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Abstract

We prove that the extreme squared sample canonical correlations be-

tween a random walk and its own innovations almost surely converge to

the upper and lower boundaries of the support of the Wachter distribution

when the sample size and the dimensionality go to infinity proportionally.

This result is used to derive previously unknown analytic expressions for

the Bartlett-type correction coeffi cients for Johansen’s trace and maximum

eigenvalue tests in a high-dimensional VAR(1). An analysis of cointegration

among a large number of log exchange rates illustrates the usefulness of our

theoretical results.
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1 Introduction and the main result

Analysis of cointegration between a large number of time series is a challenging but

useful exercise. Its applications include high-dimensional vector error correction

modelling for forecasting purposes (Engel et al. (2015)), inference in nonstationary

panel data models (Banerjee et al. (2004), Pedroni et al. (2015)), and verifica-

tion of the assumptions under which composite commodity price indexes satisfy

microeconomic laws of demand (Lewbel (1996), Davis (2003)).

A central role in the likelihood-based cointegration analysis is played by the

squared sample canonical correlation coeffi cients between a simple transformation

of the levels and the first differences of the data. This paper and its companion

Onatski and Wang (2018) (OW18) study such canonical correlations under the

simultaneous asymptotic regime, where the dimensionality of the data goes to

infinity proportionally to the sample size.

OW18 shows that the empirical distribution of the squared sample canonical

correlations weakly converges to the so-called Wachter distribution. It uses this

result to explain the severe over-rejection of the no cointegration hypothesis when

the dimensionality of the data is relatively large. In this paper, we show that the

extreme squared sample canonical correlations almost surely (a.s.) converge to the

upper and lower boundaries of the support of the Wachter distribution.

Our finding yields strong laws of large numbers for the averages of functions of

the squared sample canonical correlations that may be discontinuous or unbounded

outside an open interval containing the support of the Wachter distribution. In

particular, we establish the a.s. limit of the scaled Johansen’s (1988, 1991) trace sta-

tistic, which has a logarithmic singularity at unity. We use this limit and the limit

of the largest squared sample canonical correlation to derive previously unknown

explicit expressions for the Bartlett-type correction coeffi cients for Johansen’s trace

and maximum eigenvalue tests.

Results of this paper and of OW18 suggest the following quick method for

detecting cointegration in high dimensions that may complement more formal tests.

Superimpose the graph of the empirical cumulative distribution function (cdf) of

the squared sample canonical correlations on theWachter cdf. If the null hypothesis

of no cointegration is correct, a good match is expected in terms of both the

supremum distance and the closeness of the extreme values of the two distributions.

A poor match signals cointegration. In Section 6, we apply this technique to study

cointegration between a large number of exchange rates.
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Our setting can be described in the context of the likelihood ratio (LR) test for

no cointegration in the model

∆Xt = Π (Xt−1 − tρ̂1) + γ + ηt, (1)

where Xt, t = 1, ..., T + 1, are p-dimensional data, ∆Xt = Xt − Xt−1, and ρ̂1 =

XT+1/ (T + 1) . We will assume that the data are Gaussian and have zero initial

value.

Assumption A1 Random vectors ηt with t = 1, ..., T+1 are i.i.d. N (0,Σ), where

Σ is a p-dimensional positive-definite matrix. The initial value X0 = 0.

Model (1) is similar to Johansen’s (1995, eq. 5.14) model H∗ :

∆Xt = Π (Xt−1 − tρ1) + γ + ηt, (2)

where the deterministic trend is introduced so that there is no quadratic trend

in Xt. In (1) ρ1 is replaced by an estimate ρ̂1. Such a replacement yields the

simultaneous diagonalizability of matrices used in the computation of the squared

sample canonical correlations, which makes our theoretical analysis possible. We

explain this in more detail in Section 4.

As is well known, the LR statistic for testing the null hypothesis that Π = 0

against Π 6= 0 equals

LRtrace = − (T + 1)

p∑
j=1

ln (1− λpj) , (3)

where λpj is the j-th largest squared sample canonical correlation between de-

meaned vectors ∆Xt and Xt−1 − tρ̂1. When the alternative is restricted so that

rank Π = 1, the LR test statistic becomes

LRmax = − (T + 1) ln (1− λp1) . (4)

Note that demeaning Xt−1 − tρ̂1 and Xt−1 − (t− 1) ρ̂1 yields the same result.

On the other hand, Xt − tρ̂1 is a p-dimensional random walk detrended so that

its last values are tied down to zero. Hence, λpj can be interpreted as the squared

sample canonical correlations between a lagged detrended and demeaned random

walk and its demeaned innovations.

In what follows, we will assume that the null hypothesis holds so that the true
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value of Π is zero. In addition, we will assume that the true value of γ in the data

generating process (1) is zero as well.

Assumption A2 The data generating process (1) has Π = 0 and γ = 0.

Consider the simultaneous asymptotic regime where p, T →∞ so that p/T →
c0. We abbreviate such a regime as p, T →c0 ∞. Without loss of generality, we
assume that p is strictly increasing along the sequence, so that T can be viewed as

a function of p.

Theorem 1 of OW18 shows that as p, T →c0 ∞ with c0 ∈ (0, 1], the empirical

distribution of λp1 ≥ ... ≥ λpp,

Fp (λ) ≡ 1

p

p∑
i=1

1 {λpi ≤ λ} ,

a.s. weakly converges1 to the Wachter distribution Wc0 with an atom of size

max {0, 2− 1/c0} at unity, and density

f (λ; c0) =
1 + c0

2πc0λ (1− λ)

√
(b0+ − λ) (λ− b0−) (5)

supported on [b0−, b0+] ⊆ (0, 1] , where

b0± = c0

(√
2∓
√

1− c0
)−2

.

The main result of this paper strengthens OW18’s finding as follows.

Theorem 1 Suppose that assumptions A1 and A2 hold. Then, for any c0 ∈
(0, 1/2) , λp1

a.s.→ b0+ and λpp
a.s.→ b0− as p, T →c0 ∞.

The theorem yields the a.s. convergence of the LR statistics (3) and (4), divided

by p2 and p, respectively. Indeed, it guarantees that no squared sample canonical

correlation lies outside any open interval covering [b0−, b0+] for suffi ciently large

p, almost surely. Since Fp a.s. weakly converges to Wc0 , any function f(·) that
is continuous and bounded on the open interval covering [b0−, b0+] , but may have

discontinuities or other singularities outside that interval, satisfies the strong law

1OW18 establishes the weak convergence Fp (λ) ⇒ Wc0 (λ) both for Gaussian and non-
Gaussian η. When η is non-Gaussian and has two finite moments, OW18 establishes the weak
convergence in probability. When η is Gaussian, the convergence is a.s.
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of large numbers
1

p

p∑
j=1

f (λpj)
a.s.→
∫ ∞
−∞

f (λ) dWc0(λ)

as p, T →c0 ∞. In particular, statistic LRtrace/p2, although defined in terms of an
unbounded function ln (1− λ) , a.s. converges to a constant because its singularity

lies outside [b0−, b0+] for c0 ∈ (0, 1/2). The a.s. convergence of LRmax/p follows

from Theorem 1 and the continuity of ln (1− λ) at λ = b0+.

Corollary 1 Suppose that assumptions A1 and A2 hold. Then, for any c0 ∈
(0, 1/2) , as p, T →c0 ∞,

LRtrace/p
2 a.s.→ LRtrace,c0 and LRmax/p

a.s.→ LRmax ,c0 ,

where

LRtrace,c0 =
1 + c0
c20

ln (1 + c0)−
1− c0
c20

ln (1− c0) +
1− 2c0
c20

ln (1− 2c0) and

LRmax ,c0 = − 1

c0
ln

(
1− c0

(√
2−
√

1− c0
)−2)

.

Proof: Corollary 3 of OW18 shows that the expression on the right hand side
of the above definition of LRtrace,c0 equals −

∫∞
−∞ ln (1− λ) dWc0 (λ) (see pages 34—

36 of the Supplementary Material to OW18 for a detailed derivation). Since by

Theorem 1, λp1 a.s. remains bounded away from unity, the a.s. weak convergence of

Fp to Wc0 implies that this integral is the a.s. limit of LRtrace/p
2. The a.s. conver-

gence of LRmax/p follows from Theorem 1, the continuity of ln (1− λ) at λ = b0+,

and the definition of b0+. �

Remark 1 For c0 = 1/2, b0+ = 1 so that the singularity of ln (1− λ) lies at the

upper boundary of the support of Wc0 . For c0 > 1/2, λp1 equals 1 with probability

1. Therefore, in high-dimensional environments where p > T/2, both LRtrace and

LRmax statistics are not well defined.

In the next section we use Corollary 1 to derive previously unknown explicit

expressions for the Bartlett-type correction coeffi cients for Johansen’s trace and

maximum eigenvalue tests. In Section 3, we describe the setup and outline the

proof of Theorem 1. In Section 4 we discuss reasons for working with model (1)

rather than (2), and derive some results for (2). Section 5 contains Monte Carlo
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analysis that confirms the good quality of our asymptotic results in finite samples

and under deviations from the Gaussianity. Section 6 illustrates the real world

relevance of our theoretical results with an empirical example. Section 7 discusses

directions for future work and concludes. All technical proofs are given in the

Supplementary Material (SM).

2 Bartlett-type correction

The standard Johansen’s LR tests are based on the asymptotic critical values that

assume that p is fixed whereas T →∞. As is well known, the tests perform poorly
in finite samples where p is moderately large. Even relatively small p’s, such as

five or six, lead to substantial over-rejection of the null hypothesis (see Ho and

Sorensen (1996) and Gonzalo and Pitarakis (1995, 1999)).

One of the partial solutions to the over-rejection problem is the Bartlett cor-

rection of the LR statistics (see Johansen (2002)). The idea is to scale the statistic

so that its finite sample distribution better fits the asymptotic distribution of the

unscaled statistic. Specifically, let Ep,∞ be the mean of the asymptotic distribu-

tion under the fixed-p, large-T asymptotic regime. Then, if the finite sample mean,

Ep,T , satisfies

Ep,T = Ep,∞ (1 + a(p)/T + o (1/T )) , (6)

the scaled statistic is defined as LR/ (1 + a(p)/T ) . By construction, the fit between

the scaled mean and the original asymptotic mean is improved by an order of

magnitude. Although, as shown by Jensen and Wood (1997) in the context of

unit root testing, the fit between higher moments does not improve by an order of

magnitude, it may become substantially better (see Nielsen (1997)).

Theoretical analysis of the adjustment factor 1 + a(p)/T is diffi cult. The exact

expression for a(p) is known only for p = 1 (see Larsson (1998)). Therefore,

Johansen (2002) proposes to approximate the Bartlett correction factor BC ≡
Ep,T/Ep,∞ numerically. More precisely, Johansen (section 2.5, 2002) describes a

correction factor for the trace statistic as a product of two terms, the first of which

needs to be evaluated numerically, while the second one estimates an analytic

expression derived in that paper’s Corollary 1.

Here, we propose an alternative correction factor, equal to the ratio of the

limits of LRtrace/p2 under the simultaneous asymptotics p, T →c0 ∞ and under

the sequential asymptotics, where first T and then p goes to infinity. We also
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propose a similar correction factor for the maximum eigenvalue test. It equals the

ratio of the limits of LRmax/p under the simultaneous asymptotics and under the

sequential asymptotics.

Monte Carlo analysis in OW18 (see their Figure 6) suggests that the simul-

taneous asymptotic limit LRtrace,c0 derived in Corollary 1 provides a very good

concentration point for LRtrace/p2, for moderately large p. Similarly, Table 1 below

shows the good finite sample quality of the sequential asymptotic approximation

for λp1, which suggests that LRmax ,c0 approximates LRmax/p well for moderately

large p. From a theoretical perspective, the good finite sample quality of the simul-

taneous asymptotic approximations can be explained by the fact that, in contrast

to the standard asymptotics, the simultaneous one does not neglect terms (p/T )j

of relatively high order.

The following theorem derives the sequential asymptotic limits of LRtrace/p2

and LRmax/p (see SM for a proof).

Theorem 2 Suppose that assumptions A1 and A2 hold. Then as first T and then
p go to infinity, LRtrace/p2 → 2 and LRmax/p→ 3 + 2

√
2, where both convergences

are in probability.

Theorem 2 and Corollary 1 yield the following analytic expressions for the

proposed Bartlett-type correction factors

B̂Ctrace =
1 + c

2c2
ln (1 + c)− 1− c

2c2
ln (1− c) +

1− 2c

2c2
ln (1− 2c) , and (7)

B̂Cmax = − 1(
3 + 2

√
2
)
c

ln

(
1− c

(√
2−
√

1− c
)−2)

, (8)

where c ≡ p/T. Expressions (7) and (8) are elementary, and easy to compute and

analyze. They do not depend on details of any numerical experiments, and the

range of their applicability covers all c < 1/2.

We are unaware of the previously obtained BC factors for the maximal eigen-

value test. For the trace test, a numerical approximation to BC is obtained in

Johansen (2002). That paper simulates BC for various values of p ≤ 10 and

T ≤ 3000 and fits a function of the form B̃C = 1 + a1c+ a2c
2 + a3c

3 + b/T to the

obtained results. Its Table I (row nd = 1) reports the following parameter values

coeffi cient: a1 a2 a3 b

value: 0.541 0.625 1.077 -1.518
.
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Figure 1: Bartlett correction factors as functions of p/T. Solid line: the factor
based on the ratio of the simultaneous and sequential limits of LRtrace/p2. Upper
dashed line: Johansen’s (2002) approximation. Lower dashed line: Johansen et
al.’s (2005) approximation.

Johansen et al. (2005) reports a “programming error in the original simulations”

and fits function BC∗ = exp (a1c+ a2c
2 + (a3c

2 + b)/T ) to the new simulations.

Its Table 3 (row nd = 1) reports the following parameter values

coeffi cient: a1 a2 a3 b

value: 0.523 0.569 15.712 -0.238
.

For relatively large values of T, the terms b/T and (a3c
2 + b) /T in the above

expressions for B̃C and BC∗ are small. When they are ignored, the fitted functions

become particularly simple:

B̃C = 1 + 0.541c+ 0.625c2 + 1.077c3,

BC∗ = exp
(
0.523c+ 0.569c2

)
.

Figure 1 shows the graphs of B̂Ctrace, B̃C, and BC∗ as functions of c. For

c ≤ 0.3, there is a good fit between the three curves. For c > 0.3, the quality of

the fit quickly deteriorates. This can be partially explained by the fact that all

(p, T )-pairs used in Johansen’s (2002) and Johansen et al.’s (2005) simulations are

such that c < 0.3, so the corresponding numerical approximations do not cover
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cases with c > 0.3.

The terms b/T and (a3c
2 + b) /T, ignored above, may substantially influence the

values of the correction factors B̃C and BC∗ for relatively small T.We compare the

performance of B̂Ctrace, B̃C, and BC∗ when all terms in the latter two correction

factors are taken into account using Monte Carlo simulations in Section 5.

3 Setup and proof of Theorem 1

In this section, we introduce the setup and give an outline of the proof of Theorem

1. Details of the proof can be found in SM. Let ∆X, X−1 and η be p × (T + 1)

matrices with columns ∆Xt, Xt−1 − tρ̂1, and ηt, respectively. Further, let l be a
(T + 1)-vector of ones, Ml = IT+1 − ll′/ (T + 1) be the projection on the space

orthogonal to l, and let U be the (T + 1)× (T + 1) upper triangular matrix with

ones above the main diagonal and zeros on the diagonal. Then under the null

hypothesis

∆XMl = ηMl and X−1Ml = ηMlUMl, (9)

where the second equality is derived as follows. Let τ = (1, 2, ..., T + 1)′ . Note

that τ ′ = l′U + l′ and ρ̂1 = γ + ηl/ (T + 1) . Therefore,

X−1Ml = (ηU − ρ̂1τ ′)Ml = ηUMl −
1

T + 1
ηll′UMl = ηMlUMl.

Equations (9) imply that the squared sample canonical correlations λpj, j =

1, ..., p, between demeaned ∆Xt and demeaned Xt−1 − tρ̂1 can be interpreted as
the eigenvalues of the product P1P2, where P1 and P2 are projections on the col-

umn spaces of MlU
′Mlη

′ and Mlη
′, respectively. Clearly, λpj’s are invariant with

respect to right-multiplication of η′ by any invertible matrix. Hence, without loss

of generality, we will assume that ηt are i.i.d. N (0, Ip) vectors.

An equivalent interpretation of λpj, j = 1, ..., p, views them as the eigenvalues

of matrix S01S−111 S10S
−1
00 , where S10 = S ′01 and

S01 = ηMlU
′Mlη

′, S11 = ηMlUMlU
′Mlη

′, S00 = ηMlη
′. (10)

As shown in Lemma 3 of the Supplementary Material to OW18 (OWSM18),

MlU
′Ml, MlUMlU

′Ml and Ml are circulant matrices, that is, their (i1, j1)-th and

(i2, j2)-th elements are equal as long as i1 − j1 equals i2 − j2 modulo T + 1.

As is well known (e.g. Golub and Van Loan (1996), ch. 4.7.7), circulant matrices
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are simultaneously diagonalizable. Precisely, if V is a (T + 1)× (T + 1) circulant

matrix with the first column v, then V = F∗ diag (Fv)F/ (T + 1), where F is the
Discrete Fourier Transform matrix with elements

Fst= exp {−i2π (s− 1) (t− 1) / (T + 1)} ,

and the superscript ‘∗’denotes transposition and complex conjugation. Here and
in what follows, ‘i’ denotes the imaginary unit

√
−1. This yields the following

lemma.

Lemma 1 Let ωs = 2πs/ (T + 1) and

∇̂ = diag
{(
eiω1 − 1

)−1
, ...,

(
eiωT − 1

)−1}
. (11)

Further, let η̂ = ηF∗ be a p× (T + 1) matrix whose rows are the discrete Fourier

transforms at frequencies 0, ω1, ..., ωT of the rows of η, and let η̂−0 be the p×T ma-
trix obtained from η̂ by removing its first column, corresponding to zero frequency.

Then

S01 = η̂−0∇̂η̂∗−0/ (T + 1) , S11 = η̂−0∇̂
∗∇̂η̂∗−0/ (T + 1) ,

S10 = η̂−0∇̂
∗
η̂∗−0/ (T + 1) , and S00 = η̂−0η̂

∗
−0/ (T + 1) .

The diagonal of ∇̂ consists of the reciprocals of the values of the transfer func-
tion (see e.g. Brillinger (1981) eq. 2.7.9) of the “leaded”first-difference filter

Xt 7→ ∆Xt+1 ≡ Xt+1 −Xt (12)

at frequencies ωs, s 6= 0. Hence λpj can also be viewed as the sample squared

canonical correlations between discrete Fourier transforms of η̂t and their products

with the inverse of the transfer function of filter (12).

Below we work with real-valued sin and cos Fourier transforms of η. In addition,

we interchange the order of the frequencies so that ωs1 and ωs2 with s1+s2 = T +1

become adjacent pairs. Specifically, let T be even (the case of odd T can be

analyzed similarly) and let P = {pst} be a T×T permutation matrix with elements

pst =


1 if s = 1, ..., T/2 and t = 2s− 1

1 if s = T/2 + 1, ..., T and t = 2 (T − s+ 1)

0 otherwise

.
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Define a unitary matrix

W = IT/2 ⊗
(

1/
√

2 1/
√

2

i/
√

2 −i/
√

2

)
,

where ⊗ denotes the Kronecker product.
Note that WP ′∇̂∗PW ∗ = ∇ ≡ diag

{
∇1, ...,∇T/2

}
with

∇j = −1

2

(
1 − cot (ωj/2)

cot (ωj/2) 1

)
.

A direct calculation shows that ∇∇′ = ∇′∇ is a diagonal matrix

∇∇′ = ∇′∇ = diag
{
r−11 I2, ..., r

−1
T/2I2

}
with rj = 4 sin2 (ωj/2) .

Defining ε = η̂−0PW
∗/
√
T (T + 1) and using Lemma 1, we obtain the following

lemma.

Lemma 2 The columns of ε are i.i.d. N (0, Ip/T ) vectors. Matrix S01S−111 S10S
−1
00

equals CD−1C ′A−1 where

C = ε∇′ε′, D = ε∇∇′ε′, and A = εε′.

This lemma yields yet another interpretation of λpj, j = 1, ..., p. They can be

thought of as the eigenvalues of matrix

CD−1C ′A−1 ≡ (ε∇′ε′) (ε∇∇′ε′)−1 (ε∇ε′) (εε′)
−1
.

The convenience of this interpretation stems from the block-diagonality of ∇ and
the diagonality of ∇∇′.
Let ε(j) be a p×2 matrix that consists of the (2j−1)-th and the 2j-th columns

of ε. In particular, ε =
[
ε(1), ..., ε(T/2)

]
. The key advantage of studying C,D,A

as opposed to S01, S11, and S00 is that C,D,A can be represented as sums of

independent components of rank two. Specifically,

C =

T/2∑
j=1

ε(j)∇′jε′(j), D =

T/2∑
j=1

r−1j ε(j)ε
′
(j), and A =

T/2∑
j=1

ε(j)ε
′
(j).

OW18 exploits these representations to derive the limit of the empirical distri-
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bution Fp of the eigenvalues of CD−1C ′A−1 (the detailed derivation starts on page

16 of OWSM18). That paper proves the convergence of Fp to Wc0 by establishing

the convergence of the Stieltjes transform of Fp, defined as

mp(z) ≡
∫ ∞
−∞

(λ− z)−1 dFp (λ) = tr
(
CD−1C ′A−1 − zIp

)−1
/p

for any z from the upper half of the complex plane C+.
Our proof of Theorem 1 relies on some of the results of OW18. Therefore,

to complete the setup of the analysis below, we now briefly outline the relevant

findings of that paper.

First, OW18 derive the following identities (see eq. (38-41) in OWSM18)

mp(z) =
T

p

1

1− z −
1

p

T/2∑
j=1

1

(1− z)2
tr
([
I2, rj∇′j

]
Ω
(q)
j

[
I2, rj∇′j

]′)
, (13)

T

p
+ zmp(z) =

T

p

1

1− z −
1

p

T/2∑
j=1

1

(1− z)2
tr
([
I2, rjz∇′j

]
Ω
(q)
j

[
I2, zrj∇′j

]′)
,(14)

1 + zmp(z) =
T

p

1

1− z −
1

p

T/2∑
j=1

1

(1− z)2
tr
([
I2, rjz∇′j

]
Ω
(q)
j

[
I2, rj∇′j

]′)
, (15)

0 =
1

p

T/2∑
j=1

1

1− z tr
(

[0, I2] Ω
(q)
j

[
I2, rj∇′j

]′)
, (16)

where

Ω
(q)
j ≡ Ω

(q)
pj (z) =

(
1
1−zI2 + v

(q)
j (z)

rj
1−z∇

′
j + u

(q)′
j (z)

rj
1−z∇j + u

(q)
j (z)

rjz

1−zI2 + zṽ
(q)
j (z)

)−1
. (17)

The 2 × 2 matrices v(q)j ≡ v
(q)
j (z), u

(q)
j ≡ u

(q)
j (z), and ṽ(q)j ≡ ṽ

(q)
j (z) are defined as

follows. Let

Aj = A− ε(j)ε′(j), Cj = C − ε(j)∇′jε′(j), Dj = D − r−1j ε(j)ε
′
(j),

Mj = CjD
−1
j C ′j − zAj, and M̃j = C ′jA

−1
j Cj − zDj.

Then,

v
(q)
j = ε′(j)M

−1
j ε(j), u

(q)
j = ε′(j)D

−1
j C ′jM

−1
j ε(j), and ṽ

(q)
j = ε′(j)M̃

−1
j ε(j).

The entries of these matrices are quadratic forms in the columns of ε(j). In what
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follows, we use superscript ‘(q)’to denote matrices that involve quadratic forms

in the columns of ε(j) to distinguish them from similarly defined matrices that do

not involve such quadratic forms.

The next step in OW18 (see Section 2.1.5 of OWSM18) is to approximate Ω
(q)
j

by matrix Ωj, which is obtained from Ω
(q)
j by replacing v(q)j (z), u

(q)
j (z), and ṽ(q)j (z)

in (17) with vp(z)I2, up(z)I2, and ṽp(z)I2, respectively, where

vp(z) = tr
(
M−1) /T, up(z) = tr

(
D−1C ′M−1) /T, and ṽp(z) = tr

(
M̃−1

)
/T.

Here M = CD−1C ′ − zA and M̃ = C ′A−1C − zD. To simplify notation, we will
suppress the dependence of vp(z), up(z), and ṽp(z) on p and z. It is straightforward

to verify that matrix Ωj has the following explicit form

Ωj =
1− z
δj

(
z
1−zrjI2 + zṽI2 − 1

1−zrj∇
′
j − uI2

− 1
1−zrj∇j − uI2 1

1−zI2 + vI2

)
, (18)

where

δj = zṽ (1 + v − zv) + rj (u+ zv − 1)− (1− z)u2. (19)

Taking traces in equations (13-16), after approximating Ω
(q)
j by Ωj, yields equa-

tions

mp(z) =
1

c (1− z)
− 2

cT

T/2∑
j=1

zṽ + rj (u+ v − 1)

(1− z) δj
+ e1(z), (20)

1

c
+ zmp(z) =

1

c (1− z)
− 2

cT

T/2∑
j=1

zṽ + rjz (u+ zv − 1)

(1− z) δj
+ e2(z), (21)

1 + zmp(z) =
1

c (1− z)
− 2

cT

T/2∑
j=1

zṽ + rj (u (1 + z) /2 + zv − 1)

(1− z) δj
+ e3(z),(22)

0 =
2

cT

T/2∑
j=1

−u− rjv/2
δj

+ e4(z), (23)
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where ek(z), k = 1, ..., 4, are the approximation errors

e1(z) =
1

p

T/2∑
j=1

1

(1− z)2
tr
([
I2, rj∇′j

] (
Ωj − Ω

(q)
j

) [
I2, rj∇′j

]′)
, (24)

e2(z) =
1

p

T/2∑
j=1

1

(1− z)2
tr
([
I2, rjz∇′j

] (
Ωj − Ω

(q)
j

) [
I2, zrj∇′j

]′)
, (25)

e3(z) =
1

p

T/2∑
j=1

1

(1− z)2
tr
([
I2, rjz∇′j

] (
Ωj − Ω

(q)
j

) [
I2, rj∇′j

]′)
, (26)

e4(z) = −1

p

T/2∑
j=1

1

1− z tr
(

[0, I2]
(

Ωj − Ω
(q)
j

) [
I2, rj∇′j

]′)
. (27)

Finally, Lemma 10 of OWSM18 shows that the errors ek(z), k = 1, ..., 4, con-

verge to zero pointwise over z from a compact subset of C+. This allows OW18 to
argue that mp(z) converges to m̄0(z) uniformly over this compact subset, where

m̄0(z) satisfies the “limiting version” of system (20-23) that sets ek(z) to zeros.

Solving the limiting system, OW18 shows (see Section 2.1.6 of OWSM18) that

m̄0(z) is the Stieltjes transform of Wc0 , which yields the convergence of Fp to Wc0 .

Our proof of Theorem 1 starts from the system (20-23). It amounts to estab-

lishing fast convergence of the errors ek(z), k = 1, ..., 4, to zero as z runs over

a sequence zp with Im zp → 0 and Re zp bounded away from the support of the

Wachter distribution Wc0 .

The general strategy of our proof is similar to that used in Bai and Silverstein’s

(1998) (BS98) study of the asymptotic behavior of the extreme eigenvalues of

sample covariance matrices. The main ideas are as follows. Consider a sequence

{zp} such that (s.t.)

xp ≡ Re zp ∈ [0, 1] and yp ≡ Im zp = y0p
−α (28)

with α ≥ 0 and y0 ∈ (0, 1] that are independent from p. We study the behavior of

mp (zp) as p, T →c0 ∞.
Let m0 (z) be the Stieltjes transform of Wc, where Wc is obtained from the

limiting distribution Wc0 by replacing c0 with c ≡ p/T. Consider an interval [a, b]

outside the supports of Wc and Wc0 for all large p. Since Fp consists of masses 1/p

14



at λpj, and since Wc([a, b]) = 0, we have the following decomposition

Im (mp(zp)−m0(zp)) =
∑

λpj∈[a,b]

1

p

yp

(λpj − xp)2 + y2p
+

∫
[a,b]c

ypd(Fp (λ)−Wc (λ))

(λ− xp)2 + y2p
.

(29)

The existence of λpj ∈ [a, b] puts an upper bound on the speed of the a.s. conver-

gence

sup
xp∈[a,b]

|mp(zp)−m0(zp)| → 0 (30)

as p, T →c0 ∞. This bound is linked to the speed of convergence yp → 0+ via the

first term on the right hand side of (29). Proving that convergence (30) is faster

than that bound shows that there are no λpj in [a, b] for all suffi ciently large p.

The analysis of the speed of convergence of (30) is done in several steps.

1. We show that the expected number of eigenvalues in [a, b] cannot grow faster

than pβ with β < 1 as p→∞.

2. We use 1. to derive an upper bound on the speed of convergence mp(zp) −
Emp(zp)→ 0 of the “stochastic part”of mp(zp)−m0(zp).

3. We derive an upper bound on the speed of convergence Emp(zp)−m0(zp)→ 0

of the “deterministic part”of mp(zp)−m0(zp), and combine the results.

An implementation of these three steps requires a non-trivial extension of BS98.

The fact that we have to deal with the product of four dependent stochastic matri-

ces, CD−1C ′A−1, presents substantial challenges, relative to the case of a sample

covariance matrix, that we overcome. The key is to establish fast convergence

of the errors ek(zp) defined in (24-27) to zero, which requires detailed analysis of

matrices Ωj, Ω
(q)
j , and their difference Ωj − Ω

(q)
j . A detailed proof of Theorem 1

can be found in SM.

4 Johansen’s H∗ model

If the data generating process is described by Johansen’s H∗ model (2) rather than

(1), the LR statistics for testing the null hypothesis that Π = 0 still have forms

(3) and (4). However now, λpj’s equal the eigenvalues of S̃01S̃−111 S̃10S̃
−1
00 , where

S̃ij are defined differently from Sij given in (10). Specifically, they correspond to
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sample covariance and cross-covariance matrices of the demeaned processes ∆Xt

and
(
X ′t−1, t

)′
(see Johansen (1995, ch. 6.2)). That is, in contrast to (10),

S̃01 =
(
ηMlU

′η′, ηMlτ
)
and S̃11 =

(
ηUMlU

′η′ ηUMlτ

τ ′MlU
′η′ τ ′Mlτ

)
,

while similarly to above, S̃10 = S̃ ′01 and S̃00 = ηMlη
′. Here τ denotes the time

trend, τ = (1, 2, ..., T + 1)′.

In contrast to matrices S01, S11, and S00 given in (10), matrices S̃01, S̃11, and S̃00
cannot be simultaneously rotated to the form ε′Wε, where W is a block-diagonal

matrix. Therefore, in the case of H∗ model, there is no convenient frequency do-

main reformulation of Johansen’s test, and the above analysis will not go through.

It is however possible to show that at most one eigenvalue of S̃01S̃−111 S̃10S̃
−1
00 re-

mains above and separated from b0+ and at most one eigenvalue remains below

and separated from b0−, asymptotically. Hence, the second largest and smallest

eigenvalues of S̃01S̃−111 S̃10S̃
−1
00 a.s. converge to b0+ and b0−.

Recall that the eigenvalues of S01S−111 S10S
−1
00 equal those of P1P2, where P1

and P2 are projections on the column spaces of Y ≡ MlU
′Mlη

′ and Z ≡ Mlη
′,

respectively. Similarly, the eigenvalues of S̃01S̃−111 S̃10S̃
−1
00 equal those of P̃1P2, where

P̃1 is the projection on the column space of Ỹ ≡
(
MlU

′η′, Mlτ
)
.

Note that Ỹ has p + 1 columns whereas Y has p columns. Let us augment Y

by a zero column to obtain Ȳ ≡
(
MlU

′Mlη
′, 0

)
. Obviously, projections on the

columns of Y and Ȳ coincide and equal P1. Further,

Ỹ − Ȳ =
(
MlU

′ll′η′/ (T + 1) , Mlτ
)

=
(
Mlτ l

′η′/ (T + 1) , Mlτ
)
, (31)

and matrix
(
Mlτ l

′η′/ (T + 1) , Mlτ
)
has rank one.

Lemma 3 Let Y1 and Y2 be n×m matrices and let PY1 and PY2 be projections on

the spaces spanned by the columns of Y1 and Y2, respectively. If rank (Y1 − Y2) = r,

then there exist n × r matrices y1 and y2 such that PY1 − PY2 = Py1 − Py2 , where
Py1 and Py2 are projections on the spaces spanned by the columns of y1 and y2,

respectively. In particular, rank (PY1 − PY2) ≤ 2r.

Proof: Assume that Y1 − Y2 = ab, where a is n× r and b =
(

0, Ir

)
. This

assumption does not lead to a loss of generality because PY1 and PY2 are invariant

with respect to multiplication of Y1 and Y2 from the right by arbitrary invertible
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m ×m matrices. The above form of b can be achieved by such a multiplication.

Let us partition Y1 and Y2 as [Y11, Y12] and [Y21, Y22] , where Y12 and Y22 are the

last r columns of Y1 and Y2, respectively. We have

Y21 = Y11 and Y22 + a = Y12.

Denote Im−PY21 as M1, where PY21 is the projection on the space spanned by the

columns of Y21, and let y2 = M1Y22. Note that

PY2 = P[Y21,y2] = PY21 + Py2,

where the second equality holds because Y21 is orthogonal to y2. Similarly, we have

PY1 = PY11 + Py1 = PY21 + Py1 ,

where y1 = M1Y12. Therefore, PY1 − PY2 = Py1 − Py2 . �
Lemma 3 and equality (31) imply that there exist no more than one eigenvalue

of S̃01S̃−111 S̃10S̃
−1
00 that is larger than the largest eigenvalue of S01S−111 S10S

−1
00 and

no more than one eigenvalue of S̃01S̃−111 S̃10S̃
−1
00 that is smaller than the smallest

eigenvalue of S01S−111 S10S
−1
00 . Indeed, note that the eigenvalues of S̃01S̃

−1
11 S̃10S̃

−1
00 ,

which equal those of P̃1P2, coincide with the eigenvalues of a symmetric matrix

P2P̃1P2. Similarly, the eigenvalues of S01S−111 S10S
−1
00 coincide with the eigenvalues

of a symmetric matrix P2P1P2. By Lemma 3,

P2P̃1P2 − P2P1P2 = P2Py1P2 − P2Py2P2,

where Py1 and Py2 are projections on one-dimensional spaces. Hence, our statement

concerning the eigenvalues of S̃01S̃−111 S̃10S̃
−1
00 and S01S

−1
11 S10S

−1
00 follows fromWeyl’s

inequalities for eigenvalues of a sum of symmetric matrices (see e.g. Horn and

Johnson (1985, Theorem 4.3.1)).

We have conducted a small-scale Monte Carlo study which suggests that the

largest and the smallest eigenvalues of S̃01S̃−111 S̃10S̃
−1
00 do converge to b0+ and b0−,

respectively, similarly to the largest and the smallest eigenvalues of S01S−111 S10S
−1
00 .

A formal analysis of the extreme eigenvalues of S̃01S̃−111 S̃10S̃
−1
00 would amount to

studying low-rank perturbations of S01S−111 S10S
−1
00 . There exists a large literature

on the low rank perturbations of classical random matrix ensembles (see e.g. Cap-

itaine and Donati-Martin (2016) and references therein). However, this literature
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is not directly applicable to S01S−111 S10S
−1
00 .We leave analysis of small rank pertur-

bations of such a matrix for future research.

5 Monte Carlo

To assess the quality of our asymptotic results in finite samples, we simulate p-

dimensional random walks with p = 2, 5, 10, 20, 50, and 100. The values of the

sample size T are chosen from a wide range, starting from 20 and going to 2, 000.

Overall, we consider 20 different (p, T )-pairs. The number of the Monte Carlo

(MC) replications is set to 10, 000. The data generating process is (1) with Π = 0.

As explained in Section 3, the canonical correlations are invariant with respect to

the choice of the constant γ and the error variance Σ in (1). Therefore, we set

γ = 0 and Σ = Ip without loss of generality.

According to our theory, λp1
a.s.→ b0+ and λpp

a.s.→ b0−, where b0+ and b0− are the

upper and lower boundaries of the support of the Wachter distribution Wc0 with

c0 = lim p/T. Table 1 reports the MCmean, 2.5% quantile, q2.5, and 97.5% quantile,

q97.5, for λp1 and λpp. They should be compared to the sample counterparts of b0±,

denoted in the table as b± and defined as the upper and lower boundaries of the

support of the Wachter distribution Wc with c = p/T.

The MC mean of the largest squared sample canonical correlation is very close

to the theoretical prediction b+ for most of the (p, T )-pairs. Surprisingly, b+ is

quite close to the MC mean of λp1 even for p = 2. However, for such an extremely

small value of p, the spread of the MC distribution of λp1 is very large. The spread

remains relatively large for p = 5. For the larger values of p, the MC distribution of

λp1 is reasonably tightly concentrated around b+. Even so, for all the (p, T )-pairs,

b+ is somewhat above the MC mean and is closer to q97.5 than to q2.5.

The theoretical prediction b− for the smallest squared sample canonical corre-

lation λpp as well as the MC mean of λpp are generally close to zero. The quality

of the match between them is on par with that between the MC mean of λp1 and

b+. However, in contrast to λp1, the MC mean of λpp is always somewhat larger

than its theoretical prediction. Hence, overall, there is a tendency for the empirical

distribution of λpj, j = 1, ..., p, to have all its mass inside the interval [b−, b+] .

In SM, we verify that for most of the (p, T )-pairs, the supremum distance

between the entire empirical cumulative distribution function (cdf) of λpj, j =

1, ..., p and the cdf of Wc is small for relatively large p. This suggests that, in
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Maximum eigenvalue λp1 Minimum eigenvalue λpp
p T b+ mean q2.5 q97.5 b− mean q2.5 q97.5
2 20 0.461 0.358 0.184 0.593 0.018 0.142 0.057 0.285
2 100 0.111 0.086 0.039 0.163 0.003 0.030 0.011 0.065
5 20 0.832 0.749 0.593 0.889 0.048 0.148 0.067 0.258
5 100 0.259 0.223 0.150 0.318 0.009 0.029 0.013 0.053
10 25 0.978 0.954 0.899 0.989 0.083 0.162 0.082 0.254
10 50 0.740 0.691 0.596 0.791 0.038 0.077 0.038 0.124
10 100 0.461 0.422 0.344 0.514 0.018 0.037 0.018 0.061
20 45 0.993 0.986 0.970 0.997 0.095 0.142 0.087 0.199
20 60 0.933 0.912 0.871 0.950 0.067 0.101 0.062 0.144
20 150 0.571 0.542 0.485 0.604 0.024 0.037 0.023 0.053
20 500 0.212 0.199 0.172 0.232 0.007 0.011 0.006 0.016
50 105 0.999 0.998 0.995 0.999 0.104 0.127 0.094 0.157
50 150 0.933 0.923 0.902 0.943 0.067 0.082 0.061 0.103
50 200 0.832 0.817 0.788 0.848 0.048 0.059 0.044 0.074
50 500 0.461 0.447 0.419 0.480 0.018 0.022 0.016 0.028
50 1000 0.259 0.250 0.232 0.272 0.009 0.011 0.008 0.014
100 300 0.933 0.927 0.914 0.940 0.067 0.076 0.063 0.088
100 400 0.832 0.823 0.805 0.842 0.048 0.054 0.045 0.063
100 1000 0.461 0.453 0.435 0.473 0.018 0.020 0.017 0.024
100 2000 0.259 0.253 0.242 0.266 0.009 0.010 0.008 0.012

Table 1: The MC means, 2.5% quantiles, and 97.5% quantiles of λp1 and λpp. The
upper and lower boundaries of the support of the Wachter distribution Wp/T are
reported as b+ and b−, respectively. The number of the MC replications is 10,000.

practice, the hypothesis of no cointegration in high-dimensional VAR(1) may be

quickly assessed by visually comparing the empirical cdf with that of Wc. If the

hypothesis is correct, a good match is expected in terms of both the supremum

distance and the closeness of the extreme values of the two distributions.

For such a quick assessment to be effective, the two distributions must diverge

under alternatives where cointegration does take place. However, if the cointegra-

tion rank is small, the divergence can manifest itself only in the differences between

the upper extreme values of the distributions. Therefore, our next MC experiment

checks the sensitivity of λp1 to the existence of a single cointegrating relationship.

Specifically, we replace one component of the simulated p-dimensional random

walk data by an AR(1) series with the autoregressive parameter ρ, for ρ = 0, 0.3,

0.5, 0.6, 0.7, and 0.9. Figure 2 reports the MC means of λp1 as functions of ρ for the

different (p, T )-pairs. The pairs are as in Table 1. They are not explicitly shown,

but can be identified by looking up the value of c = p/T at the right edge of the

19



0 0.3 0.5 0.6 0.7 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: MC mean of λp1 as functions of ρ. The number of MC replications is
10,000. The different graphs correspond to 20 different (p, T )-pairs. The pairs can
be partially identified using the value of c = p/T shown at the right edge of the
figure.

Figure. For pairs that correspond to the same c, the values of the MC mean for

λp1 at ρ = 1 (no cointegration) turn out to be smaller for smaller p. For example,

there are four (p, T )-pairs and four lines corresponding to c = 0.1. The lowest of

these lines corresponds to (p, T ) = (2, 20) , and the highest one corresponds to

(p, T ) = (100, 1000). We do not label lines corresponding to c > 0.33.

In general, the MC mean of λp1 is decreasing as a function of ρ. This accords

with intuition that the more persistent the process, the harder to distinguish it

from a random walk. However, the MC mean of λp1 is not sensitive to ρ for

relatively large values of c. Therefore, for such c, the quick visual inspection of

the match between the empirical distribution of λpj and Wc cannot replace more

formal test procedures.

We now verify the accuracy of the proposed Bartlett-type corrections for Jo-

hansen’s maximum eigenvalue and trace tests. Table 2 reports the actual size of

the uncorrected (raw) and Bartlett-corrected tests of the asymptotic size 5%. For

the trace test, we report the sizes of the Bartlett-corrected tests that use our cor-

rection formula, the formula reported in Table I (row nd = 1) of Johansen (2002)

(column J02 of Table 2), and the formula reported in Table 3 (row nd = 1) of
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Max-eval test Trace test
p T p/T raw corrected raw corrected J02 JHF05
2 20 0.10 7.36 5.04 7.31 4.97 8.02 5.18
2 100 0.02 4.73 4.36 4.72 4.43 4.87 4.49
5 20 0.25 27.67 6.51 36.59 7.09 15.40 5.49
5 100 0.05 6.93 5.31 7.42 5.24 6.24 5.32
10 25 0.40 95.78 12.65 99.80 17.71 50.24 14.56
10 50 0.20 29.37 6.26 51.81 6.07 10.48 5.49
10 100 0.10 11.54 5.11 17.84 4.93 6.77 4.89
20 45 0.44 100.0 15.69 100.0 26.67 89.05 59.56
20 60 0.33 98.16 7.89 100.0 9.84 26.25 10.64
20 150 0.13 24.42 4.60 59.42 5.49 6.91 5.01
20 500 0.04 8.18 5.20 12.42 4.83 5.27 4.75
50 105 0.48 100.0 19.90 100.0 41.80 100.0 100.0
50 150 0.33 100.0 7.44 100.0 9.52 28.77 26.95
50 200 0.25 99.74 5.90 100.0 6.37 7.94 6.81
50 500 0.10 32.88 5.03 94.62 4.92 4.54 4.01
50 1000 0.05 12.95 5.18 45.65 4.85 4.63 4.23
100 300 0.33 100.0 7.46 100.0 10.51 38.09 71.30
100 400 0.25 100.0 6.48 100.0 6.96 4.85 10.78
100 1000 0.10 63.10 5.31 100.0 5.62 3.08 3.30
100 2000 0.05 22.51 5.35 93.00 5.23 3.98 4.07

Table 2: The size of the un-corrected (raw) and Bartlett-corrected maximum-
eigenvalue (Max-eval) and trace tests. Columns ‘J02’and ‘JHF05’correspond to
the test corrected using the correction factors reported in Table I (case nd = 1) of
Johansen (2002) and Table 3 (case nd = 1) of Johansen et al. (2005), respectively.
The number of the MC replications is 10,000.

Johansen et al. (2005) (column JHF05 of Table 2).

The data are generated in the same way as for Table 1. The trace and the

maximum eigenvalue statistics are computed on the basis of Johansen’s H∗ model,

which is discussed in Section 4. The asymptotic 5% critical values for p ≤ 12

are available from Table IV (column k = 0) of MacKinnon et al. (1999). For

p = 20, 50, and 100, we compute the asymptotic critical values using the response

surface approach of the latter paper.

As is well known, the uncorrected tests severely over-reject in the high-dimensional

environment. This is confirmed by the columns of Table 2 which are labeled ‘raw’.

The Bartlett-corrected tests are much better sized. Their actual size is reason-

ably close to 5% for all (p, T )-pairs with p/T < 0.3. For p/T ≥ 0.4, even the

Bartlett-corrected tests substantially over-reject.
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Max-eval test Trace test
p T p/T raw corrected raw corrected J02 JHF05
2 20 0.10 8.59 6.60 8.69 6.61 9.28 6.74
2 100 0.02 6.09 5.65 5.55 5.25 5.65 5.31
5 20 0.25 29.98 9.34 36.72 8.85 17.13 7.24
5 100 0.05 7.67 6.06 7.95 5.83 6.85 5.87
10 25 0.40 95.92 14.35 99.73 19.42 51.40 16.23
10 50 0.20 32.60 9.16 51.59 8.40 12.68 7.62
10 100 0.10 14.04 7.50 19.17 6.69 8.40 6.61
20 45 0.44 100.0 16.87 100.0 28.52 89.05 60.13
20 60 0.33 98.36 9.64 100.0 12.04 28.77 12.62
20 150 0.13 27.55 7.84 59.47 6.50 8.22 6.08
20 500 0.04 9.66 6.33 13.05 5.38 5.78 5.27
50 105 0.48 100.0 20.47 100.0 44.23 100.0 100.0
50 150 0.33 100.0 8.97 100.0 12.09 31.96 29.93
50 200 0.25 99.73 8.27 100.0 8.21 10.32 8.85
50 500 0.10 34.98 6.75 94.13 6.02 5.59 4.86
50 1000 0.05 14.63 6.32 44.46 5.22 4.86 4.57
100 300 0.33 100.0 8.67 100.0 12.84 40.05 72.41
100 400 0.25 100.0 8.32 100.0 9.38 6.89 13.86
100 1000 0.10 64.72 7.49 100.0 6.52 4.05 4.32
100 2000 0.05 23.80 6.33 92.96 5.63 4.38 4.50

Table 3: Student’s t(3) version of Table 2.

Interestingly, such an over-rejection is much less pronounced for the trace test

which uses our correction formula instead of that proposed by Johansen (2002).

Moreover, the size of ‘our’corrected test is closer to 5% than that of the ‘J02-

corrected’test for all (p, T )-pairs, except (2, 100) and (100, 400) . It is also closer

to 5% than that of the ‘JHF05-corrected’test for all (p, T )-pairs, except (2, 100),

(5, 20) , (10, 25) , (10, 50) , and (20, 150) . A further study of this phenomenon is

left for future research.

Our final MC experiment assesses the robustness of the above findings to the

deviations from the Gaussianity. We repeat all of the above MC experiments using

the same settings, but drawing the i.i.d. components of η (see the data generating

equation (1)), first, from the centered chi-squared distribution with one degree of

freedom, χ2(1), and then, from Student’s t(3) distribution. The centered χ2(1) has

zero mean, but is strongly skewed to the right, whereas Student’s t(3) has only

two finite moments.

We find that the MC results reported in Table 1 and Figure 2 remain practically
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unchanged (see SM). However, the results reported in Table 2 change. Table 3 is

the analogue of Table 2 for the t(3) case. To save space, we report a similar table

for the centered χ2(1) in SM. Overall, the ‘raw’tests over-reject even more, whereas

the sizes of the corrected tests somewhat increase.

6 Empirical analysis

This section illustrates the real world relevance of our theoretical results with an

empirical example inspired by Engel et al. (2015) (EMW15). That paper uses a

few common factors extracted from a panel of 17 log exchange rates for prediction

of the individual series. The factors are assumed to “soak up a common unit root

component”in the log exchange rates, implying their cointegration. However, the

paper does not attempt to test for cointegration, referring to the poor finite sample

performance of the available tests in high dimensions.

There have been many previous studies of the cointegration among a smaller

number of exchange rates. Baillie and Bollerslev (1989) find evidence for cointe-

gration among seven exchange rates using daily data. Diebold et al. (1994) argue

that including intercept in the VAR model changes the analysis so that there is

no evidence for cointegration. More recently, Cheng and Phillips (2012) find no

cointegration in a four-dimensional exchange rate system. However, they point out

many previous studies that agree on the existence of the fractional cointegration

between exchange rates.

Following EMW15, we consider logs of US dollar exchange rates for 17 OECD

countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Ger-

many, Japan, Italy, Korea, Netherlands, Norway, Spain, Sweden, Switzerland, and

the United Kingdom. We use two different datasets. The first one is EMW15’s

quarterly data from 1973:1 to 1998:4 (just before the introduction of the Euro).

For these data, the ratio c = p/T equals 0.16. Hence, the extreme canonical cor-

relation may be relatively insensitive to stationary but persistent alternatives (see

Figure 2), and the power of related cointegration tests may be low. Therefore, we

also consider weekly data, where c equals 0.018. The weekly data are extracted

from Federal Reserve, H10 dataset.2

2The dataset is daily from 13/04/1981 (the first available day for Korea) to 31/12/1998. We
define the weekly series as the daily exchange rate on the last day of the week. Our results with
weekly data are similar to those with daily data (not reported). We decided to use weekly rather
than daily data because the value of c for the latter falls well outside the range studied in our
Monte Carlo section.
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Figure 3: Cdf ofWc (solid line) superimposed with the cdf of the empirical distribu-
tion of λj, j = 1, ..., 17. The coordinates of the circle markers are: x = λj, y = j/17.

Let st be the 17-dimensional vector of log exchange rates at time t.We interpret

the first observation as t = 0, and construct Xt = st − s0 so that the initial

value of Xt is zero. Next, we compute the squared sample canonical correlations

λj, j = 1, ..., 17 between demeaned ∆Xt and demeaned Xt−1 − tρ̂1, where ρ̂1 =

XT+1/ (T + 1) . Here T + 1 is the size of the sample with T = 102 for the quarterly

data and T = 924 for the weekly data.

Figure 3 shows the cdf of the empirical distribution of λj, j = 1, ..., 17 super-

imposed on the cdf of Wc (solid lines). For the quarterly data, the fit between

the two cdf’s is tight and the extreme λ’s almost coincide with the boundaries

of the support of Wc. Hence, there is no obvious reason to quickly reject the no

cointegration hypothesis.

In contrast, for the weekly data, the fit is only good up to about the me-

dian. The largest squared sample canonical correlation (not shown on the graph

to enhance visibility of the other λ’s) equals 0.436, which is more than four times

larger than the upper boundary of the support of Wc, b+ = 0.103. This signals the

existence of the cointegrating relationships.

For the quarterly data, the values of the maximum eigenvalue and trace statis-

tics are 110.89 and 742.71, respectively. The corresponding asymptotic 5% critical

values3 equal 110.77 and 698.69. Therefore, the uncorrected tests reject the null

3We compute these values by simulation, using the response surface technique of MacKinnon
et al (1999).
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test alternative ρ=0 0.3 0.5 0.6 0.7 0.8 0.9 1
‘Quarterly data’

max eigenvalue (ii) 55.7 13.6 7.4 6.3 5.8 5.5 5.4 5.5
trace (iii) 100 100 100 89.8 20.3 1.1 0.4 6.1

‘Weekly data’
max eigenvalue (ii) 100 100 100 100 100 99.1 19.2 5.1

trace (iii) 100 100 100 100 100 100 100 5.4

Table 4: Power of the Bartlett-corrected maximum eigenvalue and trace tests. For
the trace test ‘our’correction formula is used. The last column of the table reports
actual size of the test with the asymptotic size 5%.

of no cointegration. However, the Bartlett-corrected maximum eigenvalue statistic

equals 99.16, overturning the conclusion of the uncorrected test. Similarly, the

trace statistic, when corrected using ‘our’formula, equals 672.08, and when cor-

rected using Johansen’s (2002) formula, equals 677.39. In both cases, we cannot

reject the null of no cointegration.

For the weekly data, the values of the maximum eigenvalue and the trace statis-

tics are 555.58 and 1290.59, respectively. The Bartlett-corrected maximum eigen-

value statistic equals 550.33. Therefore, the corrected maximum eigenvalue test

still rejects the null. The trace statistic, when corrected using ‘our’formula, equals

1278.54, and when corrected using Johansen’s (2002) formula, equals 1279.68. In

both cases, we do reject the null.

The difference between the conclusions of the tests for the quarterly and weekly

data is likely due to the low power of the tests in the former case. To verify this

conjecture, we simulate 17-dimensional Gaussian data with T = 102 (as in the

quarterly data) and with T = 924 (as in the weekly data) under three different

scenarios: (i) pure random walk; (ii) all but one of the 17 components of the

data are random walks, whereas the special component is an AR(1) with the

autoregressive coeffi cient ρ, and (iii) VAR(1) with the coeffi cient ρI17. The values

of ρ are 0, 0.3, 0.5, 0.6, 0.7, 0.8, and 0.9.

Table 4 reports the power of the Bartlett-corrected maximum eigenvalue test

against alternative (ii), and that of the Bartlett-corrected (using ‘our’ formula)

trace test against alternative (iii). In the ‘quarterly data’case, the power against

alternatives with ρ ≥ 0.7 is extremely low, and is often even lower than the size,

which is reported in the last column of the table.

In contrast, the power in the ‘weekly data’case is nearly 100% for all alter-
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Figure 4: The number of estimated common factors in the log exchange rate data
according to Bai’s (2004) IPC1 criterion.

natives, but the one with only one cointegrating relationship and ρ = 0.9. For

that alternative, the power of the corrected maximum eigenvalue test is 19.2%.

Overall, the table confirms our guess that the differences in the ‘quarterly data’

and ‘weekly data’results are due to the low power of the tests in the ‘quarterly

data’ case. The more informative ‘weekly data’ results favour the existence of

cointegration between the 17 log exchange rates.

It is interesting to compare our analysis to factor-based approaches to cointe-

gration. Bai (2004) considers non-stationary panels where the non-stationarity is

entirely due to a few common factors. Using the criteria for the determination of

the number of factors proposed in that paper (see its eq. (12)), one may consis-

tently estimate the number of the cointegrating relationships by the dimensionality

minus the estimate of the number of factors.

Figure 4 shows the number of factors estimated by Bai’s (2004) IPC1 criterion

using our quarterly and weekly data. The number of estimated factors is a function

of the user-supplied maximum number of factors kmax. By construction, the crite-

rion returns p factors if kmax = p. Hence, strictly speaking, it cannot be used to

test the null of no cointegration. Interestingly, for both datasets, when kmax is set

to no more than half the dimensionality, the criterion estimates no more than three

factors, which corresponds to no less than 17− 3 = 14 cointegrating relationships.

Unfortunately, such an estimate may be unreliable because log exchange rates do

not necessarily have stationary idiosyncratic components.
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Bai and Ng (2004), as well as Barigozzi et al. (2018) and Banerjee et al. (2017)

generalize the setup of Bai (2004) by allowing for non-stationary idiosyncratic dy-

namics. In such a framework, the presence of common factors does not necessarily

imply cointegration in the data.

The focus of Barigozzi et al. (2018) and Banerjee et al. (2017) is on the impulse

responses to the factor shocks interpreted as economy-wide disturbances. These

papers pay much attention to the cointegration between the factors because it

is consequential for the impulse responses. In contrast, the cointegration in the

data, which may be due either to factors or to idiosyncratic relationships, is of

little importance from the papers’perspective, and no systematic analysis of such

cointegration is attempted.

Bai and Ng’s (2004) PANIC methodology can, in principle, be used to test the

hypothesis of no cointegration in the data. PANIC idea is, first, to estimate the

factor and idiosyncratic components in the first-differenced data, then, cumulate

these components, and finally, determine the cointegration rank of the cumulated

factors and test for a unit root in each of the cumulated idiosyncratic terms. If

the number of stochastic trends underlying the factors is smaller than the number

of stationary idiosyncratic terms, then the data must be cointegrated.

We have applied PANIC to our data. Details of this analysis are reported in

SM. Here, we only summarize the results. The number of factors was estimated

at two. The MQτc and MQ
τ
f tests have not detected any cointegration between the

two cumulated factors. The ADFτê tests rejected the null of a unit root (at 5%

significance level) in six cumulated idiosyncratic series (Australia, Japan, Korea,

Sweden, Belgium, and Finland) when the quarterly data were used, but only in

two such series (Korea and Norway) when the weekly data were used. Taken at

face value, these results would imply the existence of cointegration in the quarterly

data, but no evidence for cointegration in the weekly data.

Note however, that PANIC does not analyze cointegration between the non-

stationary idiosyncratic terms. Therefore, its not finding a suffi cient number of

the stationary idiosyncratic series in the weekly data does not necessarily contra-

dict the evidence for cointegration contained in Figure 3 and supported by the

Bartlett-corrected maximum eigenvalue and trace tests.

As to the cointegration in the quarterly data found by PANIC, unfortunately,

this result may be spurious. To show this, we simulated 17-dimensional random

walk data with T = 102, driven by innovations ηt that have covariance matrix

Σ equal to the sample covariance matrix of the actual first-differenced quarterly
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data. In contrast to the methods based on the squared sample canonical correla-

tions, PANIC is not invariant with respect to the choice of Σ, so the calibration is

important. We repeated the simulation 10,000 times, each time applying PANIC

analysis assuming the existence of two factors. Even though the data are not coin-

tegrated by construction, PANIC rejected the null of a unit root for three or more

idiosyncratic components (which is suffi cient for the existence of the cointegration)

in 7,092 cases. It found 6 or more stationary components in 1,864 cases.

In conclusion of this section, we would like to remind the reader that in this

paper we do not propose any new methods for determining the number of cointe-

grating relationships. Looking at Figure 3, we are tempted to “estimate”it by the

number of λ’s that ‘deviate’from the cdf of Wc. For the weekly data, the number

of the ‘deviating’λ’s is, perhaps, 9. However, we have nothing to say about the

properties or the quality of this estimator. Its study is left for future research.

7 Conclusion and discussion

This paper establishes the a.s. convergence of the largest and the smallest eigen-

values of S01S−111 S10S
−1
00 to the upper and lower boundaries of the support of the

Wachter distribution Wc0 . This complements OW18’s result on the a.s. weak con-

vergence of the empirical distribution of the eigenvalues to Wc0 . The strategy of

our proofs is similar to that of the proof of the convergence of the extreme eigen-

values of the sample covariance matrix in BS98. However, the fact that we have

to deal with the product of four dependent stochastic matrices, S01, S−111 , S10, and

S−100 , presents substantial challenges that we overcome.

Eigenvalues of S01S−111 S10S
−1
00 can be interpreted as squared sample canonical

correlations between demeaned innovations of a high-dimensional random walk

and detrended and demeaned levels of this random walk. Such eigenvalues form

the basis for the trace and maximum eigenvalue tests of no cointegration in high-

dimensional VAR(1). Both the LRtrace and LRmax statistics have singularities at

unity, and OW18’s result cannot be used to establish their a.s. convergence.

The result of this paper shows that the singularity can be ignored because none

of the eigenvalues of S01S−111 S10S
−1
00 are close to unity asymptotically. Thus, our

Corollary 1 establishes the a.s. limit of the scaled trace and maximum eigenvalue

statistics. We use this result to obtain previously unknown analytic formulae for

Bartlett-type correction coeffi cients for the trace and maximum eigenvalue tests.
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We establish Theorem 1 under Gaussianity of the errors ηt of model (1). We

need the Gaussianity for two reasons. First, it allows us to reduce the analysis of

S01S
−1
11 S10S

−1
00 to that of C

′D−1CA−1, where C, D, and A have form ε′Wε with

block-diagonal W , and ε has i.i.d. elements. Second, we use it to derive bounds

on the expected value of the inverse of the smallest eigenvalue of A (in SM). In

principle, the first reason can be circumvented by simply assuming that the matrix

ε of the discrete Fourier transforms of η has i.i.d. (but not necessarily Gaussian)

elements. This still leaves the second reason intact. Unfortunately even a seemingly

innocuous assumption that the elements of ε are i.i.d. Bernoulli random variables

leads to non-invertibility of A with small but positive probability, and hence, to

nonexistence of the expected value of the inverse of the smallest eigenvalue of A.

We leave removing the Gaussianity assumption as an important topic for future

research.

The Monte Carlo analysis in Section 5 shows that the extreme squared sample

canonical correlations are well approximated by the boundaries of the support of

the Wachter distribution in finite samples and without Gaussianity. Our Bartlett-

correction formulae deliver well-sized tests, especially in situations where p/T is

relatively small. Interestingly, our Bartlett correction outperforms the correction

proposed in Johansen (2002) for most of the Monte Carlo settings.

Guided by the theoretical results of this paper and of OW18, we propose a quick

graphical method for cointegration detection in a high-dimensional VAR(1). The

empirical cdf of the squared sample canonical correlations is superimposed on the

cdf of the Wachter distribution Wp/T . A visible mismatch signals the presence of

cointegration. We view this technique as complementary to more formal analysis

based on statistical tests.

As an empirical application of the proposed graphical method and of the ob-

tained Bartlett correction formulae, we study cointegration between log exchange

rates of 17 OECD countries. We find a clear evidence of the cointegration in the

weekly data, but not in the quarterly data. This is consistent with our Monte Carlo

results that find low power of the cointegration detection procedures in situations

where p/T is relatively large, which is a feature of our quarterly data.

In our opinion, there are two most important directions for future research.

First, the results of this paper and of OW18 should be generalized to the VAR(k)

setting with k > 1. A preliminary Monte Carlo analysis shows that the empirical

distribution of the squared sample canonical correlations would still converge to

a Wachter distribution, but parameters of that Wachter would depend on the pa-
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rameters of VAR(k) under the null. Second, it would be interesting to study the

asymptotic fluctuations of the empirical distribution of the squared sample canon-

ical correlations around the Wachter limit. This would allow one to directly derive

the simultaneous large-p and large-T asymptotics for the cointegration tests, in-

stead of relying on the Bartlett-type correction of the tests based on the sequential

asymptotics. We are following these two research directions in separate projects.
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