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We present a model for the evolution of vowel sounds in human languages, in which words behave
as Brownian particles diffusing in acoustic space, interacting via the vowel sounds they contain.
Interaction forces, derived from a simple model of the language learning process, are attractive at
short range and repulsive at long range. This generates sets of acoustic clusters, each representing
a distinct sound, which form patterns with similar statistical properties to real vowel systems.
Our formulation may be generalised to account for spontaneous self actuating shifts in system
structure which are observed in real languages, and to combine in one model two previously distinct
theories of vowel system structure: dispersion theory, which assumes that vowel systems maximize
contrasts between sounds, and quantal theory, according to which non linear relationships between
articulatory and acoustic parameters are the source of patterns in sound inventories. By formulating
the dynamics of vowel sounds using inter-particle forces, we also provide a simple unified description
of the linguistic notion of push and pull dynamics in vowel systems.

I. INTRODUCTION

Each human language has its own inventory of sounds.
Within these inventories a distinction is made between
consonants, which require some restriction of airflow
for their production, and vowels; resonant sounds, for
which airflow is relatively unrestricted [1]. Vowels are
the primary carriers of linguistic information in con-
nected human speech [2, 3]. The sound of a vowel is
determined largely by the position and configuration of
the tongue, although other parts of the vocal apparatus
can be involved [4]. Linguists have traditionally repre-
sented vowels as points in a two dimensional articula-
tory domain (the vowel quadrilateral) with coordinates
given by tongue height and backness [5]. To produce the
vowel sound in 〈cat〉, represented phonetically as [æ], the
tongue is in a low, forward position. By contrast the
vowel in 〈foot〉, pronounced [U], is articulated with the
tongue dorsum in a relatively high and backed position.
Vowels may also be reliably identified from the first two
peaks, or formants (F1, F2), of their frequency spectrum
[6] (Figure 1). Models of vowel production [7] and experi-
ments [8, 9] suggest that F1 strongly correlates to tongue
height, and F2 to backness, although recent work sug-
gests that F2 may depend on both [9]. Mathematically,
there appears to be a bijective map from articulatory to
acoustic (F1, F2) space which is approximately affine [10],
with some exceptional regions [11]. For this reason, we
will view vowel sounds as existing in a closed two dimen-
sional domain: vowel space.

Vowel systems exhibit recurring patterns and regular-
ity: The majority of languages (64.6%) have between 5
and 7 different qualities of vowel with /i/ /a/, and /u/ oc-
curring in over 80% of languages [12]. Moreover, certain
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arrangements within vowel space are particularly com-
mon [12–14]. Vowel systems, like most elements of lan-
guages, evolve over time and may therefore be viewed as
dynamical systems coupled to the social dynamics of hu-
man society, and also to geography and social networks
[15–17]. Cross-linguistic similarities suggest that their
internal dynamics may play a particularly powerful role,
and numerous models have been proposed [13, 14, 18–
25]. In the early work of Liljencrants and Lindblom
[13], vowels were modelled as electrical charges, based
on the principle of maximal contrast [26], yielding a sin-
gle idealised vowel system for each cardinality (number
of vowels). Focalization theory, which adds an attractive
interaction to vowel dynamics, hypothesizes the conver-
gence of formants [18, 27], increasing acoustic salience
and “perceptual value”. Other models involve iterative
construction driven by contrast maximization [20], or
agent based imitation games between speech synthesiz-
ers [14, 21]. One inspiration for our work is exemplar
dynamics [22–25, 28, 29], where agents store in memory
a large number of exemplars for each sound, organised
into sound categories. When uttering a sound, an ex-
emplar is reproduced (with noise) from memory and ac-
cepted as valid by listeners based on how easily it can
be identified and, in some cases, how typical it is of its
category [24]. When two categories get close, they may
overlap, making identification of utterances in the inter-
secting regions more difficult, leading to their rejection
as exemplars. This shifts the mean sounds of the two
categories apart, as if subject to a repulsive force. Ex-
emplar models have recently been analysed [23, 30], with
the aim of determining conditions for the merger of sound
categories, and the behaviour of the boundaries between
them in vowel space. Repulsive mechanisms are com-
mon to all the models above and generate distributions
of sounds which are dispersed in vowel space. They are
known as dispersion theories [12, 31].



2

500100015002000250030003500
F2(Hz)

200

400

600

800

1000

1200

F 1
(H
z)

Front Central Back

Low

Mid

High

FIG. 1. Formant data for the vowel sounds of 76 speakers
of American English from the original study of Peterson and
Barney (1952) [6], where speakers were recorded reading the
words heed, hid, head, had, hod, hawed, hood, who’d, hud
and heard. Axes have been reversed so that the positions of
vowels correspond to those in the IPA vowel chart [5]. The
approximate shape of this chart has been superimposed on
the formant data, to illustrate the correspondence between
mean formant positions (large points), and the arrangement
of the traditional chart. Front vowels: Blue i, Orange I, Green
E, Red æ. Back vowels Light green u, Grey U, Pink O, Purple
2, Brown A. Central vowel: Turquoise 3.

While there is clearly value in defining models with
greater linguistic realism (using realistic synthesizer
equations [21], or metrics of perceptual distance [19]), this
approach also makes the determination of their general
behaviour difficult. It is hard to evaluate whether the
complexity they add in order to better match reality is
scientifically justified, or whether it is a form of interpola-
tion. Exemplar theory is a step away from this approach,
and may be defined as a simple iterative computational
model. However, rigorous analysis is challenging [30],
and because the atomic constituents of the theory are
tokens in the memories of speakers, simulations of large
numbers of different sounds and words are also computa-
tionally expensive. The theory has been used to explore
interactions between words and phonemes [23, 24], but
it has not so far been used to model the evolution of
realistic vowel systems.

The model that we present builds on the ideas de-
scribed in the above models, but we aim for an analyt-
ical definition which is simpler to simulate and analyse.
Sound change in language may be thought of as the dif-
fusion of word pronunciations in acoustic space, mak-
ing Brownian (Langevin) dynamics [32, 33] the natural

mathematical description of their motion. We think of
vowel systems as a “soup” of words or, more technically,
phonological frames. These frames interact via the vowel
sounds that they contain, and the interaction forces may
be seen either as a phenomenological model [34], based on
established qualitative models of sound change [35], or as
a simplified version of exemplar dynamics. Interactions
between frames are mediated by a cloud of utterances – in
our case formant clouds – but unlike exemplar theory, we
do not explicitly model this collection of sounds, only the
mean sound for each frame. This dramatically simplifies
the model, yielding one stochastic differential equation
per frame, facilitating analytical calculations, and allow-
ing the simulation of a large number of words. Our for-
mulation is analogous to a physical model (frames form a
charged colloid [36–39]) allowing us to clarify traditional
qualitative descriptions of change in terms of pushing and
pulling. Its simplicity also allows a number of extensions
to describe a range of different phenomena in one uni-
fied model. These include self actuating sound change
[40–42], allophonic sound variations, the effect of non-
linearities in the relationship between articulatory and
acoustic parameters [11, 43] and word-frequency effects
which have recently been observed in a purely computa-
tional exemplar model [24].

II. A BRIEF INTRODUCTION TO
PHONOLOGY

For the benefit of non-linguists, we now review the
relevant elements of phonology : the branch of linguistics
that deals with systems of sounds.

A. Phonemes and allophones

Individual speech sounds are usefully viewed as exist-
ing within phonological frames [24]. For instance, in En-
glish the frame /m p/, if it forms a single word, will ac-
cept one of two sound categories, creating either 〈map〉
or 〈mop〉. Similar variants appear in other words, with
subtle variations depending on the frame. Because of
these variations, a distinction is made between the con-
trastive sound categories: phonemes and their context
dependent versions, termed allophones. For example
〈pea〉, 〈spin〉 and 〈sip〉 all contain what English speak-
ers might call a p-sound, but these sounds are all slightly
different. The transcriptions of these words into pho-
netic symbols, which represent specific sounds, are [phi:],
[spIn] and [sIp^]. The three p-sounds here are, respec-
tively aspirated (followed by a burst of breath), unaspi-
rated and unreleased (meaning that there is no audible
end to the temporary occlusion of airflow needed to make
the sound). These three variants are allophones of the
English phoneme /p/

/p/ = {[ph], [p], [p^]}. (1)
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Phonemes differ between languages: Thai speakers, for
example, consider [ph] and [p] to be manifestations of
distinct phonemes, /ph/ and /p/ respectively. Allo-
phones may be grouped into phonemes by examining the
sounds that surround them (their phonological environ-
ment). Consider the frame /kæ / where /æ/ is the vowel
phoneme in the word 〈cat〉. Inserting any of the allo-
phones of /p/ would produce an utterance recognised
by English speakers as the word 〈cap〉. However insert-
ing the sound [b] produces an utterance with a differ-
ent meaning. We say that [b] is in contrastive distribu-
tion with [p]; if we switch the sounds in the frame, we
change the meaning. Allophones of the same phoneme
are generally not in contrastive distribution; they are
(normally) in complementary distribution. This means
that they are not found in the same immediate phono-
logical environment. For example [p^] can only occur in
syllable-final consonant clusters and [ph] only occurs ei-
ther word-initially or at the beginning of a stressed sylla-
ble. Therefore they never contrast, and given a phoneme
we can predict which allophone will appear simply by
knowing what other sounds surround it. The definition
of a phoneme and its allophones applies identically to
consonants and vowels. For example, an English vowel
phoneme is /æ/, which occurs in 〈bad〉 and 〈bat〉. Here
the allophone in 〈bad〉 is longer, transcribed [æ;]. An-
other characteristic which distinguishes vowel allophones
is nasalization as in 〈ban〉[bæ̃;n].

Since the allophones of a phoneme typically exhibit
quite subtle variations, the term phoneme is often used
as if it referred to a single sound in the language. Do-
ing so is no less consistent than using allophone in the
same way. In reality the units of sound uttered by speak-
ers vary widely between and within individuals. Both
phonemes and allophones are categories, with one being
a subcategory of the other. We will exploit this idea when
we come to explore allophonic variations in section VII.

B. Vowel systems

As explained above, the first two formants, or equiv-
alently the position of the tongue, are the primary de-
terminers of vowel sounds, but other articulatory vari-
ations can be involved as well. After height and back-
ness, the next most common is lip rounding [12]. There
is, however, a strong cross-linguistic correlation between
rounding and backness (94.0% of front vowels are un-
rounded, and 93.5% of back vowels are rounded), mak-
ing the parameter redundant in most cases. Beyond lip
rounding, many languages have separate series of vow-
els, each distinguished by some additional characteristic
such as length (long vs short) or nasalisation (nasalised
vs oral). Often the sounds in both series occupy the
same positions in vowel space. For example in Mazatec
[44] there are four oral vowels /i,E,a,o/ and four corre-

sponding nasalised versions /̃i,Ẽ,ã,õ/. In this case we say
that Mazatec has four vowel qualities. This matching be-

tween series is the norm so we can ignore additional char-
acteristics and still provide description of vowel systems
which captures the essential properties of their structure
for most languages. This will be our approach, until we
consider allophonic variation in section VII.

III. THE MODEL

We view words as particles in acoustic space, with po-
sitions determined by the vowel sounds they contain. A
cluster of words then implies the existence of a frequently
occurring sound in a language. We propose short-range
attractive and long-range repulsive forces between words
based on some ideas from linguistics about the interac-
tions between phonemes [13, 17, 45]. Before setting out
the details we describe how such forces can lead to the for-
mation of a vowel system. Consider a large number words
distributed uniformly at random throughout a chamber
representing vowel space as in Figure 2. At first, particles
near to each other will be drawn together, forming loose
clusters whose typical size will be determined by the ra-
dius at which the attractive force becomes repulsive, as
in Figure 3. As time progresses, provided the volatility of
the random component of their motion is not too large,
these clusters will become tighter and more separated
due to long range repulsive effects. Depending upon the
shape of the chamber, and the range of the short and long
range components of the interaction force, we will obtain
a number of different arrangements of particle clusters
within the system, each of which represents a different
inventory of sounds.

We now set out the details. For words with only one
vowel, their position is unambiguous, but words with two
or more vowels occupy multiple positions. We view such
words as generating one or more phonological frames, or
environments, for the vowels they contain. For example

〈hoodwink〉→ /h dwINk/ + /hUdw Nk/. (2)

Each such frame now has a unique position in the acous-
tic domain, determined by the sound which is placed in
its gap. For simplicity we assume that two frames from
the same word interact in the same way as frames from
different words.

We now consider a large group of speakers who are
sufficiently socially connected to pronounce the words of
their language in a roughly similar way. Acoustic exper-
iments show that vowel sounds are subject to variation.
Peterson and Barney (1952) [6] collected formant data
for a group of 76 American speakers pronouncing a series
of ten words which differed only in their vowel, allow-
ing F1/F2 values to be collected for ten vowels. Because
these utterances vary between speakers, the formant val-
ues form clouds in acoustic space. In Figure 1 the large
coloured dots show the centroids of each vowel phoneme
cloud. We have superimposed the standard IPA vowel
quadrilateral [5] on the scatter plot, and we note that
to a good approximation the centroids sit in the chart
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FIG. 2. Early stage configuration of 100 particles (words) in
a chamber representing acoustic (F1, F2) vowel space. Range
of attractive force α = 1, cloud radius σ = 1, diffusion coeffi-
cient D = 0.1. Blue arrows show attractive forces, red show
repulsive.
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FIG. 3. Later stage configuration (t=0.5) of 100 particles
(words) in a chamber representing acoustic (F1, F2) vowel
space. Range of attractive force α = 1, cloud radius σ = 1,
diffusion coefficient D = 0.1.

positions assigned by linguists over half a century earlier
[46].

We let xi(t) ∈ R2 be the population average vowel
sound uttered for frame i, and we refer to xi(t) as the
position of this frame. Because utterances of the vowel
sound in each word form a cloud in acoustic space [6],
the next utterance to be heard from frame i will be a
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FIG. 4. The articulatory to acoustic map, g. In order to
utter a target sound in acoustic space, a speaker must arrange
her articulatory apparatus (tongue, lips, laryngeal structures
etc.) into the correct position, y. The uttered sound will be
x = g(y).

random variable Xi(t). The speaker who produces this
utterance must arrange her vocal apparatus into an ap-
propriate configuration to create the desired sound. We
denote by g the function which maps points in articula-
tory space (mouth cavity shape etc.) to points in acoustic
space as illustrated in Figure 4. To generate the desired
sound, the speaker must have an intuitive knowledge of
the inverse mapping g−1 so that given the target sound
x she is able to form her mouth parts into the appropri-
ate configuration y = g−1(x). We assume, for now, that
on average the articulatory states Yi used by the pop-
ulation to generate sounds Xi produce unbiased results
in the sense that the average values of outputs over all
speakers and utterances are equal to the frame position

E[g(Yi(t))] = E[Xi(t)] = xi(t). (3)

We also assume that articulatory states used to generate
xi are normally distributed, having mean g−1(xi). In
this case, if the map g is affine

x = g(y) = Ay + c (4)

where A ∈ R2×2, then the utterances Xi will also be
normally distributed, having density function

ψi(x) =
1

2π|Σ|
exp

Å
−1

2
(x− xi)

TΣ−1(x− xi)

ã
. (5)

Here, the covariance matrix Σ determines the shape of
the cloud of utterances [6, 47]. In the spherical case we set
Σ = σI where I is the identity matrix, and σ is the cloud
radius. Strictly speaking we could have taken (5) as the
definition of the shape of the utterance cloud in acoustic
space, without needing to consider the map g. However,
experiments show that there are regions of acoustic space
where g is not affine [11] and, as we will see in section
VI, this affects both cloud shape and system dynamics.

We define the state of the vowel system of our language
to be the set of all frame positions {xi(t)}ni=1, where n is
the number of frames. Interactions between these frames
are generated by the language learning process. When



5

a speaker learns how to pronounce the word which gen-
erated frame i, not only will utterances of the word it-
self provide templates for its vowel sound, but so will
similar sounds in other words. If two frames contain
vowel sounds which can be used as templates for one
another, that is, speakers consider them to contain the
same sound, we write

xi
T
= xj , (6)

where
T
= denotes template equality. We write Si for the

set of frames whose vowel sounds act as templates for
frame i

Si = {j such that xj
T
= xi} (7)

where time dependence is implicit. In this paper we use
proximity in acoustic space to define template equality

xi
T
= xj ≡ |xi − xj | < α (8)

where α ≥ 0 is the template range. The set of templates
for each frame will evolve over time, as frames change
position. The overall density of utterances which may be
used as templates for learning the vowel sound in frame
i is then defined

ψ̂i(x) :=
∑
j∈Si

(1 + ωδij)fjψj(x) (9)

where fj is the relative frequency with which frame j is
uttered, and ω ≥ 0 (the self-focus) is the extra weight
placed on utterances of the frame as a template for its

own vowel sound. We call ψ̂i(x) the template density for
frame i. When we have a set of frames for which every
frame is a template for every other, then we call this set
a phoneme. Given the template density for a frame i we
can compute the template mean for that frame

x̂i =

∫
R2 ψ̂i(x)xdx∫
R2 ψ̂i(x)dx

(10)

=
1

Ni

∫
R2

ψ̂i(x)xdx (11)

=

∑
j∈Si

(1 + ωδij)fjxj∑
j∈Si

(1 + ωδij)fj
(12)

where Ni is the normalising constant for the template
density. The template mean, x̂i, is the mean value,
weighted for self -focus, of all the utterances from the
frames which a language learner uses when learning the
sound in frame i. The linguistic environment of each new
learner will be different, and they will inevitably intro-
duce their own idiosyncrasies driven by learning mistakes,
the desire to emulate certain individuals, and variations
in their own physiology. However, on average we have no
reason to expect anything other than unbiased variations
around the template mean. Ignoring the effect of frames

x^x1 x2

FIG. 5. The set of utterances for two different frames whose
vowels are part of the same phoneme. The template mean is
the average location of the locations of the frames, and since
frames are attracted toward their template mean, they are
attracted to other frames in the same phoneme.

which are not templates, we therefore expect new speak-
ers coming of age to use sounds which on average match
the template mean. As older speakers with more archaic
forms of speech die, the speech sounds of the population
as a whole will move in the direction of the template
mean. This behaviour will induce a effective force on
frame i which draws it toward the mean of its templates

fatti := x̂i − xi. (13)

This is the simplest choice of inter-particle force con-
sistent with the above considerations, which are sum-
marised visually in Figure 5.

We now consider repulsive interactions, which are in-
duced by disruptions to the learning process caused by
frames which are nearby in acoustic space, but not suffi-
ciently near to be templates. Given a frame i, the density
of such anti-template frames is

ψ̃i(x) :=
∑
j /∈Si

fjψj(x). (14)

We call ψ̃i(x) the anti-template density. Sounds from
anti-templates will interfere with language learners’ abil-
ity to recognise nearby template sounds, making the tem-
plate sounds less likely to be copied [17, 23, 45]. To see
how this might occur, consider a language that contains
two acoustically similar vowel phonemes. Suppose that a
language learner has noticed that these two sounds play
two different roles in the language. We do not know
how the developing mind achieves this but it is neces-
sary in order to make sense of language. For example,
there are minimal pairs of words such as 〈pen〉[phEn] and
〈pan〉[phæn] which contrast only in a single vowel. Here it
is essential to be able to distinguish /E/ from /æ/. When
learning how these two phonemes should sound, there will
be many occasions where words are uttered using a sound
which, from a purely acoustic perspective, is hard to cat-
egorise as one or the other. Evidence for this is shown
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FIG. 6. Approximate distribution of F1 values for female
front vowels, derived from Peterson and Barney vowel data
[6]. Curves are normal densities having means and standard
deviations equal to those of the first formants of female front
vowels. Colour coding matches that in Figure 1: Blue i, Or-
ange I, Green E, Red æ.
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FIG. 7. Approximate distribution of F1 values for female
back vowels, derived from Peterson and Barney vowel data
[6]. Curves are normal densities having means and standard
deviations equal to those of the first formants of female back
vowels. Colour coding matches Figure 1: Light green u, Grey
U, Pink O, Purple 2, Brown A.

in Figures 6 and 7 where, at least in American English,
phonemes can be separated by as little as one standard
deviation of their acoustic distribution. In this situa-
tion, an experienced speaker may be able to use a word’s
context, and the vowel’s phonological environment, to ef-
ficiently identify what has been said. However a younger
speaker must build up this ability over time. Until then,
there will be cases where the meaning of a word is am-
biguous. Even if the word meaning is understood, the
utterance may not be perceived as a legitimate pronun-
ciation, if its phonemes are too close to other recognis-
able sounds. In both these cases the uttered sound is,
we assume, less likely to influence the language devel-

opment of the speaker. An argument similar to this is
made by Labov [35] and is the basis of exemplar theory
[23, 24, 45]. The effect of rejecting or otherwise reduc-
ing the importance of acoustically ambiguous phonemes
during the learning process will be to push the sounds of
the language away from regions of acoustic space which
are overcrowded with phonemes. This will induce an ef-
fective repulsive force between frames that are not close
enough to be considered as templates of one another.

To arrive at a plausible form for the repulsive effect
on frame i from its anti-template frames, consider a sin-
gle frame j /∈ Si. A simple measure of the extent to
which j crowds i is the ratio of the density of frame j
utterances at xi, to the total template and anti-template
frame density in the same location, weighted for func-
tional load, γ ∈ [0, 1]: the amount of work that individual
vowel phonemes do in distinguishing words [48, 49]

γfjψj(xi)

ψ̂i(xi) + γψ̃i(xi)
. (15)

As γ → 0 sounds become irrelevant to word identifica-
tion and so the effect of overcrowding becomes negligible.
The effect of overcrowding by frame j will be proportional
both to this overcrowding ratio, and also to its distance
away from i: if more distant templates are rejected, the
effect on the mean of the templates which are accepted
will be larger. The total repulsive force on frame i con-
sistent with these assumptions is then

f repi :=
γ

ψ̂i(xi) + γψ̃i(xi)

∑
j /∈Si

fjψj(xi)(xi − xj), (16)

and the total force on frame i is f i = fatti + f repi . To
summarise: in the absence of phonemic overcrowding,
the mean acoustic position of all the utterances of a
frame made by new learners is equal to the mean po-
sition of all the templates for that frame. These include
the frame itself, and other frames containing sufficiently
similar sounds. Phonemic overcrowding, realised as the
close proximity of anti-templates, causes the rejection of
templates in overcrowded regions, creating a bias away
from these regions. Attraction toward the template mean
generates a short range attractive force between frames,
and bias away from overcrowded regions generates a long
range repulsive force. The template range α determines
the radius of the attractive region around a frame. Out-
side this radius, the strength and range of repulsive inter-
frame forces are controlled, respectively, by the functional
load γ and by the cloud radius σ.

The interactions defined by (13) and (16) are not sym-
metric or additive. More common frames exert a greater
influence on their surroundings, and the effect of one
frame on another depends on its relative rather than ab-
solute density. We capture stochasticity in speaker be-
haviour with a diffusion process with coefficient D, so
each frame obeys

dxi(t) = f idt+
√

2DdWi (17)
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Rejected Template

 

Phoneme A Phoneme B

FIG. 8. The set of utterances for two different phonemes, each
consisting of at least one frame. When two phonemes are near
to each other in acoustic space, utterances of one may sound
like the other increasing the likelihood that these utterances
will be not be accepted as valid templates by language learn-
ers. Such utterances are represented as open circles in the
above diagram.

where Wi is an n-dimensional Brownian motion [32].
This Itô stochastic differential equation (SDE) is equiv-
alent to inertia free Langevin dynamics [33].

IV. DERIVATION AS AN EXEMPLAR MODEL

Our model (17) is phenomenological in the Landau
sense [34]. We now derive it as an approximate exemplar
model, partly in order to connect it with recent theory
(exemplar dynamics [22–24]) but also because it is useful
(for Sections VI and VIII and for future work) to have
an explicit model of language learners accepting and re-
jecting templates. Exemplar dynamics in its purest form
is an explicit computational model of a large population
of sound units (exemplars) in the memories of speak-
ers. Typically these sounds are characterised by a single
acoustic variable [23, 24]. Exemplars for us are a subset
of the utterances {Xi}ni=1 (those which are not rejected
by learners). Excepting the means {xi}ni=1, the distribu-
tions of the utterances Xi are specified exogenous to the
model. This simplification allows the dynamics of our
language to be specified as a set of SDEs.

If an utterance Xj(t) ∈ Si influences how a young
speaker learns the vowel sound, xi(t), in frame i then
it is an exemplar of that sound. Suppose that a tem-
plate of frame i is uttered as sound x and pi(x) is the
probability that this sound is accepted as an exemplar of
the frame. The exemplar mean for frame i is then the
expected value of its exemplars

x̄i :=

∫
ψ̂i(x)pi(x)xdx∫
ψ̂i(x)pi(x)dx

. (18)

We may approximate the exemplar mean by expanding
pi(x) to first order about the template mean. The tem-
plate density (a superposition of Gaussian densities hav-
ing overall mean x̂i) is approximated as a Gaussian with

mean x̂i (so ∇ψ̂i(x̂i) = 0) and covariance ciΣ. We have

x̄i ≈
∫
ψ̂i(x)x(pi(x̂i) + (x− x̂i) · ∇pi(x̂i))dx∫
ψ̂i(x)(pi(x̂i) + (x− x̂i) · ∇pi(x̂i))dx

(19)

=
pi(x̂i)Nix̂i +

Ä∫
ψ̂i(x)x⊗ (x− x̂i)dx

ä
∇pi(x̂i)

pi(x̂i)Ni +
Ä∫

ψ̂i(x)(x− x̂i)dx
ä
· ∇pi(x̂i)

(20)

= x̂i +

Ä∫
ψ̂i(x)x⊗ (x− x̂i)dx

ä
∇pi(x̂i)

Nipi(x̂i)
(21)

= x̂i +
ciΣ∇pi(x̂i)
pi(x̂i)

(22)

where ⊗ is the outer product. This relation links the
exemplar mean to the template mean via the acceptance
probability. The number ci > 1 is the ratio of the width
of the template density to the width of the densities of
individual frames. Assuming that frame clusters are tight
compared to cloud size, then ci ≈ 1.

We now explicitly define the acceptance probability
based on an overcrowding argument similar to that used
in section III. Consider frame i, located at xi, and also
another point x in vowel space. If x is not too far from
xi, and a large fraction of the sounds at x come from
templates of i, then these templates are unlikely to be
confused with anti-templates of i near x. However, if lo-
cation x is overcrowded with nearby anti-templates then
rejection becomes likely. The simplest choice consistent
with these considerations is to let pi(x) be the relative
density of i-templates at x, corrected for functional load

pi(x) =
ψ̂i(x)1|x−xi|<R

ψ̂i(x) + γψ̃i(x)
, (23)

where R > 0 is a cut-off radius beyond which sounds
are rejected outright. In the absence of functional load
(γ = 0), pi(x) = 1|x−xi|<R, so vowel sounds are rejected
only when excessively distant from the current frame po-
sition, without reference to the crowding effects of other
phonemes. Using (23) we have

Σ∇pi(x̂i)
pi(x̂i)

=
−γψ̂i(x̂i)Σ∇ψ̃i(x̂i)Ä
ψ̂i(x̂i) + γψ̃i(x̂i)

ä2 Äψ̂i(x̂i) + γψ̃i(x̂i)
ä

ψ̂i(x̂i)

(24)

= − Σ∇ψ̃i(x̂i)
γ−1ψ̂i(x̂i) + ψ̃i(x̂i)

(25)

= −
∑
j /∈Si

fjΣ∇ψj(x̂i)
γ−1ψ̂i(x̂i) + ψ̃i(x̂i)

(26)

= −
∑
j /∈Si

fjΣΣ−1(xj − x̂i)ψj(x̂i)

γ−1ψ̂i(x̂i) + ψ̃i(x̂i)
(27)

=
∑
j /∈Si

fjψj(x̂i)(x̂i − xj)

γ−1ψ̂i(x̂i) + ψ̃i(x̂i)
(28)
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yielding the following expression for the exemplar mean

x̄i ≈ x̂i +
∑
j /∈Si

fjψj(x̂i)(x̂i − xj)

γ−1ψ̂i(x̂i) + ψ̃i(x̂i)
. (29)

If acoustic differences between the mean vowel sounds of
frames within one phoneme greatly exceed the difference
between phonemes, or the cloud radius, then we can ap-
proximate the template means in the summand of (29)
with xi. In this case we have

x̄i − xi ≈ x̂i − xi +
∑
j /∈Si

fjψj(xi)(xi − xj)

γ−1ψ̂i(xi) + ψ̃i(xi)
(30)

= fatti + f repi (31)

where fatti and f repi are the phenomenological forces de-
fined in section III. If we consider a single frame, and
assume that on average young speakers match the mean
of the sounds they accept as exemplars for this frame,
then the community’s speech will evolve towards that
mean. The simplest force consistent with this assump-
tion is f i = x̄i−xi, and we will show below that this force
may be derived from a simple agent based model. The
above calculations showed that in the exemplar accep-
tance/rejection picture, this force decomposes into short
range attractive and long range repulsive components
given by (13) and (16).

To derive the SDE (17) we consider a community of
N speakers whose evolution is driven by the replacement
of older speakers by new speakers who learn from the
community. We divide time into intervals of length δt =
N−1. At each interval a speaker is selected uniformly
at random from the population, “retired”, and replaced
with a new speaker whose language state is a random
variable with expectation equal to the exemplar mean.
We can write this new state x̄i + εi where εi = sZi,
with Zi ∼ N (0, I), is a random variable which captures
the stochasticity injected by the new speaker, perhaps by
their own free will, physiological differences, or selective
copying of certain individuals. This produces speakers
who live for a geometrically distributed number of time
intervals, with mean N , giving an average lifespan of one
time unit. To calculate the state of the community after
a replacement, we first write the state of the speaker who
is removed as

xdead
i = xi + δi (32)

where δi is a zero mean random variable with approx-
imately the same statistical properties as εi. After a
replacement the new frame position will be

xi(t+ δt) = xi(t)−
xdead
i (t)

N
+

x̄i(t) + εi
N

(33)

=

Å
N − 1

N

ã
xi(t) +

1

N
(x̄i(t) + εi − δi). (34)

Defining δxi(t) = xi(t+ δt)− xi(t), we have

δxi = (x̄i − xi)δt+

…
2s2

N
Zi
√
δt. (35)
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FIG. 9. Shift in the exemplar mean away from the frame
position x̄i − xi for one phoneme (modelled by unit vari-
ance Gaussian) induced by another identically sized phoneme.
Red: exact calculation using acceptance probability (23)
when σ = 1, γ = 0.5, R = 3. Black: approximation with
the same parameter values (30). Blue: approximation with
larger clouds σ = 1.5 and lower functional load γ = 0.3.

In this simple model, stochasticity in the population as a
whole is smaller in larger populations. However, an im-
plicit assumption of the model is that new speakers are
exposed to the whole community, because their linguistic
state depends on the exemplar mean. N is therefore not
realistically equal to the number of speakers of an entire
language, because there are likely to be many smaller
communities with dialects. It is possible to extend the
above model to account for geographically or socially sep-
arated groups but this is beyond the scope of the current
paper. Letting Wi ∈ R2 be a standard two dimensional
Brownian motion then we have

√
dtZi

d
= Wi(t+ δt)−Wi(t) := δWi (36)

where
d
= denotes equality in distribution. We may there-

fore write our discrete SDE (35) as

δxi = (x̄i − xi)δt+

…
2s2

N
δWi (37)

= (fatti + f repi )δt+
√

2DδWi (38)

where

D =
s2

N
. (39)

From this we see that our phenomenological equation
(17) is the continuous time equivalent of (38).

Figure 9 illustrates the difference between the exemplar
model and its approximate form (the phenomenological
model (17)). In Figure 9 we compare the shift in the
exemplar mean calculated exactly using the acceptance
probability (23), and the approximate shift calculated
by expanding pi(x) to first order about x̂i. We have
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considered two phonemes each composed of a set of co-
located frames, and set the template range to α = 0+,
so we only see the repulsive component of the interac-
tion. As expected the approximation converges to the
exact result as the phoneme separation tends to zero.
For larger separations the approximate shift falls away
more quickly, creating a shorter range repulsive interac-
tion. This difference in range appears because in (17)
we are measuring interference effects on frame i using
the relative density of anti-templates at the location of
i, rather than in the outer reaches of its cloud, so anti-
template frames must be closer to have an effect. By in-
creasing the cloud radius relative to the exemplar model,
and lowering the functional load, we can achieve a similar
interaction force in both models. The two forms of the
model are alternative but qualitatively similar ways of
characterising how phoneme overcrowding affects vowel
sound evolution, based on the same underlying ideas. We
work with the approximate model because of its simpler
form which is efficient to simulate and to analyse mathe-
matically. However, we take account of the effects above
when selecting the cloud radius.

V. COMPARISON TO REAL SYSTEMS

A. Defining vowel space

Although the traditional vowel chart is a wide-based
trapezium, average formant values for vowel sounds sug-
gest that the accessible region in (F1, F2) space is closer
to triangular in shape, with /a/ forming the lowest apex.
Figure 10 shows the mean formants of the peripheral
(outermost) vowels of Northern Standard Dutch. In this
particular language /o/ and /O/ are very close, suggesting
that the difference between them is captured by some-
thing other than their first two formants. In many other
languages /o/ and /O/ are not close, for example in Amer-
ican English ∆F1 = 226 Hz [50]. This highlights the fact
that the meanings of the phonetic vowel symbols are not
precisely defined in terms of any measurable quantity.
Rather, they are a tool for describing the general struc-
ture of the phonemic systems of languages. The approxi-
mate correspondence between typical formant values and
the traditional IPA vowel chart is all the more remark-
able for this. A particularly notable discrepancy is the
relative heights of /a/ and /A/, which are identical in the
standard IPA vowel chart but in reality appear to differ
in the their first formant.

Motivated by the above considerations, and to avoid
introducing unjustified complexity into the model, we opt
for a symmetric trapezoidal (approximately triangular)
space, as is used to tabulate differences between vowel
systems in large inventories [12, 52]. Figure 11 illustrates
this and also shows the approximate position of the nine
most common short vowels [53]. Their relative frequen-
cies, together with example words, are shown in Table I.
Letting the bottom left vertex of vowel space define the

A
a

E
e

i
O
u

o

2524 Hz 1572 Hz

1550 Hz

918 Hz

921 Hz

294 Hz

F2

F1

FIG. 10. Average formant values of the peripheral vowels
i,e,E,a,A,o,O,u for female speakers of Northern Standard Dutch
[51]. Marked formant frequencies give the positions of the
extreme vowels /i,a,u/. Orange region shows the typical fre-
quency range F2 ∈ [1400, 1700] for the second subglottal res-
onance in female speakers [4] (see section VI).

B

H

W

i

e

E

a

O

o

u

@

1

FIG. 11. Symmetric trapezoidal vowel space used in our
model, together with the IPA symbols and approximate po-
sitions of the nine most common short vowels (see table I).
Orange region is the periphery of vowel space, purple is the
interior. Speakers of English may be surprised by the absence
of low back vowels /A/ (7 %) or /6/ (4%) which appear in
words like 〈pot〉. These are rather rare worldwide.

origin of coordinates, then their positions are

x =
B

2
± kW

4
(40)

y =
H

8
+
kH

4
(41)

with k ∈ {0, 1, 2, 3}, with interior vowels /@, 1/ at
(B/2, 5H/8) and (B/2, 7H/8).

In our model, repulsion between phonemes occurs as
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IPA Symbol Example word Frequency

i (i:) GenAm USA: 〈bee〉[bi:] 92% (32%)

u (u:) GenAm USA: 〈shoe〉[Su:] 88% (29%)

a (a:) RP UK: 〈now〉[naU] 86% (30%)

e (e:) RP UK: 〈bay〉[beI] 61% (21%)

o (o:) GenAm USA: 〈go〉[goU] 60% (21%)

E (E:) GenAm USA: 〈bet〉[bEt] 37% (11%)

O (O:) RP UK: 〈bore〉[bO@] 35% (10%)

@ (@:) RP UK: 〈bear〉[be@] 22% (4%)

1 (1:) S. African Eng: 〈lip〉[l1p] 16% (1%)

TABLE I. The nine most common short vowels and their long
versions. Frequency column shows the percentage of lan-
guages in the PHOIBLE database [53] which contain each
vowel. Frequencies (and IPA symbols) of long forms are in
brackets. GenAM and RP stand for “General American” and
“Received Pronunciation”.

a result of cloud overlap, rather than from any notion
of contrast. We therefore use formant cloud shapes to
estimate the dimensions of our trapezium. It is clear
both from Figure 1 and formant inventories for different
languages [47] that clusters of formant data represent-
ing different phonemes within a single language, and the
same phoneme across different languages, vary in size
and shape. We characterise shape and position as fol-
lows. Given a large formant data set {F1i, F2i}Ni=1, we
let S(X) denote the set of formants which were uttered
for phoneme X. We define the F1 mean and radius (stan-
dard deviation) of phoneme X to be

µ1(X) =
1

|S(X)|
∑

i∈S(X)

F1i (42)

σ1(X) =

Ñ
1

|S(X)|
∑

i∈S(X)

F 2
1i

é
− µ2

1(X) (43)

with similar expressions for the F2 mean and radius. Be-
cause of vocal tract size, average formant values for male
and female speakers differ systematically. This elongates
formant clouds at the population level. Since listen-
ers subconsciously normalize for such differences [25], we
consider only one sex: female. In Figure 6 the F1 radius
of phoneme clusters increases (approximately linearly)
with increasing F1. If σ1(X) = σ2(X) we say that X is
spherical. Provided phonemes which are close enough to
interact experience approximately the same systematic
shape variation with position in formant space, then a
transformation of this space which makes all phonemes
spherical will have little effect on their overlaps. This as-
sumption means we can model all frame clouds as spheri-
cal with the same cloud radius in this transformed space.

When frame and phoneme clouds are spherical, vowel
arrangements which are near equilibrium with respect to
repulsive forces are strongly affected by the aspect ratio

of the transformed vowel space

AR =
Max width

Height
. (44)

We may estimate this ratio using the formant data in
Figure 1. We define a standardised distance between the
high vowels /i/ and /u/, which is approximately the same
in both formant and transformed space

∆(u,i) :=
µ2(u)− µ2(i)

σ̄2
(45)

=
1891

227
(46)

≈ 8.3 (47)

where σ̄2 is the average radius of u and i. A similar
calculation for front vowels gives

∆(æ,i) =
µ1(æ)− µ1(i)

σ̄1
(48)

=
580

93
(49)

≈ 6.2 (50)

where σ̄2 is the average radius of the front vowels /i, I,
E/, and /æ/. Since /æ/ is not the lowest vowel, but lies
between /a/ and /E/, then the true standardized height
of vowel space is greater than this. According to the
standard vowel chart /æ/ lies midway between /a/ and
/E/ so we approximate ∆(a,u) = 6∆(æ,u)/5. Using our
two standardized distances we can estimate the aspect
ratio

AR ≈ ∆(u,i)

∆(a,i)
=

8.3

7.4
≈ 8

7
(51)

We take H = 7 and B+ 2W = 8 so that a unit phoneme
cloud radius would be consistent with the Figure 1 data.
We set B = 1 to accommodate the lowest vowel, giving
the vowel space dimensions shown in Figure 11 which we
use for all simulations. Because the phenomenological
model generates shortened interaction range we set the
frame cloud radius to be σ = 1.5 in simulations, which
generates interactions of comparable range to the exem-
plar version with unit radius (see Figure 9). We model
the effect of vowel space boundaries using a repulsive
force perpendicular to each boundary, of magnitude

|fboui | =
E

2

ï
1 + tanh

Å |∆xi|
w

ãò
(52)

where |∆x| is the distance from the boundary, E is the
maximum magnitude and w is the width of the boundary.
We set E = 10, w = 0.2 in all simulations.

B. Properties of real vowel systems

Our sources of statistical information on vowel system
properties are PHOIBLE [53], an online repository of
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Category Freq. Category Members Frequ.

Repr. of Repr. Description of Cat. of Cat.

i 96.1 % Hight Front i,I,y,Y 99.4 %

u 92.4 % High Back u,U 99.0%

a 91.4 % Low a,A,æ,5,Œ 94.5%

e 74.2 % Upper Mid Front e,ø 74.8%

o 74.1 % Upper Mid Back o 74.1 %

E 39.0 % Lower Mid Front E,œ 40.7 %

O 37.5 % Lower Mid Back O,2,6 40.1 %

@ 23.9 % Central @,7,9,3,Æ 29.1 %

1 17.4 % High Mid 1,W,0,8 26.9 %

TABLE II. The nine vowel categories used in our analysis.
“Frequency of Representation” is the percentage of surveys in
the PHOIBLE repository [53] containing the category repre-
sentative (after stripping modifications). “Frequency of Cat-
egory” is the percentage of surveys containing at least one
category member. Categories members were selected based
on their typical formant value proximity to the category rep-
resentative.

phonological inventory data (containing 2186 languages);
Ian Maddieson’s “Patterns of Sounds” [12], based on a
representative sample of the world’s languages, contained
in the UCLA Phonological Segment Database (UPSID),
and Crothers’ vowel system typology [52], which sought
to find a simplified classification of vowel systems.

Both Crothers and Maddieson use the idea of vowel
quality, allowing them to identify sets of similar sounds
as equivalent. We mimic this approach by identifying ev-
ery vowel sound as a member of one of nine categories,
each represented by one of the most common sounds
shown in Figure 11. All of the most common systems
with fewer than ten vowels identified by Crothers also
used only these nine sounds [52]. The phonetic alpha-
bet is equipped with an extensive notation for recording
subtle modifications of the 28 symbols on the standard
IPA vowel chart. For example surveys recorded in the
PHOIBLE repository together contain 1094 symbols rep-
resenting vowels. We firstly removed all modifying marks
(producing 28 symbols) then used the mapping in Table
II to assign category membership. For example /æ:/ is
first stripped of its length mark, and then assigned to the
category /a/. Our category assignment was based on es-
timated overlap in formant space, using typical formant
values for the 28 IPA vowels. The frequencies in Table II
also illustrate the percentage representation of each cat-
egory amongst the surveys in the PHOIBLE repository.
It is interesting to note the very high degree of front-back
symmetry in these representations, which is reflected in
our choice of system geometry.

Our categorisation scheme generates a typology : a clas-
sification of the world’s languages into groups according
(in this case) to the structure of their vowel system. Of
the 29 = 512 possible system types in our scheme, only
106 are attested out of 3020 surveys (note: the number
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FIG. 12. The fifteen most common vowel system types follow-
ing categorisation of PHOIBLE repository vowel data. Per-
centages give frequency amongst 3020 surveys, and integers
give system size.

of surveys exceeds the number of languages due to di-
alectical variation [54]). This suggests that the dynami-
cal processes which generate vowel systems are attracted
to certain equilibria, and that many possible types are
inherently unstable or unattractive to speakers. Figure
12 shows the fifteen most common vowel systems in the
world’s languages, accounting for over 80% of the sur-
veys. Eleven have perfect front-back symmetry, and of
the four that don’t, two form a symmetrical pair. Simi-
lar results were obtained by Crothers [52], with eight of
the eleven most common systems in his typology being
symmetric.

The relative frequency of different system sizes (car-
dinalities) has also been of interest to linguists [12, 14,
52]. According to both Crothers and Maddieson, five
vowel systems are more common than any other, with
/a,e,i,o,u/ the most common of all. Our typology re-
produces this result. However there is no unique solu-
tion to the problem of determining the relative frequen-
cies of different vowel system sizes. Human societies in
their “natural” pre-industrial state have low geographical
connectivity, supporting many closely related languages
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Num.Vowels Maddieson Crothers PHOIBLE

2 - - 0.2 %

3 5.4% 11.1 % 10.3%

4 8.5% 10.6% 6.8%

5 30.9% 30.8 % 22.7%

6 18.9% 19.2 % 16.5 %

7 14.8% 13.5 % 16.8 %

8 5.4% 4.3 % 7.5 %

9 7.9 % 7.2 % 8.5 %

10, 11, . . . 8.1 % 3.4 % 10.6 %

TABLE III. Percentage of languages by their vowel sys-
tem sizes (number of qualities) estimated by Maddieson [12],
Crothers [52] and using our typology, based on PHOIBLE
[53].

and dialects in relatively small areas. A nation state
destroys this variation, replacing it with a national lan-
guage. Regions such as Papua New Guinea, Central and
West Africa and Australia therefore contribute a dispro-
portionately high number of languages. This problem is
typically addressed by sampling uniformly from language
family groups [12] and from geographical areas [52]. Am-
biguities can also result from the need to define vowel
quality. Despite this, in Table III we see that our results
(all PHOIBLE surveys with no adjustments for language
size or family) are in broad agreement with those of Mad-
dieson and Crothers.

The final statistical property that we consider is corre-
lation between different sounds (two-point functions, in
statistical mechanics). Given a category X, we define the
indicator function that it is present in survey `

SX(`) =

®
1 if X ∈ `
0 if X /∈ `.

(53)

The indicator is a binary variable, and the correlation
between two categories is

φXY :=
〈SXSY 〉 − 〈SX〉〈SY 〉»

(〈S2
Y 〉 − 〈SX〉2) (〈S2

Y 〉 − 〈SY 〉2)
(54)

where 〈·〉 denotes the average over all surveys. In statis-
tics this correlation is called the phi coefficient, but it is
also equal to the Pearson Correlation Coefficient. Table
IV shows these correlations calculated from PHOIBLE,
as well as simulated values. The strongest correlations
are between front and back vowels of the same height:
that is, if we have one of a front-back pair at given height,
then we are likely to have the other. After these, there
are weaker correlations between the mid central category
and its surroundings, and in particular between the high
and mid central categories 1 and @. We will discuss the
significance of this relationship in section VI.

Rank Pair φ (PHOIBLE) Pair φ (Model)

1 O, E 0.74 1, o 0.47

2 ? e, o 0.71 1, e 0.42

3 i, u 0.28 ? e, o 0.32

4 ?@, 1 0.19 ? @, E 0.32

5 @, O 0.18 e, O 0.29

6 ?@, E 0.15 ? E, o 0.23

7 @, e 0.15 E, 1 0.23

8 u, O 0.15 a, e 0.20

9 ?@, o 0.15 ? @, o 0.16

10 ?o, E 0.15 ? @, 1 0.15

TABLE IV. The ten largest correlation (φ) coefficients be-
tween categories in the PHOIBLE database and the model.
Starred pairs appear in both lists. Model parameters σ =
1.5, γ = 0.5, D = 0.025, n = 150.

C. Model behaviour and cross-linguistic
comparison

To investigate the behaviour of our model, and com-
pare to real systems, we generate frame distributions be-
ginning from randomized starting configurations where
frames form a constant intensity Poisson point process
[55] within vowel space. We then run the model for
sufficient time (25 lifetimes) for a set of phoneme clus-
ters to form, and to settle into a quasi stationary state.
Stabilisation consists of frame movement in response
to repulsive interactions, and occasional mergers be-
tween phonemes. More rarely, we see splitting events,
where groups of frames spontaneously break away from
a phoneme. When only one or two frames break away, we
call this evaporation. In order to determine what vowel
qualities our model has produced we perform a mean
shift clustering [56] of the locations of frames once a sta-
ble state is reached. The mean shift algorithm locates the
peaks of a kernel density estimate [57] of the distribution
of frames within vowel space. Peaks of this density repre-
sent the centres of phonemic clusters. Having identified
the locations of our phonemes, we then assign each to
one of our nine categories (Table II) by proximity to the
positions of their representative sounds, shown in Figure
11. In some cases we find that two simulated peaks are
assigned to the same quality: we interpret this as a primi-
tive form of allophonic variation, and count both peaks as
a single phoneme. Figure 13 shows a superposition of the
phoneme locations computed by this process. There are
dense clusters of phonemes at the vertices of the space,
corresponding to the three most common vowel qualities
/a/, /i/, /u/.

The parameter with greatest influence on how many
vowels form is the template range α. We can obtain an
approximate lower bound on this parameter by consider-
ing the threshold for (first) formant frequency discrimi-
nation in normal speech, which is ∆F1 ≈ 50 ± 10 (Hz)
[58], where F1 ∈ [235, 850] [59]. In standardised coor-
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FIG. 13. Red dots show positions of standard vowels used
for classification. Each coloured dot shows the position of
a single phoneme obtained by mean shift cluster analysis of
quasi-stable state of n = 150 frame system. Parameter values:
D = 0.025, σ = 1.5, γ = 0.5, α = 1. Plot superimposes 20
different simulated vowel systems.

dinates (dividing by σ̄1) this corresponds to a template
range αmin ≈ 0.5. It is likely that the acoustic proxim-
ity that defines two sounds as equivalent will vary be-
tween languages, because phoneme clouds and their sep-
arations vary between languages [47]. Evidence for this
is provided by vowel-to-vowel co-articulation [60] where
the articulatory requirements (configuration of the vo-
cal articulators) for a phoneme are anticipated during
the production of a previous phoneme. Such interactions
between phonemes at different positions in a word lead
to greater variability in how the same phoneme is pro-
nounced in different words. For example, in [60], utter-
ances of the form /apV/ where V is a vowel which gives
the context of /a/ were analysed to discover the extent
to which the choice of V altered the average formants
of /a/ in three Bantu languages, Ndebele, Shona and
Sotho. Whereas /a/ is relatively isolated in the vowel
systems of Ndebele and Shona (/i,e,a,o,u/) it is relatively
crowded in Sotho (/i,e,E,a,O,o,u/). Formant experiments
showed that coarticulatory effects on /a/ were consider-
ably greater in Ndebele and Shona than in Sotho. That
is, a greater range of sounds were used as if they were
the same phoneme in the languages with fewer vowels. In
our model, such languages would have a greater template
range. Additional factors used for contrast beyond the
first two formants may also make precision in these for-
mants less important, therefore altering α. We explored
this effect (Figure 14) by generating the mean number of
phonemes for a series of template ranges. From this we
see that our estimate for αmin is consistent with the ob-
servation that very few (3%) of all languages have more
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FIG. 14. Average number of spontaneously formed phonemes
vs. template range, for a system of n = 150 frames. Parame-
ter values: D = 0.025, σ = 1.5, γ = 0.5. Dots show underlying
data with darker shading indicating repeated data points.

than 9 vowel qualities [52].

At high template range we find that most systems have
only three vowels, typically /i/, /a/, /u/, consistent with
observed systems. Almost no real languages have fewer
that three vowel qualities. (Table III).

From Figure 14 we see that with a template range in
the interval 1 ≤ α ≤ 1.5 we obtain vowel system sizes
in the range {3, . . . , 8}, capturing ≈ 84% of the size vari-
ability across world languages [12]. However, α is defined
exogenous to the model, and we do not have means to
estimate its distribution, other than by comparison to
the distribution of vowel system sizes. In order to com-
pare the relative frequencies with which different vowel
phonemes appear in our model to their frequencies in
real languages, we use Maddieson’s data in Table III and
[12]. We tabulate all 120 simulated vowel systems used to
create Figure 14, and then compute the empirical prob-
ability mass function over the nine vowels for each size
of system. We can then compute relative vowel frequen-
cies over all system sizes as an average over our fixed
size mass functions, weighted by the frequencies of each
mass function in the world’s languages. The results are
given in table V. The predictions of the model typically
lie within ≈ 10% of the observed values except for the
high and central vowels /1/ and /@/. As with other dis-
persion theories, our model predicts that a high central
vowel should appear with high probability, when in real
languages it is rather rare. We return to this problem in
section VI.

Table VI shows that apart from small height varia-
tions in the mid vowels /e, E/ and /o, O/ our model, the
data from PHOIBLE and the Crothers study agree on
the most common vowel systems. As we noted earlier,
these height variations are subject to the interpretation
of individual linguists, and should not be thought of as
corresponding to a precisely defined formant interval. In
less common systems there is more disagreement between
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Category Obs. Freq. Pred. Freq. Quantal Pred.

i 99% 98% 93%

u 99% 97 % 93%

a 94% 94% 87%

e 75% 64% 67%

o 74% 56% 68%

E 41% 36% 39%

O 40% 44% 36%

@ 29% 11% 1%

1 27% 64% 36%

TABLE V. Predictions (compared to data from table II) for
the frequencies of the nine most common vowel qualities, with
and without quantal effects. Simulation parameters: n =
150, σ = 1.5, γ = 0.5, D = 0.025. In the quantal case we have
parameters Q = 2, ωx = 2, ωy = 1 .

# Rnk PHOIBLE % Crothers % Model %

3 1 a,i,u 93 a,i,u 100 a,i,u 62

3 2 a,i,o 2 - E,i,u 17

3 3 a,e,o 2 - O,i,u 12

4 1 a,e,i,u 28 a,E,i,u 59 a,e,i,u 24

4 2 a,e,i,o 17 a,i,u,1 41 a,o,i,u 24

4 3 a,i,@,u 16 - a,E,i,u 16

5 1 a,e,i,o,u 67 a,E,i,O,u 86 a,E,i,o,u 28

5 2 a,E,i,O,u 13 a,E,i,o,1 8 a,e,i,o,u 17

5 3 a,E,i,o,u 4 - a,i,o,u,1 13

6 1 a,e,i,o,u,1 31 a,E,i,O,u,1 73 a,e,i,o,u,1 55

6 2 a,e,i,o,u,@ 27 e,i,o,u,E,O 18 a,e,i,O,u,1 20

6 3 a,e,i,o,u,O 12 - a,E,i,o,u,1 18

7 1 a,e,i,o,u,E,O 64 a,e,i,o,u,@,1 50 a,e,i,o,u,O,1 41

7 2 a,e,i,o,u,@,1 15 a,e,i,o,u,E,O 46 a,e,i,o,u,E,1 36

7 3 a,e,i,o,O,@ 4 a,E,i,O,u,@,1 8

TABLE VI. The most common vowel systems of each size
in PHOIBLE [53], Crothers [52] and the model. Frequency
(%) columns show the percentage of vowel systems of the
given size which have the given form. Simulation parameters:
n = 150, σ = 1.5, γ = 0.5, D = 0.025.

the three typologies. In particular, the 7 and 8 vowel sys-
tems generated by the model are unrealistically likely to
possess a high central vowel. We conclude that while the
model matches the broad characteristics of real systems,
there are details which it fails to match. At the same
time, the question of which typology is correct may not
have an answer.

We now consider the effect of functional load. The
functional load hypothesis, first proposed by Gilliéron
(1918) [48, 61], is that the probability of phoneme loss
is inversely related to the amount of “work” done by the
phoneme in identifying words. One simple measure of
this work is the number of minimal pairs that a phoneme
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FIG. 15. Average number of spontaneously formed phonemes
vs. functional load, for a system of n = 150 frames. Parame-
ter values: σ = 1.5, α = 1.25. Blue curve D = 0.025. Orange
curve D = 0.05.
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FIG. 16. Phoneme locations for ten simulations of n = 150
using low functional load (γ = 0.1). Other parameter values:
σ = 1.5, α = 1.25, D = 0.05. Each set of symbols represent
the phonemes from a single simulation.

distinguishes, and a recent cross-linguistic corpus study
[48], has shown that phonemes which define more mini-
mal pairs are less likely to merge. In our model, phoneme
merger can occur if the peripheries of two clusters are
closer than the template range. Peripheral frames from
the two clusters are attracted, pulling the clusters pro-
gressively closer. Merger is more likely if inter-phoneme
forces are weaker, and from the definition of the repul-
sive force (16), we see that reducing functional load γ
weakens them. Since vowel system formation consists of
sequential cluster merging (and splitting) then we expect
low functional load to result in smaller phoneme inven-
tories. Figure 16 shows the strength of this effect in our
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FIG. 17. Nonlinear relationship between articulatory and
acoustic parameters. The nonlinear region II divides acous-
tic/articulatory space into two quantal regions I and III, where
speech output is less sensitive to changes in articulation.

model for two levels of stochastic noise D ∈ {0.025, 0.05}.
We find that the effects on system size (and therefore
merger probability) are systematic but weak. With lower
noise, the extremes of functional load produce an aver-
age difference of one phoneme, and for higher noise the
difference is larger, but seen only at very low functional
load where weak repulsive forces between phonemes allow
some new systems to form (Figure 15). For example we
have three different four vowel systems containing a mid
central vowel, matching the 14th most common system
in PHOIBLE (Figure 12). We also see that doubling the
stochastic diffusion D, has a subtle but systematic effect
on system size. Stochastic effects are required to bring
two phonemes within merger range, so higher diffusivity
results in more mergers, and therefore smaller systems.

VI. EFFECT OF THE SUBGLOTTAL
RESONANCE

Our model, in its simplest form, may be viewed as a
form of dispersion theory [13, 19]. It explains the place-
ment of vowel phonemes in terms of a force which acts to
maximize the acoustic distances between them. Patterns
of sounds for which these forces are in equilibrium, or
near it, are more likely to be observed in the model, help-
ing us understand why certain vowel sounds, and com-
binations of sounds, are more common than others. An
alternative explanation, quantal theory [4, 11, 43, 62],
begins from the observation that the relationships be-
tween articulatory configurations and acoustic outputs
of the human vocal apparatus contain pronounced non-
linearities where small changes in articulatory parameters
can generate relatively large changes in acoustic output
(Figure 17). The central idea of quantal theory is that
these non-linearities quantize acoustic space into sepa-
rate stable regions where the effects of changing articula-
tory parameters are small and predictable. Within these

regions speakers can more reliably produce a desired out-
put, increasing the efficiency of communication. It is ar-
gued that these quantal regions define the inventory of
sounds used in human languages. Of particular interest
to us is the relation between F2 and tongue “backness”
which has been experimentally observed in the acoustic
signals of diphthongs - continuous sounds which begin
as one vowel and end as another. When pronouncing
back-front diphthongs (for example /aI/), F2 increases
with time as the tongue moves forward. At ≈ 1400Hz
F2 jumps rapidly by around 50 − 300Hz [62]. This is
caused by a coupling between the oral and subglottal
cavities, and occurs near the second subglottal resonance
(see Figure 10). The typical magnitude and location of
the jump is predictable using a simple two-tube acoustic
model of the cavities [62].

Because quantal effects arise via the map g from ar-
ticulatory to acoustic space, we temporarily switch our
attention to the distribution of utterances in articula-
tory space. We consider a two dimensional articulatory
domain, with two dimensions backness (y1) and height
(y2). It appears that listeners mentally compensate for
the effects on formant values of age and sex so that
they perceive utterances of the same phoneme by a small
and a large person as essentially the same sound [63].
We therefore assume that both articulatory coordinates
y = (y1, y2) and their acoustic counterparts x = (x1, x2)
are normalised, so we can think of all speakers as being
the same size. Because the utterances of each frame in
acoustic space form a cloud (ψi(x)), so must the articula-
tory parameters which generated them. In the definition
of our model (section III), we assumed that when ut-
tering the sound in frame i, speakers on average used
articulatory parameters

yi := g−1(xi) (55)

with normally distributed variations. Here g−1 is the
inverse of the articulatory to acoustic map. We write the
articulatory cloud

φi(y) =
1

2πσ2
exp

Å
− (y1 − yi1)2 + (y2 − yi2)2

2σ2

ã
(56)

=
exp

(
− (y1−yi1)2

2σ2

)
√

2πσ
×

exp
(
− (y2−yi2)2

2σ2

)
√

2πσ
(57)

:= φi1(y1)φi2(y2) (58)

where we have assumed that the units of articulatory
parameters are chosen so that the cloud radii, σ, in the
two spaces are the same in those (quantal) regions where
the map g is affine. Since the jump in F2 is generated
by front-back movement of the tongue, parameterised by
y1, we can write the map g as

g(y) =

ñ
g1(y1)

a+ y2

ô
(59)

where g1(y1) is a nonlinear function which captures the
effect of the subglottal resonance. To determine the
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FIG. 18. Distortion of the acoustic frame/phoneme cloud as
a subglottal resonance at the origin is approached (red and
green distributions). Each cloud is normal in the articulatory
parameter (with σ = 1), and away from the nonlinear region
it remains normal (purple cloud). The parameters of g1, given
by equation (65) are j = 1, w = 0.5.

shape of the acoustic cloud corresponding to φi(y) we
let (Y1, Y2) be random variables drawn from φi. The cor-
responding acoustic variables are then

X1 = g1(Y1) (60)

X2 = a+ Y2. (61)

Because we have assumed that the articulatory cloud is
spherical, having covariance matrix Σ = σI, then Y1 ⊥ Y2
and also X1 ⊥ X2 so the cloud density in acoustic space
also factorizes

ψi(x) = ψi1(x1)ψi2(x2). (62)

Because the map g is linear in the height variable, the
acoustic height distribution is simply

ψi2(x2) =
exp

(
− (x2−xi2)

2

2σ2

)
√

2πσ
. (63)

Changing random variables [55] in the nonlinear case
gives the acoustic backness distribution

ψi1(x1) =

∣∣∣∣ ddxg−11 (x1)

∣∣∣∣φi1(g−11 (x1)). (64)

In order to compute this distribution we use the following
explicit form for g1 (also used to generate Figure 17)

g1(y1) = y1 + j tanh(x/w), (65)

which is a linear function throughout most of its domain,
but with a step of height 2j and width w, centred at
the origin. As w → 0, the step becomes a sharp dis-
continuity. Figure 18 shows the effect of the resonance
on the acoustic backness distribution. In the quantal
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FIG. 19. Solid blue curve shows shift in exemplar mean with
threshold R = 2σ, generated by jump in g1 of magnitude
j = 1 and width w = 0.5, defined in equation (65). Solid red
curve shows exemplar shift for a sharper discontinuity (w =
0.2). Dashed curves show least squares fits of approximate
quantal force function (68). Fitting parameters: Blue: Q =
0.34, ωx = 1.53, Red: Q = 0.60, ωx = 1.45. In both cases we
have assumed we are at the top of vowel space of x2 = x∗2.

regions, away from the nonlinearity, the acoustic cloud
remains normal. However, as the nonlinear region is ap-
proached, some utterances have articulatory parameters
which cross the jump point, creating sounds with ex-
treme acoustic characteristics compared to the average
acoustic value of the phoneme. If unusual sounds are
rejected by learners, as we have assumed when defining
the acceptance probability (23), then the mean of the
set of accepted sounds will shift. For a single phoneme
composed of co-located frames, assuming that repulsion
effects have had sufficient time to isolate it, the accep-
tance probability for one of its frames, i, becomes ap-
proximately pi(x) = 1|x−xi|<R, where R is the threshold
beyond which sounds are rejected for being too unusual.
The backness component of the exemplar mean is there-
fore

x̄i1 =

∫ R
−R x1ψi1(x1)dx1∫ R
−R ψi1(x1)dx1

. (66)

The shift of the exemplar mean away from the mean po-
sition of the phoneme, defines an additional quantal force

fquai =

ñ
x̄i1 − xi1

0

ô
, (67)

the backness component of which is plotted in Figure 19.
Here we see that the discontinuity drives phonemes away
from the subglottal resonance. We have also fitted an ap-
proximate quantal force curve with backness component

fqua = Q(x1−x∗1) exp

Å
− (x1 − x∗1)2

ω2
x

− x2 − x∗2
ωy

ã
, (68)

where x∗1 is the position of the resonance in acoustic space
and x∗2 is highest point in acoustic space. The height
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dependent term in the exponent accounts for the fact
that the quantal force requires a wide range of backness
(≈ 6σ) in order to operate (Figure 18), and so we only
expect to see its effects near the top of vowel space. From
Fig 19 we see that this force curve gives a close match
to the numerical calculation of the force. Since we do
not know the exact form of the nonlinear map g1, and
because computing the distorted clouds and exemplar
mean requires numerical integration, we take (68) as a
phenomenological definition of the force induced by the
subglottal resonance. Combing this force with the attrac-
tive and repulsive components of our phenomenological
model we obtain the quantal model with inter-frame force

f i = fatti + f repi + fquai . (69)

In the exemplar dynamics picture, the inter-frame forces
will also be altered by the nonlinear map g, because
clouds become stretched as they approach the resonance,
increasing the effective interaction range across it. Be-
cause the repulsive effect of the resonance will push
phonemes away until their clouds no longer cross it, we
assume that enhanced cross-resonance phonemic repul-
sion may be self consistently neglected in the steady
state.

To examine the effects of the subglottal resonance we
re-estimate the relative frequencies of each vowel quality
in our model when a quantal force is present. In order to
estimate the parameters of this force, we note from [62]
that the F2 jump can be up to 300Hz, which in standard
coordinates gives j ≈ 1.5. The width, w, of the jump
region depends on the properties of the vocal tract. A
more sudden jump increases the magnitude, Q, of the
quantal force. Taking j ∈ [1, 1.5] and w ∈ [0.01, 0.5]
gives force parameters Q ∈ [0.5, 2.5] and ωx ∈ [1.3, 2]
when σ = 1.5. We have selected Q = 2, ωx = 2. Table
V shows the predicted frequencies of each vowel when
quantal forces are included. Because quantal forces drive
phonemes away from the high central position /1/ we find
that the frequency of this phoneme reduces to approxi-
mately half its non-quantal value, close to its frequency
in real systems. However, the quantal force also appears
to remove the mid central vowel in nearly all the sys-
tems generated by our sample. This happens because,
although initially many systems have a central vowel, it
is only stable if repulsive forces from boundary vowels are
in balance. If the high central vowel is removed, stability
is lost, and the mid central vowel migrates up and out
to the system edge. In real vowel systems the pair /1,@/
have the fourth highest correlation (Table IV), suggesting
that the existence of one creates conditions which make
the other more likely to persist. However, the question
of what mechanism gives rise to stable central vowels is
unresolved by our model. One possibility is that these
sounds have low functional load, and are therefore less
strongly affected by repulsion. Alternatively, some lan-
guages exhibit vowel systems which are in flux [64], and
are therefore not equilibria of our dynamics. We address
the question of how stable systems can spontaneously
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FIG. 20. A phonemic configuration matching the Yoruba
and Italian languages [47] which is highly stable in the pres-
ence of a quantal force, but only marginally stable with-
out. This is the second most common vowel system cross-
linguistically, accounting for 13.4% of language surveys in
the PHOIBLE database [53]. Parameter values α = 1, σ =
1.5, D = 0.025, γ = 0.5, Q = 2, ωx = 2, ωy = 2.

change in section VIII.

The origins of quantal theory lie in a theory of sound
patterns, developed by Chomsky, Halle and others [65],
where each unit (segment) of speech is characterised by
the presence or absence of a set of features [66]. For
example, the height of a vowel is described by the two
features [± high] and [± low], where ± denotes the pres-
ence or absence of the feature. The back mid vowel /O/
includes among its features [−high, −low, +back]. Pho-
neticians were motivated to search for a physical mecha-
nism which could explain why it was possible to construct
a successful phonological theory based on features like [±
back] when phonetically, backness appears to be a con-
tinuous variable [67]. The subglottal resonance provides
a phonetic basis for the feature [± back], because it di-
vides vowel space into two stable regions. The relative
scarcity of high and mid central vowels in real systems
is consistent with this explanation, and formant based
studies have shown that the resonance provides a reliable
boundary between front and back vowels [67]. Within our
model, the second most common vowel system seen in
real languages (Figure 12), of which Italian and Yoruba
are examples, requires quantal effects for its long term
stability (Figure 20). Without this force, the upper mid
vowels /e,o/ are only marginally stable, and if stochas-
tic effects cause one of them to migrate away from the
boundary of vowel space, then repulsion from the remain-
ing boundary vowels will push it upwards to become /1/.
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VII. ALLOPHONIC VARIATION

A phoneme is a set of sounds which are never con-
trastive. That is, if two sounds are part of the same
phoneme then exchanging them within a frame cannot
change the meaning of that frame. The allophones of
a phoneme are subcategories of that phoneme which are
acoustically distinguished from one another, and are used
predictably in different contexts. That is, allophones are
in complementary distribution with one another. Acous-
tic parameters are not intrinsically allophonic or phone-
mic. For example, in Australian English there are mini-
mal pairs which differ only in vowel length as in the words
〈cut〉[k5t] and 〈cart〉[k5:t] implying that /5/ and /5:/ are
different phonemes, whereas in English received pronun-
ciation (RP) lengthening is an allophonic variation which
occurs, for example, when a vowel is followed by a voiced
consonant.

We model allophonic variation by defining each acous-
tic parameter to be either phonemic or allophonic, not-
ing that these definitions may spontaneously change. For
simplicity, we consider two parameters: height, x (phone-
mic) and length, z (allophonic). The set of vowels sounds
which are phonemically equivalent to the sound in frame
i are then the templates Si = {k s.t. |xi − xk| < α}. We
also define another, similar set based on the allophonic
parameter Pi = {k s.t. |zi − zk| < β} where β is an al-
lophonic template range. The set of frames which are in
both Si and Pi are then allophonically equivalent to i.
We write this set

Ai = Si ∩ Pi. (70)

When frame i is uttered the probability density for the
phonemic parameter is, as before, ψi(x), whereas we
write the density of the allophonic parameter χi(z) which
we can assume is Gaussian but with a different variance
to ψi. The density of phonemic templates for frame i
is then defined exactly as in the standard version of the
model

ψ̂i(x) :=
∑
j∈Si

(1 + ωδij)fjψj(x) (71)

whereas the density of allophonic templates is

χ̂i(z) :=
∑
j∈Ai

(1 + ωδij)fjχj(x). (72)

Phonemic and allophonic anti-template densities, ψ̃i, χ̃i
are defined as sums of the summands above, but over Sci
and Aci ∩Si. As with the purely phonemic version of the
model, we expect frames to be attracted to the mean of
their phonemic templates x̂i and repelled from phonemic
anti-templates. Similar arguments apply to interactions
in the allophonic dimension, producing forces of identical
form to (13) and (16), with the replacements ψi(x) →
χi(z) and (Si, S

c
i ) → (Ai, A

c
i ∩ Si). As a result, in this

model we will not see interactions between allophones of
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FIG. 21. Simulation of a vertical vowel system where vowel
length is the allophonic parameter and α = 1, β = 0.5, σx =
1, σz = 0.5, D = 0.02, γ = 1.

different phonemes: if a long allophone of /u/ gets longer
then this will not affect a long allophone of /i/.

An example simulation is shown in Figure 21. Each set
of allophones behave as their own sub-phonemic vowel
system within a subspace parametrised by zi. Using this
example it is possible to see how a phonemic split might
occur. Consider the central phoneme in Figure 21. The
existence of the two allophones implies that there is some
conditioning factor in the language (e.g. the voicing of
a following consonant) which determines the phonemic
environments in which each allophone should be used. If
this factor disappears from the language then it will no
longer be possible to predict which allophone to use in
a given frame. The two allophones are then merely two
different sounds in the language. More importantly, af-
ter the conditioning factor is lost, their functional load
will increase because the contrast brought by the condi-
tion factor has gone. They may even distinguish minimal
pairs. For this reason the allophonic parameter switches
to being phonemic and we are left with two crowded
phonemes, which will mutually repel, generating a phone-
mic split.

VIII. CHAIN SHIFTS, MOMENTUM AND
WORD FREQUENCY EFFECTS

Beginning from a randomised initial state, our model
will evolve over time into a stable system in which repul-
sive forces between phonemes are near equilibrium. Due
to stochasticity it is in principle possible for one or more
phonemes to move sufficiently far away from this equi-
librium so that the system enters the basin of attraction
of some other equilibrium configuration. A series of fur-
ther phoneme movements will then ensue, until the new
equilibrium is reached. Spontaneous sound changes from
one stable state to another also occur in real languages,
and if they involve multiple interacting sounds, they are
referred to as chain shifts [35]. This terminology arises
because multiple-vowel linguistic changes often occur in
sequence with the movement of one vowel inducing an-
other nearby to move, and so on. Chain shifts are tra-
ditionally divided into two classes: push chains, and pull
chains, discussed below. Our model appears unrealisti-
cally stable when compared to real languages, generating
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changes too infrequently. We will show below how sensi-
tivity to an age vector [40–42] in the linguistic community
can generate more realistic change processes.

A. Push and pull chains

One of the best known examples of a chain shift is The
Great Vowel Shift which occurred in the English language
between the time of Geoffrey Chaucer (1343-1400) and
William Shakespeare (1564-1616) [68]. The shift affected
the front and back long vowels of English, which moved
upwards in vowel space, with the high vowels /i:/ and
/u:/ shifting inwards and becoming diphthongs [68]

/i:/→ /@I/ (73)

/u:/→ /@U/ (74)

where the notation A→ B indicates that after the shift,
the frames which originally contained vowel A, contain
vowel B. Two theoretical explanations exist for the
mechanism which allowed this to happen. We use these
alternatives to illustrate the difference between a push
chain and a pull chain without commenting on which is
more likely [17]. For simplicity, let us consider only the
front vowels. A simplified summary of their movement is
as follows

/a:/→ /E:/→ /e:/→ /i:/→ /@I/. (75)

This shift also involved a merger, so the final state of the
frames using phonemes /e:/ and /E:/ was /i:/. The pull
chain explanation is that /i:/ changed first, creating a
gap at the top of vowel space, into which the other lower
vowels moved. That is, the leading edge of the chain
moves first. The push chain explanation is that the back
of the chain shifts first, overcrowding the sounds in front,
and pushing them forwards in sequence.

A learning based explanation for push and pull (or
drag) chains has been outlined by Labov [17], and an
adapted form of this is summarised in Figure 22. Con-
sider first the pull chain. In [17], the initial locations of
the phonemes A and B (configuration 1) are described
as stable, without need for the “mystery walls” that we
have added. These walls represent other phonemes or
the boundaries of vowel space. In our model the initial
configuration would not be stable without these confin-
ing elements because the rejection of peripheral tokens
would lead to a repulsion effect between A and B. If
the wall confining A is removed then it will move away
from B and B-tokens that were previously rejected start
to be accepted, causing B to begin motion. The fact
that the walls are needed in our model reveals a differ-
ence between it and Labov’s qualitative description of a
pull chain. We require a release of confinement in order
to produce a pull chain. That is, we must begin with a
configuration where vowels are compressed; for example
if there are four front vowels /e,E,e,i/ held in place by
repulsive forces from back vowels. If one of these, say /i/

A B

pull chain

mystery
wall

push chain

A B

B begins
to move

A begins
to move

A begins 
to move

B begins
to move

1

2

3

configuration

FIG. 22. The mechanics of push and pull chains, adapted
from Labov [17]. Pink and blue dots are utterances of two
different phonemes, A and B. Dots circled in red have a high
probability of rejection as tokens used for learning. Orange
circling indicates a lower probability of rejection. Green circle
dots are unlikely to be rejected. Mystery walls are required
to hold the phonemes together before the push chain begins.

“pops out” into the interior of vowel space then the repul-
sive forces between the remaining sounds will push them
upwards to fill the front positions until inter-phonemic
forces are in balance.

We now consider the push chain. The explanation in
[17] begins with configuration 2 of Figure 22. As we
have noted, this configuration is not stable in our model.
We therefore assume that our two phonemes are initially
separate and form part of some larger stable system. We
then assume that something causes phoneme B to start
moving (we propose a mechanism below). When B is
sufficiently close to A, token rejection effects (repulsion)
cause phoneme A to start moving away. The phoneme B
is then said to have pushed phoneme A.

Within our description of vowel dynamics, the distinc-
tion between push and pull chains is to some extent un-
necessary. Both process may be understood as the effects
of repulsive interaction forces, but in different contexts:
one in which compression is released, and one in which it
is applied. In our our view there is really no such thing
as a pull chain; vowel shifts are all caused by pushing,
and it is the start of a shift that determines whether it is
referred to as a push or a pull.

In Figure 23 we have illustrated a pull chain in a one
dimensional vowel space, which may be viewed as a toy
model of the consequence of Labov’s upper exit principle
[64], which we paraphrase as: “in chain shifting high pe-
ripheral vowels become non-peripheral.” In other words:
high front vowels (/i,i:/) have a tendency to pop out of
the top left corner of vowel space, as perhaps happened at
the start of the Great Vowel Shift. We may view the one
dimensional space in Figure 23 as a simple model of the
front of two dimensional vowel space, in which phonemes
are confined by the repulsion of other non-front vowels
(see Figure 13). The four initial vowels in this space
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FIG. 23. An example of what is commonly called a pull or
“drag” chain. Starting from randomized frame locations, four
phonemes spontaneously formed. The highest is removed
from the system at t = 25. Parameter values α = 1, σ =
1.5, γ = 1, D = 0.025. One time unit = a single speaker’s
expected life time. No momentum.

formed spontaneously, starting from randomised initial
frame positions. At t = 25 lifetimes, we removed the
highest vowel, mimicking a spontaneous shift of the form
/i:/→ /@I/. Repulsive forces between the remaining three
then pushed them upwards to fill out the empty space.
The traditional interpretation would be that the move-
ment of the top vowel dragged the lower vowels upward.

B. Momentum

Stochasticity of frame trajectories derives in our model
from unpredictability in the language learning process,
which at the population level is realised as a diffusion
process for frame location. We will show in section IX
that beyond a critical level of diffusivity, Dc, phonemic
clusters cannot form. Assuming D < Dc then the motion
of the centroid of a phoneme consisting of N frames will
undergo a diffusion process with coefficient Dpho ∝ N−1.
The magnitude of Dpho also depends on the distribu-
tion of relative frame frequencies within the phoneme,
with heavier tailed distributions leading to greater dif-
fusivity, due to the dominance a smaller number of very
common words. This purely diffusive behaviour is prob-
lematic from the point of view of empirical observations
of sound change, which often self actuate before progress-
ing monotonically (or nearly so) over a sustained period
[42]. One explanation is that language learners are sensi-
tive to the direction of change. This direction is observ-
able from differences in language use between older and
younger speakers, often referred to as the age vector of a
linguistic feature, or its momentum. A number of stud-
ies have sought to model such effects [40–42] in terms of
the relative frequency of a linguistic feature. Although
their mathematical details differ, the essential idea is that
when (new) speakers select their linguistic state, they are
biased in the direction of the age vector.

It is straightforward to incorporate the momentum ef-

fect into our model. Working with a one dimensional
acoustic space, where the position of the ith frame is
given by xi(t), we define the linguistic memory of the
community for frame i as a time average over its history

mi(t) =
1

τ

∫ τ

−∞
xi(s)e

(s−t)/τds. (76)

When τ = 1 this memory is an average over the historical
states of the community when each speaker was born.
Differentiating with respect to time we obtain

ṁi(t) =
1

τ
(xi(t)−mi(t)). (77)

We define the difference between the current state and
the memory as the age vector

∆i(t) := xi(t)−mi(t). (78)

We then define an additional momentum response

ψ(∆) = θ tanh

Å
b∆

θ

ã
(79)

which is added to the attractive (13) and repulsive (16)
forces already in our model. This is the shift in the aver-
age sound learned by a new speaker, based on their ten-
dency to emphasize “younger” forms of speech. An anal-
ogous response function appears in the frequency based
models [40, 41], where it is termed a prediction function
[40] or generates a perceived frequency [41]. The param-
eter b in (79) is the momentum sensitivity and θ is the
cut-off, giving the maximum possible magnitude of the
momentum driven rate of change. For ∆ � θ the mo-
mentum response is approximately linear ψ(∆) ∼ b∆ as
∆ → 0. The momentum model for a single frame may
be written

dxi =
[
fatti + f repi + ψ(xi −mi)

]
dt+

√
2DdWi (80)

dmi =
1

τ
(xi −mi)dt. (81)

We now analyse the stability of a single isolated phoneme
consisting of N frames of equal frequency with self focus
ω = 0. Formally we consider the limit α → ∞, so the
phoneme does not lose frames through evaporation. The
template mean and the template memory mean are

x̂(t) =
1

N

N∑
i=1

xi(t) = 〈xi〉 (82)

m̂(t) =
1

N

N∑
i=1

mi(t) = 〈mi〉 (83)

where 〈·〉 denotes the average over frames (the phoneme
average). From the definition of the momentum model
we have

dx̂ =
1

N

N∑
i=1

î
(x̂− xi)dt+ ψ(xi −mi)dt+

√
2DdWi

ó
(84)

= 〈ψ(∆i)〉+

…
2D

N
dŴ (85)
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where Ŵ is a standard Brownian motion. The analogous
equation for the template memory mean is

dm̂ =
1

τ
(x̂− m̂)dt. (86)

Subtracting (86) from (85) we obtain the age vector dy-
namics

d∆̂ =

ñ
〈ψ(∆i)〉 −

∆̂

τ

ô
dt+

…
2D

N
dŴ . (87)

Expanding the momentum response function about ∆i =
0 we obtain to order 〈∆3

i 〉

d∆̂ =

ïÅ
b− 1

τ

ã
〈∆i〉 −

b3

3θ2
〈∆3

i 〉
ò
dt+

…
2D

N
dŴ . (88)

Writing ∆i = ∆̂ + εi where εi is a zero mean random
variable we have, if εi is also symmetric (so 〈ε3i 〉 ≈ 0)

〈∆3
i 〉 = ∆̂3 + 3∆̂〈ε2i 〉 (89)

so

d∆̂ =

ïÅ
b− 1

τ
− b3

θ2
〈ε2i 〉
ã

∆̂− b3

3θ2
∆̂3

ò
dt+

…
2D

N
dŴ .

(90)
For a phoneme with a large number of frames the drift
term dominates the dynamics and we see that provided

b− 1

τ
− b3

θ2
〈ε2i 〉 < 0 (91)

then the age vector has a stable fixed point at ∆̂ = 0
so the phoneme will be subject only to a weak diffusion
with Dpho = D/N . In this case we will not see any
sustained movement in one direction. At a critical value
of age vector sensitivity, the fixed point destabilizes and
two stable fixed points appear at

∆̂ = ±
 

3θ2

b3

Å
b− 1

τ
− b3

θ2
〈ε2i 〉
ã
. (92)

The phoneme will select one of these at random, and then
execute a sustained movement in that direction, until
noise effects, interactions with other phonemes, or with
the boundaries of vowel space cause it to change direction
or return to stability. If sensitivity to the age vector fluc-
tuates with time, or if its value is near the threshold for
stability, then the phoneme may switch between periods
of stability and instability. We note that it is in principle
possible to measure the age vector within a speech com-
munity by considering differences in the vowel systems of
old and young speakers, and to measure sensitivity, given
sufficient longitudinal data.

To illustrate the effect of momentum we first consider
the behaviour of a single phoneme driven entirely by dif-
fusive dynamics, without any repulsive effects (γ = 0).
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FIG. 24. Black line shows mean location of 100 frames, start-
ing from position xi = 15, as diffusion coefficient is increased
from zero over T = 5000 lifetimes. System size L = 30. Red
and blue-green lines show 70th (30th) and 90th (10th) per-
centile frame locations, which indicate distribution of frames
within the system. Vertical olive band shows theoretical loca-
tion of critical diffusion coefficient Dc = α2/3 where phoneme
disintegrates. Other parameter values α = 2, σ = 1, γ = 0.

We consider a one dimensional vowel space xi ∈ [0, L], be-
ginning with all frames located at the same location x =
L/2. Starting from zero diffusion coefficient, we gradu-
ally increase D over a long time interval (T = 5×103 life-
times), yielding the behaviour shown in Figure 24. While
the the diffusion coefficient is less than the critical value
Dc, the phoneme remains intact and of finite size. Dif-
fusive changes in position during this phase of evolution
generate a cumulative shift of ≈ 5 cloud radii over the
first 2 × 103 lifetimes. Such a shift corresponds approx-
imately to a vowel changing from “high” to “low” (e.g.
/i/→ /æ/). Taking a single lifetime as 50 years then this
shift would take around ten thousand years to complete.
This time scale is unrealistic. For example, the Great
Vowel Shift took place over ≈ 300 years [68]. Moreover,
the template range used in Figure 24 is at the upper
end of realistic, allowing larger diffusion coefficients to
be reached before phonemic destruction. As the destruc-
tion point is approached, the phoneme expands in size,
before disintegrating entirely, leaving frames distributed
approximately uniformly over the system. We conclude
that diffusive dynamics alone is not sufficient to describe
the pace of realistic sound changes.

We now consider the effect of momentum. In Figure 25
we have simulated a two vowel system where momentum
sensitivity fluctuates over time. We model these fluctua-
tions using Ornstein Uhlenbeck dynamics [32]

dbt = a(b∗ − bt)dt+ σbdWt (93)

where b∗ is the long run mean sensitivity, a is the rever-
sion rate towards to this mean, and σb is the volatility
of the sensitivity. We set b∗ = 0.9, which is below the
threshold for spontaneous sustained shifts. Initially the
two phonemes are four cloud radii apart, producing very
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FIG. 25. Darker green and red lines show locations of
two phonemes starting from positions x = 1, 5 in a system
of size L = 10. Lighter lines give 90th (10th) percentile
frame locations for these two phonemes, as an indication of
size. Inset plot shows age vector sensitivity as a function
of time. Horizontal red line shows estimated critical sensi-
tivity b ≈ 1.1. Model parameter values α = 1, σ = 1, γ =
1, D = 0.025, θ = 0.5. Parameters for mean reversion (Orn-
stein Uhlenbeck) process followed by momentum sensitivity
are b∗ = 0.9, a = 0.05, σb = 0.1.

weak interactions. When the sensitivity crosses the crit-
ical threshold, the lower vowel spontaneously begins ris-
ing, starting a push chain. The motion of the green vowel
is halted by the boundary of vowel space, and the vowels
enter a temporary equilibrium while the sensitivity again
becomes sub-critical. A final move of the lower vowel is
generated by a short lived supercritical period of sensi-
tivity. We calculate the threshold bc by first numerically
estimating the variance of the age vector

〈εi〉 ≈ 0.07 (94)

and then setting the right hand side of (91) to zero, and
solving for bc ≈ 1.1. The two major shifts generated
in this simulation took ≈ 10 lifetimes, corresponding to
≈ 500 years, in line with the Great Vowel Shift. For
given τ the speed of the shift is controlled largely by the
momentum response cut-off θ.

The one dimensional momentum model we have de-
fined here is too simple to be directly comparable to the
Great Vowel Shift, because in its current form it does not
describe different lengths of vowel or diphthongs. How-
ever we can reproduce the essential properties of observed
systems, serving a starting point for more sophisticated
models which could be used to test hypotheses about the
nature of historical vowel shifts, and to predict future
changes.
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FIG. 26. The interaction of two phonemes (black and red),
each with two frames. Solid lines: high frequency frames
(f = 0.45), dashed: low frequency (f = 0.05). Parameter
values σ = 1, ω = 5, γ = 1. Initial age vector of black frame
∆ = 2. Momentum response parameters b = 0.7, θ →∞.

C. Word frequency effects

Exemplar theory and empirical studies suggest [24]
that high frequency frames change more slowly than low
frequency frames when pushed by the movement of an-
other vowel (a push chain [17]). The opposite occurs in
the frames which are being pushed. We consider a sys-
tem of two phonemes, each consisting of a one high and
one low frequency frame. Initially the phonemes are sep-
arated by 4σ with one phoneme having an age vector,
∆ > 0 in the direction of the other, with sub-critical
momentum sensitivity. This creates a simple two-frame
push chain. Figure 26 shows the dynamics of the high
and low frequency frames as they approach, in the noise-
less limit D → 0. We see that in the incident frame
(the “pusher”) the high frequency frame moves faster,
whereas in the “pushee” frame, the high frequency frame
is slower to react. The effects are quite subtle, as they
are in empirical data [69], and we note that the differing
response of high and low frequency frames requires pos-
itive self focus. Without this the data used by learners
is the same for all frames in a phoneme, so the dynamics
of each frame are statistically identical. The magnitude
of word frequency effects therefore provides a mechanism
to infer the extra weight that listeners place on words
as templates for the vowel sounds they contain, as com-
pared to words which contain similar sounds. Finally we
note an intuitive physical analogy. When ω > 0, higher
frequency frames behave as more massive particles which
are less strongly influenced by the proximity of others.

IX. CONTINUUM LIMIT

So far we have considered languages with relatively
small numbers of frames, each of which can be explicitly
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simulated. We now consider the many-word limit where
system dynamics may be described in terms of a contin-
uum frame density. Let N be the total number of frames
in our language and consider the limit N → ∞ in one
dimension, in which case we can define a frame density

ρ(x) = lim
δ→0

(1/δ)
∑
i

fi1|x−xi|<δ/2. (95)

We suppress the time dependence of ρ for compactness.
The set of frames which are templates for a frame located
at x lie in the template interval Tx := [x−α, x+α]. In one
dimension the total force on frame i, given the positions
of the the other frames, may be written

µ (xi|{xj}j 6=i) = x̂i−xi+
∑
j /∈Si

fjψj(xi)(xi − xj)
γ−1ψ̂i(xi) + ψ̃i(xi)

, (96)

where we have used the symbol µ to avoid confusion with
the frequency of frame i. In the limit N → ∞ we have,
for the attractive component of this force,

x̂i − xi →

∫
Txi

(u− xi)ρ(u)du∫
Txi

ρ(u)du
(97)

and for the repulsive component∑
j /∈Si

fjψj(xi)(xi − xj)
γ−1ψ̂i(xi) + ψ̃i(xi)

→
ρ(x)

∫
T c
xi

(xi − u)ψu(xi)ρ(u)du

γ−1
∫
Txi

ψu(xi)ρ(u)du+
∫
T c
xi

ψu(xi)ρ(u)du
(98)

where ψu(x) is the N (u, σ2) density; we consider the case
σ = 1 and set the self focus ω = 0 for simplicity. In the
limit N → ∞ we write the force on a frame at x as
µ(x), with the dependence on ρ implicit. In this limit
the density evolves deterministically provided the rela-
tive frequencies of all frames tend to zero as N → ∞.
Conditional on the density field, the location of frame i
obeys the stochastic differential equation

dxi = µ(xi)dt+
√

2DdWi (99)

and therefore the probability density function, pi(x, t),
for its location obeys the Fokker Plank equation [33]

∂tpi(x, t) = −∂x [µ(x)pi(x, t)] +D∂2xpi(x, t). (100)

To find the density field ρ(x) we note that because it is
deterministic

ρ(x) = E(ρ(x)) (101)

= lim
δ→0

(1/δ)
∑
i

fiE(1|x−xi|<δ/2) (102)

= lim
δ→0

(1/δ)
∑
i

fipi(x, t)δ (103)

=
∑
i

fipi(x, t). (104)

FIG. 27. Dots: estimated λ values (obtained by automated
peak identification) when α = 0.5, γ = 0. Circles: γ = 1.
Initial fluctuations given by high frequency sine wave. Dashed
lines: analytical predictions. Inset: solution to (105) for γ =
0.5, D = 0.02, giving λ = 1.39 cf. prediction λ∗ = 1.33.

Multiplying both sides of (100) by fi and summing over
i we obtain

∂tρ(x) = D∂2xρ(x)− ∂x

Ç
ρ(x)

∫
Tx

(u− x)ρ(u)du∫
Tx
ρ(u)du

å
−∂x

(
ρ(x)

∫
T c
x
(x− u)ψu(x)ρ(u)du

γ−1
∫
Tx
ψu(x)ρ(u)du+

∫
T c
x
ψu(x)ρ(u)du

)
.

(105)

This is the continuum evolution equation which defines
our model in the limit of large numbers of words. We have
made use of the fact that the contribution of individual
frames to the density field is negligible so µ(x) is the same
function for all frames.

Beginning from small fluctuations in frame density, so-
lutions to equation (105) take the form of regularly po-
sitioned peaks representing distinct vowels (inset Figure
27). Expanding ρ(u) to second order in the attractive
term, and comparing to the magnitude of the diffusive
flux, we obtain the lower bound α >

√
3D on template

range for vowel formation. This relationship was tested
in Figure 24.

We can calculate the typical number of spontaneously
formed vowels in a system by finding the wave number at
which density fluctuations are most susceptible to cluster
formation. To achieve this we write equation (105) in
terms of diffusive, attractive and repulsive fluxes

∂tρ(x) = −∂x (jD(x) + jA(x) + jR(x)) (106)

and assume that our vowel system begins from a pri-
mordial state where the distribution of frames is approx-
imately uniform with fluctuations which are spatially cor-
related only over very short ranges (no clusters of signifi-
cant size). We write the state of the system at this early
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stage

ρ(x) = c+ εη(x, t) (107)

= c+
ε√
2π

∫ ∞
−∞

η̂(ω, t)eiωxdω (108)

where c > 0 is a constant and η(x, t) is a zero-mean fluc-
tuating field with Fourier transform η̂(ω, t) and ε� 1 is
a small parameter measuring the magnitude of fluctua-
tions. At small times t, the spatial correlation function

C(z, t) =

∫ ∞
−∞

η(x, t)η(x+ z, t)dx (109)

decays rapidly with increasing |z|, and therefore has an

energy spectrum
√

2π|η̂(ω)|2 whose dominant contribu-
tions are from high wave numbers, ω [33]. As the system
evolves and phonemic clusters form, the energy spectrum
will begin to concentrate at lower wave numbers, and spa-
tial correlations will decay more slowly. The peak, ω∗,
of the energy spectrum gives the typical separation of
clusters as

λ∗ =
2π

ω∗
. (110)

To estimate the location of the peak we consider the be-
haviour of the diffusive, attractive and repulsive fluxes as
the clusters begin to form. To lowest order in ε we have,
from (105), as ε→ 0

jD(x) ∼ −εη′(x) (111)

jA(x) ∼ ε

2α

∫
Sx

(u− x)η(u)du (112)

jR(x) ∼
εγ
∫
Sc
x
(x− u)φ(x− u)η(u)du

(1− γ)erf(α/
√

2) + γ
(113)

where φ is the standard normal probability density func-
tion. Substituting the Fourier representation of η into
these fluxes allows us to write the total flux j = jD +
jA + jR as

j(x) = iε

∫ ∞
−∞

η̂(ω, t)f(ω)eiωxdω (114)

where

f(ω) = −Dω +
sin(αω)− αω cos(αω)

αω2

− γ

(1− γ)erf
Ä
α√
2

ä
+ γ

∫
T c
0

vφ(v) sin(ωv)dv. (115)

The final integral term may be evaluated in terms of er-
ror functions of a complex argument [70], but the integral
representation is more compact and easier to interpret.
Substituting expression (114) for the flux into the con-
tinuum evolution equation (106) we obtain the following

FIG. 28. Contributions to the net mode growth rate from Dif-
fusion (red), Attraction (green) and Repulsion (blue), when
D = 0.02, α = 0.5, γ = 1. Black dotted curve shows overall
mode growth rate ωf(ω) with maximum circled.

ordinary differential equation for the transform of the
fluctuations

∂tη̂(ω, t) = εωf(ω)η̂(ω, t) (116)

which has solution

η̂(ω, t) = η̂(ω, 0) exp [εωf(ω)t] . (117)

The decoupling of Fourier modes which allowed this so-
lution [71] is a consequence of the linearisation of the
fluxes in (111), (112) and (113), so the solution is only
valid for small fluctuations. However, because the loca-
tions and sizes of clusters (peaks in ρ) are decided early
in the evolution of the system, the wavelength λ∗ corre-
sponding to the fastest growing wave number ω∗ gives
an accurate approximation to the wavelength of the final
peak distribution. From (117) we see that fluctuations
with wave numbers for which f(ω) < 0 decay over time,
whereas those for which f(ω) > 0 grow, with the fastest
growing wave number ω∗ corresponding to the maximum
of ωf(ω)

ω∗ = arg max
ω

ωf(ω). (118)

This prediction is compared to simulations in Figure 27.
In the small noise limit, D → 0 we have λ → 2.29α,
so we expect vowels to be separated by just over twice
the maximum separation which speakers consider to be
phonemically equivalent. The threshold for first formant
frequency discrimination in normal speech is ∆F1 ≈ 50±
10 (Hz) [58], where F1 ∈ [235, 850] [59]. Taking ∆F1

as a lower bound on α gives a theoretical maximum of
six spontaneously formed vowel heights, consistent with
observed systems [13].

In Figure 28 we have plotted the separate contribu-
tions from the diffusive, attractive and repulsive fluxes
to the overall growth rate, ωf(ω), of Fourier modes.
Here we see that attractive forces cause all modes to
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grow, corresponding to increasing amplitude fluctuations
at all length scales as frames are pulled together pro-
ducing higher density peaks. The diffusive flux reduces
(smoothes out) fluctuations at all length scales, but has
greatest effect on high frequency (short length scale) fluc-
tuations because it penalizes the second derivative of the
density distribution. The behaviour of the repulsive flux
is more subtle: for low wave number fluctuations (large
clusters) it has a negative effect: if the typical repul-
sion range is smaller than the size of a cluster then it
will break up the cluster into smaller parts. At larger
wave numbers (corresponding to smaller clusters) repul-
sion has a positive effect on growth: when the clusters are
smaller, the dominant repulsion effect is a squeeze from
near neighbours, increasing the density of all clusters.

X. DISCUSSION

We have presented a model of the evolution of vowel
systems in which words behave as interacting particles
diffusing in vowel space, with positions determined by
the vowel sounds they contain. The interactions between
particles are modelled mathematically as physical forces,
but are derived based on our understanding of the lan-
guage learning process. Our work builds on an already
substantial collection of models of vowel system evolution
[13, 14, 18–24, 27, 30], so it is important to make clear
what we are adding. Because the mechanisms which con-
trol the evolution of sound inventories are not fully under-
stood, existing models have invoked a considerable range
of mechanisms in order to explain observations. Many
of these mechanisms induce a combination of attractive
and repulsive interactions between vowel sounds. Since
the precise linguistic, social and cognitive processes which
drive sound change remain unknown, it is difficult to jus-
tify anything other than a phenomenological approach.
That is, one which is consistent with existing theories but
does not rely on a precise scientific hypotheses regard-
ing the underlying mechanisms. Under these conditions,
simplicity is beneficial. By defining our model using the
language of physics: forces and diffusion, we simplify the
conceptual picture of vowel system dynamics, and allow
for a more transparent and thorough analysis of how the
system parameters control predictions. Moreover, these
parameters may in some cases be directly measured or
bounded (cloud radius, template range) or their values
inferred from data (diffusion coefficient, momentum sen-
sitivity).

The simplicity of our model definition has allowed us
to combine quantal and dispersion theory into a single
framework [11, 43, 67], to capture allophonic variation
and elucidate the mechanism of phonemic splitting [35],
to explore the effects of functional load [48], model self
actuating sound changes [40–42, 64], provide a simpli-
fied picture of chain shifting in which the distinction
between drag and push chains becomes redundant [17],
explain empirically observed word frequency effects in

sound change [24], predict the critical level of stochas-
ticity at which phonemes disintegrate, predict the max-
imum possible number of vowel heights a language can
contain [12, 19], and to provide a simple picture of the
process of phonemic merger. Its simplicity also allows for
efficient simulation and mathematical analysis. Because
it is derivable by considering the behaviour of individ-
ual speakers, it is in principle straightforward to extend
the definition to interacting communities and social net-
works. Because the atomic constituents of the model are
individual words, it is also in principle possible to use our
approach to model specific cross-linguistic interactions
such as borrowing, where new phonemes are created by
the inclusion of foreign words into a language (e.g. from
French to English [35]).

Our scientific conclusions are as follows. In its sim-
plest form our model may be seen as a dynamical dis-
persion theory [31], where repulsive inter-phoneme forces
drive vowel systems toward configurations which max-
imise contrast. By comparison to a large database of
phonemic inventories, and by defining of our own sys-
tem typology, we have shown that the model captures
cross linguistic relative frequencies of different sounds to
within ≈ 10%, with the exception of the high central
vowel /1/. Moreover, for vowel systems up to cardinality
six, the most common systems generated by the model
are consistent with our typology and that of Crothers
[52]. The over representation of the high central vowel is
seen in other (non-dynamic) dispersion theories [13], and
attempts have been made in the past to correct these
predictions by defining sophisticated perceptual distance
metrics [19] which effectively warp the shape and struc-
ture of vowel space. By their nature these metrics are
difficult to rigorously derive and test. In contrast, the
dynamics in our model is driven by phonemic overlap in
acoustic space, which may be quantitatively measured
using formants, fixing the aspect ratio of vowel space un-
ambiguously.

Quantal Theory provides an alternative to dispersion
theory for understanding the structure phonetic invento-
ries. We have shown that the two theories combine in our
simple framework, with quantal effects entering via the
articulatory to acoustic map [11, 39, 43] which exhibits a
pronounced non-linearity at the second subglottal reso-
nance. We have shown that this induces a repulsive force
away from the centre of vowel space, reducing the rel-
ative frequency of /1/, and stabilising the second most
common vowel system (the seven vowel system of Italian
and Yoruba). However, the quantal force also destabilises
the mid central vowel, and we can only speculate as to
the mechanisms which could counteract this effect. We
note, however, that in real languages /1/ and /@/ are
positively correlated, suggesting that the presence of one
may increase the stability of the other.

Moving beyond the over preponderance of /1/, exami-
nation of cross-linguistic correlations between phonemes
(Table IV), and of the most common empirically observed
vowel systems (Figure 12) reveals that vowels tend to oc-
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cur in front-back pairs of the same height. This symme-
try is present, but to a lesser extent, in our predictions.
In dispersion theory, positive correlations between vow-
els of the same height occur because such configurations
happen to maximize contrast. Our results suggest in real
vowel systems there may be some additional mechanism
which imposes this symmetry. We will address this point
in further work.

Sporadic sound changes [72], often involving multiple
vowels, are well documented [35, 64]. However, the long
standing actuation problem remains unresolved: “Why
do changes in a structural feature take place in a par-
ticular language at a given time, but not in other lan-
guages with the same feature, or in the same language at
other times?” [73]. One possible resolution to the prob-
lem is momentum based selection [40–42, 74], according
to which speakers react to features whose relative fre-
quency has risen in the recent past, by further empha-
sising the use of these features. In the context of sound
change, the analogue of an increase in frequency is a net
direction of change with time, which may be realised in
apparent time [35] as a difference between the behaviour
of old and young speakers. Inspired by frequency based
models [40–42] we have incorporated momentum based
change in to our model, showing that when sensitivity to
this change exceeds a critical threshold then long term
sustained shifts in vowel systems can take place. We find
that without such an effect natural variations in speaker’s
articulatory behaviour, which can be substantial [75], and
are captured by our diffusion coefficient D, are not suffi-
cient to actuate sustained shifts over realistic time scales,
whilst still preserving the integrity of phonemes (Figure
24). Our model of momentum based change generates

shifts over O(101) lifetimes, with variations depending
on the level of sensitivity, consistent with the durations
of observed changes such as the Great Vowel Shift [68].
In the deterministic setting (D = 0), artificially activated
push chains described by a system of ordinary differen-
tial equations, show that high frequency words behave
as more massive particles, responding more slowly to the
encroachment of a phoneme (Figure 26), provided that
the self focus is positive; that is, when learning how to
pronounce the vowel sound in a word, learners place more
emphasis on the word itself, than on other words contain-
ing similar vowel sounds.

Our model is by no means a perfect description of vowel
system structure and dynamics. It is best described as
a toy model. However, due to its simplicity and flexibil-
ity we have been able to use it to study and understand
a considerable variety of linguistic processes, providing
a simple mathematical picture which we hope may be a
useful tool for understanding the evolution of the sounds
of languages. The model may provide a framework for
future predictive modelling approaches which use large
formant datasets of phonemic inventories to directly cal-
ibrate dynamical models.
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