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Abstract

We construct algebras of endomorphisms in the derived category of the cohomology of arithmetic
manifolds, which are generated by Hecke operators. We construct Galois representations with
coefficients in these Hecke algebras and apply this technique to sharpen recent results of P. Scholze.
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1. Introduction

In this paper, we study the relation between Galois representations and the
cohomology of arithmetic locally symmetric spaces. Let F be a number field and
let n > 2 be an integer. Associated to any open compact subgroup U C GL,(A%)
is the topological space defined as a double quotient

X¢ = GL,(F)\GL,(Ap)/U x R*Us,

where U is a fixed choice of maximal compact subgroup of GL,(F ®q R). If
U is neat (a condition that can always be achieved by replacing U by a finite
index subgroup), then XgLn is naturally an orientable smooth manifold, and we
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now assume this. If F = Q and n = 2, then X, ZG/L" can be identified with the set of
complex points of a classical modular curve. In general, however, the space X gLn
has no direct link to algebraic geometry.

Nevertheless, several mathematicians (see for example [ADPO02]) have
conjectured an explicit relation between the cohomology of the spaces XgL”

and the representations of the absolute Galois group G = Gal(F/F). A
remarkable feature of this conjectured correspondence is that it should take into
account torsion in the cohomology groups H*(X gL Z), which falls outside the
scope of the theory of automorphic forms and, for example, earlier conjectures of
Langlands and Clozel (see for example [Clo90]).

Let us now assume that F' is an imaginary CM field (for example, an imaginary
quadratic field). In a recent breakthrough work [Sch15], Scholze has established
this torsion correspondence, in a form that we now describe. (Scholze has also
treated the case where F is a totally real number field. The methods of this paper
could also easily be extended to treat this case.) We first introduce some helpful
notation. It is enough to work ‘one prime at a time’, so we fix a prime p. We
suppose that our choice of level subgroup U splits as a product U = [[, U, over
the finite places v of F, where each U, is an open compact subgroup of GL,,(O,).
We let S be a finite set of finite places of F, containing all the places dividing p,
such that for all v ¢ S, we have U, = GL,(Op,).

We also introduce coefficients. Let E be a finite extension of Q, large enough
to contain all embeddings of F in @p, and let O be its ring of integers, k its
residue field. We can associate to any tuple A = (A,) € (Z")HmF-E) qatisfying the
condition

Aeg Z hep 2000 2 Aoy

for each © € Hom(F, E) a local system M, of finite free O-modules on X¢ .
(The precise definition is given in Section 2.2 below, in terms of the algebraic
representations of GL,, associated to the dominant weights X,. In the body of the
paper, M, is denoted by the symbol A(GL,; k)gL in order to keep track of its
relation to other objects.) Then the cohomology groups
H*(XgLns Ml)

are finite O-modules, and for each finite place v ¢ S of F' we can define a family
of Hecke operators T, ..., T, in terms of double cosets. We write T*(H*(Xg, ,
M,)) for the (commutative) O-subalgebra of Endp (H*(X gLn’ M,)) generated by

these operators. We can now state one consequence of Scholze’s results as follows
[Sch15, Theorem 5.4.1]:

THEOREM 1.1. There exists an integer N = N(d, n) depending only on n and
d =[F :Ql, anideal I C TS(H*(X§, , M})) satisfying I" =0, and a continuous
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group determinant
D:Grs— TS (H*(Xg, My)/1

such that for each finite place v ¢ S of F, the characteristic polynomial of
D (Frob,) is

X" — Tvl Xn—l R (_l)quj}'(j—l)/Zijxn—j 4t (_l)nqg(n—l)/ZTUn (11)
mod I.

Since group determinants are in bijective correspondence with isomorphism
classes of semisimple representations over algebraically closed fields, we deduce:

COROLLARY 1.2.
(1) Let ¢ € H*(XgLn, M,) Qo @p be an eigenvector for
TS(H*(X§,, My))

in the sense that for all T', we have T!¢ = a'¢ for some numbers a' €
@p. Then there exists a continuous representation p, : Gps — GL, (@p)
such that for each finite place v € S of F, the characteristic polynomial of
py(Frob,) is Zj(—1)/q3(‘/’71)/2a{;X"*j.

(2) Let¢ € H*(X§, , My) ®oT, be an eigenvector for TS(H*(Xgy,, My)), in the
sense that for all T!, we have T!¢ = a'¢ for some numbers a' € F,. Then
there exists a continuous representation p, : Gr s — GL,(F,) such that for

each finite place v ¢ S of F, the characteristic polynomial of p,(Frob,) is
S (=1)iqii=Dlq) xn=.
J v v

The aim of this paper is to improve Theorem 1.1 in ways that will be useful
for applications to modularity of Galois representations, following the schema
outlined by Calegari—-Geraghty [CG]. The first goal is to try to remove the
nilpotent ideal /; indeed, it seems natural to expect that one should always have
I = 0. The second goal is to replace the Hecke algebra T5(H* (X ‘G/L", M,)) by a
derived variant that has T°(H*(X_, My)) as a quotient, but a priori could be
larger.

Let us now discuss these goals in more detail. We first choose a maximal ideal

m C TS (H*(Xg,, My))

such that the associated Galois representation p,,, (which exists by Corollary 1.2)
is absolutely irreducible. (In the body of the paper, we refer to such an ideal as
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a non-Eisenstein maximal ideal.) We will work after localization at m. Since one
of our main motivations is the possibility of applying our results in the context of
R = T theorems, this seems like a natural simplifying step.

Now we define our derived Hecke algebra. (We find it convenient in this paper
to use the terminology ‘derived Hecke algebra’, which refers to an enhancement
of the usual notion of Hecke algebra living in the derived category. However,
we wish to emphasize that this is not the same as the derived Hecke algebra
considered in recent works of Venkatesh, in which additional ‘derived’ Hecke
operators are considered which act on cohomology by shifting degrees. It is clear
that there is a common generalization of these two notions, but we do not discuss
this here.) We replace the groups

H*(X(L}/Ln’ MX)

by the complex RI” (XgLn, M,), which lives in the derived category D(O) of O-
modules, and recovers H* (X, (‘}’Ln, M,) after taking cohomology. There is a natural
way to lift the operators 7' to endomorphisms of the complex RI” (XgLn, M,)
in D(O), and we define the algebra TS (RI" (X gLn, M,)) to be the (commutative)
O-subalgebra of

Endpo)(RT(X§; , My))

generated by these operators. Then TS (RI" (X gL", M,)) is a finite O-algebra, and
taking cohomology gives rise to a surjective homomorphism

TS(RT (XY, My) — TS(H* (XY, , M),

which has nilpotent kernel. We consider TS (RI" (X gL”, M,)) to be the more
natural object of study for a number of reasons. First, as our results show, it also
receives Galois representations. Second, for any m > 1 there is a surjective map

TS(RT (XY, My) — TS(H (XY, My ®0 O/A™)).

Since patching together finite quotients of Hecke algebras plays an essential role
in the Taylor—Wiles method, this is a desirable property. For this in action, together
with conjectures about existence of Galois representations in this context, see the
joint work of Khare and the second author [KT, Conjecture 6.18].

We now state our first main theorem:

THEOREM 1.3 (Theorem 5.9). Let F be an imaginary CM field, and let

U c [[GL.(Or)
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be a small open compact subgroup, and let A = (A;)rchomr.p) € (Z")HmEE),
(This condition can be ensured by making U smaller at the places v|q for a
rational prime q # p, see Definition 5.6.) Let m C TS(RI'(Xy, M,)) be a non-
Eisenstein maximal ideal.

Suppose that the p-adic places of the maximal totally real subfield F* of F are
all unramified in F. Then there exists an ideal I C TS(RI' (X gLn, M) satisfying
I* = 0 and a continuous representation

pa: Grs — GL,(TS(RT (XY, M)/ D)

satisfying the following condition: for each finite place v ¢ S of F, the
characteristic polynomial of pm(Frob,) is equal to X" — T'X"™' + ... +
(=1)IglU=DRTIX T 4 4 (=1)"q" " DPT" mod 1.

With a stronger assumption on A relative to p, we can eliminate the nilpotent
ideal I completely, as in our second main theorem:

THEOREM 1.4 (Theorem 5.13). Let F be an imaginary CM field in which the
prime p is unramified, and let U = [], U, C [], GL,(OF,) be a small open
compact subgroup such that U, = GL,,((’)FU)~f0r each place v|p. Let ¢ €
Gal(F/F™) denote complex conjugation, and let I, denote a set of embeddings T :
F < E suchthat T, || I,c = Hom(F, E). Let . = (A)retiom(r.z) € (Z")HomE),
and suppose that for each T € Hom(F, E), we have

Aol > App > o> Ay
and that the condition

[F*:Qln (n +6+sup(hz, + Aa.,l)) +D 0 0w = deei —2hza) < p (12)

Telp zel, i=1

holds. Letm C TS(RIT (XgLn, M,)) be a non-Eisenstein maximal ideal. Then there
exists a continuous representation

P Grs = GL(T*(RT(Xgy,, My))m)

satisfying the following condition: for each finite place v ¢ S of F, the
characteristic polynomial of pm(Frob,) is equal to X" — T!'X"™' + ... +
(_l)qu(j—l)/Zijxn—j 4+ .+ (—1)”q,’}(”_1)/2Tv”.

The condition (1.2) comes from a theorem of Lan—Suh that will be applied
during the proof, as will be explained below.
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We now describe the strategy of the proof. We follow Scholze (and the earlier
work [HLTT]) in first looking at the arithmetic locally symmetric space of the
group G, the quasisplit unitary group in 2n variables over F* associated to the
quadratic extension F/F*. The group G admits a parabolic subgroup P with
Levi quotient M = Resf, GL,. Writing U C G(A%,) for a sufficiently small
open compact subgroup, Up = P(AZ,) N U, and Uy for the image of Up in
M (A%,), we have a diagram of spaces

xYr 9X, X
l { (1.3)
X XY

Here we write Yg for the Borel-Serre compactification of X%, and BYZ
for its boundary. Let us write TS, = O[US\G(AY:®)/U®] for the ‘abstract’
unramified Hecke algebra of G, and TS, = O[US\ GL,(A%*)/US] for the
abstract unramified Hecke algebra of Rest, GL,. If a = (a,) € (Z*)lom*".BD)

is a tuple satisfying the condition
ar,l > ar,Z 2 Tt 2 ar,2n

for each T € Hom(F™, E), then there is an associated local system M, of O-
modules on X g (denoted A(G; a)g in the body of this article), and the first step
is to use the diagram of spaces (1.3) to construct a diagram

Té _— EndD(O)(RFBYZ Ma)

s j (1.4)
T, —— Homp(o) (RT s My, RT oy My)

for appropriate choices of a and A. (In order to save space, we have now switched
notation from RI" (XY, —) to RFXg .) Themap S : ’]I‘g, — ']I‘il is the unnormalized
Satake transform, given at the level of groups by the slogan ‘restriction to P and
integration along the fibres of P — M’.

We then show that the natural map RFx;’dM My — RFXZM M, in D(O) becomes
an isomorphism after localizing at m; equivalently, the cohomology of the
boundary of the Borel-Serre compactification of X ,ﬁ//” vanishes after localization
at m. This implies the existence of a homomorphism

Tg(RFaYg WS m) = TZSW(RFXZM M) . (1.5)
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The next step is to construct a Galois group determinant valued in the Hecke
algebra T%, (RI,5u Ma)s+m), Or some quotient by a nilpotent ideal. We accomplish
G

this using the exact triangle in D(O):
RIyy Ma—RIxy Maﬁ'RFaYZ My——RIxy M,[—1]. (1.6)

By reworking Scholze’s arguments slightly, we find Galois group determinants
valued in T% (RT'yy .M,) and ’]I‘f;(RFXg M,). This leads to a Galois group
determinant valued in ']I‘f; (R FBYZ M,), at least at the cost of a nilpotent ideal of
square 0, and pushing it along the map (1.5) essentially completes the proof of
Theorem 1.3.

To prove Theorem 1.4, we make appeal to the results of Lan and Suh [LS13].
The main theorems of [LLS13] imply that under the conditions of Theorem 1.4,
the groups H' (XY, M,) vanish fori < D = %dimR XY = [F' : QJn? and
consequently there is an isomorphism of truncations

T<D—2RF3nga = TgD—l(RFXg,cMa)[—l],

using the exact triangle (1.6). The diagram (1.4) is compatible with this truncation,
and the map t<p oRIyvyM, — RIu,M, is a quasiisomorphism since
M M

dim X ﬁ][’ =D —1land X f{[’ is noncompact. This is enough to give Theorem 1.4.

We note that in all of the theorems proved here, we work with Hecke algebras
only after localization at a non-Eisenstein maximal ideal. As we show below, the
natural map from compactly supported cohomology of the GL,-symmetric space
to usual cohomology becomes a quasiisomorphism after such a localization. On
the other hand, Scholze works primarily with interior cohomology (that is the
image of compactly supported cohomology in usual cohomology), which does
not seem to have a good derived analogue. Since it is imperative for us to be able
to work at the level of complexes rather than at the level of cohomology groups,
it seems difficult to avoid this non-Eisenstein condition.

We now describe the structure of this paper. In Section 2, we carry out the
groundwork necessary to be able to work in a derived setting. In Section 3,
we introduce the locally symmetric spaces associated to reductive groups over
number fields and discuss their sheaves and cohomology groups. In Section 4,
we carry out the important step of showing that the cohomology of the boundary
of the GL,, locally symmetric space vanishes after localizing at a non-Eisenstein
maximal ideal. This has been sketched elsewhere, but we give the full details of
the argument. Finally, in Section 5, we combine all of these ingredients to prove
Theorems 1.4 and 1.3 by carrying out Scholze’s perfectoid p-adic interpolation
argument at the derived level (Section 5.4), giving us group determinants at the
level of derived Hecke algebras T, (RFX(U; M,), and then using the other arguments
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sketched above to obtain the desired Galois representations for GL, (Sections 5.2—
5.3).

1.1. Notation. We fix some notation relating to number fields and their Galois
groups. A base number field F having been fixed, we will fix an algebraic closure
F and algebraic closures F, of the completion F, for every place v of F. We
also fix embeddings F< F,. Writing G = Gal(f/F) and Gf, = Gal(fU/Fv),
these embeddings determine continuous embeddings G, < G for every place
v. If S is a finite set of finite places of F, then we write Fg for the maximal
subfield of F unramified outside S, and set G g = Gal(Fs/F). It is a quotient of
Grp. If v is a finite place of F, then we will write O, for the ring of integers of
F,, @, € OF, for a choice of uniformizer, k(v) = Op, /(w,) for the residue field,
and g, = #k(v).

A prime p having been fixed, we will fix an algebraic closure @p of Q,
and view finite extensions E/Q), as being subfields of @p. If E/Q, is such an
extension, then we will generally write O for its ring of integers, 7 € O for
a choice of uniformizer, and k = O/(x) for the residue field. If F is a field
of characteristic 0, then we will write € : Gp — Z; for the usual cyclotomic
character.

2. Preliminaries

In this section, we will discuss Hecke algebras of locally profinite groups, their
module categories, and categories of equivariant sheaves on spaces. We also set
up some machinery which constructs natural objects in derived categories of
smooth representations for a profinite group, whose cohomology groups are the
‘completed cohomology’ groups (see [CE12]) of a tower of arithmetic locally
symmetric spaces, or compactifications of such.

2.1. Homological algebra. We first fix notation for derived categories. If A is
an abelian category with enough injectives, then we write K(A) for the homotopy
category of complexes in .4, and D(A) for the corresponding derived category,
if it exists. Our normalizations are always cohomological, that is differentials
increase degrees. For other notations (shifts, truncations, and so forth.) we
follow the conventions of Weibel [Wei94]. We write K*(A) C K(A) for the
full subcategory with objects the bounded below complexes, and D*(A) for its
corresponding derived category; it can be identified with the full subcategory of
D(A) with objects the bounded below complexes [Wei94, Example 10.3.15].
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If B is another abelian category with enough injectives and F : A — Bis a
left exact functor, then the derived functor RF : D*(A) — D™ (B) exists [Wei94,
Theorem 10.5.6], and is characterized by the following universal property. Let
ga: K"'(A) - D™ (A) and g5 : KT (B) — D*(B) be the usual projections, and
let KF : KT (A) — K™(B) be the induced functor on homotopy categories of
complexes. Then R F comes equipped with a natural transformation & : ggKF —
RFq4 such that for any other functor G : D¥(A) — D*(B) equipped with a
natural transformation ¢ : ggKF — Gg 4, there is a unique natural transformation
n: RF — G such that {y = n,,(x) o &x forall X € Kt (A).

We will often use this universal property in order to compare different functors
between derived categories, as in the following lemma.

LEMMA 2.1. Let A, B, C be abelian categories with enough injectives, and let
F:A— C,G: B — C be left exact functors, i : A — B an exact functor.
Suppose given a natural transformation « : F — G oi. Then there is a canonical
natural transformation n : RF — RG oi (since i is exact, we write i = Ri).

Proof. Letép : qcKF — RFq4, & : qcKG — RGqg,and &; : ggKi — Rig4
be the natural transformations that exist by universality. We write ¢ : gcKF —
RGRiq 4 for the natural transformation whose value on X € K*(A) is given by
the composite

4 KF (05D KGKi (X) 2% RGguKi (X)CEY RGRig 4(X).
By the universal property of RF, there is a unique natural transformation 7 :

RF — RGRI with the property that for all X € K*(A), {x = n,,x) ©&F x. This
is the n of the lemma. ]

We now specialize our discussion. Let R be a ring. We allow R to be
noncommutative; we will see group algebras and abstract Hecke algebras as
examples of such rings. We will write Mod(R) for the abelian category of (left)
R-modules, and we will simplify our notation by writing K(R) and so forth,
instead of K(Mod(R)). If G is a group, then we will write Mod(G) for the
abelian category of Z[G]-modules, Mod(G, R) for the abelian category of R[G]-
modules, which each have enough injectives, and K(G), K(G, R), and so forth
in a similar way. If G is a profinite group, then we will write Mod,,,(G, R) for
the abelian category of smooth R[G]-modules, and Mod,,,(G) = Mody,,(G, Z),
K.(G, R) = KMod,, (G, R)), and so forth.

If Gisagroup and H C G is a subgroup, then there are functors Indg : Mod(H,
R) — Mod(G, R) and Res¢, : Mod(G, R) — Mod(H, R), where Ind$, M = {f :
G —> M| f(hg) = hf(g)Vh € H} and Resg is the usual restriction. We recall
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that Ind$ is the right adjoint of Res%, that Res% is exact, and that Ind¥, is exact
and preserves injectives. The functor Res% also has a left adjoint indf, : Mod(H,
R) — Mod(G, R), where

indf, M={f¢€ Indf, M | f finitely supported mod H}.

This functor is also exact, showing that Resg also preserves injectives.

If N C G is a normal subgroup, then there is an inflation functor Infg N
Mod(G/N, R) — Mod(G, R), left adjoint to the functor I'y : Mod(G, R) —
Mod(G/N, R) of N-invariants. Inflation is exact, showing that Iy preserves
injectives.

We will introduce more abelian categories (in particular, categories of modules
over Hecke algebras and categories of G-equivariant sheaves on a space X) in the
following sections.

LEMMA 2.2. Let B — R and B — C be ring maps, with R Noetherian, B,
C commutative, with B central in R and C a flat B-algebra. Suppose X,Y €
D(R) are bounded complexes of R-modules, with X a bounded complex of finitely
generated R-modules. Then the natural map

C ®B HomD(R)(X, Y) — HOIHD(C®ER)(C ®B X, C ®B Y)

is an isomorphism.

Proof. This is essentially [Zim12, Lemma 3] (and is probably well known). We
denote C ®p R by R¢ and similarly denote the functor ® 3C by (—)c (this is an
exact functor from B-modules to C-modules). First we claim that for M a finitely
generated R-module and N an R-module the natural map

HOH]R(M, N)C — HOITIRC (Mc, Nc) (21)

is an isomorphism. In fact, this holds without the Noetherian hypothesis on R
so long as M is a finitely presented R-module. The claim is shown in [CR90,
Theorem 2.38]. If we consider the functor from finitely generated R-modules to
C-modules given by M — Homg (M, N)c = Homg.(Mc, N¢), then the higher
derived functors are given by Ext’k (M, N)c and Ext’kc (Mc, N¢) (since (—)¢
preserves projectives; these derived functors are defined because the category
of finitely generated R-modules has enough projectives). We conclude that the
natural maps

Ext(M, N)¢ — Exty_(Mc, Nc) (2.2)

are also isomorphisms (see [CR90, 8.16]). Note that since the forgetful functor
from Mod(B) to Mod(Z) is exact, the Ext groups Ext, (M, N) naturally acquire
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B-module structures, by identifying them with the image on N of the derived
functors of Homg (M, —) : Mod(R) — Mod(B).

Next we claim that for a bounded complex X of finitely generated R-modules
and an R-module N, the natural map

Hompg) (X, N[0])¢ — Hompg.,(Mc, Nc[0])

is an isomorphism. We do this by induction on the length d of the complex X. For
d =1 the claim holds because of the isomorphism (2.2). For the inductive step
we do a dévissage using truncation functors. Suppose the highest degree in which
H*(X) has a nonzero term is i. We have an exact triangle

X > X > H(X)i] > 1< X[—1]
and hence a commutative diagram with exact columns

Homp ) (t¢i-1 X[—1], N[0)¢ ——— Homp)(t<i—1 Xc[—11], Nc[0])

v v

Homp ) (H' (X)[i], N[0)c  ——  Hompro,(H'(X)clil, Ne[0])

v hd

Homp g (X, N[0])c¢ — Homp . (Xc, Ne[0Dc

v v

Homp g (t<i—1 X, N[0]Dc¢ ——  Homp)(t<i-1Xc, Nc[O0])

v 4

Hompz) (H'(X)[i — 11, N[0)c —— Homp)(H'(X)cli — 11, Nc[0]).

By the inductive hypothesis and the five lemma, we are done. Finally, we take our
bounded complexes X, Y as in the statement of the lemma. An induction on the
length of the complex Y (using the five lemma as above) completes the proof of
the lemma. O

2.2. Hecke algebras. We now introduce the Hecke algebra of a locally
profinite group, and discuss various important maps between Hecke algebras in
the context of reductive groups over local fields.

2.2.1. Abstract Hecke algebras. Let G be a locally profinite group, and let U C
G be an open compact subgroup. We write H (G, U) for the set of compactly
supported, U -biinvariant functions f : G — Z.
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LEMMA 2.3.

(1) The Z-module H(G,U) is in fact an associative Z-algebra under
convolution, with unit element [U], the characteristic function of U.

(2) For any Z[G)-module M, the space MV of U -invariants admits a canonical
structure of H(G, U)-module. This defines a functor I'y : Mod(G) —
Mod(H(G, U)).

We will write M — M~ for the exact functor Mod(H (G, U)) — Mod(Z)
given by forgetting the H (G, U)-action.

Proof. Note that H(G, U) is a free Z-module, with basis being given by the
characteristic functions [Ua U] of double cosets UaxU C G. Let us endow G with
the unique left-invariant Haar measure giving U volume 1. We observe that H(G,
U) ®z R is the space of compactly supported and locally constant U -biinvariant
functions f : G — R. For functions fi, f» € H(G, U) ®z R, we define their
convolution in H(G, U) ®z R by the formula

Fix f)(g) = f A ARG g dx. 23)
xeG

The usual calculation shows that this gives H(G,U) ®z R the structure of
associative algebra with unit [U] (even in the case where G is not unimodular). We
now show that the submodule H (G, U) is closed under multiplication. It suffices
to check this on elements of the form [Ua U], o € G; we compute

[UaU]x [UBU](y) :/ [UBU1(x""'y)dx = vol(UaU NyUB™'U)

xeUaU

=#UaU NyUB~'U/U),

an integer. This shows the first part of the lemma.
For the second part, we note that if V is an R[G]-module, then the algebra
H(G,U) ®z R acts on VY by the formula (v € VY, f € H(G,U) ®z R):

f-v=/ F(9)(g - v)dg.
geG

If f=[UaU]and UaU =[], o; U, then this is easily seen to be equal to D _. «; - v.
We use the same formula to define the action of [UaU] on MY for any Z[G]-
module M.

This action is clearly functorial in M, so to complete the proof of the lemma
we just need to show that it is compatible with multiplication of basis elements in
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H(G, U), that is that for all m € MY, we have
([UaU]- ([UBU]-m) = ([UaU]-[UBU]) - m. (2.4)

Choose decompositions [UaU] =] [, o; U, [UBU] = ]_[j B,;U. We see finally that
it is enough to show that [UaU] - [UBU] = Zi’j[aiﬂjU] as functions G — Z.
Evaluating at an element y € G, this is equivalent to the identity

#UaU NyUP~'U/U) =#{(, j) | v € iU},
and this is an elementary exercise in group theory. O

It will be useful to note that the action of [UaU] € H(G,U) on MY, M a
Z[G]-module, can also be described as the composite

MY — mUneve o mY (2.5)

where the first map is given by v — « - v and the second by try,yneve--

2.2.2. The case of a reductive group. Now suppose that F/Q, is a finite
extension, and that G is reductive group over F; then G(F) is a locally profinite
group. We are going to do homological algebra in Mod(G (F)), Mod(H(G(F),
U)) and related categories. The reader may object that it would be more natural to
work, for example, in the abelian category of smooth Z[G (F')]-modules. However,
in order to understand Hecke actions on cohomology it will suffice for our
purposes to work simply with abstract G (F')-modules (see Corollary 3.3).

2.2.3. Restriction to parabolic subgroup. Let P C G be a rational parabolic
subgroup. Suppose moreover that U C G (F) satisfies G(F) = P(F)U, and set
Up = P(F)NU. Then we have (for the left-invariant Haar measures dg on G (F)
and dp on P(F) giving U and Up volume 1, respectively) the formula

/ Flg)dg = f f F(pu)dp du. 2.6)
geG uelU J peP(F)

(For the proof, see [Car79, Section 4.1]; the proof uses that G is reductive, so
dg is also right invariant.) Restriction of functions defines a map rp : H(G(F),
U) - H(P(F),Up).

LEMMA 2.4. Let G, P, U be as above.

(1) The map rp : H(G(F),U) — H(P(F), Up) is an algebra homomorphism.
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(2) Let V be a Z[G(F)]-module, W a Z[P(F)]-module, and f : Resp ;) V —
W a homomorphism of Z[ P(F)]-modules. Then the induced map VV —
WUr is rp-equivariant in the following sense: for any t € H(G(F),U), v €
VY we have f(t-v) =rp() - f(v).

(3) Let W be a Z[ P (F)]-module, and let V = Indgfg W. Then there is a natural
isomorphism VU Z r5(WU) of H(G(F), U)-modules.

Proof. For the first part, we can extend scalars to R and calculate for any y €

P(F), fi, f2 € H(G(F), U):

(firxe DY) = / [i) foraTy)dx

xeG(F)

=/ filpu) r(u™" p~'y)dudp
peP(F) JueU

= / fip) H(p~'y)dp = (fi xp L) ().
pEP(F)

For the second part, we reduce immediately to the universal case W = Resgfg v,
and must show the formula 7-v = rp(t)-v forany v € VY. It suffices to check this
on basis elements [UaU]. Fix a decomposition UaU = [ [ o, U with o; € P(F).
It is enough to show that we have in fact (UaU) N P(F) = [ [ «;Up, but this is
clear.

For the third part, we observe that

VU={f:G(F)— W| forall pe P(F),ucU,geG(F), f(pgu) = pf(g))}.

There is a map VY — WUY? given by f +— f(1). This map is injective (since
G(F) = P(F)U) and surjective (since Up = P(F) N U). We must show that for
all t € H(G(F), U), we have (¢ - f)(1) = rp(t) f(1). This can be checked on
basis elements [UaU]. Again writing UaU = [ ], ;U with o; € P(F), we see
that this follows from the formula rp ([UaU]) = ) _,[o; Up]. I

Continuing with the notation of the lemma, we observe that there is a diagram
of functors

Mod(G(F)) —Y—> Mod(H(G (F), U))

G(F) *
RSSP(F)L ]’P

Mod(P(F)) - Mod(H(P(F), Up)),
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together with a natural transformation Iy — rj o Iy, o Resgfg . The vertical
functors are exact and the horizontal functors are left exact. Applying the
universal property of the derived functor of I, we obtain:

COROLLARY 2.5. There is a canonical natural transformation
* G(F)
RFU — rPRFUP ReSP(F) .

In particular, for any V. € Mod(G(F)), W € Mod(P(F)) equipped with a
morphism f : Resgég V — W, there is a canonical induced morphism Ry V —
rsRIy,W.

Proof. The morphism R,V — r;RI, W is defined as the composite
RIyV — rpRIy, Resp) V. — ryRIy, W,

the first arrow by universality and the second by the existence of f. 0

There is a variant of this involving induction instead of restriction. Indeed,
we observe that there is another diagram of functors, commutative up to natural
isomorphism:

Mod(G (F)) —> Mod(H(G(F), U))

G(F) *
]lndp(ﬂ T"p

Mod(P(F)) —— Mod(H(P(F), Up))

The vertical functors are exact and the horizontal functors are left exact. Applying
the formula for the composition of derived functors [Wei94, Corollary 10.8.3], we
obtain:

COROLLARY 2.6. There is a natural isomorphism RIy Indggi = ryRIy,.

In particular, for any V.€ Mod(P(F)), there is a canonical isomorphism
RIyInd§ V = riRIy, V.

2.2.4. Projection to Levi quotient. We now suppose that P is a not necessarily
reductive connected linear algebraic group over F, with unipotent radical N and
reductive quotient M = P/N. Choose a Levi decomposition P = M x N, and
suppose given an open compact subgroup U C P such that U = (U N M (F)) X
(UNN(F)) = Uy x Uy, say. (We say that U is decomposed with respect to the
fixed Levi decomposition of P. In this case, UNM (F') is identified with the image
of U under the projection P(F) — M(F).) We can then choose left-invariant
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measures dp,dm and dn on the groups P(F), M(F) and N (F), respectively,
giving the groups U, Uy, and Uy measure 1 and satisfying the identity

/ f(p)ydp = / f(mn)dndm. 2.7
peP(F) meM(F) JneN(F)

LEMMA 2.7. Let P, M, N and U be as above.

(1) Integration along fibres defines an algebra homomorphism

ry : H(P(F),U) > H(M(F), Uy).

(2) Let V be a ZIM (F)-module, W a Z[ P (F)]-module, and let f : Infy,\;) V —
W be a homomorphism of Z[ P (F)]-modules. Then the induced map V" —
WY is ry-equivariant, in the sense that for all v € V%, t € H(P(F), U),
we have f(ry(t) -v) =t- f(v).

Proof. We define amap ry : H(P(F),U) ®2 R — H(M(F), Uy) ®z R by the
formula ry, (f)(m) = fn NF) f(mn) dn. It follows easily from formula (2.7) that
7y 1s an algebra homomorphism. To prove the first part of the lemma, it is enough
to show that for any o € P(F), m € M(F), we have ry,([UaU])(m) € Z. We
calculate

ru([UaU])(m) = [

neN(F)

[UaU](mn)dn = / dn

nem~'UaUNN (F)

=#(m'UaU N N(F))/Uy,

an integer.

For the second part of the lemma, it is enough to consider the case where W =
Infﬂ(?) V.Leta € P(F), and choose a decomposition UaU = [ [; o;U. We claim
that 7y ([UaU]) = ) _,[@;Uy], where @; denotes the image of o; in M (F). This
follows from the easily verified formula

/ [e; Ul(mn) dn = #(m™'o;Uy Uy N N(F))/ Uy = [a;Up1(m).
neN(F)

For any v € VY, we thus have [UaU]-v =), o;-v =), &;-v =ry([UaU])-v.
This completes the proof of the lemma. O

Let us continue with the notation of the above lemma. We have constructed a
diagram of functors, commutative up to natural isomorphism:
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Mod(P(F)) — = Mod(H(P(F), U))

P(F) o
IntM(F)T ]’M

Mod(M(F)) e Mod(H(M (F), Uy)).

The vertical functors are exact, and the horizontal functors are left exact. We
deduce:

COROLLARY 2.8. There is a canonical natural transformation ry, o RIy, —
RIy o Infy ).
Proof. By Lemma 2.1, there is a canonical natural transformation

ry o Ry, = R(ryy o I'y,) = R(I'y oInfy)) — RIy oInfy ). O

2.2.5. Adeles. All of the results in this section have obvious analogues for
Hecke algebras H(G(A%), U®), where now F is a number field, G is a connected
linear algebraic group over F, S is a finite set of places of F' containing the infinite
places, and US C G(A?) is an open compact subgroup. We omit the formulation
of these generalizations. If US =[], ¢s Uy, decomposes as a product, then we have
the usual decomposition of this global Hecke algebra as a restricted tensor product
of local Hecke algebras:

H(GAD. U%) = Q) H(G(E,). U,).

vgS

If X is a complex in D(H(G(Af’v), U?)), then there is a canonical homomorphism
Te : H(G(AY),US) — Endpz)(X™), and similarly with Z replaced by any
commutative ring R of coefficients. Indeed, for any ¢ € H(G(Afv), U%), the
module structure on X defines a map X~ — X~ of complexes, hence an element
T;(t) € Endpz)(X™). Itis easy to check that this is independent of choices in the
sense that if X — Y is a quasiisomorphism in D(H(G(A}), U®)), the elements
T5(t) of Endpz) (X™) = Endpz) (Y™) are identified. We will use this observation
in our construction of Hecke algebras.

2.2.6. Application when G is unramified. To obtain situations where the results
of this section apply, let us now assume again that F is a finite extension of Q,,
and consider an unramified reductive group G over F with a reductive model G
over Or. Thus G is affine and smooth over O with connected reductive fibres.
We fix a choice S C G of maximal Op-split torus, as well as a choice B C G
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of Borel subgroup containing T = Z;(S). Then the group X*(S) of Op-rational
characters is a finite free Z-module, and contains the subset @ (G, S) = @(G, S)
of F-rational roots. The choice of Borel subgroup determines a root basis R™ C
@(G, S), and the G (F)-conjugacy classes of parabolic subgroups are in bijection
with the subsets I C R™. A representative of the conjugacy class corresponding
to a given [/ is given by the generic fibre of the closed subgroup

£1 = M] X M{ (2.8)

of G, where P, contains B and M, is the unique Levi subgroup of P, containing
T. (The existence of the tori S and T can be justified using the usual structure
theory for the special fibre of G and then [Conl14, Corollary B.3.5] (lifting of
tori). The existence and properties of the parabolic subgroups then follow from
[Con14, Theorem 4.1.7].)

LEMMA 2.9. Let U = G(OpF). Then U is a hyperspecial maximal compact
subgroup of G (F) satisfying the following conditions:

(1) Foreach I C R™, the subgroup Up, = UNP,(F) is decomposed with respect
to the given Levi decomposition, that is Up, = Uy, X Uy,.

(2) We have G(F) = P(F)U.

Proof. The first part is immediate from the decomposition (2.8), since Up, =
P,(OF). The second part is the Iwasawa decomposition [Tit79, 3.3.2]. L]

In the situation of the lemma, we therefore obtain (using Lemmas 2.4 and 2.7)
a canonical homomorphism

S=ry, orp : H(G(F), U) = HM(F), Un),

which we call the unnormalized Satake transform.

2.2.7. Representations of U. Keeping the notation of the previous section, we
now move in a slightly different direction and describe some interesting Z[U |-
modules that will later be used to define Hecke-equivariant coefficient systems on
arithmetic locally symmetric spaces. Thus F is a finite extension of Q, and G is
a reductive group over O with generic fibre G, equipped with maximal torus T
and Borel subgroup B.

Let E/F be a finite extension that splits 7 (and therefore G). Then the choice
of Borel subgroup Ty C Bj determines a root basis R* C ® (G, Tx), and
we write X*(Tg)™ C X*(Tg) for the set of B-dominant weights, that is the set
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of A € X*(Tg) satisfying the condition (A, «") > 0 for all & € R™. We write
X*(Tg)*™ C X*(Tg)™ for the set of regular dominant weights, that is satisfying
the condition (A, «¥) > O for all @ € R**. We also define

X*(Te)™" ={r € X*(Te) | (A + p,a") < p Vo € @™},

and X*(Tg)™ =P = X*(Tg)™ N X*(Tg)=", and similarly for X*(Tg)*+ <>,

Let O denote the ring of integers of E, () C O its maximal ideal, and k =
O/(m) its residue field. If . € X*(Tr) = X*(T»), then we write B(G; 1) for the
functor defined on O-algebras R by the formula

B(G; M)(R) ={f € RIGI®0 O() | forall R — A,
f®r A€ (A[G]®o O(L)E W)

We write B~ for the opposite Borel subgroup to B. This functor is defined and
studied in [Jan03, 1.3.3], where it is denoted ind%,k. In particular, A(G; 1) =
B(G; 1) (0O) is an O[U]-module, finite free as O-module (it is finitely generated
by [Jan03, 1.5.12(c)], and is then clearly free); and if A € X*(Ts)™, then it follows
from [Jan03, 11.4.5] that for any (D-algebra R the natural map

A(G; )) ®o R — B(G; M)(R)

is an isomorphism.

PROPOSITION 2.10. Let A € X (Tg)™.
(1) The module A(G; A) ®o E is an absolutely irreducible E[U |-module.

(2) Let I C R™, so the parabolic subgroup P, = M, x N, C G is defined. Then
there is a direct sum decomposition

Reng, AG A =AM;; M) @ K
of O[Uy,1-modules, and Uy, acts trivially on A(Mj, )).
Proof. The first part is a consequence of highest weight theory in characteristic 0

and the Zariski density of U C G(E). For the second part, we observe that since
T, is a torus, there is a decomposition

Res;® B(G: 1) = (P M,
n

as a sum of finitely many nonzero weight spaces (even over ). We define W, =
P pezo1 Moy, and W, to be the sum of the complementary weight spaces. Then

there is a decomposition Res%g B(G;A) =W, & W,.
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We claim that this is a decomposition of M, ,-modules, that N, , acts trivially
on Wi, and that there is an isomorphism W, = B(M;; A) of M, ,-modules. Let
us address each point in turn. By the main result of [Cab84], as well as [Cab84,
4.1, Proposition], we know that

ResSE, B(GiA) = W, ®0 E® W, ®0 E
as M; g-modules, that
(B(G; 1) ®0 E)M* =W, ®0 E,

and that W, ® o E = B(M,; 1) ®o E as M, g-modules. The M, ,-invariance of
the decomposition B(G; A) = W; @& W, can be checked on E -pOints, so follows
from what we have written above. The fact that N, ., acts trivially on W, can also
be checked on E-points.

It remains to check that there is an isomorphism W, = B(M;; ) of M, -
modules. By Frobenius reciprocity (that is [Jan03, 1.3.4, Proposition]), we have
for any M, ,-module V an isomorphism

Homy, ,(V, B(M; 1)) = Homp_ (V, O)).

The module W; has highest weight A, so W," has lowest weight —X, hence
there is a nonzero B ,-equivariant homomorphism O(—1) — W," (by [Jan03,
I1.1.19(7)]), hence a nonzero B ,-equivariant homomorphism W; — O(1), hence
(by Frobenius reciprocity) a nonzero M, ,,-equivariant homomorphism f : W, —
B(M; X). We can assume that f ®o k # 0. We claim that f is the desired
isomorphism. We know that f is an isomorphism after extending scalars to E,
so it is enough to show that the map f ®¢o k is injective.

Suppose for contradiction that ker(f ®¢ k) # 0. Then the kernel of f has a
nonzero B-socle, so contains the B-socle of W, ® o k = B(G; A)¥1.0 ® v k, which
equals B(G; A0 @ k = k()), by [Jan03, 11.2.2, Proposition]. We deduce that
f determines a nonzero element of the group

Homy, , (W) ®o k/ker(f ®o k), B(G; 1) ®o k)
= Homyg_ (W) Qo k/ker(f ®o k), k(1))
which contradicts the fact that W, ®» k/ ker( f ® k) does not contain the weight

A, which occurs with multiplicity 1 in W; ® k. This contradiction shows that
f ®op k is injective, and concludes the proof. 0

We now change notation slightly, and suppose that E C @p is a finite extension
of Q, which contains the image of all continuous embeddings F — @p. Ifr e
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Hom(F, E), then the above construction gives an O[U]-module A(G; 1) for each
A € X*(Tg..)", where the subscript 7 indicates that we extend scalars from F to
E via the embedding t.

If A = (At)rcHom(r.£) 18 a tuple with A, € X*(Tg,)* for each T € Hom(F,
E), then we define A(G; L) = @, A(G; A,), the tensor product being over O.
Then A(G; L) is an O[U]-module, finite free over O, and A(G; L) ®o E has
a natural structure of absolutely irreducible E[G (F)]-module. Proposition 2.10
now implies the following result:

COROLLARY 2.11. Let I C R™ andlet A € [, cyomer.) X (Te.0)*. Then there is
a canonical decomposition ResZMl A(G; L) = A(M; L) @ K of O[Uy, 1-modules,
where A(M; L) C A(G; L)YM,

Proof. Since tensor products respect direct sums, this is an immediate
consequence of Proposition 2.10. 0

2.3. Equivariant sheaves for abstract groups. Let X be a topological space,
and let G be a group that acts on the right on X by homeomorphisms. (We call
X a G-space.) In this section, we consider (essentially following [Gro57, Ch. V])
the derived category of G-equivariant sheaves on X.

DEFINITION 2.12. A G-equivariant sheaf on X is a sheaf F on X equipped with
isomorphisms [g]F : F — g*F for each g € G, all satisfying the following
conditions:

(1) if e € G is the identity, then [e]r is the identity;
(2) foreach g, h € G, we have [gh]r = g*[h]F o [g]F.

We write Shg(X) for the category of G-equivariant sheaves of abelian groups
on X. If R is a ring, then we write Shs (X, R) for the category of G-equivariant
sheaves of R-modules on X.

It is easy to see that Shs(X, R) is an abelian category, and that the natural
functor Shg (X, R) — Sh(X, R) (which forgets the G-action) commutes with the
formation of kernels and cokernels.

LEMMA 2.13. For any ring R, the category Shg (X, R) has enough injectives.

Proof. We just give the argument in the case R = Z. Let F € Shg(X). We must
construct a monomorphism J < 7 for some injective object Z. Choose for each
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orbit y € Y = X/G arepresentative £(y) € X and a monomorphism F¢,) — A,,
for some injective G¢(,-module A,. We then define

I,=IndS, A, =(f:G— A, |YheHgeG. f(gh)=h"f(g).

We interpret /, as a product of skyscraper sheaves supported on the orbit y, with
stalk over g&(y) given by the set of functions with support in gGs(y. It has a
natural structure of G-equivariant sheaf. We define Z = [],_, /,. Then there is a
natural G-equivariant inclusion F <> Z and for any G € Shg(X), we calculate

Homg,x)(G, T) = [ [ Homg,, (Ge(y). A,).

yeY
It follows that 7 is injective, and this completes the proof of the lemma. O
To avoid a proliferation of notation, we now restrict to the case R = Z.

Everything we say has a clear analogue for the category Shg(X, R). If H C G is
a subgroup, then there is a natural restriction functor Resf, : Shg(X) — Shy(X).
We define a functor indg : Shy(X) — Shg(X) as follows. Let p : G x X — X
denote projection to the second factor, and let G x H act on G x X by the formula
(g,h) - (g',x) = (gg’h™', hx). Then the sheaf p*JF admits a natural structure of
G x H-equivariant sheaf, and therefore descends naturally to a G-equivariant
sheaf F’ on the quotient G xy X (see Lemma 2.17 below). The induced map
f:GxyX — XisaG-equivariant local homeomorphism and we define indg F
to be the subsheaf of f,F’ consisting of sections which stalkwise are supported
in finitely many of copies of X under the isomorphism G xy X = | |; X (We
use the notation ind instead of Ind as the functor indf, plays the role of compact
induction.)

If Y is another space with G-action, and f : X — Y is a G-equivariant
continuous map, then the usual pushforward and pullback of sheaves gives rise
to functors f, : Shg(X) — Shg(Y) and f* : Shg(Y) — Shg(X). If Y is a point,
then we identify Shg (Y) = Mod(G) and write f, = I'x. (The left action of G on
I'yF is given by the formula g - s = [g]+' g*s.)

LEMMA 2.14. Let notation be as above.

(1) The functors (indg, Resg) form an adjoint pair, and both indg and Resg are
exact.

(2) The functors (f*, f,) form an adjoint pair, and f* is exact.

Proof. Itis clear from the definition that there is a natural map F — Res$ ind$ F
for any F € Shy(X), and this gives rise to the desired adjunction. It is useful to
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note that the stalks of the induced sheaf can be calculated as

(lndg f)x = {(sg)geG | Sg € ]:g"xth €H, Seh = hsg7
finitely supported modulo H}.

There is an isomorphism of underlying sheaves indfl F= @g com 8 ® F. This
makes it clear that both Res¢ and ind¥, are exact, and proves the first part of the
lemma. The second part follows easily from the corresponding result when G is
the trivial group. 0

COROLLARY 2.15. The functors Res% : Shg(X) — Shy (X) and f, : Shg(X) —
Shq (Y) preserve injectives.

DEFINITION 2.16. Let X be a G-space. We say that X is free if the action of G
satisfies the following condition: every point x € X has a neighbourhood U such
that for all g € G — {e}, gU N U = @. This implies in particular that every point
x € X has trivial stabilizer.

If p : G — H is a surjective homomorphism with kernel K, and X is a G-
space, and Y is an H-space, then we say thatamap f : X — Y is ¢-equivariant
if we have f(xg) = f(x)p(g) for all x € X, g € G. In this case, we define
a functor fX : Shg(X) — Shy(Y) by the formula fX(F) = f.(F)X (that is
FE(F) C f.(F) is the subsheaf of K-invariants).

LEMMA 2.17. Let ¢ : G — H be a surjective homomorphism with kernel K.

(1) Suppose that f : X — Y is a gp-equivariant continuous map. Then the
functors f* : Shy(Y) — Shg(X), fX : Shg(X) — Shy(Y) form an adjoint
pair.

(2) Suppose instead that X is a G-space on which K acts freely, and Y = X /K,
endowed with its quotient topology. Then the two functors X : Shg(X) —
Shy(Y), f* : Shy(Y) — Shg(X), are mutually inverse equivalences of
categories.

Proof. The first part is [BL.94, Proposition 8.4.1]. The second part follows from
[BL94, Lemma 8.5.1]. ]

Now suppose that X is a G-space and that G is a locally profinite group, and
let U C G be an open compact subgroup that acts freely on X. As we have seen,
there is a left exact functor Iy : Mod(G) — Mod(H(G, U)), M — MY. We
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obtain a diagram of functors, commutative up to natural isomorphism:

She (X) —2> Mod(G) — > Mod(H(G, U)) -2~ Mod(Z)

S A @9

Shy (X) Sh(X/U)

U
*

The functors fU and Resg are exact and preserve injectives. As a formal
consequence, we obtain:

PROPOSITION 2.18. With notation as above, there is a canonical isomorphism in
D(Z), for any F € Shg(X):

R(Iy o Fx)(-/'T T = RFX/U(f*U-F)-

We will often use the following slightly weaker consequence of the proposition:
for any F € Shg(X), there is a canonical homomorphism 7; : H(G,U) —
Endp ) (RI'x/y FYF). (In the context of arithmetic locally symmetric spaces,
such homomorphisms recover the usual action of Hecke operators on cohomology.
We turn to this topic in Section 3.) The above homomorphism can be given
explicitly on basis elements as follows. We recall (see Section 2.2) that the algebra
H(G, U) is free over Z, a basis being given by the elements [UaU] with @ € G.

Let V= U NaUa !, let p; : X/V — X/U denote the natural projection,
p2:X/V — X/U themap X/V — X/a~'Va — X/U given by acting by «,
then projecting. Both p; and p, are topological covering maps. If F € Shg(X),
then the isomorphism JF = «*F induces an isomorphism

PF=fF=a fF = pifl F.

*

We define an endomorphism 6 («) of RIx,y (fV F) as the composite

RFX/U(f*U]:) iz) RFX/V(p;f*UF) = RFX/V(pr*U—F)
= RFX/U(Pl,*PTf*Uf) - RFX/U(f*UJr)

where the final map is the trace, defined by the adjunction (p; . = p1,, pf = p').

We refer to [KS94, Theorem 3.1.5, Proposition 3.3.2] for the adjunction property

and the identification p* = p!.

LEMMA 2.19. Let F € Shg(X). For a € G the image of [UaU] in
EndD(Z)(RF)(/U f*U.F)

equals 0 ().
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Proof. Tt suffices to check the same statement for I'y,y (fUF), since applying
this to the sheaves appearing in an injective resolution F — Z* gives the desired
result. The lemma can then be proved by comparing the explicit descriptions of
the Hecke action on U-invariants and trace map on global sections. 0

We now present a kind of ‘Shapiro’s lemma’ for spaces. Let G be a group,
H C G asubgroup, and X an H-space.

PROPOSITION 2.20. There is a natural equivalence of categories Indz
Shy (X) = Shg(G x g X), and a natural isomorphism I, x o Ind¢ = Indg ol.

Proof. Letm; : G x X - Xandm, : G x X — G Xy X be the two projections.
Let G x H acton G x X by the formula (g, h)(g’, x) = (h~'g’g, xh). Then the
subgroup G x {1} acts freely on G x X, and m, is the corresponding quotient
map; and the subgroup {1} x H acts freely on G x X, and ; is the corresponding
quotient map. We obtain a diagram of functors

Shy (X) — > Shgy (G X X) —2> Sha(G x i X).

It follows from Lemma 2.17 that Ind$, = m,!, omf is an equivalence of categories,
with inverse given by nf* o m;. The natural isomorphism Iy, x © Indg =
Ind% oIy is then an easy consequence of the definitions. O

COROLLARY 2.21. With notation as in the proposition, we have a natural
isomorphism of derived functors RI Gy, x o Indg = Indfl oRTY.

Proof. This follows from Proposition 2.20 and the formula for the composition
of derived functors. (|

2.4. Equivariant sheaves for topological groups. We will also consider G-
equivariant sheaves where G is a topological group acting continuously on a
topological space X, following [BL.94].

DEFINITION 2.22. Let G be a topological group and X be a topological space.

(1) We say that X is a G-space if it is equipped with a continuous right action
of G, that is the multiplication map m : X x G — X is continuous. Write
p : X x G — X for the projection map.

(2) If X is a G-space, a G-equivariant sheaf on X is a sheaf F on X equipped
with an isomorphism 6 : p*F = m*F satisfying the usual cocycle condition
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(see [BL94, Section 0.2] for the analogous formula in the case of a left
action).

We write Shg(X) for the abelian category of G-equivariant sheaves of abelian
groups on X. For a ring R, we write Shs (X, R) for the abelian category of G-
equivariant sheaves of R-modules on X.

If G is endowed with the discrete topology, then the above definition coincides
with the one given in the previous section. We will usually restrict ourselves to
the simplest situation, where the action of G on X is free.

DEFINITION 2.23. Let G be a topological group and X be a G-space. We say
that X is free if the quotient map ¢ : X — X/G is a locally trivial G-torsor.
In other words, there exists an open cover {U;};c; of X/G and G-equivariant
isomorphisms U; x G = ¢~ (U,).

LEMMA 2.24. Let X be a free G-space. Then the functor q* : Sh(X/G) —
Shg(X) is an equivalence of categories. An inverse is given by qC (defined by
the same formula as in the case where G is discrete, see before Lemma 2.17).

Proof. This is well known. It is a special case of descent along a torsor [Vis0S5,
Theorem 4.46]. ]

It follows that if X is a free G-space, then Shs (X) has enough injectives.
2.4.1. Equivariant sheaves and smooth representations

LEMMA 2.25. Let G be a topological group and X be a G-space. Suppose X
is compact. Then for F € Shg(X) the global sections of F form a smooth G-
representation.

Proof. Let s be a global section of F. We consider the two sections 6 (p*s) and
m*s of m*F over X x G. For x € X, the stalks of p*s and m*F at (x, ¢) are both
given by F, and 6 induces the identity map p*F(, . = m*F(.). In particular,
0(p*s) and m*s have the same image in the stalk at (x, e¢), and hence coincide on
some open neighbourhood W, C X x G of (x, ¢). We have U, x G, C W, for
U, an open neighbourhood of x in X and G, an open neighbourhood of e in G.
Since X is compact, we obtain a finite open cover U; of X and open
neighbourhoods G; of e such that for all (x, g) € U; x G;, 8(p*s) and m*s have
the image in m*F (U; x G;). We conclude that there is an open neighbourhood H
of e in G such that 8(p*s) and m*s have the same restriction to X x H. In other
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words, s is fixed by an open neighbourhood of e in G, and hence its stabilizer is
an open subgroup of G. O

If X = pt = {x}, then an object F in Shs(X, R) gives rise to an R-module
F. equipped with an action of G. Lemma 2.25 shows that this gives a functor
Shg (X, R) — Mod,, (G, R).

LEMMA 2.26. The functor F — JF, induces an equivalence of categories
between Shg (pt, R) and Mod,, (G, R).

Proof. The functor is clearly fully faithful, so we need to check essential
surjectivity. For M € Mod,,, (G, R) we set ), to be the sheaf on {x} with sections
M. We have p*F) = m*F)y and this is the sheaf of locally constant functions
from G to M. For U C G an open subset we define 0 : p*Fy (U) = m*Fy (U)
by 6(f)(g) = gf(g), for f alocally constant function U — M and g € U. Since
the action of G on M is smooth, 6(f) is again a locally constant function from U
to M. The cocycle condition for € can be checked on stalks, where it amounts to
the action of G on M being a group action. O

DEFINITION 2.27. Let X be a compact G-space. Denote the left exact functor
obtained by taking global sections by

I'y : Shg(X, R) — Mod,, (G, R).
If X is a compact free G-space, we denote by R the right derived functor
RIx : D*(Shg(X, R)) — D! (G, R).

LEMMA 2.28. Let X be a compact G-space. The functor I'x : Shg(X, R) —
Mod,,, (G, R) preserves injectives.

Proof. The functor I'y can be viewed as the direct image functor Shs (X, R) —
Shg (pt, R). This has an exact left adjoint given by the inverse image functor, so
I'y preserves injectives. O

Now suppose that G is a topological group, and H is a locally profinite group.
We suppose that X is a compact G x Hg-space, where H; indicates H with the
discrete topology. Let U C H be an open compact subgroup such that G x Us
acts freely on X. We obtain a diagram of functors, commutative up to natural
isomorphism, analogous to the diagram (2.9):
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Shess, (X, R) —> Mody(G x Hy, R) —> Modyn(G. H(H., U) ®; R) ——> Mody (G, R)
m Tww
Sty (X. R) ——————> Sh(X/U. R)

(2.10)
Note that X/ U is a free G-space. We also have an equivalence Shg, g, (X, R) =
Shy, (X/G, R), so this category has enough injectives. We can therefore define a
right derived functor R(I'yolx) : D*(Shgyn, (X, R)) — D (G, H(H, U)®zR).
We obtain:

PROPOSITION 2.29. There is a canonical isomorphism in D} (G, R), for any
F e SthH,;(X, R)

R(Iy o Fx)(]‘—)w = RFX/U(f*Uf)-

As in the discrete case, we will use the following consequence of the
proposition: for any F € Shg, g, (X, R), there is a canonical homomorphism

H(H,U) — Endp: . (RTxu £ F). (2.11)

For « € H, define an endomorphism 6 («) of R,y fYF as in the discrete case
by pullback and pushforward. The same proof as before now yields the analogue
of Lemma 2.19:

LEMMA 2.30. Let F € Shgyu, (X, R). For @ € H, the image of [UaU] under
the homomorphism (2.11) equals 6 ().

2.5. Completed cohomology. We now recall some elements of the theory of
completed cohomology. We begin by working in a general context as in [CE12,
1.1] and [Hil10, 2.2]. Let G, be a profinite group with a countable basis of
neighbourhoods of the identity given by normal open subgroups

- C G, C---C G CQGy.
Suppose given a tower of compact topological spaces
o= X, = o= X = Xo,

each equipped with an action of G,. We moreover suppose that:
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(1) the maps X,,; — X, are Gy-equivariant;
(2) G, acts trivially on X, and X, is a (locally trivial) G¢/ G,-torsor over Xj.

Finally, we assume that X, admits an open covering by contractible subsets
(for example, X, is locally contractible). In the above situation, we define a
topological space
X =1limX,,
'y
endowed with the projective limit topology. X is a compact G,-space. We write
7, for the maps X, — X, and 7 for the map X — X,.

LEMMA 2.31. The space X is a free Go-space and the natural map X/ Gy — X
is an isomorphism.

Proof. 1t is clear that the canonical map X — X, identifies X, with the quotient
X/Gy. To show that the G action is free, we must show that the quotient map
X — X is alocally trivial Gy-torsor. Let U be a contractible open subset of Xj.
For each n, the fibre product X, |y := X, xx, U is a torsor over U for the finite
group Go/G,. We therefore have an isomorphism of G,/ G ,-torsors over U:

Tyt anU = U x (GO/GH)
We are going to construct an isomorphism of Gy-spaces

Xy :=1<i£1Xn|U’=VUxG0

n

by modifying the isomorphisms t,. Suppose we have isomorphisms
T Xily 2 U x (Go/Gy)

for 0 <i <n—1, which, for 1 <i < n— 1, send the transition maps X; — X;_,
to the obvious projection U x (Go/G;) — U x (Go/G;_1).

We consider the surjective map of Gy-spaces U x (Go/G,) — U x (Gy/G,_1)
induced by the isomorphisms 7, _,, 7, and the transition map X, — X,_;. This
map sends (u, x) to (u, (x)), where o : Go/ G, — Go/G,_; is a map of Gy-sets.
This map is therefore determined by (1) € Go/G,—. We define 7, by 7, (x) =
7,(x)g, where g is any representative of «(1) in G.

We set 1, equal to the identity, and by induction we have constructed 7, as
above for all n. Now taking the projective limit gives the desired trivialization of
Xly. O
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LEMMA 2.32. Let R be a ring. The category Mod,, (G, R) has a generator and
exact inductive limits. In particular, Mod,,, (G, R) has enough injectives.

Proof. A generator is given by X = €, - Indgfj R, since
Hom(X, M) = ]_[ MO
n>=0

which is nonzero for all M € Mod,,, (G, R). It is clear that inductive limits exist
in Mod,,, (G, R), and they are exact by [Gab62, Proposition 1.6b]. L]

Given F; € Sh(Xy), we set F,, = 7/ Fy € Shg,/6,(X,) and set F = n*F €
Shg, (X).

LEMMA 2.33. The natural maps I'x,(F,) — 'x(F) induce an isomorphism

lim Iy, (F,) = Ty (F).

n

Proof. The natural maps Iy, (F,) — ['x(F) identify Iy, (F,) with I'x(F)", by
Lemma 2.24. By Lemma 2.25, I'y(F) is smooth, which gives the desired result.
O

LEMMA 2.34. The functor RI'x : D*(Shg, (X, R)) — DI (Go, R), when
composed with the equivalence of triangulated categories D (Sh(X,,
R)) = D*(Shg,(X, R)), is the right derived functor of the functor Sh(X,,
R) — Mod,,(Gy, R) given by

Fo > lim Iy, (F,).

n

Proof. This follows from Lemma 2.33. O

LEMMA 2.35. There are canonical isomorphisms

H'(RTx(F)) = lim H'(X,, F,).

n

Proof. The previous lemma identifies Ry with the derived functor of

Fo > lim Iy, (F,)

n

from Sh(Xy) to Modw(Go). Taking an injective resolution Z; of F, we get
injective resolutions Z? = m*(Z3) of F, for each n (7, , is exact, so 7, preserves
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injectives). Now H'(RIx(F)) is (by definition) given by H i(li_r)nn I',l)) =
lim H'(I,(Z}) = lim H'(X,, F,). =

DEFINITION 2.36. For aring R, denote by

RIG, : DI (Go, R) > D™ (Gy/G, R)

sm

the right derived functor of taking G, -invariants.

Since G, is compact, the derived functors RI;, may be computed using
standard resolutions. For M € Mod,, (G, R) and r > 0 we denote by X" (M)
the object of Mod,, (G, R) given by locally constant maps from G, to M.
The action of G, is given by (6 f)(0y,...,0,) = of(c "0y, ...,07'0,). As in
[NSWO00, 1.2], we define a complex X*(M): there are maps d; : G" — G"~! given
by omitting the ith term, which induce maps d; : X"~' — X”, and the maps in
the complex are given by

§=> (-Did : X" > X"

i=0

The map M — X°(M) given by sending m to the constant function with
value m induces a quasiisomorphism M — X*(M) in Mod,, (G, R) [NSWO00,
Proposition 1.2.1].

LEMMA 2.37. Fori > 0andr > 0we have R'I';, X" (M) = 0. As a consequence,
the natural map X*(M)° — RIg, X*(M) is a quasiisomorphism and we have
an isomorphism X*(M)°" = RI';, M inD*(Gy/G,, R).

Proof. First we recall some standard results in continuous group cohomology;
see for example, [NSWO00, Ch. I]. The functors M +— I''(M) := H'(X*(M)%")
define a cohomological §-functor from Mod,, (Gy, R) to Mod(G,/G,, R), and
we have I'' (X" (M)) =0foralli > 0and r > 0 (the modules X" (M) are induced).
The map M — X°(M) induces an isomorphism I';, M = I"°(M). Therefore, the
functors I'’ form a universal §-functor, and hence R' I, X" (M) = ' (X" (M)) =
0. O

LEMMA 2.38. Let R — R’ be a flat ring map and denote the extension of scalars
functor Modg,,(Gy, R) = Mod, (G, R') by (—) ®r R'. Then there is a natural
isomorphism of functors D} (Gy, R) — D*(G,/G,, R'):

RIG,(—) ®r R = RI;,((—) ®r R).
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Proof. For M € Mod,,,,(Gy, R) we have a natural isomorphism X*(M) @z R' =
X*(M ®r R’) (each function in X"(M ®r R’) has a finite set of values, so it
is a finite R’-linear combination of M-valued functions). Since we can compute
RI'(G,, —) using resolutions by the acyclic objects X*(M), and (—) ®x R’ sends
these acyclic resolutions to acyclic resolutions, we obtain a natural isomorphism
between RI, ((—) ®r R’) and the derived functor of

M+ (M ®x R)°".

On the other hand, since (—) ®xr R’ is exact, RI;, (—) ®x R’ is naturally
isomorphic to the derived functor of

M M Qi R'.

To prove the lemma, it suffices to show that the natural map M°* @ R’ — (M ®p
R)%" is an isomorphism. Since the action of G, on M is smooth, it suffices to
check that this map is an isomorphism for G, a finite group. This follows from
the isomorphism (2.1) in the proof of Lemma 2.2, as MY = Homgg, (R, M)
and R is a finitely presented R[G,]-module. ]

LEMMA 2.39. Let R be a ring, and let F € Shg,(X, R) and n > 0. Denote by
F. € Shgy6,(X,, R) the sheaf on X, obtained by descent from F. There are
natural isomorphisms in DY (G,/G,, R):

RIG RIxF = RIy F,

extending the natural isomorphism I'g, 'y F = I'x, F,.
Proof. This follows from Lemma 2.28. O

2.5.1. Completed cohomology without taking a limit of spaces. We now present
a variant of the constructions of Section 2.5 which works just with sheaves at
‘finite levels’ X, instead of passing to the limit X. This variant will then be
applicable in a more general situation: for example, when the group actions are
not free (we will later work with minimal compactifications as well as Borel—
Serre compactifications), and the spaces X, are algebraic varieties or even adic
spaces.

In this section, a ‘space’ means one of the following: a topological space,
an adic space over a complete and algebraically closed extension of Q,, or an
algebraic variety over an algebraically closed field of characteristic 0. We again let
G, be a profinite group with a countable basis of neighbourhoods of the identity
given by normal open subgroups

- C G, C---C G CQGy.



Torsion Galois representations over CM fields 33

Suppose given a tower of spaces
> X, - = X = X,

with each X, equipped with an action of the finite group G/ G, and the transition
maps equivariant with respect to these actions. Contrary to the last section, we do
not assume that these group actions are free.

We now consider categories S, = Shg,,6,(X,, R), where we take equivariant
sheaves on the topological space X, or the étale site of the algebraic variety or
adic space X, as appropriate. (See [Hub96] for the definition of the étale site of
an adic space.) Note that the transition maps X,, — X, for m > n give pairs of
functors 72/ : S, — S, and 7} : S, — S,,. By the first part of Lemma 2.17
and its analogue for the other sites, m';/*G'" is a right adjoint to " ,

DEFINITION 2.40. We define S to be the category whose objects are collections
of sheaves (F,),>o with F, € §,, equipped with morphisms 6,,, : 7% , F,, — Fu
for m > n, which satisfy a cocycle relation: fori > j > k we have

O =6, 07} 0,

The morphisms in S are given by families of morphisms f, : F, — G,, such that
form > n

fm o em,n = gm,n o ﬂ;;,n(fn)

The category S depends on the ring R of coefficients, although we do not
include this in the notation. We observe that S is the category of R-module objects
in the total topos of a fibred topos (see [SGA72, Définition V1.7.4.1]), although
this is not made use of in the sequel. In particular, we can deduce immediately
that S has enough injectives, but we will show this directly (Lemma 2.44).

DEFINITION 2.41. Denote by ¢! the functor S — S, given by (F,)m>0 = Fi.
Denote by ¢, the functor S, — § given by

Fr—(,...,0,F,. FL).

ﬂl n

Denote by ¢, . the functor S, — S given by

Fis @ F, . qatnlGF  F,0,0,...).

n,0,% n,m,x

LEMMA 2.42. The functor i, is a left adjoint to
tr. The functor 1, is exact.

and v, . is a right adjoint to

n’
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Proof. First we check the adjointness properties. Suppose we have F € S, and
G, € S. Then an element of Homg(¢,,F, G) is given by a collection of maps f,,
in Homg, (0* F,, G,,) for m > n such that

m,n

fm = em,n o n;,.;,"(fn)-

So we see immediately that everything is determined by f,, and Homg(¢, | F,
G) = Homg, (F, G,) = Homg, (F, t*G) as required.

Next, suppose we have F, € Sand G € S,. Given amap f, : F, — G thereisa
natural way to produce a map F, — t,.G: form <nwelet f,, : F,, - n0n/G

be the map corresponding by adjunction to 7, F, Py Fu L G. This gives a
natural map Homg, (¢} F, G) — Homg(F, ¢, .G). To prove that this is a bijection,
we must show that this choice of f, is the unique map making the following

diagram commute:

ﬂ:mfm
* - * Gn/G
nn,mfm nn,mnn,lr;;* ng
lgn.m l
In
Fu g

The right hand vertical arrow here is the counit of the adjunction. So the
composition of the top horizontal and right vertical maps is identified with f,,
under the bijection Homg, (", Fou, G) = Homy, (F,,, w2»/C"G). This forces f,,
to be the map we have defined above.

This implies that ¢ is exact, so it preserves kernels and images. In particular,
kernels and images of maps in § are given by componentwise kernels and images,
so one can check exactness of complexes in § componentwise. Since 7y, is an
exact functor, ¢, is exact. I

LEMMA 2.43. For F € S an injective object the equivariant sheaf 1} F € S, and
the underlying sheaf in Sh(X,, R) are injective. The functor i, . also preserves
injectives.

Proof. The functors ¢} and ¢, , have exact left adjoints, as does the forgetful
functor from S, to Sh(X,, R) (by the same construction as in Lemma 2.14). It
follows that all of these functors preserve injectives. O

LEMMA 2.44. The category S has enough injectives.

Proof. Let F € S. For each n, we pick a monomorphism ¢* F < 7, to an injective
object of S,. By adjointness we have maps F — t, .7, for each n, so we obtain
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amap F — Z := [[,>¢ L. Since products of injectives are injective, Z is
injective. The map F — Z is monic, as this can be checked componentwise. So
S has enough injectives. 0

DEFINITION 2.45. We denote by I” the functor S — Modgn(Go, R) given by
f = li_nQFX,,(-F;z)-

n

We denote by RI :D*(S) — D! (Gy. R) the right derived functor of r.

LEMMA 2.46. There are natural isomorphisms

R(F)= lim H'(X,,, ).

n

Proof. We take an injective resolution / — Z°. For each n, F, — 17 is an
injective resolution. Since direct limits are exact in Mod,,, (G, R), we have

R F(F) = H'(lim I, (I}) = lim H' (I, () = lim H' (X, F,). O

LEMMA 2.47. Suppose the X, are compact locally contractible topological
spaces and the spaces X, — Xo are G/ G ,-torsors. In other words, we suppose
that the formalism of the previous section applies to X,. We regard RI'x as a
Sfunctor on Sy, using Lemma 2.34. Then there is a natural isomorphism

Ry Z RT o1,

Proof. We have a natural isomorphism of functors I'y = Fo to,- By Lemma 2.1
we obtain a natural transformation

RFX —> RFO lo,1-

Tracing through the constructions and applying Lemma 2.46, we see that this is
an isomorphism. O]

LEMMA 2.48. Suppose that the X, are compact Hausdorff topological spaces,
let jo : Yo — X be an open subspace, and let j, : Y, — X, be the pullback
of jo for each n > 0. Let Sy denote the analogue of the category S for the tower
(Y)n>o, and let j, : Sy — S denote the exact functor induced by the functors j, ).

Let 1:': : Sy = Mody, (Gy, R) be the functor
FuF) =lim (Y, F) = [ o jiF.

n
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Then there is a natural isomorphism of functors
RI. = RT o j, : D*(Sy) — DI (Go, R).

Proof. Ttsuffices to check that for Z an injective object of Sy we have R’ r JZ=0
for all i > 0. We have R'T"jZ = h_r)nn H'(X,, j..Z,), so the vanishing follows
the fact that j, , takes injective sheaves to soft sheaves, which are I"-acyclic (see
[Ive86, Proposition I11.7.2]). I

2.5.2.  Comparing topologies. Suppose given a complete algebraically closed
extension C of Q, with compatible embeddings @ C C and Q C C, together
with a tower X2 of proper schemes over Q. We set X'* = X%(C) with the
usual topology, set X' to be the ‘local isomorphisms’ site on X*¢(C) as defined
in [SGA73, XI 4], and set X' to be the adic space associated to X2%..

If 7 € {top, cl, alg, ad}, then we denote by I’ and RI’ the functors obtained
by applying the formalism of Section 2.5.1 to the tower of spaces (X}),>o (with
the appropriate site). Recall that there is a morphism of sites

. 1 alg 1
€p - X,i - (Xn,(j ét > (X,Z;g)ét

together with an inclusion of sites X¢' — X'°? inducing an equivalence of topoi.
This induces an exact functor €* from S¥¢ to SP. As a result we obtain a
base change natural transformation RI™¥¢ — RI"Pe*, for example by applying
Lemma 2.1. When R is a torsion ring, this natural transformation is an
isomorphism by Lemma 2.46 and the usual comparison theorem for cohomology
[SGA73, XVII Corollaire 5.3.5].

Similarly, we obtain a natural isomorphism R — R[™e* where €* is
induced by the morphisms of sites €, : (X*)g — (X;‘lf';c)ét — (X&) (We use
(3.2.8) and [Hub96, Theorem 3.7.2]).

2.6. Almost smooth representations. Fix a complete and algebraically
closed extension C of Q,. Let Oc C C denote the ring of integers and m C O¢
the maximal ideal. Let 7 € m — {0}. Fix N > 1 and let V = O¢/ (V). Recall
[GRO03], [Sch12, Section 4] that the almost context (Oc, m) allows us to define
a category of almost Oc-modules, or O¢%-modules, that we denote Mod(O¢).
This is obtained by localizing the category Mod(O¢) of O¢c-modules at the Serre
subcategory comprising modules which are killed by m.

One then defines O¢-algebras, and in particular we have an Of.-algebra V¢,
which we denote by A. There is an exact localization functor (—)¢ from Mod(V)
to Mod(A). This functor has a right adjoint M — M, = Hom, (A, M), the functor
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of almost elements; for any M € Mod(A), the adjunction morphism (M,)* — M
is an isomorphism. The functor (—)¢ also has an exact left adjoint M +— M, =
m®op. M, (see [GR03,2.2.21, 2.2.23]), and the adjunction morphism M +— (M,)*
is again an isomorphism.

Let G, be a profinite group equipped with a nested sequence Gy O G; D - --
of open compact subgroups.

DEFINITION 2.49. We say X € Mody,(Gy, V) is almost zero if mX = 0. The
full subcategory of almost zero objects in Mod,, (G, V) is a Serre subcategory
and we denote by Mod;,,(Gy, A) the abelian category obtained as the quotient of
Mod,, (G, V) by this Serre subcategory.

LEMMA 2.50. The functor (=), induces an exact left adjoint to the localization
functor Modg, (Go, V) — Mod, (Go, A), which we also denote by (—),. The unit
of the adjunction M — (M) is a natural isomorphism from the identity functor
to the composition ((—))*.

Proof. We note that X — m ®p. X defines an exact functor Mod,y,(Gy,
V) — Mod,,(Gy, V) which is zero on almost zero objects. Therefore, we obtain
an exact functor (—), from Mod,, (G, A) to Mod,,(Gy, V), by the universal
property of a quotient by a Serre subcategory. This is seen to be left adjoint to
the localization functor by the same argument used to deduce [GRO03, (2.2.4)]:
namely, describe Hom groups in the localization Mod,, (Gy, A) by calculus of
fractions and observe that m ® . X — X is initial in the category of almost
isomorphisms to X € Mod,(Go, V). In particular, for X, ¥ € Mody,(Gy, V) we
obtain a natural isomorphism of V-modules

Homyiod,,, (Go,4) (X9, Y*) = Homyped,,, (6o, v) (M Qo X, ¥).

Finally, for M = X*, the argument mentioned above shows that the unit of the
adjunction is given by the map X* — (m ®o,. X)“ which is the inverse of the
almost isomorphism m ®,. X — X. This implies that the unit of the adjunction
is a natural isomorphism, as required. O

REMARK. The functor (—), induces a functor from Mod,, (G, A) to Mod(G,,
V) but the resulting V[G(]-module may not always be smooth. To define the
functor, we note that for X € Mod, (G, V), Homu (A, X) = Homy(m o, V,
X) is naturally equipped with an action of G, (which may not be smooth). Taking
smooth vectors gives a functor (—)" : Mod,, (Gy, A) — Mod;, (Gy, V), which
can be checked to be a right adjoint to the localization functor. However, we will
not use this right adjoint in the sequel.
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DEFINITION 2.51. We denote by D! (G, V) (respectively D! (Go, A)) the
bounded below derived categories of Mody, (Gy, V) (respectively Modg, (Gy,

A)).
The (exact) localization functor (—)“ induces a functor
D! (Go, V) = DY, (G, A).

LEMMA 2.52. The localization functor Modg,(Go, V) — Modg,(Gy, A)
preserves injectives.

Proof. This follows from exactness of the left adjoint (—),. 0
LEMMA 2.53. The category Modg,, (G, A) has enough injectives.

Proof. For M € Mod,(Gy, A) we have a monomorphism M, — [, with [
an injective object of Mody,,(Gy, V), since Mod,,, (G, V) has enough injectives
(Lemma 2.32). Then applying the localization functor gives a monomorphism
M = M} — [“. By Lemma 2.52, [ is injective. O

DEFINITION 2.54. For n > 0 we denote by
TG, : Modg, (Gy, A) — Mods,(Go/ G, A)
the functor given by
M +— Homyed,,@G,.4) ((1v)*, M)*.

Here, we note that if M = Xa, HomModsm(Gn,A) ((lv)a s M) = HomMOdsm(va) (m ®O(T
V., X) which we view as an object of Mod(Gy/G,, V) = Mods,,(Go/G,, V), and
then apply (—)“ to get something in Mody, (Go/ G, A).

LEMMA 2.55. For M, N € Mod,,(Gy, V), the natural map of V-modules
Homwoq,,, o, vy (M, N) — Homwoq,, Gy, a) (M, N)
induces an isomorphism of A-modules
Homyiod,,, o, v) (M, N)* — Homyed,,,Go.4) (M, N“)“.
In particular, for X € Mod,,(Gg, V) the map

Homyed,,, G, v) (v, Xlg,) = Homyoa,,@G,.4) ((1v)*, X15,)
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induces an isomorphism (I'g,X)* = I',(X*). Moreover, for M, N € D] (G, V)
we similarly have a natural isomorphism of A-modules

HomDJm(Go,V) (M, N)a — HO]‘I‘ID;;“(GO,A) (Ma, Na)a.

PVOOf We have HomModsm(Gn,A) (Ma, Na) = HomModsm(Gn,V) (m ®(9C M, N), by
Lemma 2.55, and the natural (multiplication) map m ® o. M — M is an almost
isomorphism (the kernel and cokernel are killed by m). The induced map

Homyoq,,, (6o, v (M, N) — Homyeq,,, 6o, (M ®or M, N)

is therefore an almost isomorphism.

To check the ‘moreover’ statement, we work with the homotopy categories
Kt = K*(Inj,,,(Go, V)) and K¢ = K*(Inj,,,(Go, A)), where Inj denotes the
full subcategory of injective objects in Mody, (Gy, V) and Mod,,(Go, A). These
categories are equivalent to the bounded below derived categories D (Go, V)
and D} (G, A) [Wei94, Theorem 10.4.8]. We denote by Kom™* and Kom™* the
categories of bounded below complexes of injectives. For M, N € ob(K") =
ob(Kom™") we set

H* = [ [ Homyoq, 600 (M', N

ieZ

and set
H* = [ [Homytaa,, Gy (M), (N*)°).
i€Z
Since (—)“ has a left adjoint, it commutes with direct products, and so the natural
map of V-modules H™ — H™* induces an isomorphism of A-modules (H)* =
(H*™*)* (by the first part of the lemma). Now consider the commutative diagram
of V-modules, with exact rows

Ht Homg,+ (M, N) Homg+ (M, N) ——0

| | |

H** —— Homgom+«(M*, N*) — Homg+«(M“, N*) —=0

where the left hand horizontal maps are given by sending (s');cz to ds + sd.
The first part of the lemma shows that the first two vertical maps are almost
isomorphisms. Therefore, the third vertical map is an almost isomorphism, as
required. O

Note that I, is left exact, as it is a composition of the left exact Hom-functor
and the exact localization functor.
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DEFINITION 2.56. Denote by RIg, : D (G, A) — D{ (Gy/G,, A) the right
derived functor of I, .

LEMMA 2.57. There is a natural isomorphism of functors
RIG,(—)" = (RIG,(-)" : DL(Go, V) = D (Go/ Gy, A).

Proof. Both functors are the right derived functor of X +— I (X)* = Ig, (X%,
since (—)“ is exact and preserves injectives. O

3. Arithmetic locally symmetric spaces

In this section, we will describe the spaces associated to linear algebraic groups
over number fields, and use them to define our derived Hecke algebras.

3.1. Symmetric spaces. Let G be a connected linear algebraic group over Q,
and let R;G denote the Q-split part of the radical of G. Following Borel-Serre
[BS73], we make the following definition.

DEFINITION 3.1. A space of type S — Q for G is a pair consisting of a (left)
homogeneous space X under G(R) and a family (L,).cx, of Levi subgroups of
Gr satisfying the following two conditions:

(1) the isotropy groups G, = Stabg g, (x) are of the form G, = K - S(R), where
S C R;G is amaximal torus and K C G(R) is a maximal compact subgroup
normalizing S;

(2) foreachx € X, wehave G, C Ly and L,., = gL.g ' forall g € G(R).

It follows from [BS73, Lemma 2.1] that there is a unique G (R)-conjugacy class
of such subgroups G, = S(R) - K; the homogeneous space X is therefore
determined up to isomorphism. It is connected, because a maximal compact
subgroup K meets every connected component of G (R). On the other hand, the
family of Levi subgroups (L,).cx involves a choice. Henceforth, we write X for
a fixed choice of space of type S — Q. The space X is orientable: in fact, it is
diffeomorphic to Euclidean space [BS73, Remark 2.4].

These spaces are studied in great generality in [BS73]. For us, examples will
arise as follows:

e if G is reductive, then there is a unique isomorphism class of space of type
S — Q for G, as is clear from the definition;
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e if G is reductive and P C G is a rational parabolic subgroup, then P (R) acts
transitively on X¢. For any x € X, there is a unique Levi subgroup L, C Pg
which is stable under the Cartan involution of G associated to K, the maximal
compact subgroup of G, (hence of G(R)); see [BS73, (1.9), Corollary].

Let Sp = (RyP/(R,P - R;G)), a Q-split torus, and let Ap = Sp(R)°. There is
a canonical action of Ap on X, called the geodesic action, and given by the
formula (fora € Ap, x € Xg)a e x = a, - x, where a, € L (R) is any lifting
of a € Ap; see [BS73, (3.2)]. This action of Ap commutes with the action of
P(R) on X, which therefore descends to the quotient Xp = Ap\X. For any
a€Ap,x € Xg,wehave L' = L/, and the quotient X, = Ap\X; becomes

a space of type S — Q for P when equipped with the family of Levi subgroups
(L; )XGXP .

For notational purposes it is convenient to allow groups over arbitrary number
fields, so now suppose that F is a number field and that G is a connected linear
algebraic group over F. We will write X for a fixed choice of space of type S —Q
for the restriction of scalars Resg G.

We now consider certain adelic arithmetic quotients of X . Choose an element
g = (8)v € G(AY), and consider for each finite place v the subgroup I, C

ff , defined as the torsion subgroup of the subgroup of fvx generated by the
eigenvalues of g, in any faithful representation of G. The element g is said to
be neat if (), I, is the trivial group. (This intersection has a sense since finite

subgroups of @X are invariant under Galois automorphisms.) An open compact
subgroup U C G(AY) is said to be neat if all of its elements are neat. (This
definition of neatness is the one used by Pink [Pin90].)

If U is neat, then for all g € G(AY), the group I, y = G(F) N gUg™! is neat
as an arithmetic subgroup of G(F ®q R). In particular, it is torsion-free and acts
freely and properly discontinuously on X, preserving orientations. Moreover, if
H C G is a subgroup then U N H(AY) is neat, and if G — H is a surjective
homomorphism then the image of U in H (AY) is again neat.

We write Xg = G(F)\[G(A¥) x Xg], where before forming the quotient
G (AY) is endowed with the discrete topology. Then X is a G(A¥)-space, in the
sense of Section 2.3. It follows that X is isomorphic to an uncountable disjoint
union of connected smooth manifolds, and for any neat open compact subgroup
U C G(AY), X is a free U-space (in the sense of Definition 2.16). If U is such
a subgroup, then we write X for the quotient

XY =X6/U = G(F\[G(AR)/U x Xgl.

If S is a finite set of finite places of F then we will write G5 = G(A?‘S),
where A‘?’S is the ring of finite adeles, deprived of its S-components, and G =
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[1,cs G(F,). Thus G(AY) = G* x Gg. In a slight abuse of notation, we will also
write G* = G(AY) and G, = G(F ®q¢ R).

In order to describe a reasonable class of level subgroups, we will fix an integral
model G of G, that is a flat affine group scheme over O with generic fibre G.
Such a structure having been fixed, we will write Jg for the set of neat open
compact subgroups of G(A¥) of the form U = [[, U, with U, C G(Op,) for all
v. When G = GL, r we will always choose the natural integral structure G =
GL, 0, in which case J is the set of neat open compact subgroups of GL,, (A¥)
of the form U =[], U,, with U, C GL,(Op,) for all v.

LEMMA 3.2. LetU € Jg.

(1) The quotient G(F)\G*/U is finite. Writing g1, ..., 8s € G™ for a set of
representatives and I'y, y = G(F) Ng;Ug; ! we have a homeomorphism

x¢ =] re\Xe.

i=1
that we use to endow X & with the structure of orientable smooth manifold.

(2) There is an equivalence of categories Shy (Xs) = Sh(X g ).

Proof. The first part is finiteness of the class number for G, which follows from
[PR94, Theorem 5.1]. The second part follows from Lemma 2.17, since U acts
freely on Xg. O

We will need to consider some naturally arising families of sheaves on the
spaces X&. Let S be a set of finite places of F and let Us C [],. G(OF,) be an
open compact subgroup. We will write J5 y, C Jg for the set of U € J; of the
form U = UgUS. If S is finite and M is a Z[Ug]-module, viewed as an object of
Shgsyy, (pt), then we write M for its pullback to Shgs.y,(X), and M, g for its
image in Sh(X{). Lemma 3.2 and the diagram (2.9) then imply:

COROLLARY 3.3. There is a natural isomorphism for any Z[Ug]-module M :
R, RIx M = Ry M.

This shows that our use of the discrete topology on G* does not cause
pathologies.

3.1.1.  Quotient by unipotent radical. We continue to denote by G a connected
linear algebraic group over a number field F'. As a warm-up for later, we now
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discuss what happens when when we consider the morphism G - H = G/N,
with N = R, G the unipotent radical of G. In this case, the group N(F ®q R)
acts freely on X and we can take X, = N(F ®gR)\ X (see [BS73, (2.8)]). Let
S be a finite set of finite places of F, and let Us C Gy be a fixed open compact
subgroup. We will freely use the identification H(GS x Us, U) = H(G?, U%),
and similarly for the groups H and N. For any U € Jg y,, we write Uy € Ty v, s
for its image in H* and Uy € Jy v, for its intersection with N*°. There is a
natural projection 7 5 : X — Xy, and for any U € J; .y, a quotient projection
Ty vy - Xé’ - X Z”. The map my y, is a submersion with compact nilmanifold
fibres.

Now fix a Levi decomposition G = H x N, and fix a subgroup U € J; .y,
which is decomposed, that is such that U = Uy X Uy. In this case we have
constructed in Lemma 2.7 a homomorphism ry : H(GS, U%) — H(H®, U})
and a corresponding functor r}; : Mod(H(H*®, U;)) — Mod(H(G*, U®)). In
this situation, we want to construct for any Uy s-module A a homomorphism in
D(H (G5, US)):

i :r5RIy, R, A, — RIyRx, Ag.

To this end, we consider the following diagram of functors:

Iy
Shgs s (X6) —— Shgs .y, (pt)

;S

G° xU,

T* Inf s S
H>xUp, g

Shys vy, s (Xn) o Shpys .y, s (PD.

. . . S .
Pullback of global sections gives a natural transformation Infgsillj; olx, —
H,S

I'x, o w*; by Lemma 2.1, we obtain a canonical morphism for any A €
MOd(UH’S):

Sy * =~
Infy X0, RTxuAy > RIxom" Ay = RIx, Ag.

HSxUpy,s

Note that there is a canonical natural isomorphism

InféYs Ry, = R(Infe Y Iy,).

HSXUHVS HSXUHVS

Combining this with Corollary 2.8, we obtain our desired morphism i as the
composite

rj Ry, R, Ay — RIyInf0Y RI%, A, — RIyRTx,Ag.
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We now want to construct for each A € Mod(Uy s) a splitting
S . (RFURFXGH*AH)N o (RFUHRFXHAH)N

of i~. To this end, we introduce a new space Py = H(F)\[H(AY) x Xs], with
the action of H (F) on X induced by our fixed Levi decomposition G = H X N.
There is a natural H*-equivariant map 6 : )y — X, and the composite o :
Dy — Xc — Xy is a fibre bundle with fibre N(F ®g R). In particular, the
endofunctor Ro,o* of D*(Shysy,  Xu) is naturally isomorphic to the identity
functor, by adjunction (see [KS94, Proposition 2.7.8]).

There is a natural transformation RI7; RI'x, — RI7; RIy,0". Applying this
to a sheaf w*A,, we obtain our desired morphism s as the composite

RIGRIx,m*Ay — Iy Ry, 0°n" Ay = 17, Ry, 0" Ay
=Ty, Rlx,Ro.0"Ay =1 RIx,Ay.

It is easy to see that s is a splitting of the morphism i~ : RI; RI'x, Ay, —
RIVRIx,;w*Ay, in D(Z). Putting all of this together, we have proved the
following:
PROPOSITION 3.4. For any A € Mod(Uy s), there are natural morphisms

i:ryRIy, R, Ay — RIyRIx,m"Ay,
in D(H(G5, U%)) and

s RIRIx,m"Ay — R, RIx, Ay
in D(Z), satisfying si~ = 1. In particular, there is a commutative diagram of

Z-algebras:

H(GS, US) —%= Endpz) (R} RIx,m*A,)

rﬁj ln—ntiw

T ~
H(HS, Uy)) —Endp) (RI, R, Ap).

Proof. It remains to check that the diagram is commutative. For this, it is enough
to show that for any t € H(H®, U})), the equality Tg(1)i~ = i~ Ty (ry(¢)) holds
inside

Hompy (R, R %, RT R, Ap).
This follows immediately from the fact that i~ arises from a morphism in
D(H(G?, US)). O
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We now generalize this slightly.

PROPOSITION 3.5. Let B be a Z[Ug]-module, and let C = Resgi” B. Suppose
that C admits a decomposition C = A® K of Z[U y.s]-modules, where A C BY~s.
Then:

(1) we havem*A, = Ag;
(2) there are natural morphisms
i:rgRIy, Ry, Ay — RIYRIx B,
in D(H(G5, US)) and
s :RIGRIx,B; — RIy RIx,Ay

in D(Z), satisfying si~ = 1. In particular, there is a commutative diagram of
Z-algebras:

H(GS, US) — %> Endpz (R R, By)

ryl ln—mti”

H(HS, UEI) T)EndD(Z)(RFI’]VHRFxHAH)'

Proof. The isomorphism 7*A,, = A, is clear from the definitions. The inclusion
A C BY%s implies the existence of a Us-equivariant map A — B, hence 7*A,, —
B;. We define i as the composite

rRIy, R, Ay — RIYRIx ;w*A,; — RIYRI %, B,

where the first arrow is the one constructed in Proposition 3.4 and the second
arrow arises from the map 7*A,, — B. We define s as the composite

RIyRIx,B; — RI,RIy,0°B; = RIy, RIy,0"C, = Rl RI%,C,
= RI;, RIx,(Ay ®K,)
— RI, RTx,Ay.

The first arrow is constructed as in the proof of Proposition 3.4, the isomorphism
0*B; = o*C,, follows from the definitions, the second isomorphism follows as in
the proof of Proposition 3.4, the third isomorphism follows from the isomorphism
C = A @ K, and the final arrow is projection onto the first factor of C = A & K.
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To complete the proof of the proposition, it remains to show that the equality
si~ = 1 holds inside Endpz)(RI;, RI'x, Ay). The composite si™ is equal to the
composite

RTy RTx,A, — RIy, RI%,C, — RI; RTx, Ay,

where the first arrow is induced by the inclusion A C C of Z[Uy s]-modules and
the second by projection along the direct sum decomposition C = A @ K. It
follows that si™ is induced by the identity morphism of A, hence is equal to the
identity. This completes the proof. O

In the applications, we will need this result in a slightly different form:

COROLLARY 3.6. With assumptions as in Proposition 3.5, there exists a
commutative diagram

t—>tF

H(GS S) é EndD(Z)(RFXUBG) _— HOmD(Z)(RFXU G’ RFXU BG)

lrﬁ Ln—mn‘“ lt»—mti{»

Ty
H(HS,Us) —— Endp)(RT, un AUy 20 HomD(Z>(R1" o AZ”,RFXZHAZ”).

Proof. We first define the relevant objects and morphisms. For a space X, Ry .
denotes cohomology with compact support. The maps s and i are as in the
statement of the proposition, we write F for the natural ‘forget supports’ maps
RI. — RI', and i, is the natural pullback

Un U U
RFxZH,cAH — RIyy Ag — RIxy B,
which exists because 7y, 1S proper.

The corollary now follows from the proposition and the commutativity of the
following diagram for any ¢ € Endpz) (RI'yy Qg):

RIyy B ——= RIyyBG ——= Ry B,

.

Uy F Uy sti™ Uy
RTyuy Af' —— Ry Aff' =" RT v, Aj".
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3.1.2. Borel-Serre compactifications and restriction to parabolic subgroups.
We continue to suppose that G is a connected linear algebraic group over the
number field F. Let U € [J;. According to Borel-Serre [BS73], we can add
boundary strata to X2 in order to obtain compact manifolds with corners. We
now discuss some elements of this theory.

Let P denote the set of F-rational parabolic subgroups of G (which includes
G itself). For each P € ‘B3, we have defined the group Ap and observed that the
quotient e(P) = Ap\ X admits a canonical structure of space of type § — Q for
Resg P, with respect to which the map X — e(P) is P(F ®q R)-equivariant.
Accordingly, we define

Xo =[] e,
PePR
endowed with the structure of smooth manifold with corners described in [BS73,
Section 7.1]. For each P € ‘3, the subset X (P) = L[Q:)P e(Q) is an open subset
of X, the structure of which can be described explicitly, see [BS73, Section 5].
In particular, e(G) = X; C X is an open submanifold. If g € G(F), then
there is a natural isomorphism X (P) — X(P?); the action of G(F) on Xg
extends naturally to X ; in a way compatible with these isomorphisms, see [BS73,
Proposition 7.6].

We define X = G(F N [G(A;") X 76], where as in the previous section,
G(A%) gets the discrete topology in the formation of the quotient. For any
U € Jg, we define

X0 =%6/U = GIO\GAZ)/U x Xgl.

As in the previous section, we can choose representatives gy, . .., g € G(AY) for
the finite double quotient G(F)\G(A¥)/U and calculate

—U g —
Xe=]][louv\Xe.
i=1

For each g € G(AP), the neat arithmetic subgroup Iy, y C G(R) acts freely on
X g, and the quotient Iy, ;\ X is compact [BS73, Theorem 9.3].

We define 3X; = X¢ — X and 8?2 = YZ — X{. Then we have similarly

0Xg = 0%/U = | [ [.0\0Xo.

i=1

Suppose given a finite set S of finite places of F and a fixed open compact
subgroup Us C Gs. For any Z[Us]-module A, we will write A, € Shgs,y, (X¢)
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for its pullback from Shgs, g, (pt). Since the pullback of A, to the G*-invariant
open submanifold X; C X agrees with the equivariant sheaf previously denoted
as A, we hope that this will not cause confusion.

We can use the Borel-Serre compactification to define a Hecke action on the
compactly supported cohomology of the spaces XZ. More precisely, we can
define for any Z[Ug]-module A a homomorphism

H(G*, U) — Endpz (R o .AY)
which is compatible with the natural morphism
RIyy AG — RIywAgG.

To do this, let us write j; : Xg — X for the natural open immersion and jg :

—U . . . .

XY — X, for the corresponding open immersion at finite level. We can take

Ry (,Ag = Rl jg,ég. It now suffices to observe that j; induces a functor
& vJG.

Je.i : Shge(Xg) — Shge (%G) and that there is a canonical isomorphism
RI; R, jo1Aq = RIgv jg Ag:

this follows easily from the observation that U acts freely on X, as in Corollary
3.3. The Hecke actions we have defined are related by Verdier duality as follows.

PROPOSITION 3.7. Let R be a Noetherian ring and let A € Mod(Usg, R) be finite
free as R-module; let B = Homgz (A, R).

(1) There is a natural Verdier duality isomorphism in D(R):

RHomg(RIyy Ag, R) = RIyyBg. (3.1)

(2) Let S be a Noetherian R-algebra and let As = A Qg S, Bs = B @z S. Then
there are natural isomorphisms

RIyy Aso = (RTyy Ag) ® S

and
RIy Bs; = (RIyyBg) ® S.

(3) For g € G5, the Verdier duality isomorphism (3.1) identifies the transpose of
the operator [Ug~'U] on the left hand side with the operator [UgU] on the
right hand side.
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Proof. The first part follows from the usual Verdier duality isomorphism [Ver95].
We have used the fact that the derived sheaf Hom RHomy in Sh(XY, R) satisfies
RHomg(AL, R) = B{. The second part follows as in [Del77, Ch. 2, 4.12]; note
that the functors FXU and I'yy . have finite cohomological dimension [KS94,
Proposition 3.2.3]. The third part follows from the explicit formula of Lemma
2.19 and its analogue for cohomology with compact support and the functoriality
of Verdier duality. O

Now suppose that G is reductive and that P is a maximal proper parabolic
subgroup of G. Then e(P) C 3X is an open submanifold, and we write jp :
X, — 3% for the induced P>-equivariant open immersion. This leads to an
exact functor jp, : Shps,y, (Xp) — ShstU,,_S(agg). By passage to quotient,

. . . . U U
we obtain an open immersion j5 : X" — 9X;.

PROPOSITION 3.8. Let G be a reductive group and let P C G be a maximal
proper parabolic subgroup. Let U € Jg .y, and let B be a Z[Us]-module. We
consider B also as a Up g-module by restriction.

(1) We have a canonical isomorphism

RIy,RTyx, jr.Bp = RTyur B,

(2) There are natural morphisms
PRI, RIx, jraBp — RI; RIGx, B

in D(Z) and
q:RIyRM%,B; — rpRIy,RI'x, B,

inD(H(G®, US)). The morphism q~ p in Hompz, (RTyve By, RTyu, By')
P P

is the canonical one (arising from the ‘forget supports’ map RI. — RI),

and we obtain a commutative diagram of Z-modules:

HGS, US) — ¢ o Endpz (R0 BY)

rp lt»—)q”tp

H(P®, Up) —— Hompz, (RT o, B RT, v B un.

Proof. For the first part, it is enough to note that there is a canonical isomorphism

RIy,REyx, jroBp = RF}ZJ.}JJ,!EP
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because U acts freely on 3X¢. The isomorphism with RI' v, B, then follows
pl

from the fact that j }l{ , takes injectives to soft sheaves, which are I.-acyclic, see
[Ive86, Proposition I11.7.2].
We now construct the morphisms p and g. First, p is the morphism

RT,y0jf,ji " Bg — RT0 B,

which arises from the natural map J},’, ]g *Qg — ﬁg (note that jzB, =

Bp). Next, g is obtained by applying Corollary 2.5 to the morphism
ResGsxgi RIyx,B; — RIx,Bp induced by pullback. To complete the proof
of the proposition, it remains to check that g~ p is the morphism induced by the

natural ‘forget supports’ transformation RI. — RI". However, it follows from
the definitions that ¢~ p is equal to the composite

RFXZP,CEP ERF—U]P,B — RFA/B — RI’ UpB

where the map in the middle is induced by ]}f. Jj ,’;j “*B; — B, and the last by
pullback. This is the correct map. O

COROLLARY 3.9. Let notation and assumptions be as in Proposition 3.8. Fix a
Levi decomposition P = M x N and suppose that Up = Uy, - Uy is decomposed.
Let B be a Z[Ug]-module equipped with a decomposition Resg‘j“ B =A®K,
where A C BUVs. Then there exists a commutative diagram:

HGS, US) —— ¢ Endp(z (R0 BY)

’ l

T
H(PS,Up) ——=Homp) (RTywe By, Ry BY)

: |

T
H(MS, Ujy) — Hompe) (RTyww Ay, RIgoy AYY).

Proof. This follows immediately by combining Corollary 3.6 and Proposition 3.8.
O

An important fact is that the boundary 3 ¥ admits a G™-invariant stratification,
with strata indexed by conjugacy classes of rational parabolic subgroups of G.
More precisely, let P be a rational parabolic subgroup of G. Then there is a G*°-
equivariant isomorphism

IndS> X = P(F)\[G(AY) x e(P)],



Torsion Galois representations over CM fields 51

and the induced map Indgzxp — 98X is a G™-equivariant locally closed
immersion. (We define Indg: Xp = G* xpx Xp, as in Proposition 2.20.) We
then have the following lemma.

LEMMA 3.10. Let Py, ..., P; be representatives of the distinct G (F)-conjugacy
classes of proper rational parabolic subgroups of G. Then:

(1) the natural maps jp, : Indg;z Xp — 30X are locally closed immersions, and

the induced map | |, Indg_:z Xp — 30X is a continuous bijection;

(2) foreach U € Jg, the quotient maps jg : (Ind%x Xp)/U — BYZ are locally

. . . 00 —=U .
closed immersions, and the induced map ]_[i[Indg[oo Xpl/U — 0X; is a
continuous bijection.

Proof. The second part follows from the first. For the first, we need to show this
map is bijective. We simply calculate

0% = GIP\IG™ x 0Xgl = [ | [ [ GONIG™ x e(P)],

i P'~P;

where the second disjoint union is over rational parabolics P’ which are G (F)-
conjugate to P;. Since a parabolic subgroup is its own normalizer, this becomes

[T 2FNG™ x e(P)] = | [ IndZ X5,
as desired. 0

3.2. Derived Hecke algebras and the idempotents associated to maximal
ideals. We now introduce some more ‘automorphic’ notation. Let F be a
number field, and G a connected reductive group over F. Fix a prime p and
a choice of finite extension E/Q, with ring of integers O, uniformizer 7, and
residue field k = O/(7r). Let S be a finite set of finite places of F, containing
the p-adic places. Let G be an integral model of the group G such that G,,  is
reductive, and let US = 1,45 GOp).

We write TS = H(G*, US)®;O; then TS is a commutative (J-algebra, because
US is a product of hyperspecial maximal compact subgroups. When we wish
to emphasize the ambient group G, we will write TS = T¢.. If C* is a perfect
complex of @-modules (which in this context just means that H*(C*®) is a finite
O-module) equipped with a homomorphism T — Endp)(C*) of O-algebras,
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then we will write T5(C*) for the quotient of T* which injects into Endpe)(C*).
Thus T*(C*) is a commutative finite O-algebra, equipped with a surjective map

T*(C*) — T*(H*(C*))

which has nilpotent kernel (because C* is perfect; see [KT, Lemma 2.5]).

Being a finite O-algebra, we can decompose T*(C*) as a product T5(C*®) =
[ 1. TS(C*) over the finitely many maximal ideals m C TS(C*). For each such
maximal ideal there is a corresponding idempotent e,, € T5(C*) C Endpo(C*),
which is the projector onto the factor TS(C*®),,. The derived category D(O) is
idempotent complete, so we deduce the existence of a direct sum decomposition
C* = C;, @ D* in D(O). The summand C;, is defined uniquely up to unique
isomorphism in D(O), and the composite map

T(C")m — T3(Cy)

~

is an isomorphism. Similarly, there is a canonical identification H*(C®),

H*(Cy). (For a similar but more detailed discussion, see [KT, Section 2.4].)
Fix U € Jsys, and let A be an O[Ug]-module, finite over O. Then RFXgAg

is a perfect complex of O-modules, equipped with a canonical homomorphism

T* — Endpo)(RIxy Ag).

The algebras TS (RI'yy Ag) are the derived Hecke algebras referred to in
the introduction of this paper. In the forthcoming sections, we will use the
decomposition of the complex RFXgAg according to maximal ideals of this
algebra in order to study their associated Galois representations.

The following results will be useful later.

LEMMA 3.11. Let M and N be perfect complexes of O-modules. Then the natural
map

Hompo)(M, N) — lim Hompo/xr0)(M ®¢ O/n"O, N @ O/ O)

r

is an isomorphism.

Proof. For r = oo (respectively r € N) let K, denote the category with objects
bounded complexes of finite free O-modules (respectively O/x” O-modules) and
morphisms given by morphisms of complexes modulo homotopy. The obvious
functors Ko, — D(O0), K, — D(O/n" O) are fully faithful, so it suffices to prove
that the natural map

Homyg_ (M, N) — lim Homg, (M ®p O/n"O, N ®p O/ O)

r
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is an isomorphism for all M, N € K. This is the content of [KT, Lemma
2.13(iii)]. O

LEMMA 3.12. Let M be a perfect complex of O-modules endowed with a
homomorphism Tf, — Endp)(M). Let To, = T%(M), and for each N > 1,
let Ty = To(M ®g Of(zN)). Then the natural map To — l(ingN is an

N
isomorphism.

Proof. The map is injective, by Lemma 3.11. It is surjective because each map
To — Ty and Ty, — Ty is surjective, and T, is compact. It is therefore an
isomorphism. 0

LEMMA 3.13. If C is a triangulated category, A - B — C — A[1] is an exact
triangle in C, and s, t : B — B are morphisms making the diagram

A B C All]
N
A B C All]

(and its analogue with s replaced by t) commute, then st = ts = 0 in End¢(B).

Proof. The proof is an easy diagram chase (apply the functor Hom(B, —)). [

4. The boundary cohomology of the GL, locally symmetric space

We fix throughout this section a base number field F, a prime p, and an integer
n 2 1.Let G = GL, r. We fix as well a finite set S of finite places of F, containing
the p-adic places, and set US = [1,ssGL.(OF,) C G (A%"%). Finally, we fix a
finite extension E/Q,, and let O denote the ring of integers of E, € E a choice
of uniformizer, and k = O/ () the residue field.

If m > 1 is an integer, then the Hecke algebra

Tar, = 7i(GLm AaH. I GLm<0F,,>) ®z 0
vgS

is a commutative (O-algebra, generated by the elements 7', i = 1,...,m, v & S,
where

T! = [GLm((’)Fv)diag(wv, N > 9 P 1)GLm((’)Fv)],
e e sﬁ,_./

i m—i
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together with (7)~'. We will say that a perfect complex C* of O-modules
equipped with a map ']I‘éLm — Endp)(C*) is of S-Galois type if for
each maximal ideal m C T (C*), there exists a continuous semisimple
representation p,, : Grs — GL,(T5(C*)/m) such that for every finite place
v & Sof F, p,(Frob,) has characteristic polynomial

X" — Tlen—l 4ot (—l)qu{(j_l)/vajX"_j 4t (_l)nqlr)t(n—l)/QTUn
€ (TS(C')/m)[X]. “4.1)

If C* is of S-Galois type and a representation p,, is absolutely reducible, then we
say that the maximal ideal m is Eisenstein. If C* is of S-Galois type and every
maximal ideal m C TéLm (C*) is Eisenstein, we say that the complex C* itself is
Eisenstein. Note that these conditions hold for a given complex C* if and only if
they hold for the cohomology H*(C*).

We now suppose for the rest of Section 4 that the following hypothesis holds:

® For every integer 1 < m < n and for every U € jGL,,,_F,]—IUgSGLm(OFU), the
complex RIyy  kis of S-Galois type.
m, F

If F is an imaginary CM or totally real field, then @ holds, by Corollary 1.2.

LEMMA 4.1. This hypothesis is equivalent to: for every integer 1 < m < n
and for every open compact subgroup U € Jov, .[1,,5GLa(Or,)» the complex
RFXgL -k is of S-Galois type.

m,F

Proof. We show that our hypothesis implies the given condition on the
cohomology with compact support; the other direction is similar. We can assume
that m = n. All maximal ideals occur in the support of cohomology groups. By
Proposition 3.7, there is a perfect Poincaré duality pairing of finite-dimensional
k-vector spaces
(v HAN(XZ, k) x H* (X5, k) > k

satisfying the equation (x, [UgU]y)y = ([Ug 'Ulx, y)y for any g € G5. For
unramified Hecke operators Tlf, v & S, this implies that the action of Tlf on
H*(XY, k) is dual to the action of 7"~/ (T"™)~" on H*(XY, k). We must therefore
show that for any maximal ideal m of T, in the support of H*(XZ, k), there
exists a continuous semisimple representation o, : Gps — GL,,(TS(H*(XY,
k))/m) such that for each finite place v € S of F, o, (Frob,) has characteristic
polynomial

X" — TN T X e (= 1) g U (T
+ . 4+ (_1)”16131(’"71)/2(Tvm)71,
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A calculation shows that we can take 5, = 5., ® €' . O

Subject to @, we will prove the following theorem:

THEOREM 4.2. For every U € Jg.ys and for every smooth O[Us]-module A,
finite as O-module, the complex RT" oz (AU) is Eisenstein. In particular, for every

non-Eisenstein maximal ideal m C ']TS(R I XuA ), the natural morphism
(fog,cég)m - (RFngg)m
in D(O) is a quasiisomorphism.

The second sentence of the theorem follows from the first because of the
existence of the boundary exact triangle, compatible with the action of Hecke
operators:

RTyy AL~ RIyw AY—= Ty AY—>RTyy AL 1],

The existence of this triangle is a consequence of the fact that the natural open

. . U . . .
immersion Xg < X ; is a homotopy equivalence. The proof of Theorem 4.2 will
be an exercise in understanding the structure of the Borel-Serre boundary. We
begin with some preliminary reductions.

LEMMA 4.3. To prove Theorem 4.2, it is enough to treat the case where A = k is
the trivial k[Ug]-module.

Proof. Since A is a finite O-module, we can find a normal subgroup U’ C U such
that U’ € J.ps and Uy acts trivially on A. We will show that Suppys RI'xy A C

Suppys RT xg’k- There is a T¢,-equivariant spectral sequence
E;) = H'(U/U', H/(Xg , AY)) = H™(XE, AD),

which shows that Suppps RI'yu A, AY C Suppys RFXUrA . But Ag is the constant
sheaf associated to a finite O-module, and the result follows by the theorem on
universal coefficients. O

LEMMA 4.4. To prove Theorem 4.2, it is enough to show that for each proper
standard parabolic subgroup P C G, the complex RI; 1nd% % p1/ vk is Eisenstein.

The same argument shows that we are free to replace Ug by any normal open
compact subgroup.
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Proof. By Poincaré duality (that is by the same argument as in the proof
of Lemma 4.1), the vanishing of RI 10402 x 1 ,uk at non-Eisenstein maximal
ideals implies that of the compactly supported cohomology RI] [Ind9S X p1/ v.ck- By
Lemma 3.10 and the long exact sequence in cohomology with compact supports
associated to the inclusion of an open subspace, we deduce the corresponding

result for the full boundary BYZ. O

Let us therefore fix a proper partitionn = n;+- - -+n,, and let P C G denote the
corresponding standard parabolic subgroup, M = GL,,, x - - - x GL,, its standard
Levi subgroup. We will now show that RI7;,40% ,,,/k is Eisenstein. Since every
rational proper parabolic subgroup of G is conjugate to one of this form, this will
complete the proof of Theorem 4.2.

We have isomorphisms in D(H(G5, U%)):

RIy Resgs,  RIg0x x,k = RIy Resgs, , HY(P(F)\G™, k)
= RIysH(P(F)\G®/Us, k)
= RIys IndS; HO(P(F)\P® x Gs/Us, k). (4.2)

Our assumptions imply that PSU5 = G*. We can therefore apply Corollary 2.6
to deduce that the complex in (4.2) is quasiisomorphic with

P
D RO Ind) o k
8€P(F)\Gs/Us

~ * P
= D PRI RES gy RTxk. (43)
§€P(F)\Gs/Us

The index set in the direct sum is finite because the quotient Ps\Gs/Us is
finite and P (F) is dense in Ps (P is an F-rational variety). By Varylng Us, we
can therefore reduce to showing that the complex 7} Ry, Resh pPyxups RIx,k 18
Eisenstein. To show this, we write w : X — X, for the canonical projection and
observe that there is a quasiisomorphism in Mod(H.(P*, U3)):

L R UVsk. 4.4)

MSXUMS

RIy, RTers ¢,k = RIys

xU
pS ><Up5 M.S

The sheaf 7.k € Shps,y, ¢ Xy is constant on connected components, with stalk
at a point [(p, x)] € Xy given by the formula

(k) = HO(P(F)\P(F)pN(A), k) = Indy,,, k, ypn > pnp~'. (4.5)

By strong approximation, there is an isomorphism of Z[Uy]-modules, where
Iy, = N(F)N Uy as usual:

IndY, k = Ind7y', k.
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Since Uy s acts freely on the set 17 ¢, \Un, Ind%”_’UN k is an injective Z[Uy s]-

module, and the natural map a2k — R in D(Shpsyy, s Xu) is a

quasiisomorphism. We deduce the existence of a quasiisomorphism

RIy, Rl

PoxUp g

2ok = RIypy s RE, p5ivy s 7k (4.6)

xUpm,s £

MSXUM s

We now construct a morphism k — .k in Shps,y, ¢ X. Since the constant sheaf
k is pulled back from a point, it is equivalent to give a P® x Up g-equivariant map

k— H°(Xy, mk) = H'(Xp, k) = H(P(F)\P*>, k),

which we take to be the inclusion of the constant functions. Taking derived Uy -
invariants, we obtain a natural map R1."k — Ry k = ,”"*k, hence a map

Un,s Un,s
RIS oy s RT ssivys RISk — RTys  RT sy %5k
Inf ¢ M P Inf ¢
M*- XUM‘S M2 xUp s
~
= RIy, RIgery 1,k 4.7)
PoxUp g

the last isomorphism by (4.6). We claim that this is a quasiisomorphism of
complexes of H(PS,Uj)-modules. It suffices to check this after applying
forgetful functors, which reduces us to showing that the natural map

R135R15N-5k = R1Wk — R1YSgUvsk = RaUVk

is a quasiisomorphism. After taking cohomology and looking at stalks, we must
show that the maps

H'(Uy, k) = H'(Uy, IndYY, k) = H'(I' vy, k)
are isomorphisms. This is part of the following lemma.

LEMMA4.5. Let Iy, = N(F)NUy s (intersection inside Ns). Then the natural
maps in (discrete) group cohomology

H*(UN,S:k) i H*(Fl,UN,S,k) i H*(FI.Uva)

are all isomorphisms, while H (U3, k) = 0 fori > 0.

Proof. Let §, C § denote the set of places dividing p. Nilpotent groups have
the congruence subgroup property, so the natural map Iy, — Uy s, identifies
Uy.s, with the p-profinite completion of I y,, and hence [BK72, Ch. VI, 5.6]
the natural map H*(Uys,, F,) — H*(Iyy,F,) is an isomorphism. Let 7" be
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the set of places of S which are prime to p. Then the group Uy r is uniquely p-
divisible, hence is Z[1/ p]-complete in the terminology of [BK72], hence satisfies
H'(Uyz,Z) = H (Uy,r,Z[1/p)) and H (Uy 7,F,) = 0 for i > 0, by [BK72,
Ch. V, 3.3]. The Kiinneth theorem in group cohomology then implies that the
natural map

H*(Uys,F,) — H* (I yy, F))

is an isomorphism. Essentially the same argument shows that the same holds
when Iy, is replaced by Iy, . The group U} is uniquely p-divisible and
nilpotent, so another application of [BK72, Ch. V, 3.3] shows that it has trivial
F,-cohomology. 0

Let us now take stock. We have shown that there is a quasiisomorphism

RIy,RTper>  x, k= RIys

xU
PSxUp g M5

Un,s
RE iy RIS

MSXUM s

of complexes of H(P*, U3)-modules, and we wish to show that these complexes
become Eisenstein after applying the exact functor 3. It is enough to show that
for each i > 0, the complex

*
PRIy 0, RT 5.0,

MSXUM_S

R'1Uvsk

xUm.s

is Eisenstein. The sheaf R 17"k ¢ Shpsyy, s Xu can be calculated explicitly
as follows: it is pulled back from the sheaf on a point associated to the k[U), s]-
module A = H'(Uy s, k). In the remainder of this section, we will show that there
is a quasiisomorphism

RFUI§XUM~SR1_'IanSXUM,s xMRilijN.Sk = r;\klRFUMRFxMAM

MSxUy s

of complexes of H (PS5, U ﬁ)—modules, and that these last complexes become
Eisenstein after applying the exact functor r;. This will complete the proof of
Theorem 4.2.

There is a natural morphism

r]TJRFUMRFxMAM - RFUPXUM,SR[‘IanSXUMAS AM’

MSxUp s

by Corollary 2.8. It is a quasiisomorphism; indeed, we can check this after
applying the exact forgetful functor (-)~, which reduces us to showing that the
natural map

U1§/ UgXUM,s
Ay — RV Inf) " A
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of complexes of sheaves in D(Shys.y,, ¢ Xy) is a quasiisomorphism. This can
be checked on stalk cohomology, where it reduces to the assertion that H' (Uy,
k) = 0if i > 0, which is part of Lemma 4.5.

We now show that the complex

r;r;]RFUMRFXMAM = S*RFUMRFXMAM

is Eisenstein. After possibly shrinking U, we can assume that the action of Uy, s
on H'(Uy s, k) induced by conjugation is trivial, implying that the sheaf A, is in
fact constant on X,. This reduces us to showing that the complex

V:VLRFUMRFka

is Eisenstein. After further shrinking U, we can assume that Uy, = U; x --- X
U; for neat open compact subgroups U; C GL,,(A%¥). In this case, we have a
commutative diagram

H(G®, [1,05 GLu (OF,)) —— HM®, [], 45 [Ti2) GLy, (OF,)) ———— End (H* (X", k))

| |

QH(GL, . [1,45 GL,, (OF,)) — End; (® H*(Xg, » k>>.
i=1

i=1
We now use the following lemma:

LEMMA 4.6. For each place v & S of F, there is a commutative diagram

H(GLn(Fv)7 GLn(OFL)) R[Ylil’ D Yn:tl]S,,

| |

®;:1 H(GLIL, (FU)7 GLI’I,' (OF,,)) - ®;:1 R[Zli]] LA} ny:i]sni .

The horizontal arrows are induced by the usual (normalized) Satake
isomorphisms. The left vertical arrow is the unnormalized Satake transform
S, = ry o rp. The right hand arrow is defined by the bijective correspondence
foreachi =1,...,s:
{lell+~~+nl-,1+1’ ce ey Ynl+"'+ni} <> qvn,-H+~~~+n5)7(n1+~~~+n,-,|){Zi,], ceey Zi.ni}'
Proof. The proof is very similar to the proof of Proposition-Definition 5.3 below,
and is therefore omitted. O
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We can now complete the proof of Theorem 4.2. If m is a maximal ideal of T%,
in the support of H *(XAU4M , k) with residue field k (which we can always assume
after possibly enlarging the field of scalars), then we can find foreachi =1, ...,
s a maximal ideal m; of TéLni with residue field k and appearing in the support of

H *(XKG]"Ln_, k) such that m is the product of my, ..., my, in the obvious sense.

Applying finally our hypothesis #, we can find for each i = 1,...,s5 a
semisimple Galois representation

B, : Gr.s = GL,, (TS /m;)

such that for each finite place v ¢ S of F, p,. (Frob,) has characteristic
polynomial

XM — TUIXn,'fl 4t (_l)n,-q;u(nrl)ﬂTvni c (TéL’]‘/mi)[X].

If S*(m) denotes the pullback of m to TS, we see that S*(m) is in the support
of H *(Xf{/,k) as T%-module, and (using Lemma 4.6 and the fact that the
normalized Satake isomorphism for GL, is characterized by the formula T
q'"="%e;(Yy,...,Y,), where e; denotes the ith symmetric polynomial) that the
Galois representation

s
5 5 — (g1
Psiim = D P, @ € i1t t0

i=1

satisfies the desired relation (4.1). We observe that this Galois representation
is reducible, by construction. Since every maximal ideal of T{, which is in the
support of H*(X ,l,f,M, k) is of the form S*(m) for some m C T¥,, this shows that
S*H*(X,ZM, k) is Eisenstein, as desired.

5. The boundary cohomology of the U (n, n) locally symmetric space

In this section, we will prove the main theorems of this paper.

5.1. Groups and local systems. Let F' be an imaginary CM number field with
totally real subfield F*, and let ¢ € Gal(F/F*) denote complex conjugation. Let
d =[F" :Q], and let n > 2 be an integer. Let ¥, denote the n x n matrix with
1’s on the anti-diagonal and 0’s elsewhere, and

0w,
J"—(—wn 0)'
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Then J, defines a perfect Hermitian pairing (-, ) : O x O% — Op, given by
the formula (x, y) = 'xJ,y°. We write G for the group over O+ given by the
formula for any Op+-algebra R:

G(R) = {g € GL,(Or ®o,. R) | '8J,8" = Ju}.

We write P C G for the closed subgroup which leaves invariant the subspace
OrL @ 0" C O, and M C P for the closed subgroup which leaves invariant the
direct factors O% @ 0" and 0" @ O%.. We write T C G for the standard diagonal
torus and B C G for the standard upper-triangular subgroup. We write S C T for
the subtorus consisting of matrices with elements in Op+. We will denote base
change to the F'-fibre of these groups by omitting the underline.

Thus P is a parabolic subgroup of G, and M is the unique Levi subgroup of
P containing T. The torus S is a maximal F*-split torus of G, T = Z4(S), and
G = U (n, n) is quasisplit. We have the equalities

dimg Xg = 2dn®, dimg Xp =2dn* —1, dimg Xy = dn* — 1.
We set D = dn?.

LEMMA 5.1. Let notation be as above.

(1) If v is a place of F* which is unramified in F, then Qopj is reductive, and

hence G g+ is unramified.
v

(2) Let N C P denote the closed subgroup which acts trivially on the factors
O @ 0" and 0" @ OF. Then P = M x N. There is an isomorphism M =
Reso”, GL

eso., GL,.

Proof. The first part follows easily from the definitions; indeed, one can check
that if w is a place of F lying above F*, then G, is isomorphic to GL,,. For
the second part, we make things exphclt Let (- )* denote the anti-involution of
Resg‘; . GL, given by A* = ¥’ A, -1 (Explicitly, A* is given by reflection in
the anti-diagonal of A and conjugatlon of coefficients.) Then P can be identified
with the subgroup of ResOF - GL,, consisting of matrices of the form

_ (DB
§=\ 0o D)

with B = B* and no condition on D. The subgroup N C P is given by the
condition D = 1, and the subgroup M by the condition B = 0. It is easy to see
that the natural map M x N — P given by multiplication of components is an
isomorphism. We identify M with Resgi+ GL, via the map g — D. O
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For each place v of F* which is unramified in F, the group U, = G(Op+) C
G(F}) is a hyperspecial maximal compact subgroup. Moreover, the subgroups
M and P = M x N satisfy the conditions of Lemmas 2.4 and 2.7 with respect to
Uy, and Uy, = M(Opy) = GL,(OF ®0,, OFs). We thus have the map

S, =ru,orp, : H(G(F,),U,) = HM(F}), Upn.,). 6D

In our situation, it can be given explicitly as in the following two propositions.

PROPOSITION-DEFINITION 5.2. Let v be a place of F* which is unramified in
F, and let w be a place of F dividing v.

(1) Suppose that v splits in F. Then G(F)) = GL,,(F,), and the Satake
isomorphism gives a canonical isomorphism

H(G(F),U) @, R=R[Y, ... Y.

For each i = 1,...,2n, we write T, ; for the element of H(G(F)),
U,) ®z Zlq, "1 which corresponds under the Satake transform to the element
gl e (Yy, ..., Ya,).

(2) Suppose that v is inert in F. The Satake isomorphism gives a canonical
isomorphism

H(G(F)).U,) @ R=R[X;, ..., X5~ E20"

The unramified endoscopic transfer from G (F.}) to GL,,(F,) is dual to the
map
RIYF, . V™ — RIXY, ., XS eenr

which puts the set {Y,, ..., Yy} in bijection with {X', ..., XF'}. For each
i =1,...,2n, we write Tg.,,,; for the element of H(G(F,"), U,) ®z Zlg; ']
which corresponds under the Satake transform to the image of g\ ®"~"/?¢; (Y,
DI Y2n)-

Proof. For concreteness, we recall the definition of the normalized Satake
isomorphism. We temporarily let notation be as at the beginning of Section 2.2.6.
Thus F is a finite extension of Q,, G is a reductive group over Op, S is a maximal
Op-split torus of G, T is the maximal torus which centralizes S, and B is a Borel
subgroup containing 7. Let N C B denote the unipotent radical. The Satake
isomorphism is then the isomorphism [Car79, page 147]:

N H(G(F), G(OF)) @2 R — H(T(F), T(O)" D @, R
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given by the formula f > (¢ — 85(t)"/? fneN(F) f(tn) dn). (We use the notation
N to emphasize that this is the ‘normalized’ Satake isomorphism, in contrast to
the ‘unnormalized’ Satake transform S that we have used elsewhere in this paper,
in which the factor 8113/ % does not appear.) Here 65(¢) is the character 85 : T(F) —
R.( given by the formula §(t) = |detpAdpin(¢)|F, Where | - | is the usual
normalized absolute value on F (satisfying the formula & |r = (#kp)™' = g~!
for w € OF a uniformizer).

It follows from the proof given in [Car79] that N in fact defines an
isomorphism

N i H(G(F), G(OF)) ®2 ZIg*™*] = H(T (F), T(O)" " @z ZIg*"?).

If the character 85 takes values in g?%, then it even defines an isomorphism
over Z[g~']. More generally, if p; € X*(G) is a character such that t >
85(t)" /2 pg (1)]}/* takes values in g%, then we get an isomorphism

N H(G(F), G(OF)) @2 ZIg™" 1 — H(T (F), T(O)" 9" @5 ZIg™"]

given by the formula N (f) = (t > |pg ()]} N (f)(®)).

We now return to the notation of the proposition. To complete the first part,
we must check that the element 7 ,,;, which a priori lies in H(G(F,}), U,) ®z
ZIg*'"?], in fact lies in H(G(F,"), U,) ®z Z[q, ‘1. We could use the stronger fact,
used already in Section 4, that 7 ,, ; is actually equal to one of the canonical basis
elements of H(G(F,}), U,). Alternatively, we can apply the above formalism with
pc = det”~!. Then we find that

N (T6..0) = |l Vg, g @ e (Y, ..., Yay)
=g, "V e(Y1, ..., Ya) € H(T(F), T(Or)V' D &4 Zlg, '],

hence T, € H(G(F}"), U,) ®z Zlg, ).

We now prove the second part of the proposition. By definition, the unramified
endoscopic transfer is the map on unramified Hecke algebras dual to the standard
unramified base change map defined, for example, in [Minl1, Section 4.1]. This
is easily seen to correspond under the respective Satake isomorphisms to the map
appearing in the statement of the proposition above. To finish the proof, we must
again show that g ,,; € H(G(F,"), U,)®zZ[q, ']. We observe that since g,, = g2,
the image of ¢"*=2¢;(Yy, ..., Y,) lies in H(T (F), T (Op))"CD @7 Z[g;']. It
is easy to check that for the unramified unitary group, the character & takes values
in ¢2%, and hence the normalized Satake isomorphism is itself defined over Z[g,'].
These facts together imply the result. O

PROPOSITION-DEFINITION 5.3. Let v be a place of F* which is unramified in
F, and let w be a place of F dividing v.
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(1) Suppose that v splits in F. The unnormalized Satake transform (5.1)
corresponds under the Satake isomorphism to the map

RIYF, v — RIWE, L W ZE Lz
which puts the set {Y1, ..., Y»,} in bijection with
(@PzZ gz g W, g W)

Foreachi=1,....n, let Ty, € H(M(F]), Uy,) ®2 Zlq,"] correspond
10 qi "2 (Wy, ..., W,), and let Ty e; € H(M(F,"), Uy ) correspond to
q;}(n—l)/zei(zl, ey Zn)

(2) Suppose instead that v is inert in F. Then the unnormalized Satake transform
(5.1) corresponds under the Satake isomorphism to the map

RIXT!, ... XS @R0 o RIWE, L WS
which puts the set {X,, ..., X,} in bijection with the set
{ql;"/le, el q;"/ZWn}.

For each i = 1,...,n, we let Ty, € H(M(F)),Uy,) ®z Zlg,"]
correspond under the Satake isomorphism to the element g'"~"/?¢;(Wy, ...,
W.,).

Proof. In either case, we have a diagram

H(G(FH), U,) @z R -2 H(M(F}), Uy.,) @z R

x LNM

H(T(FU_‘—)? UT.U) ®Z R’

where the maps Ng, Ny, are the Satake isomorphisms defined in proof of
Proposition-Definition 5.2. This diagram commutes up to multiplication by the
ratio of the modulus characters for G and M, by the transitivity of the formation
of constant terms. More precisely, let By, = BN M. Then for any f € H(G(F,}),
U,),t € T(F,), we have the formula

NuS, (@) = 85, () 285(1)" > (NG (@)

A calculation now gives the claimed formulae for the Satake transform. To finish
the proof of the proposition, we must show the rationality of the element T}, ,, ;
in each case. This step is essentially the same as in Proposition-Definition 5.2, so
we omit the details. O
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With the above definitions, if w is a finite place of F unramified over the place
v of F then we define a polynomial in H(G(F,"), U,)[g, '1[X]

Pow(X) = X¥ — Tg i X' 4 (=) gl VT, X2
+ e + qs)(znil)TG,w,Zn (52)

and polynomials in H(M (F,"), U,)lg;, ' 1[X]

Pyw(X) = X" =Ty X" oo 4 (=1 gi0-D2T,, X"
4+ 4 q;t)(n—l)/ZTM!w’n (5.3)

and
Py (X) = (=D"(qL" " Togw) T X" Py (X7H. (5.4)

w

Then the relation
SoP6.u(X) = Puw(X)q, ™V Py e (@, X)

holds inside H(M(F;"), U)[g; ' 1[X].

Now let p be a prime, and let S be a finite set of finite places of F'*, containing
the p-adic places and the places which are ramified in F. We assume that the
primes of F* above p are unramified in F'; this implies that the group QOF+ is

reductive for each place v|p of F*, so we can use the construction in Section 2.2.7
to describe families of local systems on the spaces X{. Let E be a finite extension
of Q, which contains the image of every embedding F' — @p, let O denote its
ring of integers, 7 a choice of uniformizer, and  its residue field. We now describe
a parameterization of certain p-adic local systems on the spaces X4 and X Ui For
convenience, we let /, denote the set of embeddings 7 : F* < E, and choose
for each v € I, an embedding 7 : F — E extending it. We let I~,, denote the set
of such embeddings. Let T, C Res8£+ GL, = M denote the standard diagonal
maximal torus. The fixed Levi embedding M < G induces an isomorphism
T, =T, and we will use this isomorphism to relate the parameterization of local
systems on XU and X",

Fix a place v € §,, and let t € I, be an embedding inducing v. Then the
choice of T determines canonical isomorphisms M ®r+ ., E = GL, x GL, and
T, ®r+. E = GL] x GLY, hence X*(T,, r..) = Z" x Z". An element (A7, A7) €
7" x 7" lies in the dominant subset X*(T, g .)" if and only if it satisfies the
conditions

Az 2 Ao
Azel 2= Azep

s

s
=

A
)"Nc,n s

VWV
VWV



J. Newton and J. A. Thorne 66

that is if and only if it lies in the subset Z, x Z' , where we define
Zi ={(x1, ... %) €27 | X1 Z X2 2 -+ 2 Xuh

(We will also use the notation Z", | C Z!, to refer to the set of tuples for which
these inequalities are strict.) In Section 2.2.7, we associated to a dominant pair
(A%, Az.) an O[M(Op+)]-module A(M; Az, Az.), finite free as O-module. Given
a tuple
A= (X;) c (Zi)Hom(F,E) — (Zi % Zi)Hom(FJr,E)’

we define A(M,A) = ®Z€,p A(M; Az, As:), the tensor product being taken over
O. Then A(M; ) is an O[M (Op+ ®z Z,)]-module, finite free as O-module.

Now choose again a place v € §,, and let € I, be an embedding inducing
v. Then the choice of T induces canonical isomorphisms G ®f+ , E = GL,, and
T Qp+. E= GLf", hence X*(Tg.) = Z*". An element a, € X*(Tg ) lies in the
dominant subset X*(Tx )" if and only if it satisfies the conditions

ar,l 2 ar,2 2 tt 2 ar,2n‘
Under the isomorphism X*(Tg ;) = X* (T, ..), we have

()"?,1’ ey )‘-?,n’ )‘-?c,l’ ceey )‘-?c,n) < a; = (_)‘-?c,m sy _)"?c,l: )"?,13 ey )"?,n)-
(5.5)
In particular, the subset X*(Tg )" C X*(T, g.)" is described by the single
extra condition —Az.; > Ay;. We have associated to each a, € X*(Tg)* an
O[G(Op+)]-module A(G; a,), finite free as O-module. Given a tuple

2n\Hom(F*,E
a=(a;) € (Z)nB),

we define A(G;a) = Q.. 1, A(G; ay), the tensor product being taken over 0.
Then A(G; a) is an O[G(Op+ ®z Z,)]-module, finite free as O-module, and we
have the following lemma, which follows from Corollary 2.11:

LEMMA 5.4. Fix an element a € (Z¥)1"F"E) corresponding to A €
(21 )HomFE) ynder (5.5). Let U € Jg be such that U, = Uy, X Uy, is
decomposed. Then there is a direct sum decomposition

Res/, A(G:a)=AM;}) & K
of OlUy. ,)-modules, with A(M; .) C A(G; a)U».

Let A € (Z7)Hm"B) Although the weight A may not be dominant for G, it
becomes so after twisting. More precisely, let 1 € (Z7)"™ "5 be the element
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with all entries equal to 1; it is the highest weight of the determinant of the
standard representation of Res(g GL, . For any w € Z, the weight L + w - 1
is associated to the tensor product of A(M; A) with this determinant character,
raised to the power w. For w sufficiently negative (more precisely, for w <
—sup,; (Aze1 +Az1)/2), wehave A +w -1 € (Z2m)Hom(F*.E) Tn this connection,
we have the following useful lemma.

LEMMA 5.5. Forany k € Z and U € [Jy, there is a canonical isomorphism in
D(O):
Ry AMM, )" = RIyw AM, A +k-1)7.

This isomorphism intertwines the action of Ty.,; on the left hand side and
G~ Ty..; on the right hand side. Consequently, there is an isomorphism

T3, (R Iy, AGM: M)Y) = T35 (RTyy AM; A + k- 1))

which sends Ty .,; to € (Frob,) ™ Ty i = ¢" Tas i

Proof. The kth power of the cyclotomic character defines a class
[€"] € H* (X}, AMM; k- 1)7).

More precisely, we can interpret HO(X%, AM; k- 1);14) as the set of U-
equivariant sections of the map

M(F)\M® x A(M,k-1) - M(F)\M®.

Any character of the form x = €*yr, where y satisfies ¥ (Artp(detU)) = 1,
determines such a section by the formula

m® = (m®™, x (Artp(detm™))).

There is an isomorphism A(M; X)) ®o A(M; k-1) = A(M; A + k - 1), and the
first isomorphism of the lemma is defined by cup product with the class [€X].
The remainder of the lemma now follows from the relation Ty, ;(c U [x]) =
X (FrObw)i (TM,w,i (C) ) [X]) O

5.2. Application to Galois representations, I. In this section, we prove our
first main theorem about the existence of Galois representations (Theorem 1.3).
It will be convenient to introduce some notation. Let S be a finite set of finite
places of F*, containing the p-adic places, and let Us C [],.s G(Of+) be an

ves
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open compact subgroup. If N > 1, a € (Z2")Hom"E) and U € Jg y,, then we
define ideals

Juan = ker(T — Endpo,(RIxr A(G: ) @0 O/ (™))

and
Juaen = ker(Tg, — Endpo)(RIyy (A(G; a)g Qo O/(x@™M))).

Thus we have, for example,
T¢/Juan = TG(RTxy A(G; a)) ®0 O/(x™).

DEFINITION 5.6. A compact open subgroup U C G(A$,) is small if for some
rational prime g # p, U, = ]_[U‘ , Uy s contained in the principal congruence
subgroup U (¢g) given by the kernel of the map

[16r) - []G(OF: /405,

vlg vlg

where q = ¢ if ¢ is odd and q = 4 otherwise.

Similarly, we say that a compact open subgroup U C GL,(A%) is small if for
some rational prime g # p, U, = ]_[v‘ , Uy 1s contained in the principal congruence
subgroup U (q) given by the kernel of the map

[16L.(Or) = []G(Or/408).

vlg vlg
REMARK.

(1) We introduce this condition in order to be able to apply [Sch15, Theorem
4.1.1].

(2) For a rational prime ¢, every root of unity { € Zq which is congruent to 1
mod q is equal to 1 (see [Pin90, 0.6]).

(3) IfU Cc G(A%,) or U C GL,(AP) is small then it is neat. This follows from
the fact mentioned above, since for v|g the eigenvalues of g, € U, under a
faithful representation are congruent to 1 mod q.

4) If U C G(A%,) is small then the image of U under an algebraic group
homomorphism i : Res(g+ G — H is contained in a neat compact open
subgroup of H (Ag). We use the fact that for g € U the eigenvalues of i(g),
acting under a faithful representation of H are congruent to 1 mod q. We take
a faithful representation of H and let K be the compact open subgroup of
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H(Ag) obtained by taking the inverse image under this representation of the
level q principal congruence subgroup. Then U and () ccv 8K g~ ! generate a
neat compact open subgroup of H (Ag).

Our starting point for the proof of Theorem 1.3 will be the following result:

THEOREM 5.7. Fix N > 1. For each small U € Jgy,, there exists an ideal
Ju.n C TE satisfying the following conditions:

(1) there exists a continuous group determinant of dimension 2n
. s
Dy :Grs— Tg/Jun

such that for every finite place w € S of F, Dg y(Frob,) has characteristic
polynomial Pg ,,(X) (see equation (5.2));

(2) foranya € (Zﬁj’)ﬁom(F+*E), we have Jy y C Jyan and Jyn C Jyacn-

Proof. We can find an open normal subgroup V,, C U, such that the action of V,
on A(G; a)/ (") is trivial for all a € (Zi")H"‘“(F+’E). Let V = U”V,. We define

JU,N = ker(Té —> EndD(U/V,O/(nN))(RFXK,KO/(T[N))-

The existence of Dgy thus follows from Theorem 5.14, to be proved in
Section 5.4 below, and [Schl5, Corollary 5.1.11]. There is a canonical
isomorphism in D(O/(zV)):

RIyy (A(G; a)% ®o O/(@"))
= RIyv(RTyy O/ (") @6 anyuyv) AG; a)/(Y)).

This implies the inclusion Jy y C Jy.acn. The inclusion Jy y C Jy.ay follows
by Verdier duality, in the guise of Proposition 3.7. O

REMARK. If we fix a € (Z¥)HomF"-E) the above theorem gives (by reducing
D¢y modulo Jy,n) a group determinant valued in ’]Tf;(RFXgA(G; a)g Ro
O/(m™)). In the proof of [Sch15, Corollary 5.2.6], this determinant is constructed
modulo a nilpotent ideal, which we have eliminated by working in the derived
category.

We use Theorem 5.7 to prove the following result.
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PROPOSITION 5.8. Let A € (Z)"™ "B, and letm C T3, (RTuy A(M; X)ZM) be
Va2, &)

a non-Eisenstein maximal ideal. Let N > 1 be an integer. For every continuous

character x : Gpg — O of finite odd order, prime to p, there exists an ideal

Iy C T3 (RIyuy AM; MY ®0 O/ (™))
of square 0 and a continuous group determinant
Dy Grs = Ty (RTyu AM; VY ®0 O/ (x))w /1

of dimension 2n such that for every finite place w & S of F, Dy vy, (Frob,) has
characteristic polynomial given by

X (FrObw)n PM,w (X (FrObw)ilx)X (FrObw")inq;(znil) PAZIw‘ (CI,L?Z”X (FrObw")X)'

Proof. By Lemma 5.5, we can and do replace A by A + w - 1, where

w=— Supl_()"'r.l + Arc,l)/2J~

rel,
Then the weight a € (Z")Hm""E) corresponding to A is dominant, so the
coefficient module A(G; a) is defined. We first treat the case x = 1. There is
an exact triangle in D(O):
RIyy A(G:ia), ®0 O/(n")——=RIywA(G; a)] ®0 O/(x")——=RI 3w A(G; a); ®0 O/ (V).
Define
Jyain = ker(TS, — Endpo) (RTv A(G; ) ®0 O/ (")),
It follows from Lemma 3.13 that
Jé,N C Jvan - Jvaen C Juaon-

By Theorem 5.7, we find that there exists a continuous group determinant D¢ p 5 :
Grs — T3 /(Jyasn, Ju.n) such for each finite place w ¢ S of F, Dy s(Frob,,)
has characteristic polynomial Pg , (X).

By Corollary 3.9 and Theorem 4.2, there is a commutative diagram

TS, —— EndD(O/mN))((RFaygA(G; a)g R0 O/(TV)) s+ (m))

| |

T3 — Endp(o,ey (RTyuw AM: 1)1 @0 Of (7)),
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and hence a canonical map

TR T y0 A(G: 0 @00/ (1)) sy = T (RTyom AM: M 00/ (x"))m,

(5.6)
which is induced by the unnormalized Satake transform. The proof of the
proposition is completed in this case on taking Dy, y.; to be the image of Dg ;5 v
under the map (5.6) and I, ;; to be the image of the ideal Jy y.

We now treat the case of an arbitrary character x. We can find a normal
subgroup Vi € Ty v, s of Uy such that the index [Uy : Vy,] is prime to p and
the character x o Arty : A¥ — O is trivial on det V). We can find V € J .y,
such that V. N M* = V), (so the notation is consistent). In this case we can
describe a class [x] € HO(XA‘;M, O) as in Lemma 5.5 on which GL, (A%) acts
by the character x o Arty o det. Pullback and cup product with the class [ ] then
defines a map

Fy : RIoy AM: MY ®0 O/ (™) — RIyry AM: M) Y @0 O/ (™)

which is an isomorphism onto a direct summand A* in D(OQ/(x")) which is
invariant under the action of T3,. We obtain a commutative diagram

Ti,[ —_ EndD(o/(nN))(RFXZIMA(M; )')Ill]/IM ®o O/(r[N))

TM,w,,HX(Frobw)"TM_w_;lz ELFX(.)FXI

TS, Endp o x¥y)(A*®)

T3 —— Bndp oy (RTy AM; M ™ @0 Of (V).
This diagram gives a morphism of Hecke algebras

fx : Top(RT vy AM; MM ®p 0/xN)) — T}, (A%
M
— T} (RT 0y AM; M @0 O/(x))
M

which sends the operator Ty, ,,; to x (Frob,,) Ty .,.;. The proof is completed in
this case on taking the ideal I, , to be the image under f, of the ideal S(Jy )

in TSM(RFX;;M A(M; X)ZM Qo O/(7™)), and Dy y , to be the image under f, of
Dyv.1. ]

Using Proposition 5.8, we can prove our first main theorem.
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THEOREM 5.9. Let A € (Z)*™ "5 and let U € Jgy, be small. Let m C
’IFSM(RF XZMA(M ; A)ZM) be a non-Eisenstein maximal ideal. Then there exists
an ideal I C T%(RFXZMA(M; X)ZM)m satisfying I* = 0 and a continuous
representation

P Grs = GL, (T} (RT oy AGM; M) /1)
such that for each place w & S of F, we have the equality
det(X ' ln - Iom(FrObw)) = PM,w(X)

inside (T3, (RT vy AMM: 1))/ DIX).

Proof. Given Proposition 5.8, exactly the same ‘separation of parts’ argument as
in [Sch15, 5.3] implies that for each N > 1, there is an ideal

In C Ty (R A M ®0 Of(7))m = Ty,

say, satisfying Iy = 0, and a continuous group determinant Dy yy : Gps —
Ty /Iy of dimension n and with the expected characteristic polynomial.

Let T, = T%(RFXZMA(M; k)z”’)m. By Lemma 3.12, the natural map T., —
l(iLnN Ty is an isomorphism. Let I, denote the kernel of the map T.,, —

[Ty Tw/Iy. Then we have I3 = 0, and by [Chel4, Example 2.32], the group
determinants D, ;v glue into a group determinant Dy« : Grs = Too/In.

In order to obtain a true representation p,, at the end, instead of just the group
determinant D, o, we recall that deforming the determinant Dy =det(X -1, —
Pwm) 18 equivalent to deforming p,,, because of the assumption that the residual
representation p,, is absolutely irreducible (see [Chel4, Theorem 2.22]). I

To deduce Theorem 1.3 of the introduction from Theorem 5.9, we need only
observe that for any small V' € Jar,.[],,s6L.0F), We can find a small U €
jG,stQ(oF;r) such that Uy, = V.

5.3. Application to Galois representations, II. In this section, we prove our
second main theorem (Theorem 1.4). We will make use of the following result of
Lan—Suh [LS13, Theorem 10.1]. Let U, = G(Op+ ®z Z,).

THEOREM 5.10. Suppose that p is unramified in F, and choose a €
(Z2myHemEB) U € Jgy, small. Suppose that a satisfies the following further
conditions:
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Foreacht € Hom(F, E), a;1 > Gy > - > Qr; 5.7

and dn(n+ 1)+ > (ar; — 2|a:2/2)) < p. (5.8)

Then
H (XY, A(G: 1)) = H (XY, AG: )" ®0 k) =0
foreachO <i < D-—1.

Proof. We show how to deduce this from [ILS13]. The necessary conditions on
ae (22, yHom(F.E) appearing in [LS13, Theorem 10.1] are |a|,. . < p, 1]y <
—2,andforall t € 1, a,; — a,», < p. According to [LLS13, Definition 9.7],
we have
|alipmp = 1+ D +lal, =1 +dn® + ||,

where [LLS12, Definition 3.2]

2n
lale =) (ari — 2lar2/2)).

rel, i=I
According to [LLS12, (7.22)] and [LLS12, Definition 3.9], we have
|lale+ = lale +dn =D+ |a], +dn =dn(n+1) + |a]..

After rearranging, the condition |a|. ; < p becomes (5.8) above, and it is easy to
see that this implies the other two conditions. O

COROLLARY 5.11. Let N > 1. With assumptions as in Theorem 5.10, the map
RTyzv A(G; a). ®o O/(x") = RIyy A(G;a); ®o0 O/(x")[-1] induces an
isomorphism

TgD—2RF3ygA(G§ a)g®(9 O)(n") = t<p-1(RIxy A(G; 3)2 R0 O/ (" )[-1]
inD(O/(xV)).

In the situation of Corollary 5.11, we can prove the following refinement of
Proposition 5.8.

PROPOSITION 5.12. Let A € (Z)"™F5) let U € Jgu, be small, and let m C

T%(RFXUMA(M ; X)ZM ) be a non-Eisenstein maximal ideal. Suppose that p is
o AV, &)

unramified in F and that A satisfies the following conditions:

Forallt e Hom(F, E), A1 > Aro > -+ > Aey; 5.9
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and dn (n + 6+ sup(rz; + )»?m)) + Z Zn:(l?,i —Azei — 2X%,) < Pp.

tel, i=1

(5.10)

Let N > 1. For every continuous character x : Grs — O of finite odd order,
prime to p, there exists a continuous group determinant

Duuy : Grs = Ty (RIyu AM; M ®0 O/ (1™"))m

of dimension 2n such that for every finite place w & S of F', Dy y,, (Frob,) has
characteristic polynomial given by

x (Frob,,)" Py ., (x (Frob,) ™' X) x (Frob,) "g* "V Py . (g, " x (Frob,.) X).

Proof. By Lemma 5.5, we can and do replace A by A + w - 1, where

w = —sup| Az + Az1)/2] — 1.

tely

Then the inequality (5.10) implies that the weight a € (Z* )HomF™-E) associated
to A satisfies the conditions of Corollary 5.11. In the remainder of the proof we
just treat the case x = 1, since the modifications in the case x # 1 are exactly the
same as in the proof of Proposition 5.8.

By Corollary 3.9, Theorem 4.2 and Corollary 5.11, there is a commutative
diagram

EndD(O/(nN))((RFxg,CA(G§ l)g Q0 O/(N)) s+ (m))

|

TE; —_— EndD(O/(nN))((TgD—lRrxg,cA(G§ X)g Ko O/(T[N))S*(m))

| |

T3 — Endp(oe) (T<p-2(RTyow AM; 1)1 ®0 OF(V))um).

We have dimg X, = D — 1, and the top degree cohomology of X ZM is 0 (as X 1({4“
is noncompact). It follows that the natural map

Tep2RTyon AM: V¥ @0 O/(rV) = RIyow AM: ) ®0 O/ (x")

is a quasiisomorphism. We find that the unnormalized Satake transform induces a
map
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T3(RTyu A(G; V) ®00/ (™)) s m) = T3 (RTuy AM; V)" @00/ ("))
G Xé.c ) G O S*(m) M X;{]M ) M (@) / Y4 me

The proposition now follows from the existence of this map and Theorem 5.7. [

We finally obtain our second main theorem.

THEOREM 5.13. Suppose that p is unramified in F and let U, =

G(Op+ ®z ZLp). Let L € (Z)"™"P, and let U € Jgu, be small. Let

m C ']I';L(RFXUMA(M; X);;M) be a non-Eisenstein maximal ideal. Suppose
v 2, &)

that there exists a set TP = {T | t € Hom(F*, E)} such that A satisfies the
following conditions:

Forallt : F < E, d1 > Aro > -+ > Aoy (5.11)

and

[F': Q]n(n +6+ sup  (Az; + )»?m))

teHom(F+,E)

+ ) i(m — e — 2hza) < P (5.12)

teHom(F*,E) i=I
Then there exists a continuous representation
Pt Grs = GLy (T3 (RTyow AMM: 1)) 1)

such that for each place w & S of F, we have the equality

det(X - 1, — pm(Frob,)) = Py, (X)
inside T%(RFXZM A(M; X)ZM)m[X], where Py ,,(X) is as defined by (5.3).
Proof. The deduction of Theorem 5.13 from Proposition 5.12 is essentially the
same as the deduction of Theorem 5.9 from Proposition 5.8, although slightly

easier (since there is no longer any nilpotent ideal to worry about). We therefore
omit the details. O

5.4. The proof of Theorem 5.7, by p-adic interpolation. The rest of this
paper is devoted to the proof of Theorem 5.14 below, which was used in the proof
of Theorem 5.7. Let U, = [],. s, U, where the U, are compact open subgroups
of G(Og+). Let V, be a normal compact open subgroup of U,,. Fix U = U,U” €
jG,U,, small and set V = V,U”. Note that V € jG,Vp is also small. Fix N > 1,
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and set A = O/(n"). Denote by A, ;v the U/V-equivariant sheaf on X & given
by pulling back the constant sheaf A on X. There is a canonical homomorphism
(arising from the diagram (2.10))

T* = Tg — Endpaw vy (RTxy Ay, v)-

We write TS (RFX(V;,CAU ,v) for the image of this map. Note that this image is a
finite (commutative) A-algebra. We are going to show that TS (RIxy Ay,y) is
a quotient of a Hecke algebra acting faithfully on spaces of classical cuspidal
automorphic forms for G of (varying) regular weight. First we define this
‘classical’ Hecke algebra, as in the statement of [Sch15, Theorem 4.3.1].

We denote by Xg’alg/@ the algebraic model over Q for X¢ provided by
[Fal84, Theorem 1], and denote by X g* /Q its minimal compactification. We
write X Uxad/C (and the same thing without ) for the adic space obtained by
base changlng the appropriate scheme to C (a fixed complete and algebraically
closed extension of @ with a fixed embedding @ C C) and then taking the
associated adic space over Spa(C, Oc¢). We can define this ‘adification’ by first
taking the associated rigid analytic variety over C [BGR84, 9.3.4] and then apply
the functor r of [Hub94, Proposition 4.3]. We write Z for the subsheaf of OXg.*.ad
corresponding to the boundary X & **\ x5,

We fix an embedding (Resg G, X¢) — (Spy,, Dsng), and following Scholze
[SchlS before Theorem 4.1.1] write X ; U* for the scheme theoretic image of X Ux
in XY Spay ", where U is any sufficiently small subgroup of Sp,, (AF) such that U’ N
G(A%.) = U. Since U is small, U’ can be assumed to be neat (see 5.2). We write
wy for the ample line bundle on X g " obtained by pullback from the natural ample
line bundle X ;’p *, and we also write wy for the (ample) pullback to X g* and the
line bundle on the associated adic space. Since X g* is normal and the boundary
has codimension >2, wy is the unique line bundle on X g* extending wy | XU

THEOREM 5.14. Fix some integer m > 1. Let T, be the image of the map
T — J] Ende(H'(XE™, 0™ @ T)).
UeJg.ur
k=1

Then the surjective map TS — ’IFS(RFX(\;’CAU/V)factors over T3,
This theorem will be proven in the remaining sections.

5.4.1. Comparison theorems. We write V = O¢ /(") = A ® o O¢ and A for
the O¢.-algebra V, as in Section 2.6. We are going to compare various complexes
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in the derived categories D, (U,, A) and D{, (U,, A) (as defined in Sections 2.4.1
and 2.6).

We first put ourselves in the situation of Section 2.5. We set Xy = 72 and let
the tower X, be given by X, = X X" where U . Tuns over a cofinal system of
compact open normal subgroups of U, SetU, =U,,U". Weset X = 1<i£1n X,
We have a functor (Definition 2.27)

RIx : D*(Sh(Xy, A)) — D! (U,, A).

Denote by j, the open embedding j, : X" < Yg", and let K" = RIx(jo,A) €

D! (U,, A).
Next, we work in a number of different settings where we can apply the
formalism of Section 2.5.1. We set ¥, = X2 and Y¥ = X", As above,

we write X = X Undle* /3 for the scheme theoretic image of the minimal

compactification of X in the minimal compactification of a Siegel modular
variety of suitable level Denote by j/ the open immersion j/ : Y& < X2 We
also have associated adic spaces Y*! = (¥"%)* and X = (X% )f"“l

Note that for n > m and U, C U}, subgroups of szg(A"O) such that U, C
U, NGAY)and U, C U, N G(A ) we have a commutative diagram:

Xgn X n ¥

l Spy, -
U . Uy,
_
Xg Xspa,

If we choose U, sufficiently small, the bottom horizontal map in the above
diagram has scheme theoretic image X*¢, and we can then find U/ such that the

m

top horizontal map has scheme theoretic image X'¢. We can also view X as the
Uy,

scheme theoretic image of the composite X¢"* — X¢"* — X Spy *. Therefore, we
8

have an induced map between scheme theoretic images X*¢ — X2 [Thel5, Tag
01R9].

We let X be the topological space given by the complex points of X*'%. We
write j, for the maps ¥, < X and Y™ < X* induced by the algebralc ] We
also write ,, for all of the projection maps X — X;, Y, — Yo, and so forth.

The formalism of Section 2.5.1 applies to the tower of spaces (X), where ?
is %, alg, ad or nothlng, and we obtain categories S°. We denote the associated
functors from " to Modyn (U, 4) (denoted I" in Definition 2.45) by I'’, with
right derived functors RI.
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LEMMA 5.15. There is a natural isomorphism K" = RF*(J A).

Proof. This follows from the discussion in Section 2.5.2: both complexes are
naturally quasiisomorphic to a complex RI.(A) defined using the tower (Y,,),>o.
O

We denote by K¢ the complex RI™2(j/ A) and denote by K* the complex
RI™(j A).

LEMMA 5.16. There are natural isomorphisms: K"¢ = K'? = K jn D{ (U,
A).

Proof. This follows from the discussion in Section 2.5.2. O

We also consider the functor I3 [iad . Sdd — Modyn(U,, V) together with its
right derived functor RI7 [, Here S§,d 1s deﬁned in the same way as S%, but with
coefficients in V. For F € Shg (X, V) there are natural isomorphisms

FrX F)@, V=T (X9 F®,V).

Since direct limits commute with tensor products we also obtain a natural
isomorphism
FY(F) @, VETPNF 4 V).

LEMMA 5.17. For F € §™ the natural isomorphism FYF) @,V = F“d(]: ®a
V) extends to an isomorphism RI" [ (F)®,VERI; “d(]: Q4 V).

Proof. It suffices to show that for an injective object Z € §2 the higher derived
functors R' I"'*(Z ® 4 V) vanish for i > 0. We have

RIT @4 V) =lim H' (X, T, ®, V) = lim H' (X', Z,) @4 V = 0,

since Z, is injective. We are using the fact that we can compute cohomology of a

sheaf of V-modules after applying the forgetful functor to sheaves of A-modules

and [Del77, Rapport, 4.9.1]. O

LEMMA 5.18. The natural maps V — OYM/(JTN) in Shé,(Y,?d, A) induce a map
K“®4V =RIV(V) > RIVA(, 1O/ (T))uz0)

in Dy (U, V) which becomes an isomorphism in Dy, (U,, A).
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Proof. This follows from Scholze’s comparison theorem: the induced maps on
cohomology are the natural maps

hm H!

ét,c
n n

(Y3, 4) ®4 A — lim H (Y4, OF /(™))"

which are isomorphisms by [Sch13, Theorem 3.13] (and induction on N). ]

5.4.2. Hecke operators. We now define a Hecke action on RIx(j;A). We set
— 4
X5 =X and X5 = lim X, so that X* is a U, x G®-space, where U, has

the profinite topology and G* has the discrete topology. We have X = (X5)U°.
Therefore, by Proposition 2.29, we have a natural map

Tg : %(GS, US) - Enstm(U,,.A)(RFX(j!A)) = Enstm(U,,.A)(Kmp)-

For ¢ € G*, we can describe explicitly the element 0(g) = T;([UgU®)) in
Endp,,w,.4) (RIx(jiA)). Set X' = (X$)U°nsU°e™" and consider the two maps p,
P2 : X' — X, where p; is the natural projection and p, is given by the (right)
action of g followed by the natural projection. The maps p; are finite étale and
we have a natural isomorphism p¥ji A = p3j, A. We also set X! = (X5)V st
and denote the two projection maps X/, — X, by p;, p,. Lemma 2.30 implies:

LEMMA 5.19. The endomorphism 6(g) is given by the composition of natural
maps:

. j23 . ~ . ~ . .
RTx(jiA) = RIx(psjiA) = RIw(p}jiA) = RIx(pr.pijiA) — RIx(jiA)
where the final map is the trace, defined by the adjunction (p, . = pi., pf = p})-

The description of the above lemma can be translated into a description of
the Hecke operators as a limit of Hecke operators at finite level. We apply the
formalism of Section 2.5.1 to the towers of spaces X, and X/, with associated
categories S and §'. Let jyA — Z°* be an injective resolution in S. Since we
have an isomorphism p; jiA = p}jiA, we have a map of complexes (unique up
to homotopy) p;Z* — p;Z°*, and an induced map of complexes p;Z° — piZ:.
Now for each n we have maps (compatible as n varies)

I'X,,Z;) 4 r'X,, p;Iy) — I'(X,, piLy) = I'(Xo, prapiLy) — T'(X,, I3).

Taking the limit over n gives the map 6(g), under the equivalence of Lemma 2.47.
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REMARK. The following observation will be useful: to define the trace map
p1«PiZy — L, we only need to use the fact that p; is étale over Y,. Indeed,
we have a map of sheaves on Y,: py.pjA — A, and applying j, gives a map of
sheaves on X,: p; .pfjiA — jiA. These maps lift (uniquely up to homotopy) to
a map of complexes

prapiLt —> I°
and this induces the desired compatible system of trace maps

PPl = 1.

Given the above remark, the description of 6(g) we have given applies
immediately to define endomorphisms 0(g) of K and K?®. Under the
comparison isomorphisms of Lemmas 5.15 and 5.16, we obtain the action
of H(G5,US) on K = RIx(jiA).

This description also gives endomorphisms 6(g) of Rfad(( 7O W J(@V))n>0),

and hence of RF“d((].(’)yad/(nN))@O)“ such that the isomorphism

(K @4 V) = (RI((GO S/ (T )nz0))"

in Dy (U, A) is 0(g)-equivariant.

5.4.3. Comparison with Cech cohomology. Finally, we are going to compute
RI*((jiOF../("))ux0) (and its Hecke action) using a Cech complex. Recall

that by [Sch15, Theorem 4.1.1] (and the assumption that U is small) there is a
perfectoid space X* over Spa(C, O¢) with

ad : ad
X~ 1(&an .

n

DEFINITION 5.20. A U ,-admissible cover of the perfectoid space X is an open
cover V = (V)ie; of X% by finitely many affinoid perfectoids (with affinoid
perfectoid multiple intersections), such that:

(1) there exists ng such that each V; is the inverse image of an affinoid open V; ,,,
in X2

(2) fory eU,andi €1, (V)y e V.

For n > n, we denote by V), the affinoid cover of X*! given by the inverse images

of the V; ,,, and denote by V), the affinoid cover of X g”’*’ad obtained by pullback.

We now recall some more of the results contained in [Sch15, Theorem 4.1.1].
Denote by .% ¢ the flag variety over C which is associated with (Spags Dsp,, ), that
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is the flag variety of totally isotropic subspaces of C*¢. There is a (Resg+ G)(Q,)-
equivariant Hodge—Tate period map

ﬂHT:ng%ﬁe.

Forasubset J C {1, ..., 2g} of cardinality g we denote by s, the corresponding
Pliicker coordinate on .# ¢ and denote by .% £ the open affinoid subspace of .7 ¢
defined by |s;/| < |s;| for all J'. Now for J C {1,...,2g} of cardinality g we
denote by ngJ the preimage 75,1 (% £,) in X, By [Sch15, Theorem 4.1.1], the
subsets X2, provide an affinoid perfectoid cover of X%, Moreover, they satisfy
the first condition in Definition 5.20. This means that there are only finitely many
U, translates of each X% ; (they are each stabilized by a compact open subgroup
of U,), and so by adjoining these translates we obtain a U,-admissible cover
(Xoo,s - ¥V)ysof X ?)g. This is the only U,-admissible cover we will use in practice.

LEMMA 5.21. Fory e U,and J C {1, ..., 2g} of cardinality g, the open affinoid
subspace F U, -y of F{ is defined by the inequalities |(y') 's;| < |y~ 's;| for
ally' e U,and J' C {1, ...,2g} of cardinality g.

Proof. Wehave x € .7 €, -y ifand onlyif |y ~'s;(x)| = |s;(xy ™D = sy (xy™H)|
for all J'. It suffices to show that if x € .% £, then |s;(x)| > |s; (xy )| for all J’
and y (thatiswesety = 1l and y' = y).

The action of U, on the coordinates s, is given by the action of elements
of GL,,(Z,) (in fact they are elements of Sp,,(Z,)) on basis elements of
/\* Std, where Std is the standard 2g-dimensional representation of GL,, /Z,,.
In particular, we have y~'s; = >, a5, with a;r € Z,. So if x € F; we

have
Z ayrsy(x)

J"

ls, (xy™HI = < max(ls, (D)) = |5 (). [

We write I for the (finite) index set of the cover V of X gg, and for i € I write
s; for the section yl-_ls 5, of w on ng. For n > ny we write V;,, € V), for the open
affinoid in XJ"*** obtained from V;.

LEMMA 5.22. Forn > o sufficiently large, there exist sections s;i) (for all pairs
i,jel)ofwonV,, €V, such that:

e foreachi, j €I,

onV,;
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e foreachi, j € I, the section s,»(i) is invertible and sj(-i)/si(i) e H'(V,,, O%);

e foreachi, j € I, the subset V; , =V, , NV, , C V;, is defined by the equation
537 /5i"1 = 1

e foreachi, j,k € I, the inequality
|S(l)/S;i) (J)/S(l)| |7TN|
holds in V; ,.

In particular, the cover V and the sections s(') satisfy the assumptions of [Sch15,
Lemma 2.1.1].

Proof. We first choose n large enough so that there are sections s ) approximating
the s;: more precisely we suppose that
s; — s\

;— s
— < 7"

on V;. This is possible because the map

: 0 0
lim H™(Vi., ©) — H'(V;, ®)

n

has dense image [Sch15, Theorem 4.1.1(i)]. The itemized conditions now follow
from Lemma 5.21 and the fact that the sections s appr0x1mate Sj. O

REMARK.

(1) To illustrate the process of adjoining U ,-translates to an affinoid cover we
discuss the case of ]P)(l@p with its right action of GL,(Z,). We begin with the
affinoid cover given by {|z| < 1} and {|z| > 1}. These are the complements
of the (open) residue discs red!(0) and red ' (co) where red is the reduction
map to IP’1 These affinoids are stable under the action of 1 + pM,(Z,), and
the translates by GL,(F 1,) are the p 4 1 affinoids given by the complements
of the residue discs red ™' (x) for x € IP’IP Since the action of GL,(Z,) on
Py, extends to an action on P} , the formal model of Pg; obtained from this

cover by p + 1 affinoids is again the formal completion of Pép along the
special fibre.

(2) Returning to our general setting, if we first apply [Sch15, Lemma 2.1.1] to
the cover X2, = Spa(R,.;, R, ;) of X2 (for n > ng) we obtain a formal
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model X, for X2¢ over O with an affine cover by Spf(R,’ ;). Fory € U, and
J c{l,. 2g} of cardinality g, the intersection X!, N X2, .y C X2, is
defined by

y sy
‘ S

=1.

This in turn defines an affine open formal subscheme

Spf<R;,<ysTj>> C Spf(R;,

and so we see that the cover (X2, - y),,, of X2 is the generic fibre of a cover
of X, by formal affine opens. Therefore, the formal model for X* given by
applying [Sch15, Lemma 2.1.1] to the cover (X J -y) s, of X* is the same
as the formal model coming from the cover (X o ) 7- The same remarks apply

to the formal model we obtain for X",

(3) Another way of phrasing the above remarks is as follows. Scholze constructs
formal models X, — g for the maps X — .Z{. The action of U, C
G(Op+ ®z Z,) on the underlying topological space of ! factors through
a finite quotient, and so there is a U)-stable finite cover of §[ by affine
open formal subschemes. This pulls back to a U,-stable finite cover of X,
by affine open formal subschemes. In the remainder of this article, we use
this affine cover to imitate the proof of [Schl5, Theorem 4.3.1] in a U,-
equivariant fashion, which will complete the proof of Theorem 5.14. We
thank the anonymous referee for this clarifying remark.

Let F € S% be a system of sheaves of V-modules, and let V be a U,,-admissible
cover of X% a We define a Cech complex C *(V, F) with entries in Modbm(U 0 V)
by

ct*V, F)=lim C*(V,, F,)
—
nzng
where C*(V,, F,,) is the usual Cech complex for the sheaf 7, on X! with respect
to the cover V,, endowed with its natural U,/ U, ,-action (for example, g € U,
maps a section in F,,(V,;) to a section in F,,(V,.;g~")).

LEMMA 5.23. Let F € 5" and let V be a U ,-admissible cover of X*<. Then there
is a natural map in Dy, (Up,, V):

C*(V, F) » RIM(F).

If F = (ji yad/(nN)),,>0 then this map becomes an isomorphism in D, (U, A).
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Proof. The first part is [Thel5, Tag 03AX]: let /' — Z* be an injective resolution.
Define a double complex
AP-‘] — CP(V, I‘I)’

and denote by sA* the total complex. The natural maps I'*(Z7) — A% induce
a quasiisomorphism o : Fad(I') — sA*®. The maps GP(V, F) — AP0 induce a
map of complexes

C°(V,F) — sA".

Composing this map with the inverse of o gives the desired map in the derived
category.

For the second statement we just need to check that the natural map described
above induces an almost isomorphism on cohomology groups. This can be
checked after forgetting the action of U,, and then we proceed exactly as in
[Sch15, Theorem 4.2.1]. O

5.4.4. The end of the proof

LEMMA 5.24. The map T — Enstm(U,A)(Rf:ad((j;O;r,,d/(nN)),,Zo)“) factors
through T5,.

Proof. This is implied by Lemma 5.23, following the proof of [Schls,
Theorem 4.3.1]. Indeed, TS acts on each term of the Cech complex

5'(V, (jlo;}d/(JTN))@o),

so it suffices to show that it acts via T%, on each term H°((),_, Vi, O /(z@"))“.
We set V to be the U,-admissible cover (X ; - ¥),,,, and proceed exactly as in
[Sch15], using the sections y ~'s; of the line bundle w. O

COROLLARY 5.25. The map TS — Endpw,v.4(RTxy Ay,y ®a A) factors
through T5,.

Proof. By Lemma 5.18 we have an isomorphism
RI'(V), Rfad((j10;}d/(ﬂN))n>o)”) = RI(Vy, (K ®4 V).

By Lemma 5.16 this is isomorphic to RI"(V,, (K'® ®, V)), and by Lemma
2.57 this is isomorphic to RI"(V,, K'® ® » V)“. Finally, by Lemma 2.38 this is
isomorphic to RI"(V,, K'?) ® 4, A, and the Corollary follows from the Lemmas
5.24 and 2.39. O
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LEMMA 5.26. RIyy Ay, is isomorphic to a bounded complex of finitely
generated A[U/V ]-modules.

Proof. We know that the R’ I'yy Ay, are all finitely generated and nonzero for

only finitely many i. So our statement follows from [Mum08, Section 5, Lemma
1]. O

We can now finish the proof of Theorem 5.14. We restate the result:
THEOREM. The map TS — Endpw,v.4)(RIxy Ay, y) factors through TS.

Proof. We apply Corollary 5.25. With this in mind, it suffices to show that the
natural map

EndD(U/v,A)(RFx(\g,CAU/V) - EndD(U/v,A)(RFx(‘;,CAU/V R4 A)

is injective. Combining Lemmas 5.26, 2.2 and 2.55 we see that this map is a map
of A-modules of the form
M — N,

where M is a A-module, N is a V-module, and the induced map M @ , V — N
is an almost isomorphism. In particular, if we write K for the kernel of M — N,
then K ®, V is almost zero. This implies that K is zero, as desired. Indeed, if
K ® 4V is almost zero then K /m K ® 4 V is simultaneously almost zero and a free
V /7' V-module, and is therefore zero. So K /7 K = 0 which implies K =0. [
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