
P RO C E S S S Y S T EM S E NG I N E E R I N G

Efficient surrogates construction of chemical processes: Case
studies on pressure swing adsorption and gas-to-liquids

Zhimian Hao1 | Chonghuan Zhang1 | Alexei A. Lapkin1,2

1Department of Chemical Engineering and

Biotechnology, University of Cambridge,

Cambridge, UK

2Cambridge Centre for Advanced Research

and Education in Singapore, CARES Ltd,

Singapore

Correspondence

Alexei A. Lapkin, Department of Chemical

Engineering and Biotechnology, University of

Cambridge, Cambridge CB3 0AS, UK.

Email: aal35@cam.ac.uk

Funding information

Chinese Scholarship Council; Cambridge Trust;

National Research Foundation Singapore,

CREATE: CARES, C4T Project

Abstract

We propose a sequential sampling approach to training statistical digital twins. This

approach is relevant for real-world engineering problems with expensive data genera-

tion. Prerequisite for building surrogates is sufficient data; however, oversampling

does not improve regression accuracy. The time for data generation may be reduced

by: (a) applying a classifier to improve data quality and avoid evaluation of infeasible

inputs, and (b) employing dynamic sampling linked to regression quality. In dynamic

sampling, the initial sampling rate is large to generate enough data for surrogate

regression in a few iterations; the sampling rate gradually slows down with the

improvement of the iteratively refined surrogate. A dynamic process and a steady-

state process from the field of carbon capture and utilization are used as case studies:

pressure swing adsorption (PSA) and gas-to-liquids (GTL). The computational costs

for surrogates generation are reduced by 86% for PSA and 51% for GTL, compared

with employing a static sampling rate.
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1 | INTRODUCTION

The transformation to Industry 4.0 is driven by the advancements in

digitalization.1 As a foundation of digitalization, digital twins, referring

to surrogates in this work, can represent the physical assets within

cyber domain, and play an important role in the evaluation of engi-

neering systems.2 To build surrogates, one of prerequisites is data, the

generation of which can be time-consuming and prohibitively expen-

sive for real-world engineering systems. Conventional sampling

methods can lead to under/oversampling issues.3 Our strategy is to

develop a workflow to reduce the total time spent on data generation

by: (a) lowering the total number of the required data points, and

(b) shortening the time per quantum of data generation. To success-

fully set up such a methodology, it is beneficial to review prior works

on surrogate modeling and sampling methods, which will be elabo-

rated in the remainder of this section.

The evaluation of real-world engineering systems is expensive.

With physical models and inputs, computer simulations can accurately

deliver information about systems. Although cheaper than experimen-

tal or industrial data, simulations can be considerably slow when the

systems involve multiscale, multiphase phenomena, and dynamic

behaviors.4 Data-driven surrogates can represent the original physical

models by building relationship between inputs and outputs

(responses). For some complex systems, there are even no physical

models available, and thus surrogates together with the design of

experiments (DoEs) seem to be the only choice.5–7 Surrogates are

cheap-to-evaluate and can directly be employed for optimization, con-

trol, and design in many engineering fields, for example, chemical
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engineering,8–11 pharmaceutical manufacturing,12 supply chain

management,13,14 and aerospace engineering.15–17

Besides the conventional formulations of surrogates, the booming

of machine learning has expanded the “surrogate family”4,9,10,18 with

more choices, for example, artificial neural networks (ANNs) and

Gaussian process (GP).19–22 ANNs are regarded as universal

approximators23 and allow to fit multiple output variables simulta-

neously. The flexible structures and various activation functions

enable ANNs to accurately fit any linear or nonlinear relationship of

input/output. GP, often referred as Kriging, belongs to a nonparamet-

ric model type, which has excellent fitting performance and can pre-

dict uncertainty.20 However, GP is generally implemented for single

output variable, whereas the formulation for fitting multiple output

variables is complex.24,25

Data is one of the prerequisites to train a surrogate. When the

available data is limited, data generation is necessary, but it can be

extremely expensive for real-world engineering systems.19 To demon-

strate it, we consider an example of a chemical process – pressure

swing adsorption (PSA).26–28 Details about PSA can be found in Case

study 1 (Section 4.1). Data is randomly sampled, while the surrogate is

trained iteratively. As shown in Figure 1, computational cost for data

generation has a significantly higher order of magnitude than that for

surrogate training, which is one of the common problems in chemical

process systems. Insufficient data quantity cannot guarantee good

quality for constructing a surrogate, while Garud et al. review that

simply increasing the data quantity cannot lead to better performance

of a surrogate.3 Thus, the quality of surrogates should rely on both

data quantity and quality.

To reduce the time for data generation, the first objective is to

obtain good-enough surrogates with the minimum amount of data.

There are two types of sampling methods: one-shot and sequential

(adaptive) methods.10 The former method samples the design space

uniformly in one go and then builds a surrogate, while the

latter samples data in batch and refine the surrogate iteratively.

The one-shot is straightforward but may result in under/oversampling,

where either poor regression or inefficiency can occur. In recent

years, the sequential methods tend to be popular because they are

reported to better balance the regression performance and

efficiency.10

However, oversampling is still hard to avoid by a typical sequen-

tial method. To demonstrate this, we still use the example of a PSA

process. Mean squared errors (MSEs) are employed to evaluate the

regression performance. The data is sequentially sampled by Latin

hypercube sampling (LHS), which is stochastic. A stochastic method

has an anytime behavior,29 where sampling can be stopped at any

time. We plot the fitting performance against time to observe the ter-

mination condition as shown in Figure 2. We divide the sequential

sampling as two equal parts based on the number of data points

(approximately equivalent to time, because the time for surrogate

training can be neglected compared with data generation as shown in

Figure 1). The plot indicates that regression improvement in the first

half is significantly greater than that in the second half. This suggests

that too much data is not worth collecting, although the limit of the

infinite number of data points is required to fully fill the searching

space theoretically. In other words, due to the anytime behavior, we

should stop any further sampling after achieving a certain fitting per-

formance. Also, we noticed that the MSE values fluctuate all the time.

Hence, it is rather challenging to determine an optimal termination

criterion.

Meanwhile, with the linear increase in the number of data points

generated, time seems to exponentially increase for surrogate training

(Figure 1). Consequently, the surrogate training might be extremely

time-consuming if the number of sampled data points is high. There-

fore, oversampling brings the unnecessary time costs for data genera-

tion and extra effort for surrogate training. To avoid oversampling, it

might be beneficial to spot the nonimprovement trend as early as

possible.

F IGURE 1 Computational cost on data generation vs. surrogate
training for the PSA process

F IGURE 2 Illustration of why too many data points might not be
worth sampling
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The second objective in sampling is concerned with the

improvement of data quality. The design space for sampling is ini-

tially based on limited prior experience or even random guesses,

and the infeasible design space is commonly unavoidable. Conse-

quently, some inputs, which happen to be sampled from the infeasi-

ble design space, can lead to unexpected outputs, such as

nonconverged simulation outputs or experimental failures. Such

outputs will introduce significant errors to the surrogate construc-

tion, and thus they are ineffective data, which should be screened

out. To increase data effectiveness, a classifier can be constructed

to distinguish between infeasible and feasible design spaces. Such

application of a classifier has been successfully demonstrated in

prior research works. Ibrahim et al. reported that a support vector

machine (SVM) can be used to set a feasibility constraint to filter

infeasible design space for nonconverged simulations.30 Cao et al.

adopted a Bayes classifier to improve the design space for the

experimental conditions of formulations.5 Kim et al. applied a com-

bined classification system to increase the quality of design space

for computation-based material discovery, which can significantly

reduce the number of further samplings.31 Houben et al. included a

classifier into a Bayesian optimization algorithm to avoid infeasible

experiments in emulsion polymerization.32

To further enhance data quality, exploitation-based methods can

be considered to identify the promising sample placement. A simple

example can be used to demonstrate the importance of sample place-

ment. Suppose a data-driven model fits a model with a simple form

y¼ sin xð Þat the design space 0,π½ �. Then the sampling places at 0, π2 ,π

are more important than other places. The real-world engineering

problems can be more complex with high dimensionality, and

exploitation-based methods tend to place more samples in the highly

nonlinear/complex regions.10 Cozad et al. develop a workflow called

ALAMO for algebraic model building in a sequential sampling

way.33,34 For a new data to sample, they apply a derivative-free opti-

mization technique to identify the sample placement, which holds the

largest error between the surrogate and the original model. To iden-

tify one optimal sample placement, many new data points are required

to be generated for evaluation during the optimization. Consequently,

this method, actually, generates far more data points than the

reported number of optimal data points. An alternative approach is to

employ GP-based surrogates, which can predict the model errors. The

region with the maximum prediction error is selected for new

points.35,36 However, this approach is limited to GP-based surrogate

type, since the error prediction is not a generic characteristic for other

surrogate types.3 Garud et al. review that the surrogate-independent

strategies can be more advantageous, because they can be more

generic and can guarantee sampling randomness.3 Most of these

strategies are based on certain score criteria to identify complex

regions, which then require exploitation-based methods for local

improvement. Since it is out of the scope of this work, more detailed

information can be referred to in the Garud's review article.3 Although

the exploitation-based approaches are powerful in improving data

quality, the complex mathematical formulations make them difficult in

implementation.

In this work we aim to develop a generic and easy-to-implement

sampling method for surrogate generation. The sampling efficiency

benefits from:

• reduction in the total number of sampling points;

• reduction in the time per data generation.

The remainder of this work is structured as follows: Section 2 pro-

poses the overall workflow for the surrogate construction; Section

3 demonstrates the state-of-art of two principles for efficient data

generation; further, Section 4 presents two case studies on chemi-

cal processes, followed by conclusions and outlook in the final

section.

2 | WORKFLOW FOR SURROGATE
CONSTRUCTION

This section presents the workflow for surrogate generation. We

select LHS as the sampling technique, because it does not lose

generality with the increase of dimensionality and can deliver a

well-distributed sampling result.3 As shown in Figure 3, the algo-

rithm samples initial data by LHS. Then, simulations or experiments

generate the corresponding outputs. With the initial data points

(or together with a few iterations), an SVM classifier is trained to

separate the feasible design space from the infeasible one. The data

inputs from the infeasible region are deleted, while inputs in the

feasible region are passed to the simulator for outputs. To fit multi-

ple outputs simultaneously, ANN is selected as the surrogate type.

In the successive iterations, data is sampled in batch by LHS for

surrogate refinement, with which the sampling rate gradually

slows down.

We briefly demonstrate the procedure for data generation. Pro-

cess simulators—Aspen Plus, Dymola, or gPROMS are powerful tools

for process modeling. Still, they are not flexible for data storage and

are limited in their capacity to access high-level statistic packages.

Therefore, it is necessary to establish an interface between process

simulators and high-level programming languages (e.g., MATLAB,

Python, etc.). Advantages of MATLAB over other programming lan-

guages are: reliable optimization and machine-learning toolboxes,

which have been well-established for commercial use. The automa-

tion of MATLAB to process simulators has previously been reported

in process design37–39 and control.40 As shown in Figure 4, the inputs

are sampled by LHS in MATLAB and passed to simulators, for exam-

ple, Dymola for dynamic simulations and Aspen Plus for steady-state

process simulations. The obtained outputs are sent back to MATLAB

for data collection.

At each sequential sampling iteration (ith iteration), the workflow

can generate a surrogate (Surrogatei). The regression performance of

Surrogatei is computed by a training–validation–test method. Specifi-

cally, the obtained dataset is divided into three subsets: training, vali-

dation, and test at a ratio 70%/20%/10%. Given the nonlinearity of

process systems, we use a nonlinear activation function—hyperbolic
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tangent (tanh). We optimize the structure of networks by a random

search strategy. In the random search strategy, a set of network candi-

dates are established with random structures (e.g., the number of

layers and the number of neurons is different within the network can-

didates), and they are regressed by the training dataset. Following this,

these trained network candidates are evaluated using validation

dataset, and the network candidate with the minimal MSE value is

selected as Surrogatei. The regression performance of Surrogatei is

determined by its MSE based on the test dataset.

3 | STATE-OF-ART FOR EFFICIENT DATA
GENERATION

The two principles, the classifier and slowdown sampling, are detailed

in this section.

3.1 | Classifier SVM

The sampled points might fall in the infeasible design space due to

extreme operating conditions for experiments (e.g., unexpected reac-

tions occur at high temperature) or nonconverged recycle streams, or

integration failure on stiff models during computational simulations. A

classifier can be trained to pretreat the data inputs. Only the selected

data inputs can be passed into the simulation or experiment stage,

thus saving the average time spent on a single data point.

SVM is a machine learning technique primarily for classification.

SVM was initially proposed as a linear classifier, while Vapnik et al.

F IGURE 3 Proposed workflow for
surrogate generation. [X0, Y0] are initial
inputs/outputs to train an SVM classifier;
[X*, Y*] are the inputs/outputs (selected by
SVM classifier) for surrogate training in the
latest iteration; Xnew are the inputs for the
next iteration; X are the updated inputs in
the latest iteration. The added number of
samples in iteration i refers to the sampling

rate (Naddedi ) in iteration i

F IGURE 4 Data generation by interfacing MATLAB with process
simulators
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expanded its application as a nonlinear classifier in 1995.41 It is a mature

and reliable method, the success of which was proven in the fields of

pattern recognition and computer vision problems.42 For a typical chemi-

cal process, the high-dimensional features (or multiple inputs) and the

nonlinearity are unavoidable. Ibrahim has demonstrated its successful

application in chemical process engineering.30 A toolbox of SVM can be

accessed in MATLAB, so SVM is selected as the classifier in this work.

The training process for SVM is similar to the steps for surrogate train-

ing. Two differences are specified here. Firstly, only the dataset in the ini-

tial several iterations is used to train the classifier. This is because the

classifier in this work is expected to give rough classification between

infeasible and feasible design spaces, so the iterative refinement for the

classifier is not necessary. Secondly, the output for the classifier is binary,

0 and 1: set 0 if the simulation outputs fall on the infeasible space, while

setting 1 if the simulation outputs fall on the feasible area. Following this,

the data inputs together with the classifier outputs are used to train

the SVM.

3.2 | Slowdown sampling

To clearly explain the slowdown sampling strategy, we start with the

definition of two variables as follows:

• Sampling rate (Naddedi ): the number of new samples in ith iteration.

• Surrogate improvement rate ð slopeMSEi

���
���
�
: the surrogate improve-

ment per sample added.

3.2.1 | Logic behind slowdown sampling

When employing sequential sampling based on a static sampling rate,

a practical question falls on how to determine a proper value for the

sampling rate. A large rate can result in the oversampling in the final

iterations, while a small rate will lead to too many iterations, but the

training in the early iterations is not meaningful based on a small

dataset. Herein, we propose that the sampling rate can be dynamic:

initially the sampling rate is relatively large as to achieve a reasonable

data quantity for surrogate regression in just a few iterations; the

sampling rate gradually slows down with the regression improvement

of the iteratively refined surrogate. This refers to the slowdown sam-

pling principle. To achieve this, we need to build the relationship

between sampling rate and surrogate improvement rate.

First, we explain how to quantify the surrogate improvement

rate ð slopeMSEi

���
���
�
in ith iteration. The first iteration obtains the result

directly from the classifier section. For a successive iteration (i≥2),

MSEi is used to quantify the regression performance. We use the

moving mean (MSEi) to smooth the fluctuation of the MSE curve. The

MSE decrease per data added, or we call it the slopeMSEi
, is defined as

Equation (1). Its absolute value can reflect on how the surrogate can

be refined based on one more data, so slopeMSEi

���
��� is suitable to

express the surrogate improvement rate.

slopeMSEi
¼MSEi�MSEi�1

Naddedi

ð1Þ

Second, we propose how the sampling rate is expected to respond to

the surrogate improvement rate. A large value of slopeMSEi

���
��� indicates

that addition of new samples can significantly improve the quality of

the surrogate; hence, sampling rate of the next iteration (Naddediþ1
) is

expected to be large; while a very small value of slopeMSEi

���
��� indicates

that oversampling tends to occur, so Naddediþ1
should approach 0. In

brief, the smaller slopeMSEi

���
��� is, the smaller Naddediþ1

is.

Third, we display the steps of relating the surrogate improvement

rate ð slopeMSEi

���
���
�
to the sampling rate (Naddediþ1

).

• Step 1: As Equation (2), slopeMSEi
can be scaled to a relative slope

(sloperelativei ), based on the scale—initial slope value (slopeMSE2 ). In

most cases, the surrogate improvement rate is largest in the begin-

ning, so the slopeMSE2 normally has the largest absolute value

among all the slopeMSEi
. Thus, the relative slope value normally falls

between �1 and 1 (due to the fluctuation, the value of the slope

can be positive). The absolute value of relative slope�
jsloperelativei jÞ reflects how slopeMSEi

���
��� drops, when comparing to

the initial surrogate improvement rate.

sloperelativei ¼
slopeMSEi

slopeMSE2
ð2Þ

• Step 2: A ratio function can convert the relative slope to a positive

value as the added ratio (addedratioiþ1
, typically between 0 and 1).

addedratioiþ1
refers to ratio of the sampling rate over the maximum

sampling rate. The formula for the ratio function can be found at

Section S1 in Supporting Information. Step 2 aims to achieve “the
smaller slopeMSEi

�� �� is, the smaller Naddediþ1
is.”

addedratioiþ1
¼ ratiofunction sloperelativei

�� ��� � ð3Þ

• Step 3: The sampling rate (Naddediþ1
) is calculated through multiply-

ing addedratioi by the maximum sampling rate (the maximum num-

ber of new samples per iteration, Nupper), see Equation (4).

Naddediþ1
¼Nupper�addedratioiþ1

ð4Þ

3.2.2 | Demonstration of slowdown sampling by
fitting kinetics for A!k1 B!k2 C

To better demonstrate the slowdown sampling, we use a simple example

of fitting two reactions in series A!k1 B!k2 C. The two reactions are

assumed to obey first-order kinetics, as written in Equations (5)–(7).

dA
dt

¼�k1A ð5Þ

dB
dt

¼ k1A�k2B ð6Þ
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dC
dt

¼ k2B ð7Þ

Based on this physical model, the concentration profiles of the three

species are simulated. An ANN-based surrogate is iteratively refined

by sequential sampling. As Figure 5A indicates, with more data added,

the fitting performance improves (MSE decreases). Meanwhile, the

decreasing rate of MSE becomes slower (Figure 5A) and the absolute

value of relative slope tends to be smaller (Figure 5B). Following this,

the added ratio decreases (Figure 5C) as well as the same trend is indi-

cated for the sampling rate (Figure 5D). Once sloperelativei
�� ��<0:02, the

algorithm is terminated and collects 25 data points in total.

F IGURE 5 Slowdown sampling
for the surrogate construction of
series reaction kinetics

F IGURE 6 The regression
performance of ANN surrogate
for the concentration profiles of
three species regarding the
series reaction. Each iteration
adds new data points to refine
the surrogate. The performance
of surrogate gradually improves
from Iteration 1, 2, 4 to Iteration
8. Solid lines for the simulation
by the physical model, while
dashed lines for the simulation
by the surrogate model.
Surrogate is built based on the
sampled data points
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To further evaluate the performance of surrogate, we simulate the

concentration profiles of three species using physical model and surro-

gate model, respectively. Figure 6 shows that the regression

performance of the iteratively refined surrogate gradually improves with

iteration. The surrogate obtained in the final iteration (Iteration 8) can

perfectly model the original concentration profiles of the three species.

F IGURE 7 Surrogate
construction of the four-stage PSA
for CO2 capture

TABLE 1 Description of input and
output variables for the PSA surrogate

Range Unit Notes

Input variables

tads 20–100 [s] Duration of adsorption stage

tbd 30–200 [s] Duration of blowdown stage

tevac 30–200 [s] Duration of evacuation stage

PI 0.07–0.5 [100 kPa] Setpoint of intermediate pressure

PL 0.005–0.05 [100 kPa] Setpoint of low pressure

vfeed 0.1–2 [m/s] Inlet flowrate

yCO2
0.02–0.06 [�] Inlet molar fraction of CO2

Output variables

Recovery [�] Recovery rate of CO2

Purity [�] Purity of CO2 in the product flow

Energy [kWh/ton-CO2] Energy usage per ton CO2 captured

F IGURE 8 (A,B) Classification performance for PSA
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3.2.3 | Discussion on slowdown sampling

The slowdown sampling maintains a good balance between training

and sampling. In each iteration, a small number of networks are rec-

ommended to test. We consider two extremes. (a) When data is suffi-

cient, slowdown sampling tends to give a small sampling rate. As a

result, the number of total samples does not significantly change,

while training is still performed in every iteration. This can be equiva-

lent to an extreme situation, where sampling stops but excessive

trainings are executed based on the sufficient data. (b) By contrast,

when the data is insufficient in the initial iterations, slowdown sam-

pling tends to deliver a large sampling rate, so fewer trainings but

more samplings are executed in the initial iterations. Such a balance

between training and sampling is automatically built by relating the

improvement rate of surrogate (slopeMSEi
) to the sampling rate

(Naddedi ). However, this balance advantage is not obvious in this work

because we focus on the case studies, where the computational cost

on data generation is much more expensive than surrogate training.

The slowdown sampling can be well reproduced, which can be

referred to an example of peaks function in Figures S2 and S3).

Sequential sampling is performed four times on the peaks: the sam-

pling trends are similar for the four times and the number of total

sampled data points are close to each other (between 190 and 220).

4 | CASE STUDIES

Two case studies come from two processes in carbon capture and uti-

lization (CCU): PSA and gas-to-liquids (GTL), which starts from com-

bined reforming (steam + CO2) of natural gas.

4.1 | Case study 1: surrogate generation for PSA, a
dynamic process built in Dymola

PSA is a cyclic dynamic process for gas separation. As to achieve the

objective of net-zero 2050, PSA is regarded as a promising technology

for CO2 capture from fossil fuel-based processes.43–45 Through con-

tinuously varying pressure, adsorption switches with desorption for all

F IGURE 9 Effect of the number of raw data points on the
classification performance for PSA. Raw data includes both effective
data and ineffective data. Given the 24% effective data, 4000 raw
data points result in 960 effective data points, which corresponds to
the first iteration in the slowdown sampling

F IGURE 10 (A–D) Slowdown sampling
for the surrogate construction of PSA
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the process periods (Figure 7). Eventually, PSA reaches a cyclic steady

state (CSS), where consecutive cycles have the same profile.

The physical model, dynamic simulation and a typical input–

output data point of PSA are presented in the Section S3 of Supple-

mentary Information. The physical model of PSA is complex due to

its stiff and nonlinear partial differential equations (PDEs). The sim-

ulation based on the PSA physical model is time-demanding

because the simulation result is only meaningful under CSS. In

other words, one PSA simulation usually needs to be executed for a

long time to reach CSS and then obtain one meaningful simulation

output. A surrogate can solve the issues mentioned above, but we

still need to minimize the computational cost of data generation to

build the surrogate. We program the physical model of PSA in

Dymola and use MATLAB to run Dymola to collect inputs/outputs

dataset automatically.38 Table 1 describes the inputs and outputs

for the PSA system.

In this case, PSA is applied to capture the CO2 from the flue gas

of a natural gas power plant. Due to the low CO2 concentration in the

flue gas (~4%), one PSA unit cannot guarantee the required purity

(~90% for carbon capture). PSA in series can be an option. In this

work, we mainly focus on performance of the first PSA unit, where

recovery of CO2 is supposed to be high enough. The purity of CO2

should improve as well. A trade-off relationship is reported between

recovery and purity,38,43 so the CO2 purity cannot be too high given

the priority on recovery. Therefore, we trained an SVM classifier to

select the sample inputs, which are predicted to achieve a high recov-

ery (higher part of distribution, >50%) and a moderate purity (middle

part of distribution, 25%–75%). The classifier's performance can be

referred to in Figure 8, and eventually, only 24% of the initial-sampled

data is selected to fall in the desired space.

F IGURE 11 (A,B) The contribution of slowdown sampling and classifier for the efficiency improvement of PSA surrogate construction

F IGURE 12 Comparison of total time spent on surrogate
generation for PSA between [equally sampling + no classifier] and
[slowdown sampling + classifier]. Total time is the sum of time spent
on data generation and surrogate training

F IGURE 13 Prediction performance of the final surrogate
for PSA
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Performance of SVM classifier looks imperfect, since some

selected sample inputs still lead to undesired outputs. For examples, a

few filtered samples have a recovery smaller than 50% (Figure 8B).

Yet, this result is good-enough when referring to the prediction

accuracy by the classifier (Figure 9). Raw data, containing effective

data (desired) and ineffective data (undesired), is used to train SVM

classifier. The training–test split is used to calculate the accuracy of

prediction: 90% raw data is used to train the SVM classifier, while the

other 10% raw data is used to examine its prediction performance. As

TABLE 2 Description of input and
output variables for the GTL surrogate

Range Unit Notes

Input variables

FCO2 72–8200 [kmol/h] Inlet flowrate of CO2

FNG Design spec.a [kmol/h] Inlet flowrate of natural gas (NG)

xCH4 0.94–0.96 [�] Inlet molar fraction of CH4 (uncertainty)

TFT 215–265 [�C] Temperature in FT reactor

PFT 15–50 [100 kPa] Pressure in FT reactor

Ntrays (integer) 45–65 [�] No. of trays in distillation column

Treformer 750–1000 [�C] Temperature in reformer reactor

Preformer 3–7 [100 kPa] Pressure in reformer reactor

Splitvent 0.001–0.2 [�] Split fraction to vent stream (the other to recycle)

SplitFT 0.01–0.99 [�] Split fraction to FT (the other to reformer)

Output variables

Fgasoline [kmol/h] Product flowrate of gasoline

Fdiesel [kmol/h] Product flowrate of diesel

Fgas [kmol/h] Product flowrate of light HCs [C1–C4]

FH2Onet [kmol/h] Net flowrate of process water

ventCO2 [kmol/h] Flowrate of CO2 in the vent

Electricity [MW] Electricity usage for pumps and compressors

Uair [GJ/h] Cooling utility by air

U1000 [GJ/h] Heating utility by 1000�C fuel gas

Usteam [GJ/h] Heating utility by high pressure steam

Uwater [GJ/h] Cooling utility by cooling water

aIn Aspen Plus, FNG is determined by a flowsheet option (design specification). Varying FNG and steam

flowrate can achieve the desired syngas ratio, where H2:CO = 2–2.2 is preferred for the FT reaction.

F IGURE 14 Effect of the number of raw data points on the
classification performance for GTL. Thousand raw data (82% desired)
and 2000 raw data (81% desired) correspond to the first two
iterations, respectively, in slowdown sampling

F IGURE 15 Improvement of data effectiveness by the classifier
for GTL
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shown in Figure 9, increasing the number of raw data can improve

prediction accuracy to 90%. With more than 2000 data points, we see

negligible improvement until 4000 data points. Since 90% accuracy is

already good enough for a classifier, we stop sampling ineffective

inputs/outputs for the purpose of SVM training. That is to say, after

4000 raw data points, SVM classifier commences its filtering function

for the newly sampled inputs. To clarify the relationship between

SVM classifier with the slowdown sampling, 4000 raw data points

(24% desired) only contains 960 effective data points, which initializes

the first iteration of the slowdown sampling.

The slowdown sampling is applied to collect effective data itera-

tively. Figure 10 indicates that the regression improvement is not sig-

nificant after 10 iterations (Figure 10A), and the corresponding

sampling rate gradually decreases in the meanwhile (Figure 10D). The

F IGURE 16 (A–D) Slowdown
sampling for the surrogate
construction of GTL

F IGURE 17 (A,B) The contribution of slowdown sampling and classifier for the efficiency improvement of GTL surrogate construction:
slowdown sampling has much a higher possibility of collecting fewer data points than equal sampling; a classifier can reduce the average time per
data generated. Clarification for the dashed line in b: since no classifier is used in the first two iterations, we assume that their average value for a
single data generation will be the time in the successive iterations
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relative slope fluctuates significantly along with the iteration

(Figure 10B), while the added ratio function helps smooth the fluctua-

tion (Figure 10C). Eventually, we terminate the algorithm after 50 iter-

ations, since the MSE value hardly decreases after the 40th iteration.

Efficiency of the proposed workflow can be demonstrated by

comparing with a reference method with no classifier and with a static

sampling rate (i.e., equally sampling at 200 data points per iteration).

Although the initial rate of slowdown sampling is over three times that

of equal sampling, the sampling rate keeps dropping and, eventually,

falls below 50 data/iteration after the 40th iteration. Within 50 itera-

tions, slowdown sampling generates 7372 samples, while equal sam-

pling generates 10,000 samples. Notably, Figure 11A indicates that

slowdown sampling has a much higher possibility for earlier termina-

tion. When a similar fitting performance is reached

(e.g., MSE = 2.2E � 3), much fewer data points are collected by the

slowdown sampling (6967 data points) than by equally sampling

(8800 data points). Figure 11B illustrates the effect of the SVM

classifier. The classier is trained by the dataset in the first iteration.

The average time per data generated is assumed to be kept the

same as the 1st iteration if no classifier applies (as the dashed line

in Figure 11B). Herein, the data effectiveness without a classifier is

around 24%. By contrast, the classifier can significantly improve

the data quality by avoiding undesired inputs for the data genera-

tion, thus reducing the time per data generation by 83%, from

375 s (1st iteration) to 65 s (50th iteration).

The effect of the two principles can be merged to improve effi-

ciency of surrogate generation for PSA. Since fluctuations exists

through sequential iterations, a termination is hard to be deter-

mined. Herein, we terminate the algorithms after 50 iterations. As

shown in Figure 12, if equally sampling without classifier is applied,

the time spent on surrogate generation for PSA is 3.8E + 6 s (50th

iteration), which can be reduced by 87% if the two principles apply

(4.8E + 5 s, 50th iteration). It might be unfair to compare based on

the number of iterations, because a deviation can occur when the

sampling rate for equal sampling changes. A reasonable comparison

criterion can be based on a key iteration, which identifies the surro-

gate with the best regression performance. Based on the found

minimal MSE = 2.2E � 3, the [slowdown sampling + classifier]

requires 4.7E + 5 s (6967 data points, 41st iteration), while [equally

sampling + no classifier] requires 3.3E + 6 s (8800 data points,

44th iteration). Hence, the proposed workflow can reduce the total

time by 86%.

A separate dataset is used to test the performance of the itera-

tively refined surrogate for PSA. We employ the boxplot for the rela-

tive errors between the surrogate predictions and the rigorous

simulations for the three outputs—recovery of CO2, purity of CO2 in

F IGURE 18 Comparison of total time spent on surrogate
generation for GTL between [equally sampling + no classifier] and
[slowdown sampling + classifier]. Total time is the sum of time spent
on data generation and surrogate training

F IGURE 19 Prediction performance of the final surrogate for GTL
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the product flow, and energy consumption of the system. As shown in

Figure 13, most outputs can be predicted with relative errors smaller

than 5%.

4.2 | Case study 2: Surrogate generation for GTL, a
steady-state flowsheet in Aspen Plus

GTL is a classical chemical process for production of fuels.46,47 We

built a flowsheet in Aspen Plus (detailed information in Figure S6).

The process starts with the combined reforming (steam + CO2) of

natural gas to syngas, followed by Fischer–Tropsch (FT) synthesis

for fuels. A recycle stream is split: one for reforming, the other for

FT rector.

The combined reforming, FT (kinetics and chain growth probabil-

ity for products distribution), simulation (convergence) and a typical

input–output data point of GTL system are presented in the Section-

S4 of Supporting Information. To seek the optimal operating condi-

tion, we may optimize some decision variables under uncertainty

(input for surrogate) to evaluate the corresponding process perfor-

mance (output for surrogate) as shown in Table 2.

Aspen Plus simulations suffer from nonconvergence issues

when improper operating conditions are given, or the recycle

stream is set too tight.30,48 Such problems also occur in our case.

SVM classifier is employed to avoid the nonconvergence issues. As

shown in Figure 14, 200 raw data can deliver a good classifier with

an accuracy at 87%, which can further increase to 91% with 2000

raw data points. After the 2000 raw data points, the SVM classifier

commences its filtering function for the newly sampled inputs. To

clarify the relationship between SVM classifier with the slowdown

sampling, 1000 raw data (82% desired) and 2000 raw data (81%

desired) correspond to the first two iterations, respectively, in

slowdown sampling.

The obtained classifier is applied here to screen out the potential

nonconverged inputs in the successive iterations, thus improving the

percentage of effective data from 81% to 91% (Figure 15). Notably,

the nonconverged simulations in Aspen Plus usually takes a long time

to stop but deliver invalid outputs. A 10% improvement for effective

data tremendously cut the time per data generation by 46%, from

61 s (1–2 iterations) to 33 s (40th iteration).

The slowdown sampling is applied to collect data iteratively. The

relative slope in Figure 16B fluctuates more significantly than the case

study of PSA, see Figure 10. That is probably because the GTL has

more outputs to fit, and the regression is more complex than the case

of PSA. The observed trend in Figure 16A indicates that the regres-

sion improvement is not significant after the 25th iteration. Eventu-

ally, we terminate the workflow after 40 iterations to avoid the

unnecessary computational costs.

The efficiency of the proposed workflow can be demonstrated

by comparison to a reference method with no classifier and equal

sampling (a slow static sampling). The two principles can sepa-

rately improve the sampling efficiency for building surrogates for

GTL. As shown in Figure 17A, the slowdown sampling has a higher

chance for an earlier termination than the equally sampling, to

achieve a similar fitting performance (MSE = 1E � 4) with fewer

data points (slowdown for 11,000 data points vs. equally sampling

for 13,200 data points). The trend in Figure 17B shows that the

SVM classifier can reduce the average time spent on individual

points by 46%.

Overall, the effect of two principles can be merged to improve

the efficiency of surrogate generation for GTL. As shown in Figure 18,

based on the found minimal MSE = 1E � 4, the [slowdown sampling

+ classifier] requires 3.9E + 6s (11,000 data points, 31st iteration),

while [equally sampling + no classifier] requires 8.0E + 6s (13,200

data points, 29th iteration). Hence, the proposed workflow can reduce

the total time by 51%.

A separate test dataset is used to evaluate the performance of

the surrogate obtained in the final iteration. We employ the boxplot

for the relative errors between the surrogate predictions and the rig-

orous simulations for the 10 outputs. As shown in Figure 19, most

outputs can be well predicted with relative errors smaller than 5%,

and some are even smaller than 1%, for example, the mass flowrate

for the fuel products. The fitting for the utility is not ideal, and the rel-

ative error of the electricity consumption can go up to 15%. This is

probably due to the insufficient feature selection for utility fitting. For

example, the electricity consumption is related to the units of pumps

and compressors, while no relevant features are selected into the

inputs for the surrogate training. Meanwhile, no features related to

heat exchangers are chosen, so the fitting performance of the utility is

not as good as the mass flowrates. However, the motivation behind

surrogate is to build a reduced-order model as to replace the original

full-order physical model, and thus sacrificing partial accuracy is

unavoidable but acceptable.

5 | CONCLUSIONS AND OUTLOOK

This work develops an efficient workflow for the surrogate generation

for engineering systems (typically tdata � ttraining). The efficiency bene-

fits from the improvement in data quality and the reduction in data

quantity. (a) A classifier is trained to avoid the undesired design space

for data generation and improve the data quality. To train a good-

enough classifier (over 90% accuracy) requires a relatively small

amount of dataset, which can work as the data source for the initial

iteration of slowdown sampling. The obtained SVM classifiers can dra-

matically cut the computational cost per data generation by 83% for

PSA and 46% for GTL. (b) A slowdown sampling employs a dynamic

sampling rate: initially sampling is fast to collect nearly sufficient

amount of data in just a few iterations, and gradually slows down with

the improvement of surrogate. The slowdown sampling can spot the

nonimprovement trend for the surrogate quality at a relatively early

stage, which thus lowers the possibility for oversampling (data quan-

tity). With the proposed workflow, the computational costs of surro-

gate generation is shown to be reduced by 86% for PSA and 51% for

GTL case studies, compared with that by employing a static sampling

rate to achieve a similar standard of surrogate. Technically, our
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methodology is straightforward to implement because no intensive

mathematical formulations are involved.

Notably, the proposed workflow can be generalized to other surro-

gate types and it should be compatible to the other existing sampling

methods. The exploitation-based methods can be introduced to inte-

grate with our workflow, as to properly increase sampling probability in

the nonlinear/complex design space. The primary goal of this work was

to investigate the influence of the sampling rate for the surrogate gen-

eration. Thus, the sampling was desired to be a homogenous type,

which might be disturbed by exploitation-based methods. As a result,

we only considered exploration-based methods in our current

workflow. Another work that can be done is to determine proper termi-

nation criteria: we tried to stop the algorithm when the MSE difference

between two consecutive iterations approached 0, or the slope

approached 0, but the fluctuation of MSE values always existed for the

case study of GTL or PSA, which made the tolerance value for termina-

tion hard to set. One possible solution is to apply feature selection

techniques (i.e., automatically adjust input variables) to improve fitting

performance and reduce the fluctuation during sequential sampling.

Additionally, this work lays foundation for the digitalization and super-

structure optimization of an extensive CCU system. The two case studies

presented in this work belong to its two process options. The subsystems

of CCU are usually modeled in different process simulators, which cause

inconvenience for overall simulation or optimization. This work enables

the representation of CCU with the machine learning-based digital twins,

following by overall optimization in a high-level interactive platform.
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