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Linguistic Distances in Dialectometric Intensity Estimation 

 

Abstract 

Dialectometric intensity estimation as introduced in Rumpf et al. (2009) and Pickl & Rumpf 

(2011, 2012) is a method for the unsupervised generation of maps visualizing geolinguistic 

data on the level of linguistic variables. It also extracts spatial information for subsequent 

statistical analysis. However, as intensity estimation involves geographically conditioned 

smoothing, this method can lead to undesirable results. Geolinguistically relevant structures 

such as rivers, political borders or enclaves, for instance, are not taken into account and thus 

their manifestations in the distributions of linguistic variants are blurred. A possible solution 

to this problem, as suggested and put to the test in this paper, is to use linguistic distances 

rather than geographical (Euclidean) distances in the estimation. This methodological 

adjustment leads to maps which render geolinguistic distributions more faithfully, especially 

in areas that are deemed critical for the interpretation of the resulting maps and for subsequent 

statistical analyses of the results. 
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1. MOTIVATION 

What exactly can dialect maps tell us about the language variation in a specific region? 

How reliable are they when it comes to considering individual data at particular locations? As 

shown in Rumpf, Pickl, Elspaß, König & Schmidt (2009, 2010) and Pickl & Rumpf (2011, 

2012), the data contained in dialect atlases and similar geolinguistic data collections tend to 

have the disadvantage of limited reliability when viewed in detail. For instance, a single 

record at a single site that was uttered by an informant in a specific interview situation may or 

may not reflect common usage in the local dialect. A range of influencing factors can reduce 

the accuracy of an informant’s answers, such as poor memory, observer effects, or personal 

background. Not all of these factors can be controlled entirely, especially as they are subject 

to a certain degree of randomness. The responses of an individual informant to a specific 

question may even differ from day to day. Methodological restrictions (such as observer 

effects) aside, this is also a manifestation of the fundamental probabilistic nature of language 

variation (cf. Cedergren & Sankoff, 1974; Pickl, 2013: 13, 41–42,205–207). Individual 

records of variants are thus little more than statistical samples. Even though the overall picture 

that a dialect map of a specific variable gives is in all likelihood a good representation of the 

actual geographical distribution of that variable, the individual details of such maps can be 

inaccurate. A further problem is that in many cases dialect atlases only show one or two 

records per site, but no information about their relative frequencies is given. 

All analyses and examples in this paper are based on data from the Sprachatlas von 

Bayerisch-Schwaben (SBS), a dialect atlas covering an area of approx. 11,000 km2 in 

Southern Germany, which is based on explorations carried out in the 1980s and 1990s. 

Featuring data from 272 record locations, the atlas’s 14 volumes comprise approximately 

2,700 individual maps. Fig. 1, an original point-symbol map taken from the SBS, features 

responses for the concept ʽwoodlouseʼ. Each symbol stands for one specific variant; the small 
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triangle symbol that is prevalent in the north-west, for instance, stands for the lexical variant 

Maueresel (or similar). The number of recorded variants per location ranges from zero 

(symbol “+”) to three. Although at most of the locations only one variant is recorded, it seems 

likely that a different sample of informants at one of the sites – or even the same informants at 

another time – may have come up with different variants, e.g. with divergent variants that 

were recorded at neighbouring locations. 

One way to deal with this uncertainty is to “aggregate the differences in many linguistic 

variables in order to strengthen their signals” (Nerbonne, 2010: 3822). This is the approach of 

traditional, aggregative dialectometry, which is useful for making global, overall structures in 

large corpora of dialect maps visible. The pivotal instrument of aggregative dialectometry is a 

distance (or similarity) matrix that is derived from the maps of a large number of variables. 

The matrix contains the overall (i.e. aggregated) relations among every possible pair of 

locations in the data collection, and can be used, for instance, to produce similarity maps that 

show degrees of similarity in relation to one location in question. By aggregating the 

differences between locations across linguistic variables, however, the distinctiveness of these 

variables and their variants’ distributions is made void – the variation among these 

distributions collapses. For some research interests, however, it is essential to maintain and 

analyse exactly these differences, e.g. when one wishes to investigate which variants’ 

distributions behave similarly or which are affected by certain extra-linguistic factors. 

Standard aggregative dialectometry is not suitable for this kind of study. Only recently, a 

number of works have appeared that try to overcome the problem of losing sight of individual 

variants when viewing the larger picture, using different methodological approaches (cf. e.g. 

Shackleton 2005, 2007, Nerbonne 2006, Grieve 2009, Grieve, Speelman & Geeraerts 2011, 

Wieling & Nerbonne 2011, Pickl 2013, Pröll, Pickl & Spettl (forthcoming)). 
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One such approach, which is also aimed at ‘strengthening the signals’ of individual 

variables, is so-called intensity estimation (cf. Rumpf, Pickl, Elspaß, König & Schmidt 2009, 

2010 and Pickl & Rumpf 2011, 2012). In intensity estimation, it is not the information from 

other variables that is employed to stabilize the overall signal; instead, the information from 

nearby locations is used to stabilize the information for individual locations. The simple 

assumption that justifies such a course of action has been formulated by Nerbonne & Kleiweg 

(2007: 154) as the Fundamental Dialectological Postulate: “Geographically proximate 

varieties tend to be more similar than distant ones”, or, put more generally by Waldo Tobler: 

“everything is related to everything else, but near things are more related than distant things” 

(Tobler’s so-called “First Law of Geography”; Tobler, 1970: 236). Based on this principle, it 

is to a certain extent legitimate to infer the variants used at a site from the variants recorded at 

surrounding sites. In intensity estimation as introduced in Rumpf et al. (2009, 2010) and Pickl 

& Rumpf (2011, 2012), the geographical proximity of two sites is used as a measure of how 

well these two sites can ‘speak for one another’. If, for example, site ܽ has a record for variant ݔ and neighbouring site ܾ features variant ݕ, then there is some probability that ݔ is also used 

at ܾ by some speakers with a certain frequency, especially if all other sites surrounding ܾ also 

have ݔ. Thus, all locations in an area under investigation are mutually dependent, near ones 

more so than distant ones, and hence each location can be assigned a specific ‘intensity’ for 

each variant, based on how densely the actual records for this variant are distributed in the 

location’s vicinity.1 In a probabilistic interpretation, a variant’s intensity can also be seen as 

representing the variant’s estimated relative frequency of occurrence, or its probability. 
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2. INTENSITY ESTIMATION 

The equation for the calculation of the intensity ݅௫భሺܽଵሻ of variant ݔଵ at location ܽଵ based 

on geographical proximity is the following (for its derivation and explanation cf. Rumpf et al., 

2009 or Pickl & Rumpf, 2011):2 

݅௫భሺܽଵሻ = ଵ∑ ∑ ௄ሺௗሺ௔భ,௔ሻ,௛ሻ∙௪ೣሺ௔ሻೌ∈ಲೣ∈೉ ∙ ∑ ,ሺ݀ሺܽଵܭ ܽሻ, ℎሻ ∙ ௫భሺܽሻ௔∈஺ݓ  (1) 
ܺ:  the set of variants of the respective variable 

 the set of record locations in the area under investigation  :ܣ

 in all ݔ at site ܽ, meaning the proportion of records for ݔ ௫ሺܽሻ:  the ‘weight’ of variantݓ

records for the respective variable at ܽ 

݀ሺܽଵ, ܽଶሻ:  the geographical distance between the sites ܽଵ and ܽଶ 

ℎ:  the so-called ‘bandwidth’ of the intensity estimation, a parameter that defines how 

quickly the influence between two sites decreases with increasing distance 

 (There are several algorithms that optimize the bandwidth automatically.3) 

,ሺ݀ܭ ℎሻ:  the so-called kernel, another parameter that defines how the actual influence 

between sites at a certain distance is calculated  

 (Often, the two-dimensional normal distribution is used for ܭ. In this study, the 

so-called ܭଷ-kernel, a very similar kernel that has some advantages over the 

normal distribution is used; cf. Silverman, 1986: 76–77, 88–89.)  

After applying this equation to every variant and every site, the results can be visualized 

as a set of maps, each with the intensity field of one variant (see Rumpf et al., 2009, 2010; 

Pickl & Rumpf, 2011 or 2012 for examples), or alternatively as one map that integrates the 

intensities of all variants. In order to do the latter, each location is assigned to the variant that 
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has the highest intensity locally, which is the ‘dominant’ local variant. The result is a graded 

area-class map, which features fuzzy variant areas that are delimited by the relative 

dominance of the respective variants, but graded in their shades to display the dominant 

variants’ intensities and to illustrate the fact that these variants overlap in space to a certain 

extent. 

Fig. 2 is an example of such a graded area-class map. The different colours stand for 

different variants; their local intensity or dominance is represented by different colour shades. 

The orange lines delimit areas of dominance, which implies that they do not represent clear-

cut isoglosses but centres of transition zones: in the lighter-shaded zones, less frequent non-

dominant variants are also present.  

Area-class maps of this kind are not only abstracted visualizations of point-symbol data, 

they are also the basis for further analyses. Rumpf et al. (2010) performed analyses to 

investigate whether variables with similar intensity distributions are also related on an extra-

linguistic level, and found, for instance, that lexical variables from the semantic field crop 

tend to have similar geolinguistic configurations. This points to similar patterns of spatial 

diffusion that led to these distributions. Certain characteristic measures that are derived from 

the intensity information can further be used in statistical testing (cf. Pickl, 2013: 125–140; 

Pröll, 2013: 149–153). Moreover, the resulting (fuzzy) isoglosses can be used to validate 

presumed dialect borders (cf. Pickl, 2013: 141–157). For further applications of intensity 

maps cf. Meschenmoser & Pröll (2012 a, b). 

 

3. PROBLEM 

In some of the applications of intensity estimation as depicted in the preceding section, the 

way in which the data is abstracted towards an overall distribution pattern can be problematic. 
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As intensity estimation is basically a form of geographically conditioned smoothing, some 

basic characteristics of individual maps can be levelled out. If, for example, one or more of 

the locations in the area under investigation are language islands, this fact will have no 

consequences for area-class maps produced with intensity estimation. The reason is that even 

locations that consistently have variants diverging from their neighbours will be treated as 

outliers and ‘smoothed over’. The same problem holds for dialect borders. Any structure that 

entails significant dialect differences will not have any relevance for individual area-class 

maps, as the majority of features are not taken into account. Therefore, it frequently happens 

that differences in individual variables that coincide with structural dialect borders are 

straightened, shifted, or otherwise blurred. All kinds of geographical structures that are 

systematic in the sense that they show up on a lot of individual maps will not be recognized or 

rendered as such by geographically-informed intensity estimation. 

In Fig. 2, this problem becomes visible (or rather not visible) in the cases of several larger 

cities and towns whose records differ from the variants recorded in the surrounding 

countryside, e.g. Augsburg (122), Günzburg (96) or Memmingen (205) (cf. Fig. 1). While it is 

not surprising that densely populated places of urban character behave linguistically 

differently from rural areas, this difference is not reproduced in the area-class map: All these 

locations are smoothed out; they become indistinguishable parts of larger areas. The same is 

true for the river Lech (cf. Fig. 1, Fig. 3), which is a well-known and well accounted for 

strong dialect border in this region; also in the case of ‘woodlouse’ the Lech shows a clear 

separating effect on the level of linguistic variants (cf. Fig. 1), dividing the line-shaped 

symbol in the east from the triangle and rectangle symbols in the west. However, the 

corresponding isogloss in Fig. 2 has become fuzzy like all the other isoglosses; what is more, 

the isogloss itself is shifted significantly to the east (especially in the south). In these 

instances, intensity estimation does not do justice to the data. Relying entirely on geographical 

distances, intensity estimation is so to speak less informed than we are, because we have 
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knowledge about linguistically relevant geographical structures that go beyond pure 

geometry. 

A possible solution to this problem lies in a combination of traditional, i.e. aggregative 

dialectometry and intensity estimation. While the latter allows us to process individual maps 

quantitatively, the former has the advantage of taking all the available data into account to 

draw a much more general picture. A straightforward integration of the two concepts is to use 

linguistic distances instead of geographical distances in intensity estimation. The idea behind 

this approach is that geographical space is not the only determinant of geolinguistic processes 

– other conditions, like accessibility, traffic routes, terrain structure, attractiveness of places 

etc. also shape the way in which people from different areas interact and the way in which 

dialects come into contact. Several studies have investigated to what extent dialect similarity 

is related to variables like travel distance, population density, migration and others (cf. e.g. 

Trudgill, 1974; Gooskens, 2004; Inoue 2004, 2006; Szmrecsanyi, 2012). All of them find that 

using more sophisticated distance measures based on such extra-linguistic variables in 

addition to geographical distances leads to a better representation of dialect similarity. The 

exact impact of these variables on dialect similarities or distances is, however, of minor 

importance for our study. Their influence is already condensed in the form of dialect distances 

(probably including a certain amount of random effects). If we use measurable dialect 

distances instead of geographical distances, all these effects are therefore virtually 

automatically included, and isolated language islands as well as dialect borders are 

represented in the model by higher linguistic distances (either in relation to geographically 

surrounding locations or to locations ‘across the border’, respectively). Linguistic distances 

render exactly those effects that actually did influence variant distributions in the past. Hence 

they provide what could be seen as a model of linguistic space (as opposed to Euclidean 

space; cf. Pickl 2013, 62–63). Linguistic space can be understood as the network of mutual 

relations between local dialects that is constituted by pairwise contact probabilities, and which 
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establishes a framework in which dialectal accommodations and diffusion of features take 

place. This network is shaped also, but not exclusively, by Euclidean distances. As the effect 

of geographical distances on this linguistic network is rendered indirectly through the extent 

to which dialect similarities are influenced by them, geographical distances as such can be 

disregarded on the whole throughout the intensity estimation introduced in this article. 

 

4. LINGUISTIC DISTANCE MEASURES IN DIALECTOMETRY 

There are various implementations of linguistic distance; one of the most popular is 

Goebl’s Relative Distance Value RDV௝௞ (cf. e.g. Goebl, 2010), which is suitable especially for 

nominal-scale data such as lexical variants. Simply put, RDV௝௞ is the percentage of variables 

for which two locations ݆ and ݇ have different variants. The exact value is calculated using 

the following formula: 

RDV௝௞ = 100 ⋅ ∑ ൫CODೕೖ൯೔೛೔సభ∑ ൫COIೕೖ൯೔೛೔సభ ା∑ ൫CODೕೖ൯೔೛೔సభ  (2) 

In this notation, ൫COD௝௞൯௜ is a so-called co-difference function that returns 0 if the 

locations ݆ and ݇ have the same variant for variable ݅ and 1 if they have different variants for 

variable ݅. The co-identity function ൫COI௝௞൯௜ does the opposite, returning 1 for identical values 

and 0 for different values. Thus RDV௝௞ is the fraction of different answers at the location ݆ and ݇ within ݌ variables. By using the sum of CODs and COIs instead of the total ݌, it is ensured 

that variables with missing values for the locations in question are disregarded. 

One fundamental restriction of RDV is that it is only defined for unequivocal answers, i.e. 

for the case that for each variable and each location there is only one variant in the data.4 As 

modern dialectological atlases and other geolinguistic data sources often feature a range of 



11 
 

different answers at a location, RDV is applicable to this kind of data format only if a 

substantial portion of the data is discarded previous to analysis.5 For this kind of data, an 

adaption of the RDV (or a completely different approach) is necessary. Speelman, 

Grondelaers & Geeraerts (2003: 320–321) (cf. also Speelman & Geeraerts 2008) present what 

they call “city block distance” (Speelman et al., 2003: 320) or “profile-based dissimilarity” 

(Speelman & Geeraerts, 2008: 227–228), a distance measure between linguistic profiles, i.e. 

percentages of answers that add up to 100 %. This distance is defined for each pair of 

locations and for each variable as the average of the differences between variants’ 

percentages. For instance, if the variable is ‘jeans’ and at one location 70 % of the answers 

belong to the variant jeans and 30 % to the variant spijkerbroek, while at the other location 

97 % belong to jeans and 3 % belong to spijkerbroek, then the difference is 27 % for jeans 

and also 27 % for spijkerbroek. The sum is 54 %, but we have counted the same difference 

twice, so we divide by 2 and receive a distance of 27 % or 0.27. Subsequently, the individual 

distances for variables can be aggregated to overall distances by arithmetic averaging. Again, 

this measure is especially suitable for nominal-scale and therefore particularly for lexical data. 

Even for phonetic data, a nominal-scale approach can be appropriate (Pröll, 2013: 48–51). 

Phonetic information, however, can also be treated as interval-scale data. The so-called 

Levenshtein distance is a very popular phonetic distance measure. It is a string edit distance 

between two strings of phonetic (typically IPA) transcriptions. The Levenshtein distance 

measure counts insertions, deletions and (mis)matches of characters between two transcription 

strings. For this purpose the two strings have to be aligned previously by following certain 

rules. In contrast to RDV, it is suitable for the calculation of graded distances even between 

individual word pronunciations. Still, they are usually aggregated in order to obtain more 

solid overall distances. For a detailed account of the Levenshtein distance measure cf. 

Heeringa (2004: 121–143). 
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5. IMPLEMENTATION AND APPLICATION 

Regardless of which distance measure is chosen, its implementation in intensity 

estimation is rather straightforward. Firstly, the linguistic distances between all location pairs 

have to be calculated, based on the specified measure and the corpus of maps to be 

investigated. Then equation (1) has to be adapted in that the geographical distance ݀ has to be 

replaced by a linguistic distance ݀୪୧୬୥; apart from that the equation remains unchanged. 

In this section, this procedure is applied to data from the SBS, more specifically to a 

lexical sub-corpus of maps comprising 736 variables. The linguistic distance used is based on 

this subcorpus and calculated following the Speelman et al. (2003) approach. It is therefore a 

purely lexical distance. For an individual variable ܺ with variants ሼݔଵ;...;ݔ௡ሽ ∈ ܺ, the lexical 

distance between locations ܽ௜ and ௝ܽ is defined as follows: 

݀௑൫ܽ௜, ௝ܽ൯ = ଵଶ ∑ หݓ௫ሺܽ௜ሻ − ௫൫ݓ ௝ܽ൯ห௫∈௑  (3) 

For a corpus of maps ॸ with variables ሼ ଵܺ;...;ܺ௡ሽ ∈ ॸ, the overall lexical distance 

between locations ܽ௜ and ௝ܽ is: 

݀ॸ൫ܽ௜, ௝ܽ൯ = ଵ∑ ௡೉೉∈ॸ ൫௔೔,௔ೕ൯ ∑ ݀௑௑∈ॸ ൫ܽ௜, ௝ܽ൯ ⋅ ݊௑൫ܽ௜, ௝ܽ൯ (4) 

In this equation, ݊௑൫ܽ௜, ௝ܽ൯ is 1 if both locations ܽ௜ and ௝ܽ have a record for ܺ and 0 if at 

least one of them has no record for ܺ. Thus if two locations cannot be compared reasonably 

with respect to a specific variable, this variable is excluded. 

݀ॸ൫ܽ௜, ௝ܽ൯ is now calculated for all possible pairs of locations. With a total of 272 

locations, this yields a matrix with 36,856 individual values. It is to be expected that these 

values are correlated to a high degree with the respective geographical distances. At the same 
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time, it is desirable that the correlation is not too high, so that there actually is an 

improvement in the representation of linguistically relevant relations between locations. In the 

current study, the Pearson correlation coefficient is 0.80, which corresponds to an explained 

variance of 64 % using a linear regression model. As the corresponding scatter plot (Fig. 4) 

reveals, however, the relation seems to be logarithmic rather than linear. 

This is in line with the findings of a number of other studies investigating the relation 

between linguistic and geographical distances, e.g. Heeringa & Nerbonne (2001), Nerbonne & 

Heeringa (2007: 288–289), Nerbonne (2010), Szmrecsanyi (2012). A logarithmic regression 

analysis returns 69.3 % of explained variance. The circumstance that the difference first rises 

rather steeply and then gradually goes towards a ceiling is a pattern that is commonly found in 

linguistic distances and is easily explained:6 If the spatial lexical replacement rate, i.e. the 

proportion of variants that change on average if a certain distance is crossed, is relatively 

homogeneous, then a certain number of variants is usually different at a location that is at a 

certain distance. If the distance is doubled, the percentage of different variants is not doubled, 

because some of the already different variables may change again, not affecting the overall 

difference. Thus the farther away a location lies, the smaller the role is that distance plays, 

even if this may sound paradoxical. The reason is that dialects that are separated by a large 

distance are already relatively different, so there is not much leeway for them to differ much 

more. 

Still, this interpretation only explains the logarithmic shape of the scatter plot; it does not 

tell us anything about an improvement brought about by linguistic distances. About 30 % of 

the values of linguistic distance in relation to geographical distance cannot be accounted for 

by logarithmic relation. These 30 % can be due to random fluctuations or additional effects. 

While naturally a certain amount of randomness is to be expected, the scatter plot reveals 

certain hints about what else makes linguistic distances different from geographical ones. One 
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such hint is the fact that the distribution of dots in Fig. 4 has more than one condensation area. 

While the majority scatters around the regression line, there is a second, rather hard to 

distinguish concentration area forming a long stretch above the major concentration. These 

dots, which have been highlighted in the visualization on the right in Fig. 4, represent those 

location pairs that are separated by the river Lech (cf. Fig. 3), a recognized dialect barrier, and 

therefore have an increased linguistic distance in relation to their geographical distance. On 

the whole, these pairs contribute to the logarithmic shape of the distribution, but they add a 

significant effect that cannot be accounted for by geographical distance. This effect is even 

stronger if other parts of the map corpus – not the lexical subcorpus – are used for the 

calculation of the linguistic distance. Fig. 5 shows the respective scatter plots of distances 

built on phonetic and morphological sub-corpora, as well as on the whole corpus. Again, the 

location pairs separated by the river Lech have been highlighted in the right-hand 

visualization. 

In these figures, up to three agglomeration areas can be discerned. These concentrations 

are best visible for phonetic distances. One of them is apparently caused by the separating 

effect of the river Lech. What the exact meaning of other agglomerations is remains as yet 

unclear, but it is very likely that they represent some kind of geolinguistic condensation areas. 

Other such peculiarities are the pairs that appear as outliers in the scatter plot; these pairs can 

be outliers for various reasons, for instance if they include dialect islands. These additional 

features that go beyond pure geographical information promise to make linguistic distance a 

more suitable distance measure for intensity estimation. 

As mentioned above, the procedure for implementing linguistic distances in intensity 

estimation is simply to substitute the geographical distance ݀ in equations (3) and (4) for the 

linguistic distance. The result for the data underlying Fig. 1 and 2 (Map 63 from vol. 8 of the 

SBS) is shown in Fig. 6. 
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Compared to Fig. 2, the differences are immediately clear. The shapes of the isoglosses 

are more jagged, and the colour shades representing intensity values are distributed less 

equally across the area. Also the fringe of lighter colours that accompanies each isogloss in 

Fig. 2 is less regular here. What is also noteworthy is that the isogloss running from north to 

south now follows the river Lech almost exactly (the only exception is location 199 

(Landsberg am Lech), a district capital). Also, structures that do not appear in Fig. 2 do show 

up here, for instance individual locations that have variants that diverge from the variants that 

are prevalent in their surroundings, such as the towns Memmingen (205) or Neu-Ulm (109). 

Most of the locations that ‘behave’ differently from their surroundings are larger towns or 

cities, which is also true for Günzburg (96), Schongau (269), Königsbrunn (156), Augsburg 

(122) and Augsburg’s borough Lechhausen (123). Königsbrunn is a peculiar case – being a 

relatively young colony, founded only in the 19th century, its settlers came mostly from the 

northwest of Bavarian Swabia. This explains why Königsbrunn features the same variant as 

the northwest of the area under investigation – coloured in blue –, like on many other maps 

(cf. Pickl, 2013: 172). This specialty is lost on practically all area-class maps based on 

geographical distance but is rendered clearly on linguistic-distance-based area-class maps like 

Fig. 6. Generally speaking, while linguistic-distance-based maps do an equally good job at 

abstracting away from the original data, more details are preserved.  

Despite the clear improvement in these points, some problems that arise from the use of 

linguistic distance also have to be addressed.  

One of these problems is that deficits in the data layer at individual locations (e.g. due to a 

large number of missing records at a site or a generally unreliable informant) will lead to 

flaws in the resulting maps. With our test corpus of maps, this effect only rarely led to visible 

problems. 
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Another, more fundamental and theoretical problem is that the reliance on linguistic 

distances equals an exclusive reliance on the data that are the basis for these distances. In 

other words, if the linguistic distances are calculated from lexical data only, it is plausible that 

they are suitable for drawing lexical maps, but probably not for drawing phonetic maps. This 

leads to the general question of how the dataset that is used to calculate the distances should 

be chosen. Would it, for instance, be ‘better’ to use maps from all linguistic levels for the 

distances, or to establish an individual distance matrix for each of the levels? And which 

criteria should we use to define what is ‘better’?  

Finally, we use linguistic distances to construct a network of locations which is then used 

for the estimation of linguistic distributions. At first glance, this may appear to involve a 

circularity problem, because linguistic distances obtained from a geolinguistic dataset are 

used for the estimation of underlying distributions in individual maps of the same dataset. 

Yet, there is no circular reference, because the linguistic distances are computed using the 

original weights of variants. As the proportion of the information referring to one variable is 

relatively small in relation to the whole dataset, only a very small fraction of the data is used 

twice in each estimation. This is not a problem in practice and there is no theoretical reason 

why the data of the considered map should be excluded from linguistic distance computations. 

In the following section, the second of these problems, being quantifiable, will be 

discussed. The central question will be, however, whether linguistic distances have a 

measurable advantage over geographical distances in the generation of area-class maps. 
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6. VALIDATION 

The question of whether the linguistically based implementation of intensity estimation is 

‘better’ than the geographically based intensity estimation cannot be answered conclusively, 

but certain quality criteria can be defined and then compared. 

In our case, we have chosen to analyse the accuracy that is achieved using the two 

distance measures in ‘predicting’ individual records. By accuracy of prediction we mean the 

frequency with which intensity estimation yields intensities at a location that favour the 

variant(s) actually recorded there, if the estimation is performed without taking this location’s 

records into account. Concretely, we perform intensity estimation for each map as often as 

there are locations on the map (in our case 272), each time with one of the locations 

dismissed. This technique is known as leave-one-out cross-validation. It tells us how well the 

intensity estimation ‘predicts’ the actual record. For each location and each variable, we 

assign a score that expresses the distance between actual records and intensities inferred. A 

well-performing implementation of intensity estimation will yield low scores in this kind of 

leave-one-out cross-validation, all the while providing a reasonable degree of smoothing. 

For our study, we have defined a score that compares the dominant variant estimated for a 

location with the record(s) found in the raw data. This means that we establish how well the 

visible division into variant areas reflects the raw data. Specifically, we assign a score to 

individual locations each variable that quantifies the difference between the estimated 

dominant variant and the actual records at the location. It is defined as 1 minus the local 

weight of the dominant variant (cf. Section 2), which can take on only the values 0, 1/3, 1/2, 

2/3, or 1 with our data. The score is therefore 0 if the dominant variant equals the only variant 

at that location for that variable in the raw data, between 0 and 1 if the dominant variant 

equals one of two or more variants at that location for that variable in the raw data, and 1 if 

the dominant variant is a variant that is not attested at that location for that variable in the raw 
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data. The lower the score, the better the areal division of the intensity map reflects the raw 

linguistic data. 

We calculated average scores for intensity maps based on geographical and linguistic 

distances, using two different kernels (ܭୋୟ୳ß, ܭଷ) and two different bandwidth algorithms 

(LCV, CL). In direct comparison, linguistic distances yield better results in most cases (cf. 

Fig. 7). The best overall result is attained with a combination of ܭୋୟ୳ß, LCV and linguistic 

distance. Note that likelihood-cross-validation (LCV, cf. Silverman, 1986: 52–53) chooses the 

bandwidth such that the predicted densities match the weights of the variants (cf. Section 2) 

best. Leave-one-out cross-validation is a special case of LCV and its idea is therefore the 

same, with the only difference that (in our case) dominant variants are compared, not the 

estimated density values themselves. Nonetheless, it is to be expected that LCV yields almost 

optimal (i.e. low) average scores. CL as a cost-curve approach that tries to balance map 

complexity vs. map fidelity cannot compete with LCV in this validation approach, but it often 

produces graded area-class maps that are ‘nicer’ to look at (more smoothing for high-

complexity maps, less smoothing for very homogeneous maps). Especially in combination 

with ܭୋୟ୳ß, CL clearly does not provide the best results for both geographical and linguistic 

distances. 

A more detailed perspective can be provided by calculating average scores for each 

location separately. This is done using once linguistic and once geographic distances. The 

resulting values can then be mapped in combined maps such that each location is assigned a 

colour value depending on which of the two scores is lowest, i.e. which of the two methods of 

estimation gets closer to the recorded data (cf. Fig. 8). In these maps, the blue locations are 

the ones where better results are obtained using the linguistic distance; the red locations are 

the ones where geographical distance is better. Generally, linguistic distances yield better 

results for sensitive areas, as exemplified by the regions around Augsburg and along the river 
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Lech, even in the map for ܭୋୟ୳ß and CL (Fig. 8b), where geographical distances do better 

globally.  

While these findings suggest that the use of linguistic distances does lead to improvements 

in the generation of area-class maps with intensity estimation in most scenarios, the question 

remains of how the map corpus used for the calculation of distances should be chosen in the 

first place. 

Generally, two possibilities seem plausible: 1) The use of the subcorpus of maps that 

represents the linguistic level in which the individual maps are situated (in our case the lexical 

subcorpus), or 2) the use of the entire map corpus comprising maps for variables from all 

linguistic levels. The latter could be helpful if the subcorpus to be analysed is very small, or if 

it is assumed that subcorpora representing other linguistic levels have certain relevance for the 

distributions in the subcorpus in question. What is not suggested, however, is to exclude the 

maps to be analysed using intensity estimation from the calculation of distances and to use 

maps from subcorpora representing other levels only. It is simply not plausible that for 

instance a morphological dataset should make a better statement about relations that are 

relevant for lexical items than a dataset containing other lexical information. 

To get an initial empirical idea of how well the individual subcorpora are suited for 

intensity estimation based on linguistic distances, we calculated the average scores for the 

three subcorpora (lexical, morphological and phonetic data) and the entire map corpus 

comprising all these levels based on distances calculated from exactly the same maps that are 

contained in these test corpora (cf. Fig. 9). We used ܭୋୟ୳ß and LCV as parameters as these 

yielded the best results with the lexical subcorpus, as discussed above. 

Somewhat surprisingly, the morphological and phonological subcorpora achieve much 

better results than the lexical subcorpus (and hence also than the entire corpus). This is 
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probably due to the fact that there is a tendency in morphological and phonological maps 

toward larger and more solid variant areas, which makes them less susceptible to intensity 

estimation induced smoothing (cf. Pröll, 2013: 151). 

In the next step, we calculated the average scores for the lexical subcorpus, each time with 

a different distance measure based on the lexical subcorpus, on the morphological subcorpus, 

on the phonological subcorpus, and on the entire map corpus (cf. Fig. 10). 

As is to be expected, the best results are achieved with distances calculated from the 

lexical corpus and the complete corpus, but the use of the morphological or the phonological 

maps for the calculation of distances leads only to a minimal deterioration. This suggests that 

the choice of corpus for distance extraction is not crucial, especially as the magnitude of its 

effect lies well within the range of effects caused by smoothing parameter selection (cf. 

Fig. 7). This finding is corroborated by a look at the average scores for all combinations of 

test corpora and corpora used for distance extraction (cf. Fig. 11); again, the quality of the 

estimation depends on the test corpus more than on the distance corpus. It should be 

emphasized, however, that the base corpus for the extraction of distances should not be too 

small, as this would reduce the accuracy of intensity estimation because there would not be 

enough information about the relations between sites. 

 

7. SUMMARY 

The use of intensity estimation for the drawing of graded area-class maps is a means to 

deal with uncertainty in geolinguistic data, to provide a quantitative account of the 

geographical configuration of an individual variable’s map, and to provide visual abstractions 

from pointwise data for better and quicker inspection. This article presents a method to 

improve the accuracy of the results of intensity estimation by utilizing linguistic instead of 
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geographical distances. Visual inspection of the results obtained with this new approach 

shows that significant geographical structures like dialect barriers (such as, in this, case, a 

river) or dialect islands (in this case towns or a colony) are rendered much more faithfully 

when using linguistic rather than geographical distances. These findings are corroborated by 

leave-one-out cross-validation, which shows that with most parameter settings and especially 

in ‘critical’ regions of the area (i.e. regions where geographical structures influence the 

distribution of dialectal variants), linguistic distances lead to better results. The best overall 

results for linguistic distances are attained in combination with LCV bandwidth optimization 

and the two-dimensional normal distribution kernel. In some, especially less ‘interesting’ 

regions, different parameter settings can lead to a better prediction of left-out records. As this 

study is restricted to a certain dialect area in the south of Germany and to a specific data set 

(the SBS), it is clear that in a different region and with other data, the results could be in 

favour of other parameter settings or even of geographical distances. We hope to have shown, 

however, that the use of linguistic distances can be an improvement of intensity estimation, 

thus honing the results of the estimation, which are useful for subsequent statistical analyses, 

as well as the resulting maps, which provide unsupervised visualisations of geolinguistic data. 
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End Notes

                                                            
1 In this regard, the resulting maps of intensity estimation bear some resemblance to those 

obtained using methods that measure spatial autocorrelation, which have become increasingly 

popular in recent times (cf. Grieve 2009, Grieve, Speelman & Geeraerts 2011, and Lameli 

2013: 98–102 in an aggregative perspective). Especially local spatial autocorrelation measures 

such as Getis-Ord Gi* yield results that resemble those of intensity estimation at least 

superficially, but the two underlying methods work quite differently. While methods of spatial 

autocorrelation like Getis-Ord Gi* are aimed at identifying areas of statistically significant 

spatial clusters (hot spots), intensity estimation is used to infer an underlying probability 

distribution from a number of observances. 

2 The denominator in this equation normalizes local sums of intensities to 1.  

3 In this study, two algorithms are used: Likelihood-Cross-Validation (LCV) and a cost-curve 

approach (CL) that optimizes certain characteristics of the resulting maps (cf. Pickl, 2013: 

110–113). 

4 Cf. Pröll (2013: 18–19) for a discussion of this problem. 

5 For instance Bauer (2009: 172), using Goebl’s approach, reduces the dataset to contain only 

one variant per variable and site. 

6 Séguy (1971) gave the first account of this phenomenon; Nerbonne (2010: 3821) thus 

suggests using the term Séguy’s curve. Stanford (2012) examines the applicability of this 

relation for short geographical distances. 
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Fig. 1a: Point-symbol map  
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Fig. 1b: Legend 

Fig. 1: Map 63 from vol. 8 of the SBS, showing the distribution of the variants for 

‘woodlouse’. 
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Fig. 2: Map 63 from vol. 8 of the SBS, intensity estimation, geographical distance, Level 2, ܭଷ, ℎ = 22 km (CL).1 

                                                            
1 The parameter Level specifies the degree of abstraction from the raw data, i.e. what criteria 

were used to categorize the individual records into variants (cf. Pickl, 2013: 72–78). Level 2 

is a medium setting and is used throughout this paper. 
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Fig. 3: Shape of the river Lech in the area under investigation in Voronoi rendering. 
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Fig. 4: Scatter plot of geographical vs. lexical distances and logarithmic regression curve. In 

the visualization on the right, the location pairs that are separated by the river Lech are 

highlighted. 
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Fig. 5: Scatter plots of geographical vs. linguistic (from top to bottom: morphological, 

phonetic, all) distances and logarithmic regression curves. In the visualizations on the right, 

the location pairs that are separated by the river Lech are highlighted. 
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Fig. 6: Map 63 for vol. 8 of the SBS, intensity estimation, lexical distance, Level 2, ܭଷ, ℎ = 0.55 (CL). 
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Fig. 7: Average scores for lexical and geographical distances in an application of intensity 

estimation to 736 lexical maps across all locations and all variables (lower is better). 
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Fig. 8a: ܭୋୟ୳ß, LCV 

 
Fig. 8b: ܭୋୟ୳ß, CL  

 
Fig. 8c: ܭଷ, LCV 

 
Fig. 8d: ܭଷ, CL 

Fig. 8: Average scores for lexical (blue) and geographical (red) distances in an application of 

intensity estimation to 736 lexical maps across all locations. The respective lower value 

(linguistic or geographical) was colour-coded at the individual locations, the colour intensity 

being higher for scores with a larger advantage over the respective other one. 
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Fig. 9: Average scores for linguistic distances (dlex etc.) in an application of intensity 

estimation to the respective test corpus (lex etc.) across all locations and all variables (lower is 

better). 

 

Fig. 10: Average scores for linguistic distances (dlex etc.) in an application of intensity 

estimation to the lexical subcorpus (lex) across all locations and all variables (lower is better). 
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Fig. 11: Average scores for linguistic distances (dlex etc.) in an application of intensity 

estimation to the all test corpora (lex etc.) across all locations and all variables (lower is 

better). 
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