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Abstract
The physical understanding and numerical modelling of superconducting devices which exploit
the high performance of second generation high temperature superconducting tapes (2G-HTS), is
commonly hindered by the lack of accurate functions which allow the consideration of the in-
field dependence of the critical current. This is true regardless of the manufacturer of the
superconducting tape. In this paper, we present a general approach for determining a unified
function qI B,c ( ), ultimately capable of describing the magneto-angular dependence of the in-
field critical current of commercial 2G-HTS tapes in the Lorentz configuration. Five widely
different superconducting tapes, provided by three different manufacturers, have been tested in a
liquid nitrogen bath and external magnetic fields of up to 400 mT. The critical current was
recorded at 90 different orientations of the magnetic field ranging from q = 0 , i.e., with B
aligned with the crystallographic ab-planes of the YBCO layer, towards  90 , i.e., with B
perpendicular to the wider surfaces of the 2G-HTS tape. The whole set of experimental data has
been analysed using a novel multi-objective model capable of predicting a sole function qI B,c ( ).
This allows an accurate validation of the experimental data regardless of the fabrication
differences and widths of the superconducting tapes. It is shown that, in spite of the wide set of
differences between the fabrication and composition of the considered tapes, at liquid nitrogen
temperature the magneto-angular dependence of the in-field critical current of YBCO-based 2G-
HTS tapes, can be described by a universal function qI f B ,c ( ( ) ), with a power law field
dependence dominated by the Kim’s factor B B0, and an angular dependence moderated by the
electron mass anisotropy ratio of the YBCO layer.

Keywords: superconductors, YBCO coated conductors, critical currents, angular dependence,
finite-element analysis, AC losses

(Some figures may appear in colour only in the online journal)

1. Introduction

It is expected that the progressive development of super-
conducting applications such as superconducting fault current
limiters [1], power transmission lines [2], and HTS rotary

machines [3, 4], together with a steady progress in the
deposition techniques and fabrication of YBCO coated con-
ductors or 2G-HTS tapes will lead to more competitive prices
and improved efficiencies in comparison to resistive con-
ductors such as copper. However, in order to design or opt-
imize a superconducting machine composed of 2G-HTS
tapes, ideally it is necessary to know in advance what is the
value of the critical current density of the used tape when it is
affected by an external magnetic field, also called the in-field
critical current density qJ B,c ( ) [5].
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The critical current density of YBCO coated conductors
displays a complex anisotropic behaviour for in-plane and
out-of-plane applied magnetic field, even when the field is
only applied in perpendicular direction with the flow of the
electric current, and the complex interaction between shield-
ing and transport currents is confined to two dimensions. The
essential physics behind the collected vast phenomenology
has been well known for decades [6, 7] and it may be ana-
lysed in terms of interactions between the flux lines them-
selves (lattice elasticity and line cutting) and interactions with
the underlying crystal structure (flux pinning). However, if J
is locally perpendicular to B, it is easy to demonstrate that the
flux lines are always parallel to each other [8] and therefore,
the anisotropy of the in-field critical current density qJ B,c ( )
may have its main origin in the crystal structure and fabri-
cation of the YBCO layer. It is this dependence on the fab-
rication process what hinders the assertion of the existence of
a general function that might describe the in-field dependence
of the critical current density of commercial 2G-HTS tapes,
regardless of their manufacturer.

We have experimentally measured the qJ B,c ( ) function
of different batches of superconducting tapes fabricated by
three different companies, namely SuperPower Inc. (SP) [9],
American Superconductor (AMSC) [10], and Shanghai
Superconductor Technology Co., Ltd. (SHSC) [11], under the
same experimental conditions, in order to explore the possi-
bility of unifying their physical behaviour in a general

qJ B,c ( ) function. The critical current density profiles of the
tested tapes are measured under the action of a homogeneous
external magnetic field of intensities ranging from 50 to
400mT, in all cases. The experiment has been performed
such that the angular dependence on the magnetic field can be
studied in increments of 2◦ from the in-plane field approach,
i.e., with the field parallel to the wider surface of the SC tape
and with ^J B. It covers the peak width of the critical current
density which spans towards the out-of-plane field directions
(q =  90 ), with the maximum centred when the magnetic
field is applied parallel to the wider surface of the SC tape.
Thus, later it is shown that regardless of the manufacturer and
width of superconducting tape, a simplified function of the in-
field critical current density qJ B,c ( ) can be constructed, by
extending the scope of the Kim’s model Jc(B) for the out-of-
plane approach, and assessing the magneto-angular depend-
ence of the fitting parameters therein assumed [12].

This paper is organized as follows. In section 2, the
experimental setup and the most relevant information for the
classification of the superconducting tapes considered across
this study, are presented. Then, in section 3 the underlying
approximations and the numerical procedure that has been
implemented for the identification of a general function for
the in-field magneto-angular dependence of the critical cur-
rent for second generation HTS tapes, are discussed in detail.
It will be shown that our numerical results allow to prove the
existence of a sole equation for the definition of the qI B,c ( )
function in the Lorentz configuration, by considering the
experimental results obtained for up to five different samples
these provided by three different manufacturers. Finally,

section 4 is devoted to summarize the main conclusions of
this work.

2. Experimental setup and measured samples

A 600mT electromagnet of ∼204mm pole face diameter
was employed for the angle-resolved critical current density
measurements. The magnetic field was measured with a HZ-
11C hall-probe aligned with the pole face centre of the
electromagnet. The longitudinal axis of the YBCO coated
conductor, which was mounted over a tufnol support board, is
coaxially aligned with the rotation axis of a high precision
rotation stage as shown in figure 1. The current return path
has been aligned parallel with the length of the sample at a
distance of 10cm, such that the maximum magnetic field
produced by the current return path over the surface of the
sample (∼1 mT at 533 A), and its influence on the mea-
surement of the critical current for applied magnetic fields
ranging from 50 to 400mT can be neglected. In addition, the
shape of the tufnol board and the rod connecting with the
rotation stage, have both been carefully designed with a neck
offset in order to ensure a coaxial relationship between the
test sample and the rotation stage in all field orientations.

Low temperature solder (melting point 470 K) was used
to attach the voltage taps on the nameplate side of the YBCO
coated conductor. However, depending on the characteristics
of the stabilizer layer. The solder-flux used for adequate
soldering of each of the voltage taps corresponded to the
manufacturers’ suggestions. For example for copper or brass
laminated tapes, zinc chloride flux (Baker’s Soldering Fluid
No.3) was applied to the sample surface where solder dots
were to be made. For stainless steel laminated tapes, highly

Figure 1. On the left, a picture of the experimental rig is presented.
The sample holder and the neck offset for coaxial configuration is
displayed in the right pane.
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corrosive solder flux (Superflux, Castonlin Eutectic) was used
to provide a better electrical connection.

The critical current of studied HTS tapes was measured
while the samples were immersed in liquid nitrogen bath,
with voltage criterion = ´ - -E 1 10 V m0

4 1 applied. All
measured samples are 160mm length, and the end terminals
were clamped by copper plates and copper bases with four
M5 cap head screws. The contact length was 15mm for HTS
tapes 4–6 mm width, and 25 mm for HTS tapes 10–12mm
width, respectively. High purity indium was also applied to
the interlayer of coppers for cold welding, and the contact
resistance at room temperature was determined to be 0.8 mΩ

for 4–6mm width tapes, and 0.2mΩ for 10–12 mm width
tapes, respectively. Finally, an Agilent 6680A was used as a
DC current source, and the differential of voltage between the
taps was measured with a Keithley 2182A nano-voltmeter.
All the instruments were connected via an IEEE-488 GPIB
bus with in-house built LabVIEW controllers.

Five different YBCO coated conductors from three dif-
ferent manufacturers have been considered. Two different
types of SP tapes have been tested, namely, 4mm width
SCS4050 tapes with top and bottom Cu stabilizer layers of
∼0.02mm thickness, and the 12mm width stabilizer free
SF12100 tapes [9]. In both cases, the YBCO layers are fab-
ricated by metal organic chemical vapour deposition
(MOCVD) over a buffer of heteroepitaxial layers deposited
by sputtering, on a Hastelloy C-276 substrate of 0.1mm
thickness for the SF12100 tape, and 0.05mm thickness for
the SCS4050 tape, respectively. The YBCO layers ( m~1 m
thick) are then coated by a thin Ag layer of about m~2 m
thick to provide electrical contact. For the AMSC samples
[10], we have chosen the 4.4 m width single YBCO layer tape
or AMSC8700 tape with brass stabilizing layers of 0.15 mm
thickness and also, the 12 mm width double layer YBCO tape
or AMSC8612 tape with stainless-steel stabilizing layers of
0.075mm thickness. In both AMSC tapes, the YBCO layers
are deposited by MOCVD over a similar stack of hetero-
epitaxial layers (buffer) grown on a 0.075mm thickness NiW
alloy substrate. However, it is worth emphasizing that the
AMSC8612 is a double layered HTS tape, i.e, the tape is
composed by two stacks of YBCO/Buffer/NiW layers
placed back-to-back in a single laminated package with the
YBCO films coated by a m3 m thick layer of Ag. Finally, the
last of our five samples corresponds to the 5.8mm width,
0.220mm thickness, 2G-HTS tape provided by ShangHai
SuperConductor (SHSC), also called ST-06-L tape [11], with
similar substrate and buffer layer characteristics to the SP
tapes, although with the YBCO layer deposited over a MgO
template (buffer) by pulsed laser deposition (PVD) rather than
MOCVD. A brief comparison of the technical features of the
five 2G-HTS tapes aforementioned, is presented in table 1 for
the ease of the reader.

3. Generalizing the in-field Ic B; θð Þ function

For the selection of different 2G-HTS tapes shown in table 1,
we have measured the profile of critical current Ic as a

function of the applied magnetic field, B, and its orientation,
θ, in the maximum Lorentz force configuration, i.e., with the
magnetic field applied perpendicular to the direction of the
transport current. Therefore, the field angle θ is defined as 0°
when the external magnetic field is parallel to the ab-plane of
the YBCO tapes, as illustrated in figure 2. Therein, similar
qualitative features of the in-field qI B,c ( ) function can be
observed for the different 2G-HTS tapes that have been stu-
died. In more detail, the maximum critical current at self-field,

qI 0,c ( ), i.e., without the influence of an external magnetic
field has been measured for all samples and then, the mag-
neto-angular study has been conducted for external magnetic
fields of intensities B=50mT, 100mT, 200mT, 300mT,
and 400mT, respectively. For the sake of comparison the
results obtained at q = 0 ( ^B ab plane B I,∣∣ ‐ ) and
q = 90 ( ^B c axis B I,∣∣ ‐ ) are shown in table 2.

In the case of the SP samples, SCS4050 and SF12100, a
more acute drop of the critical current is observed when the
applied magnetic field is tilted towards  90 from the ab-
plane orientation of the HTS tape q = 0( ), with a reduction
of Ic of up to 67% at 400mT for SCS4050, and 41% for
SF12100, respectively. A similar drop pattern on the Ic is
observed for the SHSC sample, ST-06-L, with a maximum
reduction of the critical current of about 58% at 400 mT, and
nearly the same percentage standard deviation when it is
compared with the SCS4050 sample (Δσst = 18.36(ST-06-
L)− 18.04(SCS4050)=0.32). On the other hand, the
AMSC samples show a more isotropic behaviour on the
angular dependence of the Ic, with a maximum drop of 31% at
400mT for AMSC8700 s = 10.88st( ), and only a 19% for the
double layered HTS tape or AMSC8612 s = 6.16st( ) sample.
Nevertheless, although the magneto-angular dependence of Ic
on the AMSC samples is smaller than the observed one for
the SP and SHSC samples, for comparable widths and
structure, i.e., for the SCS4050 versus AMSC8700, a sig-
nificant improvement of about 53% on the relative reduction
of the Ic drop at moderately high fields (400 mT) is achieved.
The SP samples at self-field conditions and for in-plane field
q = 0( ) attain greater critical current values. This is contrary
to what happens when the external magnetic field is applied at
q =  90 and for intensities greater than 200 mT (see

Table 1. 2G-HTS tapes technical parametersa.

2G-HTS
No.

YBCO h w Ic Max.
tape layers (mm) (mm) (A) n

SCS4050 [9] 1 0.055 4 114 30.5
SF12100 [9] 1 0.105 12 388 30.1
AMSC8700
[10]

1 0.150 4.4 98.2 36

AMSC8612
[10]

2 0.330 12.2 533 52.2

ST-06-L [11] 1 0.220 5.8 167 42.14

a
h refers to the overall thickness of the 2G-HTS tape, and w to its total

width, respectively. The 12.2mm width of the AMSC8612 sample includes
the solder fillet layers at each side of the tape (∼1.1 mm), i.e. with an
effective YBCO layer of ∼10mm width.
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table 2). It is worth mentioning that for the 12mm double
layered YBCO tape (AMSC8612) a straightforward com-
parison with the SF12100 sample cannot be achieved. This is
because each one of the two layers of YBCO that compose
the AMSC8012 tape is inherently affected by the magnetic
field created by its reciprocal layer. Thus, although the total Ic
measured for this tape is the greatest, it is expected that
assuming equal sharing of current, the Ic per layer has to be
smaller than the one observed for the SF12100.

In order to generalize the previous results and allow an
accurate prediction of the critical current in the maximum
Lorentz force configuration, Ic, independently of the intensity
of the applied magnetic flux density, ºB B∣ ∣, and the angle θ,
we have assumed that the critical current has to be moderated
by the ratio between the effective mass of the charge carriers
along the c-axis and the ab-plane of the YBCO layer, i.e., the
electron mass anisotropy ratio * *g = m mc ab, as it was sug-
gested by Blatter et al, in [13]. This anisotropy is caused by
imperfect alignment of the ab-plane of each YBCO grain and
the small fraction of grains with their ab-planes exactly par-
allel to the tape surface, which contributes to a large intergrain
critical current in a magnetic field parallel to the tape, as it has
been experimentally observed (see figure 2, q = 0). Thereby,
we have extended the conventional Kim’s model [12] taking
into account Blatter’s angular anisotropy factor, eq, as

follows:

⎛
⎝⎜

⎞
⎠⎟q

e
= + q

b-

I B I
B

B B
, 1 , 1c c0

0
( )

( )
( )

with

e g q q= +q
- sin cos . 21 2 2( ) ( ) ( )

In equation (1), q=I I 0,c0 c ( ), i.e., the self-field critical
current, and the empirical parameters introduced by Kim, B0

and β, take into account the thermally activated flux-creep
processes into specific samples. In fact, as the mechanism of
flux creep is a thermally activated motion of bundles of flux
lines, aided by the Lorentz force ´J B, over free energy
barriers coming from the pinning effect of inhomogeneities,
dislocations, strains, or other physical defects [16], in a first
instance we have assumed that the parameter B0 can be a
function of B for the different samples considered in this
study. Thus, by assuming the minimum number of empirical
parameters that have been formulated within the Kim [12] and
Anderson [16] flux creep theory, we have fixed the value of
Ic0 in equation (1) accordingly with our experimental obser-
vations (see table 1 or 2), and the parameters γ, B B0 ( ), and β

have been determined for the lowest mean absolute percent-
age deviation (MAPD) and analogously, for the lowest root-
mean-square deviation (RMSD) of the experimental data,

Figure 2. In-field magneto-angular dependence of the critical current Ic for the 2G-HTS tapes summarized in table 1. Solid symbols
correspond to the experimental data acquired for an external magnetic field of 50mT (red-squares), 100mT (yellow-triangles), 200mT
(blue-diamonds), 300mT (green-circles), and 400mT (purple-triangles), respectively. Solid lines, correspond to the results obtained from
our extended version of the Kim’s model. As greater the applied magnetic field is, the lower the critical current. The orientation of the field
angle and the direction of the transport current for all cases is illustrated in the top-left pane of the figure.
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with the minimum order function for B B0 ( ). The latter fact is
important because multiple guesses of the parameters γ and
B B0 ( ) could lead to similar MAPD and RMSD outcomes on
specific tapes. Nevertheless, what is possible is to find a
suitable expression for the different SC tapes along the
minimization of the MAPD and RMSD values, by introdu-
cing the smaller possible number of unknown variables.

Thus, initial estimates for each one of the three free
parameters in equation (1) have been assumed, and a similar
iterative procedure to the one introduced in [17] has been
used. We have reduced the ambiguity on the initial guesses by
taking into consideration that the electron mass anisotropy
ratio, γ, ranges between 1 for fully isotropic samples to about
25 for d-YBa Cu O2 3 7̠ grains with highly anisotropic con-
ductivity [18]. Also, it has been already reported that the flux
creep exponent β for YBCO samples is commonly lesser than
2 [14, 17]. Then, for a determined number of estimates,
g bB, ,0( ), the MAPD and RMSD of equation (1) with
respect to the experimental measurements have been calcu-
lated for each one of these sets, and the overall number of
resulting expressions minimized according to the following
expressions:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥å

x

=
-

q

g b

=

q

N N

I I

I

Min

Min
1

.
3

k

N N

B

B

k

MAPD

1

c
, ,

c
exp.

c
exp.

B 0

[ ]

·
∣ ∣ ( )· ( ) ( )

( )
( )
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⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

å

x

=
-g b

q

=

q

I I

N N

Min

Min ,
4k
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c
B

k

B

RMSD

1

, ,
c

exp. 2
B

0

[ ]

(∣ ∣)

·
( )

·
( ) ( )

( )

where the sub-index k( ) indicates the subset of data taken
from the qN angular measurements at the NB different values
of applied magnetic field, and g bI B

c
, ,0( ) is the numerical value

obtained during the minimization for the best fitting to the
experimental results Ic

exp.( ) by means of equations (1) and (2).
The optimal minimization process for the fitting of the

g bB, ,0( ) parameters depends therefore on the number of
estimates allocated to each one of these parameters, sepa-
rately. For instance, if 20 different values are considered for
each one of the parameters, γ, B0, and β, respectively, the
minimization runs over a total of 8000 possible combinations
for each NB curve, and the percent deviations of the MAPD
xMAPD( ) and RMSD xRMSD( ) have to be constrained to a
maximum threshold in order to accept the solution. Thus, we
have constrained the solution of equation (3) to satisfy the
conditions xMAPD and xRMSD

2 with  = 3% for all
the NB curves, simultaneously. As a result, less than 1% of the

´ N8000 B suitable combinations for g bI B
c

, ,0( ) survive for all
qN measurements, and the results obtained for the minimum

relative average between xMAPD and xRMSD are shown in
table 3. Nevertheless, a univocal value for the parameter B0

was only obtained for the SCS4050 and AMSC8612 samples,

this imposes an additional challenge for the determination of a
singular qI B,c ( ) function for the 2G-HTS tapes: AMSC8700,
SF12100, and ST-06-L. For instance, for the AMSC8700
sample, the lowest xMAPD and xRMSD values that have been
obtained for a single definition of B0 were 6.75 and 7.24,
respectively, what does not satisfy the threshold condition for
xMAPD resulting in a deviation of more than 15% in the peak
of current I B, 0c ( ).

Thus, in order to satisfy the tolerance conditions and
reduce the deviation between the numerical results and the
experimental observations, it is at this point that it is necessary
to consider that the parameter B0 depends on the magnitude of
the applied magnetic field. Two essential conditions need to be
satisfied during the derivation of this equation: First, the
resulting expression has to be as simple as possible, i.e., by
introducing the minimum number of free parameters that may
allow the reproduction of the experimental results in even
different coated conductors. Secondly, the resulting equation
has to be physically consistent with the units in equation (1).
The latter is important because the uncertainty on the physical
nature of B0 has led in the past to the formulation of cum-
bersome but yet accurate fitting expressions on specific batches
of commercial tapes [14], that in some cases allows the adding
of a significantly large number of physically unknown para-
meters with severe inconsistencies on the physical units [15].
However, we recognize that there is not a single way for
finding this kind of expression, and different fitting equations
can be obtained depending on the initial ansatz for the math-
ematical structure of the function qI B,c ( ). Therefore, finding
an univocal solution for qI B,c ( ) is indeed cumbersome, and in
general requires of the initial consideration of a larger number
of variables during the minimization procedure.

However, returning to the root of the problem,
equation (1) can be rewritten in a more general way as

q e= + q
b-I f B I f B, 1 , 5c c0( ( ) ) ( ( )) ( )

with z d= + af B B B0( ) [( ) ] , being the parameters ζ, δ, and
α, new variables into the minimization procedure, such that in
equations (3) and (4) the function of three variables

q=g bI I B,B
c

, ,
c

0 ( )( ) in equation (1) is replaced by qI f B ,c ( ( ) ),
in a first approach. The parameter δ, which is the only one
with physical units, has been introduced for mathematical
convenience as it allows a faster minimization of the powers
α and β by compensating the impact of the highly nonlinear
terms Moreover, the minimization of the objective functions
is conditioned to progressively achieve a reduction of δ, i.e.,
to d d<+t 1 , for d + 0t 1 in order to avoid the occurrence of
complex singularities in Ic. Also it is possible to help further
the minimization by imposing the conditions z 1, and
a 0. Thereby, we have found that the function f (B) is

strikingly reduced to a very simple and elegant expression:

⎛
⎝⎜

⎞
⎠⎟=
a

f B
B

B
, 6

0
( ) ( )

with our final results presented in table 3, and showing an
excellent agreement with the experimental results displayed in
figure 2.

5

Supercond. Sci. Technol. 30 (2017) 025010 X Zhang et al



Despite SCS4050 and AMSC8612 samples have differ-
ent width and consequently different self-field critical current
density I 0, 0c[ ( ) in table 2], they possess very close fitting
parameters: B0, α and β. Therefore, the magneto-angular
dependence of the SCS4050 and AMSC8612 samples is
rather similar, although the electron mass anisotropy ratio of
SCS4050 is about 4 times greater than in the AMSC8612
sample (g g = 4.016SCS4050 AMSC8612 ). This fact explains the
high increase on the critical current density when the magn-
etic field in the Lorentz-force configuration is applied parallel
to the surface of the ab-planes of the SCS4050 tape, i.e.,
q = 0 at figure 2, a phenomenon which is nearly unseen at
50mT with the AMSC samples. A similar comparison can be
made between the SF12100 and the AMSC8700 samples
(g g = 3.33SF12100 AMSC8700 ). Thus, further to the general
expression that we have found for the magneto-angular in-
field function qI B,c ( ), from our previous analysis it is pos-
sible to conclude that the contribution due to the charge
carriers along the c-axis of the YBCO tapes manufactured by
SP is greater than in those manufactured by AMSC or SHSC,
a phenomenon that is increased when the YBCO tape is not
coated by Cu stabilizer layers. Nevertheless, the sample
manufactured by SHSC (ST-06-L) has shown a stronger
dependence of the mass anisotropy factor γ on the intensity of
the applied magnetic field. In this case it was not possible to
find a solution capable of satisfying the threshold values for
xMAPD and xRMSD, simultaneously. Thus, although these
threshold values can be adjusted, it is worth mentioning that
for the best of the cases we have found that g ~ 4.35 for
x ~ 3.5%MAPD and x ~ 4.2%MAPD . However, it produces an
acute deviation of the peak values of the critical current
density at q = 0 , particularly noticeable at lower magnetic
fields ( B 100 mT), with the experimental results being
overestimated by more than a 10% difference. It could be
seen maybe as a small difference for the reader, but it has to
be noticed from table 2 that the percentage differences
between the self-field critical current I 0, 0c ( ) and the peaks
values of the critical current at 50mT and 100mT are of
~10.7% and ~25%. Consequently, by accepting the

aforementioned condition, the actual overestimation of the
increase in the critical current density in the in-field config-
uration results in a deviation of more than 20% from the self-
field critical current value. Thus this simplified approach is
not acceptable. Consequently, we conclude that there is a
weaker influence of the charge carriers along the c-axis of the
YBCO layer in the ST-06-L tape for magnetic fields lower
than 200mT, i.e., with g = 2.08, than what is observed for
greater magnetic fields where the minimum γ has been found
to be double (see table 3).

4. Conclusion

In this paper, we have presented a thorough study of the
magneto-angular dependence of the in-field critical current
function in the so called Lorentz configuration, qI B,c ( ) with
^B I , of five different samples of commercially available

2G-HTS tapes. The experimental results have been obtained
for external magnetic fields of up to 400mT, and range from

Table 2. In-field magneto-angular dependence of the critical current Ic for the 2G-HTS tapes summarized in table 1 for the external magnetic
field intensities displayed in figure 2, and for the angles q = 0 ( ^B ab B Iplane,∣∣ ‐ ) and q = 90 ( ^B c B Iaxis,∣∣ ‐ ).

2G-HTS YBCO I 0, 0c ( ) I 50 mT, 0c ( ) I 100 mT, 0c ( ) I 200 mT, 0c ( ) I 300 mT, 0c ( ) I 400 mT, 0c ( )
tape w (mm) (A) (A) (A) (A) (A) (A)

SCS4050 4 114 108.2 100 91.26 82.12 76.2
AMSC8700 4.4 98.2 89.04 80.58 65.39 54.11 49.12
ST-06-L 5.8 167 149.2 125.3 106.9 88.95 77
SF12100 12 388 363.2 345.8 284.6 239.6 204.77
AMSC8612 12 533 509.5 448.2 344 283 235

2G-HTS YBCO  I 0, 90c ( )  I 50 mT, 90c ( )  I 100 mT, 90c ( )  I 200 mT, 90c ( )  I 300 mT, 90c ( )  I 400 mT, 90c ( )

SCS4050 4 114 88.19 71.04 48.66 33.91 25.17
AMSC8700 4.4 98.2 85.59 70.17 48.33 37.25 33.78
ST-06-L 5.8 167 137.7 97.33 65.34 44.99 31.86
SF12100 12 388 322 229.8 147.7 140.1 120.9
AMSC8612 12 533 496.7 422.3 301.2 238.6 190

Table 3. Fitting parameters found after the minimization procedure
of equation (5) is performed, it leading to equation (6) and the
matching of the experimental results displayed in figure 2.

2G-tape B0 (mT) α β γ xMAPD xRMSD

SCS4050 [9] 240 1 1.50 5.02 1.57 1.21
SF12100 [9] 44.83 2.4 0.24 13.32 2.93 8.25
AMSC8700
[10]

72.75 2.4 0.25 4.00 1.89 1.64

AMSC8612
[10]

280 1 1.30 1.25 1.27 5.91

ST-06-L [11] 91.03 1.7 0.58 4.17a 2.91 2.51

a
For applied magnetic fields lower than 200mT, the obtained electron mass

anisotropy ratio for the ST-06-L sample and under the same conditions
displayed in this table corresponds to g = 2.08. Thus, the theoretical curves
shown in the ST-06-L pane of figure 2 for =B 50ext and 100mT are
obtained with g = 2.08, otherwise the results therein are for g = 4.17.
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0◦ to  90 , i.e., with B parallel to the ab-plane of the YBCO
tape, towards the perpendicularity conditions where B is
parallel to the c-axis. In general, we have selected 2G-HTS
tapes with broad differences regarding their width, fabrication
process, and laminar structure (materials composition), in
order to seek for a universal function that may describe the

qI B,c ( ) behaviour of different commercial tapes from the
numerical minimization of the objective functions introduced
in equations (3) and (4).

Two samples of 12mm YBCO-width tapes have been
considered, each fabricated by a different company, namely,
the SF12100 tape by SuperPower Inc. [9], and the double
layered YBCO tape AMS8612 by American Superconductor
(AMSC) [10]. Analogously, measurements have been per-
formed for the 4mm width SCS4050 tape fabricated by
SuperPower, the 4.4 mm width AMSC8700 tape by AMSC.
Finally, the ST-06-L tape produced by Shanghai Super-
conductor Technology Co., Ltd. (SHSC) [11] has been con-
sidered. It is shown that, in spite of the apparently strong
differences between these tapes, at liquid nitrogen temper-
ature the magneto-angular dependence of the in-field critical
current can be described by a universal function, qI f B ,c ( ( ) ),
with a power law field dependence dominated by the Kim’s
factor B B0 (see equations (5) and (6)), and the angular
dependence moderated by the electron mass anisotropy ratio
in equation (2). A similar power law dependence with the
magnetic field has been recently observed by Barth et al [19],
for fields of up to 60% of the irreversibility field and at
temperatures lower than 77K. In fact, an exponential law for
the temperature dependence has been already determined by
these authors, which in the future could be used as the initial
estimates at the outset of our general approach.
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