O3512)), where Ozs510) is as in Lemma 2.6. Applying
Lemma 4.3 yields a constant L such that, if L > Lo, then ||P’|| > 4/\1u1 |P'| — 2.

A (W) quasi-isometrically embeds: Let P be a geodesic of N(A(W))!. By construction
P = ByP'B),,, where P’ is alternating and Bé,ﬁffﬂ are (possibly trivial) paths in forward
ladders. If |3g], |B;1] > Lo, then ||P] > 4>\1u1 |P| — & by Lemma 4.3. If |3y}, |5;.,1| < Lo,
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then since P’ is alternating,
1
1P| = ).
4)\ 101 4)\1,u1 41
In the remaining case, without loss of generality, P = BOP” , where |5)| < Ly and P” satisfies
|P"|| > 4/\1“1 |P"| — &2 by Lemma 4.3. The proof is thus complete with £ = 4A;u; and
/4]2—:“’2 —|—2L0( +W1,U«1) O

|P’|———2LU_

P -2 —2Lo(1+

4.2. W is a wall when tunnels are long. A subspace Y C X is a wall if X — Y has
exactly two components, each of which is stabilized by Stab(Y’). Note that this definition
is stricter than usual. For more about wallspaces and the various definitions, background,
and references, see |[HW|. Our goal is now to show that if W — X is an immersed wall
with sufficiently long tunnels, then W is a wall. We need the following useful consequence of
quasiconvexity.

Proposition 4.4. Let W satisfy the hypotheses of Proposition 4.1. There exists Ly > Lo such
that A(W) is a tree for each W € W with tunnel length L > L.

Proof. Let Q be an immersed path in A(W), and let Q' be a geodesic of N(A(W))! with the
same endpoints as Q. Proposition 4.1 implies that [|Q’|| > #'|Q| — k2. Hence if |Q'| > L =
max (Lo, k1k2 + K1), then @ is not closed. Any immersed path Q in A(W) either lies in a

single vertex space and is thus not closed, or contains a slope approximation and thus @’ has
length at least L > L. g

Remark 4.5 (Tree of spaces structure on W). Proposition 4.4 justifies our claim in Re-
mark 3.8 that W is a tree of spaces when L is sufficiently large, assuming that W is bust-
quasiconvex and has the ladder overlap property. Indeed, any cycle in W that is not contained
in a knockout will map to a cycle in A (W), contradicting Proposition 4.4.

Proposition 4.6. Let W — X be an immersed wall in a collection W satisfying the hypotheses

of Proposition 4.1. The image W C X ofW — X is a wall provided that W has tunnel length
L > Ly, where Ly is the constant from Proposition 4.4.

Proof. Since H ()A(i ) = 0, it suffices to show that W has an open neighborhood homeomorphic
to W x [—1,1] with W identified with W x {0}. The local homeomorphism W x [-1,1] = X
lifts to a map W x [—1,1] — X. The image of W x [-1,1] — X would provide the desired
neighborhood W x [—1,1] provided that this map is a covering map onto its image. By
choosing the image of W x [—1,1] to be sufficiently narrow, the only place where this could
fail is where distinct slopes of W intersect. To exclude this possibility, we will show that
distinct tunnels Ty, 71 of W are disjoint.

Suppose that Ty # Th and Ty N1y # (). Let e be the primary busted edge dual to Ty and

. Since Ty, Ty C W, there exists a path P — W that starts on Tp, ends on T3, and which is

dlsJomt from the interiors of Tp and 7. Indeed, let P — W bea path joining lifts of T 0, T
and let P be the image of PinW. Moreover, we assume that P _is minimal in the sense
that it is disjoint from intervening lifts of T, 71. The minimality of P ensures that P has the
desired property.

There are three cases. The first is where P starts and ends on the levels of Ty, T7. The
second is where P starts and ends on the slopes of Ty, T1. The third case is where P starts
on the level of (say) 7y and ends on the slope of 7. See Figure 12.
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Observe that e C A(W), as shown in Figure 12, by the definition of A(W). Indeed,
e = apday, where d is the primary bust and ag, g lie in the approximations of the nuclei
attached to the levels of Ty, 7. (The approximations of Ty, T} overlap along d.) The primary
bust d is included in both of the associated slope-approximations (see Definition 3.9).

P A P
% R R TN
—=f f><I Bt o !P,__XP __________________________ |

F1GURE 12. The three cases in the proof of Proposition 4.6. The solid arrowed
lines are parts of the path P. The dotted lines are parts of the closed paths in
A (W) constructed by joining endpoints of A(P).

In the first case, at left in Figure 12, the approximation A(P) of the image of P is a
connected subspace of A (W) that contains the endpoints of e but does not contain the entire
edge e. Hence A(P) U e contains a cycle. Since A(P) C A(W) and e C A(W),

Similarly, in the second case, shown in the center of Figure 12, A(P) is disjoint from e, so
that A(P)UeU A(Tp) U A(T}) is a subspace of A(W) that contains a cycle. In the third
case, shown at right, the contradictory subspace is A(P)UA(T1) Ue. O

We note the following corollary:

Corollary 4.7. Let W be a set of bust-quasiconvex immersed walls such that W has the ladder
overlap property. Then there exists Ly such that for all W € W with tunnel length L > Ly,
the stabilizer Hyy < G of W is a quasiconver, codimension-1 free subgroup.

5. CUTTING GEODESICS

In this section, we recall the criterion for cocompact cubulation of hyperbolic groups given
in [BW13] and describe how a sufficiently rich collection of quasiconvex walls in X ensures
that this criterion is satisfied.

5.1. Separating points on dX. Let 0X denote the Gromov boundary of )Z'i Let W — X
be an immersed wall with the property that N(A(W)) is quasiconvex in X! and W is a

%
wall. Let W and W be the components of X — W, and let N(W) N(W) be the smallest

subcomplexes containing | W,W respectively. Then N(W)'n N (Wfl = N(W)!, which is
coarsely equal to N(A(W))!. Let OW denote ON(W)! = ON(A(W))!, which is a closed

sﬁset of 8)_{ since i\f (AW))! is quasicogvex in X'. Let OW = ON (Wll — OW and let
ow :_(‘zN(VV)1 — OW, so that 8W and OW are_d}sjoint open subsets of 9X. Note that 8W
and W are Hy-invariant, since N (W) and N (W) are Hy-invariant by Remark 3.7.

Let p,q € dX be the endpoints of a bi-infinite geodesic v : R — X', Then v is cut by W

if pe 8% and q € 8W or vice versa.
The following holds by [BW13, Thm 1.4]:

Proposition 5.1. Suppose that for every geodesic v : R — )A(:l, there exists a wall W of the
type described in Section 3, such that N(W) is quasiconver and such that W cuts v. Then
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there exists a G-finite collection {W} of walls in X such that G acts freely and cocompactly
on the dual CAT(0) cube complez.

The utility of Proposition 5.1 is that we can build an enormous (in particular, G—infinite)

collection of quasiconvex walls in X , and the proposition will provide a suitable G—finite
collection of walls.

5.2. A method for cutting the two types of geodesics.

Definition 5.2 (Ladderlike, deviating). Let M > 0 and let v C X! be an embedded infinite
or bi-infinite path whose image is {-quasiconvex, for some & > 0. Then ~ is M -ladderlike
if there exists a forward ladder N(o), where o is a forward path of length M, such that a
geodesic of N(o) joining the endpoints of o fellow-travels with a subpath of v at distance
26 + A+ &. Here, X!is d-hyperbolic and X is the constant from Proposition 2.3. Otherwise,
v is M -deviating.

Note that if v is M-deviating, for each R > 0 there exists Mpr depending only on &, M, R
such that for all forward paths o, we have diam(y N Ng(N(0)!)) < Mg. Moreover, if v is
2M-deviating, the same bound holds with o replaced by any level, since any geodesic in a
level decomposes as the concatenation of two (possibly trivial) forward paths.

Definition 5.3 (Many effective walls). A set W of immersed walls in X is spreading if:

e For arbitrarily large L, there exists W € W with tunnel length L.
o W has the ladder overlap property of Definition 3.15.
X has many effective walls if Conditions (1) and (2) below hold.

(1) For each regular y € V, there exists a spreading set W, such that for each ¢ > 0 and
each m € N, there exists L > m and W € W, with tunnel length L, a primary bust
in each edge of V', and a primary bust in the e-neighborhood of y.

(2) For each a € Vo whose image in V' is periodic and whose corresponding point in Ey is
denoted by ', there exists k = k(a) > 0 and a spreading set W, such that all of the
following hold:

e W, is uniformly bust-quasiconvex;
e for each W € W,, each edge of V' contains a primary bust of W; B
e for each primary bust d’ of W in Ey (corresponding to an interval d C Vp) that
is joined to @’ € Ey by a path in a knockout of W, we have d)zl(q?)"(a), o™ (d)) >
36 + 2 for all n > k. See Figure 13.
(Observe that W, need not be a maximal set of immersed walls satisfying the above
conditions, and indeed our applications we choose a very specific W,.)

Remark 5.4. Firstly, assuming that the third part of Definition 5.3.(2) holds, the constant k
can be chosen independently of the point a. For each a € ‘70 whose image a in V is periodic,
let k'(a) be chosen so that for each bust d and each n > k'(a), we have dil(gfgn(a), o"(d)) >
30+2X\+1. This is possible since the existence of k(a) implies that the forward rays emanating
from a and any point of d diverge. By translating, we note that if a; is another lift of a to
Vo, then we can take &'(ay) = ¥'(a).

Fix € € (0,1) and consider the neighborhood of a given by U, = (¢ (@)=Y (N (¢¥ (@) (a))).
Then for each b € U,, we have d ¢, (¢"(b), $"(d)) > 36+2A+1—e > 35 +2A for each n > K'(a).
Hence we may choose k(b) < k/(a).
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FIGURE 13. Definition 5.3.(2).

Let V© C V be the set of periodic points, and let CI(V®) denote its closure, which is
compact since V is compact. Let Uz be the image of U, in V, which is open since U, is open.
Note that {U; : @ € V“} is an open covering of Cl(V®), since a € U for each a € V©.
Hence the claim follows since the open covering has a finite subcovering consisting of finitely
many sets Ug, and we can take k to be the maximum of the associated k(a’).

Secondly, since the collection W, has the ladder overlap property, we claim there is likewise
a constant B, such that for all W € W,, any two tunnels T, T of W that are joined by a
path in W not traversing a slope have the property that the (36 + 2))-neighborhoods of
A(T),A(T") intersect in a set of diameter at most B,. Let V, be the set of images in V of
points b € V such that for all W € W, the point b lies in a nucleus of some W and for all
primary busts d of W, we have d,(¢"(a),¢"(d)) > 36 + 2X for all n > k. The previous
argument showed that, with k& chosen appropriately, the set V, is open. It follows that if X
has many effective walls, the ladder overlap constant B, can be chosen independently of a.
This is used in the proof of Proposition 5.19.

Definition 5.5 (Separating level). X is (M, K)-separated if for each M-deviating geodesic 7
there exists y € X such that the following holds for all sufficiently large n: the set ANT2(™(y))
has odd cardinality, and the distance in T2(¢"(y)) from v N T2(¢"(y)) to the root or to any
leaf of TO(¢"(y)) exceeds M + K. See Figure 14. We say X is level-separated if it is (M, K)-
separated for all M > 0, K > 0.

Remark 5.6. If the level T°(¢™(y)) separates v in the above sense, then we can choose ¥ so
that the image § € V of y is not periodic. Indeed, if 3/, are sufficiently close, then T°(¢™(y))
and T°(¢"(y')) both separate v. There are points 3 arbitrarily close to y whose images in V.
are not periodic since there are only countably many periodic points.

Definition 5.7 (Bounded level-intersection). X has bounded level-intersection if for each

z € X' and each vertical edge e C )?1, there exists K = K(z,e) such that for every level T
with a leaf at z, we have [T Ne| < K.

Remark 5.8. In the case of greatest interest, where X is the mapping torus of a train track
map, each level intersects each vertical edge in at most a single point (Lemma 6.3), and hence
X has bounded level-intersection. This holds in particular for the complexes X considered in
Theorem 6.16. More generally, this holds whenever there is a continuous map from X to an
R-tree that is constant on levels and sends edges to concatenations of finitely many arcs.
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\/ >M+ K

>M+ K

FIGURE 14. The M-deviating geodesic v is separated by T,‘Z((]B”(y))~ their
intersection consists of 3 points, all far from the root and leaves of T.7(¢"™(y)).

Definition 5.9 (Exponentially expanding). The train track map ¢ : V' — V is exponentially
expanding if there exists an exzpansion constant w > 1 such that for all edges e of V' and all
arcs a C e, and all L > 0, we have |¢*(a)| > @w¥|al. Note that if ¢ is an irreducible train
track map and edges are expanding, then ¢ is exponentially expanding, as can be seen by
taking w to be the Perron-Frobenius eigenvalue of the transition matrix of ¢. See Section 6.2
for more on the eigenvalues of the transition matrix.

The main result of this section is:

Proposition 5.10. Suppose that ¢ : V. — V is a mi-injective train track map. Let X be the
mapping torus of ¢. Suppose that m1 X is word-hyperbolic and that X satisfies:

(1) X is level-separated.

(2) X has many effective walls.

(8) Every finite reqular forward path fellow-travels at uniformly bounded distance with a
periodic regular forward path.

(4) ¢ is exponentially expanding.

Then G acts freely and cocompactly on a CAT(0) cube complez.

Proof. Proposition 5.19 shows that there exists M such that every M-ladderlike geodesic
is cut by a wall. Proposition 5.18 shows that each M-deviating geodesic is cut by a wall;
Proposition 5.18 requires X to have bounded level-intersection, which is the case since ¢ is a
train track map. The claim then follows from Proposition 5.1 since each geodesic that is not
M-ladderlike is by definition M-deviating. 0

Convention 5.11. In the remainder of this section, ¢ : V — V is assumed to satisfy the
initial hypotheses of Proposition 5.10, except that the enumerated hypotheses will be invoked
as needed.

5.3. Walls in )ZL. Let W — X be an immersed wall with tunnel length L > 1, and suppose
that W is a wall and N(A(W))! is (k1, k2)-quasi-isometrically embedded and k-quasiconvex.
Each primary bust has regular endpoints, by Lemma 3.5.(3), so that each level-part of W is
disjoint from X0 Similarly, X0 is disjoint from A(S) for each slope S of W.
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FIGURE 15. W, and A(W) inside X?.

Recall that X 7 denotes the subdivision of X 1, obtained by pulling back the 1-skeleton of X.
For each n € Z, the inclusion VnL < X lifts to an embedding KN/nL — ()Z'z)l, and we continue
to use the notation VnL for this subspace. We make the same observation and convention
about E. By translating, we can assume that W has a primary bust in ‘70, and hence all
primary busts in W lie in the various YZLL and the map W — X lifts to W — )Z'z Let Wp
be the image of W — )Nfz, so that we have the commutative diagram:

Wi — Xz
W X
Note that W, and W are very similar: each tunnel T, of W1, consists of a slope and a level-
part that is a (subdivided) star, and W is obtained from W, by foldmg each such subdivided
star into a tree (see Figure 5 and Figure 7) The halfspaces WL, W in X associated to W,
respectively map to the halfspaces <V[_/ W in X.

The approximation map A is defined in XL just asitisin X = )~(1. Consider A : Wj, — )?L,
which is a lift of A : W — X. There is a corresponding commutative diagram:

AWy,
AW) — X
in which the map A(W 1) — A(W) is an isomorphism. Thus A (W) — X lifts to an embed-
ding A(W) — X3 whose image is A(Wp). Figure 15 depicts W, and A(Wp).
There is also a lift N(A(W))! < X?. Since N(A(W))! — X! factors as N(A(W))! —
(X2)! — X! and since (X$)! — X! is distance nonincreasing, N(A(W))! — (X$)! is a
(K1, k2)-quasi-isometric embedding. Thus ON(A(W))! embeds in 9X$ as a closed subset.

The following proposition explains that the tree A(Wp) determines a wall in )Z'z, and
therefore determines a coarse wall in X that coarsely agrees with W.
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Pr0p051t10n 5.12. For each lifted wall W, the space X contains subspaces Z, Z such that
AuA = XL and A N Z = A(Wp). Both q- A(WL) and A — A(W1) are connected.
Moreover the images of A and Z under the map X — X are coarsely equal to Wi and
WL

Proof It suffices to produce the subspaces A Z so that each is coarsely equal to a component
of X * —Wp. Let 1 be the closures of the components of X — W . The halfspaces
A and X will be obtalned from W 1, and W 1, by adding and subtracting “discrepancy zones”,
which are subspaces between W and A(W ) suggested by Figure 15.

Discrepancy zones: Let e C VnL be a primary busted edge with outgoing long 2-cell
R, C XE Let d C e be the closed primary bust with endpoints p,q. Let p’, ¢’ be the points
at distance % to the right of p,q within R.. The slope S travels from p to ¢/, as shown in
Figure 16. Let ZT be the 2-simplex in R, bounded by S and the part of A(S) between p and
¢'. The disc Z1 is an upward discrepancy zone.

Let C C EnL be a nucleus in W, and let A(C) C VnL+L be its approximation. Consider
the map C X 2, L] — X' that restricts to the inclusion C' x {t} < V,,p x {t} C X' fort <L
and acts as the map ¢L : C = Vprer on C x {L}. The image of this map is a downward
discrepancy zone Z*. In other words, Z* is the closure of C x [%, L) in Xz See Figure 17.

F1c¢URE 16. An upward discrepancy zone.

A

F1cURE 17. A downward discrepancy zone is shaded.

s

F
The halfspaces A and X: Let 3T be the union of all upward discrepancy zones associated
to A(Wp), and likewise let 3% be the union of all downward discrepancy zones. Let

=i ((WL —3T) usi) and A =Cl ((WL —3¢) usT) .
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Since each discrepancy zone lies at distance less than L from Wy, we see that A coarsely
equals WL By construction, A U Z = X‘ Finally, suppose that x € A N Z Then x
must lie on the boundary of a discrepancy zone. If z € W, and € 37, then z ¢ A unless
T € A(WL) N W . Similarly, if # € W and o € 3%, then 2 ¢ A unless z € A(Wr)NWp.
Hence A N A C A(Wp). On the other hand every point in A(Wp) lies in the boundary of
a discrepancy zone, and thus A(Wp) C an

Observe that A — A(Wp) is homeomorphlc to WL — W, which is connected. Likewise
(Z — A(WL)) = (W/L = WL>. Hence A — A(Wp) and A A (W) are connected. O

5.4. Lifting and cutting geodesics in )Zz We now describe a criterion ensuring that a
~ — ~
given geodesic in X is cut by a wall, in terms of quasigeodesics and walls (A,Z) in X7.

5.4.1. Lifted augmentations of geodesics. The following construction adjusts a bi-infinite quasi-
geodesic v — X! so that it can be lifted to a bi-infinite quasigeodesic 7. — X7 such that v
and 7, determine the same pair of points in 0X = 0X}.

Construction 5.13 (Lifted augmentations of quasigeodesics). Let v : R — X! be an embed-
ded quasigeodesic. The augmentation v, of v is defined as follows. For each (p0581b1y trivial)
bounded maximal horizontal subpath P C ~, with endpoints p,p’ € Vn, Vv, let n” be the
smallest multiple of L greater than or equal to max{n,n'} and let p” = ¢ ~"(p) = &~ (p/).
Let @' be the horizontal path pp”p’, and replace P by @’. Performing this replacement for
each such P yields 7,_. Note that 7, is a quasigeodesic that L-fellowtravels with «, so that
07, = 0v. We use the following notation. First, P = P;P,, where P; and P{l are forward
horizontal paths, one of which is trivial. Then Q' = P,QPs, where Q = QlQl_l, with @1 a for-
ward path. The terminal point p” of Q)1 is the apez of Q, and Q = QlQl_l is an augmentation
of ~.

Ficure 18. At left is part of a geodesic in X. In the middle is the image of
its augmentation. At right is the lifted augmentation in X7.

The path ~, lifts to a quasigeodesic 7. — )?z More specifically, each lift of the union
of the vertical edges of v, determines a unique lift of 7,_ to a quasigeodesic. Indeed, we can
write 7, in one of the following four forms, where each e; is a vertical edge and each A;, B; is
a horizontal path, with A; starting at an apex and each B; ending at an apex:

(1) s A_16_1B_1AOGOBOA1€1B1A2€2B2 trty, where e+; are present for all ¢ € N;
(2) ApeoBoA; - -+, where Ap is unbounded;
(3) --- ApeoBo, where By is unbounded,;
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(4) AsesBs--- Ayey By with Ag, By unbounded. (This includes the case ByA; in which
v =, is horizontal.)

Observe that each lift of e; determines lifts of A; and B; to 5(,2 Since the apexes lift uniquely,
any lift of B; is concatenable with any lift of A;;1, and we conclude that a lift of {e;} induces
a lift of «_. In the case where 7 is horizontal, v = ~v_ lifts uniquely since any horizontal
path starting and ending in Ui Vi lifts uniquely. Under the quasi-isometry ()Z}J)l — X 1 the
quasigeodesic 7, is sent to 7, , and thus 07_ = Jv. Finally, if some augmentation of v has a
subpath that lifts to a backtrack in 7, , then we truncate v, accordingly and define 5_ to be
the lift of the truncated augmentation. An augmentation where this truncation is nontrivial
is a truncated augmentation. We call 7 a lifted augmentation of . See Figure 18.

5.4.2. Cutting in )?z We now establish a criterion, in terms of lifted augmentations, ensuring
that a wall W cuts a given quasigeodesic in X .

Proposition 5.14. Let v : R — X! be an embedded quasigeodesic, and let 7. — )Z}J be a
lifted augmentation. Let C, be a bounded subset of 4~ N A(Wp) and let C be the smallest
subgraph of 7. containing C,. Let 7. Vo N(A(Wp))! — ()Z'Z)l be the graph obtained by
wedging 7. — X and NAW)! — X along the common subgraph C. Suppose that:
(1) 7 Ve N(AWp) — ()Zz)l is a quasi-isometric embedding.
(2) There are nontrivial intervals f, f' C 7., immediately preceding and succeeding C,
within 7., that lie in <Z and A respectively.
(3) For every componeﬁt D of v_NA(Wy) disjoint from C,, the 1-neighborhood in 7_ of
D lies entirely in A or A.
Then W cuts .

Proof. Hypotheses (2) and (3) together imply that 7, decomposes as a concatenation 57,
_ . .. . . .
where 7 is a bounded path containing C, and W, 7 are rays contained in A, Z respectively.
The image of 7 Vo N(A(W L)' — X3 is - U N(A(Wp))!, which is quasi-isometrically
embedded in ()N(z)l by hypothesis (1). The inclusion 7 UN(A(W))! — ()N(z)l thus induces
an embedding 97, U ON(A(Wp))' — 0X$: the two points of 87, are 8% € 84 and
07 € 82, and neither of these points lies in ON(A(Wp))! since hypothesis (1) implies that
no sub-ray of 4, lies in a bounded neighborhood of N(A (W p))!. Applying the quasi-isometry
)?z — X shows that the points of 9y C 8X lie in 8N(W) — OW and aN(W/) — OW, whence
W cuts ~. O

5.4.3. Narrow discrepancy zones. We now analyze discrepancy zones. Specifically, we need
the following notion of “narrow exceptional discrepancy zones”, and the ability to construct im-
mersed walls with narrow exceptional zones, in order to use Proposition 5.14 to cut geodesics.

Definition 5.15 (Exceptional zone, narrow exceptional zones). Let W — X be an immersed

wall with tunnel-length L. An exceptional zone is a downward discrepancy zone in )Z'z whose
boundary path intersects the interior of a slope approximation. The downward discrepancy
zone shown in Figure 17 is exceptional.

We say that W has narrow exceptional zones if for each exceptional zone Z C Xz associated

to a nucleus C' of Wy, the image in Z C )NQ of C x [, 3L] does not contain a vertex. See

Figure 19, in which the exceptional zone at left is not narrow and the exceptional zone at
right is narrow. (There is also a non-exceptional downward discrepancy zone at right.)



CUBULATING FREE-BY-CYCLIC GROUPS 27

Lemma 5.16. Suppose that ¢ : V — V is a train track map with expanding edges. For each
edge e; of V, let y. be a periodic regular point of e;, and let ¢ € (0, min; dy (v}, V°)). There
exists L' = L'(€/,{y}}) so that the following holds. Let {d.} be a set of primary busts with each
d; C N!(yl), and let L > L' be chosen so that L and {d}} satisfy the conclusion of Lemma 3.5.

Then for any choice of nontrivial subintervals {d; C d.}, there is an immersed wall W — X
with tunnel length L and primary busts {d;}, with the following property: each exceptional
discrepancy zone Z lies in the interior of a single long 2-cell of )N(}J, and hence Z intersects a
single slope-approzimation.

Proof. Let a be a component of e; — N!(y!). Then there exists L’ such that the path ¢%(a)
traverses an entire edge provided L > L!. Hence, for any subinterval d of NV(y.), the same
is true for any component o’ of e; — d, since &« C /. Let L' = max; L. Given L > L’ and
the primary busts {d, C NM(y.)} satisfying the conclusions of Lemma 3.5, observe that the
conclusions of Lemma 3.5 continue to hold (with the same L) when each d is replaced by a
nontrivial subinterval d;. Thus, for each L, {d;} as above, we have an immersed wall W — X
with tunnel-length L and primary busts {d;} so that, for all ¢+ and all components « of e; —d;,
the path ¢%(a) traverses an entire edge.

Let A(S) be a slope-approximation, associated to an exceptional zone and lying in a long
2-cell R based at the vertical edge e C V,.. Then the nucleus C incident to S is the copy in
E,, of a subinterval of the interior of e. Let a be a component of e — Int(d), where d is the
primary bust associated to S. Then for all sufficiently large L, the path ¢’ (a) traverses an
entire edge, and therefore contains a primary bust, and the claim follows. ]

Lemma 5.17. Suppose that ¢ : V. — V is a train track map with exponentially expanding
edges. Let y1,...,ys € V be regular points such that each edge of V' contains exactly one y;,
and let € > 0. Then for all sufficiently large L, there exists an immersed wall W — X with
tunnel-length L, such that each primary bust is in the e-neighborhood of some y;, and W has
narrow exceptional zones.

Proof. Let w > 1 be the expansion constant of ¢ (see Definition 5.9). For each 4, let y} € V be
a periodic regular point in the edge e; containing y; with de, (y;, ;) < §; such a y; exists since
periodic points are dense in each edge by Lemma 6.19. Let x; = min{dy (¢*(y}), V°): k > 0},
which is positive since y, is periodic and regular. Let y = min; y;. Let

2 . .
Ly = max {4logw (maxJeJ) , log 6} .
X X

We now apply Lemma 5.16 to the collection of points {y,}, choosing primary busts d;, each
in the ¢ = 5—;-—neighborhood of y;, and tunnel-length L > max{Lo +4, L'}, where L' is the
constant from Lemma 5.16. o o

Let Z be the image in X of an exceptional zone between W and A(W). By Lemma 5.16,

there is a unique slope S such that the forward part of A(S) forms part of the boundary path

of Z. See Figure 19. If v € Z is a vertex of some V,, at horizontal distance h > [£] from the

nucleus-approximation A(C') on the right of Z, then since L > Ly, the right boundary path
of Z contains a complete edge €', and thus a primary bust, which is impossible.

To see this, let ¢ be the vertical geodesic arc from v to the forward part of A(S). Then the
right boundary path of Z contains ¢"(¢), which satisfies
2 max;

")) > 1651 (0)] > wli¢| > i [¢] > . leil ).
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FIGURE 19. The exceptional zone corresponding to A(S) cannot contain the
vertex v when L is sufficiently large. Such a vertex v could only be contained
in a non-exceptional downward discrepancy zone, as shown at right.

Now [¢| > x — 575, so our choice of Lo ensures [(| > %, whence |o"(¢)| > max; |e;|. Hence

#"(¢) traverses a complete edge as claimed. O
5.5. Cutting deviating geodesics.

Proposition 5.18. Let X satisfy the hypotheses of Proposition 5.10, let M > 0, and let
v:R = X! be an M-deviating geodesic. Then there exists a wall W such that N(A(W))! is
quasiconvez in X' and W cuts .

Proof. We will find a wall W — X satistying the hypotheses of Proposition 5.14. N

An oddly-intersecting forward path: Since X is level-separated, there exists z € X
such that for all sufficiently large n, there is a regular level 7,, = T.2(¢"(z)) with a leaf at z,
such that 7, has odd intersection with v and the distance in 7T, from v N7, to the root or to
any leaf of 7, exceeds 12(M + 9).

The fact that X has bounded level intersection and v is M-deviating implies that there
exists NV and a finite, odd-cardinality set C!, C ~ such that 7, Ny = C/ for alln > N. Each T,
is the union of finitely many maximal forward paths emanating from leaves. For each n > N,
we wish to choose a leaf y of T, such that the maximal forward path o, C 7T, emanating from
y has the property that o, N~ is a fixed odd-cardinality subset C, C C!. However, to achieve
this, we shall replace v with an embedded deviating uniform quasigeodesic that coincides with
the original v outside a diameter-2M subset, as follows.

We now describe the modification of . Let e, ...,ecr| be the edges of v intersecting T,
for n > N. Index these so that e; precedes e; in the geodesic v if and only if ¢« < j. The
set {e1,...,e|cy|} is partially ordered as follows: e; < e; if there exists a forward path in
7, originating at e; and passing through e;. The edges e;,e; are confluent if there exists k
such that e;, e; < e;. We claim that confluence is an equivalence relation; it suffices to check
transitivity. If e;,e; are confluent (witnessed by forward paths from e;, e; to some ey), and
ej, ey are confluent (witnessed by forward paths from ey, e; to some ey ), then since ¢ is a
train track map, the forward paths from e; to e; and e, have the same initial point, whence
e; S ey or ey X e, 1.e. e;, ey are confluent. Observe that there is exactly one confluence class
for each <-maximal edge. Since |C/| is odd, there exists an odd-cardinality confluence class,
and we let ej, be its <-maximal element. Let e;, e; be the elements of the confluence class of e,
such that the indices 4, j are respectively minimal and maximal. Let a;, o; be forward paths
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in 7, joining e;,e; to e;. Let A; be an embedded combinatorial path in the forward ladder
N (o) that joins the terminal vertex v; of e; to a vertex v of e and does not intersect ;.
The edge e; contains a vertex v; on the same side of 7, as the terminal vertex of e;. Let A,
be an embedded combinatorial path in N(«a;) joining v; to vi and not intersecting a;. Since
v is deviating, d(e;, e) and d(ej, ex) are uniformly bounded. Hence, since N (a;)!, N(a;)! are
uniformly quasiconvex, the paths A;, A; have uniformly bounded length. Let A be the path
obtained from AiA]71 by removing backtracks. We replace the subpath of v between v; and
vj by A, and thus replace v by a bi-infinite embedded quasigeodesic 4. By construction, for
all n > N, there is a forward path o, of T,, that intersects the modified path exactly once,
namely in a point of e;. The argument proceeds using the new 4/, which is an embedded
quasigeodesic that is M’-deviating, with M’ a new, larger constant. However, since the quasi-
isometry constants of 7/ play no essential role in the argument, we will continue, for simplicity,
with v and M as before.

By the above construction, there exists € > 0 such that for all z € N (y), any forward
path o, of length n > N emanating from z intersects 7 in a set C of interior points of edges
that has the same cardinality as C, and has the property that the smallest subcomplex C
containing C, is exactly the smallest subcomplex containing C?%. The wall we will choose will
contain a slope S such that A(S) contains such a o, as its forward part.

Quasi-isometric embedding of v Vo N(A(W))! — X': Let W — X be an immersed
wall such that every edge of V' contains a primary bust, and suppose W C X is the i image of
a lift W — X such that W contains a slope S with the forward part of A(S) equal to a path
0z, emanating from some x € N (y), as above. Suppose moreover that W was drawn from a
set of immersed walls with uniformly bounded ladder-overlap.

Since every edge contains a primary bust, Proposition 4.1 provides constants Lo, K1, k2,
depending only on X, such that if the tunnel length of W is at least Lo, then N(A(W))!
is (k1,K2) quasi-isometrically embedded. Recall also that W is a genuine wall if the tunnel-
length exceeds a uniform constant Ly, by Proposition 4.6.

There exist constants Ly > L1, K}, kb, depending on X and M such that if W has tunnel-
length at least Lo, then v Vo N(A(W))! — X! is a (k], k))-quasi-isometric embedding.
Indeed, this follows from an application of Lemma 4.3, since v is M-deviating and hence has
uniformly bounded (39 + 2\)-overlap with A(S).

Verification that vV, A(W) embeds: By construction, v does not intersect any point
of A(S) outside of C,. Hence suppose that 781a; - - - BraxBer1 is a path in N(A(W))' U~y
that begins and ends in C,, such that: 7 is a subpath of 7, and each j; lies in the carrier of a
slope-approximation, and each «; lies in a nucleus approximation, and |3;| > L except when
i = k+ 1. If L is sufficiently large and |82| > L, then the existence of such a closed path
contradicts the above conclusion that N (A (W))! Vo v uniformly quasi-isometrically embeds.
The remaining possibility is that a path of the form 7510182 or 761a1 is closed in X. In
either case, when L is sufficiently large, a thin quadrilateral argument shows that ~ is forced
to (20 + A)-fellow-travel with 51 or B2 for distance exceeding M. Indeed, the fellow-traveling
between a1 and f3; is controlled by Lemma 2.6, since « is vertical, while the fellow-traveling
between 1, 8o (if the latter exists) is controlled by construction. Thinness of the quadrilateral
thus forces fellow-traveling between 8; and ~y. Hence v V¢, A(W) embeds in X.

Preventing short augmentations from crossing A(W ) at an apex: We now com-
pute the tunnel-length L3 > Ly necessary to ensure that each augmentation Q@' in v,
either fails to intersect A (W) or has length at least %, where L > L3 is the tunnel-length of
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W. Note that if QQ:l is a truncated augmentation in the sense of Construction 5.13, then
the apex lies in some V,, with n ¢ LZ, and hence QQ~*NA(W) = 0, so we only need consider
non-truncated augmentations.

Let W have tunnel-length L > Ly and let QQ~! be an augmentation whose apex p lies in
A (W), and hence in a nucleus-approximation. Suppose that |Q| < L . Let 4/ be the subpath
of v between C' and the initial point of @, let 5 be a geodesic of N(A(W)) joining p to
the terminal point of A(S), and let 7 be a geodesic of N(A(S))! joining the initial point
of 4/ to the terminal point of 5. Since ~ is deviating, the path 4'Q is a quasigeodesic with
constants depending only on M and A. Meanwhile, since W has uniform ladder-overlap and
L > Ly > Lo, the path 877! is a (k1, k2)-quasigeodesic. Hence 7/Q fellow-travels with 757!
at distance depending only on M and X. This is impossible for sufficiently large L, since v/, 7
have (20 + 2X)-overlap of length at most M. (Note that fellow-traveling between subpaths of
B and " would force impossible fellow-traveling between 3 or 4/ and 7.)

Choosing W: Since X has many effective walls, there exists an immersed wall W — X
with tunnel length L > L3, involving a primary bust in every edge of V', such that the image
W of a lift W — X satisfies the following;:

) W is a wall (since Ly > Lo).
N(AW)) is (k1, ko)-quasiconvex.
YN N(A(W))! = C, which is contained in the carrier of a slope-approximation A(S).

(1
(2)

(3)

(4) NAAW))vey — X! is a quasi-isometric embedding.

(5) Any augmentation QQ ™! of v that intersects A (W) has the property that |Q| > %
(since L > Ls).

W is chosen from the spreading set W given in Definition 5.3.(1).

An arbltrary lifted augmentation: Let 7_ — X' be a lifted augmentation of . Since
the map X' ~ Xisa qua51 isometry and restricts to the identity on A(Wp) and sends 7_
to 7., the intersection C = 7. N N(A(Wp))! is bounded and 7. Va NAW)) — Xz is
a quasi-isometric embedding. (We could have chosen a specific lifted augmentation to make
C # 0, but it follows from the discussion below that this holds for any lifted augmentation.)
Thus any 7, , together with A (W), satisfies Hypothesis (1) of Proposition 5.14.

We now verify that 4_ satisfies the remaining two hypotheses of Prop031t10n 5.14. To
this end, let 9 be an embedded qua&geodesm in X * obtained from ¢, o 7. by removing
backtracks, and let n be the image in X of 7. Note that 7 is independent of the choice of
lifted augmentation of ~.

Intersection of / with A(W): We first work in X. Recall that v N A(W) is the odd-
cardinality set C, of points in A(S) for some slope S of W. Consider the nucleus McWw
that intersects S and A(S). Then, since we can assume that L is sufficiently large to ensure
that each primary bust is separated from each vertex by a secondary bust, M corresponds

to a subinterval containing no vertex, and hence A(M) maps to a subspace of the star of a
vertex in V. By Lemma 5.17 and our above choice of L, the exceptional zone determined
by M and A(M ) contains no vertex of a vertical edge containing a point of C,. It follows
that the tunnel 7" attached to the unique secondary bust of M intersects ~ in a set of points
corresponding bijectively to C,. Let S’ be the slope of T'. Then, since the primary busts can
be chosen arbitrarily small, we can assume that A(S") N7 is an odd-cardinality set E. Hence

A(S"YnnC )Z'z is an odd-cardinality set E, mapping bijectively to E..
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Since the endpoints of primary busts are regular, the path 7 contains a nontrivial 1nterva1
I ending at a point of E, and lying in the image of S" under the forward flow; hence I C W I

and, since I does not lie in a discrepancy zone, I C A. There is likewise a nontrivial interval I’
in 7 beginning on E, and lying in an exceptional zone determined by the nucleus intersecting
A(S’). Moreover, I’ and I can be chosen to be separated in 7 by F,. See Figure 20.

FIGURE 20. The relationship between ~y,n, W, A(W) in X. The intervals Lr
in X7 map to the bold intervals. The path 6 contains the terminal part of
A(S) and the initial part of A(S") (except for the last case considered in the
proof).

We claim that A(W)N#H = E,. Otherwise, applymg the map XL — X would show that
A (W) Nn contains some point p & E! since X‘ — X restricts to a bijection on A(W). Then
there is a forward path v of length L emanatmg from a point p’ € v and terminating at p. Let
6 be a geodesic of A(W) joining p to a closest point a of C,, and let 41 be the subpath of v
joining a to p’. Then v is a quasigeodesic with quasi-isometry constants depending only on
the deviation constant of -y, while 6 is a (k1, k2)-quasigeodesic. Hence y;v fellowtravels with
0 at distance depending only on 9§, M, k1, ke and not on L. It follows that there is a uniform
upper bound on |y1| that is independent of L. Hence, if L is sufﬁciently large, then since C,
lies at distance at least L from all nuclei, min,, |¢(p) — nL| > £ 1> so that p lies at horizontal
distance at least & from any nucleus approx1mat10n Suppose that A(S’) lies in 6. Then
0 contains a pomt at distance at least Z 4 from y1v, and hence y1v and 6 cannot uniformly
fellow-travel when L is sufficiently large. Slmllarly, if 6 enters some other slope-approximation
attached to A(M), we find that € and ;v cannot fellow-travel. The remaining possibility is
that there is a path in A(M) joining the endpoint of A(S) to a point of v. This is impossible
since, as established above, the level part of 7" has odd-cardinality intersection with v and
p ¢ E,.

Conclusion: It follows from the above discussion that 7 contains two quasigeodesic rays,
one in each of the halfspaces of )N(z associated to A(W). Since 7 fellow-travels with 7., we
see that 4 satisfies all hypotheses of Proposition 5.14, whence W cuts . 0

5.6. Cutting ladderlike geodesics.

Proposition 5.19. Suppose that X has many eﬁective walls and for each bounded forward
path « there exists a periodic reqular forward path o' such that N(a) = N(d).

Then for each geodesic v : R — X' that is not M- dematmg for any M, there exists an
immersed wall W — X such that W is a wall, N(A(W))! is quasiconvez, and W cuts .
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Proof. Suppose that 7 contains a path +' such that for some regular x € X! and some
M to be determined, the path 7/ fellowtravels at distance (2§ + 2\) with the sequence
x, (;B(x), oM (z), where x is a periodic regular point. Such +' exists for arbitrarily large M
by combining the fact that ~ is M-ladderlike for arbitrarily large M with the first hypothesis.
We shall show that if M is sufficiently large, then there exists a wall W that has the desired
properties and cuts v and separates z and ¢M (z).

Choosing W using many effective walls: Without loss of generality, M is an even
integer, and we let a = ¢M/2(z). Note that a is periodic and regular. Let {e;} be the
collection of edges of V', and let W — X be an immersed wall busting each e;, with tunnel-
length L to be determined. Let e; be the edge whose interior contains a. By Remark 5.4
and the fact that X has many effective walls, there exist k1, ko, L1 depending only on X such
that we can choose W with tunnel length L > L; so that W is a wall and N(A(W))! is
(K1, k2)-quasi-isometrically embedded. Moreover, we choose W from the the collection W, of
Definition 5.3.(2), which guarantees that W can be chosen with the following properties:

(1) There exists k > 0 such that for each primary bust d with an endpoint in W in the
same knockout as a, we have d(¢"(a), ¢"(d)) > 38 + 2 for all n > k.

(2) W has tunnel length L > max{12(§ + k), L1}, independent of M.

(3) The image of a in V lies in the interior of a nucleus of W and so A (W) contains ¢*(a).

We assume that M > JL, where J > 4 will be chosen below. Let o be the uniform quasi-
geodesic in X! obtained from ~ by removing 7/ and replacing it by the sequence x, g?)(x), M ()
(see Figure 21).

Verifying that o V,.(,) N(A(W))' quasi-isometrically embeds: Consider paths of
the form agfB - - - Bs—1asT, where (; is a geodesic of the carrier of a slope-approximation, «;
is a vertical geodesic of N(A(W))!', and as terminates at ¢*(a), and 7 is a subpath of ¢
beginning at the endpoint ¢¥(a) = éLJr%(:E) of as. (We remind the reader that, because
of how o was defined, the initial part of 7 is a subsequence of :L',(JB(I’),Q?)%J'_L(ZE) or of
QNS%JFL(:U), ...¢oM(x).) The (36 + 2)\)-overlap between o, and 7 and between «; and f3; and
between a; and ;1 is controlled by Lemma 2.6, and Condition (1) on W ensures that the
(36 + 2X\)-overlap between 7 and s_1 has length at most k. The choice of L now allows us
to invoke Lemma 4.3 to conclude that o V., N (A(W))! is quasi-isometrically embedded in

X!, with constants (K1, Ky) depending only on k1, k2, A.
Verifying that o V., A(W) embeds: We will show that there is no path 7 C o

beginning at qEL(a) and joining the endpoints of a path agfBy- - am or agfo- - @mbm In
N(A(W))! with each o; vertical, and each $3; a path in the carrier of a slope approximation.
Fach B; has length L except for the (,, in the path of the second form. Since o VL ()

N(A(W))! is quasi-isometrically embedded, it suffices to examine the case where m < 1.
The quadrilateral agfBoa7~! is approximated by a quasigeodesic quadrilateral aopBoa7 !,
where each @; is a geodesic of length exceeding 39 + 2A. This quadrilateral is (20 4+ 2\)—thin,
and By, T fellow travel at distance 2§ 4+ 2\ for length at most k. Moreover, since ag, o are
vertical and |By| = L, there is no (20+2\)-fellow traveling between ag and a;. Hence, without

loss of generality, &y must fellow-travel with Sy at distance 20 + A for distance at least %,
whence ag must (26 + 2\ + p)-fellow-travel with Sy for distance at least % — p2, which

contradicts Lemma 2.6 when L is sufficiently large. (Recall that the quasiconvexity constant
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FIGURE 21. Notation in the proof of Proposition 5.19.

u and the quasi-isometry constants (1, u2) of the nucleus approximations are independent of
L.) Hence o VL (a) A (W) embeds.

Applying Proposition 5.14: Let o_ be a lifted augmentation of o induced by a lift of
the forward path joining z to ¢M(z). Let &; denote the lift of ¢*(z), so that T /2 is a lift of
a and Zpz/24p is a lift of qBL(a). The wall W is the image of a wall W, such that a nucleus
of Wy, separates Zp7/o from Zp7/9,1 and thus Zp7/0, 7 lies in a nucleus approximation of
A(Wp). (Recall that A(W ) maps isomorphically to A(W).) Thus the points Zp7/04 741 lie
in distinct halfspaces associated to A(Wp). Indeed, #7/94 11 lies in a downward discrepancy
zone and hence in 2, while #7/9, 741 € A. See Figure 21. This verifies Hypothesis (2) of
Proposition 5.14.

As in the proof of Proposition 5.18, the fact that oV ., N(A(W))! is quasi-isometrically

embedded, together with the fact that )?Z — X is a quasi-isometry, shows that o_ V

TM/24+L
NAWL)! — )NQ is a quasi-isometric embedding. This verifies Hypothesis (1) of Proposi-
tion 5.14. )

Let y € 3. NA(W ). Then either y maps to a point of o N A (W), in which case y = ¢%(a)
since o v¢3L(a) A (W) embeds in )Z', or y is an apex of g_. The latter is impossible provided .J
is sufficiently large compared to &}, k5. Indeed, suppose QQ ! is an augmentation beginning
on o and having an apex p € A(W). Let the geodesic 8 — N(A(W))! join p to ¢ (a), let
T — N(o) join gzNSL(a) to x, and let P be the subpath of ¢ joining the initial point of @ to z.
Then the concatenation P15~ 1is a (K}, Kh)-quasigeodesic. Indeed, Pr=1571 can be chosen
to be a geodesic of the tree o Vg A (W), which is (k}, kj)—quasi-isometrically embedded.
Moreover, Pr~!37! contains a subpath of length at least (J/2 — 1)L, namely 7. Hence if
J > 2(ky(L+ rb)L~1 4+ 1), then the offending apex p cannot exist since |Q| < L. This verifies
Hypothesis (3) of Proposition 5.14, and the proof is complete. O

6. LEAF-SEPARATION AND MANY EFFECTIVE WALLS IN THE IRREDUCIBLE CASE

In this section, we describe conditions on ¢ ensuring that X! satisfies the hypotheses of
Proposition 5.10.

6.1. Leaves.
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Definition 6.1 (Leaf). Let z,y € X. Then z,y are equivalent if there exist forward paths
0,0y such that z € o5,y € 0 and 0, Noy # 0. An equivalence class is a leaf. We denote
the leaf containing by L;. The leaf £, is singular if it contains a 0-cell, and otherwise £,
is regular.

Observe that L, is é—invariant. Moreover, observe that £; has a natural directed graph
structure: vertices are points of £,N X", and edges are midsegments. From Proposition 6.2.(1)
and Proposition 2.5, it follows that this subdivision makes £, a directed tree in which each
vertex has exactly one outgoing edge and finitely many incoming edges.

Proposition 6.2 (Properties of leaves). Leaves have the following properties:

(1) If L, is a regular leaf and ¢ is a train track map, then L, has a neighborhood homeo-
morphic to Ly x [—1,1] with L, identified with L, x {0}.
(2) Each level is contained in a unique leaf, and L, is an increasing union of levels.

Proof. Proof of (1): This uses Lemma 6.3 below. For each vertex vz = L, Né of Ly, let Us
be an open interval in € about vs. For each edge fz = L, N Rz of L, with vertices at vz and
vz, let U(fz) be the open trapezoid in Rz joining Uz to Uj. The desired open neighborhood
of Ly is Uy.epages(c,) U(f2), as shown in Figure 22.

’—‘—'—‘—1
=

F1GURE 22. A product neighborhood of a regular leaf.

Proof of (2): This follows immediately from the definitions of levels and leaves. O
We denote by Yy the set of leaves of X and define a surjection 0o X — Yo by po(x) = L.

Lemma 6.3. Let € be a vertical edge of)? and let L, be a leaf. If ¢ is a train track map,
then [eN Ly < 1.

Proof. When ¢ is a train track map, distinct points in each vertical edge e lie on distinct
leaves, i.e. the map pg : e = ) is injective. Note that in this case, each 2-cell of X is foliated
by a family of distinct fibers of p, each of which is a midsegment. O

6.2. Forward space in the train track case. Suppose that ¢ is a train track map. We
now describe an R-tree ) whose points are equivalence classes of leaves, and a G-action on ),
and use this to establish that X is level-separated. This construction mimics the stable tree
discussed in [BFH97|, although the underlying set is defined differently. The referee explains
that it is a special case of a construction in [GJLL98|. Let & = R[Edges(V)] and denote
by €; the basis element of £ corresponding to e;. Let 9t : & — £ be the linear map whose
matrix with respect to the basis {€;} has ij-entry the number of times the path ¢(e;) traverses
ej, ignoring orientation. Note that this transition matriz, which we also denote by 9, is a
nonnegative matrix. We further assume that 97 is irreducible.

Let w be the Perron-Frobenius eigenvalue of 9. As shown in [BH92|, @w > 1 since ¢ is
irreducible and has infinite order. Let v be a w-eigenvector, all of whose entries are positive.
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For each i, let ¢; be the magnitude of the Perron projection of €; onto R[v]. As is made precise
in Definition 5.9, the map ¢ expands edges of V' by a factor of w.

We now choose an equivariant weighting of vertical edges in X by letting |e;| = ¢; for
each edge e; of V, letting each horizontal edge of X have unit weight, and pulling back these
weights to X. This determines the metric d on X!. For each e; and each n € Z, we define
the scaled length of a lift €; of e; to V., to be @ e = ¢;. Let an Vi X Vi, — [0, 0] be
the resulting path-metric.

Given leaves L, Ly, with z,y € V. for some k, let

This limit exists and is finite because dg; (¢"( ), " (y)) is non-increasing and bounded.

Moreover, doo (L, Ly) is well-defined since for other choices 2’ € £, N 17;4 and y' € L, N 17;4,
for all but finitely many n, we have ¢" (/) = ¢™(z) and ¢™ (/) = ¢™(y) for some n/.

Lemma 6.4. Let Y be the quotient of Yy obtained by identifymg points po(x), po(y) for which
d (po( ),p0(y)) = 0. Then the mduced pseudometric doy : Y — [0,00) is a metric. Lel
p: X — Y be the composition X 2% Yy — V. Then the restriction of p to each vertical edge
s an isometric embedding.

Proof. Note that d is symmetric and satisfies the triangle inequality. Hence doo : ) — [0, 00)
is a metric. Let e; be a vertical edge with endpoints x,y. Then the distance in V,, between
the endpoints of ¢™(e;) is @"|e;|, whence deo(p(z), p(y)) = ¢;. Our assumption that ¢ has
a constant-speed parametrization on each edge implies that the same equality holds for any
subinterval of e;. O

Proposition 6.5. Suppose that every edge of V is expanding with respect to ¢. Then:

(1) The map p: X — Y is continuous.

(2) (V,dso) is a 0-hyperbolic geodesic metric space, i.e. ) is an R-tree.

(3) YV admits a G-action by homeomorphisms with respect to which p is G-equivariant.

(4) The restriction of the G-action on Y to F is an action by isometries.

(5) The stabilizer in F of p(Z) is trivial whenever T is a lift to X of a periodic point in
V.

Proof. Continuity of p: The restriction of p to each vertical edge e is continuous since it is
an isometric embedding, and p is continuous on each closed 2-cell since p is constant on each
midsegment and each 2-cell is therefore foliated by fibers of p since ¢ is a train track map.
Since X is locally finite, the pasting lemma implies that p is continuous on X.

R-tree: Let x,y € V and let P — VO be a path joining x to y. Then since p is continuous,
p(P) is a path joining p(x) to p(y), whence ) is path-connected. Since ) is a path-connected
subspace of an asymptotic cone of the simplicial tree (‘7 do), the space ) is an R-tree [KL95,
Prop. 3.6]. (The asymptotic cone in question is built using any non- pr1nc1pal ultrafilter on N,
the observation point (¥, (?),...), and the scaled metrics dy; on Vo.)

The G-action: For g € G and z € X, let gp(x) = p(gzx). This defines an action since G

takes leaves in X to leaves. The action is by homeomorphisms since p is continuous and G
acts by homeomorphisms on X.
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The F-action is isometric: Let x,y € X. Since F acts by isometries on each ‘~/n, for
each f € F, we have

doo(fp(2), fp(y)) = limdg (¢"(fx),¢"(fy))
= limdg ("(f)¢"(x), ®"(f)¢"(y)) = limdy, (¢"(x), " (y)) = deo(p(2), p(y))-

The F-action is free on periodic points: Let z € V be a periodic point and let Z be
a lift of x to X. For f € F, by Corollary 6.12, either p(Z) # fp(Z), and we are done, or
the forward rays oz and fo; emanating from & and fZ respectively lie at finite Hausdorff
distance. It follows that the immersed vertical path P joining & to fZ projects to an essential
closed path P — V, based at x, such that ¢*(P) is a periodic Nielsen path for some k& > 0.
This contradicts the hyperbolicity of G. g

Remark 6.6. When ¢ is a w-isomorphism, and G is hyperbolic, the action of F' on ) can be
shown to be free using Lemma 6.11 and the fact that there are no nontrivial periodic Nielsen
paths. We expect that this is true for a general hyperbolic monomorphism, but a free action
on the set of periodic points suffices for our purposes.

6.3. Level-separation in the train track case. The purpose of this subsection is to prove
Lemma 6.15.

Definition 6.7 (Transverse). Let 7 be an R-tree. The map 6 : R — T is transverse toy € T
if for each p € 0~1(y), there exists € > 0 such that 8((p — ¢, p)) and 6((p, p +¢€)) lie in distinct
components of 7 — {y}. Note that if @ is transverse to y, then 0~1(y) is a discrete set.

We denote by R™ a combinatorial sub-ray of the combinatorial line R.

Lemma 6.8. Let T be an R-tree. Let To C T have the property that T — {y} has two
components for each y € Ty and each open arc of T contains a point of Tg. Let 6 : R — T
or 0 : RY — T be a continuous map. Suppose 0 is transverse to every point in To. Moreover,
suppose that each edge e of the domain of 8 has connected intersection with the preimage of
each point in T. Then one of the following holds:

(1) There ezists a nontrivial arc o C T such that |01 (y)| is odd for all y € a N Tp.
(2) There exists y € T with 0~'(y) having infinitely many components.
(8) For each v > 0, there exists y. € T such that 0~(y,) has diameter at least 7.

Proof. For each p € R, we denote by p its image in 7 and by |#~!(z)| the number of compo-
nents of the preimage of x € T in R.

We now show that either (3) holds or im(6) is locally compact since each point of 6(R)
has a neighborhood intersecting the images of only finitely many edges. We first claim that
either (3) holds, or for each edge e of R, there are (uniformly) finitely many edges f such
that 0(f) NO(e) # 0. Indeed, if there are arbitrarily many such f, then for each r > 0, we
can choose f such that dgr(e, f) > r but 6(e) N O(f) # 0, yielding (3). Second, choose a
point p € 7. Our first claim shows that either (3) holds or the set {e;};cs of edges with
p € 6(e;) is finite. Assume the latter. Then for each i € J we can choose ¢ > 0 such that
the ¢;-neighborhood of p in 6(e;) is disjoint from the image of each edge not in {e;};cs. Let
€ = min; ¢;. Then the e-neighborhood of p in im(#) lies in U;6(e;) and thus and thus intersects
the images of only finitely many edges.

There exist sequences {a;} and {b;} in R = (—00, 00) converging to oo and —oo respectively,
whose images are sequences {a;} and {b;} that converge to points Go, and by in im(6) U
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0im(#). Indeed, since im() is a locally compact R-tree, im(6) U0 im(€) is compact by [BH99,
Exmp. 11.8.11.(5)].

Suppose G # beo. Let o be a nontrivial arc in the geodesic between G, and beo, and note
that N7y C im 6. Note that ~!(¢) has either odd or infinite cardinality for each ¢ € N 7o,
since ¢ must separate a; from b; for all but finitely many i. Hence either conclusion (1) or (2)
holds.

Suppose G and by, are equal to the same point poo. We can assume that po, € 90(R) since,
as above, either (3) holds or each point of §(R) has a neighborhood intersecting the images
of finitely many edges. Let 0 denote the image of the basepoint o of R. The intersections
of the geodesic segments 6G; N 6P, converge to the segment 6p.,. The same holds for ob;.
We use this to choose a new pair of sequences {a} and {b}} that still converge to £oo, and
with the additional property that @; = b.. We do this by choosing the image points far out
in 0ps,. We have thus found arbitrarily distant points in R with the same images, verifying
conclusion (3).

The case of the ray R is similar. O

By Lemma 6.3 and Proposition 6.2, for each regular leaf there is a pair (<Z, ?) of closed
halfspaces in X such that £ U T =Xand TN L = L. Points of p(X0) are singular points of
Y, and the other points are regular. If £ is a regular leaf, then Y — p(L) has two components,
namely the interiors of the images of £ and L. Since there are countably many singular
points in ), each open arc in ) contains a regular point.

Lemma 6.9. For any geodesic v : R — )?1, the map 0 = po~vy : R — Y is transverse to
reqular points.

Proof. Let y € Y be a regular point, so that each € p~1(y) lies in the interior of a vertical
1-cell, which in turn embeds in ) by Lemma, 6.4. The image of the vertical 1-cell is separated

by p(z) =y. O

The goal of the rest of this subsection is to prove Corollary 6.10, which depends on Corol-
lary 6.12. We first give a proof of the latter in the case where ¢ is m-surjective incorporating
the technology of [BFHO00], followed by a self-contained proof in the general case.

Corollary 6.10. Let v: R — X! be an M -deviating geodesic for some M > 0. Then there
exists a reqular leaf L such that |y N L] is finite and odd.

Proof. Consider § = po~y. By Lemma 6.9, pl|, is transverse to regular points. By Lemma 6.8,
one of the following holds:

e There exists a regular point € ) such that p~!(y) N~ has finite, odd cardinality.

e For all 7 > 0, there exists 3, € Y such that diam(p~!(y,) N~) > r. (This includes the

case in which some point in ) has infinite preimage.)
In the first case, note that p~!(y) is the union of regular leaves, one of which must therefore
have odd intersection with v. We will now show that the second case leads to a contradiction.
In the second case, for each r > 0, we claim there exists m € Z and forward rays o1, 09

originating at points of v and traveling through V,,, such that p(o1) = p(c2) and dy; (01N
‘7m,0'2 N f/m) > r. Indeed, let z1,22 € v be chosen so that p(r1) = p(x2) = y,, and the
coordinate projections satisfy g(x1) < q(z2) = m, and dg(z1,22) > r + M + J. For some
k > 0, we have ¢F(z1) = 2 € V,,. We also have p(z})) = y». Since v is M-deviating,
considering the d-thin triangle z1222] shows that d (27, 22) > r. Hence dy; (27,22) > 7.
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We now apply Corollary 6.12. The rays o1, oo cannot fellowtravel when r is sufficiently large,
since the conclusion of a thin quadrilateral argument would then contradict the hypothesis that
v is M-deviating. Hence, by Corollary 6.12, we see that p(o1) # p(o2), a contradiction. [

The tightening of a path P in a graph is the immersed path that is path-homotopic to
P. A periodic Nielsen path in V is an essential path P such that the tightening of ¢*(P) is
path-homotopic to P for some k > 0. The following is a rephrasing of a special case of [Lev09,
Lem. 6.5], which splits into [BFH00, Lem. 4.1.4, Lem. 4.2.6, Lem. 5.5.1].

Lemma 6.11 (Splitting lemma). Let ¢ : V. — V be a m-surjective train track map. Let
P — V be a path. Then there exists ny such that the tightening of ¢™°(P) is a concatenation
Q1 Qr, where each Qs is of one of the following types:

(1) a periodic Nielsen path;

(2) an edge of V;

(3) a subinterval of an edge of V', if s € {1,k};

Moreover, for all n > ng, the tightening of ¢"(P) is equal to a concatenation of the tightenings
of the paths ¢" ™ (Qs).

Corollary 6.12. Let 01,05 be forward rays beginning on Vy,. Then either N(oy), N(o3) lie
at finite Hausdorff distance or p(o1) # p(02).

Corollary 6.12 means that for each y € Y, any two forward rays in p~!(y) fellowtravel, in
the sense that they lie at finite Hausdorff distance.

Proof of Corollary 6.12 when ¢ is w1-surjective. Let P — YN/m be a path from o1 to 2. Lemma 6.11
implies that for some n > 0, the tightening of gE”(P) splits as the concatenation of peri-
odic Nielsen paths and edges. If &”(P) is the concatenation of periodic Nielsen paths, then
01,09 fellowtravel. Otherwise the splitting contains an edge e and for all n’ > n, we have
dp (01 NV, 09N Vi) > |e| (Lemma 6.4), whence p(a1) # p(o2). O

Proof of Corollary 6.12 in the general case. It 01,02 do not fellowtravel, then by Lemma 6.13
and Lemma 6.14, the geodesic of V,,, joining the initial points of o1, 09 contains an open arc
a C e, for some edge e, such that each regular leaf intersecting « separates o1,02. For each
n >m, let a, = 01 NV, and b, = o2 N'V,,. Then for each n, the geodesic of V,, joining a,, b,
contains ¢"(«). Regarding e as a copy of [0,1] with weight |e|, and a = (¢1,t2) C [0, 1], we
see that di; (an,bs) > le[(t2 — t1). Hence dos(p(01), p(02)) > 0. O

Lemma 6.13. Let 01,09 be forward rays beginning on V... Then either N(o1) and N(o2) lie
at finite Hausdorff distance or there exists a regular leaf separating o1 from os.

Proof. We first claim that is 01,09 are not separated by a regular leaf, then p(o1) = p(02).
Indeed, if p(o1) # p(o2), then these points are separated by a point y € ) whose preimage is
the union of regular leaves. Any path joining o1, 02 must intersect the union of these leaves
in an odd-cardinality set, so some regular leaf in the preimage of y separates o1, 09.

We now verify that N(o1) and N(o2) lie at finite Hausdorff distance under the following
two assumptions: p(o1) = p(o2) and no regular leaf separates o; from os.

Let z = p(0;) € Y. Let p > m be such that there is a vertical geodesic I, — ‘7}, joining
o1N 1~/p, oaN ‘N/p and with the property that p~!(z) NI, has minimal cardinality. For simplicity,
having chosen p, we will translate so that p = 0.
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Having chosen Iy, we now inductively define paths I,, — ‘771 joining o1 to o9 as follows. For
n > 0, express I, = ejes - - - e} as a concatenation of partial edges: eq, e, are closed subintervals
of edges and the other ¢; are entire edges. Let I,,11 — ‘7n+1 be the path qg(el) e (;NS(ek). Let I,
be the image of I, in X and note that T, is a finite subtree of V,,. Observe that T = p(lp) C Y
is a finite tree, since it is the union of finitely many closed embedded arcs. Let p, : [, = Y
be the composition I,, — X & Y. Since each I, — I,y is surjective, p(I,) = T for all n > 0.
The maps e; — gg(ei) induce a map I, — I,,11 so that the following diagram commutes.

I, — Inta

P,

I, — Iy, —TC)Y

Since p(o1) = p(o2), each p, : I, — T is a closed path in T beginning and ending at z € T'.
If an (01N I, 00N I,) is uniformly bounded as n — oo, then o1, 03 lie at uniformly bounded
vertical distance, and so N(o1) and N(o2) lie at finite Hausdorff distance.

Since I,, is vertical, p,1(2) is finite, and I,, = Q1Q2 - - Q,, where the interiors of the Q;
are the components of I,, — p,'(z). Let Q; denote the image of @Q; in V.. Note that r is
independent of n; indeed, this is ensured by the minimality achieved through our choice of p.
It follows that no regular leaf intersects Q; and Q; for i # j, for otherwise we could apply )
finitely many times and reduce 7.

Let a; and b; be the endpoints of Q;, and let a;, b; be their images in I,,. We will
show that there exists M, independent of n, such that df/n(‘_li’[_’i) < M. We conclude that
dy; (N(01), N(02)) < rM for all sufficiently large n.

To verify the existence of M, we shall show that there exists a leaf £; that intersects the
initial and terminal (possibly partial) edges of Q;, intersecting these edges in points ¢;, d;
respectively. This leaf £; must intersect Iy in points é&;, d; with én(éz) = ¢; and gZ;"(cZZ) = d;.
Hence there are forward paths éc¢; and czidi of N(L;) whose intersections with X1 are \-
quasigeodesics lying in forward rays of N(L£;). The quasigeodesic quadrilateral ¢icidid; shows
that é;c; and d;d; fellowtravel at distance M’ = M'(6, A\, |Io|), and hence d‘7n (a;,b;) < M,
where M = M’ + 2.

It remains to find the leaf £;. Note that if a;, b; lie on a common leaf, we are done. We
can assume that no regular leaf separates @; from b;. Indeed, any such leaf could not separate
01,09, since we are assuming that oy, 09 are not separated (otherwise we would be done).
Thus any such leaf must end on Qj for some i # j, which was ruled out above. Hence each
leaf emanating from the image of the initial edge of Q; intersects the images of an even number
of edges of Q;. Let £ be such a regular leaf, and let b, € £ N Q; be a point outside of the
image of the initial partial edge of Q;. We claim that by choosing £ to intersect the Q; at a
point a} sufficiently close to a;, we can ensure that b, lies in the image of the terminal partial
edge of Q;.

Indeed, choose a sequence {a, }i of regular points in the initial edge of Q;, with al, — aj.
For each k, let L;;, be the regular leaf containing aj,. If £;y intersects the terminal edge of Q;,
we are done, so we let b}, be a point of L N Q,; that lies in a non-terminal, non-initial edge.
By possibly passing to a subsequence, compactness allows us to assume that {b], } converges
to some b, € Q; different from b;. Since p is continuous and p(bj;,) = p(a;,) — =, we have
p(b:) = z, contradicting the fact that the interior of @; contains no point in p~1(2). O
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Lemma 6.14. Let 01,02 be forward rays beginning on Vin that do not fellowtravel. Suppose
there exists a reqular leaf L separating o1, 02. Then the geodesic of Vin joining the initial points
of 01,02 contains an open arc o C e, for some edge e, such that each regular leaf intersecting
o separates o1, 02.

Hence for all n > m, the geodesic of 17” joining o1 N 1~/n and oo N \7'” contains &"(a).

Proof. Let P — Vin be a vertical geodesic joining o1,092. For any n > m, given a path
U — V, joining 01,09, a syllable of U is a maximal subpath ) that is legal in the sense
of [BH92[; since ¢ is a train track map, this means that qgk(Q) is embedded for all £k > 0.
Consider the vertical geodesic T} joining the endpoints of d~>k(P) for £ > 0. Each T} can be
expressed as a concatenation of syllables, since ¢ is a train track map, and this decomposition
is unique. Choose k£ > 0 such that the number of syllables in the decomposition of T} is equal
to the number of syllables in T}, for all ¥ > k. Let T, = Q1 ---Q, be a decomposition into
syllables. Observe that nonconsecutive syllables of T} cannot intersect a common leaf, for
otherwise applying some iterate of (;; would result in a path with fewer syllables.

Since L intersects each syllable in at most one point, the minimality of T}, guarantees that
|£NTy| < 3 and hence, since this cardinality is odd, |[£NT}| = 1. Hence there exists a unique
Q; such that £ N T} is contained in Int(Q;).

For each p € N, let Bzi(%) be the two half-open %—neighborhoods in QQ; bounded at LN Q;.
If the lemma does not hold, then for each p there exists a regular leaf Ei(%) intersecting
Bli(%) but failing to separate oy and o3. Each Ei(%) has even intersection with T} and thus
also intersects ;41 in a single point. The sequence {Ei(%) N Qi+1}p has a subsequence that
converges to a point z4 € @Q;+1 such that p(z+) = p(L£). Observe that no regular leaf separates
zy4 (say, the remainder of the argument works analogously for z_) from £ N @;, since such a
separating regular leaf would have to intersect some L’*(%), which is impossible since leaves
are disjoint. Hence, by Lemma 6.13, the forward rays 0., and o, respectively emanating from
z4+ and £ N Q;, must fellowtravel.

Qnfp———————————>0
Qi o
Qofp—m—m ——————————— > 7~

FiGure 23. The forward rays and leaves in the proof of Lemma 6.14. Only
one of 0., and o,_ need exist.

If o fellowtravels with oy [resp. o9] and o, fellowtravels with oo [resp. 1], then since
0,0, fellowtravel, we conclude that o1, 09 fellowtravel, contradicting our hypotheses. See
Figure 23. If 0,01 (for example) do not fellowtravel, then o1,0., also do not fellowtravel.
Lemma 6.13 implies that a regular leaf £; separates 0., ,01. The part of T} subtended by
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0., ,01 has strictly fewer syllables than T}, so by induction, there is an open interval o/ C T},
with the following properties:

(1) o is contained in the interior of some edge.

(2) o intersects a regular leaf £} that separates 0., and o7.
(3) o lies on the part of T} between 0., and o7.

(4) All regular leaves intersecting o/ separate 0., from o.

Let L9 be a regular leaf intersecting o/ between £} and o;. Then Ly separates o3 from o, +
by the induction hypothesis, and therefore £y separates oy from o5. The subinterval of o
between £} and o1 (and so containing all such £2) is the desired interval .. See Figure 23.

In the base case, T, has a single syllable, and any open subinterval of an edge suffices.

Finally, let n > m and let P,, — V,, be the geodesic joining o1,09. For any = € qgn(a),
and any € > 0, there exists a regular point y € QNS"(a) at distance less than e from x, since
edges are expanding. The regular leaf £, separates 01,09, so that y € P,. Since this holds
for arbitrarily small € and P, is closed, x € P,. O

We have now arrived at the main goal of this subsection:

Lemma 6.15. Suppose that ¢ is a train track map, that every edge of V is expanding, and
that O is irreducible. Then X is level-separated.

Proof. Let v: R — X! be an M-deviating geodesic and let K > 0. By Corollary 6.10, there
is a regular leaf £ such that |[£ N~ is finite and odd. Let Cy = £ N~ and choose y € L
such that the coordinate projections satisfy ¢(c) — q(y) > M + K for all ¢ € Cy. Then for
all sufficiently large n, there is a level T7(¢"(y)) C £ that contains y as one of its leaves and
satisfies T7(¢"(y)) N~y = Co. Hence X is level-separated. O

6.4. Proof of Theorem B.

Theorem 6.16. Let ¢ : V — V be a train track map of a finite graph V. Suppose that ¢ is w1 -
imjective and that each edge of V' is expanding. Moreover, suppose that the transition matriz
M of ¢ is wrreducible and that the mapping torus X of ¢ has word-hyperbolic fundamental
group G. Then G acts freely and cocompactly on a CAT(0) cube complez.

Proof. Let Y be the forward space arising from the map b X — X. Since ¢ is a train track
map, X has bounded level intersection by Remark 5.8 and is level-separated by Lemma 6.15.
By Lemma 6.19, each finite forward path uniformly fellow-travels with a periodic forward
path. Hence by Proposition 5.10, it suffices to show that X has many effective walls by
verifying Conditions (1) and (2) of Definition 5.3.

Condition (1): Let y € V be regular and let € > 0. Let S be a finite subtree of Vg such
that each contractible subspace of V' has one or more lifts to S.

Let xg € V be a periodic point in the interior of the edge ey containing y, chosen so that
de,(0,y) < €. This choice is possible since periodic points are dense in each edge of V', by
Lemma 6.19 below.

By Lemma 6.17 below, we have a set {xo,...,z,} of periodic points in V such that:

(1) Each edge e; of V' contains exactly one point x; in its interior.

(2) The point zg lies in the interior of the edge eg containing y and de,(zo,y) < €.

(3) Let 24, # Zj4 be lifts of ;, z; in the closure of a lift of a component of V' — U;{x;}.
Then p(Zip) # p(Zj4). This holds by construction when i # j, and holds by Proposi-
tion 6.5.(5) when ¢ = j and p # q.
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For each Z;p, let A;p be the bi-infinite periodic forward path containing Z;,. Let N(A;;,) be
the 1-skeleton of the smallest subcomplex of X containing Ay, so that N(A;p) is A-quasiconvex
in X! by Proposition 2.3.

We now show that for each R > 0 there exists Br such that

diam(Nr(N(Aip)) NNR(N(Ajq))) < Br

whenever A;, # Aj,. Since Ajp, Ajq are periodic, they either fellow-travel or have bounded
coarse intersection; the following argument precludes the former possibility, whence the claimed
Bp, exists since there are finitely many pairs Ajp, Ajq. Let dp gy = doo(p(Zip), p(Z54)). By

definition of do, when A;, # Aj4, there exists n?ipvjq) > 0 such that for all n > n(()ip,jq) we
have y
- _ - 5 wn . 7A
dy, (6" (). " (7)) = ——5 2%
Let N(ipjq) = n‘()ip i) have the property that w"@m'q)d(ip’jq) > 2R. Let m = max{n(ipvjq)}.

Then for all A;, # Ajq, and all n > m we have

dy, (0" (Zip), 9" (Z4q)) = R.

We now construct the uniformly bust-quasiconvex spreading set W,. Choose J such that
@7 (xs) = x5 for all 0 < s < r. For each L > 1 divisible by J, let ¢ = —r. By Lemma 3.5,
there exist primary busts d; C e;, each disjoint from its ¢-preimage, with d; C Ny (z;). Let
W — X be the immersed wall with tunnel-length L and primary busts d;. We choose W, to
be the set of all walls constructed in this way.

It remains to check ladder-overlap. First, W, is uniformly bust-quasiconvex since each
component of V — U;Int(e;) is a finite tree. Let Tj,7; be distinct tunnels of W and sup-
pose that A(T;), A(T}) intersect a common nucleus approximation N. The forward parts
of A(T;), A(Tj) begin at endpoints of primary busts d;p, d;, which are lifts of primary busts
d;, d; near the periodic points x;, ; respectively. Let Z;p, Zj4 be the lifts of z;, z; at distance €
from d;p, djq. There are three cases according to whether each of A(T}), A(T}) is incoming or
outgoing at N. In the case where one is incoming and the other outgoing, consideration of the
coordinate projection ¢ shows that the diameter of the intersection of the R-neighborhoods
of N(A(T;))! and N(A(Tj))! is bounded by a function of R.

Suppose that A(T;) and A(T}) are both outgoing from N. Our choice of ¢ ensures that
A(T;) fellow-travels at distance e with the forward path of length L emanating from Z;, and
similarly for A(T}) and Zj,. (More precisely, each point of A(T;) N X! is at distance at
most e from the corresponding point of the forward path emanating from Z;,.) Hence the
coarse intersection of A(T;) and A(T}) is controlled by the function R — Bp and the uniform
constant e.

Suppose that A(T;) and A(Tj) are both incoming to N. By translating, we can assume
that N C S. Because J | L, we have that ¢%(i;,) and ¢%(i;,) are again lifts of x;,2; to
N C S and thus lie on the bi-infinite periodic forward paths A;,, Aj, that diverge according
to the map R — Bg. As before, A(T;) and A(Tj) are (uniformly) coarsely contained in the
e-neighborhoods of A;, and Ajy,.

Condition (2): Let a € Vo and let its image a € V be periodic with period J,. As before,
let S be a finite subtree of 170 containing a and having the property that every contractible
subspace of V lifts to S and let e, ..., e, be the edges of V', with a € eg. Let x_; = a. We
temporarily subdivide ey, writing eg = €’ jef, with z_; € €/ ;. We now apply Lemma 6.18 to
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V, and then remove the subdivision vertex, yielding periodic points x; € Int(e;),0 < i < r
so that: for all 4,5 > —1 and all n > 0, any lifts Z;p, Zj4 of ¢"(x;),d"(x;) to S satisfy
p(Zip) # p(Tjq). As before, let J be the least common multiple of the periods of the z;.

Let L > 0 and € > 0. Applying Lemma 3.5, for each i > 0 let d; C Int(e;) be a primary
bust such that d; C N _c_(z;) and such that there is an immersed wall W — X with tunnel

length L and primary busts d;. The collection W, of such walls with J | L is uniformly bust-
quasiconvex since each component of the complement of the primary busts is contractible.
Arguing as in the verification of Condition (1), the characteristic property of {z;} ensures that
W, has uniformly bounded ladder overlap, with bound independent of L. Likewise, there is a
uniform bound k(a) on 3§ + 2 fellow-traveling between two forward ladders, one emanating

from an endpoint of Jip and one from a = T4, whenever Jip is a lift of some d; that is joined
to a by a path in a knockout of W. Indeed, in this situation, éL(a) is a lift of a to the finite
nucleus approximation containing the lift éL(:iip) of x;, whence the forward paths emanating
from d;, and a have uniformly bounded coarse intersection. The other case, where a and dj,

lie on the same nucleus approximation, is handled as in the analogous case in the verification
of Condition (1). O

Lemma 6.17. Let eg be an edge of V and let y € Int(eo). Then there exists a set {xo,..., s}
of periodic points in 'V such that:

(1) Each edge e; of V' contains exactly one point x; in its interior.

(2) The point zo lies in the interior of the edge eg containing y and de,(xo,y) < €.

(3) Let &y, # Zjq be lifts of x;,x; in the closure of a lift of a component of V. — Uj{x;}.
Then p(Zip) # p(Zjq)-

Proof. Let eq,...,e, be the edges of V', except eg. Using density of periodic points in eg
(Lemma 6.19), choose a periodic point z¢ € Int(eg) satisfying assertion (2). Suppose, by
induction, that we have chosen periodic points {z; € Int(e;)} for 0 < i < s, for some s < r,
with the property that p(Z;) # p(Z;) for ¢ # j and any lifts Z;, Z; of x;, x; to S. Let €;1,..., €,
be the lifts of e; to S. Likewise, let Z;; be the lift of ; to €;;. Choose z, € Int(es) to be a
periodic point with the property that no lift of zs to S lies in Uj<s ;0 ({p(3i;)}). Iterating
this procedure yields the desired set {xo, ..., z,}. Indeed, these points are periodic and satisfy
assertions (1) and (2) by construction. Denoting by Z1, ..., Zsp, the lifts of x5 to S, we see
that assertion (3) holds by construction when i # j, and holds by Proposition 6.5.(5) when
i=jand p #£q. d

Lemma 6.18. Let x_1 € V be a periodic point in an edge e_1 and let eq, . .., e, be a collection
of edges in V. Then for 0 < i < r, there exist periodic points z; € Int(e;) such that for all
i,j > —1,n > 0 and for all distinct lifts T;,, Tjq of ¢" (), d"(z;) to S, we have p(Z;y) #
P(Zjq)-

Proof. For all i, any two distinct lifts of ¢"(z;) to S have distinct images in ) by Propo-
sition 6.5.(5). It therefore suffices to verify the claim of the lemma for points ;,, &, with
i 7.

We argue by induction on r. In the base case where r = —1, there is nothing to prove.
Supposing that z_1,...,x,_1 satisfy the conclusion of the lemma, we will choose z,.. Since p
is an embedding on each edge and S is the union of finitely many edges, there exists K € N
such that for all y € p(S), we have [p~1(y) N S| < K. Let

Q=Hp(Zip): —1<i<r—1,1<p<p},
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where p; is the number of lifts of x; to S.

We claim that there exists m € N such that e, intersects at least K@ + 1 ¢-orbits of
m-periodic points. It suffices to show that there exists m so that the number of m—periodic
points in e, is at least (K@ + 1)m. To this end, choose C' > 0 so that for each edge e; of
V, the immersed path ¢F(e;) traverses e, for some k < C (such a C exists by irreducibility).
For any n € N, consider the paths ¢"(e,), "1 (e,),...,¢" T (e,;). These paths collectively
contain at least |¢" (e, )| > w™ occurrences of the edge e,, since each one contains at least one
occurrence of e, in the image of each edge of ¢"(e,). On the other hand, there are C' + 1 such
paths. Hence there exists k < C so that ¢"**(e,.) traverses e, at least (C' + 1) 'co™ times. As
in the proof of Lemma 6.19 below, Brouwer’s fixed-point theorem implies that e, contains at
least (C' + 1)~ '@™ points of period dividing n + k. Hence there exist arbitrarily large m € N

so that e, contains at least C'@™ points of period dividing m, where C’ = and the

w—C
2(C+1)’
claim follows by, e.g., choosing m to be a sufficiently large prime.

For each such m-periodic u, a lifted orbit of u is the set of all lifts to S of all points
¢F(u) with 0 < k < m. Note that if u, v’ are m-periodic points with distinct ¢-orbits, then
their lifted orbits are disjoint since their projections to V are distinct ¢-orbits of the same
cardinality and are hence disjoint. By the pigeonhole principle, there exists an m-periodic
point z, € e, with the desired property. Indeed, the points p(Z;) with ¢ < r ruled out at

most K@ of the K@ + 1 lifted orbits. O

Lemma 6.19. Let ¢ be as in Theorem 6.16. Then for each edge e of V, the set of periodic
points of e is dense in e. Consequently, for any finite forward path o — X, there exists

a periodic forward path x with o C N(x). If o is reqular, then x can be chosen so that
N(o) = N(x)-

Proof. To prove the first assertion, let e be an edge of V' and let a be a nontrivial closed
subinterval of e. Since ¢ is an exponentially expanding irreducible train track map (see
Definition 5.9), for each L > 0, the path ¢*(a) is an immersed path in V satisfying |¢%(a)| >
w”|a|, which is unbounded as L — co. Hence there exists L so that ¢”(a) traverses an entire
edge of V. Since ¢ is irreducible, there thus exists L' > L so that ¢ (a) traverses e and
hence traverses . It follows from Brouwer’s fixed-point theorem that « contains a point x
with ¢ (z) = z, verifying the first assertion.

The second assertion follows from the fact that periodic points are dense in V' and the fact
that distinct forward rays diverge at a rate governed by w. First, if o starts at a vertex, then
observe that since vertices are periodic, o must actually lie in a periodic forward path. Hence
let = be the initial point of o, suppose that z is not a vertex, and let n = |o|. We choose y to
be a point at distance at most 2’% from «, with the image of y in V periodic regular, where
K is the distance from x to a nearest vertex. Then the length-n forward path o, fellow-travels
with o at distance %, and hence the first and last vertical edges in the carriers of o, x are
equal. O

Remark 6.20. The period of x is unbounded as the length of ¢ increases.
We conclude with the following:

Corollary 6.21. Let & : ' — F be a monomorphism of the finitely generated free group
F. Suppose that ® is irreducible and that the ascending HNN extension G = Fxg 1s word-
hyperbolic. Then G acts freely and cocompactly on a CAT(0) cube complex.
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Proof. This follows from the fact that such @ is represented by a map ¢ : V — V satisfying
the hypotheses of Theorem 6.16. Indeed, any irreducible endomorphism has an irreducible

train track representative [BH92, Rey10, DV96]. O
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