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Abstract

Partial differential equations (PDEs) govern many natural phenomena. When trying to
understand the parameters driving these phenomena, we must be aware of the inevitable
errors in our measurements; in statistical inverse problems these measurement errors
are modelled by statistical noise. One approach to recovering the PDE coefficients
governing such statistical inverse problems is through Bayesian methodology. This thesis
investigates the theoretical performance of the Bayesian approach in two particular cases.

The first model considered is the advection-diffusion equation. Kolmogorov’s equations
link this partial differential equation to a corresponding (time-homogeneous) stochastic
differential equation, in which a diffusion process flows according to a ‘drift function’ and
is buffeted by a Brownian motion effect of spatially varying magnitude; this diffusion
formulation forms the focus herein. Assuming the diffusion coefficient (the magnitude of
the Brownian effect) is given, this thesis considers the problem of recovering the drift
function from observations of the diffusion at discrete time intervals.

Chapter 2 gives explicit conditions on priors under which the corresponding Bayesian
posteriors provably contract in L2–distance, as data is collected, around the true drift
function, at the frequentist minimax rate (up to logarithmic factors) over periodic Besov
smoothness classes. These conditions are verified for some natural nonparametric priors,
some of which are shown to adapt to an unknown smoothness parameter. The results
are given in the high-frequency regime, where the diffusion is observed to a later time
horizon and at ever closer intervals, but in fact the minimax rate (again up to logarithmic
factors) is also attained in the low-frequency regime, where the intervals between samples
remain fixed. This yields the first drift estimator robust to the sampling regime.

The second model considered is the Calderón problem. This is the mathematical
formulation of electrical impedance tomography, in which electrodes are attached to a
patient’s skin and used to apply voltages and record the corresponding current fluxes.
The current flux corresponds to the Neumann data for the solution to a PDE, governed
by an interior ‘conductivity parameter’, in which the voltage gives the Dirichlet boundary
values. Varying the applied voltage, we consider observing the ‘Dirichlet-to-Neumann
map’, and attempt to recover the interior conductivity. The data considered in Chapter 3
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consists of the Dirichlet-to-Neumann map corrupted by additive Gaussian noise. A prior
is exhibited for which the posterior mean statistically converges to the true conductivity
(as the noise level is taken to 0) at a near-optimal rate.

The introductory chapter outlines the minimax framework by which the posteriors
are judged, and provides the background material relevant to this thesis. Of particular
interest may be the included proof, in an general inverse problem setting, of natural
conditions under which the consistency of the posterior mean can be guaranteed.
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Chapter 1

Introduction

The goal of statistical estimation is to infer the value of a parameter θ governing the
distribution of observed data X. In statistical inverse problems, the distribution of X
does not depend on θ directly, but only via the value of G(θ) for some operator G. The
forward map θ 7→ G(θ) is assumed to be “well-behaved” in some respect (say continuous
with respect to some strong metrics, or easy to compute numerically) while its inverse is
assumed to be much worse behaved (perhaps discontinuous except with respect to weak
metrics, or numerically very unstable). It is generally easy to statistically estimate G(θ),
but estimating the underlying parameter θ is harder because it involves inverting the
map G.

Bayesian methods provide a natural statistical approach to inverse problems, as
advocated in Stuart [77], but with some conceptual roots tracing further back to Diaconis
[24] and even Poincaré [67, Chapter XV §216]. Placing a prior Π on the parameter θ
induces a posterior via Bayes’ rule:

posterior ∝ prior × likelihood.

The likelihood can be calculated with calls only to the forward map, hence inverting
the operator G is not a prerequisite to sampling from the posterior. One hopes that
good estimators of θ can be built from these posterior samples, so that the Bayesian
method “automatically” solves the inverse problem. The remit of this thesis is proving
this hope is well-founded, for two particular statistical inverse problems where the
parameter of interest, in each case a function so that the models are infinite dimensional
(‘nonparametric’), can be viewed as the coefficient of some partial differential equation
(PDE). The sense in which posterior-based estimators are shown to have good statistical
properties is a (frequentist) minimax sense, explained in Section 1.3.2.



2 Introduction

This introductory chapter provides the core background material for this thesis. First,
the two models to be studied are informally introduced.

1.1 Stochastic diffusions
Consider the problem of estimating the coefficients b and σ of the advection-diffusion
PDE

∂u

∂t
= b(x)∂u

∂x
+ 1

2σ
2(x)∂

2u

∂x2 , x ∈ R, t ∈ [0, T ],

u(x, 0) = f(x), x ∈ R.
(1.1)

Such a PDE arises as the macroscopic behaviour for a system of particles evolving
according to a stochastic differential equation (SDE)1

dXt = b(Xt) dt+ σ(Xt) dWt, (1.2)

where Wt is a standard Brownian motion: the precise relationship is that the solution
to (1.1) is given by u(x, t) = E[f(Xt)|X0 = x] provided f is smooth enough (by the
Kolmogorov forward equation or Fokker–Planck equations, or see e.g. [26, §7.2-7.3]).
Since the observable behaviour of a large number of particles distributed according to
some distribution ν is governed by integrals of the form EX∼νf(X) for sufficiently smooth
functions f , the PDE indeed captures the evolution of the macroscopic properties of the
system.

Observing the solutions to the PDE for all initial data f in some class F of functions
is equivalent to observing the action on F of the operator Pt, defined by Pt[f ](x) =
E[f(Xt)|X0 = x]. Given non-noisy access to the semigroup (Pt)t≥0 it is possible to exactly
recover the parameters b and σ, for example via expressions for the eigenfunctions and the
invariant density (see Gobet–Hoffmann–Reiss [39]). Rather than observing the semigroup
(Pt)t≥0 governing the law of solutions to the SDE, consider data consisting of discrete
samples from the trajectory (Xt)t≥0 of a single particle obeying the SDE. We assume the
coefficient σ is given and attempt to deduce the coefficient b of the PDE, or equivalently
of the associated SDE, yielding the statistical inverse problem

1The SDE itself governs for example the behaviour of pollen in a river: the pollen drifts with the
river (whose velocity at a point x in space is b(x)) and is buffeted randomly by the water molecules,
leading to the Brownian motion term (of spatially varying noise level σ(x), which may be expected to
grow as water temperature rises).
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Recover b given a sample (Xj∆)j≤n for X satisfying dXt = b(Xt) dt+ σ(Xt) dWt.

Note that while it may be initially surprising that a single trajectory of the process
X allows any meaningful inference to be made, a periodicity assumption outlined in
Chapter 2 will ensure the process is recurrent, so that we gain more information about b
near each point x ∈ R as we watch for longer.

As well as arising as a measurement model for the PDE inverse problem (1.1),
stochastic diffusions are a statistically interesting model in their own right, with uses
classically in finance (e.g. [11]) and in life sciences (e.g. [29]), and more recently in
evolutionary biology (e.g. [12]) and in climate science (e.g. [28]), to name a few examples,
and in all these applications the coefficient b (the drift function) is of prime interest to
estimate, as the trend we would see in the absence of any random effects.

The main contribution of Chapter 2 is to give examples of priors for which the
posterior provably estimates the true drift function well in a sense to be made precise.

Bypassing the inverse problem

As advertised in the introductory paragraphs of this thesis, a chief attraction of Bayesian
methods is their ability to bypass any need to calculate the inverse operator. In fact,
for diffusions it will be seen in Chapter 2 that in the ‘high-frequency’ setting considered
there, wherein we assume the sampling period ∆ depends on n, and take asymptotics as
n∆n → ∞, ∆n → 0, the inverse nature of the problem can be avoided by using tools
from stochastic calculus to view drift estimation as a regression problem. Why then do
we not revert to frequentist regression methods to estimate b? An attraction in this setup
is that Bayesian methods are robust to the sampling regime. As well as the high-frequency
setting of primary consideration here, ‘low-frequency’ asymptotics, where ∆ > 0 is a
fixed constant, are also widely studied. A practitioner is faced with the subjective choice,
based on their fixed finite data set, as to which regime’s methods are appropriate: if the
time horizon n∆n is large and the sampling period ∆n is small, estimators designed for
high-frequency are appropriate, while if there are many data points, thinly spaced enough
that the increments do not contain much local information about the drift function,
more conservative low-frequency methods are appropriate. Making the wrong choice
yields undesirable consequences: typical high-frequency estimators (e.g. as in Comte et
al. [21]) are biased if used on low-frequency data, while typical low-frequency estimators
are valid for high-frequency data but do not appear to achieve the fastest possible rate
of convergence (see the discussion in Chorowski [18]).
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The Bayesian method circumvents this subjective choice of asymptotics by allowing a
uniform approach to the two regimes, as shown in Chapter 2.

1.2 The Calderón problem
For ∇ denoting the usual gradient operator and ∇ · the usual divergence operator, the
Calderón problem consists of calculating the coefficient γ of the PDE

∇ ·(γ∇u) = 0 in D,

u = f on ∂D,
(1.3)

from observations of the Neumann data

γ
∂uγ,f
∂ν

∣∣∣∣
∂D
,

for solutions u = uγ,f corresponding to each f in some class F of functions. This
inverse problem arises for example in medical imaging, as the mathematical formulation
of electrical impedance tomography (EIT) – for example see [55]. In the context of
EIT, the coefficient γ is the conductivity. Since different medical tissues exhibit vastly
different conductivities, finding γ is enough to build a good 3-dimensional image of the
patient’s internals. Notice that the application of a voltage f and the measurements of
the current flux γ ∂uγ,f

∂ν
are done only at the boundary ∂D (the domain D demarcates the

patient’s body), so that this is a non-invasive imaging technique. Moreover, a single set
of electrodes suffice to apply the voltages and measure the currents, making the process
very cheap compared to other imaging techniques. The most realistic representation of
EIT would take the function class F to consist of a finite collection of indicator functions
{1Ij
}j≤n for sets Ij corresponding to the locations of electrodes, and measure the current

flux only in these regions also.

Fig. 1.1 A 10-day old baby undergoing an EIT scan.
The white rectangles are electrodes.
Figure by Inéz Frerichs, in S. Heinrich, H. Schiffmann, A. Frerichs, A.

Klockgether-Radke, I. Frerichs, ‘Body and head position effects on re-

gional lung ventilation in infants: an electrical impedance tomography

study.’ Intensive Care Med., 32:1392-1398, 2006.
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The Calderón problem, as well as providing the mathematical formulation of EIT,
also describes electrical resistance tomography as used in geophysics, for example for
investigating the state of fault lines as in [88]. Indeed, the noiseless formulation outlined
above was originally described by Alberto Calderón in the context of oil prospecting
[13]. The numerous applications of the problem have seen it widely researched within
the inverse problems literature: see the many references in Section 3.0.

Define the Dirichlet-to-Neumann map Λγ as the operator taking a voltage profile f to
the associated current profile γ ∂uγ,f

∂ν
. (In what follows, one can also consider applying a

current profile and measuring the corresponding voltages, as is sometimes more practical
in medical contexts; in the mathematical formulation this corresponds to substituting the
Neumann-to-Dirichlet map for the Dirichlet-to-Neumann map and does not fundamentally
change the problem.) The map Λγ takes one weak derivative, as proved in Chapter 3, so
if we take F to be an L2–Sobolev space Hr(∂D) for some r ∈ R (see Section 1.6 for the
definitions of weak derivatives and Sobolev spaces), we arrive at the following statistical
version of the Calderón problem:

Recover γ given a noisy observation of the map Λγ : Hr(∂D)→ Hr−1(∂D).

The noise we consider is Gaussian white noise indexed by an appropriate space
of operators. This strikes a balance between realism and tractability, as explained in
Section 3.1 and Appendix 3.D, where it is argued that this Gaussian white noise model is
statistically close to a model more realistically representing the electrode measurements.
The notion of distance providing the sense in which two models can be statistically close
is the Le Cam discrepancy, described in Section 1.3.1.

The results in Chapter 3 show that the posterior mean is a consistent estimator (as
the noise level tends to zero) of the conductivity γ in this Gaussian white noise model.

1.3 Statistical decision theory: a brief overiew
The main question addressed by this thesis can be phrased thus: Under the frequentist
assumption of a fixed data-generating parameter θ0, how well do Bayesian posteriors
estimate θ0 in the above two models? To answer it we must settle on an appropriate
notion of what it means to estimate a parameter “well”. The notion used here is given
by the minimax paradigm described in Section 1.3.2. First, we pin down the precise
meaning of a model, and give a notion of equivalence for different models.
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1.3.1 Le Cam equivalence

The concepts throughout this section are drawn from Le Cam’s 1986 monograph [51].
The expository paper of Mariucci [57] gives a gentler introduction to the area.

Definitions. Statistical model/experiment A statistical model or (more formally)
experiment, consists of a family of data generating processes Pθ (probability measures
on some measurable space (X ,F)) indexed by the parameter θ ∈ Θ for some set Θ.
Formally, an experiment is therefore the triple (X ,F , {Pθ}θ∈Θ).

Markov Kernel For measurable spaces (X1,F1), (X2,F2), a Markov kernel with source
(X1,F1) and target (X2,F2) is a map T : X1 × F2 → [0, 1] such that T (x, ·) is a
probability measure for each x ∈ X1, and T (·, A) is measurable for each A ∈ F2.

Le Cam discrepancy The Le Cam discrepancy between experiments E1 and E2, where
Ei = (Xi,Fi, {Pi,θ}θ∈Θ) for i = 1, 2, for a common parameter space Θ, is

δ(E1, E2) = inf
T

sup
θ∈Θ
∥TP1,θ − P2,θ∥TV,

where the infimum is over all Markov kernels with source (X1,F1) and target
(X2,F2). The measure TP1,θ is defined as

TP1,θ(A) =
∫

X1
T (x,A) dP1,θ(x),

and ∥·∥TV denotes the total variation norm on signed measures,

∥ν∥TV = sup
A
|ν(A)|.

The Le Cam discrepancy satisfies the triangle inequality, but is not symmetric.

Le Cam distance The Le Cam distance between experiments E1 and E2 on a common
parameter space Θ is

∆(E1, E2) = max(δ(E1, E2), δ(E2, E1)).

We say two experiments are (statistically) equivalent if the Le Cam distance between
them is zero, and that they are asymptotically equivalent if the measures Pi,θ, i = 1, 2
also depend on a parameter n and ∆(En1 , En2 )→ 0 as n→∞.

If we identify experiments whose Le Cam distance is zero, ∆ is a proper metric.
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Kullback–Leibler divergence In the above definitions the total variation distance is
used as the basic tool to define distances between probability measures. Another
useful notion of the discrepancy between two probability measures is the Kullback–
Leibler divergence K, defined for distributions P,Q as

K(P,Q) = EX∼P log
(dP

dQ(X)
)
,

where dP
dQ denotes the Radon–Nikodym derivative (= likelihood ratio) between the

distributions. If P is not absolutely continuous with respect to Q, so that dP
dQ fails

to exist, by convention K(P,Q) is defined to equal ∞.

Remark. Given any ‘action set’ A, any bounded loss function L : Θ×A→ [0, 1], and any
decision rule ρ2 : X2 → A, there exists a decision rule ρ1 : X1 → A (allowed to depend
possibly also on some external randomness) such that, denoting the risk functions by
Rj(ρj, θ) = EX∼Pj,θ

L(θ, ρj(X)), j = 1, 2, we have

R1(ρ1, θ) ≤ R2(ρ2, θ) + δ(E1, E2), ∀θ ∈ Θ.

This captures the intuitive definition that the Le Cam discrepancy is the worst-case error
we incur when reconstructing a decision rule in E2 using data from E1. See [57] Theorem
2.7.

The next lemma gathers some key tools used to control Le Cam discrepancies.

Lemma 1.1. Let E1 and E2 be experiments with a common parameter set Θ: write
Ej = (Xj,Fj, {Pj,θ}θ∈Θ).

a. Suppose further that the experiments are defined on a common probability space,
i.e. that X1 = X2 and F1 = F2. Then

∆(E1, E2) ≤ sup
θ∈Θ
∥P1,θ − P2,θ∥TV ≤ sup

θ∈Θ

√
K(P1,θ, P2,θ)/2. (1.4)

b. Let F : X1 → X2 be any (deterministic) measurable map. Then

δ(E1, E2) ≤ sup
θ∈Θ
∥P1,θ ◦ F−1 − P2,θ∥TV. (1.5)

c. Let F : X1 → X2 be a measurable map. Suppose that P1,θ◦F−1 = P2,θ for each θ ∈ Θ
and suppose that F (X) is a sufficient statistic for X ∼ P1,θ. Then ∆(E1, E2) = 0.
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Proof. Given a (deterministic) measurable function F : X1 → X2, denote by TF the
Markov kernel TF (x,A) = 1{F (x) ∈ A}.

a. The first inequality is immediate from the definition, since the Markov kernel TId

corresponding to the identity map Id : X1 → X2 = X1 satisfies TIdP = P for all
probability measures P on (X1,F1). The second inequality is Pinsker’s inequality
(e.g. Proposition 6.1.7a in [38]).

b. Observe that TFP1,θ(A) = P1,θ(F (X) ∈ A) = P1,θ ◦ F−1(A). The result follows.

c. See [57], Property 3.12.

Remark. Informally, Lemma 1.1b says that given any data X from an experiment E1 and
any function F , the experiment E2 with data Y = F (X) satisfies δ(E1, E2) = 0. If F is
bijective, the two experiments are equivalent. This gives a sense in which the discrepancy
from E1 to E2 measures whether data from E2 contains all the information that would be
available in a sample of data from E1.

Example. Denote by B,Bn the Borel σ-algebras on R,Rn respectively. Define

E1 = (Rn,Bn, {P1,θ}θ∈R), with data X = (X1, . . . , Xn) iid∼ N(θ, 1) under P1,θ,

E2 = (R,B, {P2,θ}θ∈R), with data point Y ∼ N(θ, 1/n) under P2,θ.

Then ∆(E1, E2) = 0 by Lemma 1.1c with F ((X1, . . . , Xn)) = 1
n

∑
Xi. An alternative direct

argument uses Lemma 1.1b to show δ(E1, E2) = 0, and in the other direction δ(E2, E1) = 0
is witnessed by the Markov kernel T : R×Bn defined by T (y, A) = Pr(y+ ε ∈ A), where
ε = (εi)i≤n with εi

iid∼ N(0, (n− 1)/n) independently of Y , and addition y + ε is defined
pointwise. Note that T (·, A) is continuous for each A ∈ Bn, hence is measurable, and
observe that TPθ is the law of Y + ε =d X.

See Appendix 3.D for more examples of (asymptotic) equivalence results.

1.3.2 Minimax decision theory

Minimax decision theory gives an optimality criterion for statistical estimators based on
their worst-case performance. Given the statistical model (X ,F , {Pθ}θ∈Θ) we suppose
throughout that Θ is a metric space, equipped with a metric d and with the induced
Borel σ–algebra.

Definition (Estimators, tests). An estimator of the parameter θ is any measurable map
θ̂ : X → Θ.
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More generally, for any function of the parameter (for example G(θ) in an inverse
problem with forward map G) we define an estimator as a measurable map from X to
the codomain of the function.

A test is a {0, 1}–valued measurable function of the data, interpreted as a rule for
choosing between competing hypotheses H0 and H1. Note that, by composing with the
indicator function 1A of a measurable set A ⊂ Θ, we can construct tests from any given
estimator θ̂.

Remark. Typically, the measures {Pθ}θ∈Θ also include a parameter governing the sample
size or noise level, and we seek estimators which perform well in the large dataset/small
noise setting. For simplicity of exposition, throughout this introductory section we
will always take this parameter to be n→∞, hence will consider data X ∼ P n

θ (with
corresponding expectation and variance operators En

θ , Varnθ ); in the EIT setting we
instead have a noise level ε→ 0 and in the diffusion setting the time horizon n∆ largely
takes on the role of sample size. Estimators are allowed to depend on this parameter n;
this dependence is often left implicit.

Definition. An estimator θ̂ is minimax optimal for estimating a parameter θ in the
metric d if

sup
θ∈Θ

En
θ (d(θ̂, θ)) = inf

θ̃
sup
θ∈Θ

En
θ (d(θ̃, θ)),

where the infimum is over all estimators θ̃. The quantity on the right in the above is
called the minimax rate. An estimator θ̂ such that

sup
θ∈Θ

En
θ (d(θ̂, θ)) ≤ C inf

θ̃
sup
θ∈Θ

En
θ (d(θ̃, θ)) ∀n,

for some constant C will be described as rate optimal, or typically still just minimax
optimal.

In this thesis, an estimator θ̂ will also be described as minimax optimal, and εn

described as the minimax rate, if there exist constants c, C such that

lim
n→∞

sup
θ∈Θ

P n
θ (d(θ̂, θ) > Cεn) = 0 (1.6)

lim inf
n→∞

inf
θ̃

sup
θ∈Θ

P n
θ (d(θ̃, θ) > cεn) > 0. (1.7)

This latter usage is not universally standard, but note the following partial equivalence
results: if (1.7) holds, then εn lower bounds the usual minimax rate (up to a constant
factor) by Markov’s inequality, while if θ̂ is minimax in the usual sense with rate εn, then
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(1.6) holds for rate ε′
n = Cnεn for a sequence Cn tending to infinity arbitrarily slowly,

again by Markov’s inequality.

Why assess estimators according to their worst-case performance? Given we do
not know the true parameter, it is comforting to know an estimator will perform well
independent of the truth, provided the base assumption θ ∈ Θ holds. The following
examples also illustrate pitfalls of some other criteria for judging estimators.
Examples. 1. Consider the constant estimator θ̂ = θ̂(X) = 0. This has “perfect”

performance if θ happens to equal zero, and in all other cases it is useless. Thus,
judging an estimator by its best case performance yields meaningless guarantees.

2. The Cramér–Rao lower bound says that the variance of any unbiased estimator of
θ (i.e. of any θ̂ such that Eθθ̂ = θ for all θ ∈ Θ) is at least the inverse of the Fisher
information (the variance of the θ–derivative of the log likelihood). In the model
Xi

iid∼ N(θ, 1), this says that Varnθ (θ̂n) ≥ n−1 for any unbiased estimator θ̂n built
from n observations X1, . . . , Xn. Consider Hodges’ estimator for this model: define

θ̂n =

X̄n := 1
n

∑
Xi if |X̄n| ≥ n−1/4

0 otherwise.

It can be shown that θ̂n is asymptotically unbiased (i.e. En
θ θ̂n → θ ∀θ ∈ Θ) and the

asymptotic distribution of
√
n(θ̂n − θ) is N(0, 1) if θ ̸= 0 or N(0, 0) if θ = 0.2 So

Hodges’ estimator is ‘superefficient’: at each fixed θ ∈ Θ its variance asymptotically
matches or outperforms the Fisher information lower bound suggested by the finite
sample Cramér–Rao theorem.

However, few would argue that Hodges’ estimator is better than the sample mean
X̄n in view of the fact that the asymptotic risk (rescaled by

√
n) of θ̂n at a sequence

θn = n−1/4 is infinite (for X̄n the asymptotic risk rescaled by
√
n remains finite).

The uniformity in performance demanded by the minimax criterion rules out the
type of pointwise but non-uniform convergence displayed by the risk function of
Hodges’ estimator.

2Proof: We have
√

n(X̄n − θ) =d N(0, 1), and
√

n(θ̂n − θ) =
√

n(θ̂n − X̄n) +
√

n(X̄n − θ). Note
Pθ(θ̂n ̸= X̄n) = Pθ(|X̄n| ≤ n−1/4). For θ ̸= 0, choose n large enough that |θ| > 2n−1/4 and apply the
triangle inequality to see

Pθ(θ̂n ̸= X̄n) ≤ Pθ(n1/2|X̄n − θ| > n1/4)→ 0,

so that
√

n(θ̂n−X̄n)→p 0. The desired result follows by Slutsky’s lemma (a special case of the continuous
mapping theorem; e.g. see [84, Lemma 2.8]). When θ = 0, similar calculations show Pθ(θ̂n = 0)→ 1, so
the limiting distribution of

√
n(θ̂n − θ) is a Dirac mass at 0.
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Lower bounds on minimax rates are typically proved using corresponding information-
theoretic lower bounds in hypothesis testing, such as the following result for a data
model X(n) ∼ P n

θ , assumed to be dominated so that P n
θ has a density p(n)

θ with respect
to some reference measure. Recalling K(P,Q) denotes the Kullback–Leibler divergence
between distributions P and Q, we, in a slight abuse of notation, also write K(p, q) for
the Kullback–Leibler divergence between distributions with densities p and q.

Theorem 1.2. There exists a pair of positive constants (c, µ) (we may take c = 1/7,
µ = 1/250) such that if for all n > N , some N ∈ N, there are parameters θ0, θ1 ∈ Θ
(both allowed to depend on n) which satisfy

(1) d(θ0, θ1) ≥ εn,

(2) K(p(n)
θ1 , p

(n)
θ0 ) ≤ µ,

then the minimax rate is lower bounded by εn in the precise sense that

inf
θ̃

sup
θ∈Θ

P (d(θ̃, θ) > εn) ≥ c, and (1.8)

inf
θ̃

sup
θ
Ed(θ̃, θ) ≥ cεn. (1.9)

Proof. The (standard) proof, as follows, can be found for example in Tsybakov [80,
Chapter 2] or Giné & Nickl [38, Theorem 6.3.2].

Under condition (1), noting that 1{d(θ̃, θ1) < d(θ̃, θ0)} yields a test of H0 : θ = θ0

against H1 : θ = θ1, we see

inf
θ̃

sup
θ∈Θ

P n
θ

(
d(θ̃, θ) ≥ 1

2εn
)
≥ inf

ψ
max(P n

θ0(ψ ̸= 0), P n
θ1(ψ ̸= 1)),

where the latter infimum is over all tests ψ. Introducing the event A =
{p(n)

θ0
p

(n)
θ1

≥ 1/2
}

, we
see

P n
θ0(ψ ̸= 0) ≥ En

θ1

[p(n)
θ0
p

(n)
θ1

1Aψ
]
≥ 1

2 [P n
θ1(ψ = 1)− P n

θ1(Ac)]

Thus, writing p1 = P n
θ1(ψ = 1), we see

max(P n
θ0(ψ ̸= 0), P n

θ1(ψ ̸= 1)) ≥ max(1
2(p1 − P n

θ1(Ac)), 1− p1)
≥ inf

p∈[0,1]
max(1

2(p− P n
θ1(Ac)), 1− p).
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The infimum is attained when 1
2(p − P n

θ1(Ac)) = 1 − p and takes the value 1
3P

n
θ1(A) so

that
inf
θ̃

sup
θ∈Θ

P n
θ

(
d(θ̃, θ) ≥ 1

2εn
)
≥ 1

6P
n
θ1(A). (1.10)

Next observe

P n
θ1(A) = P n

θ1

[p(n)
θ1
p

(n)
θ0

≤ 2
]

= 1− P n
θ1

[
log
(p(n)

θ1
p

(n)
θ0

)
> log 2

]
≥ 1− P n

θ1

[
|log(p

(n)
θ1
p

(n)
θ0

)| > log 2
]

≥ 1− (log 2)−1En
θ1

∣∣∣log
(p(n)

θ1
p

(n)
θ0

)∣∣∣,
where we have used Markov’s inequality to attain the final expression. By the second
Pinsker inequality (Proposition 6.1.7b in [38]), using condition (2) we can continue the
chain of inequalities to see

P n
θ1(A) ≥ 1− (log 2)−1

[
K(p(n)

θ1 , p
(n)
θ0 ) +

√
2K(p(n)

θ1 , p
(n)
θ0 )

]
≥ 1− (log 2)−1(µ+

√
2µ).

For any c < 1/6, we may choose µ = µ(c) small enough that (1.10) is lower bounded by

1
6

(
1− µ+

√
2µ

log 2

)
> c,

and in particular a numerical calculation shows that µ < 1/250 suffices for c = 1/7. This
yields (1.8), and (1.9) follows by Markov’s inequality.

1.4 General theory for Bayesian inverse problems
In the context of Bayesian techniques, an appropriate notion of the quality of estimation,
adapted from the notion of the minimax rate, is the ‘contraction rate’ of a posterior. In
this section we review general techniques for proving contraction rates in Bayesian inverse
problems: first, we outline the main contraction rate theorem from the seminal work of
Ghosal–Ghosh–van der Vaart [32] for a non-inverse problem, then we give adaptations to
this result to allow it to apply to inverse problems.

1.4.1 Direct observations

Recall we assume (Θ, d) is a metric space, equipped with the Borel σ–algebra, and we
consider a dominated data model. The likelihood is the density, viewed as a function of θ:
Ln(θ) = Ln(θ;X(n)) = p

(n)
θ (X(n)). The object of consideration is the posterior Π(· | X(n))
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corresponding to some prior Π via Bayes’ rule: under mild assumptions to ensure the
expression on the right-hand side is well-defined (e.g. see [34] §1.3) we have

Π(B | X) =
∫
B p

(n)
θ (X(n)) dΠ(θ)∫

Θ p
(n)
θ (X(n)) dΠ(θ)

. (1.11)

Define Kullback–Leibler type balls

Bn
KL(ε) =

θ ∈ Θ s.t. K(p(n)
θ0 , p

(n)
θ ) ≤ nε2,Varnθ0

(
log

p
(n)
θ0

p
(n)
θ

)
≤ nε2

. (1.12)

A core tool we will use for deducing contraction rates in the two models considered in
this thesis is the following abstract result, slightly adapted from Theorem 2.1 of [32]. See
also Chapter 8 in the monograph [34] of Ghosal & van der Vaart for a number of results
of this flavour.

Theorem 1.3. Suppose the positive sequence (εn) satisfies εn → 0, nε2
n → ∞. Let Π

be a prior (or sequence of priors with suppressed index n) on the metric space (Θ, d)
(equipped with the Borel σ–algebra). Suppose there exists ζ > 0 and (measurable) sets
Θn ⊂ Θ such that

(i) Π(Θc
n) ≤ e−(2ζ+8)nε2

n ,

(ii) There exists an estimator θ̂ such that for some constant C

sup
θ∈Θn

P n
θ (d(θ̂, θ) > 1

2Cεn) ≤ e−(2ζ+8)nε2
n ,

(iii) Π(Bn
KL(εn)) ≥ e−ζnε2

n.

Then as n→∞,

P n
θ0

(
Π(d(θ, θ0) > Cεn | X(n)) ≥ 2e−(ζ+4)nε2

n

)
→ 0, (1.13)

and εn is called a posterior contraction rate for the prior Π. If (iii) holds uniformly for
θ0 ∈ Θ̃, some Θ̃ ⊂ Θ, then (1.13) also holds with supθ0∈Θ̃ in front.

Remark (Optimality). Contraction at rate εn guarantees the existence of an estimator
converging to the true parameter at rate εn as follows. If we allow randomised estimators
(i.e. θ̃(X(n)) is a random variable even once X(n) = x(n) is specified) then (1.13) immedi-
ately implies that θ̃n corresponding to a single draw from the posterior distribution will
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achieve P n
θ0(d(θ̃n, θ0) > Cεn)→ 0. Restricting to “proper” (nonrandomised) estimators,

we can argue as in Theorem 8.7 of [34].3

It follows that no rate εn faster than the minimax rate can be achieved uniformly in
Theorem 1.3. Typically series expansion or Gaussian priors can achieve a rate εn equalling
the minimax rate up to a log factor (as in Chapters 2 and 3), and so Theorem 1.3 is near
optimal, both in the sense that the posterior cannot (uniformly) contract any faster, and
in the sense that an estimator achieving the frequentist minimax rate exists.

Remark (Necessity of the conditions). Even in the simplest parametric models a condition
along the lines of (iii) is needed: if the prior puts no mass on a neighbourhood of the
true θ0, the posterior will put no mass there too. Any positive mass around the true θ0

is enough to achieve posterior consistency, wherein the mass of arbitrary but fixed open
neighbourhoods U ∋ θ0 tends to 1, but to achieve a contraction rate a lower bound away
from zero is needed to ensure the influence of the prior does not overshadow that of the
data.

Conditions (i) and (ii) should be considered as a pair. Together, they govern the
complexity of the model. In a ‘parametric’ case (i.e. when Θ is a subset of a finite
dimensional vector space) we can typically take Θn = Θ for all n and use the maximum
likelihood estimator, for which there is general theory guaranteeing good asymptotic
performance. In nonparametric (=infinite dimensional) models, frequentist methods
typically require a trade-off between bias and variance; conditions (i) and (ii) give a
Bayesian version of this, with (i) giving the bias of the prior towards simple sets Θn,
while (ii) verifies that the parameter can be well estimated within these sets.

In the literature, including the original celebrated result of [32], it is common in
place of (ii) to assume an entropy condition, which perhaps makes it even clearer that
conditions (i) and (ii) govern the complexity of the model. The above formulation using
concentration of an estimator was introduced in Giné & Nickl [37], and is better suited
to the problems addressed here because in Chapter 2 it allows us to access bodies of
work on martingale, Markov, and path-continuity properties of a diffusion which are
not as well suited to proving an entropy condition, while in Chapter 3, the estimator
formulation makes it easier to accommodate necessary boundedness restrictions on the
conductivity function.

3Consider the estimator θ̂ given by taking the centre of a (nearly) smallest posterior ball of mass at
least 1/2 (choose arbitrarily in case of non-uniqueness; the ‘nearly’ conceals that we need to do this in a
measurable way, but it is not important to the result). For C as in Theorem 1.3, if d(θ̂, θ0) > 2Cεn then
the posterior balls of radius Cεn around θ̂ and θ0 are disjoint; the latter has posterior mass tending to 1
on a sequence of events of P n

θ0
–probability tending to 1, hence the former has posterior mass less than

1/2 for large enough n on this sequence of events, yielding a contradiction. So P n
θ0

(d(θ̂, θ0) > 2Cεn)→ 0.
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Before the proof, let’s unpack the result. The posterior Π( · | X(n)) is a measure-
valued P n

θ0–random variable: that is, for each value x(n) that X(n) can take under P n
θ0 ,

we obtain a measure Πx(n) = Π( · | X(n) = x(n)). The mass the posterior gives to the
set {θ : d(θ, θ0) > Cεn} is therefore a [0, 1]–valued P n

θ0–random variable. Theorem 1.3
says that this random variable tends to zero in P n

θ0–probability, and even gives a rate
(2e−(ζ+4)nε2

n) of convergence to zero.
We further illustrate with a simple (parametric) example.

Example. Prior: Under Π, θ ∼ U(0, 1) on the parameter set Θ = (0, 1).

Model: Under P n
θ , observe X(n) = (X1, . . . , Xn) with Xi

iid∼ N(θ, 1) for 1 ≤ i ≤ n. Thus
the likelihood is Ln(θ) = (2π)−n/2e− 1

2
∑

(Xi−θ)2 .

Posterior: The posterior has density (w.r.t. Lebesgue measure) given by

π(θ | X(n)) = c−1Ln(θ)1θ∈[0,1], c = c(X(n)) =
∫ 1

0
Ln(θ) dθ

Figure 1.2 shows the posterior density for two somewhat representative draws from
Pθ0 for θ0 = 0.7, together with the probability each posterior gives to the set (0.6, 0.8).
With enough draws from the true distribution, we hope the posterior will be a curve
very tightly centred around θ0, hence the posterior mass of this set will be close to 1.
This can be proved using Theorem 1.3: balls around θ0 of radius a constant multiple of4

εn = n−1/2 log(n)1/2 have posterior mass tending to 1. (The balls BKL(ε) can be shown
to contain {|θ− θ0| ≤ ε} so that the small ball condition (iii) can be verified explicitly in
this model, while for Θn = Θ, (ii) can be shown to hold for the estimator θ̂ = 0 ∨ X̄n ∧ 1
using the standard normal tail inequality5 Pr(Z > u) ≤ e−u2/2.)

A main step in the proof of Theorem 1.3 is to demonstrate an ‘evidence lower bound’.
Rewriting (1.11) as

Π(B | X) =
∫
B(p(n)

θ /p
(n)
θ0 )(X(n)) dΠ(θ)∫

Θ(p(n)
θ /p

(n)
θ0 )(X(n)) dΠ(θ)

,

the following lemma says that for εn bounded roughly between zero and n−1/2, the
denominator is not too small, on an event of probability tending to 1.

4This rate is not sharp: this posterior in fact contracts at rate Cnn−1/2 for any sequence Cn tending
to ∞ arbitrarily slowly (e.g. see [34], Chapter 8). This illustrates a downside of insufficiently refined
methods of analysing Bayesian posteriors: often superfluous log factors are required, either relative to
the rate truly achieved by the posterior (these can often be removed by more careful analysis) or by the
posterior rate relative to the minimax rate (sometimes more careful choices of priors can achieve the
minimax rate even if the simplest choices do not).

5Proved for u > 1 by introducing a factor t > 1 in the integral
∫∞

u
e−t2/2 dt so that it can be explicitly

evaluated, and for 0 < u < 1 by noting Pr(Z > u) ≤ 1/2 ≤ e−u2/2.
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Fig. 1.2 Plotted in red dotted lines is the true density pθ0 of the data points, centred at
θ0 = 0.7. Also in red are dashed vertical lines demarcating the set (0.6, 0.8). In grey
and blue are the posteriors corresponding to data points xg and xb respectively (the
dashed lines show the squared exponential functions which are truncated to give the
posteriors, marked with solid lines), while the black plot, centred at X̄2 = (xg + xb)/2, is
the two-point posterior for these draws.
The posterior probability of the set (0.6, 0.8) is 0.091 if we observe xg, 0.283 if we observe
xb, and 0.185 if we observe both points.

Lemma 1.4 (Evidence lower bound, ELBO). Suppose the positive sequence εn satisfies
εn → 0 and write Bn

KL for Bn
KL(εn). Define the event

An =
{∫

Θ
(p(n)
θ /p

(n)
θ0 ) dΠ(θ) ≥ Π(Bn

KL)e−2nε2
n

}
.

Then P n
θ0(Acn) ≤ (nε2

n)−1.

Remark. The result remains essentially true, though with Pθ0(Acn) tending to zero at a
different rate, if we define An instead by An = {

∫
Θ(p(n)

θ /p
(n)
θ0 ) dΠ(θ) ≥ Π(Bn

KL)e−Bnε2
n}

for any B > 1. That is to say, the exact value 2 in the exponent is not important for the
proof. This propagates through to Theorem 1.3, where the exponent −(2ζ + 8)nε2

n is not
sharp.

Proof. Write Π′ = Π/Π(Bn
KL) for the renormalised restriction of Π to Bn

KL. Then by
Jensen’s inequality we have

∫
Θ

(p(n)
θ /p

(n)
θ0 )(X(n)) dΠ(θ) ≥ Π(Bn

KL) exp
(∫

Bn
KL

log(p(n)
θ /p

(n)
θ0 )(X(n))) dΠ′(θ)

)
.
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Write Z =
∫
Bn

KL
log(p(n)

θ /p
(n)
θ0 ) dΠ′(θ) = −

∫
Bn

KL
log(p(n)

θ0 /p
(n)
θ ) dΠ′(θ). Applying Fu-

bini’s Theorem and using the definition of Bn
KL, we see that

En
θ0Z ≥ − sup

θ∈Bn
KL

En
θ0 log(p(n)

θ0 /p
(n)
θ ) ≥ −nε2

n.

Further, applying Jensen’s inequality and twice applying Fubini’s Theorem, we see

Varnθ0 Z = En
θ0

(∫
Bn

KL

log(p(n)
θ /p

(n)
θ0 ) dΠ′(θ)− En

θ0Z
)2

= En
θ0

(∫
Bn

KL

(log(p(n)
θ /p

(n)
θ0 )− En

θ0 log(p(n)
θ /p

(n)
θ0 )) dΠ′(θ)

)2

≤ En
θ0

∫
Bn

KL

(
log(p(n)

θ /p
(n)
θ0 )− En

θ0 log(p(n)
θ /p

(n)
θ0 )

)2
dΠ′(θ)

=
∫
Bn

KL

Varθ0

(
log(p(n)

θ0 /p
(n)
θ )

)
dΠ′(θ) ≤ nε2

n,

the inequality in the final line following from the definition of Bn
KL. Note that Fubini’s

theorem indeed applies both times we have used it, once because the integrand is non-
negative and once because we can show the expression considered is integrable, using
that |x| ≤ 1 + x2 for x ∈ R.

Together, these bounds on the mean and variance of Z tell us that

Pθ0

(
exp(Z) < exp(−2nε2

n)
)
≤ Pθ0

(
|Z − EZ| > nε2

n

)
≤ (nε2

n)−1,

as required, where we have applied Chebyshev’s inequality to obtain the final inequality.

We are ready to prove the contraction result Theorem 1.3.

Proof of Theorem 1.3. First we note that the estimator concentration condition (ii)
implies the existence of exponentially powerful tests of θ = θ0 vs suitably separated
alternatives. Let ψn(X(n)) = 1{d(θ̂, θ0) > 1

2Cεn} . Then En
θ0ψn = P n

θ0(d(θ̂, θ0) > 1
2Cεn) ≤

e−(2ζ+8)nε2
n , and by the triangle inequality

sup
θ∈Θn,

d(θ,θ0)>Cεn

En
θ [1− ψn] ≤ sup

θ∈Θn,
d(θ,θ0)>Cεn

P n
θ (d(θ̂, θ) > 1

2Cεn) ≤ e−(2ζ+8)nε2
n . (1.14)

Now consider the following decomposition: writing S = {θ ∈ Θn : d(θ, θ0) > Cεn},
we have, for An as in Lemma 1.4,

Π(d(θ, θ0) > Cεn | X(n)) ≤ 1Ac
n

+ ψn + Π(Θc
n | X(n))1An + Π(S | X(n))1An [1− ψn],
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so that the probability under P n
θ0 of the event

{
Π(d(θ, θ0) > Cεn | X(n)) ≥ 2e−(ζ+4)nε2

n

}
is upper bounded by

P n
θ0(Acn) + En

θ0ψn+
P n
θ0

(
Π(Θc

n | X(n))1An ≥ e−(ζ+4)nε2
n

)
+ P n

θ0

(
Π(S | X(n))1An [1− ψn] ≥ e−(ζ+4)nε2

n

)
.

In view of Lemma 1.4 and the construction of the tests ψn, the first two terms in the
above tend to zero.

On the event An, for any set B the denominator in the expression

Π(B | X(n)) =
∫
B(p(n)

θ /p
(n)
θ0 )(X(n)) dΠ(θ)∫

Θ(p(n)
θ /p

(n)
θ0 )(X(n)) dΠ(θ)

can be bounded by Π(Bn
KL)−1e2nε2

n ≤ e(ζ+2)nε2
n . Thus, also using Fubini’s theorem and

noting that En
θ0 [(p(n)

θ /p
(n)
θ0 )(X(n))] = En

θ [1] = 1, we see

En
θ0 [Π(Θc

n | X(n))1An ] ≤ e(ζ+2)nε2
nEn

θ0

[∫
Θc

n

(p(n)
θ /p

(n)
θ0 )(X(n)) dΠ(θ)

]
= e(ζ+2)nε2

nΠ(Θc
n),

so that by Markov’s inequality and condition (i), we deduce

P n
θ0

(
Π(Θc

n | X(n))1An ≥ e−(ζ+4)nε2
n

)
≤ e(2ζ+6)nε2

nΠ(Θc
n)→ 0.

It remains to bound P n
θ0(Π(S|X(n))1An [1− ψn] ≥ e−(ζ+4)nε2

n). Appealing to Fubini’s
theorem and (1.14) we see that

En
θ0 [Π(S | Y )1An(1− ψ)] = En

θ0

[
1An(1− ψn)

∫
S(p(n)

θ /p
(n)
θ0 )(X(n)) dΠ(θ)∫

Θ(p(n)
θ /p

(n)
θ0 )(X(n)) dΠ(θ)

]

≤ e(ζ+2)nε2
nEn

θ0

[∫
S

p
(n)
θ

p
(n)
θ0

(X(n))(1− ψn)(X(n)) dΠ(θ)
]

≤ e(ζ+2)nε2
n

∫
S
En
θ [(1− ψn)(X(n))] dΠ(θ)

≤ e−(ζ+6)nε2
n ,

hence by Markov’s inequality

P n
θ0

(
Π(S | X(n))1An(1− ψ) ≥ e−(ζ+4)nε2

n

)
≤ e−2nε2

n → 0.
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Uniformity over Θ̃ follows from the fact that, given a uniform version of condition
(iii), all the conditions and all the rates attained are uniform in θ0.

Remarks. 1. As mentioned, in the diffusion setting of Chapter 2 we will bypass the
inverse nature of the problem by expressing as regression, so proving the conditions
of Theorem 1.3 hold will suffice in that chapter, rather than requiring Theorem 1.5.

2. In order to apply the theorem, we typically prove a small ball result of the form

d̄(θ, θ0) ≤ f(εn) =⇒ θ ∈ Bn
KL

for some metric d̄ (often but not necessarily taken to be the same metric d in
which contraction is proved) and for some increasing function f (usually linear as
in Lemma 2.14, but see also the proof of Lemma 3.11 where a quadratic function is
used), since it is generally straightforward to lower bound the prior mass given to
balls in a metric d̄, and harder to directly verify the mass on abstract Kullback–
Leibler type balls.

3. While the above contraction rate theory is fairly satisfactory for estimation, it
is deficient from the point of view of uncertainty quantification. In particular,
‘credible sets’, sets with posterior probability 1− α for some 0 < α < 1, need not
have the advertised coverage rate. One could attempt to prove a nonparametric
Bernstein–von Mises type theorem, which would give the asymptotic shape of the
posterior and allow the construction of credible sets which (asymptotically) are
also confidence sets at the advertised level. See for example the pioneering works
of Castillo & Nickl [15, 16] or, for results in nonlinear inverse problems similar to
those considered here, see Nickl [61], and Nickl & Söhl [63]. Note that establishing
a posterior contraction rate as in Theorem 1.3 constitutes a key first step towards
a proof of a Bernstein–von Mises result, since it allows one to localise the posterior
around the true parameter.

1.4.2 Inverse problems

Recall now that we are interested in Bayesian estimation in an inverse problem in which
the measure P n

θ depends on θ only through G(θ). Placing a prior on θ induces a prior
on G(θ), and Theorem 1.3 allows us to deduce contraction around G(θ0) under some
conditions on this prior. A ‘stability’ result (continuity of the inverse map) will then
allow us to deduce contraction around the true θ0, yielding the following theorem. Recall
Bn
KL(ε) was defined in (1.12).



20 Introduction

Theorem 1.5. Let d be a metric on Θ and let d̃ be a metric on G(Θ). Suppose for some
positive sequences εn, ξn satisfying εn → 0, ξn → 0, nε2

n → ∞, we have, for some sets
Θn ⊂ Θ and some constants C, ζ > 0,

(a) Π(Θc
n) ≤ e−(2ζ+8)nε2

n ,

(b) There exists an estimator Ĝ of G(θ) such that

sup
θ∈Θn

P n
θ (d̃(Ĝ, G(θ)) > 1

2Cεn) ≤ e−(2ζ+8)nε2
n ,

(c) Π(Bn
KL(εn)) ≥ e−ζnε2

n,

(d) For θ ∈ Θn, d̃(G(θ), G(θ0)) ≤ Cεn =⇒ d(θ, θ0) ≤ ξn.

Then
P n
θ0

(
Π(d(θ, θ0) > ξn | X(n)) ≥ 3e−(ζ+4)nε2

n

)
→ 0, as n→∞. (1.15)

Further assume that the metric d arises from a norm ∥·∥, that the conditions (c) and (d)
are true for all θ0 in some (norm-) bounded subset Θ̃ of Θ, that e−nε2

nξ−1
n → 0 as n→∞,

and that the prior has finite second moment (satisfying a uniform bound if we have a
sequence of priors),

sup
n
EΠ[∥θ∥2] <∞.

Then the posterior mean EΠ[θ | X(n)] estimates θ0 at rate ξn, uniformly in Θ̃; precisely

sup
θ0∈Θ̃

P n
θ0

(
∥EΠ[θ | X(n)]− θ0∥ > 2ξn

)
→ 0. (1.16)

Remarks. 1. Since Θ is infinite dimensional, the sense in which the posterior mean is
to be interpreted must be clarified. Here we consider the Bochner mean: choosing
a sequence of finitely valued random variables un (whose expectations are naturally
defined as weighted averages) such that EΠ[∥un−θ∥ | X]→ 0, we define EΠ[θ | X] =
limnE

Π[un | X] (see e.g. [38, §2.6.1] for details).

2. As with Remark 2 after the proof of Theorem 1.3, it is desirable to prove a result
of the form

d(θ, θ0) ≤ f(εn) =⇒ θ ∈ Bn
KL.

Since Bn
KL depends on θ only through G(θ), a continuity result for the forward

map, controlling d̃(G(θ), G(θ0)) in terms of d(θ, θ0) can help us achieve this. See
for example Lemma 3.11 and its dependence on Lemma 3.6.
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3. It is sometimes inconvenient to specify priors for which (c) holds for all θ0 ∈ Θ,
with boundary issues often causing problems, hence the allowance for a smaller set
Θ̃ on which we target uniform convergence. An alternative (equivalent) perspective,
taken in Chapter 3, is to specify the prior on a superset of Θ.

4. Typical stability results, controlling d(θ, θ0) in terms of d̃(G(θ), G(θ0)), are poly-
nomial (i.e. of the form d(θ, θ0) ≤ Kd̃(G(θ), G(θ0))α for some constants K,α)
or even ‘logarithmic’, as in Lemma 3.7 where prove an estimate of the form
d(θ, θ0) ≤ K{log[1/d̃(G(θ), G(θ0))]}−α. Given such a stability result, by possibly
first increasing ξn by a constant factor, we can “decouple” conditions (b) and (d).

The proof of the contraction rate is straightforward given Theorem 1.3. The proof of
the consistency of the posterior mean is more involved, and is given here following the
structure of Monard–Nickl–Paternain [59].

Proof. First, using conditions (a) to (c), Theorem 1.3 applies on the metric space (G(Θ), d̃)
to yield

P n
θ0

(
Π(d̃(G(θ), G(θ0)) > Cεn | X(n)) ≥ 2e−(ζ+4)nε2

n

)
→ 0.

Then, by condition (d),

Π(d(θ, θ0) > ξn | X(n)) ≤ Π(Θc
n | X(n)) + Π(d̃(G(θ), G(θ0)) > Cεn | X(n)),

and, as in the proof of Theorem 1.3, for An as in Lemma 1.4,

P n
θ0(Π(Θc

n | X(n)) > e−(ζ+4)nε2
n) ≤ P n

θ0(Acn) + e(2ζ+6)nε2
nΠ(Θc

n)→ 0.

This yields the contraction rate (1.15).
To prove consistency of the posterior mean E[θ | X(n)], introduce the event

A = An ∩ {Π(∥θ − θ0∥ > ξn | X(n)) ≤ 3e−(ζ+4)nε2
n},

and decompose

P n
θ0(∥EΠ[θ | X(n)]− θ0∥ > 2ξn) ≤ P n

θ0(Ac) + P n
θ0(∥EΠ[θ | X(n)]− θ0∥1A > 2ξn).

In view of (1.15) and Lemma 1.4, the first term on the right vanishes as n→∞.
For the second term, we have the following chain of inequalities, appealing to several

standard inequalities as listed (note that any norm is convex as a function of one of its
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arguments):

P n
θ0

(
1A∥EΠ[θ | X(n)]− θ0∥ > 2ξn

)
≤P n

θ0

(
1AE

Π[∥θ − θ0∥ | X(n)] > 2ξn
)

(Jensen)

≤P n
θ0

(
1AE

Π[∥θ − θ0∥1∥θ−θ0∥>ξn | X(n)] > ξn
)

≤P n
θ0

(
1AE

Π[∥θ − θ0∥2 | X(n)]1/2Π[∥θ − θ0∥ > ξn | X(n)]1/2 > ξn
)

(Cauchy–Schwarz)

≤ξ−1
n En

θ0

[
1AE

Π[∥θ − θ0∥2 | X(n)]1/2Π(∥θ − θ0∥ > ξn | X(n))1/2
]

(Markov)

≤ξ−1
n En

θ0

[
1AE

Π[∥θ − θ0∥2 | X(n)]
]1/2

En
θ0

[
1AΠ(∥θ − θ0∥ > ξn | X(n))

]1/2
(Cauchy–Schwarz).

From the definition of A it is immediate that En
θ0

[
1AΠ(∥θ − θ0∥ > ξn | X(n))

]
≤

3e−(ζ+4)nε2
n , and by Lemma 1.4 and Fubini’s theorem observe that

En
θ0

[
1AE

Π[∥θ − θ0∥2 | X(n)]
]
≤ En

θ0

[
e(ζ+2)nε2

n

∫
Θ
∥θ − θ0∥2(p(n)

θ /p
(n)
θ0 )(X(n)) dΠ(θ)

]
≤ 2e(ζ+2)nε2

n(∥θ0∥2 + EΠ[∥θ∥2]).

Overall, we deduce

P n
θ0

(
∥EΠ[θ | X(n)]− θ0∥1A > 2ξn

)
≤ ξ−1

n

√
6e−nε2

n(∥θ0∥2 + EΠ[∥θ∥2])1/2 → 0

and the result follows, noting that as with Theorem 1.3, uniformity in θ0 is immediate
from uniformity of the conditions assumed and of the rates attained in the proof.

1.5 Computation for Bayesian inverse problems
This thesis concerns theory for Bayesian methods, and the practicality of these methods
for inverse problems setting was justified by observing that they bypass the need to
invert the forward operator G. Of course, this justification requires that natural Bayesian
estimators are themselves tractable, and the purpose of this section is to briefly support
that claim in a general setting. The later chapters give references regarding computation
in the specific models considered therein.

In linear inverse problems, optimisation based estimators such as the posterior mode
(the ‘maximum a posteriori probability, MAP, estimator’, which for many common
priors coincides with the Tikhonov regulariser for an appropriate penalisation term) can
for typical priors be expressed as an explicit function of the data X, and as a result
are computationally feasible. In nonlinear inverse problems, such estimators (whose
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theoretical performance can be guaranteed using techniques related to those discussed in
this thesis – see e.g. Nickl–van de Geer–Wang [64]) remain computationally feasible if the
objective function is convex. However, in the EIT setting considered in Chapter 3, the
objective function is not convex and so the MAP estimator is not tractable. Fortunately,
the posterior mean, whose theoretical performance was considered in Theorem 1.5, is
generically computable via Monte Carlo methods (i.e. using samples from the posterior),
in particular Markov chain Monte Carlo (MCMC): for a function ψ, given samples
θi, i = 1, . . . , K drawn i.i.d. from the posterior or drawn from a Markov chain whose
invariant distribution is the posterior, the central limit theorem (see [58], Theorem 17.0.1
in the Markov Chain case) tells us that under mild assumptions

EΠ(·|X)[ψ(θ)] ≈ 1
K

K∑
i=1

ψ(θi), (1.17)

with (stochastic) approximation error of order K−1/2.
Assume that the posterior Π(· | X(n)) has a density π(·|X(n)) with respect to some

reference measure. Typically, it is easy to compute π(θ|X(n)), up to a normalising
constant, from the expression π(θ|X(n)) ∝ π(θ)p(n)

θ (X(n)) (integrating over Θ to calculate
the normalising constant is often difficult). We can thus access the basic accept-reject
algorithm, and the Metropolis–Hastings algorithm to follow, as methods for sampling
from the posterior. Both are written here for a general target (unnormalised) density ν,
since the algorithms apply more broadly than just to the case ν = π(· | X(n)) used in
Bayesian statistics.

Algorithm 1 Accept-reject
input a density q, easy to sample from and satisfying ν(θ) ≤Mq(θ) for all

θ ∈ Θ, for some known constant M .
repeat

sample φ ∼ q.
accept φ with probability ν(φ)/(Mq(φ)).

until K samples have been accepted
output the accepted samples

Informally, the fact that the accepted samples have distribution with density pro-
portional to ν can be justified as follows. A rephrasing of the algorithm samples X ∼ q

and U ∼ [0, 1] independently and defines Y = Mq(X)U . Then (X, Y ) is uniform on the
subgraph of Mq, which is a superset of the subgraph of ν. If (X, Y ) lies in the subgraph
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of ν, accept the pair; this leads to points uniformly sampled on the subgraph of ν, whose
X coordinates are therefore sampled from the normalised density proportional to ν.

The only difficulty in applying the accept-reject algorithm is choosing the proposal
distribution q. When Θ is a bounded subset of RN for some N ∈ N, we may take q to
be the uniform distribution on Θ as a default choice, but the acceptance probability
M−1 ∫

Θ ν becomes vanishingly small as N increases or Θ becomes unbounded. When Θ
is infinite dimensional, no default choice of q can work generically.

The Metropolis–Hastings algorithm adds some flexibility which can help us bypass
the dimensionality issues suffered by the accept-reject algorithm.

Algorithm 2 Metropolis–Hastings
input an initial value θ0, and a family of proposal densities (q(θ, ·))θ∈Θ

which are easy to sample from.
for 0 ≤ j ≤ K, independently sample φj ∼ q(θj, ·), and U ∼ U([0, 1]).

if U ≤ [ν(φj)q(θj, φj)]/[ν(θj)q(φj, θj)] then set θj+1 ← φj

else set θj+1 ← θj

output θ1, . . . , θK

It can be shown that the Markov chain (θj)j≥0 has invariant density proportional
to ν, hence (under extra assumptions ensuring the central limit theorem holds) the
expression (1.17) is justified for these samples, with error CK−1/2 for a constant C.
As with the accept-reject algorithm, it is crucial to choose q carefully: the constant
C grows as the acceptance probability (the probability we set θj+1 as φj rather than
as θj) decreases. Unlike the accept-reject algorithm, though, there is a default choice
for the proposal distribution q in the Metropolis–Hastings which works for many of
the infinite-dimensional models of interest: the preconditioned Crank–Nicholson (pCN)
proposal, in which we set φj =

√
1− β2θj + βξj for some i.i.d. random variables ξj and

some constant β ∈ [0, 1]. See Cotter et al. [22] for an argument that this algorithm
works well when the target distribution is the posterior corresponding to a Gaussian prior
and the variables ξj are drawn from the prior, and note that calculating the acceptance
probability requires evaluating the forward map G at φj and θj, but does not require
inverting G.

1.6 Elliptic PDEs: a brief introduction
The models considered in this thesis arise from PDEs, so this section introduces some of
the elementary techniques used in PDE theory, with a particular focus on techniques



1.6 Elliptic PDEs: a brief introduction 25

allowing the derivation of the types of stability results described in Section 1.4.2. The
theory in this section is described for complex-valued functions,6 as used in Chapter 3,
but passes virtually unchanged to the real-valued functions used in Chapter 2.

We consider in particular boundary value problems, which are PDEs of the form

L[u] = g on D, u = f on ∂D,

for some partial differential operator L and some smooth bounded domain D (i.e. a
connected bounded open subset of Rd, with smooth boundary denoted ∂D). Throughout
this thesis all domains will be smooth and bounded, so we will omit explicit mention and
simply say ‘domain’.

The operator L will be taken to be a second order operator, written in divergence
form.

Definition. A second order partial differential operator in divergence form is a map L,
taking smooth enough functions u : D → C as inputs, of the form

L[u] = −
∑
j,k

∂k(ajk∂ju) +
∑
j

bj∂ju+ cu, (1.18)

for functions ajk, bj, c, where (without loss of generality, by changing bj if necessary) we
assume that akj = a∗

jk for all j, k, where ∗ denotes the complex conjugate, and where ∂j
denotes the partial derivative in the jth direction.

The PDE on which we will apply the techniques from this section is the Dirichlet
problem (1.3) (∇ ·(γ∇u) = 0 on D, u = f on ∂D); we will assume in Chapter 3 that
γ ≥ m for some constnat m > 0 which ensures this PDE is ‘uniformly elliptic’ and so we
focus on this class of PDEs.

Definition (Uniform ellipticity). The operator L of (1.18) is uniformly elliptic if there
exists m > 0, called the ellipticity constant, such that

∑
jk

ajk(x)ξjξ∗
k ≥ m∥ξ∥2 for all ξ ∈ Cd, x ∈ D.

(Cd is equipped with the usual Euclidean norm.)

For PDEs whose partial differential operator is uniformly elliptic, a ‘weak’ solution
theory is more appropriate than a classical solution theory, and so we introduce the

6While the codomain of the functions considered is complex, their domains will be real. Thus real
derivatives, rather than more rigid complex derivatives, are used.
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notion of weak derivatives and the Sobolev spaces Hr(D) consisting of “r–times weakly
differentiable functions”.

1.6.1 Weak derivatives and Sobolev spaces

The maximal function space considered is the space of distributions on D, i.e. the (linear)
dual space of the space C∞

c (D) of complex-valued smooth functions compactly supported
in D. We define weak or distributional (partial) derivatives ∂j on the space of distributions
by ‘duality’, i.e. ∂ju is the (unique) distribution v defined by

∫
D
vφ = −

∫
D
u
∂φ

∂xj
∀φ ∈ C∞

c (D), (1.19)

where the classical or strong derivative appears on the right-hand side ( ∂φ
∂xj

(x) =
limh→0

φ(x+hej)−φ(x)
h

for ej a unit vector in the xj direction). Integrals initially being
defined for functions only, for a distribution v we interpret

∫
D vφ as notation for the

duality pairing, i.e.
∫
vφ gives result of applying the linear map v : C∞

c (D) → C to φ.
We naturally associate to a measurable function f the distribution f̃ : C∞

c (D) → C,
f̃(φ) =

∫
D fφ, consistently with the above notation. Any distribution v can be asso-

ciated with at most one function f up to a Lebesgue null set (i.e. if f̃ = v = g̃ then
f = g Lebesgue almost everywhere7), and whenever such a function associated with
the distribution ∂jũ exists, it will also be called the weak derivative of the function u.
Integration by parts shows that if the classical derivative ∂u

∂xj
exists then it is also the

weak derivative. Henceforth all derivatives, whether denoted ∂j or ∂
∂xj

, will be defined in
a weak sense unless otherwise specified, and we will not distinguish between a function
and its associated distribution.

Integration by parts remains true for weak derivatives via the divergence theorem (see
e.g. [17] eq. (38)).

Theorem 1.6 (The divergence theorem). For a domain D with outward unit normal ν
on the boundary ∂D, ∫

D
∇ ·F =

∫
∂D
F · ν,

where ∇ · denotes the divergence operator on vector fields F , ∇ ·F = ∑d
j=1 ∂jFj.

7Proved as follows: let φ ∈ C∞
c (Rd) be a ‘bump function’, with φ = 0 if |x| > 1, φ(x) ≥ 0 for all x, and∫

Rd φ = 1. Then φε = ε−dφ(ε−1(·)) is called a mollifier. It can be shown that
∫

D
f(x)φε(a−x) dx→ f(a)

as ε → 0 for Lebesgue-almost all a ∈ D, provided that f is locally integrable (which means that the
integral is well-defined for ε sufficiently small) – see [27, Appendix C.4]. But

∫
D

f(x)φε(a − x) dx =∫
D

g(x)φε(a − x) dx for all a and all ε sufficiently small by assumption, hence taking limits we see
f(a) = g(a) almost everywhere.
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Remark. We can for example apply to F = u∇ v − v∇u to see that
∫
D
u∆ v =

∫
D
v∆u+

∫
∂D
u
∂v

∂ν
− v∂u

∂ν
,

hence the description as ‘integration by parts’ (∇ denotes the usual gradient operator
and ∆ the Laplacian). More generally, writing

∂α = ∂|α|

∂xα1
1 . . . ∂xαd

d

≡ ∂α1
1 · · · ∂

αd
d , (1.20)

for a multi-index α = (α1, . . . , αd), αj ∈ N ∪ {0} for j ≤ d, of order |α| = ∑
j≤d αj, and

assuming u, v are compactly supported in D to avoid having to define the appropriate
boundary operators (cf. [53, Chapter II, Theorem 2.1, p114]), we have∫

D
u∂αv = (−1)|α|

∫
D
v∂αu.

The Sobolev spaces Hr(D), r ∈ R, are constructed to capture the notion of the
number of weak derivatives a function has: the derivative ∂j maps Hr+1(D)→ Hr(D)
continuously for L2–Sobolev spaces Hr(D), r ≥ 0 (indeed, it is immediate from the
definition below of Hr(D) that ∥∂ju∥Hr(U) ≤ ∥u∥Hr+1(U) for r ≥ 0; for r < 0 see Theorem
12.1 in [53] Chapter 1, p71). The space H0(D) = L2(D) is the Lebesgue space of functions

L2(D) = {f : D → C measurable s.t. ∥f∥2
L2(D) :=

∫
D
|f(x)|2 <∞},

where functions which are equal almost everywhere are understood to be identified, and
for r ∈ R we define as follows.

Definitions (Hr(D), Hr
0(D), Hr

loc(D)). Definitions are drawn from Lions & Magenes
[53]. For r ∈ N ∪ {0} we define

Hr(D) = {f ∈ L2(D) s.t. ∂αf ∈ L2(D) for all multi-indices α satisfying |α| ≤ r}.

Hr(D) is a Hilbert space, equipped with the inner product

⟨f, g⟩Hr(D) =
∑

|α|≤r

∫
D
∂αf · ∂αg∗,

and associated norm ∥·∥Hr(D) (see [53, Chapter I, §1.1, p1]). We use the analogous
notation to denote the inner products and norms for each Hilbert space considered here.
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For r ∈ R, r ≥ 0 we define Hr(D) via interpolation (see [53, Chapter I, §9.1, p40] for
details).

Hr
0(D) is defined as the ∥·∥Hr(D)–closure of C∞

c (D) ⊂ Hr(D) (see [53, Chapter I,
§11.1, p55]), and the spaces Hr(D), r < 0 are defined as the (topological) dual spaces,
equipped with the dual norms,

Hr(D) = (Hr
0(D))∗ = {distributions f s.t. ∥f∥Hr(D) = sup

g∈H|r|
0 (D),

∥g∥
H|r|(D)=1

∫
fg∗ <∞}, r < 0.

(See [53, Chapter I, §12.1, p70].)
Hr

loc(D) is defined as the set of distributions f such that fφ ∈ Hr(D) for all φ ∈ C∞
c (D)

(see [53, Chapter II, §3.2, p125]) or, equivalently, as the set of distributions f such that
f |U ∈ Hr(U) for all domains U b D, where the symbol b is read ‘compactly contained’
and U b D means the closure Ū is a subset of the interior intD = D.

A fundamental result of PDE theory is Poincaré’s inequality, which says that the H1

norm is equivalent to the H1 seminorm on the subset H1
0 (D) ⊂ H1(D). There is also a

version for functions whose average on D is zero, but only the given version will be used
in this thesis.

Theorem 1.7 (Poincaré’s inequality). There exists a constant C = C(D) such that for
all u ∈ H1

0 (D),
∥u∥H1(D) ≤ C∥∇u∥L2(D).

Proof. See Corollary 6.31 in [3]. Roughly, the idea of the proof is that the fundamental
theorem of calculus shows that a classically differentiable function cannot take values
much larger than those of its derivative if the boundary values are zero, and this extends
to H1

0 (D) functions by density of C∞
c (D) (density can be proved using convolution with

mollifiers, similarly to the footnote in Section 1.6.1).

1.6.2 Boundary values and trace theorems

Recall we are considering boundary value problems

L[u] = g on D, u = f on ∂D,

and we seek weak solutions in some Sobolev space Hr(D). Since elements u of Hr(D)
are in fact equivalence classes of functions differing on Lebesgue null sets, we must clarify
the precise sense in which “u = f on ∂D” is to be understood. The definition of Hr

0(D)
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given in the previous section allows us to address the case f = 0, and more generally, we
make sense of boundary values through the trace operator. For the following, recall that
a function h is harmonic on the domain D if ∆h = 0 on D.

Theorem 1.8 (Trace theorem). There exists a linear operator tr acting on the Sobolev
scale of functions ⋃s∈RH

s(D) which acts on u ∈ C(D̄) as restriction to the boundary
∂D (tru = u|∂D) and for which the following is true. Given s ∈ R suppose w lies in
Hs+1/2(D); in the case s ≤ 0 further assume w is harmonic. Then trw is in Hs(∂D)
and satisfies

∥trw∥Hs(∂D) ≤ C∥w∥Hs+1/2(D) (1.21)

for some constant C = C(s,D). Further,

• The map tr has a continuous right inverse for s > 0; that is, there exists C ′ =
C ′(s,D) such that for any f ∈ Hs(∂D), there exists F ∈ Hs+1/2(D) satisfying
trF = f and ∥F∥Hs+1/2(D) ≤ C ′∥f∥Hs(∂D).

• We may also define (outward) normal partial derivatives on the boundary ∂j

∂νj , j > 0,
similarly. These satisfy, for s > 0 and some constant C ′′ = C ′′(s,D, j),

∥∂jw
∂νj ∥Hs(∂D) ≤ C ′′∥w∥Hs+j+1/2(D).

For s < 0 and w harmonic, the estimate holds for j = 1.

The space Hs(∂D) in which the boundary functions live can be defined via the
differential geometry notion of a smooth atlas. That is, we choose open sets U covering ∂D,
then on each set we choose smoothly varying local coordinate functions φU : U → Rd−1.
Such a smooth atlas immediately allows the definition of classical derivatives on the
manifold ∂D, since these only depend on local behaviour of a function.8 It is not
immediately clear that this idea can be extended to weak derivatives, which are defined
in a non-local way, but indeed it can. We omit the details here, since in any case when
the boundary Sobolev spaces are needed (in Chapter 3) we use an alternative definition
in terms of the eigenfunctions of the Laplace–Beltrami operator on ∂D. See [53], Chapter
I, Section 7.3 (p34) for a careful definition built on the ideas outlined in this paragraph.

Proof of Theorem 1.8. One proof method, in the case s = 1, is to show that the restriction
operator satisfies the estimate ∥u|∂D∥L2(∂D) ≤ C∥u∥H1(D) for all u ∈ C1(D̄) ⊂ H1(D),
for some constant C independent of u (see [27], Section 5.5, Theorem 1). Since C1(D̄) is

8Given f : ∂D → C, we say f is differentiable if f ◦ φ−1
U : φU (U)→ C is (classically) differentiable as

a map from Rd−1 to C for all ‘charts’ (U, φU ) in the atlas.
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dense in H1(D), this allows us to extend the restriction operator to H1(D) by taking
limits, yielding the continuous trace map tr : H1(D)→ L2(∂D).

The sharper and more general result (1.21) can be found in [53]. See Chapter I
Theorem 9.2 (p41) for the case s > 0; for w harmonic and s ≤ −3/2, see Chapter II
Theorem 6.5 (and Remark 6.4, pages 175-177), and for w harmonic and −3/2 < s < 1/2
see Chapter II Theorem 7.3 (p187). In these latter cases, in the notation of [53], take the
operator A to be the Laplacian ∆, and consider the normal system given by the singleton
B0 = tr (or the singleton B0 = ∂

∂ν
for the case of normal derivatives; note condition

(1.11) in Chapter II means we cannot attain higher orders of normal derivatives in the
same way).

Remark. Given the trace theorem, we have the following characterisation of Hr
0(D) for

r > 0, equivalent to the definition given in the previous section (see [53], Chapter I,
Theorem 11.5 on p62):

Hr
0(D) = {f ∈ Hr(D) : ∂jf

∂νj

∣∣∣
∂D

= 0, 0 ≤ j < r − 1/2},

with the normal boundary derivatives defined in a trace sense and ∂0f/∂ν0 := tr f .

1.6.3 Weak solutions via the Lax–Milgram theorem

Given a partial differential operator L defined by L[u] = −∑j,k ∂k(ajk∂ju)+∑j bj∂ju+cu,
as in (1.18), we associate to L a sesquilinear operator B = BL (i.e. B is linear in the
first argument and conjugate linear in the second argument, satisfying B(u, λv + µw) =
λ∗B(u, v) + µ∗B(u,w)) defined by

B(u, v) :=
∫
D

(
cuv∗ +

∑
j

v∗bj∂ju+
∑
j,k

ajk∂ju∂kv
∗
)
. (1.22)

Then a weak solution of the elliptic partial differential equation

L[u] = g on D, u = f on ∂D (1.23)

is understood to mean a function u ∈ H1(D) whose trace is f and such that

B(u, v) =
∫
D
gv∗ ∀v ∈ H1

0 (D). (1.24)

Integration by parts (for classical derivatives) shows that any classical solution (i.e. any
C2(D) function solving (1.23) for the derivatives of L taken in a classical sense) is also a
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weak solution. The weak formulation is more robust, more appropriately characterises
the regularity of solutions, and is amenable to Hilbert space theory, in particular the
Lax–Milgram theorem.

Theorem 1.9 (Lax–Milgram). Let (H, ∥·∥H) be a Hilbert space (with complex scalars).
Let B : H × H → C, A : H → C be sesquilinear and conjugate linear respectively.
Suppose

• B is bounded: for some C > 0 and all u, v ∈ H, |B(u, v)| ≤ C∥u∥H∥v∥H .

• B is coercive: for some c > 0 and all u ∈ H, B(u, u) ≥ c∥u∥2
H .

• A is bounded: for some K > 0 and all v ∈ H, |A(v)| ≤ K∥v∥H . The smallest such
K is the operator norm of A, denoted ∥A∥H→C.

Then the equation
B(u, v) = A(v) ∀v ∈ H

has a unique solution u ∈ H. Moreover, this solution satisfies

∥u∥H ≤ K/c.

Proof. Given existence, the norm bound follows from the calculation K∥u∥H ≥ |A(u)| =
|B(u, u)| ≥ c∥u∥2

H .
For existence, when B is a ‘hermitian form’, i.e. B(u, v) = B(v, u)∗ (as will be the

case when this result is used in Theorem 1.10), the proof follows from a single application
of the Riesz representation theorem, since B defines an inner product on H in this case.
See [27] §6.2, Theorem 1 for a proof in the case where B is not hermitian (note the proof
there is given for H having real scalars and B bilinear, but the same argument works in
the complex scalar case considered here).

We are ready to prove the existence of weak solutions to the PDE (1.23). Note a
version of the following theorem remains true under weaker assumptions on the coefficients
{c, bj}, but the proof is slightly more involved and is not needed in this thesis: see [27,
§6.2] for details.

Theorem 1.10. Let L be as in (1.18) for bounded coefficient functions ajk, bj, c satisfying
c(x) ≥ 0, bj(x) = 0, for all x ∈ D and 1 ≤ j ≤ d, and suppose L is uniformly elliptic
with ellipticity constant m. Let B be the associated sesquilinear operator, and let A be a
bounded conjugate linear operator H1

0 (D)→ C. There is a unique u ∈ H1
0 solving

B(u, v) = A(v) ∀v ∈ H1
0 (D),
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and this solution satisfies
∥u∥H1

0 (D) ≤
1
mk
∥A∥H1

0 (D)→C,

where k = k(D) is the constant of the Poincaré inequality (Theorem 1.7). In particular,
for f = 0 and g ∈ H−1(D), the elliptic PDE (1.23) has a unique weak solution u

satisfying
∥u∥H1

0 (D) ≤
1
mk
∥g∥H−1(D).

Proof. We apply Theorem 1.9 on the Hilbert space H1
0 (D). For the more general result it

suffices to show the sesquilinear B defined in (1.22) is bounded and coercive. Boundedness
is an immediate consequence of the Cauchy–Schwarz inequality: we have

|B(u, v)| ≤ d2 max(∥c∥∞,max
j,k
∥ajk∥∞)∥u∥H1(D)∥v∥H1(D),

where ∥·∥∞ denotes the usual supremum norm and we recall d is the dimension of D.
For coercivity, observe by nonnegativity of c and ellipticity,

B(u, u) =
∫
D

(c|u|2 +
∑
jk

ajk∂ju∂ku
∗) ≥ m∥∇u∥2

L2(D),

so that Theorem 1.7 implies that B is coercive with coercivity constant mk where k is
the Poincaré constant for the domain D.

Finally, in the particular case A(v) =
∫
D gv

∗, recalling H−1(D) is defined as the dual
of H1

0 (D), we have
|A(v)| ≤ ∥g∥H−1(D)∥v∥H1

0 (D)

hence ∥A∥H1
0 (D)→C ≤ ∥g∥H−1(D).

Remarks. 1. The above arguments can also be used to show that the ‘Neumann
problem’ (L[w] = 0 on D, ∂w/∂ν = 0 on ∂D) has a solution w ∈ H1(D) which is
unique up to an additive constant: existence is by the Lax–Milgram theorem, and
uniqueness is because we find ∥∇w∥2

L2(D) = 0 for w ∈ H1(D) satisfying B(v, w) = 0
for all v ∈ H1(D).

2. To prove existence of weak solutions to (1.23) with more general boundary data f ,
it suffices to find a function F whose trace is f and which is smooth enough that
Theorem 1.10 implies the existence of a weak solution w ∈ H1

0 to L[w] = g − L[F ]
in D. Then u = F + w will solve (1.23) with boundary data f . For f ∈ Hs(∂D),
some s ≥ 1/2, such an F exists since the invertibility of the trace operator in
Theorem 1.8 yields F ∈ H1(D) with trF = f and, recalling that the derivatives ∂j
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map Hr(D) to Hr−1(D) for r ∈ R, we see L[F ] ∈ H−1(D). For rougher f , such an
F can be found using theory for harmonic functions, for example as in the proof of
Lemma 3.17.

1.6.4 Regularity estimates

For ordinary differential equations (i.e. d ≡ dimD = 1 in the above), if u is a classical
solution of the equation L[u] = g then u has two more classical derivatives than g. For
PDEs, this is no longer true in general. However, for elliptic PDEs, the weak formulation
of this statement is true under mild conditions: Section 6.3 in [27] gives some such
conditions for the case of boundary data f = 0. Here, we instead include the following
result, which addresses only the case c = 0 = bj ∀j, but considers non-trivial boundary
data, hence is ideally suited to the Dirichlet problem (1.3) studied in Chapter 3.

Theorem 1.11. Suppose L = −∑j,k ∂k(ajk∂ju) is uniformly elliptic on a smooth domain
D, with smooth coefficient functions ajk. For s ∈ R, assume f ∈ Hs+3/2(∂D) and
g ∈ Hs(D). In the case s < 0, further assume g is compactly supported in D. Then there
exists u ∈ Hs+2(D) solving (1.23), and this solution satisfies

∥u∥Hs+2(D) ≤ C(∥g∥Hs(D) + ∥f∥Hs+3/2(∂D)). (1.25)

The constant C depends on the coefficients of L, on the domain D and, in the case s < 0,
on the support of g.

Proof. Observe, in the notation of [53, Remark 7.2, Chapter II, p188], N = N∗ = {0}.
This follows from Theorem 1.10: since the zero function is a unique solution in H1

0 to
L[w] = 0 in D, w = 0 on ∂D, this is also the unique solution in the smaller space C∞

c (D̄).
(In the notation of [53, Chapter II, Theorem 2.1, p114], take Tj = tr.) The remark then
states that a solution exists and for s ≥ 0 gives the continuity estimate (1.25). In the
case s < 0, the continuity estimate of [53] has a different norm in place of the Hs(D)
norm on the right-hand side, but for g of compact support the two norms coincide up to
a constant depending only on the support of g.

Remarks. 1. If, instead of Dirichlet boundary data tru = f , we are given Neumann
boundary data ∂u/∂ν = f , there exists a solution u satisfying

∥u∥Hs+2(D)/C ≤ C(∥g∥Hs(D) + ∥f∥Hs+1/2(∂D)),
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where ∥u∥Hs+2(D)/C ≡ infz∈C∥u− z∥Hs+2(D) is the usual quotient norm. The proof
only differs in that to show N,N∗ consist of the constant functions we use Remark
1 after Theorem 1.10 .

2. In Chapter 3, we use Theorem 1.11 for equivalence classes of functions defined up
to a constant. Fixing a representative f of the equivalence class and applying to
(f − z) for each z ∈ C, we see that the result holds with quotient norms on u and
f .

3. For this theorem we assume ajk is smooth for all j, k. In Chapter 3, we will not
assume the conductivity γ is smooth, since this is highly undesirable in an imaging
context (indeed, when using EIT we are generally looking for jump discontinuities
in the conductivity, corresponding to the boundaries of different materials). We in
fact only apply Theorem 1.11 to L = ∆, hence there is no conflict.

Whilst the above theory only gives weak regularity (i.e. regularity in Sobolev spaces),
the Sobolev embedding theorem (a name collectively given to a number of inequalities)
allows the deduction of classical regularity as a result. Here is one version of the theorem.

Theorem 1.12 (Sobolev embedding). Suppose s > d/2. Then any u ∈ Hs(D) has a
uniformly continuous representative. Moreover, the induced embedding Hs(D) ↪→ Cu(D),
where Cu(D) denotes the space of uniformly continuous functions on D, is continuous;
that is, for some constant C = C(s,D) and all u ∈ Hs(D),

∥u∥∞ ≤ C∥u∥Hs(D).

Proof. See for example Theorem 7.3.4c in [3]. Note that the Besov space Bs
2,2(D) is equal

to Hs(D).

Remarks. 1. The result can be applied to yield higher order derivatives. For s > 1+d/2,
if u ∈ Hs+1(D), then ∂ju ∈ Hs(D) ↪→ Cu(D). By considering mollifiers as in the
footnote in Section 1.6.1, we can choose uk ∈ C∞(D) such that uk → u almost
everywhere and ∂juk → ∂ju in sup-norm. Then uk converges to some v ∈ C1(D)
by standard arguments; by uniqueness of limits we see v = u Lebesgue almost
everywhere so that u has a C1(D) representative. This argument bootstraps up, so
that if u ∈ Hs(D) for all s > 0, in fact u ∈ C∞(D).

2. The Sobolev embedding is also true on sufficiently smooth manifolds; in particular,
for Hs(∂D).
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1.7 Background reading
This section gathers some background material in the areas studied in this thesis. The
focus is on survey works.

Frequentist analysis of Bayesian procedures Ghosal & van der Vaart [34], Giné &
Nickl [38, chapter 8]. For diffusions in particular: van Zanten [87]

Stochastic diffusions Durrett [26], Rogers & Williams [72, 73], Bass [7], Bhattacharya
& Waymire [9]

Bayesian computation Cotter, Roberts, Stuart & White [22], Stuart [77]

PDE inverse problems Katchalov–Kury–Lassas [47], Isakov [44]

The Calderón problem/EIT Uhlmann [81], Salo [75]

PDEs and functional analysis Evans [27], Gilbarg & Trudinger [36], Aubin [5]





Chapter 2

Contraction rates for scalar
diffusions with high-frequency data

Notation
Most of the notation to be used in this chapter is informally gathered here.

X: A solution to dXt = b(Xt) dt+ σ(Xt) dWt.

Ẋ: The periodised diffusion Ẋ = X mod 1.

b, σ: Drift function, diffusion coefficient.

µ = µb; πb: Invariant distribution/density of Ẋ.

P
(x)
b : Law of X on C([0,∞]) (on C([0,∆]) in Section 2.4) for initial condition X0 = x.

Eb; Pb; Varb: Expectation/probablity/variance according to the law of X started from
µb.

Eµ; Varµ, and similar: Expectation/variance according to the subscripted measure.

W(x)
σ : Notation for P (x)

b when b = 0.

pb(t, x, y), ṗb(t, x, y): Transition densities of X, Ẋ (with respect to Lebesgue measure).

p̃b: Density (with respect to W(x)
σ ) of P (x)

b on C([0,∆]).

Ib(x) =
∫ x

0 (2b/σ2(y)) dy.

X(n) = (X0, . . . , Xn∆); x(n) = (x0, . . . , xn∆); p(n)
b (x(n)) = πb(x0)

∏n
i=1 pb(∆, x(i−1)∆, xi∆).

b0: The true parameter generating the data.

µ0, π0, p0 etc.: Shorthand for µb0 , πb0 , pb0 etc.

σL > 0; σU <∞: A lower and upper bound for σ.
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L0: A constant such that n∆2 log(1/∆) ≤ L0 for all n.

C1
per([0, 1]): The space of continuously differentiable functions f : R → R satisfying
f(x+ 1) = f(x) for x ∈ R.

Θ = Θ(K0): The maximal paramater space: Θ = {f ∈ C1
per([0, 1]) s.t. ∥f∥C1

per
≤ K0}.

Θs(A0) = {f ∈ Θ : ∥f∥Bs
2,∞
≤ A0}, for Bs

2,∞ a (real scalar, 1–periodic) Besov space.

I = {K0, σL, σU}.

Sm: Wavelet approximation space of resolution m, generated by periodised Meyer-type
wavelets: Sm = span{ψlk : −1 ≤ l < m, 0 ≤ k < 2l}, where ψ−1,0 is used as
notation for the constant function 1.

Dm = dim(Sm) = 2m; πm =(L2–)orthogonal projection onto Sm.

wm(δ) = δ1/2(log(δ−1)1/2 + log(m)1/2) if m ≥ 1, wm := w1 if m < 1.

1A: Indicator of the set (or event) A.

K(p, q): Kullback–Leibler divergence between densities p, q: K(p, q) = Ep[log(p/q)].

KL(b0, b) = Eb0 log(p0/pb).

B
(n)
KL(ε) =

{
b ∈ Θ s.t. K(p(n)

0 , p
(n)
b ) ≤ (n∆ + 1)ε2,Varb0

(
log
(
p

(n)
0 /p

(n)
b

))
≤ (n∆ + 1)ε2

}
.

Bε = {b ∈ Θ s.t. K(π0, πb) ≤ ε2, Varb0(log π0
πb

) ≤ ε2, KL(b0, b) ≤ ∆ε2, Varb0(log p0
pb

) ≤
∆ε2}.

Π: The prior distribution.

Π(· | X(n)): The posterior distribution given data X(n).

⟨·, ·⟩2: the L2([0, 1]) inner product, ⟨f, g⟩2 =
∫ 1

0 f(x)g(x) dx (this chapter uses real-valued
functions, so no need for the complex conjugate of g).

∥·∥2: The L2([0, 1])–norm, ∥f∥2
2 =

∫ 1
0 f(x)2 dx.

∥·∥µ: The L2(µ)–norm, ∥f∥2
µ =

∫ 1
0 f(x)2µ(dx) =

∫ 1
0 f(x)2πb(x) dx.

∥·∥∞: The L∞– (supremum) norm.

∥∥C1
per

: The C1
per–norm, ∥f∥C1

per
= ∥f∥∞ + ∥f ′∥∞.

∥·∥n: The empirical L2–norm ∥f∥2
n = ∑n

k=1 f(Xk∆)2.



2.0 Introduction 39

2.0 Introduction
Let’s reprise the stochastic diffusion model described in Section 1.1, and expand on its
key features. Consider a scalar diffusion process (Xt)t≥0 starting at some X0 and evolving
according to the stochastic differential equation

dXt = b(Xt) dt+ σ(Xt) dWt, (2.1)

where Wt is a standard Brownian motion. It is of considerable interest to estimate the
parameters b and σ, which are arbitrary functions (until we place further assumptions on
their form), so that the model is naturally nonparametric. The problems of estimating σ
and b can essentially be decoupled in the setting to be considered here (see Section 2.1), so
in this chapter we consider estimation of the drift function b when the diffusion coefficient
σ is assumed to be given.

It is realistic to assume that we do not observe the full trajectory (Xt)t≤T but rather
the process sampled at discrete time intervals (Xk∆)k≤n. The estimation problem for
b and σ has been studied extensively and minimax rates have been attained in two
sampling frameworks: low-frequency, where ∆ is fixed and asymptotics are taken as
n → ∞ (see Gobet–Hoffmann–Reiss [39]), and high-frequency, where asymptotics are
taken as n→∞ and ∆ = ∆n → 0, typically assuming also that n∆2 → 0 and n∆→∞
(see Hoffmann [43], Comte et al. [21]). See also e.g. [23], [40], [68], [82] for more papers
addressing nonparametric estimation for diffusions.

For typical frequentist methods, one must know from which sampling regime the
data is drawn. In particular, the low-frequency estimator of [39] is consistent in the
high-frequency setting but numerical simulations suggest it does not attain the minimax
rate (see the discussion in Chorowski [18]), while the high-frequency estimators of [43]
and [21] are not even consistent with low-frequency data. Often real data arrives all
at once so that the appropriate asymptotic regime is not clear, hence it is desirable to
use estimators which perform well independent of the regime. The only previous result
known to the author in this direction in the nonparametric setting considered here is
found in [18], where Chorowski is able to estimate the diffusion coefficient σ but not
the drift, and obtains the minimax rate when σ has 1 derivative but not for smoother
diffusion coefficients. See also Chorowski & Trabs [19], wherein an estimator adapting to
the sampling regime is given but only for the sampling period bounded below, and Coca
[20] for an estimator adapting to the sampling regime in a Lévy process setting.

For this chapter we consider estimation of the parameters in a diffusion model from a
nonparametric Bayesian perspective. An attraction of Bayesian methods for the discretely
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sampled diffusion model is that the statistician need only specify a prior, and the prior
need not reference the sampling regime, so Bayesian methodology provides a natural
candidate for a unified approach to the high- and low-frequency settings. Note also that,
building on ideas outlined in Section 1.5, Bayesian methods for diffusion estimation can
be implemented in practice (e.g. see Papaspiliopoulos et al. [65]). Under the frequentist
assumption of a fixed true parameter, the results of this chapter imply that Bayesian
methods can adapt both to the sampling regime and also to unknown smoothness of the
drift function (see the remarks after Propositions 2.4 and 2.2 respectively for details).

It has previously been shown that in the low-frequency setting we have a posterior
contraction rate, guaranteeing that posteriors corresponding to reasonable priors concen-
trate their mass on neighbourhoods of the true parameter shrinking at the fastest possible
rate (up to log factors) – see Nickl & Söhl [62]. To complete a proof that such posteriors
contract at a rate adapting to the sampling regime, it remains to prove a corresponding
contraction rate in the high-frequency setting. This forms the key contribution of the
current chapter: we prove that a large class of “reasonable” priors will exhibit posterior
contraction at the optimal rate (up to log factors) in L2–distance. This in turn guarantees
that point estimators based on the posterior will achieve the frequentist minimax optimal
rate (see the remark after Theorem 2.1) in both high- and low-frequency regimes.

The broad structure of the proof, inspired by that in [62], is as described Section 1.4.1.
The main ingredients are:

• A concentration inequality for a (frequentist) estimator, from which we construct
tests of the true b0 against a set of suitable (sufficiently separated) alternatives.
See Section 2.3.

• A small ball result, to relate the L2–distance to the information-theoretic Kullback–
Leibler “distance”. See Section 2.4.

Although the main proof structure reflects that used in [62] for the low-frequency case,
the details are very different. Estimators for the low-frequency setting are typically based
on the mixing properties of (Xk∆) viewed as a Markov chain and the spectral structure of
its transition matrix (see Gobet–Hoffmann–Reiss [39]) and fail to take full advantage of
the local information one sees when ∆→ 0. Here we instead use an estimator introduced
in Comte et al. [21], which uses the assumption ∆ → 0 to view estimation of b as a
regression problem. To prove this estimator concentrates depends on a key insight of this
chapter: the Markov chain concentration results used in the low-frequency setting (which
give worse bounds as ∆→ 0) must be supplemented by Hölder type continuity results,
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which crucially rely on the assumption ∆→ 0. We further supplement by martingale
concentration results.

Similarly, the small ball result in the low-frequency setting is proved using Markov
chain mixing. Here, we instead adapt the approach of van der Meulen & van Zanten [83].
They demonstrate that the Kullback–Leibler divergence in the discrete setting can be
controlled by the corresponding divergence in the continuous data model; a key result of
this chapter is that in the high-frequency setting this control extends to give a bound on
the variance of the log likelihood ratio.

2.1 Framework and assumptions
For a scalar diffusion X satisfying (2.1), assume the following. All functions in this
chapter are taken to be real-valued.

Assumption 1. σ ∈ C2
per([0, 1]) is given. Continuity guarantees the existence of an

upper bound σU < ∞; further assume the existence of a lower bound σL > 0 so that
σL ≤ σ(x) ≤ σU for all x ∈ [0, 1]. Here C2

per([0, 1]) denotes 1–periodic C2(R) functions.

Assumption 2. b is periodic, and continuously differentiable with given norm bound.
Precisely, assume b ∈ Θ, where, for some arbitrary but known constant K0,

Θ = Θ(K0) = {f ∈ C1
per([0, 1]) s.t. ∥f∥C1

per
= ∥f∥∞ + ∥f ′∥∞ ≤ K0}.

(∥·∥∞ denotes the supremum norm, ∥f∥∞ = supx∈[0,1]|f(x)|.) Note in particular that K0

upper bounds ∥b∥∞ and that b is Lipschitz continuous with constant at most K0.
Θ is the maximal set over which we prove contraction, and we will in general make

the stronger assumption that in fact b ∈ Θs(A0), where

Θs(A0) := {f ∈ Θ : ∥f∥Bs
2,∞
≤ A0 <∞}, A0 > 0, s ≥ 1

with Bs
p,q denoting a periodic Besov space and ∥·∥Bs

p,q
denoting the associated norm: see

Section 2.1.1 for a definition of the periodic Besov spaces we use (readers unfamiliar with
Besov spaces may substitute the L2–Sobolev space – defined as in Section 1.6.1 but with
real scalars – Hs((0, 1)) = Bs

2,2((0, 1)) ⊆ Bs
2,∞((0, 1)) for Bs

2,∞ and only mildly weaken
the results). We generally assume the regularity index s is unknown. Our results will
therefore aim to be adaptive, at least in the smoothness index (to be fully adaptive we
would need to adapt to K0 also).
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Under Assumptions 1 and 2, there is a unique strong solution to (2.1) (see, for
example, Bass [7] Theorem 24.3). Moreover, this solution is also weakly unique (= unique
in law) and satisfies the Markov property (see [7] Proposition 25.2 and Theorem 39.2).
Denote by P (x)

b the law (on the cylindrical σ–algebra of C([0,∞])) of the unique solution
to (2.1) started from X0 = x.

We consider ‘high-frequency data’ (Xk∆n)nk=0 sampled from this solution, where
asymptotics are taken as n → ∞, with ∆n → 0 and n∆n → ∞. We will suppress
the subscript and simply write ∆ for ∆n. Throughout this chapter, write X(n) =
(X0, . . . , Xn∆) as shorthand for the data and similarly write x(n) = (x0, . . . , xn∆). Denote
by I the set {K0, σL, σU} so that for example C(I) is a constant depending on these
parameters.

Beyond guaranteeing existence and uniqueness of a solution, the assumptions also
guarantee the existence of transition densities for the discretely sampled process (see
Gihman & Skorohod [35], Chapter 3, §13, Theorem 2 for an explicit formula for the
transition densities). Morever, there also exists an invariant distribution µb, with density
πb, for the periodised process Ẋ = X mod 1. Defining Ib(x) =

∫ x
0

2b
σ2 (y) dy for x ∈ [0, 1],

the density is

πb(x) = eIb(x)

Hbσ2(x)

(
eIb(1)

∫ 1

x
e−Ib(y) dy +

∫ x

0
e−Ib(y) dy

)
, x ∈ [0, 1],

Hb =
∫ 1

0

eIb(x)

σ2(x)

(
eIb(1)

∫ 1

x
e−Ib(y) dy +

∫ x

0
e−Ib(y) dy

)
dx,

(see Bhattacharya et al. [8], equations 2.15 to 2.17; note we have chosen a different
normalisation constant so the expressions appear slightly different).

Observe that πb is bounded uniformly away from zero and infinity, i.e. there exist
constants 0 < πL, πU <∞ depending only on I so that for any b ∈ Θ and any x ∈ [0, 1]
we have πL ≤ πb(x) ≤ πU . Precisely, we see that σ−2

U e−6K0σ
−2
L ≤ Hb ≤ σ−2

L e6K0σ
−2
L , and

we deduce we can take πL = π−1
U = σ2

Lσ
−2
U e−12K0σ

−2
L .

Assume that X0 ∈ [0, 1) and that X0 = Ẋ0 follows this invariant distribution.

Assumption 3. X0 ∼ µb.

Write Pb for the law of the full process X under Assumptions 1 to 3, and write Eb
for expectation according to this law. Note µb is not invariant for Pb, but nevertheless
Eb(f(Xt)) = Eb(f(X0)) for any 1–periodic function f (e.g. see the proof of Theorem 2.6).
Since we will be estimating the 1–periodic function b, the assumption that X0 ∈ [0, 1) is
unimportant.

Finally, assume that ∆→ 0 at a fast enough rate.
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Assumption 4. n∆2 log(1/∆) ≤ L0 for some (unknown) constant L0. Since we already
assumed n∆→∞, this new assumption is equivalent to assuming n∆2 log(n) ≤ L′

0 for
some constant L′

0.

Throughout we make the frequentist assumption that the data is generated according
to some fixed true parameter denoted b0. We use µ0 as shorthand for µb0 , and similarly
for π0 and so on. Where context allows, we write µ for µb with a generic drift b.

Remarks (Comments on assumptions). Periodicity assumption. We assume b and σ

are periodic so that we need only estimate b on [0, 1]. In the frequentist setting, it is
common to instead assume that b satisfies some growth condition ensuring recurrence,
then estimate the restriction of b to [0, 1], as in Comte et al. [21]. In the Bayesian
framework, it is not sufficient to assume a growth condition; rather, the exact growth
rate (not just a bound for it) must be known in order to model the drift sufficiently well
with the prior. The periodic setting considered here is therefore more naturally suited to
Bayesian methods.

Assuming that σ ∈ C2
per is given. If we observe continuous data (Xt)t≤T then σ is

known exactly (at least at any point visited by the process) via the expression for the
quadratic variation ⟨X⟩t =

∫ t
0 σ

2(Xs) ds. With high-frequency data we cannot perfectly
reconstruct the diffusion coefficient from the data, but we can estimate it at a much
faster rate than the drift. When b and σ are both assumed unknown, if b is s-smooth and
σ is s′-smooth, the minimax errors for b and σ respectively scale as (n∆)−s/(1+2s) and
n−s′/(1+2s′), as can be shown by slightly adapting Theorems 5 and 6 from Hoffmann [43]
so that they apply in the periodic setting we use here; since we assume that n∆2 → 0,
it follows that n∆ ≤ n1/2 for large n, hence we can estimate σ at a faster rate than b

regardless of their relative smoothnesses.
Further, note that the problems of estimating b and of estimating σ in the high-

frequency setting are essentially independent. For example, the smoothness of σ does
not affect the rate for estimating b, and vice-versa – see [43]. We are therefore not
substantially simplifying the problem of estimating b through the assumption that σ is
given.

The assumption that σ2 is twice continuously differentiable is a typical minimal
assumption to ensure transition densities exist.

Assuming a known bound on ∥b∥C1
per

. The assumption that b has one derivative is
a typical minimal assumption to ensure that the diffusion equation (2.1) has a strong
solution and that this solution has an invariant density. The assumption of a known
bound for the C1

per–norm of the function is undesirable, but needed for the proofs in
this chapter, in particular to ensure the existence of a uniform lower bound πL on the
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invariant densities (this lower bound is essential for the Markov chain mixing results as
its reciprocal controls the mixing time in Theorem 2.6). Using rescaled Gaussian process
priors as in Chapter 3, it should be possible to remove this assumption.

Assuming X0 ∼ µb. It can be shown (see the proof of Theorem 2.6) that the law of Ẋt

converges to µb at exponential rate from any starting distribution, so assuming X0 ∼ µb

is not restrictive (as mentioned, our fixing X0 ∈ [0, 1) is arbitrary but unimportant).
Assuming n∆2 log(1/∆) ≤ L0. It is typical in the high-frequency setting to assume

n∆2 → 0 (indeed the minimax rates in [43] are only proved under this assumption) but
for technical reasons we need the above in Section 2.3.

2.1.1 Spaces of approximation

We will throughout depend on a family {Sm : m ∈ N ∪ {0}} of function spaces. For our
purposes we take the Sm to be periodised Meyer-type wavelet spaces

Sm = span({ψlk : 0 ≤ k < 2l, 0 ≤ l < m} ∪ {1}).

We denote ψ−1,0 ≡ 1 for convenience. Denote by ⟨·, ·⟩2 the L2([0, 1]) inner product and by
∥·∥2 the L2–norm, i.e. ⟨f, g⟩2 =

∫ 1
0 f(x)g(x) dx and ∥f∥2 = ⟨f, f⟩1/2

2 for f, g ∈ L2([0, 1]).
One definition of the (periodic) Besov norm ∥f∥Bs

2,∞
is, for flk := ⟨f, ψlk⟩2,

∥f∥Bs
2,∞

= |f−1,0|+ sup
l≥0

2ls
(2l−1∑
k=0

f 2
lk

)1/2

, (2.2)

with Bs
2,∞ defined as those 1–periodic f ∈ L2(R) for which this norm is finite. See Giné

& Nickl [38] Sections 4.2.3 and 4.3.4 for a construction of periodised Meyer-type wavelets
and a proof that this wavelet norm characterisation agrees with other possible definitions
of the desired Besov space.

Note that the orthonormality of the wavelet basis means ∥f∥2
2 = ∑

l,k f
2
lk. Thus it

follows from the above definition of the Besov norm that for any b ∈ Bs
2,∞ we have

∥πmb− b∥2 ≤ K∥b∥Bs
2,∞

2−ms, (2.3)

for all m, for some constant K = K(s), where πm is the L2–orthogonal projection map
onto Sm.
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Remarks. Uniform sup-norm convergence of the wavelet series. The wavelet projections
πmb converge to b in supremum norm, uniformly across b ∈ Θ. That is,

sup
b∈Θ
∥πmb− b∥∞ → 0 as m→∞. (2.4)

This follows from Proposition 4.3.24 in [38] since K0 uniformly bounds ∥b∥C1
per

for b ∈ Θ.
Alternative approximation spaces. The key property we need for our approximation

spaces is that (2.3) and (2.4) hold. The latter is only used for some proofs, and priors
built using other function spaces for which an appropriate adaptation of (2.3) holds will
achieve the same posterior contraction rates. A version holds for many other function
spaces, including for Sm the set of trigonometric polynomials of degree at most m, or,
provided s ≤ smax for some given smax ∈ R, for Sm generated by periodised Daubechies
wavelets, if we replace 2m by Dm = dim(Sm);

2.2 Main contraction theorem
Let Π be a (prior) probability distribution on some σ–algebra S of subsets of Θ. Given
b ∼ Π assume that (Xt : t ≥ 0) follows the law Pb as described in Section 2.1. Write
pb(∆, x, y) for the transition densities

pb(∆, x, y) dy = Pb(X∆ ∈ dy | X0 = x),

and recall p0 is used as shorthand for pb0 . Assume that the mapping (b,∆, x, y) 7→
pb(∆, x, y) is jointly measurable with respect to the σ–algebras S and BR, where BR
is the Borel σ–algebra on R (see e.g. [54] for detailed discussions of measurability in
the diffusion setting). Then it can be shown by standard arguments that the Bayesian
posterior distribution given the data is

b | X(n) ∼
πb(X0)

∏n
i=1 pb(∆, X(i−1)∆, Xi∆) dΠ(b)∫

Θ πb(X0)
∏n
i=1 pb(∆, X(i−1)∆, Xi∆) dΠ(b) ≡

p
(n)
b (X(n)) dΠ(b)∫

Θ p
(n)
b (X(n)) dΠ(b)

,

where we introduce the shorthand p(n)
b (x(n)) = πb(x0)∏n

i=1 pb(∆, x(i−1)∆, xi∆) for the joint
probability density of the data (X0, . . . , Xn∆).

A main result of this chapter is the following. Theorem 2.1A is designed to apply to
adaptive sieve priors, while Theorem 2.1B is designed for use when the smoothness of
the parameter b is known. See Section 2.2.1 for explicit examples of these results in use
and see Section 2.5 for their proofs.
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Theorem 2.1. Consider data X(n) = (Xk∆)0≤k≤n sampled from a solution X to (2.1)
under Assumptions 1 to 4. Let the true parameter be b0. Assume the appropriate sets
below are measurable with respect to the σ–algebra S.

A. Let Π be a sieve prior on Θ, i.e. let Π = ∑∞
m=1 h(m)Πm, where Πm(Sm∩Θ) = 1, for

Sm a periodic Meyer-type wavelet space of resolution m as described in Section 2.1.1,
and h some probability mass function on N. Suppose we have, for all ε > 0 and
m ∈ N, and for some constants α, β1, β2, B1, B2 > 0,

(i) B1e
−β1Dm ≤ h(m) ≤ B2e

−β2Dm,
(ii) Πm({b ∈ Sm : ∥b− πmb0∥2 ≤ ε}) ≥ (εα)Dm,

where πm is the L2–orthogonal projection onto Sm and Dm = dim(Sm) = 2m.
Then for some constant M = M(A0, s, I, L0, β1, β2, B1, B2, α) we have, for any
b0 ∈ Θs(A0),

Π
(
{b ∈ Θ : ∥b− b0∥2 ≤M(n∆)−s/(1+2s) log(n∆)1/2} | X(n)

)
→ 1

in probability under the law Pb0 of X.

B. Suppose now b0 ∈ Θs(A0) where s ≥ 1 and A0 > 0 are both known. Let jn ∈ N be
such that Djn ∼ (n∆)1/(1+2s), i.e. for some positive constants L1, L2 and all n ∈ N
let L1(n∆)1/(1+2s) ≤ Djn ≤ L2(n∆)1/(1+2s). Let (Π(n))n∈N be a sequence of priors
satisfying, for some constant α > 0 and for εn = (n∆)−s/(1+2s) log(n∆)1/2,

(I) Π(n)(Θs(A0) ∩Θ) = 1 for all n,
(II) Π(n)({b ∈ Θ : ∥πjnb− πjnb0∥2 ≤ εn}) ≥ (εnα)Djn .

Then we achieve the same rate of contraction; i.e. for some M = M(A0, s, I, L0, α),

Π(n)
({
b ∈ Θ : ∥b− b0∥2 ≤M(n∆)−s/(1+2s) log(n∆)1/2

}
| X(n)

)
→ 1

in probability under the law Pb0 of X.

Remark. Optimality. The minimax lower bounds of Hoffmann [43] do not strictly apply
because we have assumed σ is given. Nevertheless, the minimax rate in this model
should be (n∆)−s/(1+2s). This follows by adapting arguments for the continuous data
case from Kutoyants [50] Section 4.5 to apply to the periodic model and observing that
with high-frequency data we cannot outperform continuous data. Thus (recalling the
remark after Theorem 1.3), the rates attained in Theorem 2.1 are optimal, up to the log
factors, and there exists an estimator of b attaining these rates.
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2.2.1 Explicit examples of priors

Our results guarantee that the following priors will exhibit posterior contraction. Through-
out this section we continue to adopt Assumptions 1 to 4, and for technical convenience,
we add an extra assumption on b0. Precisely, recalling that {ψlk} form a family of
Meyer-type wavelets as in Section 2.1.1 and ψ−1,0 denotes the constant function 1, we
assume the following.

Assumption 5. For a sequence (τl)l≥−1 to be specified and a constant B, we assume

b0 =
∑
l≥−1

0≤k<2l

τlβlkψlk, with |βlk| ≤ B for all l ≥ −1 and all 0 ≤ k < 2l. (2.5)

The explicit priors for which we prove contraction will be random wavelet series priors.
Let ulk iid∼ q, where q is a density on R satisfying

q(x) ≥ α for |x| ≤ B, and q(x) = 0 for |x| > B + 1,

where α > 0 is a constant and B > 0 is the constant from Assumption 5. For example
one might choose q to be the density of a Unif[0, B] random variable or a truncated
Gaussian density.

We define a prior Πm on Sm as the law associated to a random wavelet series

b(x) =
∑

−1≤l<m
0≤k<2l

τlulkψlk(x), x ∈ [0, 1], (2.6)

for τl as in Assumption 5. We give three examples of priors built from these Πm.

Example (Basic sieve prior). Let τ−1 = τ0 = 1 and τl = 2−3l/2l−2 for l ≥ 1. Let h be a
probability distribution on N as described in Theorem 2.1A, for example, h(m) = γe−2m

,

where γ is a normalising constant. Let Π = ∑∞
m=1 h(m)Πm where Πm is as above.

Proposition 2.2. The preceding prior meets the conditions of Theorem 2.1A for any b0

satisfying Assumption 5 with the same τl used to define the prior, and for an appropriate
constant K0. Thus, if also b0 ∈ Θs(A0) for some constant A0, then for some M ,

Π
(
{b ∈ Θ : ∥b− b0∥2 ≤M(n∆)−s/(1+2s) log(n∆)1/2} | X(n)

)
→ 1 in Pb0–probability.

The proof can be found in Section 2.5.1.
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Remark. Adaptive estimation. If we assume b0 ∈ Θsmin(A0), for some smin > 3/2,
Assumption 5 automatically holds with τl as in Section 2.2.1 for some constant B =
B(smin, A0), as can be seen from the wavelet characterisation (2.2). Thus, in contrast
to the low-frequency results of [62], the above prior adapts to unknown s in the range
smin ≤ s <∞.

When s > 1 is known, we fix the rate of decay of wavelet coefficients to ensure a
draw from the prior lies in Θs(A0) by hand, rather than relying on the hyperparameter
to choose the right resolution of wavelet space. We demonstrate with the following
example. The proofs of Propositions 2.3 and 2.4, also given in Section 2.5.1, mimic that
of Proposition 2.2 but rely on Theorem 2.1B in place of Theorem 2.1A.

Example (Known smoothness prior). Let τ−1 = 1 and τl = 2−l(s+1/2) for l ≥ 0. Let
L̄n ∈ N ∪ {∞}. Define a sequence of priors Π(n) = ΠL̄n

for b (we can take L̄n = ∞ to
have a genuine prior, but a sequence of priors will also work provided L̄n →∞ at a fast
enough rate).

Proposition 2.3. Assume L̄n/(n∆)1/(1+2s) is bounded away from zero. Then for any
s > 1, the preceding sequence of priors meets the conditions of Theorem 2.1B for any b0

satisfying Assumption 5 with the same τl used to define the prior, and for an appropriate
constant K0. Thus, for some constant M ,

Π(n)
(
{b ∈ Θ : ∥b− b0∥2 ≤M(n∆)−s/(1+2s) log(n∆)1/2} | X(n)

)
→ 1 in Pb0–probability.

Remark. Assumption 5 with τl = 2−l(s+1/2) in fact forces b0 ∈ Bs
∞,∞ ( Bs

2,∞ with fixed
norm bound. Restricting to this smaller set does not change the minimax rate, as can be
seen from the fact that the functions by which Hoffmann perturbs in the lower bound
proofs in [43] lie in the smaller class addressed here. In principle, one could remove
this assumption by taking τl = 2−ls and taking the prior Π(n) to be the law of b ∼ ΠL̄n

conditional on b ∈ Θs(A0).

Example (Prior on the invariant density). In some applications it may be more natural
to place a prior on the invariant density and only implicitly model the drift function.
With minor adjustments, Theorem 2.1B can still be applied to such priors. We outline
the necessary adjustments.

(i) b is not identifiable from πb and σ2. We therefore introduce the identifiability
constraint Ib(1) = 0; fixing Ib(1) as any constant, we can reduce to the case
Ib(1) = 0 by a translation, hence we make this choice for simplicity (this assumption
is standard in the periodic setting, for example see van Waaij & van Zanten [86]).
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With this restriction, we have πb(x) = eIb(x)

Gbσ2(x) for a normalising constant Gb, so
that b = ((σ2)′ + σ2(log πb)′)/2.

(ii) In place of Assumption 5, we need a similar assumption but for H0 := log πb0 .
Precisely, we assume

H0 =
∑
l≥−1

0≤k<2l

τlhlkψlk, with |hlk| ≤ B for all l ≥ −1 and all 0 ≤ k < 2l, (2.7)

for τ−1 = τ0 = 1 and τl = 2−l(s+3/2)l−2 for l ≥ 1, for some known constant B, and
where s ≥ 1 is assumed known.

(iii) Induce a prior on b = ((σ2)′ + σ2H ′)/2 by putting the prior Π(n) = ΠL̄n
on H,

where L̄n is as in Proposition 2.3.

(iv) To ensure b ∈ Θs(A0) we place further restrictions on σ; for example, we could
assume σ2 is smooth. More tightly, it is sufficient to assume (in addition to
Assumption 1) that σ2 ∈ Θs+1(A1) and ∥σ2∥Cs

per
≤ A1, where Cs

per is the Hölder
norm, for some A1 > 0. These conditions on σ can be bypassed with a more careful
statement of Theorem 2.1B and a more careful treatment of the bias.

Proposition 2.4. Make changes (i) to (iv) as listed. Then, the obtained sequence of
priors meets the conditions of Theorem 2.1B for an appropriate constant K0, hence
Π(n)

(
{b ∈ Θ : ∥b− b0∥2 ≤M(n∆)−s/(1+2s) log(n∆)1/2} | X(n)

)
→ 1 in Pb0–probability for

some constant M .

Remarks. Minimax rates. The assumption (2.7) restricts b0 beyond simply lying in
Θs(A0). As with Nickl & Söhl [62] Remark 5, this further restriction does not change the
minimax rates, except for a log factor induced by the weights l−2.

Adaptation to sampling regime. The prior of Proposition 2.4 is the same as the prior
on b in [62]. However, since here we assume σ is given while in [62] it is an unknown
parameter, the results of [62] do not immediately yield contraction of this prior at a
near-minimax rate in the low-frequency setting. In particular, when σ is known the
minimax rate for estimating b with low-frequency data is n−s/(2s+3) (for example see
Söhl & Trabs [76]), rather than the slower rate n−s/(2s+5) attained in Gobet–Hoffmann–
Reiss [39] when σ is unknown (this improvement is possible because one bypasses the
delicate interweaving of the problems of estimating b and σ with low-frequency data).
Nevertheless, the prior of Proposition 2.4 will indeed exhibit near-minimax contraction
also in the low-frequency setting. An outline of the proof is as follows. The small ball
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results of [62] still apply, with minor changes to the periodic model used here in place of
their reflected diffusion, so it is enough to exhibit tests of the true parameter against
suitably separated alternatives. The identification b = ((σ2)′ + σ2(log πb)′)/2 means one
can work with the invariant density rather than directly with the drift. Finally one shows
the estimator from [76] exhibits sufficiently good concentration properties (alternatively,
one could use general results for Markov chains from Ghosal & van der Vaart [33]).

It remains an interesting open problem to simultaneously estimate b and σ with a
method which adapts to the sampling regime. Extending the proofs of this chapter to the
case where σ is unknown would show that the Bayesian method fulfils this goal. The key
difficulty in making this extension arises in the small ball section (Section 2.4), because
Girsanov’s Theorem does not apply to diffusions with differing diffusion coefficients.

Intermediate sampling regime. Strictly speaking, we only demonstrate robustness
to the sampling regime in the extreme cases where ∆ > 0 is fixed or where n∆2 → 0.
The author is not aware of any papers addressing the intermediate regime (where ∆
tends to 0 at a slower rate than n−1/2) for a nonparametric model: the minimax rates
do not even appear in the literature. Since the Bayesian method adapts to the extreme
regimes, one expects that it attains the correct rates in this intermediate regime (up
to log factors). However, the proof would require substantial extra work, primarily in
exhibiting an estimator with good concentration properties in this regime. Kessler’s work
on the intermediate regime in the parametric case [48] would be a natural starting point
for exploring this regime in the nonparametric setting.

2.3 Concentration of a drift estimator
In this section we introduce an estimator and prove it exhibits adequate concentration to
satisfy condition (ii) of the general contraction rate result Theorem 1.3. The estimator is
adapted from one of Comte et al. [21], constructed by considering drift estimation as a
regression-type problem. Specifically, defining

Zk∆ = 1
∆

∫ (k+1)∆

k∆
σ(Xs) dWs, Rk∆ = 1

∆

∫ (k+1)∆

k∆
(b(Xs)− b(Xk∆)) ds,

we can write
X(k+1)∆ −Xk∆

∆ = b(Xk∆) + Zk∆ +Rk∆.
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Note Rk∆ is a discretization error which vanishes as ∆→ 0 and Zk∆ takes on the role of
noise. Define the empirical norm and the related empirical loss function

∥u∥n =
( 1
n

n∑
k=1

u(Xk∆)2
)1/2

, γn(u) = 1
n

n∑
k=1

[∆−1(X(k+1)∆−Xk∆)−u(Xk∆)]2, u : [0, 1]→ R,

leaving out the k = 0 term in each case for notational convenience. Recalling that Sm is
a periodic Meyer-type wavelet space of resolution m as described in Section 2.1.1 and K0

is an upper bound for the C1
per–norm of any b ∈ Θ, for ln to be chosen we define b̃n as a

solution to the minimisation problem

b̃n ∈ argmin
u∈S̃ln

γn(u), S̃m := {u ∈ Sm : ∥u∥∞ ≤ K0 + 1},

choosing arbitrarily among minimisers in the (generic) case that there is no unique
minimiser. The main result of this section is the following (recall that πm is the L2–
orthogonal projection map onto Sm and Dm = dim(Sm) = 2m).

Theorem 2.5. Consider data X(n) = (Xk∆)0≤k≤n sampled from a solution X to (2.1)
under Assumptions 1 to 4. Let εn → 0 be a sequence of positive numbers and let
ln →∞ be a sequence of positive integers such that n∆ε2

n/ log(n∆)→∞ and, for some
constant L and all n, Dln ≤ Ln∆ε2

n. For these ln, let b̃n be defined as above and let
Θn ⊆ {b ∈ Θ s.t. ∥πlnb− b∥2 ≤ εn} contain b0.

Then for any D > 0 there is a C = C(I, L0, D, L) > 0 such that for all n sufficiently
large

sup
b∈Θn

Pb
(
∥b̃n − b∥2 > Cεn

)
≤ e−Dn∆ε2

n .

Remark. Previous proofs of Bayesian contraction rates using the concentration of es-
timators approach (see [37],[62],[70]) have used duality arguments, i.e. the fact that
∥f∥2 = supv:∥v∥2=1⟨f, v⟩2, to demonstrate that the linear estimators considered satisfy a
concentration inequality of the desired form. A key insight in this chapter is that for the
model we consider we can achieve the required concentration using the above minimum
contrast estimator (see Birgé & Massart [10]), for which we need techniques which differ
substantially from duality arguments.

2.3.1 General concentration results

We will use three forms of concentration results as building blocks for Theorem 2.5. The
first comes from viewing the data (Xj∆)0≤j≤n as a Markov chain and applying Markov
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chain concentration results; such results are similar to those used in Nickl & Söhl [62] for
the low-frequency case, but here we need to track the dependence of constants on ∆. The
second form are useful only in the high-frequency case because they use a quantitative
form of Hölder continuity for diffusion processes. An inequality of the third form, based
on martingale properties, is introduced only where needed (in Lemma 2.12).

Markov chain concentration results applied to diffusions

Our main concentration result arising from the Markov structure is the following. Denote
by ∥·∥µ the L2

µ([0, 1])–norm, ∥f∥2
µ = Eµ[f 2] =

∫ 1
0 f(x)2 dµ(x).

Theorem 2.6. Let X solve the scalar diffusion equation (2.1), and grant Assumptions 1
to 3. There exists a constant κ = κ(I) such that, for all n sufficiently large, all bounded
1–periodic functions f : R→ R, and all s ≥ 0,

Pb

(∣∣∣∣ n∑
k=1

(
f(Xk∆)− Eµ[f ]

)∣∣∣∣ ≥ s

)
≤ 2 exp

(
−1
κ

∆ min
(

s2

n∥f∥2
µ

,
s

∥f∥∞

))
, (2.8)

or equivalently

Pb

(∣∣∣∣ n∑
j=1

f(Xj∆)− Eµ[f ]
∣∣∣∣ ≥ max(

√
κv2x, κux)

)
≤ 2e−x, (2.9)

where v2 = n∆−1∥f∥2
µ and u = ∆−1∥f∥∞.

Further, if F is a space of such functions indexed by some (subset of a) d–dimensional
vector space, then for V 2 = supf∈F v

2 and U = supf∈F u, we also have

Pb

(
sup
f∈F

∣∣∣∣ n∑
j=1

(
f(Xj∆)− Eµ[f ]

)∣∣∣∣ ≥ κ̃max
{√

V 2(d+ x), U(d+ x)
})
≤ 4e−x. (2.10)

for some constant κ̃ = κ̃(I).

The proof is an application of the following abstract result for Markov chains.

Theorem 2.7 (Paulin [66], Proposition 3.4 and Theorem 3.4). Let M1, . . . ,Mn be a
time-homogeneous Markov chain taking values in S with transition kernel P (x, dy) and
invariant measure µ. Suppose M is uniformly ergodic, i.e. supx∈S∥P n(x, ·)−µ∥TV ≤ Kρn

for some constants K < ∞, ρ < 1, where P n(x, ·) is the n−step transition kernel and
∥·∥TV is the total variation norm for signed measures. Write tmix = min{n ≥ 0 :
supx∈S∥P n(x, ·) − µ∥TV < 1/4}. Suppose M1 ∼ µ and f : S → R is bounded. Let
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Vf = Var[f(M1)], let C = ∥f − E[f(M1)]∥∞. Then for s ≥ 0,

Pr
(
|
n∑
i=1

f(Mi)− E[f(Mi)]| ≥ s

)
≤ 2 exp

(
−s2

2tmix(8(n+ 2tmix)Vf + 20sC)

)
.

Proof of Theorem 2.6. Since f is assumed periodic we see that f(Xk∆) = f(Ẋk∆),
where we recall Ẋ = X mod 1. Denote by ṗb(t, y, z) the transition densities of Ẋ, i.e.
ṗb(t, y, z) = ∑

j∈Z pb(t, y, z + j) (see the proof of Proposition 9 in Nickl & Söhl [62] for an
argument that the sum converges). Theorem 2.6 in Bhattacharya et al. [8] tells us that if
Ẋ0 has a density η0 on [0, 1], then Ẋt has a density ηt satisfying

∥ηt − πb∥TV ≤
1
2∥η0/πb − 1∥TV exp

(
− 1

2Mb
t
)
,

where Mb := supz∈[0,1]

{
(σ2(z)πb(z))−1 ∫ z

0 πb(x) dx
∫ 1
z πb(y) dy

}
(writing, in an abuse of

notation, ∥p− q∥TV for the total variation distance between measures with densities p, q).
We can regularise to extend the result so that it also applies when the initial distribution
of Ẋ is a point mass: if Ẋ0 = y then Ẋ1 has density ṗb(1, y, ·), hence the result applies
to show

∥ṗb(t, y, ·)− πb∥TV ≤
1
2∥ṗb(1, y, ·)/πb − 1∥TV exp

(
− 1

2Mb
(t− 1)

)
.

Moreover, note ∥ṗb(1, y, ·)/πb − 1∥TV ≤ π−1
L ∥ṗb(1, y, ·)− πb∥TV ≤ π−1

L . Also note we can
upper bound Mb by a constant M = M(I): precisely, we can take M = σ−2

L π−1
L π2

U .
Thus, we see that for t ≥ 1, we have

∥ṗb(t, y, ·)− πb∥TV ≤ K exp
(
− 1

2M t
)

for some constant K = K(I), uniformly across y ∈ [0, 1]. It follows that, for each
fixed ∆, the discrete time Markov chain (Ẋk∆)k≥0 is uniformly ergodic with mixing time
tmix ≤ 1 + 2M log(4K)∆−1 ≤ K ′∆−1 for some constant K ′. Theorem 2.7 applies to tell
us

Pb

(
|
n∑
i=1

f(Xk∆)− Eµ[f ]| ≥ s

)
≤ 2 exp

(
− s2

2K ′∆−1(8(n+ 2K ′∆−1)Vf + 20sC)

)
.

Since n∆ → ∞ by assumption, we see 8(n + 2K ′∆−1) ≤ K ′′n for some constant K ′′.
Using the bound 2/(a+ b) ≥ min(1/a, 1/b) for a, b > 0 and upper bounding the centred
moments Vf and C by the uncentred moments ∥f∥2

µ and ∥f∥∞, we deduce (2.8).
The result (2.9) is obtained by a change of variables. For the supremum result (2.10),

we use a standard chaining argument, e.g. as in Baraud [6] Theorem 2.1, where we use
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(2.9) in place of Baraud’s Assumption 2.1, noting that Baraud only uses Assumption 2.1
to prove an expression mirroring (2.9), and the rest of the proof follows through exactly.
Precisely, following the proof, we can take κ̃ = 36κ.

Remark. The proof simplifies if we consider only those b satisfying Ib(1) = 0. In this case,
the invariant density (upon changing normalising constant to some Gb) reduces to the
more familiar form πb(x) = (Gbσ

2(x))−1eIb(x). The diffusion is moreover reversible under
this condition, so we can use Theorem 3.3 from [66] instead of Theorem 3.4 to attain the
same results but with better constants.

Hölder continuity properties of diffusions

Define
wm(δ) = δ1/2((log δ−1)1/2 + log(m)1/2), δ ∈ (0, 1]

for m ≥ 1, and write wm(δ) := w1(δ) for m < 1. The key result of this section is the
following.

Lemma 2.8. Let X solve the scalar diffusion equation (2.1), and grant Assumptions 1
and 2. Then there exist positive constants λ, C and τ , all depending on I only, such that
for any u > C max(log(m), 1)1/2 and any initial value x,

P
(x)
b

 sup
s,t∈[0,m],
t̸=s,|t−s|≤τ

(
|Xt −Xs|
wm(|t− s|)

)
> u

 ≤ 2e−λu2
.

Remarks. i. We will need to control all increments X(j+1)∆ − Xj∆ simultaneously,
hence we include the parameter m, which we will take to be the time horizon n∆
when applying this result. Simply controlling over [0, 1] and using a union bound
does not give sharp enough results.

ii. The lemma applies for any distribution of X0, not just point masses, by an
application of the tower law for conditional expectation.

The modulus of continuity wm matches that of Brownian motion, and indeed the
proof, given in Appendix 2.B, is to reduce to the corresponding result for Brownian
motion. First, by applying the scale function one transforms X into a local martingale,
reducing Lemma 2.8 to the following result, also useful in its own right.

Lemma 2.9. Let Y be a local martingale with quadratic variation satisfying |⟨Y ⟩t −
⟨Y ⟩s| ≤ A|t− s| for a constant A ≥ 1. Then there exist positive constants λ = λ(A) and
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C = C(A) such that for any u > C max(log(m), 1)1/2,

Pr

 sup
s,t∈[0,m],s ̸=t,
|t−s|≤A−1e−2

(
|Yt − Ys|
wm(|t− s|)

)
> u

 ≤ 2e−λu2
.

In particular the result applies when Y is a solution to dYt = σ̃(Yt) dWt, provided
∥σ̃2∥∞ ≤ A.

Lemma 2.9 follows from the corresponding result for Brownian motion by a time change
(i.e. the (Dambis–)Dubins-Schwarz Theorem). It is well known that Brownian motion
has modulus of continuity δ1/2(log δ−1)1/2 in the sense that there almost surely exists
a constant C > 0 such that |Bt − Bs| ≤ C|t− s|1/2(log(|t− s|−1))1/2, for all t, s ∈ [0, 1]
sufficiently close, but Lemmas 2.8 and 2.9 depend on the following quantitative version
of this statement, proved using Gaussian process techniques. The proofs of Lemmas 2.9
and 2.10 are given in Appendix 2.B.

Lemma 2.10. Let B be a standard Brownian motion on [0,m]. There are positive
(universal) constants λ and C such that for u > C max(log(m), 1)1/2,

Pr

 sup
s,t∈[0,m],

s ̸=t,|t−s|≤e−2

(
|Bt −Bs|
wm(|t− s|)

)
> u

 ≤ 2e−λu2
.

2.3.2 Proof of the estimator concentration result Theorem 2.5

It is enough to show that, uniformly across b ∈ Θn, for any D > 0 there is a C > 0
such Pb

(
∥b̃n − b∥2 > Cεn

)
≤ 16e−Dn∆ε2

n , because by initially considering a D′ > D and
finding the corresponding C ′, we can eliminate the factor of 16 in front of the exponential.

The proof is structured as follows. Our assumptions ensure that the L2– and L2(µ)–
norms are equivalent. We further show that the L2(µ)–norm is equivalent to the empirical
norm ∥·∥n on an event of sufficiently high probability. Finally, the definition of the
estimator will allow us to control the empirical distance ∥b̃n − b∥n.

To this end, write t̃n = (b̃n − πlnb)∥b̃n − πlnb∥
−1
µ (defining t̃n = 0 if b̃n = πlnb) and

introduce the following set and events:

In =
{
t ∈ Sln s.t. ∥t∥µ = 1, ∥t∥∞ ≤ C1ε

−1
n

}
, (2.11)

An = {t̃n ∈ In} ∪ {t̃n = 0}, (2.12)
Ωn =

{∣∣∣∥t∥2
n − 1

∣∣∣ ≤ 1
2 , ∀t ∈ In

}
, (2.13)
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where the constant C1 is to be chosen. Then we can decompose

Pb
(
∥b̃n−b∥2 > Cεn

)
≤ Pb

(
∥b̃n−b∥21Ac

n
> Cεn

)
+Pb

(
Ωc
n

)
+Pb(

(
∥b̃n−b∥21An∩Ωn > Cεn

)
.

Thus, we will have proved the theorem once we have completed the following:

1. Show the theorem holds (deterministically) on Acn, for a large enough constant C.

2. Show that Pb(Ωc
n) ≤ 4e−Dn∆ε2

n for a suitable choice of C1.

3. Show that, for any D, we can choose a C such that Pb
(
∥b̃n − b∥21An∩Ωn > Cεn

)
≤

12e−Dn∆ε2
n .

Step 1: Intuitively we reason thus. The event Acn can only occur if the L2(µ)–norm of
b̃n−πlnb is small compared to the L∞–norm. Since we have assumed a uniform supremum
bound on functions b ∈ Θ, in fact An holds unless the L2(µ)–norm is small in absolute
terms. But if ∥b̃n− πlnb∥µ is small, then so is ∥b̃n− b∥2. We formalise this reasoning now.

For a constant C2 to be chosen, define

A′
n = {∥b̃n − πlnb∥µ > C2εn}.

On A′
n we have ∥t̃n∥∞ ≤ (∥b̃n∥∞ + ∥πlnb∥∞)C−1

2 ε−1
n . Note ∥b̃n∥∞ ≤ K0 + 1 by definition.

Since, for n large enough, ∥πlnb− b∥∞ ≤ 1 uniformly across b ∈ Θn ⊆ Θ by (2.4) so that
∥πlnb∥∞ ≤ ∥b∥∞ + 1 ≤ K0 + 1, we deduce that on A′

n, ∥t̃n∥∞ ≤ (2K0 + 2)C−1
2 ε−1

n . Since
also ∥t̃n∥µ = 1 (or t̃n = 0) by construction, we deduce A′

n ⊆ An if C2 ≥ C−1
1 (2K0 + 2).

Then on (A′
n)c ⊇ Acn we find, using that b ∈ Θn and using ∥·∥2 ≤ π

−1/2
L ∥·∥µ,

∥b̃n − b∥2 ≤ ∥b̃n − πlnb∥2 + ∥πlnb− b∥2 ≤ (C2π
−1/2
L + 1)εn.

So on Acn, we have ∥b̃n − b∥2 ≤ Cεn deterministically for any C ≥ C2π
−1/2
L + 1. That is,

for C large enough (depending on C1 and I), Pb
(
∥b̃n − b∥21Ac

n
> Cεn

)
= 0.

Step 2: We show that for n sufficiently large, and C1 = C1(I, D, L) sufficiently small,
Pb(Ωc

n) ≤ 4e−Dn∆ε2
n .

For t ∈ In we have
∣∣∣∥t∥2

n − 1
∣∣∣ = n−1

∣∣∣∑n
k=1 t

2(Xk∆) − Eµ[t2]
∣∣∣. Thus Theorem 2.6

can be applied to Ωc
n = {supt∈In

n−1|∑n
k=1 t

2(Xk∆) − Eµ[t2]| > 1/2}. Each t ∈ In has
∥t2∥∞ ≤ C2

1ε
−2
n and ∥t2∥2

µ = Eµ[t4] ≤ ∥t2∥∞∥t∥
2
µ ≤ C2

1ε
−2
n . Since the indexing set In lies
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in a vector space of dimension Dln , we apply the theorem with x = Dn∆ε2
n to see

Pb

(
sup
t∈In

∣∣∣ n∑
k=1

t2(Xk∆)− Eµ[t2]
∣∣∣ ≥ 36 max{A,B}

)
≤ 4e−Dn∆ε2

n .

where A =
√
κ̃C2

1n∆−1ε−2
n (Dn∆ε2

n +Dln) and B = κ̃C2
1∆−1ε−2

n (Dn∆ε2
n +Dln), for some

constant κ̃ = κ̃(I). Provided we can choose C1 so that 36 max{A/n,B/n} ≤ 1/2 the
result is proved. Such a choice for C1 can be made as we have assumed Dln ≤ Ln∆ε2

n.

Step 3: Since b ∈ Θn and πln is L2–orthogonal projection, we have ∥b̃n − b∥2
2 ≤

∥b̃n − πlnb∥
2
2 + ε2

n. Recall that ∥·∥2 ≤ π
−1/2
L ∥·∥µ and note that on An ∩ Ωn, we further

have 1
2∥b̃n − πlnb∥

2
µ ≤ ∥b̃n − πlnb∥

2
n.

Since also ∥b̃n − πlnb∥
2
n ≤ 2(∥πlnb− b∥

2
n + ∥b̃n − b∥2

n) we deduce that

∥b̃n − b∥2
21An∩Ωn ≤ 1

πL

(
4∥πlnb− b∥

2
n + 4∥b̃n − b∥2

n1An∩Ωn

)
+ ε2

n,

where we have dropped indicator functions from terms on the right except where we will
need them later. Thus, using a union bound,

Pb(∥b̃n − b∥21An∩Ωn > Cεn) ≤ Pb
(
∥πlnb− b∥

2
n > C ′ε2

n

)
+ Pb

(
∥b̃n − b∥2

n1An∩Ωn > C ′ε2
n

)
,

for some constant C ′ (precisely we can take C ′ = πL(C2− 1)/8). It remains to show that
both probabilities on the right are exponentially small.

Bounding Pb(∥πlnb− b∥n > Cεn): We show that for any D > 0 there is a constant C
such that Pb(∥πlnb− b∥n > Cεn) ≤ 2e−Dn∆ε2

n , for all n sufficiently large. Since Eb∥g∥2
n =

∥g∥2
µ for any 1–periodic deterministic function g and ∥πlnb− b∥

2
µ ≤ πU∥πlnb− b∥

2
2 ≤ πUε

2
n

for b ∈ Θn, it is enough to show that

Pb
(∣∣∣∥πlnb− b∥2

n − Eb∥πlnb− b∥
2
n

∣∣∣ > Cε2
n

)
≤ 2e−Dn∆ε2

n (2.14)

for some different C. As in Step 2, we apply Theorem 2.6, but now working with the
single function (πlnb − b)2. For large enough n we have the bounds ∥πlnb − b∥∞ ≤ 1
(derived from (2.4)), and ∥(πlnb − b)2∥µ ≤ ∥πlnb − b∥∞∥πlnb − b∥µ ≤ π

1/2
U εn (because

b ∈ Θn) and so applying the theorem with x = Dn∆ε2
n gives

Pb

(∣∣∣∣∣
n∑
k=1

[
(πlnb− b)2(Xk∆)− ∥πlnb− b∥

2
µ

]∣∣∣∣∣ ≥ max{a, b}
)
≤ 2e−Dn∆ε2

n ,
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for a =
√
κn∆−1πUε2

nDn∆ε2
n = nε2

n

√
κπUD and b = κ∆−1Dn∆ε2

n = nε2
nκD, for some

constant κ = κ(I). We see that a/n and b/n are both upper bounded by a constant
multiple of ε2

n, hence, by choosing C large enough, (2.14) holds.

Bounding Pb
(
∥b̃n− b∥2

n1An∩Ωn > Cε2
n

)
: We show that Pb

(
∥b̃n− b∥2

n1An∩Ωn > Cε2
n

)
≤

10e−Dn∆ε2
n for some constant C.

Recall an application of (2.4) showed us that ∥πlnb∥∞ ≤ K0 + 1 for sufficiently large
n, hence we see that πlnb lies in S̃ln , so by definition γn(b̃n) ≤ γn(πlnb). We now use this
to show that

1
4∥b̃n − b∥

2
n1An∩Ωn ≤

7
4∥πlnb− b∥

2
n + 8νn(t̃n)2

1An + 8
n

n∑
k=1

R2
k∆, (2.15)

where νn(t) = 1
n

∑n
k=1 t(Xk∆)Zk∆ and we recall that t̃n = (b̃n − πlnb)∥b̃n − πlnb∥

−1
µ . The

argument, copied from [21] Sections 3.2 and 6.1, is as follows. Using ∆−1(X(k+1)∆−Xk∆) =
b(Xk∆) + Zk∆ +Rk∆ and γn(b̃n)− γn(b) ≤ γn(πlnb)− γn(b), one shows that

∥b̃n − b∥2
n ≤ ∥πlnb− b∥

2
n + 2ν(b̃n − πlnb) + 2

n

n∑
k=1

Rk∆(b̃n − πlnb)(Xk∆). (2.16)

Repeatedly applying the AM-GM–derived inequality 2ab ≤ 8a2 + b2/8 yields

2
n

n∑
k=1

Rk∆(b̃n − πlnb)(Xk∆) ≤ 8
n

n∑
k=1

R2
k∆ + 1

8∥b̃n − πlnb∥
2
n,

2ν(b̃n − πlnb) = 2∥b̃n − πlnb∥µν(t̃n) ≤ 8νn(t̃n)2 + 1
8∥b̃n − πlnb∥

2
µ.

Next recall that on An ∩Ωn, we have ∥b̃n− πlnb∥
2
µ ≤ 2∥b̃n− πlnb∥

2
n, and further recall

∥b̃n − πlnb∥
2
n ≤ 2∥b̃n − b∥2

n + 2∥πlnb − b∥
2
n. Putting all these bounds into (2.16) yields

(2.15), where on the right hand side we have only included indicator functions where
they will help us in future steps. Next, by a union bound, we deduce

Pb(∥b̃n − b∥2
n1An∩Ωn > Cε2

n)

≤ Pb(∥πlnb− b∥
2
n > C ′ε2

n) + Pb(νn(t̃n)2
1An > C ′ε2

n) + Pb

( 1
n

n∑
k=1

R2
k∆ > C ′ε2

n

)
,

for some constant C ′ (we can take C ′ = C/96). We have already shown that Pb(∥πlnb−
b∥n > Cεn) ≤ 2e−Dn∆ε2

n for a large enough constant C, thus, since t̃n ∈ In on the event
An, the following two lemmas conclude the proof.



2.3 Concentration of a drift estimator 59

Lemma 2.11. Under the conditions of Theorem 2.5, for each D > 0 there exists a con-
stant C = C(I, L0, D) > 0 for which, for n sufficiently large, Pb

(
1
n

∑n
k=1 R

2
k∆ > Cε2

n

)
≤

2e−Dn∆ε2
n .

Lemma 2.12. Under the conditions of Theorem 2.5 and with In defined as in (2.11),
for each D > 0 there exists a constant C = C(I, L,D) > 0 for which, for n sufficiently
large, Pb(supt∈In

(νn(t)) > Cεn) ≤ 6e−Dn∆ε2
n .

Proof of Lemma 2.11. Recall Rk∆ = 1
∆
∫ (k+1)∆
k∆ (b(Xs)− b(Xk∆)) ds, and recall any b ∈ Θ

is Lipschitz, with Lipschitz constant at most K0, so |Rk∆| ≤ K0 maxs≤∆|Xk∆+s −Xk∆|.
It is therefore enough to bound sup{|Xt −Xs| : s, t ∈ [0, n∆], |t− s| ≤ ∆}.

We apply the Hölder continuity result (Lemma 2.8) with u = D1/2λ−1/2(n∆ε2
n)1/2 for

λ = λ(I) the constant of the lemma, noting that the assumption n∆ε2
n/ log(n∆)→∞

ensures that u is large enough compared to m = n∆ that the conditions for the lemma
are met, at least when n is large. We see that

sup
s,t∈[0,n∆]
|t−s|≤∆

|Xt −Xs| ≤ ∆1/2
(
log(n∆)1/2 + log(∆−1)1/2

)
D1/2λ−1/2(n∆ε2

n)1/2,

on an event D of probability at least 1 − 2e−Dn∆ε2
n (we have used that, for n large

enough, ∆ ≤ min(τ, e−1) in order to take the supremum over |t − s| ≤ ∆ and to see
supδ≤∆ wm(δ) = wm(∆)).

Now observe that log(n∆)1/2 ≤ (log(∆−1)1/2) for large enough n because n∆2 → 0
(so n∆ ≤ ∆−1 eventually). Further, from the assumption n∆2 log(∆−1) ≤ L0 we are
able to deduce that ∆1/2 log(∆−1)1/2(n∆ε2

n)1/2 ≤ L
1/2
0 εn. It follows that on D, we have

Rk∆ ≤ Cεn for a suitably chosen constant C (independent of k and n), which implies
the desired concentration.

Proof of Lemma 2.12. Recall the definitions

Zk∆ = 1
∆

∫ (k+1)∆

k∆
σ(Xs) dWs, νn(t) = 1

n

n∑
k=1

t(Xk∆)Zk∆.

The martingale-derived concentration result Lemma 2 in Comte et al. [21] (the model
assumptions in [21] are slightly different to those made here, but the proof of the lemma
equally applies in our setting) tells us Pb(νn(t) ≥ ξ, ∥t∥2

n ≤ u2) ≤ exp
(
− n∆ξ2

2σ2
Uu

2

)
, for any

t, u, and for any drift function b ∈ Θ, so that

Pb(νn(t) ≥ ξ) ≤ exp
(
− n∆ξ2

2σ2
Uu

2

)
+ Pb(∥t∥2

n > u2). (⋆)
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We can apply Theorem 2.6 to see that, for some constant κ = κ(I),

Pb(∥t∥2
n > u2) = Pb

( 1
n

( n∑
k=1

t(Xk∆)2 − ∥t∥2
µ

)
> u2 − ∥t∥2

µ

)

≤ 2 exp
(
−1
κ

∆ min
{
n2(u2 − ∥t∥2

µ)2

n∥t2∥2
µ

,
n(u2 − ∥t∥2

µ)
∥t2∥∞

})

≤ 2 exp
(
−1
κ
n∆(u2 − ∥t∥2

µ)∥t∥−2
∞ min(u2∥t∥−2

µ − 1, 1)
)
,

where to obtain the last line we have used that ∥t2∥2
µ ≤ ∥t∥

2
∞∥t∥

2
µ.

Now choose u2 = ∥t∥2
µ + ξ∥t∥∞. Then ξ2/u2 ≥ 1

2 min(ξ2/∥t∥2
µ, ξ/∥t∥∞) so that,

returning to (⋆), we find

Pb(νn(t) ≥ ξ) ≤ exp
(
− n∆

4σ2
U

min(ξ2∥t∥−2
µ , ξ∥t∥−1

∞ )
)

+ 2 exp
(
− 1
κ
n∆ min(ξ2∥t∥−2

µ , ξ∥t∥−1
∞ )

)
≤ 3 exp

(
− 1
κ′n∆ min(ξ2∥t∥−2

µ , ξ∥t∥−1
∞ )

)
,

for some constant κ′ = κ′(I).
By changing variables we attain the bound Pb(νn(t) ≥ max(

√
v2x, ux)) ≤ 3 exp(−x),

where v2 = κ′(n∆)−1∥t∥2
µ and u = κ′(n∆)−1∥t∥∞. Then, as in Theorem 2.6, a standard

chaining argument allows us to deduce that

Pb

(
sup
t∈In

νn(t) ≥ κ̃
(√

V 2(Dln + x) + U(Dln + x)
))
≤ 6e−x,

for V 2 = supt∈In
∥t∥2

µ(n∆)−1 = (n∆)−1, U = supt∈In
∥t∥∞(n∆)−1 = C1ε

−1
n (n∆)−1, and

for a constant κ̃ = κ̃(I). Taking x = Dn∆ε2
n and recalling the assumption Dln ≤ Ln∆ε2

n

we obtain the desired result.

2.4 Small ball probabilities
Now we show that the Kullback–Leibler divergence between the laws corresponding to
different parameters b0, b can be controlled in terms of the L2–distance between the
parameters, so that the ‘small ball condition’ (condition (iii) of Theorem 1.3) can be
made more explicit. Recall from Chapter 1 that K(p, q) denotes the Kullback–Leibler
divergence between probability distributions with densities p and q, i.e. K(p, q) =
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Ep log(p
q
) =

∫
log(p(x)

q(x))p(x) dx. Also write

KL(b0, b) = Eb0

[
log
(
p0(∆, X0, X∆)
pb(∆, X0, X∆)

)]
.

Recalling that p(n)
b (x(n)) = πb(x0)

∏n
i=1 pb(∆, x(i−1)∆, xi∆) is the density on Rn+1 of X(n)

under Pb, two Kullback–Leibler type neighbourhoods akin to the one defined in (1.12)
and appropriate to the high-frequency setting considered here are defined for ε > 0 as

B
(n)
KL(ε) =

b ∈ Θ : K(p(n)
0 , p

(n)
b ) ≤ (n∆ + 1)ε2, Varb0

(
log p

(n)
0

p
(n)
b

)
≤ (n∆ + 1)ε2

,
Bε =

{
b ∈ Θ : K(π0, πb) ≤ ε2,Varb0(log π0

πb
) ≤ ε2,KL(b0, b) ≤ ∆ε2,Varb0(log p0

pb
) ≤ ∆ε2

}
.

Note that KL(b0, b) and Bε implicitly depend on n via ∆.
The main result of this section is the following.

Theorem 2.13. Consider data X(n) = (Xk∆)0≤k≤n sampled from a solution X to (2.1)
under Assumptions 1 to 4. Let εn → 0 be a sequence of positive numbers such that
n∆ε2

n → ∞. Then there is a constant A = A(I) such that, for all n sufficiently large,
{b ∈ Θ s.t. ∥b− b0∥2 ≤ Aεn} ⊆ B

(n)
KL(εn).

Proof. Apply Lemma 2.21 from Appendix 2.A, which says that

Varb0 log
(
p

(n)
0 (X(n))
p

(n)
b (X(n))

)
≤ 3 Varb0

(
log π0(X0)

πb(X0)

)
+ 3nVarb0

(
log p0(X0, X∆)

pb(X0, X∆)

)
;

noting also that K(p(n)
0 , p

(n)
b ) = K(π0, πb) + nKL(b0, b) by linearity, we observe that

Bεn/
√

3 ⊆ B
(n)
KL(εn). It is therefore enough to show that for some A = A(I) we have

{b ∈ Θ s.t. ∥b−b0∥2 ≤ Aεn} ⊆ Bεn/
√

3. This follows immediately by applying Lemma 2.14
below to ξn = εn/

√
3.

Lemma 2.14. Under the conditions of Theorem 2.13, there is an A = A(I) such that,
for all n sufficiently large, {b ∈ Θ s.t. ∥b− b0∥2 ≤ Aεn} ⊆ Bεn.

The key idea in proving Lemma 2.14 is to use the Kullback–Leibler divergence between
the laws P (x)

b0 , P
(x)
b of the continuous-time paths to control the Kullback–Leibler divergence

between pb and p0. This will help us because we can calculate the Kullback–Leibler
divergence between the full paths using Girsanov’s Theorem, which gives us an explicit
formula for the likelihood ratios.
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Let P (x)
b,T denote the law of (Xt)0≤t≤T conditional on X0 = x, i.e. the restriction of

P
(x)
b to C([0, T ]). We write W(x)

σ,T for P (x)
b,T when b = 0. Throughout this section we simply

write P (x)
b for P (x)

b,∆ and similarly with W(x)
σ . We have the following.

Theorem 2.15 (Girsanov’s Theorem). Suppose b0 and b lie in Θ, and σ satisfies As-
sumption 1. Then the laws P (x)

b0,T and P (x)
b,T are mutually absolutely continuous with, for

X ∼ P
(x)
b,T , the almost sure identification

dP (x)
b0,T

dP (x)
b,T

(
(Xt)t≤T

)
= exp

[∫ T

0

b0 − b
σ2 (Xt) dXt −

1
2

∫ T

0

b2
0 − b2

σ2 (Xt) dt
]
.

Proof. See Liptser & Shiryaev [54], Theorem 7.19, noting that the assumptions are met
because b, b0 and σ are all Lipschitz and bounded, and σ is bounded away from 0.

We write

p̃
(x)
0 =

dP (x)
b0

dW(x)
σ

, p̃
(x)
b = dP (x)

b

dW(x)
σ

(2.17)

for the Radon-Nikodym derivatives (i.e. densities on C([0,∆]) with respect to W(x)
σ )

whose existence Girsanov’s Theorem guarantees. We will simply write X for (Xt)t≤∆

where context allows, and similarly with U . Since p̃(x)
0 (X) = 0 for any path X with

X0 ̸= x, we will further omit the superscripts on our densities in general, writing p̃0(X)
for p̃(X0)

0 (X), and similarly for p̃b.

Proof of Lemma 2.14. We break the proof into a series of lemmas. We will upper bound
the variances in the definition of Bεn by the corresponding uncentred second moments.
For some constant A = A(I) we show the following.

1. A2 KL(b0, b) ≤ ∆∥b− b0∥2
2, which shows that KL(b0, b) ≤ ∆ε2

n whenever ∥b− b0∥2 ≤
Aεn. This is the content of Lemma 2.16.

2. If ∥b − b0∥2 ≤ Aεn then we have Eb0 [log(p0/pb)2] ≤ ∆ε2
n. This is the content of

Lemma 2.17. Note that the other steps do not need any assumptions on εn, but
this step uses that n∆ε2

n →∞.

3. A2 max{K(π0, πb), Eb0 [log(π0/πb)2]} ≤ ∥b0−b∥2
2. From this it follows thatK(π0, πb) ≤

ε2
n and Eb0 [log(π0/πb)2] ≤ ε2

n whenever ∥b − b0∥2 ≤ Aεn. This is the content of
Lemma 2.18.

Together, then, the three lemmas below conclude the proof.
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Lemma 2.16. Under the conditions of Theorem 2.13, there is a constant A depending
only on I such that A2 KL(b0, b) ≤ ∆∥b0 − b∥2

2.

The proof is essentially the same as that in van der Meulen & van Zanten [83] Lemma
5.1, with minor adjustments to fit the periodic model and non-constant σ used here.
Further, all the ideas needed are exhibited in the proof of Lemma 2.17. Thus, we omit
the proof.

Lemma 2.17. Under the conditions of Theorem 2.13, there is a constant A = A(I) so
that, for n sufficiently large, Eb0 [log(p0/p)2] ≤ ∆ε2

n whenever ∥b− b0∥2 ≤ Aεn.

Proof. We first show that we can control the second moment of log(p0/pb) by the
second moment of the corresponding expression log(p̃0/p̃b) for the full paths, up to an
approximation error which is small when ∆ is small. Consider the smallest convex
function dominating log(x)2, given by

h(x) =

log(x)2 x < e

2e−1x− 1 x ≥ e

(it is in fact more convenient, and equivalent, to think of h as dominating the function
x 7→ (log x−1)2). Let X ∼ P

(x)
b0 and let U ∼W(x)

σ . Intuitively, the probability density of
a transition of X from x to y, with respect to the (Lebesgue) density p∗ of transitions of
U from x to y, can be calculated by integrating the likelihood p̃0(U) over all paths of U
which start at x and end at y, and performing this integration will yield the conditional
expectation of p̃(x)

0 (U) given U∆. That is to say,

p0(∆, x, y)
p∗(∆, x, y) = EW(x)

σ
[p̃0(U) | U∆ = y]. (2.18)

The above argument is not rigorous because we condition on an event of probability zero,
but the formula (2.18) is true, and is carefully justified in Lemma 2.22 in Appendix 2.A.
A corresponding expression holds for pb(∆, x, y), so that

Eb0

[
log
(
p0(∆, X0, X∆)
pb(∆, X0, X∆)

)2
]
≤ Eb0 [h(pb/p0)] = Eb0

[
h

(
EW(X0)

σ
[p̃b(U) | U∆ = X∆]

EW(X0)
σ

[p̃0(U) | U∆ = X∆]

)]
.

Lemma 2.20 in Appendix 2.A allows us to simplify the ratio of conditional expectations.
We apply with P = W(X0)

σ , Q = P
(X0)
b0 and g = p̃

(X0)
b /p̃

(X0)
0 , then further apply conditional
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Jensen’s inequality and the tower law to find

Eb0

[(
log p0

pb

)2
]
≤ Eb0

[
h
(
E
P

(X0)
b0

[
p̃b
p̃0

(X) | X∆

])]
≤ Eb0

[
h
( p̃b
p̃0

(X)
)]

≤ Eb0

[(
log p̃0

p̃b
(X)

)2
]

+ Eb0

[
(2e−1 p̃b

p̃0
(X)− 1)1

{ p̃b
p̃0

(X) ≥ e
}]
,

which is the promised decomposition into a corresponding quantity for the continuous
case and an approximation error. We conclude by showing that each of these two terms
is bounded by 1

2∆ε2
n, provided ∥b − b0∥2 ≤ Aεn for some sufficiently small constant

A = A(I).

Showing Eb0

[
(log p̃0

p̃b
)2
]
≤ 1

2∆ε2
n: Write f = b0−b

σ
. Then we apply Girsanov’s Theorem

(Theorem 2.15) to find

Eb0

[(
log p̃0

p̃b
(X)

)2]
= Eb0

[(∫ ∆

0
f(Xt) dWt + 1

2

∫ ∆

0
f 2(Xt) dt

)2
]
,

≤ 2Eb0

[(∫ ∆

0
f(Xt) dWt

)2
]

+ 1
2Eb0

[(∫ ∆

0
f 2(Xt) dt

)2
]
,

where we have used the Cauchy–Schwarz inequality to control the cross term.
For the first term on the right, we use Itô’s isometry ([73] IV.27.5), Fubini’s Theorem,

periodicity of f and stationarity of µ0 for the periodised process Ẋ = X mod 1 to find

Eb0

(∫ ∆

0
f(Xt) dWt

)2
= Eb0

∫ ∆

0
f 2(Xt) dt =

∫ ∆

0
Eb0f

2(Ẋt) dt = ∆∥f∥2
µ0
.

The second term 1
2Eb0

[(∫∆
0 f 2(Xt) dt

)2]
is upper bounded by 1

2∆2∥f∥2
∞∥f∥

2
µ0

(this
can be seen from the bound (

∫∆
0 f 2)2 ≤ ∆∥f∥2

∞
∫∆

0 f 2), hence is dominated by ∆∥f∥2
µ0

when n is large. Thus, for some constant A = A(I) we find

Eb0

[(
log p̃0

p̃b
(X)

)2
]
≤ 3∆∥f∥2

µ0
≤ 1

2A
−2∆∥b0 − b∥2

2,

where Assumptions 1 and 2 allow us to upper bound ∥f∥µ0
by ∥b0− b∥2, up to a constant

depending only on I. For ∥b0 − b∥2 ≤ Aεn we then have Eb0 [(log(p̃b/p̃0))2] ≤ ∆ε2
n/2.

Showing Eb0 [(2e−1 p̃b

p̃0
(X)− 1)1{ p̃b

p̃0
(X) ≥ e}] ≤ 1

2∆ε2
n: We have

Eb0

[(
2e−1 p̃b

p̃0
(X)− 1

)
1

{ p̃b
p̃0

(X) ≥ e
}]
≤ 2e−1Pb

[
p̃b
p̃0
≥ e

]
≤ Pb

[
log
( p̃b
p̃0

(X)
)
≥ 1

]
.
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By the tower law it suffices to show P
(x)
b [log( p̃b

p̃0
(X)) ≥ 1] ≤ 1

2∆ε2
n for each x ∈ [0, 1].

Applying Girsanov’s Theorem (Theorem 2.15) we have, for f = (b0 − b)/σ, and for n
large enough that ∆∥f∥2

∞ ≤ 1,

P
(x)
b

(
log p̃b

p̃0
(X) > 1

)
= P

(x)
b

(∫ ∆

0
−f(Xt) dWt + 1

2

∫ ∆

0
f(Xt)2 dt > 1

)
≤ P

(x)
b

(∫ ∆

0
−f(Xt) dWt > 1/2

)
.

Write Mt =
∫ t

0 −f(Xs) dWs. Then, for A = max(1, (2K0/σL)2), since A uniformly upper
bounds ∥f∥2

∞ for b ∈ Θ, we see that M is a martingale whose quadratic variation satisfies
|⟨M⟩t − ⟨M⟩s| ≤ A|t− s|. Recalling that w1(δ) = δ1/2 log(δ−1)1/2, we apply Lemma 2.9
with u = w1(∆)−1/2 to yield that, for n large enough,

P
(x)
b

(
log p̃b

p̃0
(X) > 1

)
≤ P

(x)
b

(
sup

s,t≤∆,s ̸=t

|Mt −Ms|
w1(|t− s|)

> 1
2w1(∆)−1

)
≤ 2 exp(−λw1(∆)−2),

where λ is a constant depending only on I.
Recall we assume n∆→∞ and n∆2 → 0. It follows that for large enough n we have

log(∆−1) ≤ log(n), and ∆ ≤ λ log(n)−2. Then observe

∆ ≤ λ log(n)−2 =⇒ ∆ ≤ λ(log ∆−1)−1 log(n)−1 =⇒ log(n) ≤ λ∆−1(log ∆−1)−1,

so that exp(−λw1(∆)−2) ≤ n−1 for n large. Finally, since n∆ε2
n → ∞, we see 2n−1 ≤

1
2∆ε2

n for n large enough, as required.

Lemma 2.18. Under the conditions of Theorem 2.13, there is a constant A depending
only on I such that A2 max{K(π0, πb), Eb0 [log(π0/πb)2]} ≤ ∥b0 − b∥2

2.

Proof. In view of the comment after Lemma 8.3 in [32], it suffices to prove that
h2(π0, πb)∥π0/πb∥∞ ≤ C∥b − b0∥2

2 for some C = C(I), where h is the Hellinger dis-
tance between densities defined by h2(p, q) =

∫
(√p−√q)2. Since π0, πb are uniformly

bounded above and away from zero, we can absorb the term ∥π0/πb∥∞ into the constant.



66 Contraction rates for scalar diffusions with high-frequency data

We initially prove pointwise bounds on the difference between the densities π0, πb.
Recall we saw in Section 2.1 that, for Ib(x) =

∫ x
0

2b
σ2 (y) dy, we have

πb(x) = eIb(x)

Hbσ2(x)

(
eIb(1)

∫ 1

x
e−Ib(y) dy +

∫ x

0
e−Ib(y) dy

)
, x ∈ [0, 1],

Hb =
∫ 1

0

eIb(x)

σ2(x)

(
eIb(1)

∫ 1

x
e−Ib(y) dy +

∫ x

0
e−Ib(y) dy

)
dx.

We can decompose: |πb(x)− π0(x)| ≤ D1 +D2 +D3 +D4, where

D1 = eIb(x)

σ2(x)

∣∣∣∣ 1
Hb

− 1
Hb0

∣∣∣∣(eIb(1)
∫ 1

x
e−Ib(y) dy +

∫ x

0
e−Ib(y) dy

)
,

D2 = |e
Ib(x) − eIb0 (x)|
Hb0σ

2(x)
(
eIb(1)

∫ 1

x
e−Ib(y) dy +

∫ x

0
e−Ib(y) dy

)
,

D3 = eIb0 (x)

Hb0σ
2(x)

∣∣∣(eIb(1) − eIb0 (1))
∫ 1

x
e−Ib(y) dy

∣∣∣,
D4 = eIb0 (x)

Hb0σ
2(x)

∣∣∣∣eIb0 (1)
∫ 1

x
(e−Ib(y) − e−Ib0 (y)) dy +

∫ x

0
(e−Ib(y) − e−Ib0 (y)) dy

∣∣∣∣.
We have the bounds σ−2

U e−6K0σ
−2
L ≤ Hb ≤ σ−2

L e6K0σ
−2
L , and e−2K0σ

−2
L ≤ eIb(x) ≤ e2K0σ

−2
L .

An application of the mean value theorem then tells us

∣∣∣eIb(x) − eIb0 (x)
∣∣∣ ≤ C(I)

∫ x

0

2|b0 − b|
σ2 (y) dy ≤ C ′(I)∥b0 − b∥2,

for some constants C, C ′, and the same expression upper bounds |e−Ib(x) − e−Ib0 (x)|.
It follows that, for some constant C = C(I), we have Di ≤ C∥b− b0∥2 for i = 2, 3, 4.

For i = 1 the same bound holds since | 1
Hb
− 1

Hb0
| ≤ |Hb−Hb0 |

HbHb0
and a similar decomposition

to the above yields |Hb −Hb0| ≤ C(I)∥b− b0∥2.
Thus, we have shown that |πb(x)−π0(x)| ≤ C(I)∥b− b0∥2. Integrating this pointwise

bound, we find that ∥π0−πb∥2 ≤ C(I)∥b0−b∥2. Finally, since h2(π0, πb) ≤ 1
4πL
∥π0−πb∥2

2 ≤
C ′(I)∥b0 − b∥2

2, for some different constant C ′, we are done.
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2.5 Main contraction results: proofs
We now have the tools we need to apply Theorem 1.3 and derive contraction rates. Recall
the definition

B
(n)
KL(ε) =

{
b ∈ Θ s.t. K(p(n)

0 , p
(n)
b ) ≤ (n∆ + 1)ε2,Varb0

(
log p

(n)
0

p
(n)
b

)
≤ (n∆ + 1)ε2

}
.

We have the following abstract contraction result, from which we deduce Theorem 2.1.

Theorem 2.19. Consider data X(n) = (Xk∆)0≤k≤n sampled from a solution X to (2.1)
under Assumptions 1 to 4. Let the true parameter be b0. Let εn → 0 be a sequence of
positive numbers and let ln be a sequence of positive integers such that, for some constant
L we have, for all n,

Dln = 2ln ≤ Ln∆ε2
n, and n∆ε2

n/ log(n∆)→∞. (2.19)

For each n let Θn be S–measurable and assume

b0 ∈ Θn ⊆ {b ∈ Θ : ∥πlnb− b∥2 ≤ εn}, (2.20)

where πln is the L2–orthogonal projection onto Sln as described in Section 2.1.1. Let Π(n)

be a sequence of priors on Θ satisfying

(a) Π(n)(Θc
n) ≤ e−(2ζ+8)n∆ε2

n,

(b) Π(n)(B(n)
KL(εn)) ≥ e−ζn∆ε2

n,

for some constant ζ > 0. Then Π(n)
(
{b ∈ Θ : ∥b− b0∥2 ≤Mεn} | X(n)

)
→ 1 in probabil-

ity under the law Pb0 of X, for some constant M = M(I, L0, ζ, L).

In fact, since here we are not targeting a specific rate of convergence to 1 for the
Pb0–random variable Π(n)

(
{b ∈ Θ : ∥b− b0∥2 ≤Mεn} | X(n)

)
, we can relax (a): it can be

shown that any exponent ζ ′ > ζ + 1 suffices in place of 2ζ + 8.

Proof of Theorem 2.19. Given Theorem 2.5, this is immediate from Theorem 1.3, noting
that the proof of Theorem 1.3 is unchanged if we replace the parameter n with the
effective sample size n∆ used here.

Proof of Theorem 2.1. A: We apply Theorem 2.19. The key idea which allows us to
control the bias and obtain this adaptive result with a sieve prior is undersmoothing.
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Specifically, when we prove the small ball probabilities, we do so by conditioning on the
hyperprior choosing a resolution jn which corresponds to the minimax rate (n∆)−s/(1+2s)

rather than corresponding to the slower rate (n∆)−s/(1+2s) log(n∆)1/2 at which we prove
contraction. This logarithmic gap gives us the room we need to ensure we can achieve
the bias condition (a) and the small ball condition (b) for the same constant ζ. The
argument goes as follows.

Write ε̄2
n = (n∆)−2s/(1+2s) and let ε2

n = (n∆)−2s/(1+2s) log(n∆). Choose jn and ln

natural numbers satisfying (at least for n large enough)

1
2n∆ε̄2

n ≤ Djn = 2jn ≤ n∆ε̄2
n,

1
2Ln∆ε2

n ≤ Dln = 2ln ≤ Ln∆ε2
n,

where L is a constant to be chosen. Note that (2.19) holds by definition. Recall now
from our choice of approximation spaces in Section 2.1.1 that for any m ∈ N we have
∥πmb0 − b0∥2 ≤ K(s)∥b0∥Bs

2,∞
2−ms. For any fixed L we therefore find that for n large

enough, writing K = K(b0) = K(s)2s∥b0∥Bs
2,∞

, we have

∥πlnb0 − b0∥2 ≤ K(b0)(Ln∆ε2
n)−s = K(Ln∆ε̄2

n log(n∆))−s = KL−sε̄n log(n∆)−s ≤ εn.

Similarly, it can be shown that, with A = A(I) the constant of the small ball result
(Theorem 2.13) and for n large enough, we have ∥b0 − πjnb0∥2 ≤ Aεn/2.

Set Θn = {b0} ∪ (Sln ∩Θ) and observe that the above calculations show that the bias
condition (2.20) holds (since also for b ∈ Θn, if b ̸= b0 we have ∥πlnb− b∥2 = 0).

Next, for the small ball condition (b), recall Theorem 2.13 tells us that {b ∈ Θ :
∥b− b0∥2 ≤ Aεn} ⊆ B

(n)
KL(εn) for all n large enough. Thus it suffices to show, for some

ζ > 0 for which we can also achieve (a), that Π({b ∈ Θ : ∥b− b0∥2 ≤ Aεn}) ≥ e−ζn∆ε2
n .

Using that ∥b− b0∥2 ≤ ∥b− πjnb0∥2 + ∥πjnb0 − b0∥2 ≤ ∥b− πjnb0∥2 + Aεn/2, and using
our assumptions on h and Πm, we see that

Π({b ∈ Θ : ∥b− b0∥2 ≤ Aεn}) =
∑
m

h(m)Πm({b ∈ Sm : ∥b− b0∥2 ≤ Aεn}),

≥ h(jn)Πjn({b ∈ Sjn : ∥b− πjnb0∥2 ≤ Aεn/2})
≥ h(jn)(εnAα/2)Djn

≥ B1 exp(−β1Djn +Djn [log(εn) + log(Aα/2)])
≥ B1 exp

(
−Cn∆ε̄2

n − Cn∆ε̄2
n log(ε−1

n )
)

for some constant C = C(I, β1, α). Since log(ε−1
n ) = s

1+2s log(n∆) − 1
2 log log(n∆) ≤

log(n∆), we deduce that Π({b ∈ Θ : ∥b−b0∥2 ≤ Aεn}) ≥ B1e
−C′n∆ε̄2

n log(n∆) = B1e
−C′n∆ε2

n ,
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with a different constant C ′. Changing constant again to some ζ = ζ(I, β1, B1, α), we
absorb the B1 factor into the exponential for large enough n.

For (a), since Π(Θc) = 0 by assumption, we have Π(Θc
n) ≤ Π(Scln) = ∑∞

m=ln+1 h(m).
We have assumed that h(m) ≤ B2e

−β2Dm , which ensures that the sum is at most a
constant times e−β2Dln ≤ e− 1

2Lβ2n∆ε2
n . For the ζ = ζ(I, β1, B1, α) for which we proved (b)

above, we can therefore choose L large enough to guarantee Π(Θc
n) ≤ e−(2ζ+8)n∆ε2

n .

B: Let εn and jn be as in the statement of the theorem and define ln as above (here we
can take L = 1). Similarly to before, we apply results from Section 2.1.1 to see

∥πlnb− b∥2 ≤ εn

∥πjnb− b∥2 ≤ εn

 for all n sufficiently large and all b ∈ Θs(A0),

Set Θn = Θs(A0) for all n. Our assumptions then guarantee the bias condition (a)
holds for any ζ (indeed, Π(n)(Θc

n) = 0). Thus it suffices to prove that there exists an ζ

such that Π(n)({b ∈ Θs(A0) : ∥b− b0∥2 ≤ 3εn}) ≥ e−ζn∆ε2
n , since we can absorb the factor

of 3 into the constant M by applying Theorem 2.19 to ξn = 3εn.
The prior concentrates on Θs(A0), so that we have Π(n)({b : ∥πjnb− b∥2 ≤ εn}) = 1,

and b0 lies in Θs(A0), so that ∥πjnb0 − b0∥2 ≤ εn. Thus

Π(n)({b ∈ Θs(A0) : ∥b− b0∥2 ≤ 3εn}) ≥ Π(n)({b ∈ Θs(A0) : ∥πjnb− πjnb0∥2 ≤ εn}).

From here the argument is very similar to the previous part (indeed, it is slightly simpler)
so we omit the remaining details.

2.5.1 Explicit priors: proofs

Proof of Proposition 2.2. We verify that the conditions of Theorem 2.1A are satisfied.
Condition (i) holds by construction. The Bs

∞,1 norm can be expressed as

∥f∥Bs
∞,1

= |f−1,0|+
∞∑
l=0

2l(s+1/2) max
0≤k<2l

|flk|, (2.21)

(see [38] Section 4.3) so that any b drawn from our prior lies in B1
∞,1 and satisfies the

bound ∥b∥B1
∞,1
≤ (B+1)(2+∑l≥1 l

−2). It follows from standard Besov spaces results (e.g.
[38] Proposition 4.3.20, adapted to apply to periodic Besov spaces) that b ∈ C1

per([0, 1]),
with a C1

per–norm bounded in terms of B. Thus Π(Θ) = 1 for an appropriate choice of
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K0. We similarly see that b0 ∈ Θ. It remains to show that (ii) holds. We have

∥b− πmb0∥2
2 =

∑
−1≤l<m
0≤k<2l

τ 2
l (ulk − βlk)2 ≤

(
1 +

m−1∑
l=0

2−2l
)

max
−1≤l<m,
0≤k<2l

|ulk − βlk|2

< 4 max
−1≤l<m,
0≤k<2l

|ulk − βlk|2,

so that Π({b ∈ Sm : ∥b− πmb0∥2 ≤ ε}) ≥ Π(|ulk − βlk| ≤ ε/2 ∀l, k,−1 ≤ l < m, k < 2l).
Since we have assumed |βlk| ≤ Bτl and q(x) ≥ α for |x| ≤ B, it follows from independence
of the ulk that the right-hand side of this last expression is lower bounded by (εα/2)Dm ,

so that (ii) holds with α/2 in place of α.

Proof of Proposition 2.3. We verify the conditions of Theorem 2.1B. Since s > 1 similarly
to the proof of Proposition 2.2 we see Π(n)(Θ) = 1 and b0 ∈ Θ for an appropriate choice
of K0. Observe also that for A0 = 2B + 2 we have Π(n)(Θs(A0)) = 1 by construction,
and b0 ∈ Θs(A0) by Assumption 5, using the wavelet characterisation (2.2) of ∥·∥Bs

2,∞
.

Thus (I) holds and it remains to check (II).
Let jn ∈ N be such that jn ≤ L̄n, 2jn ∼ (n∆)1/(1+2s). Similarly to the proof of

Proposition 2.2 we have

Π(n)({b ∈ Θ : ∥πjnb− πjnb0∥2 ≤ εn}) ≥ Π(n)(|ulk − βlk| ≤ εn/2 ∀l < jn, ∀k < 2l)
≥ (εnα/2)Djn ,

so we’re done.

Proof of Proposition 2.4. We include only the key differences to the previous proofs.
Adapting slightly the proof of Proposition 2.2, we see that H and H0 both have

B2
∞,1–norm bounded by (B + 1)(2 + ∑

l≥1 l
−2). Since ∥b∥C1

per
≤ 1

2∥σ
2∥C1

per
(1 + ∥H∥C2

per
)

and using [38] Proposition 4.3.20, adapted to apply to periodic Besov spaces, to control
∥H∥C2

per
by ∥H∥B2

∞,1
, we see that for some constant K0 = K0(B) we have b0 ∈ Θ(K0)

and Π(n)(Θ(K0)) = 1. From the wavelet characterisation

∥f∥Bs
2,2

= |f−1,0|+
( ∞∑
l=0

22ls
2l−1∑
k=0

f 2
lk

)1/2

it can be seen that H and H0 have Sobolev norm ∥·∥Bs+1
2,2

bounded by some A′
0, hence

for some constant K = K(A′
0, s) we have ∥H − πmH∥B1

2,2
≤ K2−ms and similarly for

H0. Since the Bs+1
2,2 norm controls the Bs+1

2,∞ norm, and we have assumed σ2 ∈ Θs+1, we
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additionally see that b0 ∈ Θs(A0) and Π(n)(Θs(A0)) = 1 for an appropriate constant A0.
Note that here we also depend on the assumption σ2 ∈ Cs to allow us to control ∥b∥Bs

2,∞
:

Remark 1 on page 143 of Triebel [79] and Proposition 4.3.20 from [38] together tell us
that ∥σ2H ′∥Bs

2,∞
≤ c∥σ2∥Cs∥H ′∥Bs

2,∞
for some constant c = c(s), and similarly for H0.

Observe, for jn ∈ N such that jn ≤ L̄n and 2jn ∼ (n∆)1/(1+2s),

∥πjnb− πjnb0∥2 ≤ ∥b− b0∥2 = ∥σ2(H ′ −H ′
0)/2∥2 ≤

1
2σ

2
U∥H −H0∥B1

2,2

≤ σ2
U

2

(
∥H − πjnH∥B1

2,2
+ ∥H0 − πjnH0∥B1

2,2
+ ∥πjnH − πjnH0∥B1

2,2

)
.

Now σ2
U∥H − πjnH∥B1

2,2
≤ σ2

UK2−jns ≤ C(n∆)−s/(1+2s) ≤ 1
2(n∆)−s/(1+2s) log(n∆)1/2 =

1
2εn for large enough n, and similarly for H0.

Thus,

Π(n)
({
b : ∥πjnb− πjnb0∥2 ≤ εn

})
≥ Π(n)

({
b : ∥πjnH − πjnH0∥B1

2,2
≤ 1

2σ
−2
U εn

})
≥ Π(n)(|ulk − βlk| ≤ κεn ∀l < jn, ∀k < 2l),

where the final inequality can be seen to hold from the wavelet representation of ∥·∥B1
2,2

(the constant κ can be taken to be κ = 1
2σ

−2
U (1 + (∑∞

k=0 2−2l)1/2)−1 > σ−2
U /6). The small

ball condition (II) follows from our updated assumptions.

Appendix 2.A Technical lemmas
Lemma 2.20. Let Q,P be mutually absolutely continuous probability measures and write
f = dQ

dP . Then, for any measurable g and any sub–σ–algebra G, EQ[g | G] = EP[fg|G]
EP[f |G] .

Proof. This follows straightforwardly using the characterisation of conditional expectation
in terms of expectations against G–measurable functions. Precisely, we recall that

EP[c(X)v(X)] = EP[u(X)v(X)] (⋆)

holds for any G–measurable function v if c(X) = EP[u(X) | G] a.s., and conversely if
c(X) is G–measurable and (⋆) holds for any G–measurable v then c(X) is a version of
the conditional expectation EP[u(X)]. For the converse statement it is in fact enough for
(⋆) to hold for all indicator functions v = 1A, A ∈ G.
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Applying (⋆) repeatedly we find, for A ∈ G,

EP[EQ[g | G]EP[f | G]1A] = EP[fEQ[g | G]1A] = EQ[EQ[g | G]1A] = EQ[g1A] = EP[fg1A],

so that, since also EQ[g | G]EP[f | G] is G–measurable, it is (a version of) EP[fg | G], as
required.

Lemma 2.21. The variance of the log likelihood ratio tensorises in this model, up to a
constant. Precisely,

Varb0 log
(
p

(n)
0 (X(n))
p

(n)
b (X(n))

)
≤ 3 Varb0

(
log π0(X0)

πb(X0)

)
+ 3nVarb0

(
log p0(X0, X∆)

pb(X0, X∆)

)
.

Proof. We write log
(
p

(n)
0 (X(n))
p

(n)
b

(X(n))

)
= U + V +W, where U = log π0(X0)

πb(X0) and

V =
∑

1≤k≤n
k odd

log p0(∆, X(k−1)∆, Xk∆)
pb(∆, X(k−1)∆, Xk∆) , W =

∑
1≤k≤n
k even

log p0(∆, X(k−1)∆, Xk∆)
pb(∆, X(k−1)∆, Xk∆) .

Note now that V and W are both sums are of independent terms since (Xk∆)k≤n is a
Markov chain. We thus have

Varb0(V ) = #{1 ≤ k ≤ n : k odd}Varb0

(
log p0(X0, X∆)

pb(X0, X∆)

)
,

and a corresponding result for W . Using Var(R+ S + T ) = Var(R) + Var(S) + Var(T ) +
2 Cov(R, S) + 2 Cov(S, T ) + 2 Cov(T,R) and 2 Cov(R, S) ≤ Var(R) + Var(S), one derives
the elementary inequality Var(U + V +W ) ≤ 3(Var(U) + Var(V ) + Var(W )). The result
follows.

Lemma 2.22. Let p̃0 be as in (2.17). Let p∗(∆, x, y) be the density of transitions from
x to y in time ∆ for a process U ∼W(x)

σ . Then

p0(∆, x, y)
p∗(∆, x, y) = EW(x)

σ
[p̃0(U) | U∆ = y].

Proof. Let U ∼ W(x)
σ and let W(x,y)

σ denote the law on C([0,∆]) of U conditional on
U∆ = y. We define the conditional law rigorously via disintegration (e.g. see [69] Chapter
5, Theorem 9, applied to λ = W(x)

σ , X = C([0,∆]) with the sup norm, T ((Ut)t≤∆) = U∆
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and µ(dy) = p∗(∆, x, y) dy), so that

EW(x)
σ

[f(U)] =
∫ ∞

−∞
p∗(∆, x, y)EW(x,y)

σ
[f(U)] dy,

for all non-negative measurable functions f . Taking f(U) = p̃0(U)1{U∆ ∈ A} for an
arbitrary Borel set A ⊆ R, we see

P
(x)
b0 (X∆ ∈ A) =

∫ ∞

−∞
p∗(∆, x, y)1{y ∈ A}EW(x,y)

σ
[p̃0] dy.

The result follows.

Appendix 2.B Proofs for Section 2.3.1
Proof of Lemma 2.8. Set Yt = S(Xt), where

S(x) =
∫ x

0
exp

(
−
∫ y

0

2b
σ2 (z) dz

)
dy

is the scale function, and let ψ be the inverse of S. Since S ′′ exists and is continuous,
Itô’s formula applies to yield

dYt = σ̃(Yt) dWt, σ̃(y) := S ′(ψ(y))σ(ψ(y)).

Let A = A(I) = max(σ2
U exp(4K0/σ

2
L), 1) and observe that ∥σ̃2∥∞ ≤ A. Thus, there are

constants C = C(I) and λ = λ(I) so that for any u > C max(logm, 1)1/2, the event

D =
{

sup
{ |Yt − Ys|
wm(|t− s|) : s, t ∈ [0,m], s ̸= t, |t− s| ≤ A−1e−2

}
≤ u

}
,

occurs with probability at least 1 − 2e−λu2 , by Lemma 2.9. Now Xt = ψ(Yt) and ψ is
Lipschitz with constant ∥ψ′∥∞ = ∥1/(S ′ ◦ ψ)∥∞ ≤ exp(2K0σ

−2
L ). It follows that on D,

writing τ = A−1e−2, we have for any s, t ∈ [0,m], s ̸= t, |t− s| ≤ τ ,

|Xt −Xs| ≤ exp(2K0σ
−2
L )|Yt − Ys| ≤ exp(2K0σ

−2
L )wm(|t− s|)u

The result follows by relabelling (exp(2K0/σ
2
L)u) 7→ u, λ 7→ λ exp(−4K0/σ

2
L) and

C 7→ C exp(2K0/σ
2
L).

Proof of Lemma 2.9. Recall wm(δ) := δ1/2(log(δ−1)1/2 + log(m)1/2) for m ≥ 1 and
wm(δ) := w1(δ) for m < 1. We see that we may assume m ≥ 1 and the result for
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m < 1 will follow. By the (Dambis–)Dubins-Schwarz Theorem (e.g. (34.1) in Rogers &
Williams [73]), we can write Yt = Y0 + Bηt for B a standard Brownian motion and for
ηt = ⟨Y ⟩t the quadratic variation of Y . Define the event

C =
{

sup
{ |Bt′ −Bs′|
wAm(|t′ − s′|) : s′, t′ ∈ [0, Am], s′ ̸= t′, |t′ − s′| ≤ e−2

}
≤ u

}
.

By Lemma 2.10, there are universal constants C and λ so that if u > C max(log(Am), 1)1/2,
C occurs with probability at least 1− 2e−λu2 , and note that by allowing C to depend on
A we can replace max(log(Am), 1) with max(log(m), 1). On this event, for s, t ∈ [0,m]
with |t− s| ≤ A−1e−2 and s ̸= t we have

|Yt − Ys| = |Bηt −Bηs|
≤ sup{|Bt′ −Bs′| : s′, t′ ∈ [0, Am], s′ ̸= t′, |t′ − s′| ≤ A|t− s|}
≤ u sup{wAm(|t′ − s′|) : s′, t′ ∈ [0, Am], s′ ̸= t′, |t′ − s′| ≤ A|t− s|}
≤ wAm(A|t− s|)u,

where we have used that wAm(δ) is increasing in the range δ ≤ e−2 to attain the final
inequality. Recalling we assume A ≥ 1, one sees that wAm(Aδ) ≤ A1/2wAm(δ) provided
δ ≤ A−1, which holds in the relevant range. Thus, on C, and for s, t and u in the
considered ranges,

|Yt − Ys| ≤ A1/2u|t− s|1/2
(
(log(Am))1/2 + (log|t− s|−1)1/2

)
≤ A′u|t− s|1/2

(
(log(m))1/2 + (log|t− s|−1)1/2

)
,

where A′ is a constant depending on A (note we have absorbed a term depending on
log(A) into the constant, using that log(|t− s|−1) ≥ 2). The desired result follows upon
relabelling A′u 7→ u since C and λ are here allowed to depend on A.

For the particular case dYt = σ̃(Yt) dWt, we simply observe that |⟨Y ⟩t − ⟨Y ⟩s| =
|
∫ t
s σ̃

2(Ys) ds| ≤ ∥σ̃2∥∞|t− s|.

Proof of Lemma 2.10. Assume m ≥ 1; the result for m < 1 follows. For a Gaussian
process B, indexed by T and with intrinsic covariance (pseudo-)metric d(s, t) = (E[(Bt−
Bs)2])1/2, Dudley’s Theorem ([38] Theorem 2.3.8) says

E

[
sup

s,t∈T,s̸=t

|Bt −Bs|∫ d(s,t)
0

√
logN(T, d, x) dx

]
<∞,
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where N(T, d, x) is the number of (closed) balls of d−radius x needed to cover T .
Inspecting the proof, it is in fact shown that the process

Cu = Bu2 −Bu1∫ d(u1,u2)
0

√
log(N(T, d, x)) dx

on U = {u = (u1, u2) : u1, u2 ∈ T, d(u1, u2) ̸= 0},

is a Gaussian process on with bounded and continuous sample paths. It follows by [38]
Theorem 2.1.20 that

Pr
{∣∣∣sup
v∈V
|Cv| − E sup

v∈V
|Cv|

∣∣∣ > u
}
≤ 2e−u2/2σ2

,

for any subset V of U , where σ2 = supv∈V E[C2
v ]. We can upper bound Cv by applying the

trivial lower bound for the denominator
∫ a

0

√
logN(T, d, x) ≥ a

2
√

log 2 for any a = d(u, v)
with u, v ∈ T (this follows from the fact that N(T, d, x) ≥ 2 if x is less than half the
diameter of T ). Using also that d is the intrinsic covariance metric, we deduce that
EC2

v ≤ 4/ log 2, so we can take σ2 = 4/ log 2.
We will apply the result to B a standard Brownian motion on T = [0,m], which has

intrinsic covariance metric d(s, t) = |t−s|1/2. For this T and d, we haveN(T, d, x) ≤ mx−2.
Then, applying Jensen’s inequality, we see

∫ d(s,t)

0

√
logN(T, d, x) dx ≤ d(s, t)1/2

(∫ d(s,t)

0
log(N(T, d, x)

)1/2

≤ 21/2d(s, t)[1 + log(d(s, t)−1) + logm]1/2.

Set V = {u = (s, t) ∈ U : |t − s| ≤ e−2} and observe that for (s, t) ∈ V we have
1 + log(d(s, t)−1) = 1 + 1

2 log(|t− s|−1) ≤ log(|t− s|−1). Noting further that (a+ b)1/2 ≤
a1/2 + b1/2 for a, b ≥ 0 and recalling we defined wm(δ) = δ1/2((log δ−1)1/2 + log(m)1/2),
we see ∫ d(s,t)

0

√
logN(T, d, x) dx ≤ 21/2wm(|t− s|).

Thus, writing M = E
[
sup

{
|Bt−Bs|∫ d(s,t)

0

√
logN(T,d,x) dx

: s, t ∈ T, s ̸= t, |t− s| ≤ e−2
}]

we see

Pr
[
sup

{ |Bt −Bs|
wm(|t− s|) : s, t ∈ T, s ̸= t, |t− s| ≤ e−2

}
> 21/2(M + u)

]
≤ 2e−(u2(log 2)/8).

As M is a fixed finite number, we can write M + u = (1 + ε)u with ε → 0 as u → ∞.
Then

Pr
[

sup
s,t∈T,s̸=t,
|t−s|≤e−2

|Bt −Bs|
wm(|t− s|) > u

]
≤ 2e−(u2(log 2)/16(1+ε)2).
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Thus provided u is larger than M , we have the result with the constant λ = (log 2)/64.
Finally we track how M grows with m in order to know when u is large enough for

this lemma to apply. Observe that we can write M = EmaxkMk, where

Mk = sup
s,t∈Tk,s ̸=t,
|t−s|≤e−2

|Bt −Bs|∫ d(s,t)
0

√
logN(T, d, x) dx

, Tk = [ke−2, (k + 2)e−2].

As N(T, d, x) ≥ N(Tk, d, x), defining

M ′
k = sup

s,t∈Tk,s ̸=t,|t−s|≤e−2

|Bt −Bs|∫ d(s,t)
0

√
logN(Tk, d, x) dx

,

we see Mk ≤ M ′
k. As with the whole process C we can apply [38] Theorem 2.1.20 to

each M ′
k to see that Pr(|M ′

k −EM ′
k| > v) ≤ 2e−v2/2σ2

, with σ2 = 4/ log 2 as before. That
is, each (M ′

k − EM ′
k) is subgaussian with parameter 12/

√
log 2 (see [38] Lemma 2.3.1).

They all have the same constant (i.e. not depending on m) expectation, we can bound
their maximum, by standard results for subgaussian variables (e.g. see [38] Lemma 2.3.4):

EM = E
[
EM ′

0 + max
k
{M ′

k − EM ′
0}
]
≤ EM ′

0 + 12
√

2 logN/ log 2,

where N is the number of M ′
k over which we take the maximum and scales linearly with

m. It follows that M is of order bounded by
√

log(m) as m→∞.



Chapter 3

On statistical Calderón problems

Notation
Most of the notation to be used in this chapter is informally gathered here.

D ⊆ Rd, d ≥ 3, a domain, which is taken to mean a bounded connected open set with
smooth boundary ∂D.

b ‘compactly contained’, i.e. U b V if the closure Ū is a subset of the interior intV .

Γm,D′ = {γ ∈ CR(D) : infx∈D γ(x) ≥ m, γ = 1 on D \ D′}, some m > 0 and some
domain D′ b D. CR(D) denotes the continuous functions from D to R.

Cu(D) the Banach space of uniformly continuous functions from D to C.

Γαm,D′(M) = {γ ∈ Γm,D′ : ∥γ∥Hα(D) ≤M}.

γ ∈ Γm,D′ a conductivity function, γ0 its “true” value for some statistical theorems.

m0, D0 a lower bound and support set for the “true” γ0; m1, D1 a lower bound and
support set for any draw γ from the prior Π of Section 3.2.1.

∥·∥∞ the usual supremum norm on (the bounded subsets of) C(D) or C(R).

uγ,f the (weak) solution to the Dirichlet problem (3.1) (∇ ·(γ∇u) = 0 in D, u = f on
∂D).

Bγ(u, v) =
∫
D γ∇u · ∇ v∗ the sesquilinear operator associated to ∇ ·(γ∇(·)), where v∗

denotes the complex conjugate of v.

Hs an L2–Sobolev space of complex-valued functions (carefully defined in Section 1.6.1,
Appendix 3.A); H1

0 (D) the traceless subset of H1(D). Hs
R the subspace of Hs

consisting of real-valued functions.

Hs =
(
Hmin{1,s+3/2}(D) ∩H1

loc(D)
)
/C for Hs

loc(D) as in Section 1.6.1.
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Hs
�(∂D) = {g ∈ Hs(∂D) : ⟨g, 1⟩L2(∂D) = 0}, L2

�(∂D) = H0
� (∂D).

(φ(r)
k )k∈N an orthonormal basis of Hr(∂D) consisting of eigenfunctions of the Laplace–

Beltrami operator on ∂D, with corresponding eigenvalues λk ≥ 0 (details in
Appendix 3.A).

∂
∂ν

the outward normal derivative at the boundary of a domain (i.e. usually on ∂D).

Λγ : Hs+1(∂D)/C→ Hs
�(∂D) the Dirichlet-to-Neumann map, taking f to γ ∂uγ,f

∂ν
|∂D.

Λ̃γ = Λγ − Λ1.

∥·∥A→B the operator norm between Banach spaces A and B.

∥·∥∗ = ∥·∥H1/2(∂D)/C→H−1/2(∂D).

L(A,B) = {T : A→ B linear s.t. ∥T∥A→B <∞}.

L2(A,B) = {T ∈ L(A,B) : ∥T∥2
L2(A,B) := ∑

k∥Te
(A)
k ∥

2
B < ∞} the space of Hilbert–

Schmidt operators from A to B for separable Hilbert spaces A and B, with (e(A)
k )

an orthonormal basis of A.

Hr = L2(Hr(∂D), L2
�(∂D)) for r ∈ R.

(b(r)
kl )k,l∈N an orthonormal basis of Hr, with b(r)

kl (f) ≡ (φ(r)
k )⊗φ(0)

k (f) = ⟨f, φ(r)
k ⟩Hr(∂D)φ

(0)
l

Y = Λ̃γ + εW the observed data, where W is a Gaussian white noise indexed by the
Hilbert space Hr, and ε is a noise level which tends to zero for our asymptotic
results.

P γ
ε = P γ

ε,r the law of Y , Eγ
ε the corresponding expectation operator, Varγ the corre-

sponding variance operator.

pγε (Y ) = exp
(

1
ε2 ⟨Y, Λ̃γ⟩Hr

− 1
2ε2∥Λ̃γ∥2

Hr

)
the probability density of the law of Y with

respect to the law of εW.

ℓ(γ) = log pγε the log-likelihood function.

ξε,δ = (log(ε−1))−δ for ε, δ > 0.

Π a prior on Γm1,D1 , built from a Gaussian process prior Π′ as described in Sec-
tion 3.2.1. Π( · | Y ) the corresponding posterior. EΠε [ · | Y ] the posterior expecta-
tion. (H, ∥·∥H) ⊆ (Hα(D), ∥·∥Hα(D)) the RKHS of Π′.

Φ a ‘regular link function’ used in the prior construction (see Section 3.2.1).

πJK the Hr–orthogonal projection map onto span{b(r)
jk : j ≤ J, k ≤ K} (see (3.27)).

K(P,Q) = K(p, q) = EX∼p log((p/q)(X)) for distributions P,Q with densities p, q (the
Kullback–Leibler divergence)

Bε
KL(η) = {γ ∈ Γm1,D1 : K(pγ0

ε , p
γ
ε ) ≤ (η/ε)2,Varγ0(log(pγ0

ε /p
γ
ε )2) ≤ (η/ε)2}.
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N(S, ρ, δ) the covering numbers of the set S for metric ρ, i.e. the smallest number of
ρ–balls of radius δ needed to cover S.

3.0 Introduction
Let’s recapitulate the Calderón problem, as described in Section 1.2, and flesh out some
of the details. Consider a domain D ⊂ Rd, d ≥ 3, which recall we understand here to
mean a bounded connected open set with smooth boundary ∂D. For γ : D → (0,∞) a
conductivity coefficient, consider solutions u to the Dirichlet problem

∇ ·(γ∇u) = 0 in D,

u = f on ∂D,
(3.1)

where ∇ denotes the usual gradient operator and where f : ∂D → C prescribes some
boundary values. The parameter spaces considered in the sequel are of the form

Γm,D′ =
{
γ ∈ CR(D) : inf

x∈D
γ(x) ≥ m, γ = 1 on D \D′

}
, (3.2)

Γαm,D′(M) = {γ ∈ Γm,D′ : ∥γ∥Hα(D) ≤M}, M > 0, (3.3)

where m > 0 is a fixed constant, D′ is a domain compactly supported in D, and α ≥ 0
measures the regularity of γ in the Sobolev scale, with Sobolev spaces on D as defined
in Section 1.6. CR(D) denotes the space of continuous functions from D to R, whose
subspace of bounded functions we equip with the sup-norm ∥·∥∞. Unless otherwise stated,
all integrals are taken with respect to Lebesgue measure on D and surface measure on
∂D.

The elliptic partial differential equation (PDE) in (3.1) has, for any γ ∈ Γm,D′ and
any f ∈ Hs+1(∂D)/C, s ∈ R, a unique weak solution uγ,f in the space

Hs :=
(
Hmin{1,s+3/2}(D) ∩H1

loc(D)
)
/C.

That is (as shown in Appendix 3.C, Lemma 3.17), for u ∈ Hs, the equations

Bγ(u, v) :=
∫
D
γ∇u · ∇ v∗ = 0 ∀v ∈ H1

0 (D),

u = f on ∂D,
(3.4)

hold simultaneously if and only if u = uγ,f , where the boundary values of u are defined in
the trace sense described in Section 1.6.2 (v∗ denotes the complex conjugate of v). Here
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and below /C means that we identify functions f, f + c which are equal up to a scalar
c ∈ C. Throughout this chapter, the Sobolev spaces Hs will consist of complex-valued
functions, and we will explicitly write Hs

R to denote the corresponding Sobolev space
consisting of real-valued functions (this is a subspace of Hs(D), so we continue to write
∥·∥Hs(D) for its norm).

Given a solution uγ,f to the Dirichlet problem, one can measure the Neumann
(boundary) data

γ
∂uγ,f
∂ν

∣∣∣∣
∂D
≡ ∂uγ,f

∂ν

∣∣∣∣
∂D
, γ ∈ Γm,D′ ,

where ∂
∂ν

denotes the outward normal derivative on ∂D. It can be shown (see Lemma 3.18)
that for any s ∈ R and any f ∈ Hs+1(∂D)/C, with Hs(∂D) as defined in Appendix 3.A,
the Neumann data lies in the space

Hs
�(∂D) := {g ∈ Hs(∂D) : ⟨g, 1⟩L2(∂D) = 0}. (3.5)

Thus, we may define the so-called Dirichlet-to-Neumann map,

Λγ : Hs+1(∂D)/C→ Hs
�(∂D),

f 7→ γ
∂uγ,f
∂ν

∣∣∣∣
∂D
,

(3.6)

which associates to each prescribed boundary value f the Neumann data of the solution
of the PDE (3.1). Our choice to quotient the domain of Λγ by C is natural as the
Neumann data is invariant with respect to addition of scalars.

The Calderón problem [13] addresses the task of recovering γ from knowledge of Λγ.
Note that while Λγ itself is a linear operator between Hilbert spaces, the ‘forward map’
γ → Λγ is nonlinear. A landmark injectivity result by Sylvester and Uhlmann shows,
however, that recovery is in principle possible.

Theorem (Sylvester & Uhlmann, [78]). If Λγ1 = Λγ2 then γ1 = γ2.

Later Nachman [60] devised an elaborate inversion algorithm that allows recovery of
γ if exact knowledge of the entire operator Λγ is available. Moreover Alessandrini [4]
gave a stability estimate; that is, a quantitative continuity estimate for the inverse map.

The Calderón problem has since been vigorously studied and an excellent survey can
be found in Uhlmann [81]. Its importance partly stems from its applications to electric
impedance tomography (EIT) – as described in Section 1.2 and again in the section to
follow – where discrete boundary measurements of the operator Λγ are performed to
infer the interior conductivity γ. Any such data comes with error, and the arguably most
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natural mathematical description of such approximate measurements is by a statistical
noise model. As the superposition of many independent errors is well described by a
normal distribution (via the central limit theorem), it is further natural to postulate
that this noise follows a Gaussian law. In algorithmic practice this has already been
widely acknowledged in the general setting of inverse problems, where statistical, and
in particular Bayesian, inversion approaches have flourished in the last decade since
the influential work of Stuart [77]. In the context of EIT we refer to the articles
[46, 45, 49, 74, 30, 25] and the many references therein. Surprisingly little theory is
available that gives statistical guarantees for the performance of such Bayesian denoising
methodology, particularly for nonlinear problems. Recent progress has been made in
some nonlinear settings (see [62, 61, 63, 64, 59]) but in the context of the Calderón
problem described above, the only paper known to the authors is Caro & Garcia [14],
which addresses estimating the boundary values γ|∂D and so is in some sense orthogonal
(and complementary) to the question of interior recovery, with given boundary values,
considered here.

We will introduce a natural noise model (3.13) in the next section where one observes
Λγ corrupted by a Gaussian white noise in an appropriate space of Hilbert–Schmidt
operators. The noise is described by the scalar quantity ε > 0 governing its magnitude
and a parameter r ∈ R determining its “spectral heteroscedasticity”. If we denote by
P γ
ε = P γ

ε,r the resulting probability law of the noisy observations Y of Λγ , then our main
results can be summarised in the following two theorems.

Theorem 3.1. Let α > 3 + d be an integer, let m0 > 0,M > 0 be given, and let D0 be a
domain in Rd such that D̄0 is contained in D.

There exists a function γ̂ = γ̂ε(Y ) of the observations Y ∼ P γ
ε such that

sup
γ∈Γα

m0,D0
(M)

P γ
ε (∥γ̂ − γ∥∞ > C log(1/ε)−δ)→ 0, as ε→ 0,

where δ > 0 depends only on d, and C depends only on α, M , m0, D, D0 and r.

The estimator γ̂ in the previous theorem has a natural Bayesian interpretation as
the posterior mean of a suitable Gaussian process based prior for γ. The derivation and
implementation of γ̂ are described in Section 3.2, where the more precise Theorem 3.3,
which implies Theorem 3.1, is given. Note that γ̂ can be calculated without knowledge
of the bound M for ∥γ0∥Hα(D).

The slow (logarithmic) convergence rate is not surprising in view of the folklore
that the Calderón problem is a severely ill-posed inverse problem. The following result
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makes this folklore information-theoretically precise – it shows that the convergence rate
obtained by the estimator γ̂ is optimal in the minimax sense, at least up to the precise
value of the exponent δ, for the prototypical case where D0, D are nested balls in Rd.

Theorem 3.2. Let D0 = {x ∈ Rd : ∥x∥ < 1/2} ⊂ D = {x ∈ Rd : ∥x∥ < 1} in Rd, let α
be an integer greater than 2, and let m0 ≤ 1 be arbitrary.

For any δ′ > α(2d− 1)/d and all M large enough there exists c = c(δ′, α, d,m0, r,M)
such that

inf
γ̃

sup
γ∈Γα

m0,D0
(M)

P γ
ε (∥γ̃ − γ∥∞ > c log(1/ε)−δ′) > 1/7

for all ε small enough, where the infimum extends over all measurable functions γ̃ = γ̃(Y )
of the data Y ∼ P γ

ε .

The particular value of 1/7 in the lower bound is chosen for convenience (cf. Theo-
rem 1.2). We do not pursue the problem of finding the exact exponent δ in the minimax
convergence rate: determining the optimal value of δ in the stability estimate underlying
our proof is a delicate PDE question in its own right and beyond the scope of this thesis.

This chapter is structured as follows. In Section 3.1 we introduce the measurement
model we consider in our theorems, and discuss its precise relationship (in a Le Cam
sense) to physical measurement models arising in medical imaging practice. In Section 3.2
we give the construction of the Bayesian algorithm γ̂ that solves our noisy version of the
Calderón problem. All proofs and related background material are relegated to later
sections.

3.1 Noise model
We now introduce a rigorous framework for observing a noisy version of the operator Λγ

from (3.6). Let Λ̃γ = Λγ − Λ1 where the fixed (deterministic and known) operator Λ1 is
the Dirichlet-to-Neumann map for the standard Laplace equation, that is, eq. (3.1) with
γ = 1 identically on D. We then equivalently consider measuring a noisy version of Λ̃γ.

As described in the Chapter 1, real-world data involving the Calderón problem arises
for example in the medical imaging technique of electrical impedance tomography, wherein
electrodes are attached to a patient (or some other physical medium), and are used both
to apply voltages and to record the resulting currents. If we assume the applied voltages
are uniform across the surface of any given electrode, and the electrodes measure the
average current across their surface, we are led to the observation model

Yp,q = ⟨Λ̃γ[ψp], ψq⟩L2(∂D) + εgp,q, p, q ≤ P, gp,q
iid∼ N(0, 1), ε > 0, (3.7)
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where the ψp are, up to scaling factors, indicator functions of some disjoint measurable
subsets (Ip)p≤P of ∂D representing the locations of the electrodes. In principle we might
expect the noise level ε > 0 to vary with p and q, but we can accommodate a single
noise level by instead varying the scaling factors on ψp and ψq; in particular, if the ψp
are L2(∂D)–orthonormal then the homoscedastic noise model given above is natural.

An alternative noise model, more tractable in the theory that follows, considers
Fourier-type measurements. Consider a basis (φk)k∈N∪{0} = (φ(0)

k )k∈N∪{0} of L2(∂D)
comprising eigenfunctions of the Laplace–Beltrami operator on the compact manifold
∂D. By discarding the constant function φ0 we obtain a basis of the spaces L2(∂D)/C
and L2

�(∂D) = H0
� (∂D). Moreover, appropriate rescaling of these basis functions also

provides orthonormal bases (φ(r)
k )k∈N of all Hr(∂D)/C and Hr

�(∂D) spaces, r ∈ R – see
Appendix 3.A for details. For some r ∈ R, we then consider the noisy matrix measurement
model

Yj,k = ⟨Λ̃γ[φ(r)
j ], φ(0)

k ⟩L2(∂D) + εgj,k, j ≤ J, k ≤ K, gj,k
iid∼ N(0, 1), ε > 0. (3.8)

We will work below with (a natural continuous analogue of) this more tractable
model, but this does not force us to relinquish the intepretability of our results in
the model (3.7), at least when sufficiently many measurements are available (P →
∞): one can approximate Laplace–Beltrami eigenfunctions via linear combinations of
indicator functions, and in doing so we approximately recover data from model (3.8)
given data from model (3.7). Thus any estimator for γ built in model (3.8) can be
approximately constructed from data in model (3.7). The following one-way statistical
discrepancy result states that performing this construction does not cost us in terms of
asymptotic performance of the algorithm. We restate the result precisely in Appendix 3.D
(Theorem 3.21), using the notion of Le Cam discrepancy between statistical experiments
introduced in Section 1.3.1.

Theorem. Suppose the parameter γ ∈ Γm,D′ has supremum norm bounded by a fixed
constant M and suppose the indicator functions (ψp)p≤P are well-spaced within ∂D. Then
given data from (3.7), we can construct data from (3.8) with r = 0, with, for P large
enough depending on J, K and ε, asymptotically vanishing information loss, in the sense
of one-way Le Cam discrepancy.

In particular, given any bounded loss function and any decision rule ρ2 in model (3.8),
we can construct a corresponding rule ρ1 for model (3.7) whose excess risk relative to ρ2

tends to zero.
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We next argue that model (3.8) is close to a continuous model in which one observes
noisy operator-valued data. We first need some definitions. For (A, ∥·∥A) and (B, ∥·∥B)
separable Hilbert spaces we equip the space

L(A,B) = {T : A→ B linear s.t. ∥T∥A→B <∞}

of bounded linear maps from A to B with the usual operator norm

∥T∥A→B = sup{∥Tx∥B : x ∈ A, ∥x∥A ≤ 1}. (3.9)

Define also the space L2(A,B) of Hilbert–Schmidt operators A→ B,

L2(A,B) =
{
T ∈ L(A,B) s.t. ∥T∥2

L2(A,B) :=
∑
k

∥Te(A)
k ∥

2
B <∞

}
, (3.10)

where (e(A)
k ) is any orthonormal basis of A. This is a Hilbert space with inner product

⟨S, T ⟩L2(A,B) =
∑
k

⟨Se(A)
k , T e

(A)
k ⟩B. (3.11)

The preceding definitions are independent of the choice of basis (eAk ). See Chapter 12 in
Aubin [5] for an introduction to spaces of Hilbert–Schmidt operators.

Now define, for r ∈ R,

Hr := L2(Hr(∂D)/C, L2
�(∂D)), (3.12)

and consider observing data Y from probability law P γ
ε,r arising from the equation

Y = Λ̃γ + εW, ε > 0, (3.13)

where W is a Gaussian white noise (isonormal process; see, e.g. p19 in [38]) indexed by
the Hilbert space Hr. We often suppress the parameter r, and write P γ

ε for the probability
law and Eγ

ε for the corresponding expectation operator.
Using the natural Hilbert space isomorphism between Hr and the sequence space ℓ2

given by considering coordinates with respect to the orthonormal basis induced by the
φ

(r)
k , the model can be interpreted concretely by the action of Y on any T ∈ Hr: if

⟨W, T ⟩Hr
:=
∑
j,k

gjk⟨Tφ(r)
j , φ

(0)
k ⟩L2(∂D), for gjk iid∼ N(0, 1),
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then we are given a measurement of the Gaussian process(
Y (T ) = ⟨Λ̃γ, T ⟩Hr

+ ε
∑
j,k

gjk⟨Tφ(r)
j , φ

(0)
k ⟩L2(∂D)

)
T∈Hr

. (3.14)

What precedes makes sense rigorously only if Λ̃γ ∈ Hr, and it is proved in Appendix 3.C,
Lemma 3.19, that this is indeed the case for any γ ∈ Γm,D′ and any r ∈ R.

The choice of the domain in the definition of Hr corresponds to the experimental
design, so in principle one can choose r freely, and our results are written to accommodate
any value. Changing r adjusts how the signal-to-noise ratio varies with frequency: as r
increases, the signal at high frequencies (i.e. at larger values of k) decreases compared
to the signal at low frequencies. Likely the most realistic choices are r = 0, so that
the previous theorem relating models (3.7) and (3.8) applies, and r = 1, because this
ensures that the signal-to-noise ratio is the same across all frequencies: since Λγ maps
H1(∂D)/C to L2

�(∂D) isomorphically (Lemma 3.18), the signal magnitude ∥Λγφ
(1)
k ∥L2(∂D)

is of order 1 for all k. A similar reasoning (∥φ(0)
k ∥L2(∂D) = 1 for all k) underpins the

choice of codomain L2
�(∂D).

We will prove our main results Theorems 3.1 and 3.2 in the model (3.13). The
following result, given rigorously in Appendix 3.D (Theorem 3.23), justifies focussing our
attention on the continuous model (3.13).

Theorem. Let r ∈ R. Suppose the parameter γ ∈ Γm,D′ has supremum norm bounded
by a fixed constant M . Then given data from (3.8), we can construct data from (3.13),
and vice versa, with asymptotically vanishing information loss as min(J,K)→∞, in the
sense of the Le Cam distance.

We note that in principle, all our results could be directly derived in the model (3.8),
but the continuous model is more convenient for the application of PDE techniques and
facilitates a clearer exposition in the proofs to follow.

3.2 The Bayesian approach to the noisy Calderón
problem

We now construct the estimator γ̂ featuring in Theorem 3.1. Following the Bayesian
approach to inverse problems described in Chapter 1 and proposed already in the context
of the EIT inverse problem in [46], we will construct γ̂ as the posterior mean arising
from a certain Gaussian process prior for γ. To this end we need to first establish the
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existence of a posterior distribution in our measurement setting. In the Gaussian white
noise model (3.13), the log-likelihood function can be derived from the Cameron–Martin
theorem in a suitable Hilbert space: precisely, the law P γ

ε of Y is dominated by the law
P 1
ε of εW, with log-likelihood function

ℓ(γ) ≡ log pγε (Y ) := log dP
γ
ε

dP 1
ε

(Y ) = 1
ε2 ⟨Y, Λ̃γ⟩Hr

− 1
2ε2∥Λ̃γ∥2

Hr
, (3.15)

whenever Λ̃γ ∈ Hr. See Section 7.4 in [61] for a detailed derivation, which requires
Borel-measurability (ensured by Lemma 3.6 below) of the map γ 7→ Λ̃γ from the (Polish)
space Γm,D′ equipped with the ∥·∥∞–topology into the Hilbert space Hr.

Then for any prior (Borel) probability measure Π on Γm,D′ , the posterior distribution
given observations Y is given by

Π(B | Y ) =
∫
B p

γ
ε (Y ) dΠ(γ)∫

Γm,D′ p
γ
ε (Y ) dΠ(γ) , B ⊂ Γm,D′ Borel-measurable, (3.16)

see again Section 7.4 in [61] (and also [34], eq (1.1)). We denote by EΠ[·] the expectation
operator according to the prior, and by EΠ[ · | Y ] the expectation according to the
posterior.

3.2.1 Prior construction

We will construct a Gaussian process prior for the conductivity γ by first drawing a
Gaussian random field ρ in D, and then enforcing positivity by a suitable composition
map Φ to give γ = Φ ◦ ρ. In the proofs we will require that the true γ0 is in the
“interior” of the support of the prior, so recalling that Theorem 3.1 is stated uniformly
over Γαm0,D0(M), we choose m1 < m0 and a domain D1 such that D0 b D1 b D (recall
U b V means Ū ⊂ intV ) and construct a prior concentrating its mass on Γm1,D1 .

For the base prior for ρ we employ the following condition – we refer, e.g., to Sections
2.1 and 2.6 in [38] for the basic definitions of Gaussian measures and processes and their
reproducing kernel Hilbert spaces (RKHS).

Assumption A. Let Π′ be a centred Gaussian Borel probability measure on the Banach
space Cu(D) of uniformly continuous functions on D, and let α > β > 2+d/2 be integers.
Assume Π′(Hβ

R(D)) = 1 and that the RKHS (H, ∥·∥H) of Π′ is continuously embedded
into the Sobolev space Hα

R(D).

Natural candidates for such priors are restrictions to D of Gaussian processes whose
covariances are given by Matérn kernels, see [34], p313 and p575 – in these cases one can
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satisfy the assumption for any 2 + d/2 < β < α− d/2 by taking H to coincide with the
Sobolev space Hα

R(D). The restriction to integer-valued α, β is convenient to simplify
some proofs, but in principle should not be necessary.

Consider a random function ρ′ ∼ Π′ and let χ be a smooth cutoff function, identically
1 on D0 and compactly supported in D1. Define a new random function

ρ(x) = ρε(x) = εd/(α+d)χ(x)ρ′(x), x ∈ D, ρ′ ∼ Π′, (3.17)

and denote its (Borel) law in Cu(D) by Πρ = Πρ,ε.
Let Φ : R→ [m1,∞) be a regular link function in the sense of [64]; that is to say, let

Φ be a smooth bijective function satisfying Φ(0) = 1, Φ′ > 0 on R, and ∥Φ(j)∥∞ < ∞
for all integers j ≥ 1. Such a function exists via arguments based on mollifiers similar
to those used in the footnote in Section 1.6.1: we refer to [64] Example 3.2 where a
regular link function is exhibited, and to [64] Lemma 6.1 for basic properties of such
functions. In particular we note that there are constants C = C(Φ), C ′ = C ′(Φ, α) and
C ′′ = C ′′(Φ, α,m0,m1) such that

∥Φ ◦ ρ− Φ ◦ ρ0∥∞ ≤ C∥ρ− ρ0∥∞, (3.18)
∥Φ ◦ ρ∥Hα(D) ≤ C ′(1 + ∥ρ∥αHα(D)), α ∈ N, α ≥ d/2, (3.19)

∥Φ−1 ◦ γ0∥Hα(D) ≤ C ′′(1 + ∥γ0∥αHα(D)), α ∈ N, α ≥ d/2, (3.20)

for any bounded functions ρ, ρ0 and any γ0 ∈ Γm0,D0 . The first inequality is an immediate
consequence of the mean value theorem, the second is given in [64] Lemma 6.1, and the
third follows from the arguments of the same lemma, applied to the function Φ−1 (this
can be seen to be regular on the domain [m0,∞) for m0 > m1 by considering explicit
formulas for its derivatives).

The final prior for the conductivity γ is now obtained as the law Π of the random
field

γ(x) = Φ ◦ ρ(x), ρ ∼ Πρ, x ∈ D. (3.21)

3.2.2 Posterior contraction result

For the following result we define

ξε,δ = log(1/ε)−δ, ε, δ > 0. (3.22)
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Theorem 3.3. Let Π′ be a base prior satisfying Assumption A, let Π be the prior from
(3.21), and denote by Π( · | Y ) the posterior distribution arising from observations Y in
the model (3.13). Suppose that for some M > 0 the true conductivity γ0 belongs to the set

Γm0,D0 ∩ {Φ ◦ ρ : ρ ∈ H, ∥ρ∥H ≤M}. (3.23)

Then there exist constants δ = δ(d) > 0 and K = K(M,m0,m1, D,D0, D1,Φ, χ, r, α) > 0
such that as ε→ 0,

Π
(
∥γ − γ0∥∞ > 1

2Kξε,δ | Y
)
→P

γ0
ε 0. (3.24)

Moreover, if EΠ[γ | Y ] denotes the (Bochner) mean of Π( · | Y ), then

sup
γ0
P γ0
ε

(
∥EΠ[γ | Y ]− γ0∥∞ > Kξε,δ

)
→ 0 as ε→ 0, (3.25)

where the supremum extends over all γ0 in the set (3.23).

Theorem 3.3, whose proof is given in Section 3.3.4, immediately implies Theorem 3.1.
Indeed, given an integer α > 3 + d, let Π be a prior from (3.21) whose base prior Π′

satisfies Assumption A with RKHS H = Hα
R(D) (for instance, take the Matérn prior

and note that a choice of integer β > 2 + d/2 is admissible) and let γ̂ = EΠ[γ | Y ] be
the associated posterior mean. It suffices to show that the conditions of Theorem 3.1
imply those of Theorem 3.3, in particular that for any γ0 ∈ Γαm0,D0(M), there exists an
M ′ = M ′(α,M,m0, D,D0) such that ρ0 := Φ−1 ◦ γ0 has Hα(D) norm bounded by M ′.
But this is immediate from (3.20).

Remark (Computation of the posterior mean). As noted in Section 1.5, optimisation
based methods commonly used in inverse problems (such as the MAP estimates studied
in [45, 64]) may not recover global optima in the EIT setting, since the nonlinearity of
the map ρ 7→ ΛΦ(ρ) ≡ Λγ implies that the associated least squares criterion is nonconvex.
In contrast, a key advantage of the posterior mean EΠ[γ | Y ] is that it can be calculated
via MCMC or expectation-propagation methods (naturally in the discretisations (3.7) or
(3.8) of our continuous model (3.13)).

For example, the pCN algorithm as described in Section 1.5 allows one to sample from
posterior distributions in general inverse problems as long as the forward map ρ 7→ ΛΦ(ρ)

can be evaluated, which in our setting has the basic cost of (numerically) solving the
standard elliptic PDE (3.1). Even in the absence of log-concavity of the posterior measure
one can give sampling guarantees for this algorithm (see [41]) so that the approximate
computation of EΠ[γ | Y ] by the sample average (1/M)∑m γm of the pCN Markov chain
is provably possible at any given noise level ε. Related work on MCMC-based approaches
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in the setting of electric impedance tomography can be found in [46, 74, 25], wherein also
many further references can be found. Instead of MCMC methods one can also resort to
variational Bayes methods – see for example [30], where computation of the posterior
mean is addressed specifically for the EIT problem relevant in the present chapter.

Remark (Non-linearity and Gaussian priors). Dealing with the unboundedness of Gaussian
priors for ρ and the nonlinearity of the composite forward map ρ 7→ ΛΦ(ρ) is a main
challenge in proving Theorem 3.3. We show how to adapt the proof template devised in
[59] for a very different inverse problem to the case of the Calderón problem – as in [59],
this requires the scaling of the base prior Π′ in (3.17), and also necessitates the above
choice of a regular link function Φ, since otherwise the implied priors for the ‘regression
operators’ Λγ potentially behave too erratically for our proof method via the stability
estimate of [4] to work.

3.3 Proofs

3.3.1 Low rank approximation of Λ̃γ

A key idea used in various proofs that follow is that we can project the operator Λ̃γ onto
a finite-dimensional subspace and incur only a small error. To define the projection, we
introduce the orthonormal basis (b(r)

jk )j,k∈N of Hr consisting of tensor product operators

b
(r)
jk (f) = (φ(r)

j )⊗ φ(0)
k (f) := ⟨f, φ(r)

j ⟩Hr(∂D)φ
(0)
k , f ∈ Hr(∂D)/C, (3.26)

where the Laplace-Beltrami eigenfunctions φ(r)
j were introduced before (3.8) and are

described in more detail in Appendix 3.A. For an operator U ∈ Hr we remark that the
coefficients ujk := ⟨U, b(r)

jk ⟩Hr
are given by ujk = ⟨Uφ(r)

j , φ
(0)
k ⟩L2(∂D), and we define the

projection map πJK by

πJKU =
∑
j≤J

∑
k≤K
⟨Uφ(r)

j , φ
(0)
k ⟩L2(∂D)b

(r)
jk . (3.27)

Lemma 3.4. For constants m,M > 0 and a domain D′ b D, let γ ∈ Γm,D′ be bounded
by M on D. For any ν > 0 there is a constant C = C(ν,D,D′, r) > 0 such that

∥Λ̃γ − πJKΛ̃γ∥Hr
≤ CM

m
min(J,K)−ν .
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Proof. Apply Lemma 3.16 from Appendix 3.B with s = 0, and, for some ν > 0, p =
r − ν(d− 1), q = ν(d− 1), and note ∥Λ̃γ∥Hp−(d−1)(D)→Hq(D) ≤ CM

m
for such a constant C

by Lemma 3.18.

The proofs of the continuity results for the Calderón problem in the next section
involve the H1/2(∂D)/C → H−1/2(∂D) operator norm, which we denote by ∥·∥∗. To
connect this norm to the information-theoretically relevant Hr–norm, the following
consequence of Lemma 3.4 will be useful.

Lemma 3.5. For m,M0,M1 > 0 and a domain D′ b D, let γ0, γ1 ∈ Γm,D′ be bounded
on D by M0 and M1 respectively. Then there are constants C1 and C2 depending only on
r, D and D0 such that if ∥Λγ − Λγ0∥∗ ≤ 1 then

∥Λγ − Λγ0∥Hr
≤ C1

(
M1+M0

m
∥Λγ − Λγ0∥∗

)1/2
, (3.28)

and if ∥Λγ − Λγ0∥Hr
≤ 1 then

∥Λγ − Λγ0∥∗ ≤ C2
(
M1+M0

m
∥Λγ − Λγ0∥Hr

)1/2
. (3.29)

Proof. For J > 0 and ν > 0 to be chosen, by Lemma 3.4 we have

∥Λ̃γ − πJJ Λ̃γ∥Hr
≤ CM1

m
J−ν ,

for a constant C = C(ν,D,D′, r), and a corresponding bound holds for ∥Λ̃γ0−πJJ Λ̃γ0∥Hr
.

An application of Lemma 3.15 with s = 0, p = d− 1/2, and q = −1/2, also yields (with
x+ denoting max(x, 0)),

∥πJJ Λ̃γ − πJJ Λ̃γ0∥Hr
≤ C ′(1 + J1/(d−1))1/2+(d−1/2−r)+∥πJJ(Λ̃γ − Λ̃γ0)∥L2(Hd−1/2,H−1/2)

≤ C ′(1 + J1/(d−1))(d+|r|)∥Λ̃γ − Λ̃γ0∥L2(Hd−1/2,H−1/2)

≤ c′(1 + J1/(d−1))(d+|r|)∥Λ̃γ − Λ̃γ0∥∗,

for constants C ′, c′ depending on D, r, where we use Lemma 3.16 to obtain the final
inequality. Since Λγ − Λγ0 = Λ̃γ − Λ̃γ0 , we deduce, for a constant C ′′ that

∥Λγ − Λγ0∥Hr
≤ ∥Λ̃γ − πJJ Λ̃γ∥Hr

+ ∥Λ̃γ0 − πJJ Λ̃γ0∥Hr
+ ∥πJJ Λ̃γ − πJJ Λ̃γ0∥Hr

≤ C ′′
((

M1+M0
m

)
J−ν + J (d+|r|)/(d−1)∥Λγ − Λγ0∥∗

)
.

Since ∥Λγ − Λγ0∥∗ ≤ 1, we can choose an integer J to balance the two terms up to a
constant (take J = ⌊( m

M0+M1
∥Λ̃γ − Λ̃γ0∥∗)

−(d−1)/(ν(d−1)+d+|r|)⌋). This yields, for a constant
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C ′′′,

∥Λγ − Λγ0∥Hr
≤ C ′′′

(
M1+M0

m

)((
M1+M0

m

)−1
∥Λγ − Λγ0∥∗

)ν(d−1)/(ν(d−1)+d+|r|)
.

Choosing ν = (d+ |r|)/(d− 1) yields (3.28).
For (3.29), given that ∥Λγ − Λγ0∥∗ ≤ ∥Λγ − Λγ0∥L2(H1/2,H−1/2), which follows from

the fact that ∥·∥A→B ≤ ∥·∥L2(A,B) for any separable Hilbert spaces A and B, and the
observation that the proof of Lemma 3.4 equally applies with the L2(H1/2, H−1/2) norm
in place of the Hr norm, an almost identical argument to the above yields

∥Λγ − Λγ0∥∗ ≤ C
((

M1+M0
m

)
J−ν + J (r−1/2)+/(d−1)∥Λγ − Λγ0∥Hr

)
.

Choosing J to balance the terms yields

∥Λγ − Λγ0∥∗ ≤ C
(
M1+M0

m

)((
M1+M0

m

)
∥Λγ − Λγ0∥Hr

)ν(d−1)/(ν(d−1)+(r−1/2)+)
,

and the result follows from noting that the exponent is at least 1/2 for ν > (r−1/2)+.

3.3.2 Continuity and stability results

We now prove the following continuity estimates for the maps γ 7→ Λγ,Λγ → γ.

Lemma 3.6. For m,M0,M1 > 0 and a domain D′ b D, let γ, γ0 ∈ Γm,D′ be bounded
on D by M1 and M0 respectively. Then there exist constants C = C(r,D,D′), τ = τ(D)
such that

∥Λγ − Λγ0∥Hr
≤ CM1M0

m2 ∥γ − γ0∥1/2
∞ ,

whenever ∥γ − γ0∥∞ ≤ τ m2

M0M1
.

Lemma 3.7. For some β > 2 +d/2, some m,M > 0 and some domain D′ b D, suppose
γ, γ0 ∈ Γβm,D′(M). Then there exist constants C and τ depending only on M , D, D′, m,
β and r such that, for a constant δ = δ(d, β) ∈ (0, 1),

∥γ − γ0∥∞ ≤ C|log∥Λγ − Λγ0∥Hr
|−δ,

whenever ∥Λγ − Λγ0∥Hr
≤ τ .

Note we calculate the explicit form of the dependence on the bounds M1 and M0 in
Lemma 3.6 because this is required in the proofs of the main theorems (see in particular
the proof of Lemma 3.11).
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Proof of Lemma 3.6. We initially show, for some C = C(D), that

∥Λγ − Λγ0∥∗ ≤ CM0(m+M1)
m2 ∥γ − γ0∥∞. (3.30)

The result then follows from Lemma 3.5, noting that necessarily m < 1 < min(M0,M1)
so that (M0 +M1)M0(m+M1)/m3 ≤ 4M2

0M
2
1/m

4.
For γ as given and f ∈ H1/2(∂D)/C, recall we write uγ,f for the unique solution in

H1 ≡ H1(D)/C to the Dirichlet problem on D with conductivity γ and boundary data
f , whose existence is guaranteed by Lemma 3.17. The equivalence class of functions
uγ,f − uγ0,f has a representative w ∈ H1

0 (D), which is easily seen to solve the PDE

∇ ·(γ∇w) = ∇ ·((γ0 − γ)∇uγ0,f ) in D,

w = 0 on ∂D.
(3.31)

We have the dual representation

∥∥∥∂w
∂ν

∥∥∥
H−1/2(∂D)

= sup
{∣∣∣〈∂w

∂ν
, σ
〉
L2(∂D)

∣∣∣ : σ ∈ H1/2(∂D), ∥σ∥H1/2(∂D) = 1
}
.

For σ ∈ H1/2(∂D), Theorem 1.8 tells us that there exists Σ ∈ H1(D) such that Σ|∂D = σ

and ∥Σ∥H1(D) ≤ C∥σ∥H1/2(∂D) for a constant C = C(D). Repeatedly applying the
divergence theorem (recalling that γ = γ0 = 1 on ∂D) and the Cauchy–Schwarz inequality,
we deduce∣∣∣∣∫

∂D
σ∗∂w

∂ν

∣∣∣∣ =
∣∣∣∣∫
D

Σ∗∇ ·(γ∇w) +
∫
D
γ∇Σ∗ · ∇w

∣∣∣∣
≤
∣∣∣∣∫
D

Σ∗∇ ·
(
(γ0 − γ)∇uγ0,f

)∣∣∣∣+ ∥γ∥∞∥Σ∥H1(D)∥∇w∥L2(D)

≤
∣∣∣∣∫
D

(γ0 − γ)∇Σ∗ · ∇uγ0,f

∣∣∣∣+ CM1∥σ∥H1/2(∂D)∥∇w∥L2(D)

≤ C∥σ∥H1/2(∂D)

(
∥γ0 − γ∥∞∥∇uγ0,f∥L2(D) +M1∥∇w∥L2(D)

)
,

hence ∥∥∥∥∂w∂ν
∥∥∥∥
H−1/2(∂D)

≤ C
(
∥γ0 − γ∥∞∥∇uγ0,f∥L2(D) +M1∥∇w∥L2(D)

)
. (3.32)

Next, again by the divergence theorem, we have for any v ∈ H1
0 (D)∫

D
γ∇w · ∇ v∗ =

∫
D

(γ0 − γ)∇uγ0,f · ∇ v∗.
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In particular this applies with v = w, hence, since γ ≥ m on D, we apply the Cauchy–
Schwarz inequality to deduce

m∥∇w∥2
L2(D) ≤ ∥γ0 − γ∥∞∥∇uγ0,f∥L2(D)∥∇w∥L2(D),

which, returning to (3.32), shows that
∥∥∥∥∂w∂ν

∥∥∥∥
H−1/2(∂D)

≤ C∥∇uγ0,f∥L2(D)∥γ0 − γ∥∞

(
1 + M1

m

)
.

Applying Theorem 1.8 to each representative of the equivalence class f ∈ H1/2(D)/C as
for σ and optimising, there exists F ∈ H1(D)/C such that F |∂D = f and ∥F∥H1(D)/C ≤
C∥f∥H1/2(∂D)/C for a constant C = C(D). Recall by definition of a weak solution (3.4),

∫
D
γ0∇uγ0,f · ∇(uγ0,f − F )∗ = 0,

and arguing as with w we deduce

∥∇uγ0,f∥L2(D) ≤ CM0
m
∥f∥H1/2(∂D)/C.

Overall we have shown
∥∥∥(Λγ − Λγ0)f

∥∥∥
H−1/2(∂D)

≤ C
(
1 + M1

m

)M0

m
∥γ − γ0∥∞∥f∥H1/2(∂D)/C.

Taking the supremum over all f with H1/2(∂D)/C norm equal to 1, (3.30) follows.

Proof of Lemma 3.7. Theorem 1 in Alessandrini [4] (see the lecture notes [75] for an alter-
native exposition) states that there exist constants δ = δ(d) and C = C(M,m,D,D′, β)
such that there is a (monotone) function ω satisfying

∥γ − γ0∥∞ ≤ Cω(∥Λγ − Λγ0∥∗), ω(t) ≤ log(1/t)−δ for t < e−1. (3.33)

Appealing to Lemma 3.5, noting that M upper bounds ∥γ∥∞ and ∥γ0∥∞ by a Sobolev
embedding (recall Theorem 1.12), we see for a constant C ′ depending on M, m, D, D′

and r that

ω(∥Λγ − Λγ0∥∗) ≤ ω(C ′∥Λγ − Λγ0∥
1/2
Hr

)
≤ (1

4 log(∥Λγ − Λγ0∥
−1
Hr

))−δ,
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provided ∥Λγ − Λγ0∥Hr
< min(e−2(C ′)−2, (C ′)−4, 1). The result follows.

3.3.3 Concentration of an estimator and prior support proper-
ties

In this section we prove two main auxiliary results, Lemmas 3.8 and 3.11, that will allow
us to apply Theorem 1.5. We start with the following proof that there exists an estimator
of Λγ exhibiting adequate concentration properties. Recall Γm1,D1 is a superset of Γm0,D0

on which the prior (3.21) concentrates its mass.

Lemma 3.8. Let ηε > 0 satisfy ηεε−(1−δ) →∞ as ε→ 0 for some 0 < δ < 1. There exists
an estimator Λ̂ for which, given κ > 0,M > 0 there is a constant C = C(κ,m1, D1,M,D)
so that for all ε small enough,

sup{P γ
ε (∥Λ̂− Λ̃γ∥Hr

> Cηε) : γ ∈ Γm1,D1 , ∥γ∥∞ ≤M} ≤ e−κ(ηε/ε)2
. (3.34)

Proof. Define the estimator Λ̂ by Λ̂ = ∑
j,k≤J Λ̂jkb

(r)
jk , where J = Jε = ⌊ηε/ε⌋ and

Λ̂jk = ⟨Y, b(r)
jk ⟩Hr

= ⟨Λ̃γφ
(r)
j , φ

(0)
k ⟩L2(∂D) + εgjk, Y ∼ P γ

ε , (3.35)

where we note gjk = ⟨W, b
(r)
jk ⟩Hr

iid∼ N(0, 1). Then we have the bias-variance decomposition

P γ
ε (∥Λ̂− Λ̃γ∥Hr

> Cηε) ≤ 1{∥Λ̃γ − πJJ Λ̃γ∥Hr
> 1

2Cηε}+ P γ
ε (∥Λ̂− πJJ Λ̃γ∥Hr

> 1
2Cηε).

(3.36)
Recall, by Lemma 3.4, for any ν > 0 there is a constant C1 = C1(ν, r,M1,m1, D1, D)
such that

∥Λ̃γ − πJJ Λ̃γ∥Hr
≤ C1J

−ν , (3.37)

hence the indicator in (3.36) is bounded by 1{C1J
−ν > 1

2Cηε}. Choosing ν > (1− δ)/δ,
one finds that the assumption ηεε

−(1−δ) → ∞ ensures this term vanishes for ε small
enough.

For the variance term in (3.36), observe that by Parseval’s identity

∥Λ̂− πJJ Λ̃γ∥2
Hr

=
∑
j,k≤J

(Λ̂jk − ⟨Λ̃γφ
(r)
j , φ

(0)
k ⟩L2(∂D))

2 = ε2 ∑
j,k≤J

g2
jk.

One now applies a standard tail inequality (e.g. Theorem 3.1.9 in [38]) to the effect that

Pr
( ∑
j,k≤J

g2
jk ≥ J2 + 2J

√
x+ 2x

)
≤ e−x. (3.38)
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For a constant κ > 0, taking x = κ(ηε/ε)2, and for our choice J = ⌊ηε/ε⌋, we see that
for C large enough depending only on κ, we have

P γ
ε (∥Λ̂− πJJ Λ̃γ∥2

Hr
> 1

2Cη
2
ε) ≤ e−κ(ηε/ε)2

,

hence the result.

To proceed recall K(p, q) = EX∼p log p
q
(X) denotes the Kullback–Leibler divergence

between distributions with densities p and q, and recall the definition of the probability
densities pγε from (3.15). Also denote by Varγ the variance operator associated to the
probability measure P γ

ε . The following is then a standard result for a white noise model
on a Hilbert space.

Lemma 3.9. Let γ0, γ1 ∈ Γm1,D1. Then we have

K(pγ0
ε , p

γ1
ε ) = 1

2ε
−2∥Λγ0 − Λγ1∥

2
Hr
, and Varγ0

(
log p

γ0
ε

pγ1
ε

)
= ε−2∥Λγ0 − Λγ1∥

2
Hr
.

Proof. Using the explicit formula (3.15) for the log-likelihoods, we see that under γ1,

ℓ(γ0)− ℓ(γ1) = ε−2⟨Y, Λ̃γ0 − Λ̃γ1⟩Hr
− 1

2ε
−2∥Λ̃γ0∥

2
Hr

+ 1
2ε

−2∥Λ̃γ1∥
2
Hr

= 1
2ε

−2∥Λ̃γ0 − Λ̃γ1∥
2
Hr

+ ε−1⟨W, Λ̃γ1 − Λ̃γ2⟩Hr
,

which is normally distributed with mean 1
2ε

−2∥Λ̃γ0−Λ̃γ1∥
2
Hr

and variance ε−2∥Λ̃γ0−Λ̃γ1∥
2
Hr

.
Noting that Λ̃γ0 − Λ̃γ1 = Λγ0 − Λγ1 , we deduce the result.

A variant of the “small balls” of (1.12) appropriate to the setting here defines Bε
KL(η)

as

Bε
KL(η) = {γ ∈ Γm1,D1 : K(pγ0

ε , p
γ
ε ) ≤ (η/ε)2,Varγ0(log(pγ0

ε /p
γ
ε )2) ≤ (η/ε)2}. (3.39)

Then the following is an immediate consequence of Lemma 3.9.

Corollary 3.10. For any η > 0, {γ ∈ Γm1,D1 : ∥Λγ − Λγ0∥Hr
≤ η} ⊆ Bε

KL(η).

With the preceding preparations, we can now prove the following support result for
the prior Π of Theorem 3.3, using a result of Li & Linde [52].

Lemma 3.11. Let ηε = εα/(α+d). Under the conditions of Theorem 3.3, there exists a
constant ζ = ζ(α,m1,M,D,D1,Φ, r) > 0 such that Π(Bε

KL(ηε)) ≥ e−ζ(ηε/ε)2 for all ε
small enough, uniformly across across γ0 in the set (3.23).
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Proof. By (3.18) and a Sobolev embedding, there is a constant M0 depending only
on Φ, α and M such that ∥γ0∥∞ ≤ M0. By Lemma 3.6, we deduce, for a constant
C = C(r,D,D1), that

∥Λγ − Λγ0∥Hr
≤ C

M0∥γ∥∞
m2

1
∥γ − γ0∥1/2

∞

provided ∥γ − γ0∥∞ is small enough. It follows from this calculation and Corollary 3.10
that for ηε small enough and some constant C ′ > 0 we have

{∥γ − γ0∥∞ ≤ C ′η2
ε} ⊆ {∥Λγ − Λγ0∥Hr

≤ ηε} ⊆ Bε
KL(ηε).

Defining ρ0 = Φ−1 ◦ γ0 and appealing again to (3.18), we further deduce that

{ρ ∈ Cu(D) : ∥ρ− ρ0∥∞ ≤ Aη2
ε} ⊆ Bε

KL(ηε),

for a constant A = A(α,M,m1, D,D1, r,Φ). Recalling the definition of Πρ from (3.17),
it therefore suffices to lower bound Πρ

(
∥ρ − ρ0∥∞ ≤ Aη2

ε

)
. Note that Πρ has RKHS

Hε = {ρ′χ : ρ′ ∈ H}, with norm ∥·∥Hε
satisfying the bound ∥ρ∥Hε

≤ ε−d/(α+d)∥ρ′∥H =
(ηε/ε)∥ρ′∥H, for any ρ′ such that ρ′χ = ρ. Since ρ0 = ρ0χ, we deduce that ∥ρ0∥Hε

≤
(ηε/ε)∥ρ0∥H ≤Mηε/ε. By Corollary 2.6.18 in [38], we then have

Πρ(∥ρ− ρ0∥∞ ≤ Aη2
ε) ≥ e− 1

2 ∥ρ0∥2
Hε Πρ(∥ρ∥∞ ≤ Aη2

ε)

≥ e− 1
2M

2(ηε/ε)2Π′
(
∥ρ′∥∞ ≤ Aη3

ε

ε

)
.

Next, since H embeds continuously into Hα(Id) for some large enough cube Id (by a
standard extension argument for Sobolev spaces), the unit ball BH of H has covering
numbers with respect to the supremum norm N = N(BH, ∥·∥∞, δ) satisfying

N(BH, ∥·∥∞, δ) ≤ Kδ−d/α (3.40)

for some constant K = K(α,D) (see [38], equations (4.184) and (4.185)). We can thus
apply [52] Theorem 1.2, to see

Π′
(
∥ρ∥∞ ≤ Aη3

ε

ε

)
≥ e−A′( η3

ε
ε

)−s

,

for some constant A′ = A′(A,K), where s is such that d
α

= 2s
2+s , i.e. s = 2d

2α−d .
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Overall, we have shown Π(Bε
KL(ηε)) ≥ e− 1

2M
2(ηε/ε)2

e−A′(η3
ε/ε)

−2d/(2α−d) , for a constant
A′ depending only on D,α,M,m1, D1, r,Φ. For ηε = εα/(α+d) we find (η3

ε/ε)
−2d/(2α−d) =

(ηε/ε)2, and the result follows.

3.3.4 Posterior contraction proofs

Posterior regularity and contraction about Λγ0

Following ideas for Bayesian nonparametric statistics with Gaussian priors as in van der
Vaart–van Zanten [85], we prove the following prior regularity result as a final auxiliary
result before proceeding as in [59] to prove Theorem 3.3.

Lemma 3.12. Under the assumptions of Theorem 3.3 and for ηε, ζ as in Lemma 3.11,
there exists M ′ > 0 such that

Π(∥γ∥Hβ(D) > M ′) ≤ e−(2ζ+8)(ηε/ε)2
. (3.41)

Proof. Recalling (3.19) and the definition of the prior (3.21),

Π(∥γ∥Hβ(D) > M ′) ≤ Π′
(
∥ρ′∥Hβ(D) >

ηε
ε
∥χ∥−1

Hβ(D)(M
′/C ′ − 1)1/β

)
.

Since ηε/ε→∞ and since Π′(Hβ) = 1 by hypothesis, we can apply a version of Fernique’s
theorem, more specifically Theorem 2.1.20 in [38], to deduce that for any c > 0 there
exists a M ′ = M ′(c, C ′, β, χ) such that the last probability does not exceed e−c(ηε/ε)2 .
Taking c = 2ζ + 8 concludes the proof.

Proof of Theorem 3.3. This follows immediately from Theorem 1.5 as follows. With
ηε, ζ,M

′ as in Lemma 3.12, we make the notational changes {n → ∞} ↔ {ε → 0},
εn ↔ ηε, nε2

n ↔ (ηε/ε)2, Θ ↔ Γm1,D1 , θ ↔ γ, G(θ) ↔ Λγ, Bn
KL ↔ Bε

KL(ηε), and
ξn ↔ Kξε,δ (for a constant K to be chosen). Further, we define

• d̃ as the Hr norm distance, d as the ∥·∥∞ norm distance;

• Θn ↔ Γε := {γ ∈ Γm1,D1 : ∥γ∥Hβ(D) ≤M ′}, which we note is ∥·∥∞–bounded by a
Sobolev embedding;

• Θ̃↔ Γ̃ := Γm0,D0 ∩ {Φ ◦ ρ : ∥ρ∥H ≤ M}, which we note is ∥·∥Hβ(D)–bounded and
∥·∥∞–bounded, by (3.19) and a Sobolev embedding.

For the conditions of Theorem 1.5, we see that Lemma 3.12 yields (a), Lemma 3.8 yields
(b), and Lemma 3.11 yields (c), uniformly across γ0 ∈ Γ̃. For (d) let C be such that
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we achieve (b) with constant C; then for γ ∈ Γε and ∥Λγ − Λγ0∥Hr
≤ Cηε, we see by

Lemma 3.7 that there exists a constant K such that ∥γ − γ0∥∞ ≤ Kξε,δ, at least if ε is
small enough. Finally, note that ξ−1

ε,δ e
−(η/ε)2 → 0 as ε→ 0, and note that since EΠ′∥ρ′∥2

∞

is finite (see exercise 2.1.2 in [38]), (3.18) implies that EΠ∥γ∥2
∞ is bounded.

3.3.5 Proof of the lower bound Theorem 3.2

Recall the shorthand (3.22), and recall by Theorem 1.2 that it suffices to find γ0, γ1 ∈
Γαm0,D0(M) such that, for some µ small enough,

(1) ∥γ1 − γ0∥∞ ≥ ξε,δ′ ,

(2) K(pγ1
ε , p

γ0
ε ) ≤ µ.

We appeal to Corollary 1 in [56], which says that for any integer k ≥ 2, any q > 0, some
B > 0 and any ξ > 0 sufficiently small there exist γ0, γ1 such that supp(γj − 1) ⊆ D0,
γj ≥ 1 on D for j = 0, 1, and

a. ∥γ1 − γ0∥∞ ≥ ξ,

b. ∥Λγ1 − Λγ0∥H−q(∂D)/C→Hq
�(∂D) ≤ exp

(
−ξ− d

(2d−1)k

)
,

c. max(∥γ1∥Ck(D), ∥γ0∥Ck(D)) ≤ B,

where Ck(D) is the usual space consisting of functions with bounded continuous partial
derivatives up to order k. (Note that [56] states this with full norm H−q(∂D) in place
of the quotient norm, but since Λγj

maps constant functions to 0 for j = 0, 1, the two
norms coincide.) For k = α and B = M , noting Hα(D) ⊃ Cα(D), we deduce there exist
such γ0, γ1 ∈ Γαm0,D0(M). Taking ξ = ξε,δ′ we note that (1) holds by definition.

For (2), applying Lemma 3.16 with p = min(d − 1, r) and q = (d − 1 − r)+ ≡
max(d− 1− r, 0) = d− 1− p we see that, for a constant C = C(d, r),

∥Λγ1 − Λγ0∥Hr
≤ C∥Λγ1 − Λγ0∥H−q→Hq .

Thus, appealing to Lemma 3.9, we can bound the Kullback–Leibler divergences K(pγ1
ε , p

γ0
ε )

by

ε−2∥Λγ1 −Λγ0∥
2
Hr
≤ C2ε−2∥Λγ1 −Λγ0∥

2
H−q→Hq ≤ C2 exp

[
2 log(1/ε)− (log(1/ε))− δ′d

(2d−1)α

]
.

Since δ′ > α(2d− 1)/d by assumption, the final expression tends to zero as ε→ 0 and is
smaller than any µ required in condition (2) for ε small enough.
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Appendix 3.A Laplace–Beltrami eigenfunctions
Here we define the Sobolev spaces Hs(∂D) in terms of a orthonormal basis (φk)k∈N∪{0} =
(φ(0)

k )k∈N∪{0} of L2(∂D) consisting of eigenfunctions of the Laplace–Beltrami operator
∆∂D, and outline some important properties of such a basis. Basic properties can be
found, for example, in Chavel [17], Chapter I. Let λk > 0 be the corresponding eigenvalues,
which we assume to have been sorted in increasing order:

−∆∂D φk = λkφk.

Definition (Hr(∂D)). For r ≥ 0, we define

Hr(∂D) = {f ∈ L2(∂D) s.t.
∞∑
k=0

(1 + λk)r|⟨f, φk⟩L2(∂D)|
2 =: ∥f∥2

Hr(∂D) <∞},

where the space L2(∂D) is defined relative to the surface element on ∂D (and with
complex scalars).

For r < 0, we define Hr(∂D) as the completion of L2(∂D) with respect to the norm
∥·∥Hr(∂D).

Remarks. i. It is immediate from the definitions that {φk} is an orthogonal spanning
set of Hr(∂D), and that setting φ(r)

k = (1 + λk)−r/2φk yields an orthonormal basis
of Hr(∂D).

ii. This definition of Hr(∂D) coincides with the previous definitions. For example, for
r = 1 the calculation∫

∂D
∇φk · ∇φ∗

l = −
∫
∂D
φk ∆∂D φ

∗
l = λ∗

l

∫
∂D
φkφ

∗
l = λlδkl,

derived via the divergence theorem for a manifold (e.g. see [17] eq (35); note that
the manifold ∂D is compact) implies that our definition of ∥·∥H1(∂D) is equivalent
to the standard definition ∥f∥2

H1(∂D) = ∥f∥2
L2(∂D) + ∥∇ f∥2

L2(∂D), and inductively
the same is true for Hr(∂D), r ∈ N.

For the equivalence of this definition with some other definitions of negative or
non-integer Sobolev spaces, see [53] Chapter I Section 7.3 (p34-37). In particular
note that H−s(∂D) is the topological dual space of Hs(∂D) for any s ∈ R.

iii. Note that φ0 is a constant function, hence the Hr(∂D)/C norm, defined by
∥[f ]∥Hr(∂D)/C = infz∈C∥f − z∥ for [f ] the equivalence class over C of a function
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f ∈ Hr(∂D), can also be characterised by

∥[f ]∥2
Hr(∂D)/C =

∞∑
k=1

(1 + λk)r|⟨f, φk⟩L2(∂D)|
2. (3.42)

Recall also we defined Hs
�(∂D) = {g ∈ Hs(∂D) : ⟨g, 1⟩L2(∂D) = 0}. Note that each

[f ] ∈ Hs(∂D)/C has a representative g ∈ Hs
�(∂D), and ∥f∥Hs(∂D)/C = ∥g∥Hs(∂D).

We thus use the norm (3.42) on spaces Hs(∂D)/C and on Hs
�(∂D) without further

mention. We also typically write f for the equivalence class [f ] and only comment
further on this where necessary.

This “spectral” definition of Hr(∂D) is useful particularly because Weyl’s law allows
us to understand the scaling of λk with k fairly explicitly.

Lemma 3.13 (Weyl’s law on a compact closed manifold, e.g. [17] eq.(49)). Suppose M
is a closed compact manifold of dimension d. Then

N(λ) = (2π)−dλd/2ωd Vol(M) + o(λd/2),

where N(λ) is the number of eigenvalues (counted with multiplicity) no bigger than λ and
ωd is the volume of a unit disc in Rd.

Corollary 3.14. For constants C1, C2 depending only on D, the eigenvalues of the
Laplace–Beltrami operator ∆∂D satisfy C1k

2/(d−1) ≤ λk ≤ C2k
2/(d−1). Hence, the eigen-

functions satisfy

C3(1 + k
1

d−1 )s−r ≤ ∥φ(r)
k ∥Hs(∂D) ≤ C4(1 + k

1
d−1 )s−r, s, r ∈ R, (3.43)

for constants C3 and C4 depending only on ∂D and on the difference s− r. For k > 0
the same expression holds with the quotient norm ∥φ(r)

k ∥Hs(∂D)/C in place of ∥φ(r)
k ∥Hs(∂D).

Proof. We apply Weyl’s law on the manifold ∂D, which has dimension d− 1. Writing
N(λ−) for limx↑λN(x) and N(λ+) for limx↓λN(x), we thus have

N(λ−
k ) ≤ k ≤ N(λ+

k ).

It follows that Cλ(d−1)/2
k + o(λ(d−1)/2

k ) ≤ k ≤ Cλ
(d−1)/2
k + o(λ(d−1)/2

k ) for the constant
C = C(D) = (2π)−(d−1)ωd−1 Area(∂D) and hence we deduce the scaling of the eigenvalues.
Then (3.43) follows from the first remark after the definition of Hr(∂D).
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Appendix 3.B Comparison results between Hilbert–
Schmidt operators

For separable Hilbert spaces A and B, we recall the notations L(A,B) for the space of
bounded linear maps A → B equipped with the operator norm ∥·∥A→B, and L2(A,B)
for the space of Hilbert–Schmidt operators A → B. Generalising (3.26), define the
orthonormal basis (b(p,q)

jk ) of L2(Hp, Hq) by

b
(p,q)
jk (f) = (φ(p)

j )⊗ φ(q)
k (f) = ⟨f, φ(p)

j ⟩Hpφ
(q)
k , j, k ∈ N

(in this section we omit explicit reference to the domain, writing Hp for either Hp(∂D)/C
or Hp

� (∂D); as noted in the remark in Appendix 3.A, both spaces can be identified with
span{φ(p)

k : k ≥ 1}, hence the omission should not cause confusion). The compatibility
between our bases of Hp(∂D) for different p ∈ R means that the subspaces spanned by
(b(p,q)
jk )j≤J,k≤K coincide for all p and q, and the L2(Hp, Hq) projections onto this subspace

coincide with πJK (as defined in (3.27)). Corollary 3.14 implies the following results
controlling Hilbert–Schmidt norms for different domains and codomains in terms of each
other, and in terms of operator norms.

Lemma 3.15. Let T ∈ span{b(r)
jk : 1 ≤ j ≤ J, 1 ≤ k ≤ K}, where we recall that

b
(r)
jk = (φ(r)

j )⊗ φ(0)
k . Then, for a constant C depending only on D and on the differences

r − p, s− q, we have

∥T∥L2(Hr,Hs) ≤ C(1 + J1/(d−1))(p−r)+(1 +K1/(d−1))(s−q)+∥T∥L2(Hp,Hq),

where x+ = max(x, 0) for x ∈ R.

Proof. The coefficients a(r,s)
jk of T with respect to the basis (b(r,s)

jk ) are given by

a
(r,s)
jk = ⟨T, b(r,s)

jk ⟩L2(Hr,Hs) = ⟨Tφ(r)
j , φ

(s)
k ⟩Hs

and we see from Corollary 3.14 that

|a(r,s)
jk | ≤ C(1 + j1/(d−1))p−r(1 + k1/(d−1))s−q|a(p,q)

jk | (3.44)

for a constant C depending only on D and the differences r − p, s− q.
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Upper bounding (1 + j1/(d−1))(p−r) ≤ (1 + J1/(d−1))(p−r)+ for j ≤ J , and similarly for
k, we find that

∥T∥2
L2(Hr,Hs) =

∑
j≤J,k≤K

|a(r,s)
jk |

2 ≤ C(1 + J1/(d−1))2(p−r)+(1 +K1/(d−1))2(s−q)+∥T∥2
L2(Hp,Hq),

hence the result.

Lemma 3.16. For some p ≤ r and q ≥ s, let T ∈ L(Hp−(d−1), Hq). Then we have
T ∈ L2(Hr, Hs) and, for constant C depending only on D and the differences r−p, q−s,

∥T − πJKT∥L2(Hr,Hs) ≤ C∥T∥Hp−(d−1)→Hq max
(
(1 + J1/(d−1))p−r, (1 +K1/(d−1))s−q

)
.

In the special case J = K = 0, we have

∥T∥L2(Hr,Hs) ≤ C∥T∥Hp−(d−1)→Hq .

Proof. Firstly, as a consequence of Corollary 3.14, we have, for a constant C = C(D, d),

∥Tφ(p)
j ∥

2
Hq ≤ ∥T∥2

Hp−(d−1)→Hq∥φ(p)
j ∥

2
Hp−(d−1) ≤ C∥T∥2

Hp−(d−1)→Hq(1 + j1/(d−1))−2(d−1),

(3.45)
which is summable over j, hence T ∈ L2(Hp, Hq) and ∥T∥L2(Hp,Hq) ≤ C ′∥T∥Hp−(d−1)→Hq .
Note by monotonicity of Hα norms, we also have T ∈ L2(Hr, Hs).

Since the L2(Hr, Hs)–orthogonal projection maps coincide for all r and s, defining
a

(r,s)
jk as in the previous proof, we have from (3.44) that for a constant C,

∥T − πJKT∥2
L2(Hr,Hs) =

∑
j>J or k>K

|a(r,s)
jk |

2

≤ C
∑

j>J or k>K
(1 + j1/(d−1))2(p−r)(1 + k1/(d−1))2(s−q)|a(p,q)

jk |
2

Since p ≤ r and q ≥ s, we see that

∑
j>J

∑
k

(1 + j1/(d−1))2(p−r)(1 + k1/(d−1))2(s−q)|a(p,q)
jk |

2 ≤ (1 + J1/(d−1))2(p−r) ∑
j>J

∑
k

|a(p,q)
jk |

2

≤ (1 + J1/(d−1))2(p−r)∥T∥2
L2(Hp,Hq).

Arguing similarly for the sum over all j and over k > K, we deduce that

∥T − πJKT∥2
L2(Hr,Hs) ≤ 2C∥T∥2

L2(Hp,Hq) max
(
(1 + J1/(d−1))2(p−r), (1 +K1/(d−1))2(s−q)

)
.
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The result follows.

Appendix 3.C Mapping properties of Λγ and Λ̃γ

In this appendix we prove the following mapping properties of Λγ and Λ̃γ which were
used throughout the main body of this chapter.

Lemma 3.17. Let m > 0 and let D′ be a domain compactly contained in D. For
γ ∈ Γm,D′ and f ∈ Hs+1(∂D)/C, there is a unique weak solution uγ,f ∈ Hs =(
Hmin{1,s+3/2}(D) ∩ H1

loc(D)
)
/C to the Dirichlet problem (3.1). Moreover, if u1,f is

the unique solution when γ = 1, then for any other γ ∈ Γm,D′ bounded by M on D,
uγ,f − u1,f lies in H1

0 (D)/C and satisfies the estimate

∥uγ,f − u1,f∥H1(D)/C ≤ CM
m
∥f∥Hs+1(∂D)/C, (3.46)

for some constant C = C(D,D′, s).

Lemma 3.18. For some m > 0 and some domain D′ compactly contained in D, let
γ ∈ Γm,D′. For each s ∈ R, Λγ is a continuous linear map from Hs+1(∂D)/C to Hs

�(∂D),
and it is continuously invertible. For each s, t ∈ R, the shifted operator Λ̃γ = Λγ − Λ1 is
a continuous map from Hs(∂D)/C to H t

�(∂D).
Moreover, if γ also satisfies the bound ∥γ∥∞ ≤M , then we have the explicit bounds

∥Λγ∥Hs+1→Hs ≤ C1
M

m
, (3.47)

∥Λ̃γ∥Hs→Ht ≤ C2
M

m
, (3.48)

for constants C1 = C(D,D′, s) and C2 = C2(D,D′, s, t).

Given Lemma 3.18, the following is an immediate consequence of Lemma 3.16. Recall
Hr was defined in (3.12).

Lemma 3.19. For any r ∈ R and any γ ∈ Γm,D′, Λ̃γ ∈ Hr.

A key to proving Lemmas 3.17 and 3.18 is the following basic fact about harmonic
functions. For convenience of the reader, we include a proof (following Lemma A.1 in
[42]). Note that as we have assumed γ = 1 on a neighbourhood D \ D′ of ∂D, our
solutions uγ,f are harmonic on this neighbourhood.
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Lemma 3.20 (Interior smoothness of harmonic functions). Let U0, U be domains such
that U b U0. Then for any s, t ∈ R, there is a constant C = C(s, t, U, U0) such that for
any harmonic function v ∈ Hs(U),

∥v∥Hs(U)/C ≤ C∥v∥Ht(U0)/C.

Proof. By monotonicity of H t norms it suffices to prove the result for s = t + k for
k ∈ N. Let v ∈ H t(U0) represent the equivalence class and choose a domain U1 such
that Ū ⊆ U1 ⊆ Ū1 ⊆ U0. Let φ be a smooth cutoff function, identically one on U1 and
compactly supported in U0. For z ∈ C we observe that ṽ := (v − z)φ satisfies

∆ ṽ = F in U0,

ṽ = 0 on ∂U0,

where F = 2∇φ · ∇ v + (v − z) ∆φ. Then

∥v∥Ht+1(U1)/C ≤ ∥v − z∥Ht+1(U1) ≤ ∥ṽ∥Ht+1(U0) ≤ C∥F∥Ht−1(U0),

by Theorem 1.11. Note

∥F∥Ht−1(U0) ≤ C(φ)(∥v∥Ht(U0)/C + ∥v − z∥Ht−1(U0)),

and optimising across z ∈ C yields

∥v∥Ht+1(U1)/C ≤ C∥v∥Ht(U0)/C. (3.49)

Finally, we choose a finite sequence of domains (Uj)1≤j≤k such that Uk = U and, for
1 ≤ j ≤ k, Ūj ⊂ Uj−1; applying (3.49) successively on each pair (Uj, Uj−1), we deduce
the result.

Proof of Lemma 3.17. Recall the remark in Section 1.6.3, which noted that a convenient
way to show existence of a weak solution u = uγ,f is to decouple the task of satisfying
the boundary values from the task of satisfying the PDE. Here, to access the wide body
of theory for the Laplacian, we write u = u1,f + w, where u1,f will be the solution with
γ = 1 and w ∈ H1

0 (D) will ensure the PDE is satisfied.
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From standard theory for the Laplacian as in Theorem 1.11 (and Remark 2 thereafter),
for f ∈ Hs+1(∂D)/C there exists a solution u1,f ∈ Hs+3/2(D)/C to

∆u = 0 in D,

u = f on ∂D,

and this solution satisfies

∥u1,f∥Hs+3/2(D)/C ≤ C∥f∥Hs+1(∂D)/C (3.50)

for a constant C = C(D, s). Also note that, as a harmonic function, u1,f ∈ H1
loc(D)/C

by Lemma 3.20.
Now we show the existence of a weak solution w ∈ H1

0 (D) to Lγ [w] = −Lγ [u1,f ], where
Lγ [u] = ∇ ·(γ∇u). The operator Lγ is easily seen to be uniformly elliptic with ellipticity
constant m. Recalling that Bγ(w, v) denotes

∫
D γ∇w · ∇ v∗, the weak formulation of

this PDE is

Bγ(w, v) = A(v) := −
∫
D
γ∇u1,f · ∇ v∗, ∀v ∈ H1

0 (D).

In order to apply the general existence result Theorem 1.10, it remains to verify that the
conjugate linear map A has bounded operator norm.

Since γ = 1 on D \D′, for v ∈ H1
0 (D) an application of the divergence theorem yields

−
∫
D\D′

γ∇u1,f · ∇ v∗ = −
∫
D
∇u1,f · ∇ v∗ +

∫
D′
∇u1,f · ∇ v∗

=
∫
D
v∗∆u1,f −

∫
∂D
v∗∂u1,f

∂ν
+
∫
D′
∇u1,f · ∇ v∗

=
∫
D′
∇u1,f · ∇ v∗

It follows, since ∥1− γ∥∞ ≤ ∥γ∥∞ ≤M , that

|A(v)| =
∣∣∣∣∫
D′

(1− γ)∇u1,f · ∇ v∗
∣∣∣∣ ≤M∥v∥H1(D)∥∇u1,f∥L2(D′).

By interior smoothness of harmonic functions (Lemma 3.20) and recalling (3.50), there
are constants C and C ′ depending only on D,D′ and s such that

∥∇u1,f∥L2(D′) ≤ ∥u1,f∥H1(D′)/C ≤ C ′∥u1,f∥Hs+3/2(D)/C ≤ C∥f∥Hs+1(∂D)/C.
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Thus, |A(v)| ≤ CM∥f∥Hs+1(∂D)∥v∥H1(D). The existence of a unique solution w ∈ H1
0 ,

which satisfies (3.46), then follows by Theorem 1.10.
It remains to show that the (equivalence class of) function(s) u so constructed is the

unique solution in Hs to (3.4). Since we have shown uniqueness of w, it is enough to
show that the difference h between two Hs solutions lies in H1

0 , since then it must be the
zero function. (We are considering h as a function, rather than an equivalence class of
functions, which we can do by for example choosing a representative with average zero.)
This is clear for s ≥ −1/2 as then Hs ⊂ H1, and can be shown also for s < −1/2 as
in [42], Theorem A.2 (the idea being that we know h ∈ H1

loc(D) so it suffices to prove
h ∈ H1(D\Ω) for some Ω b D; this can be proved using harmonicity arguments as above
to show the trace of h on ∂Ω is smooth enough that Theorem 1.11 gives the result).

Proof of Lemma 3.18. We first remark that, by the divergence theorem,
〈
∂u
∂ν
, 1
〉
L2(∂D)

=
∫
∂D
γ ∂u
∂ν

=
∫
D
∇ ·(γ∇u) = 0

for a solution u to the Dirichlet problem (3.1), so that it suffices to prove (3.47), (3.48),
and the continuity of Λ−1

γ : Hs
�(∂D)→ Hs+1(∂D)/C.

We first prove (3.48), by adapting the proof of Theorem A.3 from [42] and tracking the
constants. Given f ∈ Hs+1(∂D)/C let uγ,f ∈ Hs be the unique solution to the Dirichlet
problem (3.1) and let w ∈ H1

0 be a representative of the function class uγ,f −u1,f . Choose
a domain Ω such that D′ b Ω b D. Choose also domains U,U0 such that

∂Ω ⊂ U b U0 b D \D′.

Noting that w is harmonic on D \ Ω̄, the trace theorem (Theorem 1.8) applied to w − z
and optimised across z ∈ C yields

∥∂w/∂ν∥Ht(∂D) ≤ C∥w∥Ht+3/2(D\Ω̄)/C. (3.51)

Applying Theorem 1.11 we see

∥w∥Ht+3/2(D\Ω̄)/C ≤ C
(
∥trw∥Ht+1(∂D)/C + ∥trw∥Ht+1(∂Ω)/C

)
= C∥trw∥Ht+1(∂Ω)/C.

Again applying the trace theorem, this time on a subset of U bounded on one side by
∂Ω, and applying Lemma 3.20, we see

∥trw∥Ht+1(∂Ω)/C ≤ C∥w∥Ht+3/2(U)/C ≤ C ′∥w∥H1(U0)/C.



3.D Statistical equivalence results for the noisy Calderón problem 107

The constants in the above depend onD and (via Ω, U and U0) onD′, but are otherwise
independent of γ. Recalling (3.46), which, because the smoothness of f here is s, tells us
∥w∥H1(U0)/C ≤ C

(
M
m

)
∥f∥Hs(D)/C, we overall have ∥∂w/∂ν∥Ht(∂D) ≤ C

(
M
m

)
∥f∥Hs(∂D)/C,

so that we have proved (3.48).
Now we prove (3.47); given (3.48), it suffices to show ∥Λ1∥Hs+1(∂D)/C→Hs(∂D) ≤ CM

m

for an appropriate constant C. Since u1,f is harmonic on D, Theorem 1.8 yields

∥∂u1,f/∂ν∥Hs(∂D) ≤ C∥u1,f∥Hs+3/2(D)/C

for a constant C = C(D, s), while Theorem 1.11 yields

∥u1,f∥Hs+3/2(D)/C ≤ C∥f∥Hs+1(∂D)/C

for a constant C = C(D, s), and (3.47) follows.
Finally we remark that the same arguments (see Theorem A.3 in [42]) applied to the

inverse of Λγ , which is the Neumann-to-Dirichlet map, show that this is continuous from
Hs

�(∂D) to Hs+1(∂D)/C as required.

Appendix 3.D Statistical equivalence results for the
noisy Calderón problem

In this appendix we rigorously state and prove the asymptotic equivalence results of
Section 3.1. The notion of equivalence is in terms of Le Cam discrepancies, as defined
Section 1.3.1, and, recalling that K(P,Q) = K(p, q) denotes the Kullback–Leibler
divergence between measures P,Q with densities p, q, we restate the following lemma.

Lemma (Lemma 1.1, restated). Let E1 and E2 be experiments with a common parameter
set Θ: write Ej = (Xj,Fj, {Pj,θ}θ∈Θ).

a. Suppose further that the experiments are defined on a common probability space,
i.e. that X1 = X2 and F1 = F2. Then

∆(E1, E2) ≤ sup
θ∈Θ
∥P1,θ − P2,θ∥TV ≤ sup

θ∈Θ

√
K(P1,θ, P2,θ)/2.

b. Let F : X1 → X2 be any (deterministic) measurable map. Then

δ(E1, E2) ≤ sup
θ∈Θ
∥P1,θ ◦ F−1 − P2,θ∥TV.
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c. Let F : X1 → X2 be a measurable map. Suppose that P1,θ◦F−1 = P2,θ for each θ ∈ Θ
and suppose that F (X) is a sufficient statistic for X ∼ P1,θ. Then ∆(E1, E2) = 0.

Recall that for fixed positive noise level ε > 0, in model (3.7) we are given data

Yp,q = ⟨Λ̃γ[ψp], ψq⟩L2(∂D) + εgp,q, p, q ≤ P, gp,q
iid∼ N(0, 1),

where ψp = cp1Ip for some disjoint (measurable) sets Ip ⊆ ∂D, with cp such that the ψp
are L2(∂D) orthonormal; for some r ∈ R, in model (3.8) we are given data

Yj,k = ⟨Λ̃γφ
(r)
j , φ

(0)
k ⟩L2(∂D) + εgj,k, j ≤ J, k ≤ K, gj,k

iid∼ N(0, 1),

for a Laplace–Beltrami basis (φ(r)
k )k∈N of Hr(∂D)/C, and in model (3.13) we are given

data
Y = Λ̃γ + εW, W a Gaussian white noise indexed by Hr,

or equivalently data(
Y (T ) = ⟨Λ̃γ, T ⟩Hr

+ ε
∑
j,k

gjk⟨Tφ(r)
j , φ

(0)
k ⟩L2(∂D) : T ∈ Hr

)
.

Let E0, E (r)
1 and E (r)

2 denote the experiments corresponding to these data models re-
spectively, in each case taking the parameter space to be {γ ∈ Γm,D′ : ∥γ∥∞ ≤ M} for
some constants m,M > 0 and some domain D′ compactly contained in D. We have the
following.

Theorem 3.21. Suppose ∪p≤P Ip = ∂D and diam(Ip) ≤ (A/P )1/(d−1) for a constant A
independent of P . Then the one-way Le Cam deficiency δ(E0, E (0)

1 ) satisfies

δ(E0, E (0)
1 ) ≤ C

(
max(J,K)(5d−2)/(2d−2) + ε−1 max(J,K)3d/(2d−2)

)
P−1/(d−1),

for some constant C = C(A,D′, D,M,m), and hence vanishes asymptotically if P is
large enough compared to ε, J and K.

Remarks. i. The conditions on (Ip)p≤P are only used to prove that we can approximate
any Laplace–Beltrami eigenfunction at a rate P−1/(d−1) with respect to the L2(∂D)
distance (Lemma 3.22). If (Ip)p≤P are such that we can approximate Laplace–
Beltrami eigenfunctions at a rate f(P ) then we achieve the result with f(P ) in
place of P−1/(d−1) .
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ii. The given conditions are naturally satisfied by “evenly spaced” sets (Ip)p≤P par-
titioning the boundary ∂D, with a constant A depending only on the domain D.
This can be seen by considering the covering numbers N(∂D, d∂D, δ) (the smallest
number of d∂D balls of radius δ needed to cover ∂D) for d∂D the geodesic distance.
Theorem 4.5 in Geller & Pensenson [31] applied to the current setting yields

N(∂D, d∂D, δ) ≤ Aδ−(d−1)

for a constant A = A(D), for any δ > 0. Taking δ = 2(A/P )1/(d−1) we deduce
that there exist P balls of radius δ/2 covering D. To construct P disjoint subsets
of diameter at most δ, we simply assign each x ∈ ∂D to exactly one of the balls
containing it.

iii. The proof idea can also be used to show a one-way discrepancy result in the other
direction. However, this requires that min(J,K) is large compared to P , hence the
two results do not combine to give a (two-way) asymptotic equivalence result.

The idea of the proof is to approximate Laplace–Beltrami eigenfunctions via linear
combinations of the indicator functions. The following lemma allows us to control the
error in this approximation.

Lemma 3.22. Under the hypotheses of Theorem 3.21, let φPj denote the L2–orthogonal
projection of φ(0)

j onto span{ψp : p ≤ P}. Then there is a constant C depending only on
the constant A of Theorem 3.21 and on D such that

∥φ(0)
j − φPj ∥

2
L2(∂D) ≤ C max(J,K)(2+d)/(d−1)P−2/(d−1). (3.52)

Proof. Since φPj as the L2–orthogonal projection minimises the L2 distance to φ(0)
j of any

function in span{ψp : p ≤ P}, for any points xp ∈ Ip we see

∥φ(0)
j − φPj ∥

2
L2(∂D) ≤ ∥φ

(0)
j −

P∑
p=1

φ
(0)
j (xp)1Ip∥

2
L2(∂D)

≤ max
p≤P

(diam(Ip)2)
P∑
p=1

∫
Ip

|φ(0)
j (x)− φ(0)

j (xp)|2

|x− xp|2
dx

≤ (A/P )2/(d−1)∥φ(0)
j ∥

2
Lip Area(∂D).

Using a Sobolev embedding for the compact manifold ∂D, we may estimate the Lipschitz
constant of φ(0)

j , denoted ∥φ(0)
j ∥Lip in the above, by a constant times ∥φ(0)

j ∥Hκ(∂D) for any
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κ > 1 + (d− 1)/2. In particular, taking κ = 1 + d/2, we see that the final expression is
bounded by C max(J,K)(2+d)/(d−1)P−2/(d−1) for some C = C(A,D) by Corollary 3.14.

Proof of Theorem 3.21. Let (Ypq) be the data from experiment E0. Let φPj be as in
Lemma 3.22, and write ajp = ⟨φ(0)

j , ψp⟩L2(∂D), so that φPj = ∑P
p=1 ajpψp. Define F :

RP×P → RJ×K via
F ((upq)p,q≤P )jk =

∑
p,q≤P

ajpakqupq.

Let E ′
0 denote the experiment with data

Y ′
jk = F ((Ypq)p,q≤P )jk = ⟨Λ̃γφ

P
j , φ

P
k ⟩L2(∂D) + εg′

jk, (3.53)

where we define g′
jk = ∑

p,q ajpakqgpq, and let E ′
1 denote the experiment with data (3.53)

but for i.i.d. Gaussian noise. Then, by the triangle inequality and Lemma 1.1b,

δ(E0, E1) ≤ δ(E0, E ′
0) + δ(E ′

0, E1) ≤ ∆(E ′
0, E ′

1) + ∆(E ′
1, E1).

We control each the terms on the right.

∆(E ′
0, E ′

1): The covariance of (g′
jk)jk is given by

Cov(g′
jk, g

′
lm) = ⟨φPj , φPl ⟩L2(∂D)⟨φ

P
k , φ

P
m⟩L2(∂D).

Writing

⟨φPj , φPl ⟩L2(∂D) = ⟨φ(0)
j , φ

(0)
l ⟩L2(∂D) + ⟨φ(0)

j , φPl − φ
(0)
l ⟩L2(∂D) + ⟨φPj − φ

(0)
j , φPl ⟩L2(∂D),

and applying the Cauchy–Schwarz inequality and Lemma 3.22, noting that ∥φPl ∥L2(∂D) ≤
∥φ(0)

l ∥L2(∂D) = 1, we see for a constant C = C(A,D) that

|⟨φPj , φPl ⟩L2(∂D) − δjl| ≤ C max(J,K)(1+d/2)/(d−1)P−1/(d−1).

Thus, controlling the Le Cam distance between Gaussian experiments with equal
means by

√
2 times the Frobenius distance between the covariance matrices (as in the
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proof of Theorem 3.1 in [71]) yields

∆(E ′
0, E ′

1) ≤
( ∑
j,l≤J,

∑
k,m≤K

(Cov(g′
jk, g

′
lm)− δjlδkm)2

)1/2

≤ CJK max(J,K)(1+d/2)/(d−1)P−1/(d−1)

≤ C max(J,K)(5d−2)/(2d−2)P−1/(d−1).

∆(E ′
1, E1): Explicitly calculating the Kullback–Leibler divergence between multivariate

normals with the same covariance matrix and using Lemma 1.1a yields

∆(E ′
1, E1) ≤ ε−1 × sup

γ∈Γm,D′ :∥γ∥∞≤M0

∥∥∥(⟨Λ̃γφ
(0)
j , φ

(0)
k ⟩L2(∂D) − ⟨Λ̃γφ

P
j , φ

P
k ⟩L2(∂D)

)
j≤J,k≤K

∥∥∥
RJ×K

,

where the norm on the right is the usual Frobenius or Hilbert–Schmidt norm on the
space of J ×K matrices. By Lemma 3.18, ∥Λ̃γ∥L2(∂D)→L2(∂D) is bounded by a constant
C = C(D,D′,M,m), hence applying also Lemma 3.22 we have for a different constant
C ′ = C ′(A,D,D′,M,m),

(⟨Λ̃γφ
(0)
j , φ

(0)
k ⟩L2(∂D) − ⟨Λ̃γφ

P
j , φ

P
k ⟩L2(∂D))

2

= (⟨Λ̃γ(φ(0)
j − φPj ), φ(0)

k ⟩L2(∂D) + ⟨Λ̃γφ
P
j , φ

(0)
k − φPk ⟩L2(∂D))

2

≤ C ′ max(J,K)(2+d)/(d−1)P−2/(d−1).

Summing over j and k we deduce ∆(E ′
1, E1) ≤ C ′ε−1 max(J,K)3d/(2d−2)P−1/(d−1).

Theorem 3.23. For any r ∈ R and any ν > 0 there is a constant C = C(ν, r,D,D0,M,m)
such that the Le Cam distance ∆(E (r)

1 , E (r)
2 ) satisfies

∆(E (r)
1 , E (r)

2 ) ≤ Cε−1 min(J,K)−ν .

Proof. We introduce the experiments E (r)
i , i = 3, 4 with parameter space {γ ∈ Γm,D′ :

∥γ∥∞ ≤M} corresponding to observations
(
πJKΛ̃γ + εW

)
(U)U∈Hr , and(

πJKΛ̃γ + εW
)
(πJKU)U∈Hr ,
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where we recall the projection πJK was defined in (3.27). By the triangle inequality for the
Le Cam distance, we decompose ∆(E (r)

1 , E (r)
2 ) ≤ ∆(E (r)

2 , E (r)
3 )+∆(E (r)

3 , E (r)
4 )+∆(E (r)

4 , E (r)
1 ).

We control each of the terms on the right.

∆(E (r)
2 , E (r)

3 ): Lemmas 1.1a, 3.4 and 3.9 yield

∆(E (r)
2 , E (r)

3 ) ≤ 1
2ε

−1 × sup
γ∈Γm,D′ :∥γ∥∞≤M0

∥Λ̃γ − πJKΛ̃γ∥Hr
≤ Cε−1 min(J,K)−ν ,

for a constant C = C(ν, r,D,D′,M,m).

∆(E (r)
3 , E (r)

4 ): We note that
(
πJKΛ̃γ + εW

)
(πJKU)U∈Hr is a sufficient statistic for(

πJKΛ̃γ + εW
)
(U)U∈Hr , so that ∆(E (r)

3 , E (r)
4 ) = 0 by Lemma 1.1c.

∆(E (r)
4 , E (r)

1 ): Using Lemma 1.1b as in the proof of Theorem 3.21, one shows that the
experiment E (r)

1 is equivalent to observing
(∑

j≤J,k≤K

(
⟨Λ̃γφ

(1)
j , φ

(0)
k ⟩L2(∂D)ujk + εgjkujk

))
u∈ℓ2

.

Since g′
jk := ⟨W, b

(r)
jk ⟩Hr

d= gjk, and, for U = ∑
j,k ujkb

(r)
jk ,

∑
j≤J,k≤K

(
⟨Λ̃γφ

(1)
j , φ

(0)
k ⟩L2(∂D)ujk

)
= ⟨πJKΛ̃γ, πJKU⟩Hr

,

we deduce ∆(E (r)
4 , E (r)

1 ) = 0 after recalling the concrete formulation (3.14) of model
(3.13).
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