W) Check for updates

Biochemical Journal (2020) 477 833-852
https://doi.org/10.1042/BCJ20190872 ° PORTLAND
00 press

Research Article

Transcriptional signature of prion-induced
neurotoxicity in a Drosophila model of
transmissible mammalian prion disease

Alana M. Thackray', Brian Lam?, Anisa Shahira Binti Ab Razak', Giles Yeo? and © Raymond Bujdoso’

"Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, U.K.; 2Metabolic Research Laboratories and MRC Metabolic Diseases Unit,
Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, U.K.

Correspondence: Raymond Bujdoso (rb202@cam.ac.uk)

Prion diseases are fatal transmissible neurodegenerative conditions of humans and
animals that arise through neurotoxicity induced by PrP misfolding. The cellular and
molecular mechanisms of prion-induced neurotoxicity remain undefined. Understanding
these processes will underpin therapeutic and control strategies for human and animal
prion diseases, respectively. Prion diseases are difficult to study in their natural hosts and
require the use of tractable animal models. Here we used RNA-Seg-based transcriptome
analysis of prion-exposed Drosophila to probe the mechanism of prion-induced neurotox-
icity. Adult Drosophila transgenic for pan neuronal expression of ovine PrP targeted to the
plasma membrane exhibit a neurotoxic phenotype evidenced by decreased locomotor
activity after exposure to ovine prions at the larval stage. Pathway analysis and quantitative
PCR of genes differentially expressed in prion-infected Drosophila revealed up-regulation
of cell cycle activity and DNA damage response, followed by down-regulation of elF2 and
mTOR signalling. Mitochondrial dysfunction was identified as the principal toxicity pathway
in prion-exposed PrP transgenic Drosophila. The transcriptomic changes we observed
were specific to PrP targeted to the plasma membrane since these prion-induced gene
expression changes were not evident in similarly treated Drosophila transgenic for
cytosolic pan neuronal PrP expression, or in non-transgenic control flies. Collectively, our
data indicate that aberrant cell cycle activity, repression of protein synthesis and altered
mitochondrial function are key events involved in prion-induced neurotoxicity, and correlate
with those identified in mammalian hosts undergoing prion disease. These studies
highlight the use of PrP transgenic Drosophila as a genetically well-defined tractable host
to study mammalian prion biology.

OPEN ACCESS

Introduction

Protein misfolding neurodegenerative diseases are invariably fatal conditions that include Alzheimer’s

disease, Huntington’s disease, Parkinson’s disease, motor neuron disease, tauopathies and prion dis-

eases [1,2]. These conditions are caused by the accumulation of disease-specific misfolded protein in

the brain of affected individuals [3]. Prion diseases, which include scrapie of sheep, bovine spongiform
Received: 26 November 2019 encephalopathy (BSE) of cattle, together with Creutzfeldt-Jakob disease (CJD) in humans [4], are the
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Although advances have been made in providing an understanding of the mechanism of prion-induced
neurotoxicity this process remains to be fully defined. Conversion of the normal host protein PrP, a plasma-
membrane bound GPI-anchored protein, into the abnormal form PrP*, the transmissible prion agent, is
central to prion disease neurotoxicity [4,6]. This is shown by the failure of PrP to cause pathology in brain
tissue that lacks PrP© expression [7,8] and by the reversal of neurodegeneration when PrP® expression is down-
regulated during prion disease [9-11]. In this context, prion-induced neurotoxicity may arise from one or more
of the following mechanisms: loss of PrP® function, toxic gain of function by PrP*, generation of a toxic inter-
mediate or by-product during PrP conversion [12,13]. Alternatively, interference with the normal biosynthesis
and metabolism of PrP© mediated by the presence of PrP> may play a role in prion-induced toxicity [14]. For
example, PrP can accumulate in the cytosol in a misfolded form when proteasomal activity is compromised
[15,16] and cytosolic PrP has been reported to be neurotoxic in certain neurons [17-20]. It has been shown
that the accumulation of PrP% in cells [21] and mice [22] triggers over-activation of the unfolded protein
response with a resultant block of protein translation. Despite these advances in understanding the mechanism
of prion-induced neurotoxicity this process remains to be fully defined. To do so requires identification of
cellular events that lead to, and accompany, inhibition of protein synthesis in prion-infected hosts.

Prion diseases are difficult to study in their natural hosts, such as humans and ruminants because these
diseases can take many years to develop, resulting in progress being slow and cumbersome [4]. In addition, the
natural forms of prion diseases tend to occur in outbred populations, which renders genetic analysis of complex
biochemical pathways difficult. Even in the more amenable experimental system of mouse models, the significant
expense of both time and husbandry restrict the scope of genetic experimentation for dissection of prion disease
mechanisms. In order to circumvent these issues, we have established Drosophila as a new tractable animal
model of transmissible mammalian prion disease. To do so, we generated Drosophila transgenic for ovine PrP
with an N-terminal leader peptide and C-terminal GPI anchor sequence that is targeted to the plasma mem-
brane [PrP(GPI)] [23]. Adult Drosophila transgenic for pan neuronal expression of ovine PrP(GPI) exposed to
scrapie prions, at the larval stage, authentically replicate mammalian prions and develop a neurotoxic phenotype
evidenced by a decrease in locomotor ability [24]. This prion-induced neurotoxic fly phenotype showed hall-
mark features of bona fide mammalian prion disease, namely accumulation of Proteinase K (PK)-resistant PrP,
prion seeding activity and the propagation of prions that are transmissible to mice. In addition, we generated
Drosophila transgenic for ovine PrP that lack an N-terminal leader peptide and C-terminal GPI anchor
sequence, which is targeted to the cytosol [PrP(Cyt)]. Adult PrP(Cyt) Drosophila show a fly-to-fly transmissible
toxicity after exposure to exogenous ovine prions at the larval stage [25]. Collectively, these PrP transgenic
Drosophila provide novel tractable experimental hosts for the study of mammalian prion biology.

Here we have performed an RNA-Seq-based transcriptome analysis of prion-infected Drosophila in order to
search for canonical and toxicity pathways involved in prion-induced neurotoxicity. Our analysis has revealed
that during the early phase of prion infection in PrP(GPI) transgenic Drosophila, there was up-regulation of
genes associated with cell cycle activity and DNA damage repair, followed by down-regulation of the protein
synthesis regulation pathways eIF2 and mTOR (mechanistic target of rapamycin) signalling. In addition, mito-
chondrial dysfunction was identified as the principal toxicity pathway in prion-exposed Drosophila. These data
indicate that aberrant cell cycle activity, repression of protein synthesis and altered mitochondrial function are
key events involved in prion-induced neurotoxicity. Our studies show that PrP transgenic Drosophila, a genetic-
ally well-defined tractable host, represent a new model for the study of prion-induced neurotoxicity, an import-
ant aspect of transmissible mammalian prion biology.

Materials and methods

Drosophila fly lines

The UAS-PrP(GPI) fly line w; M{VRQ-PrP(GPI), 3xP3-RFP.attP}ZH-51D transgenic for ovine V'**R">*Q'”!
(VRQ) PrP expressed with an N-terminal leader peptide and C-terminal signal sequence [PrP(GPI)] was gener-
ated by PhiC31 site-specific transformation as previously described [23]. The UAS-PrP(Cyt) fly line w;
M{VRQ-PrP(Cyt), 3xP3-RFP.attP}ZH-51D transgenic for ovine VRQ that lacked an N-terminal leader peptide
and C-terminal signal sequence [PrP(Cyt)] was generated by PhiC31 site-specific transformation as previously
described [25]. Cre-mediated removal of RFP from the fly genome of both VRQ PrP variants and from non-
transgenic control 51D Drosophila was performed by conventional fly crosses [26]. The Elav-GAL4 (P{w[ +
mW.hs] = GawB}elav[C155]) was obtained from the Department of Genetics, University of Cambridge. All fly
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lines were raised on standard cornmeal media [27] at 25°C, maintained at low to medium density. Flies were
used in the assays described below or harvested at various time points and then frozen at —80°C until required.

Prion inoculation of Drosophila

Drosophila at the larval stage of development were exposed to brain homogenates of cerebral cortex tissue from
confirmed scrapie-positive or known scrapie-negative sheep. The scrapie-infected isolate was prepared from a
terminal scrapie-affected sheep identified by routine statutory surveillance (VRQ/VRQ isolate SE1848/0005)
[28] that showed typical vacuolar pathology in the medulla oblongata of the brain stem and that was positive for
disease-associated PrP as judged by immunohistochemistry or western blot. New Zealand-derived VRQ/VRQ
scrapie-free brain tissue was used as control material. Two hundred and fifty microlitres of a 1% brain homogen-
ate prepared in PBS pH7.4 were added to the top of the cornmeal that contained third instar Drosophila larvae
in 3" plastic vials. Flies were transferred to fresh vials, that lacked any inoculum, following eclosion.

Locomotor assay

The locomotor ability of flies was assessed in a negative geotaxis climbing assay as described previously [29].
Briefly, age-matched, pre-mated female flies (3 x #n =15 for each genotype at the start of the experiment) were
placed in adapted plastic 25 ml pipettes that were used as vertical climbing columns. The flies were allowed to
acclimatise for 30 min prior to the assessment of their locomotor ability. Flies were tapped to the bottom of
the pipette (using the same number and intensity of taps) and then allowed to climb for 45 s. At the end of the
climbing period the number of flies above the 25 ml mark, the number below the 2 ml mark and the number
in between the 2 ml and 25 ml mark were recorded. This procedure was performed three times at each time
point. The mean +SD performance index (PI) for each group of flies was calculated as described [29].
Statistical analysis of the data was performed using one-way analysis of variance (ANOVA), together with
Tukey honestly significant difference (HSD) for post hoc analysis or the unpaired samples ¢-test using Prism
(GraphPad Software Inc, San Diego, U.S.A.).

Preparation of fly head homogenates and RNA extraction

Drosophila were exposed at the larval stage to either scrapie-infected or prion-free sheep brain homogenate
[24,26]. After hatching, Drosophila were transferred to inoculum-free tubes and allowed to develop normally.
At 5 days and 40 days post hatching, groups of female flies (three sets of n =15, i.e. 45 flies in total per treat-
ment group) were euthanized and then decapitated. This was achieved by placing whole flies in eppendorf
tubes, which were then frozen in liquid nitrogen for 10 min and then vortexed for 2 min. Individual fly heads
were then isolated and placed in clean eppendorf tubes, using a paint brush, for head homogenate preparation.
All subsequent procedures for RNA preparation were performed at 18°C unless otherwise stated. Each set of 15
fly heads was homogenised by manual grinding in an eppendorf tube with 50 pl Trizol (Cat No. 15596-018;
Invitrogen). A further 50 pl of Trizol were mixed with the homogenate, which was then microfuged at
16,160xg for 10 min and the supernatant transferred to RNAse-free tubes before adding a further 50 wl Trizol
and incubated for 5 min. RNA was isolated by conventional chloroform:isoamylalcohol:isopropanol extraction
followed by ethanol precipitation. Air-dried RNA pellets were treated with DNAse 1 (Cat No. EN0521; Thermo
Scientific) at 37°C for 60 min, with the reaction halted by the addition of EDTA and incubation at 65°C for
10 min. RNA samples were then subjected to the Qiagen RNeasy RNA Cleanup protocol according to the man-
ufacturers’ instructions. The RNA samples were eventually eluted from RNeasy mini-spin columns, ethanol
precipitated, re-suspended in RNAse-free water and stored at —80°C.

Transcriptome mRNA sequencing

Transcriptome profiling was assessed using RNA sequencing performed at the High-performance computing
cluster at the Research Computing Service, University of Cambridge. A library of mRNA was prepared from
200 ng of total RNA, extracted as described above and that had been originally pooled from 15 fly heads from
each experimental condition, using the Illumina TruSeq Stranded mRNA Library Prep kit (Illumina, San
Diego, CA, U.S.A.) according to the manufacturer’s protocol. Briefly, poly-A containing mRNA was purified
from total RNA using poly-T oligo attached magnetic beads and fragmented using divalent cations and elevated
temperature. Cleaved mRNA was copied into first strand cDNA using Superscript II reverse transcriptase and
random primers in the presence of Actinomycin D. Strand specificity was achieved by replacing dTTP with
dUTP in the second strand marking mix, followed by second strand cDNA synthesis using DNA Polymerase I
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and RNase H. Blunt ended double stranded cDNA was adenylated at the 3’ end to allow ligation of T-linked
single-index adapters to the fragment to generate the cDNA library. Products were enriched with 15 cycles of
PCR and purified with AMPure XP magnetic beads to create the final cDNA library. Libraries from individual
samples were combined at equal molar concentration of DNA, before loading onto one lane of either an
Mlumina HiSeq 2000 instrument [in the case of PrP(GPI)] or 3 lanes of a HiSeq 4000 instrument [in the case
of PrP(Cyt) and 51D] for single-end sequencing of 40 bp [in the case of PrP(GPI)] and 50 bp [in the case of
PrP(Cyt) and 51D] products. Sequencing was performed at the Genomics Core, Cancer Research UK
Cambridge Institute, Cambridge.

Bioinformatics analysis

The quality of sequence reads was examined using FastQC while Multiple Genome alignment (MGA) was used
to rule out contamination from other DNA sources throughout the experimental procedures. A total of 945.7
million reads, or 17.5 + 1.3 million reads per sample, was acquired for the study presented here. A total of 83.4%
of sequence reads were successfully mapped onto the Drosophila melanogaster reference genome version BDGP6
released from the Berkeley Drosophila Genome Project [30] using TopHat version 2.0.11 [31]. Raw gene-level
abundance was determined through the use of Htseq-count (version 0.6.1p1). Trimmed mean of M values nor-
malisation and differential gene expression analysis was performed using EdgeR and Limma. The normalised
gene abundance is represented in log2CPM, which stands for the base-2 logarithm of Count per Million. The
raw sequencing data and the comparison tables are available on-line at Gene Expression Omnibus (accession
number GSE144028). Gene annotations and pathway analysis were performed using Ingenuity Pathway Analysis
(IPA) (Qiagen, U.S.A.). These analyses identified canonical pathways or toxicity functions from the IPA library
that were most relevant to the input Drosophila data set. The relevance of the association between the input data
set and the identified pathway or toxicity function was quantified by two methods. Firstly, Fisher’s exact test was
used to calculate a P-value that determined whether the probability of association between the genes in the
Drosophila data set and the proposed pathway could be attributed to chance alone. Secondly, the ratio of the
number of genes from the Drosophila data set that map to the pathway divided by the total number of molecules
that map to the pathway or toxicity function was calculated. The statistical computing package P- heatmap was
used for visualisation of differentially expressed genes in each genotype of prion-exposed Drosophila. The
changes visualised for each specific gene in the heat map presentations refer to the log2-fold change between
expression in scrapie-exposed versus prion-free sheep brain homogenate-exposed Drosophila.

Quantitative PCR (qPCR)

Generation of cDNA: One microgram of target RNA was used per reverse transcription (RT) reaction to gener-
ate ¢cDNA with 20 Units of Superscript II reverse transcriptase (catalogue no. 18064-022; Gibco Life
Technologies) at 42°C for 60 min in the presence of 50 mM Tris-HCl [pH8.3], 75 mM KCl, 3 mM MgCl,,
5mM dithiothreitol, 0.5 mM deoxynucleoside triphosphates, 1 Unit of RNase H (catalogue no. M428;
Promega), and 0.1 pg of oligo(dT);s (catalogue no. C1101; Promega). For every reaction set, one RNA sample
was performed without Superscript II reverse transcriptase to provide a negative control in subsequent PCRs.
Primers: PCR primers were used for the following Drosophila genes: cdc2; dPCNA; Cyclin A; Cyclin B; elF20,
eIF4A; eIF4E; elF3 S10 (see Supplementary Data S1 for sequences). To compensate for variations in amounts
of input RNA and efficiency of the reverse transcription, an endogenous housekeeping gene actin was also
quantified, and results were normalised to these values. gPCR amplification: QPCR was performed in an ABI
7900HT real-time PCR system using a 384 well plate format with individual amplification reaction volumes of
15 pl that contained 2.5 pl of cDNA sample (5.5 ng cDNA per well), 1 ul forward primer and 1 pl of reverse
primer (both at 10 uM) (see Supplementary Data for primer sequences), 7.5 pl of Sybr Green PCR Mastermix
(Cat No. 4309155; Applied Biosystems) and 3 pl sterile, RNA free water. Each qPCR amplification was per-
formed in triplicate wells with the following conditions: 2 min at 50°C and 10 min at 95°C, followed by a total
of 45 two-temperature cycles (15 s at 95°C and 1 min at 60°C). Quantification of signal was achieved by setting
thresholds within the logarithmic phase of the PCR for the target gene and the housekeeping gene actin, and
determining the cycle number at which the threshold was reached (Ct) for both. The relative amount of the
target gene transcript expression was plotted as mean 2°“'+ standard error of the mean for each treatment
group, where ACt=(Ct for the target gene sample) — (Ct for the equivalent actin sample). Statistical analysis
was performed by multiple group analysis of 2°“ values within each treatment group using one-way analysis of
variance (ANOVA), together with Tukey HSD for post hoc analysis.
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Results

Drosophila model of transmissible mammalian prion disease

We have previously established that adult PrP transgenic Drosophila show a neurotoxic phenotype after expos-
ure to mammalian prions at the larval stage [26]. Supplementary Data S2 show that the locomotor activity of
prion-exposed PrP(GPI) Drosophila was significantly decreased compared with the response by similar flies
exposed to control scrapie-free sheep brain homogenate (Supplementary Data S2A). The prion-induced neuro-
toxic fly phenotype was biologically relevant since it was associated with hallmark features of bona fide mam-
malian prion disease, namely accumulation of PK-resistant PrP°, prion seeding activity and the propagation of
prions that are transmissible to mice [24]. Drosophila transgenic for PrP(Cyt), also showed a locomotor defect
that was more pronounced than PrP(GPI) Drosophila (Supplementary Data S2B). In contrast with these data,
adult control non-transgenic 51D Drosophila showed no difference in locomotor activity after exposure to
scrapie-infected or healthy prion-free sheep brain material at the larval stage (Supplementary Data S2C). Here
we have used this invertebrate model of transmissible mammalian prion disease to perform RNA-Seq-based
transcriptome analysis of scrapie- and mock-infected Drosophila in order to determine the cellular and
biochemical pathways affected in the fly as a consequence of prion-induced neurotoxicity.

Temporal and quantitative gene expression changes in prion-exposed
PrP Drosophila

RNA-Seq-based transcriptome analysis was performed on adult fly head homogenate prepared from Drosophila
exposed at the larval stage to either scrapie-infected or prion-free sheep brain homogenate [24,26]. Each
Drosophila treatment group was represented by triplicate samples of 15 fly heads. A total of 9672 Drosophila
genes were collectively detected in prion-infected and control fly samples harvested at 5 days and 40 days post
hatching. This represented expression of >61.7% of the Drosophila melanogaster genome during the course of
the experiment.

We determined the number of genes differentially expressed in each Drosophila treatment group at 5 days
and 40 days post hatching. Differentially expressed genes were identified as those with >2-fold change in
expression level (either increased or decreased between scrapie-infected and mock-infected flies) with a false
discovery rate of 5%. The data in Figure 1 show that the total number of genes differentially expressed in
Drosophila as a consequence of prion infection was of the order PrP(GPI) > PrP(Cyt) > 51D. All three geno-
types of Drosophila showed a similar number of differentially expressed genes at 5 days post hatching.
However, more genes were differentially expressed in adult prion-exposed PrP Drosophila aged 40 days com-
pared with those at 5 days of age, which was due principally to a greater number of up-regulated genes. The
number of down-regulated genes was similar at 5 days and 40 days of age in prion-exposed adult PrP(GPI)
Drosophila but elevated at day 40 in PrP(Cyt) flies. The fact that control 51D Drosophila did not show any sig-
nificant temporal change in the total number of differentially expressed genes, or their regulation profile,
implies that the gene changes seen in PrP(GPI) and PrP(Cyt) Drosophila were prion-induced and not simply
an effect of these flies ageing.

EIF2 signalling and cell cycle activity are perturbed in prion-exposed PrP(GPI)
Drosophila

We next performed pathway enrichment analysis using combined lists of differentially expressed genes in
prion-exposed PrP Drosophila on both day 5 and 40 in order to obtain unbiased predictions of cellular and
biochemical events perturbed (involved) in each fly line as shown in Table 1. The data in Table 1A show the
top 5 canonical pathways perturbed in PrP Drosophila as a consequence of prion-exposure. The most statistic-
ally relevant canonical pathway in prion-exposed PrP(GPI) Drosophila was eIF2 signalling, a pathway that inte-
grates a diverse array of stress-related signals to regulate both global and specific mRNA translation [32]. In
addition, prion-exposed PrP(GPI) Drosophila were associated with perturbed neuronal signalling pathways
including: Dopamine-DARPP32 feedback in cAMP signalling, an important regulator of dopamine/cAMP/
PKA signalling [33]; and calcium signalling, a universal second messenger that participates in the transmission
of the depolarising signal and contributes to synaptic activity [31]. In prion-exposed PrP(Cyt) Drosophila the
most statistically relevant canonical pathway was the protein ubiquitination pathway, a principal process
responsible for the degradation of intracellular proteins [34]. In addition, these flies were characterised by
perturbation of cell cycle control of chromosomal replication and serotonin receptor signalling.
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Figure 1. Temporal alterations in Drosophila gene expression following prion infection.
Venn diagram representation of the number of prion-specific differentially expressed genes in Drosophila at 5 and 40 days post
hatching following exposure to scrapie-infected sheep brain homogenate at the larval stage.

Upstream regulator enrichment analysis was used to identify transcriptional regulators responsible, in whole
or in part, for the observed prion-induced differential gene expression changes in PrP Drosophila, that help
characterise the perturbed biological activities occurring in these flies. The data in Table 1B show the top 5
probability-based upstream metabolic pathway regulators perturbed in prion-exposed PrP Drosophila. The
top-hit upstream regulator in prion-exposed PrP(GPI) Drosophila was RICTOR, the rapamycin-insensitive
companion of mTOR and defining component of mTORC2 protein complex, an important regulator of synap-
tic function linked to the control of the actin cytoskeleton [35]. The top-hit upstream regulator in
prion-exposed PrP(Cyt) Drosophila was the transcription factor E2F1, which can mediate both cell proliferation
and TP53/p53-dependent apoptosis [36].

We subsequently inspected the over-represented pathways for genes either up- or down-regulated at different
time points in prion-exposed PrP(GPI) Drosophila in order to predict when particular cellular functions were
enhanced or suppressed following prion infection in the fly. The data in Table 2 show the top 5
probability-ranked functions that were either up- or down-regulated at 5 days or 40 days of age as a consequence
of prion-exposure in PrP(GPI) Drosophila. At 5 days post hatching, top-ranked up-regulated functions were cell
cycle activity and DNA damage regulation, together with functions that control cell cycle progression, namely
GADD45 and ataxia telangiectasia mutated (ATM) signalling [37]. The top-ranked down-regulated functions at
5 days of age, were associated with small molecule biochemistry and metabolism of various metabolic cellular
components including purine nucleotides. At 40 days of age, the top-ranked up-regulated functions were tyro-
sine degradation and fatty acid biosynthesis. The top-ranked down-regulated functions at 40 days of age were
associated with protein synthesis and mTOR signalling [38].
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Table 1 Top canonical pathways and upstream regulators in prion-exposed PrP transgenic

Drosophila
(A)
Fly line Top canonical pathway P-value Overlap
PrP(GPI) EIF2 signalling 2.51%x107'° 14.1% 32/227
Dopamine-DARPP32 feedback in CAMP signalling 9.73x 10710 15.9% 26/164
Calcium signalling 7.54x107° 13.6% 28/206
Mitochondrial dysfunction 4.73x1078 14.7% 24/163
Regulation of elF4 and p7056K signalling 8.12x 1078 14.1% 23/163
PrP(Cyt) Protein ubiquitination pathway 1.61x107° 25.6% 62/242
Cell cycle control of chromosomal replication 4.26x107° 44.2% 23/52
TCA cycle Il (eukaryotic) 6.45x 1078 61.9% 13/21
EIF2 signalling 1.78 x 1077 24.4% 52/213
Serotonin receptor signalling 7.22%x107° 36.6% 15/41
(B)
Fly line Top upstream regulator P-value
PrP(GPI) RICTOR 1.92x107"®
MAPT 2.34x107"7
TP53 8.04 x 10712
APP 2.61x 107"
PSEN1 502x107"
PrP(Cyt) E2F1 5.50x 1077
E2F6 4.91x107°
MAPT 1.07 x107°
ADORA2A 8.98x107°
PSEN1 1.18x 1078

(A) Top canonical pathways; and (B) upstream regulators determined by Ingenuity Pathway Analysis of prion-specific gene

transcripts identified in the brains of adult PrP transgenic Drosophila following exposure at the larval stage to

scrapie-infected sheep brain homogenate. P-value probability calculated by the right-tailed Fisher’s exact test. The ratio
of the number of molecules from the data set that map to the pathway divided by the total number of molecules within

the specified canonical pathway is displayed.

Identity of cell cycle activity and elF2 signalling genes perturbed in

prion-exposed PrP Drosophila

.. 2 PORTLAND
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We examined the expression profile of specific genes perturbed in cell cycle activity and protein translation path-
ways in prion-exposed PrP Drosophila compared with control 51D flies. In addition, we used quantitative-PCR
(qPCR) in order to validate the expression profile of these pathways identified by RNA-Seq analysis.

Table 2 Perturbed canonical pathways in prion-exposed PrP(GPIl) Drosophila

Change Day 5 Pathways P-value Day 40 pathways P-value

Up Cell cycle/DNA damage regulation 513x107° Tyrosine degradation | 417 x107°
GADD45 signalling 1.86x10™°  Fatty acid activation 1.29x 1073
Estrogen-mediated S-phase entry 3.24x107° v-linolenate biosynthesis Il 2.24x107°
Cyclins and cell cycle regulation 5.62x107° Mitochondrial L-carnitine shuttle pathway 2.24x107°
ATM signalling 513x10™*  Glutamate removal from folates 417 %1078

Down Purine nucleotides 407%x107®  EIF2 signaliing 1.00x 107196
Tetrahydrobiopterin biosynthesis |~ 2.19x10™°  EIF4 regulation & p70S6K signalling 5.01 x 10740
Tetrahydrobiopterin biosynthesis I 2.19x10™°  mTOR signalling 251x107%*
Sorbitol degradation | 2.69x107° Inosine-5'-phosphate biosynthesis |I 3.16x107°
Histamine biosynthesis 2.69x 1072 Purine nucleotides de novo biosynthesis Il 1.48x107°

Ingenuity Pathway Analysis was used to determine the enriched canonical pathways represented by up- and down-regulated genes in
prion-exposed adult PrP(GPI) Drosophila following exposure at the larval stage to scrapie-infected sheep brain homogenate. P-value probability

calculated by the right-tailed Fisher’s exact test.
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Figure 2 shows the effect of prion infection on cell cycle activity gene expression. Figure 2A shows the
heatmap of relative gene expression changes for affected members of cell cycle: G2/M DNA damage checkpoint
control pathway in prion-exposed flies. Supplementary Data S3 lists individual affected genes in this pathway.
PrP(GPI) Drosophila were characterised by up-regulation of genes encoding the Cdkl-cyclin B complex, which
serves to trigger mitosis in eukaryotic cells [39] and Weel, a tyrosine kinase Cdk1 regulator [40]. In addition,
there was up-regulation of expression of lok, a serine/threonine-protein kinase required for checkpoint-
mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-
strand breaks [41]; Aura, a mitotic serine/threonine kinase that contributes to the regulation of cell cycle
progression [42]; TOP2, a topoisomerase II that controls topological states of DNA by transient breakage and
subsequent re-joining of DNA strands [43]; polo, a Serine/threonine-protein kinase that functions throughout
cell cycle M phase [44]; and grp, a Serine/threonine-protein kinase required for checkpoint-mediated cell cycle
arrest and activation of DNA repair in response to the presence of DNA damage or un-replicated DNA [45].
These changes in cell cycle gene expression were seen in prion-exposed PrP(GPI) Drosophila aged 5 days old
and 40 days old. In contrast, prion-exposed PrP(Cyt) only showed mild up-regulation of cell cycle activity
genes at 40 days of age.

We used quantitative PCR (qPCR) to confirm the early up-regulation of genes associated with cell cycle
activity in prion-exposed PrP(GPI) Drosophila. The data in Figure 2B show that representative cell cycle genes
including cdc2, dPCNA, Cyclin A and Cyclin B were up-regulated in prion-exposed PrP(GPI) Drosophila at
5 days of age.

Figure 3 shows the effect of prion infection on elF2 gene expression in Drosophila. Figure 3A shows the
heatmap of relative gene expression changes for affected members of the elF2 signalling pathway [32] of
prion-exposed Drosophila. Supplementary Data S4 lists the individual affected genes in this pathway. The most
significant changes in prion-exposed PrP transgenic Drosophila gene expression were seen in flies aged 40 days,
with up-, and most prominently, down-regulation of specific transcripts. Prion-exposed PrP(GPI) Drosophila at
40 days of age were characterised by up-regulation of various eIF2 signalling genes including: Gcn2, an inte-
grated stress response (ISR) protein kinase that phosphorylates elF2o [46]; AGOI, an argonaute protein that
participates in RNA-mediated gene silencing (RNAi) by the RNA-induced silencing complex (RISC) [47]; InR,
an insulin-like receptor protein that plays a role in life-span determination [48]; Sos, which functions in signal-
ling pathways initiated by the ‘sevenless’ and epidermal growth factor receptor tyrosine kinases [49]; Dsorl, the
mitogen-activated protein kinase kinase 1 (MAP2KK1) [50] that phosphorylates MAP kinase, a member of the
extracellular signal-regulated kinases (ERKSs) that serve to regulate multiple biochemical signalling pathways;
Pi3K68D, a phosphoinositide-3-kinase that stimulates the generation of phosphatidylinositol 3,4,5-trisphosphate
(PIP3) [51]; and Pdkl, a Serine/threonine kinase which acts as a master kinase, phosphorylating and activating
a subgroup of protein kinases involved in signal transduction [52]. Prion-exposed PrP(GPI) Drosophila at
40 days of age were also characterised by down-regulation of a multitude of genes that encoded either 40S and
60S ribosomal subunit proteins, or genes that encoded components of various translational initiation cofactors,
including eIF1, eIF2, elF3 and eIF4. The data in Figure 3A also show that prion-exposed PrP(Cyt) at 40 days
of age were characterised by perturbation of the eIF2 signalling pathway with up-regulation of various genes
including: Gcen2 [46]; eIF2Be, the guanine nucleotide exchange factor for elF2 [53]; Sos, [49]; and Ras85D,
which contributes to the regulation of cell division [54]. Prion-exposed PrP(Cyt) Drosophila also showed down-
regulation of eIF2 signalling at day 40 although the range and magnitude of the response was less than that
seen in similarly treated PrP(GPI) Drosophila.

We confirmed down-regulation of protein translation gene expression in prion-exposed PrP(GPI) Drosophila
by gPCR. The data in Figure 3B show that elF2a and eIF4A gene expression was down-regulated in a statistic-
ally relevant manner in prion-exposed PrP(GPI) Drosophila at 40 days of age, whereas eIF4E and eIF3 S10
gene expression showed down-regulation but was not statistically significant.

Mitochondrial dysfunction is the principal toxicity pathway in prion-exposed
PrP Drosophila

Pathway analysis was also used to predict potential toxicity pathways responsible for the phenotypic response
observed in prion-exposed PrP Drosophila. The data in Table 3 show that mitochondrial dysfunction [55],
which is characterised by a loss of efficiency in the electron transport chain (ETC) and reductions in the
synthesis of adenosine-5'-triphosphate (ATP), was the top toxicity pathway in both PrP(GPI) and PrP(Cyt)
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Figure 2. Perturbation of cell cycle:G2/M DNA damage checkpoint regulation pathway genes in prion-exposed

Drosophila.

(A) Heatmap showing the effect of prion-infection on cell cycle:G2/M DNA damage checkpoint regulation pathway gene
expression in Drosophila. Colour indicates the log2-fold difference between prion-exposed and control-treated Drosophila gene
expression. (B) gPCR analysis of cell cycle genes (i) cdc2; (i) dPCNA,; (i) Cyclin A; and (iv) Cyclin B. Displayed bars represent
the relative level of target gene expression + standard error of the mean, with respect to the reference gene actin. Normal brain
homogenate-inoculated (open bars); scrapie-inoculated (filled bars). Statistical analysis between different treatment groups was
performed using one-way analysis of variance (ANOVA), together with Tukey honestly significant difference (HSD) for post hoc
analysis. P value probabilities with significance (shown) were identified between relevant PrP(GPI) treatment groups (normal
brain homogenate-inoculated and scrapie-inoculated at day 5; or scrapie-inoculated at day 5 and scrapie-inoculated at day 40).
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Figure 3. Perturbation of elF2 signalling cell pathway genes in prion-exposed Drosophila. Part 1 of 2
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Part 2 of 2
Figure 3. Perturbation of elF2 signalling cell pathway genes in prion-exposed Drosophila.
(A) Heatmap showing the effect of prion-infection on elF2 signalling cell pathway gene expression in Drosophila. Colour
indicates the log2-fold difference between prion-exposed and control-treated Drosophila gene expression. (B) gPCR analysis of
protein translation genes (i) elF2a; (i) elF4A,; (iii) elFAE; (iv) and elF3 S10. Displayed bars represent the relative level of target
gene expression + standard error of the mean, with respect to the reference gene actin. Normal brain homogenate-inoculated
(open bars); scrapie-inoculated (filled bars). Statistical analysis between different treatment groups was performed using
one-way analysis of variance (ANOVA), together with Tukey honestly significant difference (HSD) for post hoc analysis. P value
probabilities with significance (shown) were identified between relevant PrP(GPI) treatment groups (normal brain
homogenate-inoculated and scrapie-inoculated at day 5; or scrapie-inoculated at day 5 and scrapie-inoculated at day 40).

prion-exposed Drosophila with 20.9% and 13.6% overlap of the differentially expressed genes and pathway
genes, respectively.

Mitochondrial dysfunction pathway genes differentially expressed in prion-exposed Drosophila are shown in
the heatmap displayed in Figure 4. Supplementary Data S5 lists individual genes in this pathway.
Prion-exposed PrP(GPI) Drosophila at 5 days and 40 days of age were characterised by down-regulation of

Table 3 Mitochondrial dysfunction identified as top toxicity pathway in prion-exposed Drosophila

Fly line Top toxicity list P-value Overlap

VRQ(GPI) Mitochondrial dysfunction 6.89x107* 20.9% 33/158
NRF-mediated oxidative stress response 1.36x107° 19.0% 40/210
PRAR/RXR activation 217x1072 17.3% 29/168
CAR/RXR activation 2.37x1072 30.0% 6/20
Cell cycle: G2/M DNA damage checkpoint regulation 3.24x1072 21.6% 11/51

VRQ(Cyt) Mitochondrial dysfunction 8.28x 1078 13.6% 24/176
NRF-mediated oxidative stress response 1.67x107° 9.9% 25/252
Cell cycle: G2/M DNA damage checkpoint regulation 177 x107 17.0% 9/53
Long term renal injury & anti-oxidative response panel (rat) 4.08x107* 27.8% 5/18
PRAR/RXR activation 110x107° 9.0% 17/189

Mitochondrial dysfunction was identified by Ingenuity Pathway Analysis as the top toxicity pathway in prion-exposed PrP(GPI) and
PrP(Cyt) Drosophila. P-value probability calculated by the right-tailed Fisher’s exact test. The ratio of the number of molecules from
the data set that map to the pathway divided by the total number of molecules within the specified canonical pathway is displayed.
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Figure 4. Perturbation of mitochondrial dysfunction pathway genes in prion-exposed Drosophila.

Heatmap showing the effect of prion-infection on mitochondrial dysfunction pathway gene expression in Drosophila. Colour
indicates the log2-fold difference between prion-exposed and control-treated Drosophila gene expression.
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genes involved in the mitochondrial ETC including: ND-20, -39, -42, -51, ND-PDSW, ND-ASHI and NADH
dehydrogenase, components of mitochondrial respiratory chain complex I; SdhC, a component of mitochon-
drial respiratory chain complex II; Cytochrome b-cl complex subunit Rieske, a component of mitochondrial
respiratory chain complex III; COX5A, levy and COX6B, components of cytochrome ¢ oxidase/Complex IV of
mitochondrial ETC; ATPSynB, ATPSynC, ATPSynD, and blw, components of the inner mitochondrial
membrane F1FO ATP synthase [55]. In addition, prion-exposed PrP(GPI) Drosophila were characterised by
down-regulation of genes that encode the antioxidants Sod2 and Grx1/Glutaredoxin 1 that participate in redox
homeostasis [56]. The data in Figure 4 also show prion-exposed PrP(Cyt) Drosophila were characterised by
down-regulation of mitochondrial function genes, which was evident in 30 day old flies, albeit to a lesser extent
than in PrP(GPI) Drosophila. In addition to down-regulation of mitochondrial transport genes in PrP(Cyt)
Drosophila, DJ-1c and park, the fly orthologues of the human genes PARK7 and PRKN were down-regulated.
PRKN encodes a ubiquitin ligase protein that is implicated in the human protein misfolding neurodegenerative
condition Parkinson’s disease [57].

A key regulator of cellular processes and pathways is the mTOR signalling pathway [58]. Disturbances in
mTOR signalling in the brain affects multiple pathways including cellular metabolism, mitochondrial function
and autophagy. The heatmap data in Figure 5 show that prion-exposed PrP(GPI) Drosophila at 5 days of age
were characterised by mild changes in expression for some genes of the mTOR pathway, listed in Supplementary
Data S6, but at 40 days of age there were marked changes in gene expression. Prion-exposed PrP(GPI)
Drosophila at 40 days of age were characterised by up-regulation of Dsorl [50]; Lk6, a serine/threonine-protein
kinase that interacts with mitogen-activated protein kinase 1 MAPKk1 / ERK2 [59]; Pkc98E, a regulatory protein
kinase activated by diacylglycerol or Ca®" [60]. In addition, at 40 days of age prion-exposed PrP(GPI)
Drosophila were characterised by down-regulation of a number of mTOR pathway genes that encoded transla-
tional initiation cofactors including eIF3, or either 40S and 60S ribosomal subunit proteins.

Discussion

Here we have performed RNA-Seq-based transcriptome analysis of prion-exposed PrP transgenic Drosophila in
order to probe the identity of cellular and molecular pathways associated with prion-induced neurotoxicity.
Adult Drosophila transgenic for pan neuronal expression of PrP(GPI), previously exposed to infectious prions
at the larval stage, first displayed up-regulation of genes associated with cell cycle control and the DNA damage
response (DDR), and subsequently down-regulation of genes associated with initiation of protein synthesis,
namely eIF2 signalling and its regulatory pathway mTOR (mechanistic target of rapamycin). Furthermore, we
identified mitochondrial dysfunction as the major toxicity pathway in prion-exposed PrP transgenic
Drosophila. Our analysis, in a unique invertebrate model of transmissible mammalian prion disease, indicates
that aberrant cell cycle activity, perturbation of protein synthesis and mitochondrial dysfunction are principal
dysregulated cellular systems involved in prion-induced neurotoxicity.

We identified up-regulation of genes involved with cell cycle activity and DDR in 5 day old prion-exposed
PrP(GPI) Drosophila after their exposure to scrapie material at the larval stage. At this time these
prion-exposed flies do not show any significant locomotor defect [24]. The DDR functions in surveillance and
repair of DNA lesions during cell cycle progression in order to maintain integrity of the cellular genome
between successive generations. The G2/M interface DDR checkpoint control allows for DNA damage during
replication to be repaired prior to mitosis. During DDR, chromatin undergoes transient disaggregation at the
sites of DNA lesion to facilitate access of repair and cell cycle checkpoint proteins [61-63]. Since open chroma-
tin is evident in regions of actively transcribed DNA, heterochromatin relaxation in response to DDR can
trigger aberrant gene expression of normally silenced regions of the genome. In this context, it has been shown
that wide-spread loss of heterochromatin occurs in Drosophila and mouse tauopathy models, and human
Alzheimer’s disease, and that this is associated with aberrant gene expression in CNS neurons [64]. Usually,
post mitotic neurons do not participate in cell cycle activity and to do so is considered to be detrimental to
these cells [65]. In this context, post mitotic neurons may have the potential to revert to a de-differentiated
state, which might be linked to activation of apoptotic pathways and concomitant neurodegeneration [66,67].

Our finding of cell cycle activity and DDR involvement in prion-mediated neurotoxicity is supported by
observations from other studies. For example, nuclear accumulation of proliferating cell nuclear antigen (PCNA)
and phosphorylated histone H2A X proteins, which are indicative of DNA replication and/or repair in other cell
types, have been detected in CNS neurons of mice used to model familial CJD and FFI prion diseases [68].
In addition, the brains of scrapie-affected hamsters show evidence of cell cycle activity with an increase in the
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Figure 5. Perturbation of mTOR signalling pathway genes in prion-exposed Drosophila.

Heatmap showing the effect of prion-infection on mTOR signalling cell pathway gene expression in Drosophila. Colour
indicates the log2-fold difference between prion-exposed and control-treated Drosophila gene expression.
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proteins polo-like kinase (PLK) 1 and cyclin B1, and a decrease in PLK3 and Cdc25C [69]. In addition, prion
infectivity experiments in vivo have shown that mice deficient in base-excision repair activity displayed an accel-
erated clinical course of prion disease compared with wild type animals [70]. Cell cycle activity and DDR may
be fundamental to protein misfolding neurodegenerative diseases in general since these cellular activities have
been reported in other such conditions [71].

We identified a down-regulation of eIF2 signalling gene expression in 40 day old prion-exposed PrP(GPI)
Drosophila, previously exposed to scrapie material at the larval stage. Neurons are highly dependent upon
sustained and efficient mRNA translation in order to undergo neurotransmitter release and exhibit synaptic
plasticity. Prion-exposed PrP(GPI) Drosophila showed a dramatic down-regulation of multiple genes of the
elF2 signalling pathway, including those that encoded translational initiation factor proteins, and 40S and 60S
ribosomal proteins. Since eIF2 signalling is a major regulator of initiation of mRNA translation [32], down-
regulation of this pathway was indicative of suppression of protein synthesis in prion-exposed Drosophila. The
down-regulation of elF2 signalling in prion-exposed PrP(GPI) Drosophila correlated with the accelerated
decline in locomotor activity seen in these flies at this particular time point.

Important regulators of eIF2 signalling are the ISR [72] or the unfolded stress response [73], which inhibit
general protein synthesis through elF2o. phosphorylation. EIF2c. phosphorylation leads to sequestration of the
elF20, guanine nucleotide exchange factor eIF2B, which in turn prevents exchange of GTP for GDP thereby
reducing availability of the initiation ternary complex eIF2-GTP-Met-tRNAi. De-phosphorylation of elF2o
occurs via the phosphatase complexes GADD34 or CREP. Our observation that the fly gene Gcn2, which
encodes a kinase that phosphorylates eIF2a, was up-regulated in prion-exposed PrP(GPI) Drosophila is indica-
tive of activation of the ISR in these flies. This observation correlates with studies in cells [21] and mice [22]
that show an ongoing prion infection triggers activation of the PERK/eIF2a branch of the unfolded protein
response that in turn leads to a block of protein translation. Increased levels of phosphorylated elF2o. are
evident in other protein misfolding neurodegenerative disorders [74], which suggests that reduced rates of
translation initiation may contribute to the pathology seen in these conditions.

A second major regulator of the eIF2 signalling pathway is mTOR which mediates phosphorylation of the
initiation factors eIF4G, elF4B and the initiation factor inhibitor eIF4E-binding protein (4E-BP) [75]. 4E-BP
competes with eIF4G for interaction with eIF4E and mTOR-mediated de-phosphorylation of 4E-BP causes the
protein to detach from eIF4E, relieving inhibition of elF2-associated guanidine exchange [76]. In addition,
mTOR is also critically involved in the regulation of autophagy, which functions in order to avoid the accumu-
lation of aberrantly folded toxic protein aggregates, or organelles, that may contribute to protein misfolding
conditions, including prion diseases [77]. We showed here that 40 day old prion-exposed PrP(GPI) Drosophila
were characterised by down-regulation in mTOR gene expression. Down-regulation of mTOR signalling in
prion-exposed neurons may therefore not only affect protein synthesis and autophagy, but also mitochondrial
function [78]. Disturbances in autophagy are reported in various human pathologies including neurodegenera-
tive disorders [79].

We identified mitochondrial dysfunction as the principal toxicity pathway in 40 day old prion-exposed PrP
(GPI) Drosophila. Impaired mitochondrial function can occur through changes in mitochondrial dynamics via
fission and fusion, alteration in the concentration and activity of ETC components, or oxidative stress [80]. We
showed that prion-exposed PrP(GPI) Drosophila were characterised by down-regulation of genes encoding
principal components of the ETC including NADH dehydrogenase, ATP synthase, and various antioxidants
including superoxidase dismutase-2 and Glutaredoxin 1. Neurons, in particular their synaptic regions, are
vulnerable to mitochondrial dysfunction because of the need to satisfy the large energy demands of synaptic
development, transmission, and plasticity. In addition, mitochondria are involved in the buffering of intracellu-
lar calcium and the storage of pro-apoptotic mediators. Loss of mitochondrial membrane integrity leads to
leakage of these mediators and cell death via necrosis or apoptosis. Mitochondrial dysfunction has been shown
in hamster [81] and mouse [82,83] models of prion disease. In addition, down-regulation of mRNA and
protein levels of mitochondrial proteins have been reported in post-mortem tissues of CJD patients [84].
Mitochondrial dysfunction has been observed in other protein misfolding neurodegenerative diseases, including
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis [55].

The cellular functions and biochemical processes that we have identified as perturbed in prion-exposed PrP
(GPI) Drosophila would seem to be directly relevant to prion disease for the following reasons. Firstly, the
pathways identified occur in a fly model of transmissible mammalian prion disease that is characterised by
authentic prion replication [24]. Secondly, our studies here have used Drosophila transgenic for pan neuronal
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Figure 6. Model for prion-induced neurotoxicity in PrP transgenic Drosophila.
Proposed major cellular events, together with representative participating genes (shown in brackets), associated with
prion-induced neurotoxicity in PrP transgenic Drosophila.

expression of PrP. Since prion-induced toxicity only occurs in cells that express PrP, the changes in gene
expression profile we have observed reflect neurotoxicity. Third, the gene expression profile of prion-exposed
PrP(GPI) Drosophila identified here was specific to this fly line and was not seen in similarly treated PrP(Cyt)
Drosophila, which indicates the observed phenotype was not due to non-specific PrP-mediated toxicity.
Collectively, our studies are consistent with the disturbance of multiple cellular and biochemical network
systems, namely aberrant cell cycle activity and DDR, repression of protein synthesis and mitochondrial
dysfunction, during prion-induced neurotoxicity.

Our observations, which are supported by transcriptomic studies in prion-infected mammalian hosts [85-87]
are consistent with perturbation of multiple cellular and biochemical network systems during prion-induced
neurotoxicity. Each of these prion-perturbed systems displays its own unique dynamic change in constituent
gene expression level and does so in a temporal manner. This suggests that dynamic perturbations of gene
expression in systems and processes associated with prion-induced neurotoxicity occurs in a specific order.
Accordingly, we propose that following initial prion infection at the larval stage, that subsequent PrP* accumu-
lation within neurons has an adverse effect upon critical cellular processes, that in turn leads to a genotoxic
effect with resultant dysregulated gene expression and aberrant cell cycle activity coupled with the activation of
apoptotic mechanisms. We further propose that these early prion-induced events in neurons drive a loss of
mitochondrial homeostasis and a repression of protein synthesis as neurons attempt to accommodate the cellu-
lar stress associated with PrP misfolding. This hypothesis is summarised in Figure 6. We cannot yet differentiate
whether the proposed loss of mitochondrial homeostasis, which will invariably be accompanied by a reduction
in ATP production, is the stimulus for repression of protein synthesis, or whether loss of protein synthesis drives
loss of normal mitochondrial status. We are now in a position to test these possibilities through our use of
Drosophila, a genetically well defined tractable experimental host amenable to silencing and overexpression of
specific genes, to probe the role of mitochondrial dysfunction in prion-induced neurotoxicity, a cellular function
increasingly implicated in protein misfolding-induced neurodegeneration [55,88].
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