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Abstract. Let V be a �nite graph and let φ : V → V be an irreducible train track
map whose mapping torus has word-hyperbolic fundamental group G. Then G acts freely
and cocompactly on a CAT(0) cube complex. Hence, if F is a �nite-rank free group and
Φ : F → F an irreducible monomorphism so that G = F∗Φ is word-hyperbolic, then G
acts freely and cocompactly on a CAT(0) cube complex. This holds in particular if Φ is an
irreducible automorphism with G = F oΦ Z word-hyperbolic.
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Table of notation

Since there is a great deal of recurring notation, the reader may �nd the following table
helpful:

A : W → X̃ Approximation map
A(W ) Approximation of W
di, d

′
i Primary busts in V , E (respectively)

dij , d
′
ij Secondary busts in V , E (respectively)

d
Ỹ

Metric inside subspace Ỹ ⊆ X̃ (e.g., Ỹ = Ṽn)

dL Weighted metric on X̃•L
dL Metric on R-tree Y
E Image in XL of V ×

{
1
2

}
Ẽn Preimage of E in X̃ at position n+ 1

2

ẼnL q−1
L (nL+ 1

2)
|e| Weight of edge e

K̃ Knockout
κ1, κ2 Quasi-isometry constants for piecewise geodesics (depends on L)
λ, λi Quasi-isometry constants for forward ladders
M Transition matrix for train track map φ
µ1, µ2 Quasi-isometry constants for uniform sub-quasiconvexity
N Nucleus
N(σ) Forward ladder of forward path σ

N(Y ) For Y ⊆ X̃ or Y ⊆ X̃L, smallest subcomplex containing Y
Φ : F → F Injection on �nite-rank free group F
φ : V → V Combinatorial map (later train track map) inducing Φ
$ Expansion constant of train track map φ

qL : X̃L → RL Coordinate map onto combinatorial line; q = q1

φ̃L : X̃L → X̃L Forward �ow map

ρ : X̃ → Y Natural map from X̃ to R-tree
%̃L : X̃•L → X̃ Map �folding� subdivided star levels to rooted tree levels
S±i Slopes
σ, σM (x) Forward path, forward path of length M determined by x)

T oL(x) Level (union of forward paths ending at x) in X̃
T o±i Level-part of a tunnel
T±i Tunnel

Ŵ • Graph obtained by attaching tunnels to nucleus

W • Space obtained from Ŵ • by folding levels according to %L
W Immersed wall (component of W • in X)

W Wall (image of W̃ → X̃)
XL Mapping torus of φL (L ≥ 1); X = X1

X̃•L Subdivision of X̃L from pulling back cell structure of X̃ via %̃L
V Base of mapping torus (a �nite graph)

Ṽn Preimage of V in X̃ at q-coordinate n
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Introduction

The goal of this paper is to prove the following theorem:

Theorem A. Let F be a �nite-rank free group and let Φ : F → F be an irreducible automor-
phism, and suppose that G = F oΦ Z is word-hyperbolic. Then G acts freely and cocompactly
on a CAT(0) cube complex.

This result is a special case of Corollary 6.21, which handles the more general case of a
hyperbolic ascending HNN extension of a free group by an irreducible endomorphism.

Theorem A provides a widely-studied class of hyperbolic groups for which Gromov's ques-
tion (see [Gro87]) of whether hyperbolic groups are CAT(0) has a positive answer, but goes
further, since nonpositively-curved cube complexes enjoy numerous useful properties beyond
having universal covers that admit a CAT(0) metric. For example, combining Theorem A
with a result of [Ago12] shows that groups G of the type described in Theorem A are virtually
special in the sense of [HW08] and therefore virtually embed in a right-angled Artin group.
This implies that G has several nice structural features, including Z-linearity.

A group G ∼= F oΦ Z is word-hyperbolic exactly when Φ is atoroidal [BF92, Bri00], so
that Theorem A applies to all mapping tori of irreducible, atoroidal automorphisms of free
groups. More generally, ascending HNN extensions are hyperbolic precisely if they have no
Baumslag-Solitar subgroups [Kap00].

We actually prove the following more general statement:

Theorem B. Let φ : V → V be a train track map of a �nite graph V . Suppose that φ is π1-
injective and that each edge of V is expanding. Moreover, suppose that the transition matrix
M of φ is irreducible and that the mapping torus X of φ has word-hyperbolic fundamental
group G. Then G acts freely and cocompactly on a CAT(0) cube complex.

Our CAT(0) cube complex arises by applying Sageev's construction [Sag95] to a family of

walls in the universal cover X̃ of X. To ensure that the resulting action of G on the dual cube
complex is proper and cocompact, we show that there is a quasiconvex wall separating any
two points in ∂G, thus verifying the cubulation criterion in [BW13]. As train track maps are
central to the proof that there are many walls in this sense, our results build upon the work
of Bestvina, Feighn, and Handel in [BH92, BFH97].

It appears likely that in the case where φ is π1-surjective, the hypothesis that φ is irreducible
can be removed, and we are currently working on developing the methodology in this paper
to generalize Theorem A to all hyperbolic mapping tori of free group automorphisms1.

Moreover, for the construction of immersed walls in X, hyperbolicity of G plays a minor
role. It is therefore natural to wonder which free-by-cyclic groups admit free actions on
CAT(0) cube complexes arising from immersed walls constructed essentially as in Section 3.
If Φ is fully irreducible and G is not hyperbolic, then Φ is represented by a homeomorphism
of a surface, by [BH92, Thm. 4.1]. Consequently, in this case G acts freely on a locally
�nite, �nite-dimensional CAT(0) cube complex [PW]. It is reasonable to conjecture that in
general, if G = F oΦ Z is hyperbolic relative to virtually abelian subgroups, then G acts
freely on a locally �nite, �nite-dimensional CAT(0) cube complex. The techniques in this
paper are largely portable to that context. However, one cannot expect to obtain cocompact
cubulations for general free-by-cyclic groups. Indeed, Gersten's group 〈a, b, c, t | at = a, bt =
ba, ct = ca2〉 is free-by-cyclic but does not act metrically properly by semisimple isometries

1We posted a tortuous generalization eight months after submitting this paper; see [HW14].
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on a CAT(0) space [Ger94], and hence Gersten's group cannot act freely on a locally �nite,
�nite-dimensional CAT(0) cube complex. Nevertheless, Gersten's group does act freely on
an in�nite-dimensional CAT(0) cube complex [Wis], so there is still much work to do in this
direction.

Summary of the paper. In Sections 1 and 2, we describe the mapping torus X and in-
troduce some features � levels and forward ladders � that play a role in the construction of
immersed walls in X.

In Section 3, we describe immersed walls W → X when φ : V → V is an arbitrary
π1-injective map sending vertices to vertices and edges to combinatorial paths, under the
additional assumptions that no power of φ maps an edge to itself and π1X is hyperbolic. The
immersed wallW is homeomorphic to a graph and has two parts, the nucleus and the tunnels,
and is determined by a positive integer L and a collection of su�ciently small intervals di ⊂ V ,
each contained in the interior of an edge. The nucleus is obtained by removing from V each
primary bust di, along with its φL-preimage. The tunnels are �horizontal� immersed trees

joining endpoints of di to endpoints of its preimage. Let W̃ → X̃ be a lift of the universal

cover ofW and letW ⊂ X̃ be its image. SinceW → X is not in general π1-injective, W̃ →W
is not in general an isomorphism. However, under suitable conditions described in Section 4,

W is a wall in X̃ whose stabilizer is a quasiconvex free subgroup of G. The immersed walls
in X are analogous to the �cross-cut surfaces� introduced in [CLR94], and Dufour used these
to cubulate hyperbolic mapping tori of self-homeomorphisms of surfaces [Duf12].

Remark 1 (Wall-approximations). Although the goal of the paper is to produce and under-
stand walls, we study these walls by means of a contrived object of which we now warn the
reader. Speci�cally, to prove that the stabilizer of W is a quasiconvex subgroup, we introduce

a �combinatorial approximation� A(W ) of W . This is a subspace of X̃ obtained from W by,

roughly, applying the �forward �ow� X̃ → X̃ arising from φ. The reason for doing this is that
it is di�cult to show that W is quasiconvex, since the tunnels are not uniformly quasicon-
vex; they are rooted trees whose branches are paths that can fellow-travel in an uncontrolled
fashion. Passing to the approximation A(W ) folds each tunnel into a single, uniformly qua-
siconvex path. This allows us to establish uniform quasiconvexity of A(W ), whose stabilizer
coincides with that of the original wallW . We advise the reader to be alert to this distinction,
which we view as the main technical di�culty in the proof.

Section 5 and 6 are devoted to the proof of Theorem B. We use a continuous surjection

X̃ → Y to an R-tree that arises in the case where φ is a train track representative of an
irreducible automorphism (see [BFH97]).

Acknowledgements. We thank the referees for extremely useful and detailed reports con-
taining many helpful comments and corrections that signi�cantly improved this text. We
also thank an anonymous referee for creating the table of notation. This is based upon work
supported by the National Science Foundation under Grant Number NSF 1045119 and by
NSERC.

1. Mapping tori

Let V be a �nite connected graph based at a vertex v, and let φ : V → V be a continu-
ous, basepoint-preserving map such that φ(w) is a vertex for each vertex w of V , and such
that φ(e) is a combinatorial path in V for each edge e of V . This means that there is a
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subdivision of e such that vertices of the subdivision map to vertices and whose open edges
map homeomorphically to open edges. We also assume that φ is parametrized so that these
homeomorphisms are linear. Moreover, we require that the map Φ : F → F induced by φ is
injective, where F ∼= π1V is a �nite-rank free group. We note that any injective Φ : F → F
is represented by such a map φ.

The reader should have in mind the case where Φ is an irreducible automorphism of F and
φ is a train track map representing Φ, in the sense of [BH92] (we refer the reader to Section 6.2
for more on train track maps and how we use them):

De�nition 1.1 (Train track map). φ : V → V is a train track map if for all edges e of V and
all n ≥ 0, the path φn(e)→ X is immersed.

For an integer L ≥ 1, letXL be obtained from V ×[0, L] by identifying (x, L) with (φL(x), 0)
for each x ∈ V , so that XL is the mapping torus of φL, and let X = X1. See Figure 1. Let
G = π1X and let GL = π1XL for each L ≥ 1. Note that if Φ is surjective then GL ∼= F oΦL Z.

Figure 1. The mapping torus XL.

We regard V as a subspace of XL, and we denote by E the image in XL of V × {1
2}; the

space E plays a role in Section 3.
We now describe a cell structure on XL. Let V × [0, L] have the product cell structure: its

vertices are V 0×{0, L}, its vertical edges are the edges of V ×{0, L}, and its horizontal edges
are of the form {w}× [0, L], where w ∈ V 0. We direct each horizontal edge {w}× [0, L] from
{w} × {0} to {w} × {L}, and horizontal edges of XL are directed accordingly. The 2-cells of
XL are images of the 2-cells of V × [0, L], which have the form e× [0, L], where e is an edge
of V .

For each vertex w ∈ V 0 ⊂ X0
L, we let tw denote the unique horizontal edge outgoing from w.

When L = 1, let z ∈ G be the element represented by the loop tv, where v is the φ-invariant
basepoint of V . Note that conjugation by z induces the monomorphism Φ : F → F . For each
vertical edge e, joining vertices a, b, there is a 2-cell Re with attaching map t−1

b e−1taφ
L(e),

where ta, tb are horizontal edges and φ
L(e) is a combinatorial path in V .

De�ne a map %L : XL → X as follows. First, %L restricts to the identity on V . Each
horizontal edge tw of XL, joining w to φL(w) ∈ V 0, maps to the concatenation of L horizontal
edges ofX beginning at w. This determines %L : X1

L → X. This map extends to the 2-skeleton
by mapping each 2-cell Re of XL to a disc diagram De → X. Speci�cally, for 0 ≤ i ≤ L,
the ith component Pi of the vertical 1-skeleton of De is the path φi(e), and there are strips
of 2-cells between consecutive vertical components. The boundary path of De consists of
P0, PL, and the horizontal edges of X joining the initial [terminal] point of Pi to the initial
[terminal] point of Pi+1 for 0 ≤ i ≤ L− 1. Such a diagram De is a long 2-cell and is depicted
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in Figure 2. Note that De → X is an immersion when φ is a train track map. Otherwise,
the paths Pi → X are not necessarily immersed and the map De → X need not be locally
injective. The map GL → G induced by %L embeds GL as an index-L subgroup of G.

Figure 2. A 2-cell of XL is shown at left, its image in XL is at the center,
and its image in X, which is the image of a long 2-cell in X, is shown at right.
Here L = 3. Horizontal edges have arrows and all non-arrowed edges are
vertical.

The universal cover X̃L → XL inherits a cell structure from XL. Let ṽ ∈ X̃0
L be a lift of

the basepoint v ∈ X0
L, and let Ṽ0 denote the smallest F -invariant subgraph containing the ṽ

component of the preimage of V . Let ṼnL = znLṼ0 for n ∈ Z.
There is a forward �ow map φ̃L : X̃L → X̃L de�ned as follows. For each p ∈ V × {0}, let

Sp be the path {p} × [0, L] → XL. The horizontal ray mp → XL at p is the concatenation

SpSφL(p)Sφ2L(p) · · · . For p̃ ∈ ṼnL mapping to p, let m̃p̃ be the lift of mp at p̃. For any ã ∈ m̃p̃,

the point φ̃L(ã) is de�ned by translating ã a positive distance L along m̃p̃. When L = 1, we

denote φ̃L by φ̃.
Let RL denote the combinatorial line with a vertex for each nL ∈ LZ and an edge for

each [nL, nL + L] and let SL be a circle with a single vertex and a single edge of length L.

We de�ne a map qL : X̃L → RL as follows. There is a map q̄L : XL → SL induced by the
projection V × [0, L] → [0, L]. The map q̄L lifts to the desired map qL. Note that qL sends
vertical edges to vertices and horizontal edges and 2-cells to edges of RL. We let R = R1,
S = S1, and q = q1. The map q is the (horizontal) coordinate projection.

Let ẼnL = q−1
L (nL + 1

2). Each horizontal edge tw ∼= {w} × [0, L] ⊂ X̃L intersects ẼnL at

the point {w} × {1
2} for a unique n ∈ Z.

1.1. Metrics and subdivisions. For each edge e of X, let |e| be a positive real number,
with |tw| = 1 for each horizontal edge tw. The assignment e 7→ |e| is a weighting of X1, and

pulls back to a G-equivariant weighting of X̃1, with all horizontal edges having unit weight.
Regarding e as a copy of [0, 1], the subinterval d ∼= [a, b] ⊂ e has weight |d| = (b − a)|e|.
Consider an embedded path P → X̃1 (not necessarily combinatorial). The length |P | of P is
the sum of the weights of P ∩ e, where e varies over all edges. This yields a geodesic metric

d on X̃1 such that (X̃1, d) is quasi-isometric to X̃1 with the usual combinatorial path-metric
in which edges have unit length.

For each L ≥ 1, let X̃•L be the subdivision of X̃L such that the lift %̃L : X̃L → X̃ of %L sends

open cells homeomorphically to open cells. The resulting map X̃•L → X̃ is an isomorphism

on subspaces ṼnL and sends 2-cells to long 2-cells. Note that 2-cells of X̃L do not immerse in

X̃ unless φ is a train track map. Pulling back weights of edges in X̃ to X̃•L yields a metric dL
on (X̃•L)1 with respect to which (X̃•L)1 → X̃1 is a distance-nonincreasing quasi-isometry. We

shall work mainly in X̃, except in Section 5, where it is essential to consider X̃•L. We refer

the reader to Figure 5 to see the di�erences between X̃L, X̃
•
L, and X̃.
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Beginning in Section 3, we shall assume that G is word-hyperbolic, so that there exists

δ ≥ 0 such that (X̃1, d) is δ-hyperbolic.

2. Forward ladders and levels

In this section, we de�ne various subspaces of X̃ needed in the construction and analysis

of quasiconvex walls in X̃ and X̃•L.

De�nition 2.1 (Midsegment). Let Re → X̃ be a 2-cell with boundary path t−1
b e−1taφ̃(e),

where e is a vertical edge joining vertices a, b. Regarding Re as a Euclidean trapezoid with
parallel sides of length |e| and |φ̃(e)|, the midsegment in Re determined by x ∈ e is the

line segment joining x to φ̃(x). The midsegment in X̃ determined by x is the image of the

midsegment in Re determined by x under the map Re → X̃, and is denoted mx. Midsegments
are directed so that x is initial and φ̃(x) is terminal. The midsegment mx is singular if

φ̃(x) ∈ X̃0 and regular otherwise. In general, Re → X̃ is not an embedding, and there may
be distinct x, y ∈ e with the property that the terminal points of mx and my coincide. Note,
however, that the intersection of two midsegments contains at most one point. See Figure 3.

Figure 3. Some midsegments in the image of a 2-cell in X̃.

De�nition 2.2 (Forward path, forward ladder). Let x ∈ Ṽn for some n ∈ Z and let M ∈ Z.
The forward path σM (x) of length M determined by x is the embedded path that is the

concatenation of midsegments starting at x and ending at φ̃M (x). In other words, σM (x) is

isomorphic to the combinatorial interval [0,M ], whose vertices are the points φ̃i(x), 0 ≤ i ≤M
and whose edges are the midsegments joining φ̃i(x) to φ̃i+1(x). Any path σ of this form is a
forward path. Note that σ is a directed path with respect to the directions of midsegments

in the sense that each internal point in which σ intersects the vertical 1-skeleton of X̃ has
exactly one incoming and one outgoing midsegment.

The forward path σ is singular if it contains a vertex and regular otherwise.

The forward ladder N(σ) associated to σ is the smallest subcomplex of X̃ containing σ.
The 1-skeleton N(σ)1 plays an important role in many arguments. See Figure 4.

Figure 4. A forward ladder for a regular forward path. The forward path is
labeled with arrows.

A subgraph Y of X̃1 is λ-quasiconvex if every geodesic of X̃1 starting and ending on Y lies
in Nλ(Y ). We use the notation Nr(Y ) to denote the closed r-neighborhood of Y .
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Proposition 2.3 (Quasiconvexity of forward ladders). There exist constants λ1 ≥ 1, λ2 ≥ 0

such that for each regular forward path σ → X̃, the inclusion N(σ)1 ↪→ X̃1 is a (λ1, λ2)-quasi-

isometric embedding. Hence, if X̃1 is δ-hyperbolic, there exists λ ≥ 0 such that each N(σ)1 is
λ-quasiconvex.

Proof. Let σ join x to φ̃M (x), so that σ = mxmφ̃(x) · · ·mφ̃M−1(x). Let Ri be the 2-cell

containing mφ̃i(x). Then a geodesic P of N(σ)1 joining x to φ̃M (x) has the form P =

Q0t0Q1t1Q2 · · · tM−1QM , where each ti is a horizontal edge inRi and each |Qi| ≤ maxe{|φ(e)|}.
Since each mi is a midsegment, Ri 6= Rj for i 6= j, whence the coordinate projection q(P )
is a combinatorial interval of length M , and the preimage in N(σ)1 of each point in q(P ) is

uniformly bounded. Hence P is a uniform quasigeodesic in X̃1. �

In the case that X̃1 is δ-hyperbolic, we denote by λ the resulting quasiconvexity constant
of the 1-skeleton of a forward ladder. The forward ladder for a singular forward path is
also uniformly quasi-isometrically embedded, by an argument very similar to the proof of
Proposition 2.3, but we do not require this fact.

De�nition 2.4 (Level). Let x ∈ Ṽn and let L ≥ 0. Note that the preimage (φ̃L)−1(x) is

a �nite set {xi} in Ṽn−L. Let σL(xi) be the forward path beginning at xi and ending at x.
The level T oL(x) is the subspace ∪iσL(xi). The point x is the root of T oL(x) and L is the

length. The carrier N(T oL(x)) is the smallest subcomplex of X̃ containing T oL(x). Note that
N(T oL(x)) = ∪iN(σi), where σi varies over the �nitely many maximal forward paths in T oL(x).
Note that each level has a natural directed graph structure in which edges are midsegments.

Proposition 2.5 (Properties of levels). Let T oL(x) be a level. Then:

(1) T oL(x) is a directed tree in which each vertex has at most one outgoing edge.

(2) If x 6∈ X̃0, then there exists a topological embedding T oL(x) × [−1, 1] → X̃ such that
T oL(x)× {0} maps isomorphically to T oL(x).

(3) If L′ ≥ L, then T oL(x) ⊆ T oL′(x).

Proof. T oL(x) is connected since it is the union of a collection of paths, each of which terminates
at x. Each vertex of T oL(x) has at most one outgoing edge. Hence any cycle in T oL(x) is
directed. The map q : T oL(x) → R thus shows that there are no cycles in T oL(x). This
establishes assertion (1).

Let xi ∈ (φ̃L)−1(x) and let σi ⊂ T oL(x) be the forward path joining xi to x. Then σi is

disjoint from X̃0, since T oL(x) is regular. Hence there exists εi > 0 such that N(σi) contains
an embedded copy of σi× [−εi, εi] with σi×{0} = σi, which we denote by Fi. Let ε = mini εi.
For each i, let F ′i ⊂ Fi be σi × [−ε, ε] ⊆ σi × [−εi, εi], and let F = ∪iF ′i . Since σi ∩ σj is a
forward path for all i, j, the subspace F ∼= T oL(x)× [−ε, ε]. See the right side of Figure 5.

Assertion (3) follows from the fact that φ̃L
′

: X̃ → X̃ factors as X̃
φ̃L−→ X̃

φ̃L
′−L
−→ X̃. �

For each L ≥ 1, forward paths and levels are de�ned in precisely the same way in X̃L

and X̃•L. A level of X̃L is subdivided when we formed X̃•L in Section 1.1. Accordingly, each

length-L level in X̃•L is isomorphic to a star whose edges are subdivided into length-L paths.

The map %̃L : X̃•L → X̃ sends each length-n level of X̃L, each of whose maximal forward paths

contains nL midsegments of X̃•L, to a length-nL level in X̃. Thus %̃L maps subdivided stars
to rooted trees, as shown in Figure 5.
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−→
%̃L

Figure 5. The product neighborhood of a regular level in X̃ is shown at

right; the corresponding level in X̃L appears at left. In general, the product
neighborhood may contain several subintervals of each vertical edge since φ is
not in general an immersion on edges.

The image in XL of a level from X̃•L is also referred to as a level; it will be clear from the
context whether we are working in the base space or the universal cover.

The following observation about forward ladders is required in several places in Section 4
and Section 5.

Lemma 2.6. Let σ be a forward path. Then for each R ≥ 0, there exists ΘR ≥ 0, independent

of σ and n, such that diam(NR(N(σ)1) ∩NR(Ṽn)) ≤ ΘR for all n ∈ Z.

Proof. This follows from the fact that the coordinate projection q(Ṽn) = n, while the image
of q|N(σ) is an interval, each of whose points has uniformly bounded preimage in N(σ)1. �

3. Immersed walls, walls, and approximations

In this section, we will describe immersed walls W → X, which are determined by two
parameters. The �rst parameter is a collection {di} of subintervals of edges in V , called
primary busts. The second parameter is an integer L ≥ 1 called the tunnel length. The graph
W consists of V −∪idi−∪i(φL)−1(di) together with a collection of rooted trees called tunnels,
and is immersed in XL. We shall show that when L is su�ciently large, W → X corresponds
to a quasiconvex codimension-1 subgroup of G.

3.1. Primary busts. Let {e1, . . . , ek} be edges of V ⊂ X. For each i, let e′i be the image
of ei under the isomorphism V → E given by (x, 0) 7→ (x, 1

2). The subspaces e′i, regarded as
edges of E, are primary busted edges. We will choose closed nontrivial intervals d′i ⊂ Int(e′i),
whose distinct endpoints we denote by p±i . The corresponding subinterval of ei is denoted

di, and its endpoints q±i correspond to p±i . Let E[ = E − ∪ki=1Int(d
′
i) and let V [ denote its

preimage in V under the above isomorphism V → E. The subspace E[ is the primary busted
space, and each di (or d

′
i) is a primary bust ; Int(di) (or Int(d

′
i)) is an open primary bust.

Let C be a component of V [ and let C̃ be a lift of its universal cover to some Ṽn. Since

C ↪→ V ↪→ X is π1-injective, C̃ embeds in Ṽn. Its parallel copy C̃
′ ⊂ Ẽn is a primary nucleus,

and likewise, each component of E[ is a primary nucleus in X.

Remark 3.1 (Quasiconvexity of C̃ under various conditions). In our applications, we will

require C̃ to be quasiconvex in X̃1. This is achievable in several ways. Clearly, if {ei} contains
enough edges that E[ is a forest, then the subspaces C̃ ⊂ X̃1 are �nite trees and therefore
quasiconvex.

Quasiconvexity of C̃ occurs under other circumstances. For example, suppose that Φ : F →
F is an automorphism and φ is a train track map that is aperiodic in the sense of [Mit99], i.e.
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φn(e) traverses f for all edges e, f and all su�ciently large n. Then, provided {ei} contains
at least one edge corresponding to a nontrivial splitting of F , the following theorem of Mitra
(see [Mit99, Prop. 3.4]), which is an analog of a result of Scott and Swarup [SS90], ensures

that each C̃ is quasiconvex:

Theorem 3.2. Let Φ : F → F be an aperiodic automorphism of the �nite-rank free group F .
If H ≤ F is a �nitely generated, in�nite-index subgroup, then H is quasiconvex in F oΦ Z.

3.2. Constructing immersed walls. We now assume that X̃1 is δ-hyperbolic. Let L ≥ 1
be an integer, called the tunnel length. For any set {di} of nontrivial primary busts, the spaces

E[ and V [ embed in XL by maps factoring through E ↪→ XL and V ↪→ XL respectively. For
each i, let {dij}j denote the �nite set of components of (φL)−1(di). For each i, j, let d′ij be

the parallel copy of dij in E. Each dij or d
′
ij is a secondary bust. In order to choose busts, we

will assume that each edge e of V is expanding in the sense that φk(e) 6= e for all k > 0. This
assumption is justi�ed by Lemma 3.4 below (see also [BH92]).

De�nition 3.3. We say x ∈ V is periodic if φn(x) = x for some n ≥ 1. A point x ∈ V has
period m if φm(x) = x and φk(x) 6= x for 0 < k < m. We then refer to x as being m-periodic.

A forward path σ → X̃ is periodic if it is a subpath of a bi-in�nite forward path whose

stabilizer in G is nontrivial. Note that this holds exactly when each point of X̃1 ∩ σ projects
to a periodic point of V .

Recall that the map φ : V → V is irreducible if for all edges e, f , there exists n ≥ 0 such
that φn(e) traverses f .

Lemma 3.4. Let F oΦ Z be hyperbolic. Then Φ : F → F can be represented by a map
φ : V → V with respect to which each edge of V is expanding and no edge is mapped to a
point. Moreover, if Φ has an irreducible train track representative, then φ : V → V can be
chosen to be an irreducible train track map with respect to which each edge is expanding.

Proof. We begin with a representative φ : V → V , which we will adjust by contracting subtrees
of V . Let U ⊂ V be the union of all vertices and all closed edges e such that |φk(e)| is bounded
as k → ∞. First, note that φ(U) ⊆ U . Second, each component of U is contractible, since
otherwise either φ is not π1-injective or X would contain an immersed torus, contradicting
hyperbolicity. We now collapse the φ-invariant forest U as in [BH92, Page 7], resulting in
a graph V and a map φ̄ : V → V representing Φ (by reparametrizing, we can assume that
the restriction of φ̄ to each edge is a combinatorial path). Note that either U contained no
edges (so all edges were expanding and did not map to points), or V has strictly fewer edges
than V . We repeat the above procedure �nitely many times to obtain a graph V and a map
φ̄ : V → V such that edges map to nontrivial paths and all edges are expanding.

The collapse of U preserves the property of being a train track map. Indeed, let ē be an
edge of V = V/U that is the image of an edge e of V . Let n > 0, and consider the restriction
of φ̄n to ē. The path φ̄n(ē) is obtained from the immersed path φn(e) by collapsing each edge
that maps to U . Let ū, v̄ be consecutive edges of φ̄n(ē) that fold. Then there is a subpath
u−1fv ⊂ φn(e), where u 7→ ū, v 7→ v̄ and f is an immersed path in U . Observe that f is a
closed path since u, v have the same initial point. This contradicts the fact that U is a forest.

Finally, the property of irreducibility is preserved by collapsing invariant forests. Indeed,
let ē, f̄ be edges of V that are images of edges e, f of V . Then by irreducibility of φ, there
exists m > 0 such that φm(e) passes through f , and hence φ̄m(ē) passes through f̄ . �
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A point y ∈ V is singular if φk(y) ∈ V 0 for some k.

Lemma 3.5. Let L ∈ N. Let {ei}ki=1 be a set of expanding edges in V , let xi ∈ Int(ei) for

each i, and let ε > 0. Then there exists a collection {di}ki=1 of closed subintervals (primary
busts), with each di ⊂ Int(ei), such that:

(1) ∪idi is disjoint from the associated secondary busts ∪ijdij.
(2) ∪jdij lies in the ε-neighborhood of (φL)−1(xi) for each i.
(3) The endpoints p±i of di are nonsingular.

(4) If xi is nonsingular and φ
L(xi) 6= xi then we can choose di such that xi is an endpoint

of di, i.e. xi ∈ {p±i }.
(5) φL restricts to an embedding on di, for each i.
(6) Suppose that φL(xi) 6= φL(xj) for all i 6= j. Then φL(di) ∩ φL(dj) = ∅.

Proof. We �rst establish the �niteness of the set S consisting of points s ∈ ei such that
φL(s) = s. Each component b of ei∩(φL)−1(ei) is the concatenation of one or more subintervals
of ei, each of which maps homeomorphically to ei. Since ei is expanding, Brouwer's �xed point
theorem implies that each such subinterval contains a unique point s with φL(s) = s. As there
are �nitely many such b, we conclude that S is �nite.

Let zi ∈ Int(ei) − S. There exists a nonempty closed interval hi containing zi such that
hi ∩ (φL)−1(hi) = ∅. Indeed, if hi ∩ (φL)−1(hi) 6= ∅ for each closed interval containing zi then
there would be a sequence of points converging to zi whose φ

L-images also converge to zi,
and so zi ∈ S. Property (1) holds whenever di ⊂ hi.

By continuity of φL, there exists δ > 0 such that Nδ((φL)−1(xi)) ⊂ (φL)−1(Nε(xi)). Prop-
erty (2) holds by choosing zi ∈ Nδ((φL)−1(xi)) and letting di be a nontrivial component of
hi ∩ Cl

(
Nδ((φL)−1(xi))

)
. As there are countably many singular points, Property (3) holds

since we can assume that neither endpoint of hi is singular. Property (4) holds by letting
zi = xi, and then choosing hi above so that it has xi as an endpoint.

To prove (5), note that ei has a subdivision where the vertices are points of (φL)−1(V 0).
If di is properly contained in a single closed edge in this subdivision, then φL restricts to an
embedding on di. This can be arranged by choosing di su�ciently small (�xing xi).

We prove (6) by induction on |{ei}|. The base case, where k = 0, is vacuous. Suppose
that d1, . . . , dk−1 have been chosen to satisfy (1)-(6), with each di satisfying xk 6∈ φL(di)
for 1 ≤ i < k. Choose dk with properties (1)-(5) small enough to avoid the �nitely many
φL(di), 1 ≤ i < k. �

Clearly di∩di′ = ∅ for i 6= i′, since di, di′ are contained in distinct open edges. Consequently
dij ∩ di′j′ = ∅ unless i = i′ and j = j′.

The subspaceN of E[ obtained by removing the image under V
∼→ E of each open secondary

bust is the nucleus. Observe that N need not be connected. For each i, j, let q±ij be the

endpoints of dij , which map to q±i ∈ V , and let p±ij be the corresponding points of d′ij ⊂ E.
See Figure 6.

For each i, let Ť o±i be the image in XL of the level T oL(q̃±i ) ⊂ X̃L, where q̃
±
i is an arbitrary

lift of q±i ∈ di. Recall that Ť o±i is an embedded star of length L rooted at q±i with leaves

at the various q±ij (Proposition 2.5.). Let S±i be a segment in the 2-cell Rei of XL that joins

q±i to p∓i ∈ E. (Note that S+
i joins p+

i to q−i and S−i joins p−i to q+
i .) The arcs S±i are

slopes. The level-part T o±i is the rooted subtree of Ť o±i with leaves at p±ij . The subspace

T±i = T o±i ∪ S
±
i obtained by joining the level-part T±i and the slope along the common point
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EV V

q−i

q+
i

p+
i

p−i
−→
→
−→
→

p+
ij
p−ij

p+
ij′
p−ij′

Figure 6. Constructing a wall in XL.

q±i is a tunnel. The space Ŵ • determined by the primary busts {di} and the tunnel length

L is the graph obtained by joining each tunnel T±i to N along {p±ij} ∪ {p
∓
i }. The inclusion

N ↪→ XL and the inclusions T±i ↪→ XL induce a (non-combinatorial) immersion Ŵ • → XL.

Note that T±i ∩ T
±
j = ∅ when i 6= j since di ∩ dj = ∅. Note that for each i, the tunnels

T+
i and T−i intersect in the single point S+

i ∩ S
−
i . Composing with the map XL → X gives

an immersion Ŵ • → X. This extends to a local homeomorphism Ŵ • × [−1, 1] → X with

Ŵ • identi�ed with Ŵ • × {0}. Indeed, we described a map T±i × [−1, 1] → X earlier, and

N × [−1, 1] → X is an embedding since N ⊂ E, and each S±i lies in a 2-cell. Appropriately

chosen neighborhoods T+
i ×[−1, 1], T−i ×[−1, 1], and S+

i ×[−1, 1], S−i ×[−1, 1], and N×[−1, 1]

can be glued to form Ŵ • × [−1, 1]→ XL. These gluings can be chosen to preserve a �normal
vector� at each point of the tunnel, and hence the result is a trivial [−1, 1] bundle. The map

Ŵ • → X factors through an immersion W • → X, where W • is obtained from Ŵ • by folding

the levels according to the map %L : XL → X illustrated in Figure 5. The spaces Ŵ • and W •

are shown in Figure 7.

%L
−→

Figure 7. The above �gure shows %L : Ŵ • →W •. In each of the domain and
the target, identify the two starred points and the two dotted points; these are
the points in V where the slopes, shown at the left of each picture, intersect
the levels, shown at right.

De�nition 3.6. A component W of W • is an immersed wall.

3.3. Description of W . We now de�ne a wall W in X̃. The map W → X lifts to a map

W̃ → X̃ of universal covers. For each component C of N, the universal cover C̃ of C lifts to

W̃ , and the restriction of W̃ → X̃ to each such C̃ is an embedding. Moreover, each tunnel

lifts to W̃ , and the map W̃ → X̃ restricts to an embedding on each tunnel Ti ⊂ W̃ . We de�ne

W to be im(W̃ → X̃). We conclude that:

Remark 3.7. Let HW = StabG(W ). When W is locally isomorphic to W , the trivial [−1, 1]-

bundle discussed above ensures that there are exactly two components of X̃ −W , each of
which is HW -invariant.
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Remark 3.8 (Future shape of W ). We now describe the structure of W in the situation in
which distinct tunnels are disjoint. Note that tunnels T±i and T±j inW are disjoint when i 6= j,

since they map to disjoint tunnels in im(W → X). Moreover, we shall show below that, under
certain conditions, tunnels T, T ′ ⊂ W , mapping to T+

i , T
−
i respectively, are disjoint when L

is large. In this situation, W will be shown to have the structure of a tree of spaces, whose
underlying vertices are equipped with a 2-coloring (call the colors �black� and �white). Black
vertices correspond to slopes, while white vertices correspond to subspaces that are maximal
connected unions of universal covers of nuclei and lifts of level-parts. Note that W may still

fail to be simply connected � i.e. W̃ may still fail to embed � since subspaces corresponding

to green vertices may not be simply-connected. If W contains a nucleus in Ẽn, then all nuclei

lie in Ẽn+kL, k ∈ Z, and any two nuclei contained in a common vertex space lie in the same

space Ẽn+kL. A heuristic picture of W is shown in Figure 8, and Figure 9 shows a part of W

inside X̃.

0 1/2 L L+ 1/2 2L

yq

level

slope

nucleus

nucleus

nucleus

Figure 8. A heuristic picture of part of a wall in X̃ and the e�ect of the
coordinate projection q on the various parts of the wall. Points in the same
�ber of q are decorated according to their q�images. The two nuclei at left,
and the arrowed levels, belong to the same knockout. This knockout does not
contain the slope or the nucleus and level at right.

Figure 9. Part of a wall W̃ → X̃. The single-arrowed segments belong to a
nucleus, while the double-arrowed segments are tunnels.
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3.4. The approximation. Let N(W ) denote the union of all closed 2-cells of X̃ that inter-

sect W . We will show that N(W )1 is quasiconvex in X̃1 under certain conditions, notably
su�ciently large tunnel length. However, the quasiconvexity constant will depend on the
tunnel length. This is partly because levels are not uniformly quasiconvex and partly because
distinct levels emanating from very close secondary busts may contain long forward paths
that closely fellow-travel. To achieve uniform quasiconvexity we de�ne the approximation of

W , which also has the key feature that it lifts to a geometric wall in X̃•L.

De�nition 3.9 (Approximation). Let W → X be an immersed wall with tunnel length L

and primary busted edges {ei}. Let W be the image of a lift W̃ → X̃ of the universal cover

of W to X̃. We de�ne a map A : W → X̃ as follows. First, suppose that C̃ ⊂ W is the

universal cover of a component of the nucleus of W . Let n ∈ Z be such that C̃ ⊂ Ẽn, and let

C̃ ′ ⊂ Ṽn be the parallel copy of C̃. For each c ∈ C̃, let c′ denote the corresponding point of

C̃ ′. Then A : C̃ → X̃ is de�ned by A(c) = φ̃L(c′). For each level-part T o of W , let q be the
root of T o. Then A(t) = q for each t ∈ To. Finally, let S ⊂ W be a slope, beginning at q

and ending on a point p in a nucleus component C̃. Then p is an endpoint of a primary bust

di ⊂ Ẽn. The map A sends the slope S homeomorphically to the path d′iP , where d
′
i is the

parallel copy of di in Ṽn that joins q to p′ and P is the forward path joining p′ to φ̃L(p′). See
Figure 10.

The approximation A(W ) of W is the image of W under the map A. Note that A(W )

is the union of length-L forward paths together with subspaces of ṼnL for each n ∈ Z. Let

N(A(W ))1 be the 1-skeleton of the smallest subcomplex of X̃ containing A(W ).

Figure 10. Part of a wall and its approximation. The arrowed paths are the
approximations of the slopes intersecting them.

Remark 3.10. Observe that the use of slopes ensures thatA(W ) passes through each primary
busted edge intersecting W , which is crucial in the proof Proposition 4.6, which says that W
is actually a wall.

Remark 3.11. If C̃1, C̃2 are nuclei of W intersecting a level-part of a tunnel of W , then

A(C̃1) ∩A(C̃2) 6= ∅. For each n ∈ Z, each component of A(W ) ∩ Ṽn is formed as follows. A

knockout K̃ is a maximal connected subspace of W that does not contain an interior point

of a slope. The knockout K̃ is at position n if it is the union of nuclei in W ∩ Ẽn−L together

with level-parts traveling from Ẽn−L to Ṽn. The knockout in Figure 8 is at position L.

To each position-n knockout K̃, we associate a component of A(W ) ∩ Ṽn, namely the

one obtained from the connected subspace A(K̃) ⊂ Ṽn by adding all (closed) primary bust

intervals that intersect A(K̃). See Figure 11.

Remark 3.12. If S1, S2 are distinct slopes, rooted at primary busts d1, d2, then A(S1) ∩
A(S2) = ∅ by Lemma 3.5.(5)-(6).
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Figure 11. Two nuclei intersecting a common level-part have intersecting
approximations whose union avoids primary busts.

3.5. Hypotheses on A(W ) enabling quasiconvexity. We recall that we are assuming,

for the rest of the paper, that there exists δ ≥ 0 such that X̃1 is δ-hyperbolic. The following

statements are instrumental in proving that, provided L is su�ciently large, N(A(W ))1 ↪→ X̃
is quasi-isometrically embedded, and the quasi-isometry constants are independent of L.

De�nition 3.13 (Bust-quasiconvex). W is bust-quasiconvex if there exist constants µ′1, µ
′
2

such that each component in X̃ of the preimage of V −∪iInt(di) is (µ′1, µ
′
2)-quasi-isometrically

embedded. For example, as noted in Remark 3.1, W is bust-quasiconvex if V [ is a forest or
if Φ is an aperiodic isomorphism and there is at least one bust.

Lemma 3.14 (Quasiconvexity of approximations of nuclei). Approximations have the follow-
ing properties when W is bust-quasiconvex:

(1) For each nucleus C̃ and each open primary bust d̃, we have A(C̃) ∩ d̃ = ∅.
(2) Let K̃ be a knockout. Then A(K̃) ∩ d̃ = ∅ for each open primary bust d̃.
(3) Hence there exist µ1 ≥ 1, µ2 ≥ 0 such that, for each n ∈ Z and each component K of

Ṽn∩A(W ), the inclusion K→ X̃1 is a (µ1, µ2)-quasi-isometric embedding. Moreover,
µ1 and µ2 are independent of {di} and L.

Proof.

(1) C̃ has empty intersection with the set of open secondary busts in Ṽn, and hence maps

to the complement of the set of open primary busts in Ṽn+L.
(2) This follows immediately from (1) because level-parts map to points.
(3) Since W is bust-quasiconvex, statement (2) implies that K is a subtree of a uni-

form neighborhood in Ṽn of some A(K̃), and the �rst claim follows. Since there are
�nitely many possible sets of primary busted edges, the constants µ1, µ2 can be cho-
sen independently not only of L and {di}, but also of {ei}. Indeed, each set {ei} of
edges yielding a bust-quasiconvex immersed wall gives rise to a pair of quasi-isometry
constants, and we take µ1, µ2 to be the maximal such constants. �

Lemma 3.14 provides uniform quasiconvexity of nucleus approximations, and Proposi-
tion 2.3 provides uniform quasiconvexity of forward ladders. Lemma 2.6 provides a bound on
the diameters of coarse intersections of nucleus approximations and carriers of approximations
of slopes. To prove quasiconvexity of N(A(W ))1 requires the following additional property.

De�nition 3.15 (Ladder overlap property). A family of immersed walls {Wi → X} has
the ladder overlap property if there exists B ≥ 0 such that for all i and all distinct tunnels
T1, T2 ⊂W i intersecting a common nucleus,

diam (N3δ+2λ(N(A(T1))) ∩N3δ+2λ(N(A(T2)))) ≤ B,
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where λ is the constant from Proposition 2.3.

Remark 3.16. The purpose of the ladder overlap property is to guarantee that, when L is
large and W is bust-quasiconvex, paths of the form βαβ′ are uniform quasigeodesics, where
β, β′ are geodesics of carriers of slope-approximations and α is a vertical geodesic in A(W ).

If the interiors of β, β′ have disjoint images in R, Lemma 2.6 ensures that βαβ′ is a uniform
quasigeodesic. The interesting situations are those in which β, β′ are both incoming or both
outgoing with respect to the vertical part of A(W ) containing α. A thin quadrilateral argu-
ment shows that in either case, the ladder overlap property ensures that β, β′ have uniformly
bounded coarse intersection, from which one concludes that βαβ′ is a uniform quasigeodesic
(see Lemma 4.3 below).

4. Quasiconvex codimension-1 subgroups from immersed walls

In this section, we determine conditions ensuring that N(A(W ))1 is quasiconvex and W is

a wall in X̃, continuing to assume that X̃1 is δ�hyperbolic.

4.1. Uniform quasiconvexity. A collection {W → X} of immersed walls is uniformly bust-

quasiconvex if there exist constants µ1, µ2 such that A(K̃) ↪→ X̃1 is a (µ1, µ2)-quasi-isometric

embedding for each W and each knockout K̃ of W . The �rst goal of this section is to prove:

Proposition 4.1. Let W = {W → X} be a uniformly bust-quasiconvex set of immersed
walls with the ladder-overlap property. Then there exists L0, κ1, κ2 such that for all W ∈ W
with tunnel length at least L0, the inclusion N(A(W ))1 ↪→ X̃1 is a (κ1, κ2)-quasi-isometric
embedding.

The constants are κ1 = 4λ1µ1 and κ2 = µ2

2 + 2L0(1 + 1
4λ1µ1

). Here µ1, µ2 are the

quasi-isometry constants from uniform bust-quasiconvexity, and λ1 is the multiplicative quasi-
isometry constant for 1-skeleta of forward ladders. We emphasize that these are independent
of L and of the collection of primary busts. We postpone the proof of Proposition 4.1 until
after the following necessary lemmas.

Lemma 4.2. Let Z be δ-hyperbolic, and let P = α0β1α1 · · ·βkαk be a path in Z with all αi
and βi geodesic. Suppose there exists B ≥ 0 such that for all i, each intersection below has
diameter ≤ B:

N3δ(βi) ∩ βi+1, N3δ(βi) ∩ αi, N3δ(βi) ∩ αi−1.

Then if |βi| ≥ 12(B + δ) for each i, then ‖P‖ ≥ 1
2

(∑k
i=0 |αi|+

∑k
i=1 |βi|

)
.

Proof. This is a standard argument. We refer, for instance, to [HW12, Thm 2.3]. �

We now promote Lemma 4.2 to a statement about piecewise-quasigeodesics.

Lemma 4.3. Let Z be δ-hyperbolic and let P = α0β1α1 · · ·βkαk be a path in Z such that each
βi is a (λ1, λ2)-quasigeodesic and each αi is a (µ1, µ2)-quasigeodesic. Suppose that for each
R ≥ 0 there exists BR ≥ 0 such that for all i, each intersection below has diameter ≤ BR:

N3δ+R(βi) ∩ βi+1, N3δ+R(βi) ∩ αi, N3δ+R(βi) ∩ αi−1.

Then there exists L0 such that, if |βi| ≥ L0 for each i, then ‖P‖ ≥ 1
4λ1µ1

|P | − µ2

2 .
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Proof. For each i, let ᾱi [respectively, β̄i] be a geodesic with the same endpoints as αi [respec-
tively, βi], and let P = ᾱ0β̄1ᾱ1 · · · β̄kᾱk be a piecewise-geodesic with the same endpoints as
P . Since Z is δ-hyperbolic, there exists µ = µ(µ1, µ2, δ) such that αi and ᾱi lie at Hausdor�
distance at most µ, and there exists λ = λ(λ1, λ2, δ) such that β̄i and βi lie at Hausdor�
distance at most λ.

Note that if R1 ≤ R2, then we may assume BR1 ≤ BR2 . By hypothesis, N3δ+2λ(βi) ∩ βi+1

has diameter ≤ B2λ. Moreover, if β̄′ ⊂ β̄i is a subpath that 3δ-fellowtravels with a subpath
ᾱ′ of ᾱi or ᾱi−1, then β

′ fellowtravels at distance 3δ+ µ+ λ with a subpath α′′ of αi or αi−1,
whence |β′| ≤ Bµ+λ by hypothesis. Letting L0 ≥ 12(δ + Bµ+2λ) and applying Lemma 4.2

shows that P is a (1
2 , 0)-quasigeodesic, and we have:

(1) ‖P‖ =
∥∥P∥∥ ≥ 1

2

∣∣P ∣∣ .
Since µ1, λ1 ≥ 1, we can bound |P | as follows:

∣∣P ∣∣ =

k∑
i=1

|β̄i|+
k∑
i=0

|ᾱi| ≥
k∑
i=1

(λ−1
1 |βi| − λ2) +

k∑
i=0

(µ−1
1 |αi| − µ2)

=

[
λ−1

1

k∑
i=1

(|βi| − λ1(λ2 + µ2)) + µ−1
1

k∑
i=0

|αi|

]
− µ2

≥ (λ1µ1)−1

[
k∑
i=1

(|βi| − λ1(λ2 + µ2)) +
k∑
i=0

|αi|

]
− µ2.

If L0 ≥ 2λ1(λ2 + µ2) + 1, then, provided that |βi| ≥ L ≥ L0, we have:

∣∣P ∣∣ ≥ 1

2λ1µ1

[
k∑
i=1

|βi|+
k∑
i=0

|αi|

]
− µ2.

Combining this with Equation (1) yields ‖P‖ ≥ 1
4λ1µ1

|P | − µ2

2 . �

Proof of Proposition 4.1. For a path P in X̃1, as usual ‖P‖ denotes the distance in X̃1 be-
tween the endpoints of P . If P is a geodesic of N(A(W ))1, then its edge-length |P | equals
the distance in N(A(W ))1 between the endpoints of P . We will show that when L ≥ L0,
there are constants κ1, κ2 such that ‖P‖ ≥ κ−1

1 |P | − κ2.

Alternating geodesics: Let P ′ be a geodesic in the graph N(A(W ))1. Suppose P ′

alternates, in the sense that P ′ = α0β1α1 · · ·βkαk, where each αi is a vertical geodesic path,
and each βi is a geodesic of the 1-skeleton of a length-L forward ladder (and thus a (λ1, λ2)-
quasigeodesic). We allow the possibility that α0 or αk has length 0.

Each αi is a (µ1, µ2)-quasigeodesic by our hypothesis that knockout-approximations are
quasi-isometrically embedded. Since W has the ladder overlap property, diam(N3δ+2λ(βi) ∩
N3δ+2λ(βi+1)) ≤ B. Let B0 = max(B,Θ3δ+2λ), where Θ3δ+2λ is as in Lemma 2.6. Applying
Lemma 4.3 yields a constant L0 such that, if L ≥ L0, then ‖P ′‖ ≥ 1

4λ1µ1
|P ′| − µ2

2 .

A(W ) quasi-isometrically embeds: Let P be a geodesic of N(A(W ))1. By construction
P = β′0P

′β′k+1 where P ′ is alternating and β′0, β
′
k+1 are (possibly trivial) paths in forward

ladders. If |β′0|, |β′k+1| ≥ L0, then ‖P‖ ≥ 1
4λ1µ1

|P | − µ2

2 by Lemma 4.3. If |β′0|, |β′k+1| ≤ L0,



CUBULATING FREE-BY-CYCLIC GROUPS 18

then since P ′ is alternating,

‖P‖ ≥ 1

4λ1µ1
|P ′| − µ2

2
− 2L0 ≥

1

4λ1µ1
|P | − µ2

2
− 2L0(1 +

1

4λ1µ1
).

In the remaining case, without loss of generality, P = β′0P
′′, where |β′0| ≤ L0 and P ′′ satis�es

‖P ′′‖ ≥ 1
4λ1µ1

|P ′′| − µ2

2 by Lemma 4.3. The proof is thus complete with κ1 = 4λ1µ1 and

κ2 = µ2

2 + 2L0(1 + 1
4λ1µ1

). �

4.2. W is a wall when tunnels are long. A subspace Y ⊂ X̃ is a wall if X̃ − Y has
exactly two components, each of which is stabilized by Stab(Y ). Note that this de�nition
is stricter than usual. For more about wallspaces and the various de�nitions, background,
and references, see [HW]. Our goal is now to show that if W → X is an immersed wall
with su�ciently long tunnels, then W is a wall. We need the following useful consequence of
quasiconvexity.

Proposition 4.4. Let W satisfy the hypotheses of Proposition 4.1. There exists L1 ≥ L0 such
that A(W ) is a tree for each W ∈W with tunnel length L ≥ L1.

Proof. Let Q be an immersed path in A(W ), and let Q′ be a geodesic of N(A(W ))1 with the
same endpoints as Q. Proposition 4.1 implies that ‖Q′‖ ≥ κ−1

1 |Q| − κ2. Hence if |Q′| ≥ L1 =

max(L0, κ1κ2 + κ1), then Q is not closed. Any immersed path Q in A(W ) either lies in a
single vertex space and is thus not closed, or contains a slope approximation and thus Q′ has
length at least L ≥ L1. �

Remark 4.5 (Tree of spaces structure on W ). Proposition 4.4 justi�es our claim in Re-
mark 3.8 that W is a tree of spaces when L is su�ciently large, assuming that W is bust-
quasiconvex and has the ladder overlap property. Indeed, any cycle inW that is not contained
in a knockout will map to a cycle in A(W ), contradicting Proposition 4.4.

Proposition 4.6. LetW → X be an immersed wall in a collection W satisfying the hypotheses

of Proposition 4.1. The image W ⊂ X̃ of W̃ → X̃ is a wall provided that W has tunnel length
L ≥ L1, where L1 is the constant from Proposition 4.4.

Proof. Since H1(X̃) = 0, it su�ces to show that W has an open neighborhood homeomorphic
to W × [−1, 1] with W identi�ed with W ×{0}. The local homeomorphism W × [−1, 1]→ X

lifts to a map W̃ × [−1, 1] → X̃. The image of W̃ × [−1, 1] → X̃ would provide the desired
neighborhood W × [−1, 1] provided that this map is a covering map onto its image. By
choosing the image of W × [−1, 1] to be su�ciently narrow, the only place where this could
fail is where distinct slopes of W intersect. To exclude this possibility, we will show that
distinct tunnels T0, T1 of W are disjoint.

Suppose that T0 6= T1 and T0 ∩ T1 6= ∅. Let e be the primary busted edge dual to T0 and
T1. Since T0, T1 ⊂W , there exists a path P →W that starts on T0, ends on T1, and which is

disjoint from the interiors of T0 and T1. Indeed, let P̃ → W̃ be a path joining lifts of T̃0, T̃1

and let P be the image of P̃ in W . Moreover, we assume that P̃ is minimal in the sense

that it is disjoint from intervening lifts of T0, T1. The minimality of P̃ ensures that P has the
desired property.

There are three cases. The �rst is where P starts and ends on the levels of T0, T1. The
second is where P starts and ends on the slopes of T0, T1. The third case is where P starts
on the level of (say) T0 and ends on the slope of T1. See Figure 12.
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Observe that e ⊂ A(W ), as shown in Figure 12, by the de�nition of A(W ). Indeed,
e = α0dα1, where d is the primary bust and α0, α1 lie in the approximations of the nuclei
attached to the levels of T0, T1. (The approximations of T0, T1 overlap along d.) The primary
bust d is included in both of the associated slope-approximations (see De�nition 3.9).

e e e

P

P

P

P P P

T0

T1

Figure 12. The three cases in the proof of Proposition 4.6. The solid arrowed
lines are parts of the path P . The dotted lines are parts of the closed paths in
A(W ) constructed by joining endpoints of A(P ).

In the �rst case, at left in Figure 12, the approximation A(P ) of the image of P is a
connected subspace of A(W ) that contains the endpoints of e but does not contain the entire
edge e. Hence A(P ) ∪ e contains a cycle. Since A(P ) ⊂ A(W ) and e ⊂ A(W ),

Similarly, in the second case, shown in the center of Figure 12, A(P ) is disjoint from e, so
that A(P ) ∪ e ∪ A(T0) ∪ A(T1) is a subspace of A(W ) that contains a cycle. In the third
case, shown at right, the contradictory subspace is A(P ) ∪A(T1) ∪ e. �

We note the following corollary:

Corollary 4.7. Let W be a set of bust-quasiconvex immersed walls such that W has the ladder
overlap property. Then there exists L1 such that for all W ∈ W with tunnel length L ≥ L1,
the stabilizer HW ≤ G of W is a quasiconvex, codimension-1 free subgroup.

5. Cutting geodesics

In this section, we recall the criterion for cocompact cubulation of hyperbolic groups given

in [BW13] and describe how a su�ciently rich collection of quasiconvex walls in X̃ ensures
that this criterion is satis�ed.

5.1. Separating points on ∂X̃. Let ∂X̃ denote the Gromov boundary of X̃1. Let W → X

be an immersed wall with the property that N(A(W ))1 is quasiconvex in X̃1 and W is a

wall. Let
←−
W and

−→
W be the components of X̃ −W , and let N(

←−
W ), N(

−→
W ) be the smallest

subcomplexes containing
←−
W,
−→
W respectively. Then N(

←−
W )1 ∩ N(

−→
W )1 = N(W )1, which is

coarsely equal to N(A(W ))1. Let ∂W denote ∂N(W )1 = ∂N(A(W ))1, which is a closed

subset of ∂X̃ since N(A(W ))1 is quasiconvex in X̃1. Let ∂
←−
W = ∂N(

←−
W )1 − ∂W and let

∂
−→
W = ∂N(

−→
W )1 − ∂W , so that ∂

←−
W and ∂

−→
W are disjoint open subsets of ∂X̃. Note that ∂

←−
W

and ∂
−→
W are HW -invariant, since N(

←−
W ) and N(

−→
W ) are HW -invariant by Remark 3.7.

Let p, q ∈ ∂X̃ be the endpoints of a bi-in�nite geodesic γ : R→ X̃1. Then γ is cut by W

if p ∈ ∂
←−
W and q ∈ ∂

−→
W or vice versa.

The following holds by [BW13, Thm 1.4]:

Proposition 5.1. Suppose that for every geodesic γ : R→ X̃1, there exists a wall W of the
type described in Section 3, such that N(W ) is quasiconvex and such that W cuts γ. Then
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there exists a G-�nite collection {W} of walls in X̃ such that G acts freely and cocompactly
on the dual CAT(0) cube complex.

The utility of Proposition 5.1 is that we can build an enormous (in particular, G�in�nite)

collection of quasiconvex walls in X̃, and the proposition will provide a suitable G��nite
collection of walls.

5.2. A method for cutting the two types of geodesics.

De�nition 5.2 (Ladderlike, deviating). Let M ≥ 0 and let γ ⊂ X̃1 be an embedded in�nite
or bi-in�nite path whose image is ξ-quasiconvex, for some ξ ≥ 0. Then γ is M -ladderlike
if there exists a forward ladder N(σ), where σ is a forward path of length M , such that a
geodesic of N(σ) joining the endpoints of σ fellow-travels with a subpath of γ at distance

2δ + λ+ ξ. Here, X̃1 is δ-hyperbolic and λ is the constant from Proposition 2.3. Otherwise,
γ is M -deviating.

Note that if γ is M -deviating, for each R ≥ 0 there exists MR depending only on ξ,M,R
such that for all forward paths σ, we have diam(γ ∩ NR(N(σ)1)) ≤ MR. Moreover, if γ is
2M -deviating, the same bound holds with σ replaced by any level, since any geodesic in a
level decomposes as the concatenation of two (possibly trivial) forward paths.

De�nition 5.3 (Many e�ective walls). A set W of immersed walls in X is spreading if:

• For arbitrarily large L, there exists W ∈W with tunnel length L.
• W has the ladder overlap property of De�nition 3.15.

X̃ has many e�ective walls if Conditions (1) and (2) below hold.

(1) For each regular y ∈ V , there exists a spreading set Wy such that for each ε > 0 and
each m ∈ N, there exists L > m and W ∈ Wy with tunnel length L, a primary bust
in each edge of V , and a primary bust in the ε-neighborhood of y.

(2) For each a ∈ Ṽ0 whose image in V is periodic and whose corresponding point in Ẽ0 is
denoted by a′, there exists k = k(a) ≥ 0 and a spreading set Wa such that all of the
following hold:
• Wa is uniformly bust-quasiconvex;
• for each W ∈Wa, each edge of V contains a primary bust of W ;

• for each primary bust d′ of W in Ẽ0 (corresponding to an interval d ⊂ Ṽ0) that

is joined to a′ ∈ Ẽ0 by a path in a knockout of W , we have d
X̃1(φ̃n(a), φ̃n(d)) ≥

3δ + 2λ for all n ≥ k. See Figure 13.
(Observe that Wa need not be a maximal set of immersed walls satisfying the above
conditions, and indeed our applications we choose a very speci�c Wa.)

Remark 5.4. Firstly, assuming that the third part of De�nition 5.3.(2) holds, the constant k

can be chosen independently of the point a. For each a ∈ Ṽ0 whose image ā in V is periodic,
let k′(a) be chosen so that for each bust d and each n ≥ k′(a), we have d

X̃1(φ̃n(a), φ̃n(d)) ≥
3δ+2λ+1. This is possible since the existence of k(a) implies that the forward rays emanating
from a and any point of d diverge. By translating, we note that if a1 is another lift of ā to

Ṽ0, then we can take k′(a1) = k′(a).

Fix ε ∈ (0, 1) and consider the neighborhood of a given by Ua = (φ̃k
′(a))−1(Nε(φ̃k

′(a)(a))).

Then for each b ∈ Ua, we have dX̃1(φ̃n(b), φ̃n(d)) ≥ 3δ+2λ+1−ε > 3δ+2λ for each n ≥ k′(a).
Hence we may choose k(b) ≤ k′(a).



CUBULATING FREE-BY-CYCLIC GROUPS 21

d

a

d′

a′

Figure 13. De�nition 5.3.(2).

Let V � ⊆ V be the set of periodic points, and let Cl (V �) denote its closure, which is
compact since V is compact. Let U ā be the image of Ua in V , which is open since Ua is open.
Note that {U ā : ā ∈ V �} is an open covering of Cl (V �), since ā ∈ U ā for each ā ∈ V �.
Hence the claim follows since the open covering has a �nite subcovering consisting of �nitely
many sets U ā, and we can take k to be the maximum of the associated k(a′).

Secondly, since the collection Wa has the ladder overlap property, we claim there is likewise
a constant Ba such that for all W ∈ Wa, any two tunnels T, T ′ of W that are joined by a
path in W not traversing a slope have the property that the (3δ + 2λ)-neighborhoods of
A(T ),A(T ′) intersect in a set of diameter at most Ba. Let Va be the set of images in V of

points b ∈ Ṽ such that for all W ∈ Wa, the point b lies in a nucleus of some W and for all
primary busts d of W , we have d

X̃1(φ̃n(a), φ̃n(d)) ≥ 3δ + 2λ for all n ≥ k. The previous

argument showed that, with k chosen appropriately, the set Va is open. It follows that if X̃
has many e�ective walls, the ladder overlap constant Ba can be chosen independently of a.
This is used in the proof of Proposition 5.19.

De�nition 5.5 (Separating level). X̃ is (M,K)-separated if for each M -deviating geodesic γ

there exists y ∈ X̃ such that the following holds for all su�ciently large n: the set γ∩T on(φ̃n(y))

has odd cardinality, and the distance in T on(φ̃n(y)) from γ ∩ T on(φ̃n(y)) to the root or to any

leaf of T 0
n(φ̃n(y)) exceeds M +K. See Figure 14. We say X̃ is level-separated if it is (M,K)-

separated for all M > 0,K ≥ 0.

Remark 5.6. If the level T on(φ̃n(y)) separates γ in the above sense, then we can choose y so

that the image ȳ ∈ V of y is not periodic. Indeed, if y′, y are su�ciently close, then T on(φ̃n(y))

and T on(φ̃n(y′)) both separate γ. There are points y′ arbitrarily close to y whose images in V
are not periodic since there are only countably many periodic points.

De�nition 5.7 (Bounded level-intersection). X̃ has bounded level-intersection if for each

z ∈ X̃1 and each vertical edge e ⊂ X̃1, there exists K = K(z, e) such that for every level T
with a leaf at z, we have |T ∩ e| ≤ K.

Remark 5.8. In the case of greatest interest, where X is the mapping torus of a train track
map, each level intersects each vertical edge in at most a single point (Lemma 6.3), and hence

X̃ has bounded level-intersection. This holds in particular for the complexes X̃ considered in

Theorem 6.16. More generally, this holds whenever there is a continuous map from X̃ to an
R-tree that is constant on levels and sends edges to concatenations of �nitely many arcs.
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γ

φ̃n(y)y
> M +K

> M +K

Figure 14. The M�deviating geodesic γ is separated by T on(φ̃n(y)): their

intersection consists of 3 points, all far from the root and leaves of T on(φ̃n(y)).

De�nition 5.9 (Exponentially expanding). The train track map φ : V → V is exponentially
expanding if there exists an expansion constant $ > 1 such that for all edges e of V and all
arcs α ⊂ e, and all L ≥ 0, we have |φL(α)| ≥ $L|α|. Note that if φ is an irreducible train
track map and edges are expanding, then φ is exponentially expanding, as can be seen by
taking $ to be the Perron-Frobenius eigenvalue of the transition matrix of φ. See Section 6.2
for more on the eigenvalues of the transition matrix.

The main result of this section is:

Proposition 5.10. Suppose that φ : V → V is a π1-injective train track map. Let X be the

mapping torus of φ. Suppose that π1X is word-hyperbolic and that X̃ satis�es:

(1) X̃ is level-separated.

(2) X̃ has many e�ective walls.
(3) Every �nite regular forward path fellow-travels at uniformly bounded distance with a

periodic regular forward path.
(4) φ is exponentially expanding.

Then G acts freely and cocompactly on a CAT(0) cube complex.

Proof. Proposition 5.19 shows that there exists M such that every M -ladderlike geodesic
is cut by a wall. Proposition 5.18 shows that each M -deviating geodesic is cut by a wall;

Proposition 5.18 requires X̃ to have bounded level-intersection, which is the case since φ is a
train track map. The claim then follows from Proposition 5.1 since each geodesic that is not
M -ladderlike is by de�nition M -deviating. �

Convention 5.11. In the remainder of this section, φ : V → V is assumed to satisfy the
initial hypotheses of Proposition 5.10, except that the enumerated hypotheses will be invoked
as needed.

5.3. Walls in X̃L. Let W → X be an immersed wall with tunnel length L ≥ 1, and suppose
that W is a wall and N(A(W ))1 is (κ1, κ2)-quasi-isometrically embedded and κ-quasiconvex.
Each primary bust has regular endpoints, by Lemma 3.5.(3), so that each level-part of W is

disjoint from X̃0. Similarly, X̃0 is disjoint from A(S) for each slope S of W .
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Figure 15. WL and A(W ) inside X̃•L.

Recall that X̃•L denotes the subdivision of X̃L obtained by pulling back the 1-skeleton of X̃.

For each n ∈ Z, the inclusion ṼnL ↪→ X̃ lifts to an embedding ṼnL ↪→ (X̃•L)1, and we continue

to use the notation ṼnL for this subspace. We make the same observation and convention

about ẼnL. By translating, we can assume that W has a primary bust in Ṽ0, and hence all

primary busts in W lie in the various ṼnL and the map W̃ → X̃ lifts to W̃ → X̃•L. Let WL

be the image of W̃ → X̃•L, so that we have the commutative diagram:

WL X̃•L

W X̃

//

�� ��

//

Note thatWL andW are very similar: each tunnel TL ofWL consists of a slope and a level-
part that is a (subdivided) star, and W is obtained from WL by folding each such subdivided

star into a tree (see Figure 5 and Figure 7). The halfspaces
←−
WL,

−→
WL in X̃•L associated to WL

respectively map to the halfspaces
←−
W,
−→
W in X̃.

The approximation mapA is de�ned in X̃L just as it is in X̃ = X̃1. ConsiderA : WL → X̃L,

which is a lift of A : W → X̃. There is a corresponding commutative diagram:

A(WL) X̃•L

A(W ) X̃

//

�� ��

//

in which the map A(WL)→ A(W ) is an isomorphism. Thus A(W )→ X̃ lifts to an embed-

ding A(W )→ X̃•L whose image is A(WL). Figure 15 depicts WL and A(WL).

There is also a lift N(A(W ))1 ↪→ X̃•L. Since N(A(W ))1 ↪→ X̃1 factors as N(A(W ))1 ↪→
(X̃•L)1 → X̃1 and since (X̃•L)1 → X̃1 is distance nonincreasing, N(A(W ))1 → (X̃•L)1 is a

(κ1, κ2)-quasi-isometric embedding. Thus ∂N(A(W ))1 embeds in ∂X̃•L as a closed subset.

The following proposition explains that the tree A(WL) determines a wall in X̃•L, and

therefore determines a coarse wall in X̃ that coarsely agrees with W .
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Proposition 5.12. For each lifted wall WL, the space X̃
•
L contains subspaces

←−
A,
−→
A such that

←−
A ∪

−→
A = X̃•L and

←−
A ∩

−→
A = A(WL). Both

←−
A − A(WL) and

−→
A − A(WL) are connected.

Moreover, the images of
←−
A and

−→
A under the map X̃•L → X̃ are coarsely equal to

←−
WL and

−→
WL.

Proof. It su�ces to produce the subspaces
←−
A,
−→
A so that each is coarsely equal to a component

of X̃•L −WL. Let
←−
WL,

−→
WL be the closures of the components of X̃•L −WL. The halfspaces

←−
A and

−→
A will be obtained from

←−
WL and

−→
WL by adding and subtracting �discrepancy zones�,

which are subspaces between WL and A(WL) suggested by Figure 15.

Discrepancy zones: Let e ⊂ ṼnL be a primary busted edge with outgoing long 2-cell

Re ⊂ X̃•L. Let d ⊂ e be the closed primary bust with endpoints p, q. Let p′, q′ be the points

at distance 1
2 to the right of p, q within Re. The slope S travels from p to q′, as shown in

Figure 16. Let Z↑ be the 2-simplex in Re bounded by S and the part of A(S) between p and
q′. The disc Z↑ is an upward discrepancy zone.

Let C̃ ⊂ ẼnL be a nucleus in WL and let A(C̃) ⊂ ṼnL+L be its approximation. Consider

the map C̃ × [1
2 , L]→ X̃•L that restricts to the inclusion C̃ ×{t} ↪→ ṼnL×{t} ⊂ X̃•L for t < L

and acts as the map φ̃L : C̃ → ṼnL+L on C̃ × {L}. The image of this map is a downward

discrepancy zone Z↓. In other words, Z↓ is the closure of C̃ × [1
2 , L) in X̃•L. See Figure 17.

p

q q′

Figure 16. An upward discrepancy zone.

Z↓

Figure 17. A downward discrepancy zone is shaded.

The halfspaces
←−
A and

−→
A : Let Z↑ be the union of all upward discrepancy zones associated

to A(WL), and likewise let Z↓ be the union of all downward discrepancy zones. Let

←−
A = Cl

((←−
WL − Z↑

)
∪ Z↓

)
and

−→
A = Cl

((−→
WL − Z↓

)
∪ Z↑

)
.
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Since each discrepancy zone lies at distance less than L from WL, we see that
←−
A coarsely

equals
←−
WL. By construction,

←−
A ∪

−→
A = X̃•L. Finally, suppose that x ∈

←−
A ∩

−→
A . Then x

must lie on the boundary of a discrepancy zone. If x ∈ WL, and x ∈ Z↑, then x 6∈
←−
A unless

x ∈ A(WL) ∩WL. Similarly, if x ∈ WL and x ∈ Z↓, then x 6∈
−→
A unless x ∈ A(WL) ∩WL.

Hence
←−
A ∩

−→
A ⊆ A(WL). On the other hand, every point in A(WL) lies in the boundary of

a discrepancy zone, and thus A(WL) ⊆
←−
A ∩
−→
A .

Observe that
←−
A −A(WL) is homeomorphic to

←−
WL −WL, which is connected. Likewise(−→

A −A(WL)
)
∼=
(−→
WL −WL

)
. Hence

←−
A −A(WL) and

−→
A −A(WL) are connected. �

5.4. Lifting and cutting geodesics in X̃•L. We now describe a criterion ensuring that a

given geodesic in X̃ is cut by a wall, in terms of quasigeodesics and walls (
←−
A,
−→
A ) in X̃•L.

5.4.1. Lifted augmentations of geodesics. The following construction adjusts a bi-in�nite quasi-

geodesic γ → X̃1 so that it can be lifted to a bi-in�nite quasigeodesic γ̂� → X̃•L such that γ

and γ̂� determine the same pair of points in ∂X̃ ∼= ∂X̃•L.

Construction 5.13 (Lifted augmentations of quasigeodesics). Let γ : R→ X̃1 be an embed-
ded quasigeodesic. The augmentation γ� of γ is de�ned as follows. For each (possibly trivial)

bounded maximal horizontal subpath P ⊂ γ, with endpoints p, p′ ∈ Ṽn, Ṽn′ , let n
′′ be the

smallest multiple of L greater than or equal to max{n, n′} and let p′′ = φ̃n
′′−n(p) = φ̃n

′′−n′(p′).
Let Q′ be the horizontal path pp′′p′, and replace P by Q′. Performing this replacement for
each such P yields γ� . Note that γ� is a quasigeodesic that L-fellowtravels with γ, so that

∂γ� = ∂γ. We use the following notation. First, P = P1P2, where P1 and P−1
2 are forward

horizontal paths, one of which is trivial. Then Q′ = P1QP2, where Q = Q1Q
−1
1 , with Q1 a for-

ward path. The terminal point p′′ of Q1 is the apex of Q, and Q = Q1Q
−1
1 is an augmentation

of γ.

Figure 18. At left is part of a geodesic in X̃. In the middle is the image of

its augmentation. At right is the lifted augmentation in X̃•L.

The path γ� lifts to a quasigeodesic γ̂� → X̃•L. More speci�cally, each lift of the union
of the vertical edges of γ� determines a unique lift of γ� to a quasigeodesic. Indeed, we can
write γ� in one of the following four forms, where each ei is a vertical edge and each Ai, Bi is
a horizontal path, with Ai starting at an apex and each Bi ending at an apex:

(1) · · ·A−1e−1B−1A0e0B0A1e1B1A2e2B2 · · · , where e±i are present for all i ∈ N;
(2) A0e0B0A1 · · · , where A0 is unbounded;
(3) · · ·A0e0B0, where B0 is unbounded;
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(4) AsesBs · · ·AtetBt with As, Bt unbounded. (This includes the case B0A1 in which
γ = γ� is horizontal.)

Observe that each lift of ei determines lifts of Ai and Bi to X̃
•
L. Since the apexes lift uniquely,

any lift of Bi is concatenable with any lift of Ai+1, and we conclude that a lift of {ei} induces
a lift of γ� . In the case where γ is horizontal, γ = γ� lifts uniquely since any horizontal

path starting and ending in ∪kṼkL lifts uniquely. Under the quasi-isometry (X̃•L)1 → X̃1, the
quasigeodesic γ̂� is sent to γ� , and thus ∂γ̂� = ∂γ. Finally, if some augmentation of γ has a
subpath that lifts to a backtrack in γ̂� , then we truncate γ� accordingly and de�ne γ̂� to be
the lift of the truncated augmentation. An augmentation where this truncation is nontrivial
is a truncated augmentation. We call γ̂� a lifted augmentation of γ. See Figure 18.

5.4.2. Cutting in X̃•L. We now establish a criterion, in terms of lifted augmentations, ensuring

that a wall W cuts a given quasigeodesic in X̃1.

Proposition 5.14. Let γ : R → X̃1 be an embedded quasigeodesic, and let γ̂� → X̃•L be a

lifted augmentation. Let Co be a bounded subset of γ̂� ∩ A(WL) and let C be the smallest

subgraph of γ̂� containing Co. Let γ̂� ∨C N(A(WL))1 → (X̃•L)1 be the graph obtained by

wedging γ̂� → X̃ and N(A(WL))1 → X̃ along the common subgraph C. Suppose that:

(1) γ̂� ∨C N(A(WL))1 → (X̃•L)1 is a quasi-isometric embedding.
(2) There are nontrivial intervals f, f ′ ⊂ γ̂�, immediately preceding and succeeding Co

within γ̂�, that lie in
←−
A and

−→
A respectively.

(3) For every component D of γ̂� ∩A(WL) disjoint from Co, the 1-neighborhood in γ̂� of

D lies entirely in
←−
A or

−→
A .

Then W cuts γ.

Proof. Hypotheses (2) and (3) together imply that γ̂� decomposes as a concatenation ←−γ γ̄−→γ ,
where γ̄ is a bounded path containing Co and

←−γ ,−→γ are rays contained in
←−
A,
−→
A respectively.

The image of γ̂� ∨C N(A(WL))1 → X̃•L is γ̂� ∪ N(A(WL))1, which is quasi-isometrically

embedded in (X̃•L)1 by hypothesis (1). The inclusion γ̂� ∪N(A(WL))1 ↪→ (X̃•L)1 thus induces

an embedding ∂γ̂� t ∂N(A(WL))1 → ∂X̃•L: the two points of ∂γ̂� are ∂←−γ ∈ ∂
←−
A and

∂−→γ ∈ ∂
−→
A , and neither of these points lies in ∂N(A(WL))1 since hypothesis (1) implies that

no sub-ray of γ̂� lies in a bounded neighborhood of N(A(WL))1. Applying the quasi-isometry

X̃•L → X̃ shows that the points of ∂γ ⊂ ∂X̃ lie in ∂N(
←−
W )− ∂W and ∂N(

−→
W )− ∂W , whence

W cuts γ. �

5.4.3. Narrow discrepancy zones. We now analyze discrepancy zones. Speci�cally, we need
the following notion of �narrow exceptional discrepancy zones�, and the ability to construct im-
mersed walls with narrow exceptional zones, in order to use Proposition 5.14 to cut geodesics.

De�nition 5.15 (Exceptional zone, narrow exceptional zones). Let W → X be an immersed

wall with tunnel-length L. An exceptional zone is a downward discrepancy zone in X̃•L whose
boundary path intersects the interior of a slope approximation. The downward discrepancy
zone shown in Figure 17 is exceptional.

We say thatW has narrow exceptional zones if for each exceptional zone Z ⊂ X̃•L associated

to a nucleus C̃ of WL, the image in Z ⊂ X̃•L of C̃ × [1
2 ,

3L
4 ] does not contain a vertex. See

Figure 19, in which the exceptional zone at left is not narrow and the exceptional zone at
right is narrow. (There is also a non-exceptional downward discrepancy zone at right.)
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Lemma 5.16. Suppose that φ : V → V is a train track map with expanding edges. For each
edge ei of V , let y′i be a periodic regular point of ei, and let ε′ ∈ (0,mini dV (y′i, V

0)). There
exists L′ = L′(ε′, {y′i}) so that the following holds. Let {d′i} be a set of primary busts with each
d′i ⊂ N ′ε(y′i), and let L ≥ L′ be chosen so that L and {d′i} satisfy the conclusion of Lemma 3.5.

Then for any choice of nontrivial subintervals {di ⊂ d′i}, there is an immersed wall W → X
with tunnel length L and primary busts {di}, with the following property: each exceptional

discrepancy zone Z lies in the interior of a single long 2-cell of X̃•L, and hence Z intersects a
single slope-approximation.

Proof. Let α be a component of ei −N ′ε(y′i). Then there exists L′i such that the path φL(α)
traverses an entire edge provided L ≥ L′i. Hence, for any subinterval d of N ′ε(y′i), the same
is true for any component α′ of ei − d, since α ⊂ α′. Let L′ = maxi L

′
i. Given L ≥ L′ and

the primary busts {d′i ⊂ N ′ε(y′i)} satisfying the conclusions of Lemma 3.5, observe that the
conclusions of Lemma 3.5 continue to hold (with the same L) when each d′i is replaced by a
nontrivial subinterval di. Thus, for each L, {di} as above, we have an immersed wall W → X
with tunnel-length L and primary busts {di} so that, for all i and all components α of ei−di,
the path φL(α) traverses an entire edge.

Let A(S) be a slope-approximation, associated to an exceptional zone and lying in a long

2-cell R based at the vertical edge e ⊂ Ṽn. Then the nucleus C̃ incident to S is the copy in

Ẽn of a subinterval of the interior of e. Let α be a component of e − Int(d), where d is the
primary bust associated to S. Then for all su�ciently large L, the path φL(α) traverses an
entire edge, and therefore contains a primary bust, and the claim follows. �

Lemma 5.17. Suppose that φ : V → V is a train track map with exponentially expanding
edges. Let y1, . . . , ys ∈ V be regular points such that each edge of V contains exactly one yi,
and let ε > 0. Then for all su�ciently large L, there exists an immersed wall W → X with
tunnel-length L, such that each primary bust is in the ε-neighborhood of some yi, and W has
narrow exceptional zones.

Proof. Let $ > 1 be the expansion constant of φ (see De�nition 5.9). For each i, let y′i ∈ V be
a periodic regular point in the edge ei containing yi with dei(y

′
i, yi) <

ε
2 ; such a y′i exists since

periodic points are dense in each edge by Lemma 6.19. Let χi = min{dV (φk(y′i), V
0) : k ≥ 0},

which is positive since y′i is periodic and regular. Let χ = mini χi. Let

L0 = max

{
4 log$

(
2 maxi |ei|

χ

)
, log$

ε

χ

}
.

We now apply Lemma 5.16 to the collection of points {y′i}, choosing primary busts di, each
in the ε′ = ε

2$L0
�neighborhood of y′i, and tunnel-length L ≥ max{L0 + 4, L′}, where L′ is the

constant from Lemma 5.16.
Let Z be the image in X̃ of an exceptional zone between W and A(W ). By Lemma 5.16,

there is a unique slope S such that the forward part of A(S) forms part of the boundary path

of Z. See Figure 19. If v ∈ Z is a vertex of some Ṽn at horizontal distance h > bL4 c from the

nucleus-approximation A(C̃) on the right of Z, then since L ≥ L0, the right boundary path
of Z contains a complete edge e′, and thus a primary bust, which is impossible.

To see this, let ζ be the vertical geodesic arc from v to the forward part of A(S). Then the
right boundary path of Z contains φh(ζ), which satis�es

|φh(ζ)| > |φb
L
4
c(ζ)| ≥ $b

L
4
c|ζ| > $

L0
4 |ζ| ≥ 2 maxi |ei|

χ
|ζ|.
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A(S)
ei

v e′ A(C̃)

Figure 19. The exceptional zone corresponding to A(S) cannot contain the
vertex v when L is su�ciently large. Such a vertex v could only be contained
in a non-exceptional downward discrepancy zone, as shown at right.

Now |ζ| ≥ χ − ε
2$L0

, so our choice of L0 ensures |ζ| ≥ χ
2 , whence |φ

h(ζ)| > maxi |ei|. Hence
φh(ζ) traverses a complete edge as claimed. �

5.5. Cutting deviating geodesics.

Proposition 5.18. Let X̃ satisfy the hypotheses of Proposition 5.10, let M ≥ 0, and let

γ : R→ X̃1 be an M -deviating geodesic. Then there exists a wall W such that N(A(W ))1 is

quasiconvex in X̃1 and W cuts γ.

Proof. We will �nd a wall W → X̃ satisfying the hypotheses of Proposition 5.14.

An oddly-intersecting forward path: Since X̃ is level-separated, there exists z ∈ X̃
such that for all su�ciently large n, there is a regular level Tn = T on(φ̃n(z)) with a leaf at z,
such that Tn has odd intersection with γ and the distance in Tn from γ ∩ Tn to the root or to
any leaf of Tn exceeds 12(M + δ).

The fact that X̃ has bounded level intersection and γ is M -deviating implies that there
exists N and a �nite, odd-cardinality set C ′o ⊂ γ such that Tn∩γ = C ′o for all n ≥ N . Each Tn
is the union of �nitely many maximal forward paths emanating from leaves. For each n ≥ N ,
we wish to choose a leaf y of Tn such that the maximal forward path σn ⊂ Tn emanating from
y has the property that σn ∩ γ is a �xed odd-cardinality subset Co ⊆ C ′o. However, to achieve
this, we shall replace γ with an embedded deviating uniform quasigeodesic that coincides with
the original γ outside a diameter-2M subset, as follows.

We now describe the modi�cation of γ. Let e1, . . . , e|C′o| be the edges of γ intersecting Tn
for n ≥ N . Index these so that ei precedes ej in the geodesic γ if and only if i < j. The
set {e1, . . . , e|C′o|} is partially ordered as follows: ei � ej if there exists a forward path in
Tn originating at ei and passing through ej . The edges ei, ej are con�uent if there exists k
such that ei, ej � ek. We claim that con�uence is an equivalence relation; it su�ces to check
transitivity. If ei, ej are con�uent (witnessed by forward paths from ei, ej to some ek), and
ej , ei′ are con�uent (witnessed by forward paths from ei′ , ej to some ek′), then since φ is a
train track map, the forward paths from ej to ek and ek′ have the same initial point, whence
ei � ek′ or ei′ � ek, i.e. ei, ei′ are con�uent. Observe that there is exactly one con�uence class
for each �-maximal edge. Since |C ′o| is odd, there exists an odd-cardinality con�uence class,
and we let ek be its �-maximal element. Let ei, ej be the elements of the con�uence class of ek
such that the indices i, j are respectively minimal and maximal. Let αi, αj be forward paths
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in Tn joining ei, ej to ek. Let Ai be an embedded combinatorial path in the forward ladder
N(αi) that joins the terminal vertex vi of ei to a vertex vk of ek and does not intersect αi.
The edge ej contains a vertex vj on the same side of Tn as the terminal vertex of ei. Let Aj
be an embedded combinatorial path in N(αj) joining vj to vk and not intersecting αj . Since
γ is deviating, d(ei, ek) and d(ej , ek) are uniformly bounded. Hence, since N(αi)

1, N(αj)
1 are

uniformly quasiconvex, the paths Ai, Aj have uniformly bounded length. Let A be the path

obtained from AiA
−1
j by removing backtracks. We replace the subpath of γ between vi and

vj by A, and thus replace γ by a bi-in�nite embedded quasigeodesic γ′. By construction, for
all n ≥ N , there is a forward path σn of Tn, that intersects the modi�ed path exactly once,
namely in a point of ei. The argument proceeds using the new γ′, which is an embedded
quasigeodesic that isM ′-deviating, withM ′ a new, larger constant. However, since the quasi-
isometry constants of γ′ play no essential role in the argument, we will continue, for simplicity,
with γ and M as before.

By the above construction, there exists ε > 0 such that for all x ∈ Nε(y), any forward
path σx of length n ≥ N emanating from x intersects γ in a set Cxo of interior points of edges
that has the same cardinality as Co and has the property that the smallest subcomplex C
containing Co is exactly the smallest subcomplex containing Cxo . The wall we will choose will
contain a slope S such that A(S) contains such a σx as its forward part.

Quasi-isometric embedding of γ ∨C N(A(W ))1 → X̃1: Let W → X be an immersed

wall such that every edge of V contains a primary bust, and suppose W ⊂ X̃ is the image of

a lift W̃ → X̃ such that W contains a slope S with the forward part of A(S) equal to a path
σx, emanating from some x ∈ Nε(y), as above. Suppose moreover that W was drawn from a
set of immersed walls with uniformly bounded ladder-overlap.

Since every edge contains a primary bust, Proposition 4.1 provides constants L0, κ1, κ2,

depending only on X̃, such that if the tunnel length of W is at least L0, then N(A(W ))1

is (κ1, κ2) quasi-isometrically embedded. Recall also that W is a genuine wall if the tunnel-
length exceeds a uniform constant L1, by Proposition 4.6.

There exist constants L2 ≥ L1, κ
′
1, κ
′
2, depending on X̃ and M such that if W has tunnel-

length at least L2, then γ ∨C N(A(W ))1 → X̃1 is a (κ′1, κ
′
2)-quasi-isometric embedding.

Indeed, this follows from an application of Lemma 4.3, since γ is M -deviating and hence has
uniformly bounded (3δ + 2λ)-overlap with A(S).
Veri�cation that γ ∨Co A(W ) embeds: By construction, γ does not intersect any point

of A(S) outside of Co. Hence suppose that τβ1α1 · · ·βkαkβk+1 is a path in N(A(W ))1 ∪ γ
that begins and ends in Co, such that: τ is a subpath of γ, and each βi lies in the carrier of a
slope-approximation, and each αi lies in a nucleus approximation, and |βi| ≥ L except when
i = k + 1. If L is su�ciently large and |β2| ≥ L, then the existence of such a closed path
contradicts the above conclusion that N(A(W ))1 ∨C γ uniformly quasi-isometrically embeds.

The remaining possibility is that a path of the form τβ1α1β2 or τβ1α1 is closed in X̃. In
either case, when L is su�ciently large, a thin quadrilateral argument shows that γ is forced
to (2δ + λ)-fellow-travel with β1 or β2 for distance exceeding M . Indeed, the fellow-traveling
between α1 and βi is controlled by Lemma 2.6, since α1 is vertical, while the fellow-traveling
between β1, β2 (if the latter exists) is controlled by construction. Thinness of the quadrilateral

thus forces fellow-traveling between β1 and γ. Hence γ ∨Co A(W ) embeds in X̃.
Preventing short augmentations from crossing A(WL) at an apex: We now com-

pute the tunnel-length L3 ≥ L2 necessary to ensure that each augmentation QQ−1 in γ�
either fails to intersect A(W ) or has length at least L

4 , where L ≥ L3 is the tunnel-length of
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W . Note that if QQ−1 is a truncated augmentation in the sense of Construction 5.13, then

the apex lies in some Ṽn with n 6∈ LZ, and hence QQ−1∩A(W ) = ∅, so we only need consider
non-truncated augmentations.

Let W have tunnel-length L ≥ L2 and let QQ−1 be an augmentation whose apex p lies in
A(W ), and hence in a nucleus-approximation. Suppose that |Q| ≤ L

4 . Let γ
′ be the subpath

of γ between C and the initial point of Q, let β be a geodesic of N(A(W ))1 joining p to
the terminal point of A(S), and let τ be a geodesic of N(A(S))1 joining the initial point
of γ′ to the terminal point of β. Since γ is deviating, the path γ′Q is a quasigeodesic with
constants depending only on M and λ. Meanwhile, since W has uniform ladder-overlap and
L ≥ L2 ≥ L0, the path βτ

−1 is a (κ1, κ2)-quasigeodesic. Hence γ′Q fellow-travels with τβ−1

at distance depending only onM and X̃. This is impossible for su�ciently large L, since γ′, τ
have (2δ+ 2λ)-overlap of length at most M . (Note that fellow-traveling between subpaths of
β and γ′ would force impossible fellow-traveling between β or γ′ and τ .)

Choosing W : Since X̃ has many e�ective walls, there exists an immersed wall W → X
with tunnel length L ≥ L3, involving a primary bust in every edge of V , such that the image

W of a lift W̃ → X̃ satis�es the following:

(1) W is a wall (since L3 ≥ L2).
(2) N(A(W ))1 is (κ1, κ2)-quasiconvex.
(3) γ ∩N(A(W ))1 = C, which is contained in the carrier of a slope-approximation A(S).

(4) N(A(W ))1 ∨C γ → X̃1 is a quasi-isometric embedding.
(5) Any augmentation QQ−1 of γ that intersects A(W ) has the property that |Q| > L

4
(since L ≥ L3).

W is chosen from the spreading set W given in De�nition 5.3.(1).

An arbitrary lifted augmentation: Let γ̂� → X̃•L be a lifted augmentation of γ. Since

the map X̃•L → X̃ is a quasi-isometry and restricts to the identity on A(WL) and sends γ̂�
to γ� , the intersection Ĉ = γ̂� ∩ N(A(WL))1 is bounded and γ̂� ∨Ĉ N(A(WL))1 → X̃•L is
a quasi-isometric embedding. (We could have chosen a speci�c lifted augmentation to make

Ĉ 6= ∅, but it follows from the discussion below that this holds for any lifted augmentation.)
Thus any γ̂� , together with A(WL), satis�es Hypothesis (1) of Proposition 5.14.

We now verify that γ̂� satis�es the remaining two hypotheses of Proposition 5.14. To

this end, let η̂ be an embedded quasigeodesic in X̃•L obtained from φ̃L ◦ γ̂� by removing

backtracks, and let η be the image in X̃ of η̂. Note that η̂ is independent of the choice of
lifted augmentation of γ.

Intersection of η̂ with A(W ): We �rst work in X̃. Recall that γ ∩A(W ) is the odd-

cardinality set Co of points in A(S) for some slope S of W . Consider the nucleus M̃ ⊂ W
that intersects S and A(S). Then, since we can assume that L is su�ciently large to ensure

that each primary bust is separated from each vertex by a secondary bust, M̃ corresponds

to a subinterval containing no vertex, and hence A(M̃) maps to a subspace of the star of a
vertex in V . By Lemma 5.17 and our above choice of L, the exceptional zone determined

by M̃ and A(M̃) contains no vertex of a vertical edge containing a point of Co. It follows

that the tunnel T ′ attached to the unique secondary bust of M̃ intersects γ in a set of points
corresponding bijectively to Co. Let S

′ be the slope of T ′. Then, since the primary busts can
be chosen arbitrarily small, we can assume that A(S′)∩η is an odd-cardinality set E′o. Hence

A(S′) ∩ η̂ ⊂ X̃•L is an odd-cardinality set Eo mapping bijectively to E′o.
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Since the endpoints of primary busts are regular, the path η̂ contains a nontrivial interval

I ending at a point of Eo and lying in the image of S′ under the forward �ow; hence I ⊂
−→
WL

and, since I does not lie in a discrepancy zone, I ⊂
−→
A . There is likewise a nontrivial interval I ′

in η̂ beginning on Eo and lying in an exceptional zone determined by the nucleus intersecting
A(S′). Moreover, I ′ and I can be chosen to be separated in η̂ by Eo. See Figure 20.

SW

M̃

A(S)
A(S′)

γ η

pυ
p′

a

Figure 20. The relationship between γ, η,W,A(W ) in X̃. The intervals I, I ′

in X̃•L map to the bold intervals. The path θ contains the terminal part of
A(S) and the initial part of A(S′) (except for the last case considered in the
proof).

We claim that A(W ) ∩ η̂ = Eo. Otherwise, applying the map X̃•L → X̃ would show that

A(W )∩ η contains some point p 6∈ E′o, since X̃•L → X̃ restricts to a bijection on A(W ). Then
there is a forward path υ of length L emanating from a point p′ ∈ γ and terminating at p. Let
θ be a geodesic of A(W ) joining p to a closest point a of Co, and let γ1 be the subpath of γ
joining a to p′. Then γ1υ is a quasigeodesic with quasi-isometry constants depending only on
the deviation constant of γ, while θ is a (κ1, κ2)-quasigeodesic. Hence γ1υ fellowtravels with
θ at distance depending only on δ,M, κ1, κ2 and not on L. It follows that there is a uniform
upper bound on |γ1| that is independent of L. Hence, if L is su�ciently large, then since Co
lies at distance at least L

4 from all nuclei, minn |q(p) − nL| ≥ L
4 , so that p lies at horizontal

distance at least L
4 from any nucleus approximation. Suppose that A(S′) lies in θ. Then

θ contains a point at distance at least L
4 from γ1υ, and hence γ1υ and θ cannot uniformly

fellow-travel when L is su�ciently large. Similarly, if θ enters some other slope-approximation

attached to A(M̃), we �nd that θ and γ1υ cannot fellow-travel. The remaining possibility is

that there is a path in A(M̃) joining the endpoint of A(S) to a point of υ. This is impossible
since, as established above, the level part of T ′ has odd-cardinality intersection with γ and
p 6∈ E′o.
Conclusion: It follows from the above discussion that η̂ contains two quasigeodesic rays,

one in each of the halfspaces of X̃•L associated to A(W ). Since η̂ fellow-travels with γ̂� , we

see that γ̂� satis�es all hypotheses of Proposition 5.14, whence W cuts γ. �

5.6. Cutting ladderlike geodesics.

Proposition 5.19. Suppose that X̃ has many e�ective walls and for each bounded forward
path α there exists a periodic regular forward path α′ such that N(α) = N(α′).

Then for each geodesic γ : R → X̃1 that is not M -deviating for any M , there exists an
immersed wall W → X such that W is a wall, N(A(W ))1 is quasiconvex, and W cuts γ.
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Proof. Suppose that γ contains a path γ′ such that for some regular x ∈ X̃1 and some
M to be determined, the path γ′ fellowtravels at distance (2δ + 2λ) with the sequence

x, φ̃(x), . . . , φ̃M (x), where x is a periodic regular point. Such γ′ exists for arbitrarily large M
by combining the fact that γ is M -ladderlike for arbitrarily large M with the �rst hypothesis.
We shall show that if M is su�ciently large, then there exists a wall W that has the desired
properties and cuts γ and separates x and φ̃M (x).
Choosing W using many e�ective walls: Without loss of generality, M is an even

integer, and we let a = φ̃M/2(x). Note that a is periodic and regular. Let {ei} be the
collection of edges of V , and let W → X be an immersed wall busting each ei, with tunnel-
length L to be determined. Let e1 be the edge whose interior contains a. By Remark 5.4

and the fact that X̃ has many e�ective walls, there exist κ1, κ2, L1 depending only on X̃ such
that we can choose W with tunnel length L ≥ L1 so that W is a wall and N(A(W ))1 is
(κ1, κ2)-quasi-isometrically embedded. Moreover, we choose W from the the collection Wa of
De�nition 5.3.(2), which guarantees that W can be chosen with the following properties:

(1) There exists k ≥ 0 such that for each primary bust d with an endpoint in W in the

same knockout as a, we have d(φ̃n(a), φ̃n(d)) ≥ 3δ + 2λ for all n ≥ k.
(2) W has tunnel length L > max{12(δ + k), L1}, independent of M .

(3) The image of a in V lies in the interior of a nucleus ofW and so A(W ) contains φ̃L(a).

We assume that M > JL, where J ≥ 4 will be chosen below. Let σ be the uniform quasi-

geodesic in X̃1 obtained from γ by removing γ′ and replacing it by the sequence x, φ̃(x), . . . , φ̃M (x)
(see Figure 21).
Verifying that σ ∨φL(a) N(A(W ))1 quasi-isometrically embeds: Consider paths of

the form α0β0 · · ·βs−1αsτ , where βi is a geodesic of the carrier of a slope-approximation, αi
is a vertical geodesic of N(A(W ))1, and αs terminates at φ̃L(a), and τ is a subpath of σ

beginning at the endpoint φ̃L(a) = φ̃L+M
2 (x) of αs. (We remind the reader that, because

of how σ was de�ned, the initial part of τ is a subsequence of x, φ̃(x), . . . φ̃
M
2

+L(x) or of

φ̃
M
2

+L(x), . . . φ̃M (x).) The (3δ + 2λ)-overlap between αs and τ and between αi and βi and
between αi and βi−1 is controlled by Lemma 2.6, and Condition (1) on W ensures that the
(3δ + 2λ)�overlap between τ and βs−1 has length at most k. The choice of L now allows us
to invoke Lemma 4.3 to conclude that σ∨φ̃L(a)N(A(W ))1 is quasi-isometrically embedded in

X̃1, with constants (κ′1, κ
′
2) depending only on κ1, κ2, λ.

Verifying that σ ∨φ̃L(a) A(W ) embeds: We will show that there is no path τ ⊂ σ

beginning at φ̃L(a) and joining the endpoints of a path α0β0 · · ·αm or α0β0 · · ·αmβm in
N(A(W ))1 with each αi vertical, and each βi a path in the carrier of a slope approximation.
Each βi has length L except for the βm in the path of the second form. Since σ ∨φ̃L(a)

N(A(W ))1 is quasi-isometrically embedded, it su�ces to examine the case where m ≤ 1.
The quadrilateral α0β0α1τ

−1 is approximated by a quasigeodesic quadrilateral ᾱ0β0ᾱ1τ
−1,

where each ᾱi is a geodesic of length exceeding 3δ+ 2λ. This quadrilateral is (2δ+ 2λ)�thin,
and β0, τ fellow travel at distance 2δ + 2λ for length at most k. Moreover, since α0, α1 are
vertical and |β0| = L, there is no (2δ+2λ)�fellow traveling between α0 and α1. Hence, without
loss of generality, ᾱ0 must fellow-travel with β0 at distance 2δ + λ for distance at least 11L

24 ,

whence α0 must (2δ + 2λ + µ)-fellow-travel with β0 for distance at least 11L
24µ1

− µ2, which

contradicts Lemma 2.6 when L is su�ciently large. (Recall that the quasiconvexity constant
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x̂0 x̂M
2 +L

x̂M

WL A(WL)

Figure 21. Notation in the proof of Proposition 5.19.

µ and the quasi-isometry constants (µ1, µ2) of the nucleus approximations are independent of
L.) Hence σ ∨φ̃L(a) A(W ) embeds.

Applying Proposition 5.14: Let σ̂� be a lifted augmentation of σ induced by a lift of

the forward path joining x to φM (x). Let x̂i denote the lift of φ̃
i(x), so that x̂M/2 is a lift of

a and x̂M/2+L is a lift of φ̃L(a). The wall W is the image of a wall WL such that a nucleus

of WL separates x̂M/2 from x̂M/2+1 and thus x̂M/2+L lies in a nucleus approximation of

A(WL). (Recall that A(WL) maps isomorphically to A(W ).) Thus the points x̂M/2+L±1 lie

in distinct halfspaces associated to A(WL). Indeed, x̂M/2+L−1 lies in a downward discrepancy

zone and hence in
←−
A , while x̂M/2+L+1 ∈

−→
A . See Figure 21. This veri�es Hypothesis (2) of

Proposition 5.14.
As in the proof of Proposition 5.18, the fact that σ∨φ̃L(a)N(A(W ))1 is quasi-isometrically

embedded, together with the fact that X̃•L → X̃ is a quasi-isometry, shows that σ̂� ∨x̂M/2+L

N(A(WL))1 → X̃•L is a quasi-isometric embedding. This veri�es Hypothesis (1) of Proposi-
tion 5.14.

Let y ∈ σ̂� ∩A(WL). Then either y maps to a point of σ∩A(W ), in which case y = φ̃L(a)

since σ ∨φ̃L(a) A(W ) embeds in X̃, or y is an apex of σ̂� . The latter is impossible provided J

is su�ciently large compared to κ′1, κ
′
2. Indeed, suppose QQ

−1 is an augmentation beginning

on σ and having an apex p ∈ A(W ). Let the geodesic β → N(A(W ))1 join p to φ̃L(a), let

τ → N(σ) join φ̃L(a) to x, and let P be the subpath of σ joining the initial point of Q to x.
Then the concatenation Pτ−1β−1 is a (κ′1, κ

′
2)-quasigeodesic. Indeed, Pτ−1β−1 can be chosen

to be a geodesic of the tree σ ∨φ̃L(a) A(W ), which is (κ′1, κ
′
2)�quasi-isometrically embedded.

Moreover, Pτ−1β−1 contains a subpath of length at least (J/2 − 1)L, namely τ . Hence if
J > 2(κ′1(L+κ′2)L−1 + 1), then the o�ending apex p cannot exist since |Q| ≤ L. This veri�es
Hypothesis (3) of Proposition 5.14, and the proof is complete. �

6. Leaf-separation and many effective walls in the irreducible case

In this section, we describe conditions on φ ensuring that X̃1 satis�es the hypotheses of
Proposition 5.10.

6.1. Leaves.
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De�nition 6.1 (Leaf). Let x, y ∈ X̃. Then x, y are equivalent if there exist forward paths
σx, σy such that x ∈ σx, y ∈ σy and σx ∩ σy 6= ∅. An equivalence class is a leaf. We denote
the leaf containing x by Lx. The leaf Lx is singular if it contains a 0-cell, and otherwise Lx
is regular.

Observe that Lx is φ̃-invariant. Moreover, observe that Lx has a natural directed graph

structure: vertices are points of Lx∩X̃1, and edges are midsegments. From Proposition 6.2.(1)
and Proposition 2.5, it follows that this subdivision makes Lx a directed tree in which each
vertex has exactly one outgoing edge and �nitely many incoming edges.

Proposition 6.2 (Properties of leaves). Leaves have the following properties:

(1) If Lx is a regular leaf and φ is a train track map, then Lx has a neighborhood homeo-
morphic to Lx × [−1, 1] with Lx identi�ed with Lx × {0}.

(2) Each level is contained in a unique leaf, and Lx is an increasing union of levels.

Proof. Proof of (1): This uses Lemma 6.3 below. For each vertex vẽ = Lx ∩ ẽ of Lx, let Uẽ
be an open interval in ẽ about vẽ. For each edge fc̃ = Lx ∩Rc̃ of Lx, with vertices at vc̃ and
vd̃, let U(fc̃) be the open trapezoid in Rc̃ joining Uc̃ to Ud̃. The desired open neighborhood
of Lx is

⋃
fc̃∈Edges(Lx) U(fc̃), as shown in Figure 22.

Figure 22. A product neighborhood of a regular leaf.

Proof of (2): This follows immediately from the de�nitions of levels and leaves. �

We denote by Y0 the set of leaves of X̃ and de�ne a surjection ρ0 : X̃ → Y0 by ρ0(x) = Lx.

Lemma 6.3. Let ẽ be a vertical edge of X̃ and let Lx be a leaf. If φ is a train track map,
then |ẽ ∩ Lx| ≤ 1.

Proof. When φ is a train track map, distinct points in each vertical edge e lie on distinct

leaves, i.e. the map ρ0 : e→ Y0 is injective. Note that in this case, each 2-cell of X̃ is foliated
by a family of distinct �bers of ρ, each of which is a midsegment. �

6.2. Forward space in the train track case. Suppose that φ is a train track map. We
now describe an R-tree Y whose points are equivalence classes of leaves, and a G-action on Y,
and use this to establish that X̃ is level-separated. This construction mimics the stable tree
discussed in [BFH97], although the underlying set is de�ned di�erently. The referee explains
that it is a special case of a construction in [GJLL98]. Let E = R[Edges(V )] and denote
by ~ei the basis element of E corresponding to ei. Let M : E → E be the linear map whose
matrix with respect to the basis {~ei} has ij-entry the number of times the path φ(ei) traverses
ej , ignoring orientation. Note that this transition matrix, which we also denote by M, is a
nonnegative matrix. We further assume that M is irreducible.

Let $ be the Perron-Frobenius eigenvalue of M. As shown in [BH92], $ > 1 since φ is
irreducible and has in�nite order. Let v be a $-eigenvector, all of whose entries are positive.
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For each i, let ci be the magnitude of the Perron projection of ~ei onto R[v]. As is made precise
in De�nition 5.9, the map φ expands edges of V by a factor of $.

We now choose an equivariant weighting of vertical edges in X̃ by letting |ei| = ci for
each edge ei of V , letting each horizontal edge of X have unit weight, and pulling back these

weights to X̃. This determines the metric d on X̃1. For each ei and each n ∈ Z, we de�ne

the scaled length of a lift ẽi of ei to Ṽn to be $−n|ẽi| = $−nci. Let dṼn : Ṽn× Ṽn → [0,∞] be
the resulting path-metric.

Given leaves Lx,Ly, with x, y ∈ Ṽk for some k, let

d∞(Lx,Ly) = lim
n→∞

d
Ṽn

(φ̃n(x), φ̃n(y)).

This limit exists and is �nite because d
Ṽn

(φ̃n(x), φ̃n(y)) is non-increasing and bounded.

Moreover, d∞(Lx,Ly) is well-de�ned since for other choices x′ ∈ Lx ∩ Ṽk′ and y′ ∈ Ly ∩ Ṽk′ ,
for all but �nitely many n, we have φn

′
(x′) = φn(x) and φn

′
(y′) = φn(y) for some n′.

Lemma 6.4. Let Y be the quotient of Y0 obtained by identifying points ρ0(x), ρ0(y) for which
d∞(ρ0(x), ρ0(y)) = 0. Then the induced pseudometric d∞ : Y → [0,∞) is a metric. Let

ρ : X̃ → Y be the composition X̃
ρ0−→ Y0 → Y. Then the restriction of ρ to each vertical edge

is an isometric embedding.

Proof. Note that d∞ is symmetric and satis�es the triangle inequality. Hence d∞ : Y → [0,∞)

is a metric. Let ei be a vertical edge with endpoints x, y. Then the distance in Ṽn between
the endpoints of φ̃n(ei) is $n|ei|, whence d∞(ρ(x), ρ(y)) = ci. Our assumption that φ̃ has
a constant-speed parametrization on each edge implies that the same equality holds for any
subinterval of ei. �

Proposition 6.5. Suppose that every edge of V is expanding with respect to φ. Then:

(1) The map ρ : X̃ → Y is continuous.
(2) (Y, d∞) is a 0-hyperbolic geodesic metric space, i.e. Y is an R-tree.
(3) Y admits a G-action by homeomorphisms with respect to which ρ is G-equivariant.
(4) The restriction of the G-action on Y to F is an action by isometries.

(5) The stabilizer in F of ρ(x̃) is trivial whenever x̃ is a lift to X̃ of a periodic point in
V .

Proof. Continuity of ρ: The restriction of ρ to each vertical edge e is continuous since it is
an isometric embedding, and ρ is continuous on each closed 2-cell since ρ is constant on each
midsegment and each 2-cell is therefore foliated by �bers of ρ since φ is a train track map.

Since X̃ is locally �nite, the pasting lemma implies that ρ is continuous on X̃.

R-tree: Let x, y ∈ Ṽn and let P → Ṽ0 be a path joining x to y. Then since ρ is continuous,
ρ(P ) is a path joining ρ(x) to ρ(y), whence Y is path-connected. Since Y is a path-connected

subspace of an asymptotic cone of the simplicial tree (Ṽ , d0), the space Y is an R-tree [KL95,
Prop. 3.6]. (The asymptotic cone in question is built using any non-principal ultra�lter on N,
the observation point (ṽ, φ̃(ṽ), . . .), and the scaled metrics d

Ṽn
on Ṽ0.)

The G-action: For g ∈ G and x ∈ X̃, let gρ(x) = ρ(gx). This de�nes an action since G

takes leaves in X̃ to leaves. The action is by homeomorphisms since ρ is continuous and G

acts by homeomorphisms on X̃.
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The F -action is isometric: Let x, y ∈ X̃. Since F acts by isometries on each Ṽn, for
each f ∈ F , we have

d∞(fρ(x), fρ(y)) = lim
n

d
Ṽn

(φn(fx), φn(fy))

= lim
n

d
Ṽn

(Φn(f)φn(x),Φn(f)φn(y)) = lim
n

d
Ṽn

(φn(x), φn(y)) = d∞(ρ(x), ρ(y)).

The F -action is free on periodic points: Let x ∈ V be a periodic point and let x̃ be

a lift of x to X̃. For f ∈ F , by Corollary 6.12, either ρ(x̃) 6= fρ(x̃), and we are done, or
the forward rays σx̃ and fσx̃ emanating from x̃ and fx̃ respectively lie at �nite Hausdor�

distance. It follows that the immersed vertical path P̃ joining x̃ to fx̃ projects to an essential
closed path P → V , based at x, such that φk(P ) is a periodic Nielsen path for some k ≥ 0.
This contradicts the hyperbolicity of G. �

Remark 6.6. When φ is a π-isomorphism, and G is hyperbolic, the action of F on Y can be
shown to be free using Lemma 6.11 and the fact that there are no nontrivial periodic Nielsen
paths. We expect that this is true for a general hyperbolic monomorphism, but a free action
on the set of periodic points su�ces for our purposes.

6.3. Level-separation in the train track case. The purpose of this subsection is to prove
Lemma 6.15.

De�nition 6.7 (Transverse). Let T be an R-tree. The map θ : R→ T is transverse to y ∈ T
if for each p ∈ θ−1(y), there exists ε > 0 such that θ((p− ε, p)) and θ((p, p+ ε)) lie in distinct
components of T − {y}. Note that if θ is transverse to y, then θ−1(y) is a discrete set.

We denote by R+ a combinatorial sub-ray of the combinatorial line R.

Lemma 6.8. Let T be an R-tree. Let T0 ⊆ T have the property that T − {y} has two
components for each y ∈ T0 and each open arc of T contains a point of T0. Let θ : R → T
or θ : R+ → T be a continuous map. Suppose θ is transverse to every point in T0. Moreover,
suppose that each edge e of the domain of θ has connected intersection with the preimage of
each point in T . Then one of the following holds:

(1) There exists a nontrivial arc α ⊂ T such that |θ−1(y)| is odd for all y ∈ α ∩ T0.
(2) There exists y ∈ T with θ−1(y) having in�nitely many components.
(3) For each r ≥ 0, there exists yr ∈ T such that θ−1(yr) has diameter at least r.

Proof. For each p ∈ R, we denote by p̄ its image in T and by |θ−1(x)| the number of compo-
nents of the preimage of x ∈ T in R.

We now show that either (3) holds or im(θ) is locally compact since each point of θ(R)
has a neighborhood intersecting the images of only �nitely many edges. We �rst claim that
either (3) holds, or for each edge e of R, there are (uniformly) �nitely many edges f such
that θ(f) ∩ θ(e) 6= ∅. Indeed, if there are arbitrarily many such f , then for each r ≥ 0, we
can choose f such that dR(e, f) > r but θ(e) ∩ θ(f) 6= ∅, yielding (3). Second, choose a
point p ∈ T . Our �rst claim shows that either (3) holds or the set {ej}j∈J of edges with
p ∈ θ(ei) is �nite. Assume the latter. Then for each i ∈ J we can choose εi > 0 such that
the εi-neighborhood of p in θ(ei) is disjoint from the image of each edge not in {ej}j∈J . Let
ε = mini εi. Then the ε-neighborhood of p in im(θ) lies in ∪iθ(ei) and thus and thus intersects
the images of only �nitely many edges.

There exist sequences {ai} and {bi} inR = (−∞,∞) converging to∞ and −∞ respectively,
whose images are sequences {āi} and {b̄i} that converge to points ā∞ and b̄∞ in im(θ) ∪
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∂ im(θ). Indeed, since im(θ) is a locally compact R-tree, im(θ)∪∂ im(θ) is compact by [BH99,
Exmp. II.8.11.(5)].

Suppose ā∞ 6= b̄∞. Let α be a nontrivial arc in the geodesic between ā∞ and b̄∞, and note
that α∩T0 ⊂ im θ. Note that θ−1(c̄) has either odd or in�nite cardinality for each c̄ ∈ α∩T0,
since c̄ must separate ai from bi for all but �nitely many i. Hence either conclusion (1) or (2)
holds.

Suppose ā∞ and b̄∞ are equal to the same point p̄∞. We can assume that p̄∞ ∈ ∂θ(R) since,
as above, either (3) holds or each point of θ(R) has a neighborhood intersecting the images
of �nitely many edges. Let ō denote the image of the basepoint o of R. The intersections
of the geodesic segments ōāi ∩ ōp̄∞ converge to the segment ōp̄∞. The same holds for ōb̄i.
We use this to choose a new pair of sequences {a′i} and {b′i} that still converge to ±∞, and
with the additional property that ā′i = b̄′i. We do this by choosing the image points far out
in ōp̄∞. We have thus found arbitrarily distant points in R with the same images, verifying
conclusion (3).

The case of the ray R+ is similar. �

By Lemma 6.3 and Proposition 6.2, for each regular leaf there is a pair (
←−
L ,
−→
L ) of closed

halfspaces in X̃ such that
←−
L ∪
−→
L = X̃ and

←−
L ∩
−→
L = L. Points of ρ(X̃0) are singular points of

Y, and the other points are regular. If L is a regular leaf, then Y − ρ(L) has two components,

namely the interiors of the images of
←−
L and

−→
L . Since there are countably many singular

points in Y, each open arc in Y contains a regular point.

Lemma 6.9. For any geodesic γ : R → X̃1, the map θ = ρ ◦ γ : R → Y is transverse to
regular points.

Proof. Let y ∈ Y be a regular point, so that each x ∈ ρ−1(y) lies in the interior of a vertical
1-cell, which in turn embeds in Y by Lemma 6.4. The image of the vertical 1-cell is separated
by ρ(x) = y. �

The goal of the rest of this subsection is to prove Corollary 6.10, which depends on Corol-
lary 6.12. We �rst give a proof of the latter in the case where φ is π1-surjective incorporating
the technology of [BFH00], followed by a self-contained proof in the general case.

Corollary 6.10. Let γ : R → X̃1 be an M -deviating geodesic for some M ≥ 0. Then there
exists a regular leaf L such that |γ ∩ L| is �nite and odd.

Proof. Consider θ = ρ ◦ γ. By Lemma 6.9, ρ|γ is transverse to regular points. By Lemma 6.8,
one of the following holds:

• There exists a regular point y ∈ Y such that ρ−1(y) ∩ γ has �nite, odd cardinality.
• For all r ≥ 0, there exists yr ∈ Y such that diam(ρ−1(yr)∩ γ) > r. (This includes the
case in which some point in Y has in�nite preimage.)

In the �rst case, note that ρ−1(y) is the union of regular leaves, one of which must therefore
have odd intersection with γ. We will now show that the second case leads to a contradiction.

In the second case, for each r ≥ 0, we claim there exists m ∈ Z and forward rays σ1, σ2

originating at points of γ and traveling through Ṽm, such that ρ(σ1) = ρ(σ2) and d
Ṽm

(σ1 ∩
Ṽm, σ2 ∩ Ṽm) > r. Indeed, let x1, x2 ∈ γ be chosen so that ρ(x1) = ρ(x2) = yr, and the
coordinate projections satisfy q(x1) ≤ q(x2) = m, and d

X̃
(x1, x2) > r + M + δ. For some

k ≥ 0, we have φ̃k(x1) = x′1 ∈ Ṽm. We also have ρ(x′1) = yr. Since γ is M -deviating,
considering the δ-thin triangle x1x2x

′
1 shows that d

X̃
(x′1, x2) > r. Hence d

Ṽm
(x′1, x2) > r.
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We now apply Corollary 6.12. The rays σ1, σ2 cannot fellowtravel when r is su�ciently large,
since the conclusion of a thin quadrilateral argument would then contradict the hypothesis that
γ is M -deviating. Hence, by Corollary 6.12, we see that ρ(σ1) 6= ρ(σ2), a contradiction. �

The tightening of a path P in a graph is the immersed path that is path-homotopic to
P . A periodic Nielsen path in V is an essential path P such that the tightening of φk(P ) is
path-homotopic to P for some k > 0. The following is a rephrasing of a special case of [Lev09,
Lem. 6.5], which splits into [BFH00, Lem. 4.1.4, Lem. 4.2.6, Lem. 5.5.1].

Lemma 6.11 (Splitting lemma). Let φ : V → V be a π1-surjective train track map. Let
P → V be a path. Then there exists n0 such that the tightening of φn0(P ) is a concatenation
Q1 · · ·Qk, where each Qs is of one of the following types:

(1) a periodic Nielsen path;
(2) an edge of V ;
(3) a subinterval of an edge of V , if s ∈ {1, k};

Moreover, for all n ≥ n0, the tightening of φ
n(P ) is equal to a concatenation of the tightenings

of the paths φn−n0(Qs).

Corollary 6.12. Let σ1, σ2 be forward rays beginning on Ṽm. Then either N(σ1), N(σ2) lie
at �nite Hausdor� distance or ρ(σ1) 6= ρ(σ2).

Corollary 6.12 means that for each y ∈ Y, any two forward rays in ρ−1(y) fellowtravel, in
the sense that they lie at �nite Hausdor� distance.

Proof of Corollary 6.12 when φ is π1-surjective. Let P → Ṽm be a path from σ1 to σ2. Lemma 6.11
implies that for some n ≥ 0, the tightening of φ̃n(P ) splits as the concatenation of peri-

odic Nielsen paths and edges. If φ̃n(P ) is the concatenation of periodic Nielsen paths, then
σ1, σ2 fellowtravel. Otherwise the splitting contains an edge e and for all n′ ≥ n, we have

dn′(σ1 ∩ Ṽn′ , σ2 ∩ Ṽn′) ≥ |e| (Lemma 6.4), whence ρ(σ1) 6= ρ(σ2). �

Proof of Corollary 6.12 in the general case. If σ1, σ2 do not fellowtravel, then by Lemma 6.13

and Lemma 6.14, the geodesic of Ṽm joining the initial points of σ1, σ2 contains an open arc
α ⊂ e, for some edge e, such that each regular leaf intersecting α separates σ1, σ2. For each

n ≥ m, let an = σ1 ∩ Ṽn and bn = σ2 ∩ Ṽn. Then for each n, the geodesic of Ṽn joining an, bn
contains φn(α). Regarding e as a copy of [0, 1] with weight |e|, and α = (t1, t2) ⊂ [0, 1], we
see that d

Ṽn
(an, bn) ≥ |e|(t2 − t1). Hence d∞(ρ(σ1), ρ(σ2)) > 0. �

Lemma 6.13. Let σ1, σ2 be forward rays beginning on Ṽm. Then either N(σ1) and N(σ2) lie
at �nite Hausdor� distance or there exists a regular leaf separating σ1 from σ2.

Proof. We �rst claim that is σ1, σ2 are not separated by a regular leaf, then ρ(σ1) = ρ(σ2).
Indeed, if ρ(σ1) 6= ρ(σ2), then these points are separated by a point y ∈ Y whose preimage is
the union of regular leaves. Any path joining σ1, σ2 must intersect the union of these leaves
in an odd-cardinality set, so some regular leaf in the preimage of y separates σ1, σ2.

We now verify that N(σ1) and N(σ2) lie at �nite Hausdor� distance under the following
two assumptions: ρ(σ1) = ρ(σ2) and no regular leaf separates σ1 from σ2.

Let z = ρ(σi) ∈ Y. Let p ≥ m be such that there is a vertical geodesic Ip → Ṽp joining

σ1∩ Ṽp, σ2∩ Ṽp and with the property that ρ−1(z)∩Ip has minimal cardinality. For simplicity,
having chosen p, we will translate so that p = 0.
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Having chosen I0, we now inductively de�ne paths In → Ṽn joining σ1 to σ2 as follows. For
n ≥ 0, express In = e1e2 · · · ek as a concatenation of partial edges: e1, ek are closed subintervals

of edges and the other ei are entire edges. Let In+1 → Ṽn+1 be the path φ̃(e1) · · · φ̃(ek). Let Īn
be the image of In in X̃ and note that Īn is a �nite subtree of Ṽn. Observe that T = ρ(Ī0) ⊂ Y
is a �nite tree, since it is the union of �nitely many closed embedded arcs. Let ρn : In → Y
be the composition In → X̃

ρ→ Y. Since each Īn → Īn+1 is surjective, ρ(Īn) = T for all n ≥ 0.

The maps ei → φ̃(ei) induce a map In → In+1 so that the following diagram commutes.

In In+1

Īn Īn+1 T ⊂ Y

//

�� �� $$

ρn+1

//
φ̃

//
ρ

Since ρ(σ1) = ρ(σ2), each ρn : In → T is a closed path in T beginning and ending at z ∈ T .
If d

Ṽn
(σ1 ∩ Īn, σ2 ∩ Īn) is uniformly bounded as n→∞, then σ1, σ2 lie at uniformly bounded

vertical distance, and so N(σ1) and N(σ2) lie at �nite Hausdor� distance.
Since In is vertical, ρ−1

n (z) is �nite, and In = Q1Q2 · · ·Qr, where the interiors of the Qi
are the components of In − ρ−1

n (z). Let Q̄i denote the image of Qi in Ṽn. Note that r is
independent of n; indeed, this is ensured by the minimality achieved through our choice of p.
It follows that no regular leaf intersects Q̄i and Q̄j for i 6= j, for otherwise we could apply φ̃
�nitely many times and reduce r.

Let ai and bi be the endpoints of Qi, and let āi, b̄i be their images in Īn. We will
show that there exists M , independent of n, such that d

Ṽn
(āi, b̄i) ≤ M . We conclude that

d
Ṽn

(N(σ1), N(σ2)) ≤ rM for all su�ciently large n.
To verify the existence of M , we shall show that there exists a leaf Li that intersects the

initial and terminal (possibly partial) edges of Q̄i, intersecting these edges in points ci, di
respectively. This leaf Li must intersect Ī0 in points ĉi, d̂i with φ̃

n(ĉi) = ci and φ̃
n(d̂i) = di.

Hence there are forward paths ĉici and d̂idi of N(Li) whose intersections with X̃1 are λ-

quasigeodesics lying in forward rays of N(Li). The quasigeodesic quadrilateral ĉicidid̂i shows
that ĉici and d̂idi fellowtravel at distance M ′ = M ′(δ, λ, |I0|), and hence d

Ṽn
(āi, b̄i) ≤ M ,

where M = M ′ + 2.
It remains to �nd the leaf Li. Note that if āi, b̄i lie on a common leaf, we are done. We

can assume that no regular leaf separates āi from b̄i. Indeed, any such leaf could not separate
σ1, σ2, since we are assuming that σ1, σ2 are not separated (otherwise we would be done).
Thus any such leaf must end on Q̄j for some i 6= j, which was ruled out above. Hence each
leaf emanating from the image of the initial edge of Q̄i intersects the images of an even number
of edges of Q̄i. Let L be such a regular leaf, and let b′i ∈ L ∩ Q̄i be a point outside of the
image of the initial partial edge of Q̄i. We claim that by choosing L to intersect the Q̄i at a
point a′i su�ciently close to āi, we can ensure that b′i lies in the image of the terminal partial
edge of Q̄i.

Indeed, choose a sequence {a′ik}k of regular points in the initial edge of Qi, with a
′
ik → āi.

For each k, let Lik be the regular leaf containing a′ik. If Lik intersects the terminal edge of Qi,

we are done, so we let b′ik be a point of Lik ∩Qik that lies in a non-terminal, non-initial edge.
By possibly passing to a subsequence, compactness allows us to assume that {b′ik} converges
to some b′i ∈ Qi di�erent from b̄i. Since ρ is continuous and ρ(b′ik) = ρ(a′ik) → z, we have

ρ(b′i) = z, contradicting the fact that the interior of Qi contains no point in ρ−1(z). �
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Lemma 6.14. Let σ1, σ2 be forward rays beginning on Ṽm that do not fellowtravel. Suppose

there exists a regular leaf L separating σ1, σ2. Then the geodesic of Ṽm joining the initial points
of σ1, σ2 contains an open arc α ⊂ e, for some edge e, such that each regular leaf intersecting
α separates σ1, σ2.

Hence for all n ≥ m, the geodesic of Ṽn joining σ1 ∩ Ṽn and σ2 ∩ Ṽn contains φ̃n(α).

Proof. Let P → Ṽm be a vertical geodesic joining σ1, σ2. For any n ≥ m, given a path

U → Ṽn joining σ1, σ2, a syllable of U is a maximal subpath Q that is legal in the sense
of [BH92]; since φ is a train track map, this means that φ̃k(Q) is embedded for all k ≥ 0.

Consider the vertical geodesic Tk joining the endpoints of φ̃k(P ) for k ≥ 0. Each Tk can be
expressed as a concatenation of syllables, since φ is a train track map, and this decomposition
is unique. Choose k ≥ 0 such that the number of syllables in the decomposition of Tk is equal
to the number of syllables in Tk′ for all k

′ ≥ k. Let Tk = Q1 · · ·Qn be a decomposition into
syllables. Observe that nonconsecutive syllables of Tk cannot intersect a common leaf, for
otherwise applying some iterate of φ̃ would result in a path with fewer syllables.

Since L intersects each syllable in at most one point, the minimality of Tk guarantees that
|L∩Tk| < 3 and hence, since this cardinality is odd, |L∩Tk| = 1. Hence there exists a unique
Qi such that L ∩ Tk is contained in Int(Qi).

For each p ∈ N, let B±i (1
p) be the two half-open 1

p -neighborhoods in Qi bounded at L∩Qi.
If the lemma does not hold, then for each p there exists a regular leaf L±(1

p) intersecting

B±i (1
p) but failing to separate σ1 and σ2. Each L±(1

p) has even intersection with Tk and thus

also intersects Qi±1 in a single point. The sequence {L±(1
p)∩Qi±1}p has a subsequence that

converges to a point z± ∈ Qi±1 such that ρ(z±) = ρ(L). Observe that no regular leaf separates
z+ (say, the remainder of the argument works analogously for z−) from L ∩Qi, since such a
separating regular leaf would have to intersect some L+(1

p), which is impossible since leaves

are disjoint. Hence, by Lemma 6.13, the forward rays σz+ and σ, respectively emanating from
z+ and L ∩Qi, must fellowtravel.

Figure 23. The forward rays and leaves in the proof of Lemma 6.14. Only
one of σz+ and σz− need exist.

.

If σ fellowtravels with σ1 [resp. σ2] and σz+ fellowtravels with σ2 [resp. σ1], then since
σ, σz+ fellowtravel, we conclude that σ1, σ2 fellowtravel, contradicting our hypotheses. See
Figure 23. If σ, σ1 (for example) do not fellowtravel, then σ1, σz+ also do not fellowtravel.
Lemma 6.13 implies that a regular leaf L1 separates σz+ , σ1. The part of Tk subtended by
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σz+ , σ1 has strictly fewer syllables than Tk, so by induction, there is an open interval α′ ⊂ Tk
with the following properties:

(1) α′ is contained in the interior of some edge.
(2) α′ intersects a regular leaf L′1 that separates σz+ and σ1.
(3) α′ lies on the part of Tk between σz+ and σ1.
(4) All regular leaves intersecting α′ separate σz+ from σ1.

Let L2 be a regular leaf intersecting α′ between L′1 and σ1. Then L2 separates σ1 from σz+
by the induction hypothesis, and therefore L2 separates σ1 from σ2. The subinterval of α′

between L′1 and σ1 (and so containing all such L2) is the desired interval α. See Figure 23.
In the base case, Tk has a single syllable, and any open subinterval of an edge su�ces.

Finally, let n ≥ m and let Pn → Ṽn be the geodesic joining σ1, σ2. For any x ∈ φ̃n(α),

and any ε > 0, there exists a regular point y ∈ φ̃n(α) at distance less than ε from x, since
edges are expanding. The regular leaf Ly separates σ1, σ2, so that y ∈ Pn. Since this holds
for arbitrarily small ε and Pn is closed, x ∈ Pn. �

We have now arrived at the main goal of this subsection:

Lemma 6.15. Suppose that φ is a train track map, that every edge of V is expanding, and

that M is irreducible. Then X̃ is level-separated.

Proof. Let γ : R→ X̃1 be an M -deviating geodesic and let K ≥ 0. By Corollary 6.10, there
is a regular leaf L such that |L ∩ γ| is �nite and odd. Let C0 = L ∩ γ and choose y ∈ L
such that the coordinate projections satisfy q(c) − q(y) > M + K for all c ∈ C0. Then for

all su�ciently large n, there is a level Tno (φ̃n(y)) ⊂ L that contains y as one of its leaves and

satis�es Tno (φ̃n(y)) ∩ γ = C0. Hence X̃ is level-separated. �

6.4. Proof of Theorem B.

Theorem 6.16. Let φ : V → V be a train track map of a �nite graph V . Suppose that φ is π1-
injective and that each edge of V is expanding. Moreover, suppose that the transition matrix
M of φ is irreducible and that the mapping torus X of φ has word-hyperbolic fundamental
group G. Then G acts freely and cocompactly on a CAT(0) cube complex.

Proof. Let Y be the forward space arising from the map φ̃ : X̃ → X̃. Since φ is a train track

map, X̃ has bounded level intersection by Remark 5.8 and is level-separated by Lemma 6.15.
By Lemma 6.19, each �nite forward path uniformly fellow-travels with a periodic forward

path. Hence by Proposition 5.10, it su�ces to show that X̃ has many e�ective walls by
verifying Conditions (1) and (2) of De�nition 5.3.

Condition (1): Let y ∈ V be regular and let ε > 0. Let S be a �nite subtree of Ṽ0 such
that each contractible subspace of V has one or more lifts to S.

Let x0 ∈ V be a periodic point in the interior of the edge e0 containing y, chosen so that
de0(x0, y) < ε. This choice is possible since periodic points are dense in each edge of V , by
Lemma 6.19 below.

By Lemma 6.17 below, we have a set {x0, . . . , xr} of periodic points in V such that:

(1) Each edge ei of V contains exactly one point xi in its interior.
(2) The point x0 lies in the interior of the edge e0 containing y and de0(x0, y) < ε.
(3) Let x̃ip 6= x̃jq be lifts of xi, xj in the closure of a lift of a component of V − ∪i{xi}.

Then ρ(x̃ip) 6= ρ(x̃jq). This holds by construction when i 6= j, and holds by Proposi-
tion 6.5.(5) when i = j and p 6= q.
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For each x̃ip, let Λip be the bi-in�nite periodic forward path containing x̃ip. Let N(Λip) be

the 1-skeleton of the smallest subcomplex of X̃ containing Λip, so thatN(Λip) is λ-quasiconvex

in X̃1 by Proposition 2.3.
We now show that for each R ≥ 0 there exists BR such that

diam(NR(N(Λip)) ∩NR(N(Λjq))) ≤ BR
whenever Λip 6= Λjq. Since Λip,Λjq are periodic, they either fellow-travel or have bounded
coarse intersection; the following argument precludes the former possibility, whence the claimed
BR exists since there are �nitely many pairs Λip,Λjq. Let d(ip,jq) = d∞(ρ(x̃ip), ρ(x̃jq)). By
de�nition of d∞, when Λip 6= Λjq, there exists no(ip,jq) > 0 such that for all n ≥ no(ip,jq) we

have

d
Ṽn

(φ̃n(x̃ip), φ̃
n(x̃jq)) ≥

$nd(ip,jq)

2
.

Let n(ip,jq) ≥ no(ip,jq) have the property that $n(ip,jq)d(ip,jq) ≥ 2R. Let m = max{n(ip,jq)}.
Then for all Λip 6= Λjq, and all n ≥ m we have

d
Ṽn

(φ̃n(x̃ip), φ̃
n(x̃jq)) ≥ R.

We now construct the uniformly bust-quasiconvex spreading set Wy. Choose J such that
φJ(xs) = xs for all 0 ≤ s ≤ r. For each L ≥ 1 divisible by J , let ε′ = ε

$L
. By Lemma 3.5,

there exist primary busts di ⊂ ei, each disjoint from its φL-preimage, with di ⊂ Nε′(xi). Let
W → X be the immersed wall with tunnel-length L and primary busts di. We choose Wy to
be the set of all walls constructed in this way.

It remains to check ladder-overlap. First, Wy is uniformly bust-quasiconvex since each

component of V − ∪iInt(ei) is a �nite tree. Let Ti, Tj be distinct tunnels of W and sup-
pose that A(Ti),A(Tj) intersect a common nucleus approximation N. The forward parts

of A(Ti),A(Tj) begin at endpoints of primary busts d̃ip, d̃jq which are lifts of primary busts
di, dj near the periodic points xi, xj respectively. Let x̃ip, x̃jq be the lifts of xi, xj at distance ε

′

from d̃ip, d̃jq. There are three cases according to whether each of A(Ti),A(Tj) is incoming or
outgoing at N. In the case where one is incoming and the other outgoing, consideration of the
coordinate projection q shows that the diameter of the intersection of the R-neighborhoods
of N(A(Ti))

1 and N(A(Tj))
1 is bounded by a function of R.

Suppose that A(Ti) and A(Tj) are both outgoing from N. Our choice of ε′ ensures that
A(Ti) fellow-travels at distance ε with the forward path of length L emanating from x̃ip and

similarly for A(Tj) and x̃jq. (More precisely, each point of A(Ti) ∩ X̃1 is at distance at
most ε from the corresponding point of the forward path emanating from x̃ip.) Hence the
coarse intersection of A(Ti) and A(Tj) is controlled by the function R 7→ BR and the uniform
constant ε.

Suppose that A(Ti) and A(Tj) are both incoming to N. By translating, we can assume

that N ⊂ S. Because J | L, we have that φ̃L(x̃ip) and φ̃L(x̃jq) are again lifts of xi, xj to
N ⊂ S and thus lie on the bi-in�nite periodic forward paths Λip,Λjq that diverge according
to the map R 7→ BR. As before, A(Ti) and A(Tj) are (uniformly) coarsely contained in the
ε-neighborhoods of Λip and Λjq.

Condition (2): Let a ∈ Ṽ0 and let its image ā ∈ V be periodic with period Ja. As before,

let S be a �nite subtree of Ṽ0 containing a and having the property that every contractible
subspace of V lifts to S and let e0, . . . , er be the edges of V , with ā ∈ e0. Let x−1 = ā. We
temporarily subdivide e0, writing e0 = e′−1e

′
0 with x−1 ∈ e′−1. We now apply Lemma 6.18 to
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V , and then remove the subdivision vertex, yielding periodic points xi ∈ Int(ei), 0 ≤ i ≤ r
so that: for all i, j ≥ −1 and all n ≥ 0, any lifts x̃ip, x̃jq of φn(xi), φ

n(xj) to S satisfy
ρ(x̃ip) 6= ρ(x̃jq). As before, let J be the least common multiple of the periods of the xi.

Let L ≥ 0 and ε > 0. Applying Lemma 3.5, for each i ≥ 0 let di ⊂ Int(ei) be a primary
bust such that di ⊂ N ε

$L
(xi) and such that there is an immersed wall W → X with tunnel

length L and primary busts di. The collection Wa of such walls with J | L is uniformly bust-
quasiconvex since each component of the complement of the primary busts is contractible.
Arguing as in the veri�cation of Condition (1), the characteristic property of {xi} ensures that
Wa has uniformly bounded ladder overlap, with bound independent of L. Likewise, there is a
uniform bound k(a) on 3δ + 2λ fellow-traveling between two forward ladders, one emanating

from an endpoint of d̃ip and one from a = x̃0q, whenever d̃ip is a lift of some di that is joined

to a by a path in a knockout of W . Indeed, in this situation, φ̃L(a) is a lift of ā to the �nite

nucleus approximation containing the lift φ̃L(x̃ip) of xi, whence the forward paths emanating

from d̃ip and a have uniformly bounded coarse intersection. The other case, where a and d̃ip
lie on the same nucleus approximation, is handled as in the analogous case in the veri�cation
of Condition (1). �

Lemma 6.17. Let e0 be an edge of V and let y ∈ Int(e0). Then there exists a set {x0, . . . , xr}
of periodic points in V such that:

(1) Each edge ei of V contains exactly one point xi in its interior.
(2) The point x0 lies in the interior of the edge e0 containing y and de0(x0, y) < ε.
(3) Let x̃ip 6= x̃jq be lifts of xi, xj in the closure of a lift of a component of V − ∪i{xi}.

Then ρ(x̃ip) 6= ρ(x̃jq).

Proof. Let e1, . . . , er be the edges of V , except e0. Using density of periodic points in e0

(Lemma 6.19), choose a periodic point x0 ∈ Int(e0) satisfying assertion (2). Suppose, by
induction, that we have chosen periodic points {xi ∈ Int(ei)} for 0 ≤ i < s, for some s ≤ r,
with the property that ρ(x̃i) 6= ρ(x̃j) for i 6= j and any lifts x̃i, x̃j of xi, xj to S. Let ẽi1, . . . , ẽipi
be the lifts of ei to S. Likewise, let x̃ij be the lift of xi to ẽij . Choose xs ∈ Int(es) to be a
periodic point with the property that no lift of xs to S lies in ∪i<s,jρ−1({ρ(x̃ij)}). Iterating
this procedure yields the desired set {x0, . . . , xr}. Indeed, these points are periodic and satisfy
assertions (1) and (2) by construction. Denoting by x̃s1, . . . , x̃sps the lifts of xs to S, we see
that assertion (3) holds by construction when i 6= j, and holds by Proposition 6.5.(5) when
i = j and p 6= q. �

Lemma 6.18. Let x−1 ∈ V be a periodic point in an edge e−1 and let e0, . . . , er be a collection
of edges in V . Then for 0 ≤ i ≤ r, there exist periodic points xi ∈ Int(ei) such that for all
i, j ≥ −1, n ≥ 0 and for all distinct lifts x̃ip, x̃jq of φn(xi), φ

n(xj) to S, we have ρ(x̃ip) 6=
ρ(x̃jq).

Proof. For all i, any two distinct lifts of φn(xi) to S have distinct images in Y by Propo-
sition 6.5.(5). It therefore su�ces to verify the claim of the lemma for points x̃ip, x̃jq with
i 6= j.

We argue by induction on r. In the base case where r = −1, there is nothing to prove.
Supposing that x−1, . . . , xr−1 satisfy the conclusion of the lemma, we will choose xr. Since ρ
is an embedding on each edge and S is the union of �nitely many edges, there exists K ∈ N
such that for all y ∈ ρ(S), we have |ρ−1(y) ∩ S| ≤ K. Let

Q = |{ρ(x̃ip) : −1 ≤ i ≤ r − 1, 1 ≤ p ≤ pi}|,
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where pi is the number of lifts of xi to S.
We claim that there exists m ∈ N such that er intersects at least KQ + 1 φ-orbits of

m-periodic points. It su�ces to show that there exists m so that the number of m�periodic
points in er is at least (KQ + 1)m. To this end, choose C > 0 so that for each edge ei of
V , the immersed path φk(ei) traverses er for some k ≤ C (such a C exists by irreducibility).
For any n ∈ N, consider the paths φn(er), φ

n+1(er), . . . , φ
n+C(er). These paths collectively

contain at least |φn(er)| ≥ $n occurrences of the edge er, since each one contains at least one
occurrence of er in the image of each edge of φn(er). On the other hand, there are C+ 1 such
paths. Hence there exists k ≤ C so that φn+k(er) traverses er at least (C+ 1)−1$n times. As
in the proof of Lemma 6.19 below, Brouwer's �xed-point theorem implies that er contains at
least (C + 1)−1$n points of period dividing n+ k. Hence there exist arbitrarily large m ∈ N
so that er contains at least C

′$m points of period dividing m, where C ′ = $−C

2(C+1) , and the

claim follows by, e.g., choosing m to be a su�ciently large prime.
For each such m-periodic u, a lifted orbit of u is the set of all lifts to S of all points

φk(u) with 0 ≤ k < m. Note that if u, u′ are m-periodic points with distinct φ-orbits, then
their lifted orbits are disjoint since their projections to V are distinct φ-orbits of the same
cardinality and are hence disjoint. By the pigeonhole principle, there exists an m-periodic
point xr ∈ er with the desired property. Indeed, the points ρ(x̃ip) with i < r ruled out at
most KQ of the KQ+ 1 lifted orbits. �

Lemma 6.19. Let φ be as in Theorem 6.16. Then for each edge e of V , the set of periodic

points of e is dense in e. Consequently, for any �nite forward path σ → X̃, there exists
a periodic forward path χ with σ ⊂ N(χ). If σ is regular, then χ can be chosen so that
N(σ) = N(χ).

Proof. To prove the �rst assertion, let e be an edge of V and let α be a nontrivial closed
subinterval of e. Since φ is an exponentially expanding irreducible train track map (see
De�nition 5.9), for each L ≥ 0, the path φL(α) is an immersed path in V satisfying |φL(α)| ≥
$L|α|, which is unbounded as L→∞. Hence there exists L so that φL(α) traverses an entire

edge of V . Since φ is irreducible, there thus exists L′ ≥ L so that φL
′
(α) traverses e and

hence traverses α. It follows from Brouwer's �xed-point theorem that α contains a point x
with φL

′
(x) = x, verifying the �rst assertion.

The second assertion follows from the fact that periodic points are dense in V and the fact
that distinct forward rays diverge at a rate governed by $. First, if σ starts at a vertex, then
observe that since vertices are periodic, σ must actually lie in a periodic forward path. Hence
let x be the initial point of σ, suppose that x is not a vertex, and let n = |σ|. We choose y to
be a point at distance at most K

2$n from x, with the image of y in V periodic regular, where
K is the distance from x to a nearest vertex. Then the length-n forward path σy fellow-travels

with σ at distance K
2 , and hence the �rst and last vertical edges in the carriers of σ, χ are

equal. �

Remark 6.20. The period of χ is unbounded as the length of σ increases.

We conclude with the following:

Corollary 6.21. Let Φ : F → F be a monomorphism of the �nitely generated free group
F . Suppose that Φ is irreducible and that the ascending HNN extension G = F∗Φ is word-
hyperbolic. Then G acts freely and cocompactly on a CAT(0) cube complex.
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Proof. This follows from the fact that such Φ is represented by a map φ : V → V satisfying
the hypotheses of Theorem 6.16. Indeed, any irreducible endomorphism has an irreducible
train track representative [BH92, Rey10, DV96]. �

References

[Ago12] I. Agol. The virtual Haken conjecture. Preprint, arXiv:1204.2810. With an appendix by Ian Agol,
Daniel Groves, and Jason Manning, 2012.

[BF92] M. Bestvina and M. Feighn. A combination theorem for negatively-curved groups. J. Di�. Geom.,
35:85�101, 1992.

[BFH97] M. Bestvina, M. Feighn, and M. Handel. Laminations, trees, and irreducible automorphisms of free
groups. Geom. Func. Anal., 7(2):215�244, 1997.

[BFH00] Mladen Bestvina, Mark Feighn, and Michael Handel. The Tits alternative for Out(Fn) I: Dynamics
of exponentially-growing automorphisms. Annals of Math., 151:517�623, 2000.

[BH92] Mladen Bestvina and Michael Handel. Train tracks and automorphisms of free groups. Ann. of
Math., 135:1�51, 1992.

[BH99] Martin R. Bridson and André Hae�iger. Metric spaces of non-positive curvature. Springer-Verlag,
Berlin, 1999.

[Bri00] P. Brinkmann. Hyperbolic automorphisms of free groups. Geom. Func. Anal., 10(5):1071�1089,
2000.

[BW13] Nicolas Bergeron and Daniel T. Wise. A boundary criterion for cubulation. Amer. J. Math., 2013.
[CLR94] D. Cooper, D. D. Long, and A. W. Reid. Bundles and �nite foliations. Invent. Math, 118:255�283,

1994.
[Duf12] Guillaume Dufour. Cubulations de variétés hyperboliques compactes. PhD thesis, Université Paris-

Sud, 2012.
[DV96] W. Dicks and E. Ventura. The Group Fixed by a Family of Injective Endomorphisms of a Free

Group. Contemporary mathematics. American Mathematical Society, 1996.
[Ger94] S. M. Gersten. The automorphism group of a free group is not a CAT(0) group. Proc. Amer. Math.

Soc., 121:pp. 999�1002, 1994.
[GJLL98] Damien Gaboriau, Andre Jaeger, Gilbert Levitt, and Martin Lustig. An index for counting �xed

points of automorphisms of free groups. Duke Mathematical Journal, 93(3):425�452, 1998.
[Gro87] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ.,

pages 75�263. Springer, New York, 1987.
[HW] G. Christopher Hruska and Daniel T. Wise. Finiteness properties of cubulated groups. Comp. Math.

pp. 1�58, to appear.
[HW08] Frédéric Haglund and Daniel T. Wise. Special cube complexes. Geom. Funct. Anal., 17(5):1 551�

1620, 2008.
[HW12] Tim Hsu and Daniel T. Wise. Cubulating malnormal amalgams. 2012.
[HW14] Mark F Hagen and Daniel T Wise. Cubulating hyperbolic free-by-cyclic groups: the general case.

arXiv preprint arXiv:1406.3292, 2014.
[Kap00] Ilya Kapovich. Mapping tori of endomorphisms of free groups. Communications in Algebra,

28(6):2895�2917, 2000.
[KL95] M. Kapovich and B. Leeb. On asymptotic cones and quasi-isometry classes of fundamental groups

of 3-manifolds. Geom. Func. Anal., 5:582�603, 1995.
[Lev09] Gilbert Levitt. Counting growth types of automorphisms of free groups. Geometric and Functional

Analysis, 19(4):1119�1146, 2009.
[Mit99] Mahan Mitra. On a theorem of Scott and Swarup. Proc. Amer. Math. Soc., 127:1625�1631, 1999.
[PW] Piotr Przytycki and Daniel T. Wise. Mixed 3-manifolds are virtually special. pages 1�24. Available

at arXiv:1205.6742.
[Rey10] Patrick Reynolds. Dynamics of irreducible endomorphisms of Fn. 2010. cite arxiv:1008.3659.
[Sag95] Michah Sageev. Ends of group pairs and non-positively curved cube complexes. Proc. London Math.

Soc. (3), 71(3):585�617, 1995.
[SS90] G. P. Scott and G. A. Swarup. Geometric �niteness of certain Kleinian groups. Proc. Amer. Math.

Soc., 109(3):765�768, 1990.
[Wis] Daniel T. Wise. Cubular tubular groups. Trans. Amer. Math. Soc. To appear.



CUBULATING FREE-BY-CYCLIC GROUPS 46

Dept. of Pure Maths. and Math. Stat., University of Cambridge, Cambridge, UK

E-mail address: markfhagen@gmail.com

Dept. of Math. and Stat., McGill University, Montreal, Quebec, Canada

E-mail address: wise@math.mcgill.ca


