Can local NURBS refinement be achieved by modifying only the user interface?
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Abstract

NURBS patches have a serious restriction: they are constrained to a strict rectangular topology. This means that a request to
insert a single new control point will cause a row of control points to appear across the NURBS patch, a global refinement of
control. We investigate a method that can hide unwanted control points from the user so that the user’s interaction is with local,
rather than global, refinement. Our method requires only straightforward modification of the user interface and the data structures
that represent the control mesh, making it simpler than alternatives that use hierarchical or T-constructions. Our results show that
our method is effective in many cases but has limitations where inserting a single new control point in certain cases will still cause

a cascade of new control points to appear across the NURBS patch.
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1. Introduction

NURBS are the standard mechanism for modelling in CAD.
For decades [1], there has been interest in producing hierar-
chical NURBS, NURBS with T-junctions, and other NURBS
variants that allow for local refinement of a NURBS patch (Sec-
tion 3). None of these solutions, however, has yet been widely
adopted in the CAD industry. Some require significant changes
to the underlying NURBS engine. We investigate whether it
is possible to construct a mechanism that provides local re-
finement to the designer by modifying only the user interface,
leaving the underlying NURBS engine unchanged (Sections 5
and 6).

Our motivation is that providing local refinement through the
user interface alone would allow CAD software providers to
add the extra functionality without the need to make expensive
additions and changes to the underlying NURBS engine. Our
investigation shows that our method does deliver such function-
ality but that it suffers from inescapable limitations (Section 8).
Nevertheless, this idea provides an interesting intermediate op-
tion between the status quo and adoption of a new engine.

2. The challenge

Bivariate NURBS patches are composed, in parameter space,
as the tensor product of univariate NURBS. It is well known
that, in the univariate case, a NURBS curve can be locally
refined arbitrarily often in arbitrary locations (Figure 3). A
NURBS patch cannot be refined arbitrarily often at arbitrary
point locations, owing to its tensor product nature. Any refine-
ment of the NURBS patch will stretch from one side of the
patch to the other (Figure 1).
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Figure 1: (a) A NURBS patch showing control points in a regular grid. (b) The
desirable approach to local refinement, with new control points in a local area
only. (c) Attempting to do this with NURBS introduces new control points
across the mesh owing to the tensor product nature of NURBS patches.

Our basic idea is to provide a mechanism whose user inter-
face shows only the desired control points to the designer. That
is, it hides unwanted control points. We implement this as a
series of tensor product control meshes, each of which we call
a layer. Each layer is a refinement of the layer above in which
a single knot is added. Some points from a given layer may be
visible to the user and some may be hidden. The rationale here
is that the positions of the hidden control points, in the refined
layer, can be calculated from control points in the previous layer
without altering the shape of the surface. This is just basic knot
insertion where, in the univariate case, inserting a single knot in
a curve of order k (degree k — 1) causes one new control point
to be introduced and k — 2 existing control points to be moved
without changing the shape of the curve.

Our basic idea is illustrated in Figure 2. Figure 2(a) shows
what the user sees in the user-interface. Figure 2(b)—(f) shows
how this can be implemented as a series of layers, each of
which introduces a single new knot. The bottom-most layer,
Figure 2(f), is a tensor-product NURBS that is passed to the
underlying NURBS engine. There are three types of points:
visible control points available in the user interface (coloured
circles), replaced control points (grey circles) that have been su-
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Figure 2: An example of the basic idea in the cubic case. (a) The control mesh as seen by the user. In this example, the original mesh comprised the red control
points. The user then requested a row of new points (blue, upper right), a single new point on a single edge (purple, middle top), and a square of new points (yellow,
lower left). This is implemented as a series of layers. (b) The top layer is the original mesh. The grey points are those replaced by visible points in lower layers.
(c) Inserting a row of new points requires a single new vertical knot. Diamonds show control points that are calculated from points in the layer above and circles
show points that are revealed to the user for further manipulation. (d) Inserting a single control point still requires the insertion of an entire knot line. (e) A square
of control points requires inserting two new knots. The first is inserted horizontally. (f) The second knot is inserted vertically. (f) shows the final tensor-product set
of control points. The user-interface, (a), comprises the visible control points drawn from all the layers (coloured circles). Those control points in the higher layers
that are not used are marked as replaced (grey circles) and are not manipulable and not used in any further calculations. Diamonds show hidden points calculated

from the layer above.

perseded by points in a lower layer, and hidden points (coloured
diamonds) that are calculated from points in the layer above.
Note that every layer is a tensor-product arrangement, while
the control mesh visible to the user is not necessarily tensor-
product and is constructed by building a mesh from the control
points that are marked as visible in the various layers.

3. Related work

Since their invention in the 1970s, NURBS [2], a non-
uniform rational extension of B-splines, have become a uni-
versal standard for representing free form curves and surfaces
in computer aided design. Modelling is facilitated by control
points whose positions determine the desired shape. NURBS
possess many features that make them attractive for various ap-
plications such as geometric modelling, analysis, and approxi-
mation. However, NURBS suffer from a major drawback: con-
trol points need to form a rectangular topological grid.

We are interested in using NURBS for designing models in
three-dimensional space. Consider the situation when a fine de-
tail needs to be added to an existing coarse model. This is a typ-
ical operation performed in practice, for example, when adding
a small ear detail to a face model. The structure of NURBS

does not allow this to be performed as a local operation. If a
new control point needs to be introduced, a whole strip of con-
trol points, running across the whole patch, has to be added.
Otherwise, control points would no longer lie in a rectangular
grid. Thus, requesting only a single new control point causes
many unwanted control points to be introduced into the model.
This fact complicates design and produces unnecessary over-
head for the designer.

One of the earliest studies addressing this shortcoming led to
the framework called hierarchical B-splines (HB-splines) [1].
Using nested spaces, the framework allows for locally refined
patches that can represent finer detail. Later, a basis for these
nested spaces was found and its stability studied [3]. More
recently, HB-splines were studied from the point of view of
iso-geometric analysis [4], a finite element framework [5]. By
construction, the new basis functions formed by coarse and
fine level B-splines do not sum to unity: weights need to be
introduced. An improved construction, truncated hierarchical
B-splines, which avoids the need for weights and provides a
strongly stable basis, was recently discovered [6]. The trun-
cated basis functions are convex combinations of B-splines.

Independently, spline spaces over T-meshes have been inves-
tigated [7, 8]. In this approach to local refinement of B-splines,



a T-mesh in the parameter space forms a foundation for the
method. The most recent construction that addresses local re-
finement was coined locally refined (LR) B-splines [9].

The most widely known and used T-construction is T-
splines [10, 11]. T-splines are basically B-splines whose con-
trol meshes allow T-junctions. Local refinement is supported.
Nevertheless, some local changes trigger a whole chain of lo-
cal refinements [11, §4.3][12, §3.2.5]. T-splines were originally
introduced for degree three and later generalised to arbitrary de-
grees [13].

All of the T-constructions mentioned above are based on B-
splines and thus can be converted and generalised to NURBS.
This led us to the question, answered in this paper, of whether
we could achieve the desired local control by changing only
the user interface, without introducing T-splines or hierarchical
B-splines. This would allow existing NURBS software to be
used, with all of its optimisations and functionality, with modi-
fications required only to the user interface.

4. The mathematical framework

The B-spline patch is a bivariate generalisation of the univari-
ate B-spline curve. A B-spline curve is defined by a sequence
of n control points, P;, and their associated basis functions, Ni.

P(r) = Ni,k(t)Pia Imin < 7 < Imax- (D

n
i=1

The basis functions are determined by a sequence of knots, the
knot vector [t1, 1, ..., x+s], Where knots are a non-decreasing
sequence of real numbers, #; < #;;; Vi, in a parameter space
spanned by 7. The order of a B-spline curve is given by k, which
is one higher than the degree of the curve [14].

NURBS are a generalisation of B-splines in which the oper-
ations are conducted in a four-dimensional (4D) homogenous
coordinate space, where the extra coordinate is a weight associ-
ated with the control point. Displaying a NURBS curve in stan-
dard three-dimensional (3D) space requires the straightforward
projection from this 4D homogenous space to 3D [14, §5-13].
In common with many other authors, we use “NURBS” and “B-
spline” interchangeably, with the understanding that NURBS
operations require this 4D to 3D projection.

It is straightforward to introduce a new control point into a
B-spline or NURBS curve, without affecting the shape of the
curve at all. This allows subsequent manipulation of the curve,
at a finer level of detail, in the neighbourhood of the new point.

When a new knot is introduced to the knot vector, the loca-
tions of the new control points, Q;, are calculated by simple lin-
ear interpolation of the existing control points, Py, P,,...,P,.
In general, given a knot vector [t,1,, ..., #+,] and a new knot
value w to be inserted between knots #; and ¢;,1, we find [15]:

Q=P i<j—k+1
Qi=(1-a)Pi+a;P;, j—k+1<i<j 2
Q=P J<i

w—1t
where: @; = ———.
Lisk-1 = 4
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Figure 3: (a) A cubic B-spline curve (dashed black line), defined by the blue
control polygon and knot vector [1,2,3,4,5,6,7,8,9, 10]. The curve is refined
four times between the fifth and sixth knot value at 5% (red), 5% (green), 5%

(orange), and 5 1716 (purple). (b) A close-up view of the refinement steps. In each
case a new control point is inserted and two existing points are moved. (c) One
possible presentation of the user-interface, with the finest refinement presented
to the user.

Figure 3(a) and (b) shows an example of a cubic (k = 4)
B-spline curve, with four new points introduced successively.
For this cubic example, the introduction of a new control point
requires that the two control points either side are moved to new
locations (Equation 2). The resulting, refined, control polygon
is shown in Figure 3(c).

A B-spline or NURBS patch is defined as a tensor product,
where the basis functions in each direction are derived from
separate knot vectors:

P(s,1) = Z Z Nik, ()N, (DP; . @)

i=1 j=1

It is usual for the patch to have the same order (i.e., k; = k;) in
both directions. Patches are thus defined by a quadrilateral grid
of control points of size m X n.

Control of finer detail in a patch can be achieved by intro-
ducing new knots, as in the curve case, but these propagate
across the whole patch (Figure 1(c)). It is therefore impossi-
ble to introduce local control of fine detail in part of the patch
without introducing unwanted control of fine detail elsewhere
in the patch.

5. Outline of the method

Our desire is to introduce new control points in the user inter-
face only in locations where the user wishes finer control. Our
concept for achieving this is to have multiple layers of control
points. Each layer is a tensor-product NURBS mesh. The dif-
ference between one layer and the next is the introduction of
a single new knot in one of the principal directions, that is, in
either the s or the ¢ direction in Equation 3. When a new layer
is created, links are formed from points in the previous layer to
points in the new layer. These links determine the geometric po-
sitions of the new layer’s control points from those in the layer
above, using the simple relationships in Equation 2. Points in
this structure are allocated one of three labels:

visible — A point that is available to the user to be manipu-
lated and is therefore visible in the user interface.



hidden — A point that is not visible in the user interface but
which is used in determining the final surface; its position
is calculated internally from points in the layer above (Fig-
ure 2).

replaced — A point that is not visible in the user interface and
plays no part in calculating the final surface; the blending
function that it would have controlled is instead controlled
by one or more visible points in lower layers.

When a layer is created, all its points are initially marked as
hidden and then appropriate points are made visible in the user
interface. For odd degrees (k even), these are the new point
requested by the user and (k — 2)/2 points on each side of the
new point along the row (or column) on which the selected edge
sits.

When a point’s geometric position is changed, all of its de-
pendent hidden points in the layer below are recalculated. Only
one knot is introduced for any given layer, in either s or ¢ di-
rection; the recalculation therefore comprises only univariate
calculations in that direction for each row of control points. Re-
calculation propagates down through the layers until it reaches
the bottommost layer, and it is this layer of control points that
is passed to the NURBS engine.

Switching a point’s status from hidden to visible has implica-
tions for visible points in higher layers. A visible control point
will be marked replaced when a matching control point in a
lower layer becomes visible (see Section 6 for details). This is
seen, for example, in the univariate case where introducing one
new point leads to the replacement, in the visible control mesh,
of both of the adjacent existing points (Figure 3(b—c)).

This concept can be extended to the introduction of arbitrar-
ily many knots, with each new knot adding a new layer. Pro-
vided the newly-visible control points are separated sufficiently
far from one another, this layering concept works perfectly
(e.g., Figure 2). It also works for introducing a row of con-
trol points at the same knot location (e.g., Figure 2(c)) and for
introducing a block of control points (e.g., Figure 2(e) and (f))
where points are refined first in one direction and then the other,
creating two hidden layers.

However, the examples in Figure 2 are constructed carefully
to avoid any challenging cases. Challenges occur when the user
introduces a new control point near to existing hidden points.
The question is: how best to handle the dependencies between
the newly-desired visible points and the nearby hidden points.
There are several possible alternative approaches, which are de-
scribed and discussed in detail in Appendix A.

Our conclusion, from considering all these approaches, is
that the only viable solution to these challenges, one which
maintains the integrity of the mesh, is to ensure that any hid-
den point that becomes dependent on (i.e., would be calculated
from) a replaced point is made visible to the user.

6. Algorithm

The data structure (Figure 4) comprises a set of layers, each
of which is linked to the layer above (a coarser layer) and the

Figure 4: A one-dimensional example of the basic data structure. This example
shows three layers of control points. The ¢ value associated with each control
point is shown at top and bottom of the diagram. The top row is the coarsest
layer, defined by uniformly-spaced knot values; for example, the top-left point
has a basis function defined by knots [1,2,3,4,5]. The central row shows the
next layer, where the knot 4% has been inserted. The bottom row shows the third

layer, where the knot 5% has been inserted. Each control point is marked as v
(visible), r (replaced) or h (hidden). Thick connecting lines show parent-child
relationships. Thin connecting lines show other relationships. Note that every
point has a child (except in the lowest layer) but not every point has a parent.
Weights on lines show how each hidden point is calculated from points in the
layer above (and also how each of the other points was originally calculated
from points in the layer above when the layer was created).

layer below (a finer layer). Each layer is a valid tensor-product
NURBS control mesh. Each control point, in each layer, is
marked as one of visible, hidden, or replaced. Each control
point is marked with a (s, ) co-ordinate corresponding to the
position of the central knot in the support of its basis function.
This constrains the algorithm to work only for odd degree (k
even) because only odd degree B-splines have an odd number
of knots in their support!.

Each control point, in each layer, has either one or two
weighted links to control points in the layer below. One of those
links will be to a point that has the same (s, f) co-ordinate. We
say there is a parent—child relationship between points of the
same (s,f) co-ordinates in adjacent layers. For a given point,
the one or two weights from the layer above, which always sum
to one, provide the mechanism by which a hidden point’s lo-
cation is calculated from the location of the points in the layer
above.

From the set of layers we can create the mesh that is pre-
sented to the user in the user-interface. It comprises all of the
visible control points from all the layers, linked together with
appropriate edges.

The assumed starting point is a single layer, layer 0, with all
control points marked as visible. Because there is only a single
layer at the start, the initial user-interface mesh is identical to
the initial starting mesh.

We now define an algorithm (illustrated in Figures 6 and 5)
which allows us to insert a single new control point on an edge

I'The algorithm could be modified to support even degree B-splines, but odd
degrees are sufficient to demonstrate the potential and the limitations of the
proposed method.
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Figure 5: Screen-shots from our experimental system. (a) Selection of a point on an edge, at which a new control point is desired. (b) The user-interface view after
insertion of the new control point. Notice that the points either side are moved as expected for an insertion in a cubic B-spline. (c) and (d) Layers O and 1 in the
internal representation. (c) Layer O has two control points that are replaced (grey) and no longer used for manipulation. (d) Layer 1 has three control points that are
visible (red) with the rest of the points being hidden (cyan) and calculated from points in Layer 0. (e) Explicit representation of the links between the two layers.
Each hidden point in Layer 1 has a connection to one or two visible points in Layer 0. Note also that this view shows the connections that allowed calculation of the

initial positions of the three visible points in Layer 1.
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Figure 6: An example insertion. (a) Initial state. (b) Create a new layer (Step 3).
(c) Mark the relevant points as visible (Step 4) and their parents as to be re-
placed (Step 5), shown here as a solid black square. (d) Recurse up to the next
level (Steps 6, 5). (e) Final result.

in the mesh. Each point has a status, which may be visible,
hidden or replaced and each point has a flag which allows it to
be marked as to be replaced when necessary.

6.1. Algorithm for the insertion of a new control point
1. (Figure 5(a)) User requests that a new point be inserted on
a specific edge in the mesh of visible points. The new knot
value is halfway between the knot values associated with
the control points at either end of that edge.
2. If there is already a layer that introduces that particular
knot value, then the k — 1 appropriate points in that layer

are made visible and go to step 5

3. (Figures 5(e), 6(b)) Otherwise, a new layer is created with
the newly-generated knot value. Links are formed to the
control points in the previous layer, with weights for com-
puting the control points in the new layer from the points
in the previous layer (Equation 2). All points in the new
layer have their geometric positions initialised by calcula-
tion from the points in the layer above. Mark as hidden all
points in the new layer.

4. (Figures 5(d), 6(c)) Mark as visible, in the new layer, the
point created on the specified edge and (k — 2)/2 points
either side of the new point. That is, mark as visible the
k — 1 points on that single row (or column) that are calcu-
lated from more than one point in the layer above.

5. (Figure 6(c—d)) For each point that is newly marked as vis-
ible, mark its parent as to be replaced.

6. (Figure 6(d—e), see Appendix A for detail) For each point
that is marked as to be replaced, first check its status: if it
is hidden then mark it as replaced and mark its parent as
to be replaced and recurse on step 6; if it is visible, then
it becomes replaced and its parent is unaffected; if it is
already replaced then do nothing. Then look at the points
that it contributes to. One will be its child, which will
already have been dealt with. The other, if it exists, needs
to be checked: if it is hidden then mark it visible and go to
step 5; if it is visible or replaced then nothing needs to be
done.

7. (Figure 5(b) and Section 6.2) Build a new control mesh
for the user-interface based on all points that are marked
as visible.

6.2. Algorithm for generating the user-interface view

The visible control mesh (VCM) for the user-interface is cre-
ated by processing every visible point in the mesh and determin-
ing its connectivity to other visible points. Points in the VCM
may be linked to points in other layers. Each control point has
a permanent link to the control point in the layer above that
it replaces, its “parent”, if such a point exists. Each control
point also has a permanent sets of links to its (up to four) neigh-
bours in its own layer. These links are set when the layer is cre-
ated and are never changed. In addition to these, each control
point has a mutable set of links to its (up to four) neighbours in



the VCM. The VCM links must be regenerated (Step 7 in Sec-
tion 6.1) whenever a new control point is inserted to the visible
mesh.

1. Reset all VCM links to all be null.

2. For each layer, starting with the finest and working to the
coarsest:
> For each visible control point, p, in the layer:
>> For each of the four directions, d, of connectivity:
>>> If the VCM link from p in direction d is null, then
set q to be the next point in that direction in that layer.
While q is not visible and not null, set q to be its own
parent. [The result is that q will be the first (and, if it
exists, the only) visible point in the stack of parents of the
point in direction d; if there is no visible point in that stack
or there was no next point in direction d, then q is null.]
Set p’s VCM link in direction d to point to q. If q is not
null then set g’s VCM link in the opposite direction to
point to p. [This makes a bi-directional link between the
two points and means that points in coarser layers get the
correct VCM links to points in finer layers.]

Drawing the VCM is straightforward: all points in the VCM
are connected in a single graph, therefore it is only necessary
to start with a single visible control point and draw it, and re-
cursively draw the (up to) four points to which it is connected
and the lines connecting them. Doing this naively would draw
each point many times so a simple boolean value in each con-
trol point’s data structure can be used to ensure that each point
is drawn only once.

7. The generating system

Each layer, /, in the data structure comprises a complete
tensor-product B-spline basis, V!, which consists of a set of
basis functions, Nf. The final surface is that produced by the
lowest layer, using Equation 3. In addition to the bases for each
layer, which are straightforward NURBS bases, it is necessary
to consider the generating system associated with the VCM.

Each visible control point in the VCM has an associated
blending function. These combine to make the generating sys-
tem for the VCM. The generating system associated with the
visible control points is most usefully compared with Giannelli
et al.’s Truncated Hierarchical B-spline basis [6]. Indeed, it can
be considered a variation on THB-splines.

Every blending function in our system is a weighted sum of
NURBS basis functions from the lowest level. This is identi-
cal to the situation with THB-splines. However, THB-splines
are presented in a different way by Giannelli et al.: they present
them as basis functions at a higher level being truncated by sub-
tracting basis functions from a lower level. The two views are
equivalent mathematically, but, in contrast to THB-splines, our
system is not based on a hierarchy of nested domains which
govern refinement. Instead, our user interface is focused on
handling refinement via (visible) control points.

We now demonstrate how we can represent the blending
functions associated with the set of visible control points in a
manner similar to that used for THB-splines.

Consider a rewriting of the bivariate B-spline definition,
Equation 3, to remove unnecessary subscripts:

Pl(s,0) = > Ni(s, 0P},

where [ is the level in the data structure and i ranges over all
of the points in that level. If we remove explicit reference to
the parameter space, (s, ), we can see clearly the relationship
between one level and the next in the data structure:

S NER = S

1 1

The way in which control point locations are calculated, Equa-
tion 2, can be stated in a single equation:

Pl = (1 -a)P| + P’

where we have assumed that the index i indexes the rows and
columns of the two-dimensional grid in an appropriate way, that
is, it runs along each row (or column) in which a new knot
is inserted before moving to the next. This allows us to show
how NURBS basis functions, Ni’, in one layer relate to basis
functions, Nf‘l, in the previous layer:

RV
Z N((1 - ahPL] + alpi)

Z (aszl +(1- a’£+1)Nil+l)P£71

l

Inrl ! !
;N; + (1 = a; )Ny,

=N =

We are now ready to demonstrate how to construct a generating
system for the set of visible control points.

Each hidden or visible control point has a NURBS basis func-
tion, Nf , and a possibly-truncated blending function, Tl.’ . For the
bottom layer, V"

T! = N!.
Now, let N! € V' be a basis function associated with a hidden

or visible control point:

Nll — a§+lNil+l + (1 _ al+l)N?+l (4)

i+1 i+l
The truncated versions depend on the status of the points Pf”
and Pfﬂ as follows:

both P P! hidden  T! = o/*'TI*! + (1 — ol )TVE]

i+177 i+1
only P*! hidden T! = o!*'T!H! (5)
only Pf:{ hidden T!=(1- afﬂ Tf:ll

The first option corresponds to no truncation, the coarser blend-
ing function at level / is a weighted sum of two finer blending
functions of level / + 1 as in standard B-spline knot insertion.
Basically, the newly created function ‘does not see’ the newly
inserted knot.

The last two options correspond to truncation: the finer
blending function from level / + 1 is passed directly up the data



structure and ‘replaces’ the original coarser blending function
of level /. In this case, the newly inserted knot ‘remains visible’
for the function.

Consequently, the T functions are either B-splines or com-
binations thereof from different levels, i.e., they are truncated
B-splines.

The overall generating system, based solely on visible control
points, creates the final surface:

P(s,f) = Z Ti(s, H)P;.

P.cvisible

To ensure partition of unity, the blending functions of the
set of visible control points must truly encompass the set of
NURBS basis functions of the lowest layer of the data struc-
ture. That is, every N! must be incorporated into the T" of visi-
ble points, with the contribution of each N!' summing to unity.
Details of this, and of how we can check linear independence
of the generating system, are in Appendix B.

Those familiar with the blossom (polar forms) formulation
will be able to see an alternative, more compact, way of repre-
senting this mechanism in the one-dimensional case (e.g., Fig-
ure 4). However, the fact that the corresponding blending func-
tions in our construction are not, in general, minimally sup-
ported B-splines but rather linear combinations thereof from
different levels precludes the use of blossoms in the two-
dimensional case. The blossom notation could be used for con-
trol points but not for evaluating the spline itself.

8. Discussion

Figure 7 shows some simple examples in our experimental
user interface. The method allows for the insertion of new con-
trol points on any visible edge. Once a point has been inserted it
gives finer control of the local shape of the surface than would
be possible with the original control points. The algorithm can
be adapted to work for any method definable by knot insertion,
including subdivision and NURBS of even degree.

Four optional features are worth discussing in more detail:

Simultaneous introduction of many new control points.
Figure 2 shows the introduction of a row of control points (Fig-
ure 2(c)) and of a block of control points (Figure 2(e) and (f)).
In these cases, the newly-inserted knot(s) suffice for all new
points and so one or two hidden layers suffice to introduce many
new control points. The user-interface can be designed to allow
the user to specify insertion on a single edge (Figure 2(d)), or on
several parallel edges (Figure 2(c)), or in a block (Figure 2(e)
and (f)).

Insertion at arbitrary knot values. As written, the algo-
rithm follows Gordon and Riesenfeld’s original suggestion for
B-spline refinement [16, §13], which is to place the new knot
“midway (parametrically) between two of the previously exist-
ing knots.” The advantage of this is that introducing a new con-
trol point between two knot lines where there has already been
introduced a control point elsewhere in the mesh leads simply
to a hidden control point being made visible and means that we

*

Figure 7: Four example features on a plane that is initialised with uniformly-
space control points in a grid. Back left: a single original point raised above
the zero plane. Back right: 2 X 2 original points are refined to 3 X 3 points, with
the central point then raised to show a sharper peak than the one at back left.
Front right: a single edge is refined three times and the central point then raised
to show a peak that is narrow in the s direction but of the original width (i.e.,
similar to that at back left) in the ¢ direction. Front left: a range of refinements
to make a U-shaped ridge covering the same area as used by the single peak at
back left.

do not have to create a new hidden layer nor do a new knot in-
sertion. However, there is nothing in the method that prevents a
knot being introduced at any value.

Higher degrees. Our implementation works for NURBS of
arbitrary odd degree. However, the limitations of the method
(see below) become increasingly obvious for higher degrees,
because insertion of a single new control point has a wider in-
fluence across the mesh as degree increases.

Multiple NURBS patches.The algorithm can be applied to
compositions of multiple NURBS patches. First, we need to
ensure that adjacent patches are compatible, i.e., they are of the
same degree across their shared edge and they share the knot
vector along the edge. This can be always ensured by standard
algorithms such as degree raising and knot insertion. Assuming
that the two adjacent patches are compatible in this sense, there
are still subtleties in what changes need to be propagated across
their shared boundary. Naively one would expect that any knot
insertion needs to propagate into the patches either side of the
existing patch. However, because the patch does not change
its geometry after knot insertion, this only needs to happen if
there is a change in the visible control points on the actual edge
between two patches.

An alternative is to merge two or more (compatible) NURBS
patches into one NURBS surface, which can then be treated
without any further modifications. However, this approach is



available only if the patches form a logical rectangular array
when combined.

8.1. Limitations

Despite working, the method suffers from several limitations.
The commonly occurring limitations are minor inconveniences,
but the more rarely occurring ones could be considered a seri-
ous drawback for the user, because they cause a large number
of unexpected (and therefore unwanted) control points to be
generated from a single insertion. We discuss the limitations
from the most commonly occurring, and least problematic, to
the least commonly occurring.

New points may not appear exactly where the user ex-
pects. Figure A.14 gives a clear example of this. The user
requests a new point on an edge that she sees as sloping slightly
up from left to right (Figure A.14(a)). What she gets (Fig-
ure A.14(b) and (f)) is a new point on a horizontal edge slightly
displaced from the horizontal line through the original (red)
points. However, users of any system get used to its quirks.
For example, normal cubic knot insertion causes two existing
control points to apparently jump slightly away from the newly-
introduced point (e.g., Figures 3 and 5(b)). Mathematically this
is the right behaviour, but a novice user still needs to get used
to it. Likewise, slight jumps in control point position are likely
to be quickly accepted as a feature of the system, especially as
the surface itself does not change when a new control point is
inserted.

Unexpected control points may appear. In Figure A.14, the
replacement of point p by point y requires that we make point
o visible, leading to Figure A.14(f). This behaviour might sur-
prise a user, though in this case a user might easily understand
that the extra point appears because the newly-inserted point is
adjacent to a previously-inserted point. More surprising would
be such behaviour if it is caused by control points inserted on
the far side of the mesh.

Lack of symmetry. Because previously-inserted points can
affect later insertions there is a lack of symmetry in operations.
Inserting two points in different orders can have different re-
sults. This is the case in point in Figure A.14(f), where the two
points requested by the user are symmetric, but the result is not
symmetric with respect to those two points. One result of the
lack of symmetry is the possibility that the new control points
will control different blending functions depending on the or-
der in which the user inserts them. This might be considered
problematic but recall that this is a user-orientated solution: the
user requests the insertion of new points in a particular order,
and adjusts the new points as they see appropriate. If they then
insert a new point, it is with the full understanding of all previ-
ous insertions and they have to accept that the earlier insertions
may affect the later ones.

Unusual-looking configurations may occur. There are
pathological sequences of insertions that lead to corners (Fig-
ure 8(a)) and peninsulas (Figure 8(b)). Similar features ap-
peared in the early versions of T-splines® but were omitted from

2Tom Sederberg and Tom Hughes both independently confirmed that similar
features were in the earliest versions of T-splines.

(a) (b)

Figure 8: Unusual configurations (circled) that occur with particular sequences
(labelled 1, 2, 3, 4) of four insertions. (a) A two-connected corner. (b) A one-
connected peninsula.

Figure 9: (a) Eight new control points have been introduced, the first four along
the top of the grid and the others then at the left of the grid. (b) Inserting a
single new point at right (circled in green) causes a cascade of 18 other new
points to appear, both horizontally and vertically.

the published version [10]. These unusual configurations are
not errors; they are connected correctly in the user-interface
grid, as shown in more detail in Appendix C. If they are
deemed to be undesirable, they can be easily identified from
the connectivity of the VCM and the unusual-looking connec-
tivity “fixed” by forcing adjacenct control points in the same
layer to become visible, creating a T or + connectivity. The
disadvantage of this “fix” is that even more unexpected control
points will become visible.

Cascades of unexpected control points may occur. In other
pathological cases, previously inserted knots can cause a cas-
cade of new control points to appear. That is, local insertion of
a new control point has the effect of introducing a set of points
across the mesh. Figure 9 shows such a pathological case. The
original T-spline method [10] also suffered from unwanted cas-
cade across the mesh [11, §4.3][12, §3.2.5], but more recent
work [17] has demonstrated how T-splines can be refined with-
out excessive propagation of control points. Our simpler mech-
anism does not admit such an elegant solution. As a user-centric
method, the appropriate way to ameliorate the effect of any cas-
cade is to make the user aware of the consequences of any in-
sertion. A straightforward way to do this is, when the user hov-
ers their cursor over a particular edge, to highlight all edges that
would be affected if the user chose to refine that particular edge.
A user who is aiming for a local refinement can then investigate
which edge should be selected to introduce the best set of new
control points.
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Figure A.10: (a) The user-interface presentation of a tensor-product NURBS
patch (red) with two extra control points inserted, one on row B (green) and
one on row C (yellow). In this cubic example, each newly-introduced point
causes two other, existing, points to be replaced. Note: all figures in the Ap-
pendix show geometric space, not parameter space, with the red control points
in a square grid before the insertions. (b) The layer corresponding to the point
introduced on row B. Every row other than B requires three new points (shown
in green) to be calculated from existing points. The replaced points are shown
in grey. (c) The next layer down, corresponding to the point introduced on row
C. There is a problem on row C.

9. Conclusion

We have shown that it is possible to provide the user with
local refinement of the control mesh solely by modifying the
user-interface. All that is required is a data structure for stor-
ing the layers and the straightforward algorithms for adding a
new layer (Section 6.1) and for generating the user-interface
view (Section 6.2). The limitations that we have highlighted
(Section 8.1) mean that we do not expect our user-centric ap-
proach to compete with the more powerful mechanisms offered
by T-splines, LRB-splines, and HB-splines. We have, however,
shown that is is possible to use the standard NURBS implemen-
tation to provide locally refined behaviour to the user.
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Appendix A. Challenging cases when inserting new points

Challenging cases arise when the user requests a new visible
point that is close to an existing hidden point. There are chal-
lenges for new points inserted on a row parallel to an existing
insertion and challenges for new points inserted on a column
perpendicular to an existing insertion on a row.

NNV T

Figure A.11: (a) Row B of Figure A.10 before insertion of the new point.
(b) The new point is inserted. Its position and the positions of the new points
either side are calculated from the existing points (Equation 2). (c) The end
result is that two replaced points are removed from the topmost layer and three
points are made visible to the user from the next layer. All other points in that
layer are calculated trivially from the corresponding point in the top layer.

Appendix A.1. Challenges in parallel insertion

The first set of challenges that we consider is where we intro-
duce new points on two parallel knot lines. Figure A.10 shows
the context. In Figure A.10(a), we see the situation as presented
in the user-interface. Two new control points are introduced
on two parallel knot lines, B and C, in each case causing the
two adjacent control points to be replaced by new points, in the
same manner as happens in the univariate case. The knot lines,
B and C, could be adjacent or separated by a small number of
other knot lines (two in this example) or on completely opposite
sides of the patch. In any case, the challenge is caused by the
overlap between the newly-introduced visible points in the bot-
tom layer, (c), and the previously-introduced hidden points in
the previous layer, (b). Figure A.10(b) shows the introduction
of new (green) points in the upper layer, related to the control
point on row B. Figure A.10(c) shows the introduction of new
(yellow) points in the lower layer, related to the control point
on row C. Everything works well on all rows other than row C.

To get some intuition into the challenge, first consider row B
(Figure A.11). The insertion of a new control point in this row
is straightforward. The position of the new point and the points
either side are calculated using the new knot value, the existing
knot vector, and the positions of the control points. The three
new control points are then made visible to the user in the user-
interface, with the two replaced control points removed from
the user-interface.

Consider now the subsequent insertion of a new control point
on row C (Figure A.12). The insertion of this new layer (Fig-
ure A.12(b)) proceeds by direct analogy to the previous inser-
tion (Figure A.11(b)). However, the removal of the replaced
points from the user-interface (Figure A.12(c)) causes a prob-
lem: one of the points in the first hidden layer depends on one
of the replaced points (p, dashed arrow) and that point is no
longer available to the user. This insertion is therefore invalid,
because the user has lost control of part of the generating sys-
tem. This problem will arise in any situation where there is
overlap of the extent of the newly-introduced points in the new
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Figure A.12: (a) Row C of Figure A.10 before insertion of the new point. The top layer (red) is the original mesh and the layer below (green) is created by the
introduction of a new control point on row B. On row C all points in the top layer are visible and all points in the layer below are hidden. (b) Introducing a new
control point on row C creates a new layer (yellow). The position of the newly inserted point and the points either side are calculated from the existing points in
the first hidden layer (Equation 2). (c) The end result is that two replaced points are removed from both the top layer and the middle layer and that three points are
made visible from the bottom layer. All other points in the bottom layer are calculated from the corresponding point in the middle layer. The problem with this
construction is that one of the replaced points, p, is needed to generate a point in the middle layer (dashed arrow) but that point p is no longer visible for the user to

manipulate.

bottom layer with the extent of introduced points in any one of
the layers above and it will happen even if the newly-inserted
point is on the far side of the mesh, because the existing inserted
knot spans the entire mesh.

Appendix A.2. Potential solutions in parallel insertion

We now consider ways to avoid the problem of hidden lay-
ers interfering in the way described above. We describe these
for the parallel case here. In Appendix A.3, we consider the
added challenges of insertion on knot lines that are perpendic-
ular. There are three potential solutions for the parallel case,
shown in Figure A.13.

Appendix A.2.1. Exchanging insertion order

Figure A.13(a) shows the hidden layer for row C being in-
troduced before that for row B. This avoids the problem. Only
row C needs to have the order swapped. This works for arbi-
trarily many rows and arbitrarily many insertions on any given
row, provided all the insertions for each row are done for that
row first. On each row, the hidden insertions related to all other
rows can be done in any order subsequently. However, this neat
solution does not generalise well to insertions on perpendicular
knot lines (Appendix A.3).

Appendix A.2.2. Revealing hidden points

In this solution, we make visible any hidden point that de-
pends on a replaced point. Figure A.13(b) shows the effect of
making visible the affected hidden point, w, in the first hidden
layer. This is the point that was previously relying on a re-
placed control point. By making such points visible to the user,
the problem is resolved. However, the means that introducing a
new point on row C causes an extra control point to appear on
that row. In general, the appearance of unexpected new points
may be a mysterious, and therefore undesirable, side-effect for
the user, especially if row C is distant from row B. However,
this solution does generalise well to the case of insertions on
perpendicular knot lines (Appendix A.3).
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Appendix A.2.3. Not allowing replaced control points

A superficially-attractive solution is not to replace existing
control points. All original control points stay in the user-
visible mesh but each now controls a reduced blending function,
with some of their original blending functions being controlled
by the single newly-introduced control point. This is reminis-
cent of THB-splines [6], but the absence of nested domains
means that it has drawbacks in our system. Figure A.13(c)
shows how this plays out in our layer system. The original
points all stay visible to the user, generating hidden control
points as needed. The single newly-introduced control point,
v, is calculated as usual from Equation (2) and then made visi-
ble to the user for subsequent manipulation. This solution cer-
tainly works in the univariate case because in that case there are
no problematic intervening hidden layers. However, the layer
diagram in Figure A.13(c) reveals a problem in the bivariate
case: the original control point labelled a, to the right of the
new control point, v, contributes to a point, 3, in the first hidden
layer, which then contributes to a point, vy, in the second hidden
layer that is to the left of the new control point. Thus @, which
should only influence the mesh to the right of v, has influence
to the left of v and will continue to do so no matter how many
further points are introduced between ¢ and a.

For the parallel case, we thus have two satisfactory insertion
methods, exchanging layers (Appendix A.2.1) and revealing
hidden control points (Appendix A.2.2), and two unsatisfac-
tory methods, the original idea (Figure A.12) and the “no re-
placement” idea (Appendix A.2.3). Now we consider whether
the two satisfactory methods work when points are inserted on
perpendicular knot lines.

Appendix A.3. Challenges in perpendicular insertion

Figure 2 shows examples of insertion along perpendicular
edges in which the method, as described, works without intro-
ducing any unexpected visible control points. Figure A.14, by
contrast, shows the most challenging of the perpendicular in-
sertion cases: insertion along adjacent perpendicular edges.

The challenge is that, again, a replaced point, p, is required
for calculation of other, hidden, points. Let us consider our two
satisfactory approaches from the parallel case.



Figure A.13: Three potential solutions to the problem shown in Figure A.12(c). (a) Exchange the order in which hidden layers are introduced. (b) Reveal any
problematic hidden points to the user. (c) Do not allow any original control points to be replaced.

While the method of exchanging layers would work in some
perpendicular insertion configurations, it will not work in the
most challenging case shown in Figure A.14. This is firstly
because this case is perfectly symmetric. If we exchange the
green and yellow insertions, then we get exactly the same prob-
lem. Secondly it is because the yellow insertion would need the
context of red points that have already been replaced. The verti-
cal offset of the new yellow points in Figure A.14(b) shows that
the second insertion is affected by the first; they cannot be made
independent and so they cannot be exchanged in order. Indeed,
if one were to try to swap the order, one would find that two red
control points required to do the yellow knot insertion had been
replaced by green control points. If the user had not moved any
of the green control points before requesting the new yellow
point (arrow in Figure A.14(a)) then it would be plausible to
exchange the layers but if the user has moved any of those three
green points, any exchange of these layers becomes invalid.

The second satisfactory approach in the parallel case does
generalise to the perpendicular case. This is where we reveal
any hidden points that depend on replaced points. In the case
of Figure A.14, the solution is straightforward: we make point
o visible to the user. This is the solution that maintains integrity
and is incorporated in the algorithm (Section 6.1).

Appendix B. Features of the generating system

We consider how the algorithm ensures that the partition of
unity of the initial generating system (which is, by definition,
a NURBS basis) is maintained when a new layer is introduced,
and we consider how we can check whether the generating sys-
tem comprises linearly independent blending functions.

To ensure partition of unity, we must be sure that the set of
generating functions of visible control points encompasses the
set of NURBS basis functions of the lowest layer of the data
structure. For this to be true, every N}’ must be incorporated
into the T of visible points, with the contribution of each N
summing to unity. The iterative definition in Equation 5 shows
that the T blending functions are passed up the layers until they
hit a visible point, where they stop. Therefore, every visible
point must have at least one hidden point as a child, that is, at
least one of the three cases in Equation 5 holds for each visible
point. Furthermore, no replaced point can have a hidden point
as a child, otherwise part of a N!' basis function will not be
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included in the T blending function of any visible point. Finally,
there may be no hidden points in the top layer, again because
otherwise part of a N basis function will not be included in the
blending function of any visible point.

Therefore, the highest level layer, V°, must consist only of
visible and replaced control points; there can be no hidden
points in the top layer because such points require points above
them that control them. The lowest level layer, V", must con-
sist only of visible and hidden control points; there can be no
replaced points in the bottom layer, because such points must
be replaced by points in lower layers and no such points exist.

When the data structure is initialised, it comprises a single
layer consisting entirely of visible points, meeting the condi-
tions on both the topmost and bottommost layers. Its generating
system is a standard tensor-product B-spline basis. Because of
this, the blending functions attached to the initial set of visible
points form a valid, linearly-independent, partition of unity.

To maintain a partition of unity, we must demonstrate that
the algorithm in Section 6.1 ensures that, given a valid parti-
tion of unity amongst the visible control points, the result is a
new valid partition of unity. The calculation of the « values us-
ing the standard method (Equation 3) ensures that the blending
functions will be split correctly to maintain a partition of unity,
so long as the algorithm ensures two things: (1) that no visible
point has only visible points as its children and (2) that there
is no direct connection between a replaced point in one layer
and a hidden point in the next layer. In Step 3 of the algorithm
a new layer is created comprising entirely hidden points. This
does not affect the validity of the partition of unity amongst
visible control points because it does not change the set of vis-
ible control points. Step 4 sets some of the points in the new
layer to be visible, thereby invalidating the partition. Steps 5
and 6 adjust the status of other points to restore validity. The
first part of Step 6 runs up the list of parents of a newly visi-
ble point and makes them all replaced, ensuring that no visible
point has only visible points as its children. This ensures that
all parts of a N! that are allocated to a new visible point are
removed from any higher-level points that are newly marked as
replaced. However, that higher-level replaced point may have
contributions from other N than those covered by the new visi-
ble point. Therefore, the second part of Step 6 looks at the other
child of these newly replaced points to check whether it needs
to be made visible in order to restore the partition of unity.
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Figure A.14: The most challenging case of perpendicular insertion. (a) A
point (green) has been inserted on a vertical edge. The user now wishes to
insert a new point on an adjacent horizontal edge (yellow arrow). (b) Insertion
could be reasonably expected to produce this configuration. Notice that the new
point and the two adjacent points are offset vertically from the horizontal row
of original (red) points because they lie on the hidden row of (green) points.
(c) Creation of the green layer from the topmost layer. The arrows show which
old points contribute to new points. The two grey points are replaced points.
(d) Creation of the yellow layer from the green. (¢) Combining (c) and (d) re-
veals the challenge: point y replaces point 8 and the replacement propagates
up the layers so that point p is also replaced. Unfortunately, point p is needed
to create hidden points o and 7. (f) A satisfactory solution is to make point o
visible, giving this VCM. N.B. There is an exaggeration by a factor of 1.5 in
the offset of the introduced control lines from the original control lines in order
to make this figure more comprehensible.

It might be thought that, given the above and the definitions
in Equations 4 and 5, we should be able to apply, to our gener-
ating system, Giannelli et al.’s proofs [6] for THB-splines. This
would allow us to demonstrate linear independence in addition
to partition of unity. However, our construction is looser that
the THB-spline construction. In particular, THB-splines rely
on the concept of nested subdomains in the proof of linear in-
dependence. We do not have nested domains in the sense used
by THB-splines, we have only nested spaces.

We can, however, demonstrate whether any particular config-
uration comprises linearly independent blending functions. We
have n+1levels/ = 0,...,n and in each a set of visible control
points, each with a blending function. For a particular level, [,
let the set of visible control points be indexed by the index set

V. To prove linear independence, we need to show that:

anzcmzo = V=0

1=0 i€V,

(B.1)

Say we collect all the coefficients from Equation 5 and combine
them to produce the same condition expressed in terms of N.
Namely,

Zn: Dodrl="any.

=0 i€V, i

(B.2)

There exists a matrix M that computes the d; from the cﬁ. Be-
cause the N are linearly independent, proving that M has full
rank would show that the generating system forms a basis.
This provides a straightforward algorithmic way of checking
whether a given structure leads to a basis. However, it must be
said that the proposed application of the method, ab initio de-
sign of surfaces, does not depend on linear independence of the
generating system.

Appendix C. Pathological cases of insertion

In Section 8 two cases are presented where a sequence of
four insertions leads to an interesting set of dependencies being
revealed. Figure C.15 shows the layer structure for these cases,
which demonstrates that, although the connectivity may look
unusual in the user interface, it is correct.
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Figure C.15: Top: the user-interface view showing the sequence of point in-
sertions (numbers) and the unusually-connected point that results (circled). Be-
low: the layers in the system, showing visible control points in red and replaced
control points in grey. This demonstrates that the unusual points are, in fact,
correctly connected, with the hidden points (cyan) to which they are connected
calculated from points in the layer above.
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