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Large Scale Quantum Mechanical Enzymology

Greg Lever

Magdalene College

Summary

There exists a concerted and continual effort to simulate systems of genuine biolog-

ical interest to greater accuracy with methods of increasing transferability. More accu-

rate descriptions of these systems at a truly atomistic and electronic level are irrevocably

changing our understanding of biochemical processes. Broadly, classical techniques do not

employ enough rigour, while conventional quantum mechanical approaches are too com-

putationally expensive for systems of the requisite size. Linear-scaling density-functional

theory (DFT) is an accurate method that can apply the predictive power of quantum me-

chanics to the system sizes required to study problems in enzymology. This dissertation

presents methodological developments and protocols, including best practice, for accurate

preparation and optimisation, combined with proof-of-principle calculations demonstrat-

ing reliable results for a range of small molecule and large biomolecular systems. Previous

authors have shown that DFT calculations yield an unphysical, negligible energy gap be-

tween the highest occupied and lowest unoccupied molecular orbitals for proteins and

large water clusters, a characteristic reproduced in this dissertation. However, whilst

others use this phenomenon to question the applicability of Kohn-Sham DFT to large

systems, it is shown within this dissertation that the vanishing gap is, in fact, an electro-

static artefact of the method used to prepare the system. Furthermore, practical solutions

are demonstrated for ensuring a physical gap is maintained upon increasing system size.

Harnessing these advances, the first application using linear-scaling DFT to optimise sta-

tionary points in the reaction pathway for the Bacillus subtilis chorismate mutase (CM)

enzyme is made. Averaged energies of activation and reaction are presented for the rear-

rangement of chorismate to prephenate in CM and in water, for system sizes comprising

up to 2000 atoms. Compared to the uncatalysed reaction, the calculated activation barrier

is lowered by 10.5 kcal mol−1 in the presence of CM, in good agreement with experiment.

In addition, a detailed analysis of the interactions between individual active-site residues

and the bound substrate is performed, predicting the significance of individual enzyme

sidechains in CM catalysis. These proof-of-principle applications of powerful large-scale

DFT methods to enzyme catalysis will provide new insight into enzymatic principles from

an atomistic and electronic perspective.

v
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of electronic states (LDoS) for groups of atoms as a function of position

along the dipole moment vector of the cluster. The dipole moment vector

(coloured arrow) runs from the red line to blue. The black line is the total

density of states (DoS) and the green dashed line is the DoS for bulk wa-

ter. Each line in the LDoS plot is normalised by the number of molecules

contained in the slab. The electrostatic potential ranges from -0.3 V (red)

to +0.3 V (blue). The slice is 24.6 Å behind the water cluster. (a) Snap-
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ergy bond lengths in Ångströms, indicated by N1-N2 labels, and bond an-

gles in degrees (◦), indicated by N1-N2-N3 labels. The dihedral angles φ and

ψ are defined as those involving C5−N7−C9−C15 and N7−C9−C15−N17,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Dialanine geometrical parameters from c22vac and onetep transition
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Chapter 1

Introduction

“The good news about computers is that they do what you tell them to do. The bad news is

that they do what you tell them to do.”

Ted Nelson

The very essence of science stands upon a foundation of observation. Experiments

are devised, carried out, and interpreted, in an attempt to produce results concerning the

nature of the world around us, adding to the existing body of knowledge. Theories are put

in place in order to explain these results and aim to make further predictions to be tested

through additional experiments, or perhaps to shine light on conflicting results. Whilst

this is quite a simplistic view of the day-to-day undertakings of a scientist, the essential

business of science remains true to reality. The theoretical and computational ideas har-

nessed in this dissertation have their roots in the seminal works of many distinguished

scientists. Between 1918 and 1933, five Nobel prizes for Physics were awarded to the

predominant developers of the theory of quantum mechanics (QM). These laureates were

Max Planck, Niels Bohr, Louis de Broglie, Werner Heisenberg, Erwin Schrödinger and

Paul Dirac, in chronological order. In addition, Albert Einstein’s significant contributions

cannot go unmentioned. These theoretical insights laid the foundations for the quantum

chemical approach that won Walter Kohn and John Pople the prize for Chemistry in 1998.

Considering earlier works, Johannes Diderik van der Waals and his eponymous interac-

tions (awarded the prize for Physics in 1910), along with Charles-Augustin de Coulomb’s

influential contributions, inspired the development of models to describe intramolecular

potentials based on approaches from classical physics. The classical models most widely

used today have their origins in the work by the research groups of Frank Westheimer [1],

Terrell Hill [2] and Sir Christopher Ingold [3], who in 1946 independently suggested how

such approaches could be applied to molecules. It was Norman Allinger in 1965 who

developed one of the first computer codes to optimise molecular structures in an empir-

ical and classical framework [4]. Building upon Berni Alder and Thomas Wainwright’s

1957 work on hard sphere molecular dynamics [5], not to mention Nicholas Metropolis’

work on Markov chain Monte Carlo simulations predating it [6], Allinger’s were the first

real sets of methods that we would now recognise as molecular mechanics (MM). At the

1
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same time, QM methods were being used in order to construct MM potentials. One of

the first of such developments was Shneior Lifson and Arieh Warshel’s consistent force

field method [7] which Lifson used in collaboration with Michael Levitt to mininise the

energy of a protein system [8]. Using a classical potential with terms constructed from

underlying QM calculations is the basis of most of today’s force fields. The problem was

then how to accurately predict the structural coordinates of large systems. One of the

greatest successes of attempting to meet this challenge stemmed from the initial work of

Alder and Wainwright to develop a method of molecular dynamics (MD) to accurately

predict the ionic configurations of a system. The use of classical potentials allows large

systems and the associated time scales to be treated. However, the breaking and forming

of chemical bonds can not be accurately treated in MM or MD. These processes can be

described using conventional QM methods but, due to the computational costs, as will be

discussed later in this dissertation, the system sizes accessible with these approaches do

not reach the requirements for studying biomolecular systems. A particularly successful

brand of QM-based approaches is density-functional theory (DFT). DFT calculations were

initially employed mainly for the study of the electronic structure of simple solids, using

a few atoms in a unit cell, with the use of periodic boundary conditions. However, follow-

ing a huge effort to improve the accuracy and efficiency of the calculation techniques by

Roberto Car and Michele Parrinello [9], the size of the target systems increased dramati-

cally, but they were still not large enough to approach entire proteins. Density-functional

approaches with a significantly reduced computational cost were first developed in 1991

by Weitao Yang [10] and have been developing ever since [11,12]. However, large systems

have many more degrees of freedom to explore and so require a greater computational

effort in order to locate minimum energy structures. This requires the level of conforma-

tional sampling that is simply not feasible with QM-based calculations alone, so classical

approaches are required. A significant step forward, that ties these two approaches to-

gether is that of combined quantum mechanics/molecular mechanics (QM/MM) [13]. It

was the development of these “Multiscale Models for Complex Chemical Systems” that

resulted in Martin Karplus, Michael Levitt and Arieh Warshel being awarded the 2013

Nobel prize for Chemistry. It is a strategy combining MM, QM/MM and full-QM that is

presented in this dissertation. I therefore feel compelled to reproduce the oft-quoted line

written by Sir Isaac Newton in a letter to Robert Hooke in 1676:

“If I have seen further it is by standing on the shoulders of giants”

and I feel this is an ever-present theme, not only in this dissertation but also in the

natural sciences in general. I strongly believe this is something that practitioners in all

fields should be aware of and generate a firm appreciation for.
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1.1 Modelling and simulation: In silico techniques

A natural question might be asked as to where exactly computational simulations fit into

the grand scheme of science. Simulations act to bridge pure theory, which is only able

to give exact solutions to simpler, well-defined problems, and experiment, with all its

inherent complexity. It has been remarked by multiple authors in the literature and in

various academic meetings that developments in both simulation and experimental tech-

nologies have allowed us to approach the point whereby the system sizes addressed by

both types of techniques coincide. Simulations can often fill a role of interpreting and in-

terrogating experimental results, hopefully generating predictions or questions which help

experiments. One fascinating example of this is the case of Hen Egg-White Lysozyme,

where the work undertaken in the research group of Adrian Mulholland has resulted in the

biochemistry text book explanation of the enzyme mechanism needing to be re-written

because QM/MM calculations have revealed significantly different details about the re-

action [14]. There are some cases where simulations can be used in order to investigate

a new theory, but this is seldom done in the case of atomic calculations as many simu-

lation methods have their roots in the well-founded theories of quantum mechanics and

Newton’s laws. At the very heart of atomistic simulations lies the calculation of the en-

ergy of a particular configuration of atoms and the associated forces. The bane of many

computationalists’ lives is ensuring the convergence of calculated properties with respect

to simulation parameters. Convergence must be achieved in order to instil confidence

in the results of the simulation. This aim is something that is continually strived for

in this dissertation. Performing comparisons between well-known and relatively simple

‘toy’ problems before embarking on an investigation of a question of scientific interest is

one way of attempting to ensure that simulations are adequately characterised and are

capable of generating interesting and reliable data. Assuming that the outcome will be

favourable without careful checking and treating simulation methods as a black box can

be very dangerous and may lead to misleading results. Following on from careful testing

of one’s methods, the results of previous authors’ simulations of your intended system

of interest should be studied, where available. In doing so, this will demonstrate what

previous methods have been applied to the system, give you a potential starting point for

your own simulations, and highlight any associated problems with the system you intend

to study. In general, the broad aims of the simulations should always be kept in mind.

With a good set of aims to be adhered to, any new results or problems that will emerge

throughout a study, can be reasonably managed.

1.2 Synergy between theory and experiment

An ever-present danger in having a tool as powerful as computational simulation is that

it may be used as an end purely in itself. Whilst it may be possible to learn a lot about a
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system from computational investigations alone, interaction with experiment and under-

standing the context within the larger scheme of the scientific process is key. Agreement

between simulation and experiment is an important quantity to strive for in computational

investigations. In the case of well-established experimental results, a new model can be

tested to ensure it is performing correctly. Experimental results can also be explained

and interpreted through the use of simulation if an existing mechanism is not currently

decided upon. Computational methods can also push experiments forward through pre-

dicting what should be seen in otherwise unobserved scenarios. Just because a simulation

can be run does not make it inherently interesting or experimentally relevant. This is

a very difficult lesson to learn for computationalists. Collaboration with experimenters,

or at least a firm understanding of the experimental process, should form a crucial part

of any computational investigation. In a recent review covering sixty years of condensed

matter physics [15], Phillipe Nozières stated:

“As a theorist I never forgot my short experimental stretch: I am always inter-

ested by what can be measured and how it can be measured. A dialogue between

experiment and theory is a difficult venture, which requires a lot of patience

on both sides to find a common language. When it succeeds it is incredibly

rewarding.”

so clearly this difficult venture is one that will no doubt pay dividends if successful. There

are many examples in the literature where a cursory nod is made in the direction of ex-

periment only for the remainder of the paper to describe computational investigations

with no relevance to the requirements of experiment. It is particularly easy to fall into

this trap. For example, one could perform a calculation of a particular system at a tem-

perature of 0 K but experimentally the observation may take place at 600 K ! Not only

must one be able to translate between the language of the experimenter and the language

of the theoretician, but one must also be able to ensure adequate exchange of ideas be-

tween researchers in separate disciplines. When starting to study systems of biological

relevance from a physics perspective, one finds a convention that a physics education does

not generally teach. This is the notion that biological systems have evolved, via natural

selection, toward the powerful and complex functions necessary for life. This evolutionary

process has left biological systems, at nearly every level, with an inherent heterogeneity.

This presents a fundamental shift from what one encounters in physics, at the most basic

level. For example, one is taught that an electron is exactly the same as all the other

electrons that may surround it. This convention of the identical nature of particles is

key to quantum mechanics and statistical physics. However, due to the inherent com-

plexity encountered in biological systems, it is incredibly unlikely that any two ‘identical’

systems, be they protein molecules or two different cells in an organism, will ever be en-

tirely identical. It is becoming increasingly apparent, in this ever interdisciplinary world,

that the tools and expertise from one community can often be of use in investigating the

problems of another community. One such example is when the importance of structural
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heterogeneity in proteins was first revealed through experiments on myoglobin [16], using

the cryogenic tools available to condensed matter physicists. Different processes of the

myoglobin protein were separated using a wide range of temperatures, but this provoked

widespread complaint that, as myoglobin operates at around room temperature, exper-

iments performed at a temperature of 4 K were a waste of time. However, it was the

knowledge that at room temperature the protein will be rapidly moving through many

different configurations that led to the understanding that to probe the true molecular

events involved in the reaction process, one has to decompose it into its components.

When it comes to comparison with experiment for biological systems, total energies are

essentially meaningless. It is the differences between these values, or energy differences,

that are more relevant, however, these still omit important entropic contributions. There-

fore one should be aware of the experimental conditions and preparation of the system.

Perhaps one of the most obvious quantities one might wish to compare with experiment

would be the atomic geometry of the system. While reading off the three-dimensional

coordinate and species of an atom from your simulation is easy, such structural data is

often difficult to extract from experiment. In the case of biological systems such as pro-

teins that need to be crystallised, there are structural domains that can be very difficult

to resolve. Methods such as NMR imaging allow certain structural information to be

extracted, such as interatomic distances and torsion angles. In the all important quest for

experimental agreement, it would be all too easy to assert that if simulations generate the

same result as experiment then the methods agree, and if not, they don’t. However, inves-

tigations are rarely that simple, and it is frequently found that in investigating whether

there is agreement between simulation and experiment that a further understanding of a

system’s underlying science is truly found. The observed differences between experiment

and computation can arise from many factors, relating both to the methods used and the

differences in what is being measured by each particular method. Returning to the ideas

raised in the previous section regarding convergence, it can be tempting to halt conver-

gence testing when sufficient agreement with experiment is achieved, but this is not a

good code of practice to adhere to. The simulation is converged when it is converged,

not just when it happens to match an experimental observation. Frequently, simulations

are performed at zero temperature whereas the corresponding experiments are not, and

this should, in general, give rise to a difference in the results. There are many other

factors that can complicate comparisons between simulation and experiment, such as the

level of impurities in an experimental sample, which may profoundly affect the material’s

properties, but which can be difficult to include in a simulation. Complicating factors in

biological simulations include the concentration of substrate or any sort of buffers, which

are solutions used in many biochemical techniques to maintain the pH of a solution in a

fairly narrow range suitable for the particular process being investigated in experiment,

which can be difficult to match in computational work. The calculated values of certain

properties can often be affected by others and, therefore, in simulations, a key question
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to consider when simulating water, for example, should be, is it better to simulate using

experimental densities and temperatures or would it in fact be best to work relative to the

calculated freezing point ? Whichever field it is applied to and whatever science underlies

it, the testing of a simulation method is a vital part of any investigation and is a central

theme in this dissertation.

1.3 Dissertation outline

The overview presented here is intended to act as an historical introduction to the relevant

themes discussed within this dissertation. The following chapter serves as an introduc-

tion to – but far from a comprehensive outline of – the biological concepts relevant to the

work presented in this dissertation. Chapter 3 outlines the computational methods that

have been extensively developed by other authors, and those that have been implemented

to study the systems discussed in later chapters. Chapter 4 presents a validation of the

methods described in Chapter 3, by demonstrating their ability to accurately treat small

molecules, and includes a discussion of their potential for application to larger biologi-

cal systems. Chapter 5 investigates claims outlined by other authors that the methods

described in Chapter 3 of this dissertation are unsuitable for the correct and reliable treat-

ment of biomolecular systems. In so doing it aims to provide a methodology roadmap

starting from experimentally resolved structures, moving through system preparation to

eventual optimisation of these structures to ensure the resulting configurations make phys-

ical sense and demonstrate realistic properties whilst, at the same time, producing robust

and reliable results. Using the methodological advances shown in Chapter 5, Chapter

6 investigates the rearrangement of chorismate to prephenate in water and in the pres-

ence of the Bacilus subtilus chorismate mutase (CM) enzyme. The aim of the chapter

is to provide a demonstration of proof-of-principle calculations and to show that no sin-

gle method, of those presented in Chapter 3, is necessarily the best choice for the task,

but that a strategy combining these approaches can allow an accurate investigation of

CM and biomolecular systems in general. Chapter 7 summarises the findings of this dis-

sertation, provides a discussion of the implications of the investigations presented here,

suggests ideas for additional development of the work and further areas into which the

ideas presented in this dissertation can be explored.



Chapter 2

Proteins, enzymes and biological

catalysis

“In biology, proteins are uniquely important... the most significant thing about proteins is that

they can do almost anything. But their main function is to act as enzymes”

Francis Crick, Society for Experimental Biology Symposium 1957

In their simplest form, proteins essentially comprise unbranched polymer chains formed

as a result of chemical bonding that takes place between the amino acid building blocks.

This sequence of building blocks can be readily and rapidly determined via experimental

means, building upon the pioneering work of Frederick Sanger who, in 1951, obtained

the amino acid sequence of insulin [17], the first protein to have its sequence determined.

However, these sequences give as much information about the biology of the system as a

London telephone directory gives about the function and wonder of the city. The primary

sequence formed by the amino acids then forms complex secondary structure through

an intricate process of folding. The resulting structure of the protein in turn defines its

function and in the case of enzymes, the particular type of reaction it catalyses. The

objective of this chapter is to outline the key biological concepts used throughout this

dissertation.

2.1 Amino acids

Hydrogen, carbon, nitrogen and oxygen constitute 96.5% of the mass of living cells [18].

This rises to 98% when taking sulphur and phosphorous into consideration. Therefore, it

is clear that the chemistry of life is dominated by the lighter elements. It is these elements

that also form the amino acids, or residues, which are the subunits of proteins and can be

seen in Figure 2.1. The general chemical formula for an amino acid is NH2CαRHC′O2H.

The four-fold coordinated central alpha-carbon atom (Cα) is sp3 hybridised and is attached

to a hydrogen atom, along with the amino group (NH2) and carboxylic acid group (C′O2H)

7
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Figure 2.1: The twenty-one naturally occurring amino acids. Charged, polar uncharged

and hydrophobic side chains are also highlighted. Figure adapted, and pKa data acquired,

from Ref. [19].
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and a side chain (R) by σ bonds. This bonding pattern is common to all the twenty-

one amino acids. What distinguishes one amino acid from another is the side chain (R)

attached to the alpha-carbon. The amino acids are usually divided into three classes,

depending on the chemical nature of the side chain. Classes consist of amino acids with

strictly hydrophobic side chains, those with charged residues and those with polar side

chains. Most of the twenty-one naturally occurring amino acids were discovered in the

19th century. How and why exactly this precise set of amino acids came to be chosen as

the building blocks of life is one of the mysteries of evolution.

2.2 Protein structure

Proteins are formed in cells and are synthesised in ribosomes. Amino acids are joined into

linked chains during this synthesis process when the carboxyl group of one amino acid

condenses with the amino group of the next in order to eliminate water. This can be seen in

Figure 2.2. This formation of peptide bonds is repeated as the chain elongates, generating

the so-called ‘backbone’ from which the side chains project. The six atoms that surround

each peptide bond are constrained in an arrangement close to planar, comprising the

alpha carbon (Cα), carboxyl carbon (C ′) and amide nitrogen atoms [20]. The nitrogen,

oxygen and subsequent alpha-carbon atoms are also close to coplanar. This is due to

the adjacent nitrogen and carbon atoms in the N−H−C′=O unit being sp2 hybridised.

Their positions and resultant secondary structure can be defined in terms of the angles

of rotation about the bonds connecting the three atoms. These angles of rotation are

conventionally labeled as ψ, φ and ω, respectively. The peptide backbone dihedral, or

torsion, angles are illustrated in Figure 2.3. The angle φ defines the rotation of the plane

containing Cα
i , C′i, Oi and Ni+1 around the Ni−Cα

i bond, controlling the C′−C′ distance.

ψ defines the rotation of the plane containing C′i, Oi and Ni+1 around the Cα
i −Ci bond

and controls the N−N distance. ω defines rotation around the peptide bond C′−Ni+1

and controls the Cα−Cα distance but in general is restricted to be close to 180◦ by the

planar nature of the peptide bond, therefore ω describes any deviation from planarity.

One consequence of the condensation process that leads to the formation of proteins is

that the amino group of the first amino acid and the carboxyl group of the last amino

acid remain intact. Thus a polypeptide is said to run from its amino (N−) terminus to

its carboxy (C−) terminus. The sequence of amino acids from which a protein is built

is termed its primary structure. One of the first important general principles to emerge

from protein structure studies was the fact that amino acids in the interior of proteins

have almost exclusively hydrophobic side chains. However, in order to form the compact

and folded protein structure seen in nature, new interactions are required to compensate

for the solvent interactions lost from the peptide background. Thus, there is a major

barrier to creating such a hydrophobic core from a protein chain. In order to bring the

side chains into the core, the main chain also needs to fold into the interior. Each peptide
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Figure 2.2: The condensation process that leads to peptide bond formation. Figure

adapted from Ref. [18].

unit on the backbone has one hydrogen-bond donor (the N−H group) and one hydrogen-

bond acceptor (the C′=O group) resulting in a very polar and hydrophilic backbone. In

order to replace the favourable interactions the backbone would have with the solvent

in an unfolded state, a more compact, folded structure is required. Proteins solve this

problem by forming secondary structures where the backbone N−H and C′=O groups

form intramolecular Hydrogen bonds with each other.

A protein will fold into a stable configuration, or secondary structure, determined by

its primary structure of amino acids. Although the secondary structure of proteins can

be incredibly varied, there are two commonly recurring motifs. These α helices and β

sheets, as illustrated in Figure 2.4, are recurring patterns in protein structures and are

recognisably similar in virtually all natural proteins, despite varying in size and amino

acid composition. These ideas were first put forward by William Astbury in 1933 when

investigating keratin and collagen. Astbury proposed that unstretched protein molecules

formed a helix, which he called the α-form, and stretching caused the helix to uncoil,
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Figure 2.3: Peptide backbone dihedral angles.

forming an extended state which he called the β-form [21]. Whilst the details of the

Astbury model were incorrect, they correspond to the modern ideas of secondary structure

which were later refined by Pauling, Robert Corey and Herman Branson in 1951, where

Astbury’s original α and β notation was retained [22]. The comformation formed by an

entire protein chain, including many secondary structure motifs, is termed its tertiary

structure. In addition, if a protein is part of a complex of multiple polypeptide chains

then the complete structure is termed the quaternary structure. This last concept remains

outside the scope of this dissertation. Proteins are involved in many diverse functions

ranging from maintaining the chemical potential across cell membranes to replicating

DNA. However, most importantly and most relevant to this dissertation, proteins are

actively engaged as enzymes in the catalysis of complex chemical reactions.

2.3 Enzyme catalysis

The cells in a living organism carry out a never-ending series of chemical reactions. This

very often involves rearranging small organic molecules in a set of steps along some

metabolic pathway. The molecules at the start of this process will usually be the re-

sult of photosynthesis in plants or the ingestion of food in mammals. The subsequent

pathway will then modify the input molecules sufficiently to meet the requirements of

the cells in the living system. Each cell performs many millions of these reactions every

second. However, the vast majority of the reactions that take place would normally not

happen at the mild temperatures and pressures found in the cell. The key to accelerating,

or catalysing, these reactions comes in the form of enzymes. The primary function of
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Figure 2.4: (a) α helix and (b) β sheet secondary structure motifs.

an enzyme is to accelerate the reaction rate of a particular chemical reaction relative to

the equivalent uncatalysed reaction, or to make a reaction happen that would not occur

spontaneously. Enzymes are known to catalyse around 4,000 biochemical reactions [23]

with many reaction rates on the order of millions of times faster than the equivalent un-

catalysed reactions. The initial ideas laid down by Emil Fischer and his ‘lock-and-key’

model [24] were used to explain the specificity found in enzymes through the fact that

both the enzyme (the ‘lock’) and the substrate (the ‘key’) were thought to possess specific

complementary geometric shapes that fit exactly into one another. However, while this

is an excellent model for describing enzyme-substrate specificity, it does not adequately

explain how enzymes manage to catalyse these chemical reactions. The work of Henry

Eyring, Meredith Evans and Michael Polanyi [25,26] in the 1930s, and Linus Pauling [27]

in the 1940s, revolutionised the theory of enzyme catalysis by hypothesising transition

state structures. It was Pauling’s further proposal that the powerful catalytic action

of enzymes could be explained by specific tight binding to the transition state species in

Ref. [27] that initially led the ideas of transition state stabilisation by enzymes, and would

lead the way to the modern transition state theory [28].

It is now widely accepted that enzymes function to stabilise the transition states lying

between the reactants and products in the chemical reactions they are catalysing. This
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Figure 2.5: Schematic diagram illustrating how the activation barrier is reduced, compared

to the equivalent reaction in the absence of the enzyme, through stabilising the transition

state in the presence of the enzyme.

stabilisation dramatically reduces the activation energy required for the reaction to take

place, therefore greatly accelerating the rate of reaction. An illustration comparing the

activation barriers for a reaction in the presence of an enzyme and the equivalent reaction

in the absence of the enzyme can be seen in Figure 2.5. Drawing from the conclusions

that an enzyme binds strongly to its particular transition state, the enzyme could also be

expected to bind strongly to any synthesised molecule which closely resembles the ionic

structure of such a transition state. Whereas reactant and products often participate in

several enzyme reactions, the transition state tends to be characteristic of one particular

enzyme. Therefore any inhibitor, or transition state analogue, would need to be specific

for that particular enzyme. The identification of transition state analogues, for a range of

targets [29–32], further supports the transition state stabilisation hypothesis for enzymatic

catalysis. How exactly this transition state stabilisation arises is still a topic of debate

amongst enzymologists, and the study of the precise mechanisms involved in, and origins

of, enzyme catalysis is an active area of research.

Many authors propose that the stabilisation arises mainly due to the favourable
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Coulombic interactions between the enzyme and the substrate. Therefore, it is crucial

to treat the electrostatics of the, often polar, enzyme active site accurately. Enzymes

can alter the electronic structure of their constituent substrates via protonation, proton

abstraction, electron transfer, geometric distortion, hydrophobic partitioning and inter-

action with Lewis acids and bases. This is usually achieved through short-range forces

from noncovalent bonds such as van der Waals interactions, electrostatic interactions and

hydrogen bonds. A hydrogen bond is the attractive interaction between polar molecules

where hydrogen is bound to a highly electronegative atom, such as nitrogen or oxygen,

forming an attractive interaction with another atom, such as OH −−− N. The hydrogen

bond is directional and so is at its strongest when the three atoms involved are aligned.

Electrostatic interactions occur between partially charged groups on polar molecules, such

as the charged amino acids. At very short distances, any two atoms will show a weak van

der Waals interaction, due to their fluctuating electron densities. These three types of

weak bonds have less than 1/20 the strength of a standard covalent bond [18]. However,

despite a single example of any of these bonds being relatively weak compared to a cova-

lent bond, many of them can form together to create a strong bonding arrangement that

stabilises a particular three-dimensional structure. These bonds involve atoms not only

in the polypeptide backbone but also the amino acid side chains. The stability of each

folded shape is significantly dependent upon the combined strength of large numbers of

these noncovalent bonds.

Whilst performing as an enzyme may seem like just another function in the long list

of jobs that proteins carry out in the cell, the collosal, unmitigated catalytic power of

enzymes is extraordinary [33]. The incredible efficiency demonstrated by the OMPase

enzyme, taking a reaction that would otherwise have a half life of 78 million years in

solution, to complete in just 18 milliseconds [34] is simply breathtaking. The role of

enzymes as biological catalysts is clearly critical for life as just under half of all gene

products are annotated as having enzymatic function [35]. In addition, enzymes are often

the targets of pharmaceutical development with a significant fraction of approved clin-

ical drugs modifying the behaviour of enzymes implicated in human disease along with

disease-causing pathogens [36]. Nearly half of all marketed small molecule therapeutics

are designed as enzyme inhibitors [37]. It is argued that ligand design can benefit greatly

from improved knowledge of enzyme mechanisms and key active-site interactions [38].

In addition, increasing importance is being given to the prediction of enzyme-mediated

adverse reactions [39] and drug metabolism [40]. An understanding of the electronic,

atomic and molecular origins of how enzymes achieve their catalytic rate enhancements is

a long-standing problem in biochemistry and, increasingly, within computational biology.

In many cases, experimental observation alone is not able to establish the mechanisms of

enzyme-catalysed reactions and the origins of catalysis, due to a lack of detailed micro-

scopic information regarding the transition state of the reaction in the enzyme.

Transition states are central to many of the fundamental questions that surround
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chemical reactivity; the stabilisation of such states is a highly important process for the

efficiency of catalysis within enzymes. Transition state complexes can often prove very

difficult to observe directly in experiment due to their extremely short lifetimes, typically

picoseconds. However, it should be noted that the development of femtosecond transition

state spectroscopic techniques is currently an active area of experimental research [41–43].

Computational modelling could, potentially, complement experiment in this task as it

has the ability to probe and analyse enzyme transition state configurations directly. It

is becoming increasingly apparent that molecular simulation has a vital role to play in

elucidating the complex processes involved in these outstanding natural catalysts. From

the perspective of practical applications, modelling techniques that can shed new light on

enzyme-catalysed reactions can then help to contribute toward the design of new drugs or

the development of novel industrial catalysts via biomimetic approaches. The concept of

using atomistic simulations to model enzyme-catalysed reactions, starting from the first

pioneering works of Arieh Warshel [13] and Steve Scheiner [44], has risen to prominence

in recent years and is now at the point where the field of computational enzymology has

securely laid foundations [45, 46]. However, there still remains little consensus about the

ideal methodology to perform calculations on an enzyme of choice. Whilst it is outside the

scope of this dissertation to discuss the matter in detail, a more comprehensive discussion

of methods currently used, along with their associated advantages and disadvantages,

can be found in an elegant recent review by Richard Lonsdale [47]. Elucidation of the

origins of enzyme catalysis involves understanding the origin of the difference between

the uncatalysed activation barrier and the activation barrier in the protein, along with

the associated enzyme mechanisms. The primary focus is on the factor that governs the

reduction of the activation barrier of the chemical step. This is, of course, a question

of energetics. One of the main objectives of this dissertation is to provide energies of

activation and reaction for the rearrangement of chorismate to prephenate, both in the

presence of the Bacillus subtilis chorismate mutase (CM) enzyme and also the uncatalysed

equivalent reaction in water.

2.4 Summary

This chapter has outlined the biological concepts relevant to the investigations presented

in this dissertation. Starting from the fundamental building blocks of nature, the amino

acids, the discussion moved on to show how these component parts form larger polypeptide

chains. The types of secondary structure motifs that these long chains fold into was then

outlined. One of the essential dogmas of biology is that structure informs function. Once

the polypeptide chains discussed fold into their correct structures they can then perform

a variety of functions. One such function is to catalyse reactions that would otherwise

take too long to be of biological relevance, demonstrating how enzymes are critical for

life. The next chapter will discuss the computational methods used in this work to study
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proteins and the tests required to ensure that these methods accurately describe the

physical properties we know are crucial for correctly describing the biochemistry of these

systems. Chapter 4 will investigate the properties of small molecules that can adopt

torsion angles, which correspond to those outlined in this chapter, to match those of

amino acids that form extended α-helices and β-sheets discussed here. If these properties

can be reproduced using the onetep and OPTIM codes, discussed in the following chapter,

then the resulting simulations performed on larger systems in Chapters 5 and 6 can be

trusted. Transition state stabilisation, a key process in reducing the activation barrier,

occurs, partially, as a result of efficient overlap of electron orbitals between the residues in

the enzyme active site. The following chapter will outline accurate and efficient methods

for optimising the ionic and electronic structure of enzyme systems and discuss how the

bonding interactions between active-site residues and a substrate can be probed. These

interactions in the active site of the CM enzyme can be analysed in detail, and this will

be investigated in Chapter 6.



Chapter 3

Computational techniques

“Let us, as nature directs, begin with first principles”

Aristotle, Poetics I

The major clash between the mechanics of the classical and that of the quantum

is the fundamental property of uncertainty. Einstein’s retort that “God does not play

dice” would be forever a hallmark of the stubbornness of staunch believers in a classical

deterministic view of everything in the universe from the galaxies in the furthest region

imaginable to the individual protons and electrons that make up everything around us.

The unreasonable nature of the fear of uncertainty and the probabilistic nature of matter

on the small scale can be adequately reflected through an excerpt from the writings of

John Locke [48]:

“If we will disbelieve everything, because we can not certainly know all things;

we shall do muchwhat as wisely as he, who would not use his legs, but sit still

and perish because he had no wings to fly”

In essence, quantum mechanics brings a vast arsenal of machinery at the disposal of

physicists, chemists and now, seemingly, even biologists [49], allowing scientists of any

discipline to benefit from the elegant principles contained within the theory. However, as

outlined in the introduction to this dissertation, it is not quantum mechanical approaches

alone that are required to accurately describe biomolecular systems. In order to reduce

computational expense and to greatly expand the sample size from which results can be

extracted, classical approaches must also be used. This chapter should be regarded as an

overview of the many key theoretical ideas and methods implemented in this dissertation

and not a place for detailed discussion.

3.1 Many-body quantum mechanics

Many problems related to the electronic structure of matter – not including relativistic

effects, magnetic fields and quantum electrodynamics, can be adequately and accurately

17
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described by the equation due to Erwin Schrödinger [50]. The equation was published

in 1926 and was soon applied to multi-electronic atoms and to polyatomic systems such

as molecules [51] and solids [52]. The aim of these works was to find a description of

matter at the atomic scale, i.e. in terms of atomic nuclei and electrons. In general terms,

one can imagine a piece of matter as a collection of interacting atoms, This ensemble of

particles may be in the gas phase (molecules, clusters) or in a condensed phase (bulk solids,

surfaces, wires). It could be in a solid, liquid or amorphous phase, either homogeneous

or heterogeneous (molecules in solution, interfaces, adsorbates on surfaces). However, at

this scale, one can unambiguously describe all these systems as a set of atomic nuclei

and electrons interacting via coulombic, electrostatic forces. Formally, one can write the

Hamiltonian of such a system in the following general form:

Ĥ =− h̄2

2me

N∑
i=1

∇2
i − e2

P∑
I=1

N∑
i=1

ZI
|ri −RI |

+
e2

2

N∑
i 6=j

N∑
j 6=i

1

|ri − rj|
− h̄2

2

P∑
I=1

∇2
I

MI

+
e2

2

P∑
I=1

P∑
J 6=I

ZIZJ
|RI −RJ |

= T̂e + V̂ne + V̂ee + T̂nn + V̂nn (3.1)

with electrons, with charge e and mass me denoted by lower case subscripts and nuclei

with charge ZI and mass MI denoted by upper case subscripts. R = {RI , I = 1, . . . , P} is

a set of P nuclear coordinates. r = {ri, i = 1, . . . , N} is a set of N electronic coordinates.

T̂e is the electron kinetic energy, V̂ne is the electron-ion interaction, V̂ee is the electron-

electron interaction, T̂nn is the nuclear kinetic energy and V̂nn is the ion-ion interaction.

One can then use this Hamiltonian to solve the time-independent Schrödinger equation:

ĤΨn(R, r) = εnΨn(R, r) (3.2)

where εn are the energy eigenvalues and Ψn(R, r) are the corresponding eigenstates, or

wave functions, which must be antisymmetric with respect to exchange of electronic coor-

dinates in r, since the electrons are fermions and the total electronic wave function should

change sign whenever the coordinates of any two electrons are exchanged, and symmetric

or antisymmetric with respect to exchange of nuclear variables in R. Different nuclear

species are distinguishable, but nuclei of the same species also obey a specific statistics

according to the nuclear spin. They are fermions for half-integer nuclear spin (e.g. H, 3He)

and bosons for integer spin (e.g. D, 4He, H2). At the atomic energy scales which are the

focus of this dissertation, the nuclei are extremely well-described as massive point charges

and their internal structure is safely neglected. The wave functions are single-valued,

square-integrable functions of the system parameters and provides a complete description

of the system. Linear Hermitian operators act on a wave function and correspond to the

physical observables, those dynamical variables which can be measured, e.g. position,

momentum and energy.
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In practice, the problem posed in equation (3.2) is almost impossible to treat within

a full quantum mechanical framework. There are only a few cases, such as hydrogenoid

atoms or the H+
2 molecule, where a complete analytic solution available. Exact numerical

solutions are also limited to a few cases, mostly atoms and very small molecules. There

are several features that contribute to this difficulty, but the most important is that

this is a multi-component, many-body system, and the two-body nature of the Coulomb

interaction makes equation (3.2) not separable.

Confining the problem to the case of an atom with Z electrons, and focusing on the

electronic wave function, in order to respect the antisymmetry of the wave function against

electron exchange, such a wave function can in principle be written as an antisymmetrised

product of one-electron wave functions (a so-called Slater determinant). This assumes,

however, some kind of separability of the Schrödinger equation, implying that the proba-

bility of finding an electron at some point in space is essentially independent of where the

other electrons are located. The repulsive electron-electron interaction is quite at odds

with this picture, because an electron located at point r in space precludes other electrons

from approaching this location. Hence, the probability of finding an electron at r depends

on the location of the other Z−1 electrons. This phenomenon is known as correlation, and

it implies that the exact many-body wave function should contain factors depending on

two electronic coordinates. Therefore, the image in terms of one-electron wave functions

can be somewhat crude in many cases. This means that the full Schrödinger equation

cannot be easily decoupled into a set of equations, so that, in general, we have to deal with

3(P+N) coupled degrees of freedom. The usual choice is to resort to a few reasonable and

well-controlled approximations, which encompass a wide variety of problems of interest.

This can be achieved through two major approximations: the adiabatic separation of the

nuclear and electronic degrees of freedom, and the classical treatment of atomic nuclei.

The time scale associated with the motion of nuclei is usually much slower than that

associated with electrons. The most unfavorable case of a single proton already corre-

sponds to a mass ratio of 1:1836, i.e. less than 1%. Within a classical picture one could

say that, under typical conditions, the velocity of the electron is much larger than that

of the heavy particle (the proton). In 1927, Max Born and his student, Julius Robert

Oppenheimer, proposed a scheme for separating the motion of nuclei from that of the elec-

trons [53]. They showed that no mixing of different electronic stationary states happened

due to the interaction with the nuclei. Therefore, under appropriate conditions, the elec-

trons do not undergo transitions between stationary states. This is called the adiabatic

approximation. The electrons can then be thought of as instantaneously following the

motion of the nuclei, while remaining always in the same stationary state of the electronic

Hamiltonian. As the nuclei follow their dynamics, the electrons instantaneously adjust

their wave function according to the nuclear wave function. This approximation ignores

the possibility of having non-radiative transitions between different electronic eigenstates.

Transitions can only arise through the coupling with an external electromagnetic field,
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but this issue will not be addressed in this dissertation.

These ideas can be cast in a more mathematical framework by proposing a solution

to equation (3.2) in the form of:

Ψ(R, r, t) =
∑
n

Θn(R, t)Φn(R, r) (3.3)

where Θn(R, t) are wave functions describing the evolution of the nuclear sub-system

in each one of the adiabatic electronic eigenstates Φn(R, r). These satisfy the time-

independent Schrödinger equation:

ĥeΦn(R, r) = En(R)Φn(R, r) (3.4)

where the electronic Hamiltonian is defined as:

ĥe = T̂ + Ûee + V̂ne = Ĥ − T̂n − V̂nn (3.5)

In this partial differential equation on the r variables, the 3P nuclear coordinates R enter

as parameters. This expansion, which is always mathematically possible, is called the ex-

pansion in the adiabatic basis, because Φn(R, r) are solutions of the time-independent elec-

tronic Schrödinger equation, corresponding to a particular nuclear configuration. Equa-

tion (3.4) has to be solved for all nuclear configurations R where the nuclear wave function

is non-vanishing. By replacing this ansatz into the full Schrödinger equation one obtains a

set (infinite, in principle) of coupled partial differential equations containing off-diagonal

terms. The off-diagonal terms will mix (excite) the different electronic eigenstates along

the temporal evolution. These are precisely the non-radiative transitions alluded to pre-

viously. If this is the case, then the dynamics is said to be non-adiabatic. However, if

the off-diagonal terms can be neglected, then an expression like (3.3) is valid because the

nuclear dynamics has no means to cause electronic transitions, and the electrons remain

always in the same (n) adiabatic state (ground or excited). In this case, the dynamics is

said to be adiabatic. The necessary condition for neglecting the non-adiabatic couplings

is that:
m

M

∣∣∣∣∣ h̄Ωv

Eq(R)− En(R)

∣∣∣∣∣� 1 (3.6)

where Ωv is the maximum frequency of rotation of the electronic wave function due to the

nuclear motion, and the energies in the denominator correspond to the electronic adiabatic

eigenstates (the energy gap if q = 1 and n = 0). The ratio of electronic to nuclear mass

m/M is always smaller than 5×10−4, thus justifying the adiabatic approximation unless a

very small gap occurs, as for open-shell, conical intersections or Jahn-Teller systems. The

case of lighter particles such as muons would be different. Typical electronic excitations

are of the order of 1 eV, while typical nuclear excitations (phonons) are of the order of

0.01 eV. This indicates that there is a clear separation of energy (and consequently time)

scales. There are situations in which this approximation is not adequate, but they are

rather exceptional cases and shall not be addressed in this dissertation.
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3.2 Density-functional theory

The full many-body wave function is not a single Slater determinant, otherwise Hartree-

Fock theory would be exact. A different line of thought to solving the electronic Hamil-

tonian drove Llewellyn H. Thomas [54] and Enrico Fermi [55] to propose that the full

electronic density was the fundamental variable of the many-body problem. From this

idea they derived a differential equation for the density without resorting to one-electron

orbitals. The Thomas-Fermi approach was developed in the hopes that the energy can in

fact be written exclusively in terms of the electronic density. The original Thomas-Fermi

approximation was actually too crude, mainly because the approximation used for the

kinetic energy of the electrons was unable to sustain bound states. This idea, however,

was intuitive at the time, but a proof that this was the case had to wait more than thirty

years. In 1964, Pierre Hohenberg and Walter Kohn formulated and proved a theorem

that put on solid mathematical grounds the former ideas [56]. The theorem is divided

into two parts.

The first part of the Hohenberg-Kohn theorem (HK1) states that the external potential

is uniquely determined by the electronic density, besides some trivial additive constant.

In order to prove HK1, one should first assume the opposite to be true, i.e. that the

external potential is not uniquely determined by the density. In this case one should be

able to find two potentials, ν and ν ′, such that their ground state density n is the same.

Let Φ and E0 = 〈Φ|Ĥ|Φ〉 be the ground state wave function and ground state energy of

the Hamiltonian n Ĥ = T̂ + V̂ext + Ûee. One should also let Φ′ and E ′0 = 〈Φ′|Ĥ ′|Φ′〉 be the

ground state wave function and ground state energy of the Hamiltonian Ĥ ′ = T̂+V̂ ′ext+Ûee.

According to the Rayleigh-Ritz variational theorem, HK1 then asserts:

E0 < 〈Φ′|Ĥ|Φ′〉 = 〈Φ′|Ĥ ′|Φ′〉+ 〈Φ′|Ĥ − Ĥ ′|Φ′〉

= E ′0 +

∫
n(r)

(
νext(r)− ν ′ext(r)

)
dr (3.7)

where HK1 uses the fact that different Hamiltonians necessarily correspond to different

ground states Φ 6= Φ′. Since the potential is a multiplicative operator, one can exchange

the roles of Φ and Φ′ (and Ĥ and Ĥ ′) to obtain:

E ′0 < 〈Φ|Ĥ ′|Φ〉 = 〈Φ|Ĥ|Φ〉+ 〈Φ′|Ĥ ′ − Ĥ|Φ′〉

= E0 −
∫
n(r)

(
νext(r)− ν ′ext(r)

)
dr (3.8)

where upon adding the inequalities (3.7) and (3.8) gives E0 + E ′0 < E ′0 + E0, which

is absurd. Therefore, by proof ab adsurdum, there can not be νext(r) 6= ν ′ext(r) that

correspond to the same electronic density for the ground state, unless they differ by some

trivial additive constant. There is a corollary to this proof in that since n(r) uniquely

determines νext(r), it also determines the ground state wave function Φ, which should be

obtained by obtaining the full many-body Schrödinger equation.



22 Large Scale Quantum Mechanical Enzymology

The second part of the Hohenberg-Kohn theorem (HK2) begins with ñ(r) which is a

non-negative density, normalised to N . One can then define the variational energy Eν :

Eν [ñ] = F [ñ] +

∫
ñ(r)νext(r)dr (3.9)

where F [ñ] is defined as:

F [ñ] = 〈Φ[ñ]|T̂ + Ûee|Φ[ñ]〉 (3.10)

where Φ[ñ] is the ground state of a potential which has ñ as its ground state density, such

that E0 = Eν [n] verifies E0 < Eν [ñ] for any ñ 6= n, and is thus the ground state energy.

HK2 then considers:

〈Φ[ñ]|Ĥ|Φ[ñ]〉 = F [ñ] +

∫
ñνext(r)dr

= Eν [ñ] ≥ Eν [n] = E0 = 〈Φ[n]|Ĥ|Φ[n]〉 (3.11)

where the inequality effectively follows from the Rayleigh-Ritz variational principle for the

wave function, but instead applied to the electronic density. Therefore, the variational

principle states that:

δ

{
Eν [n]− µ

(∫
n(r)dr−N

)}
= 0 (3.12)

which leads to:

µ =
δEν [n]

δn
= νext(r) +

δF [n]

δn
(3.13)

The knowledge of F [n] implies the knowledge of the solution of the full many-body

Schrödinger equation. F [n] is the so-called universal functional, which does not depend

explicitly on the external potential, it depends only on the electronic density. In the

Hohenberg-Kohn formulation, F [ñ] = 〈Φ[ñ]|T̂ + Ûee|Φ[ñ]〉 where Φ is the ground state

many-body wave function. HK1 and HK2 form the mathematical basis of DFT.

In the Hohenberg-Kohn theorem the electronic density determines the external po-

tential. However, it is also required that the density corresponds to some ground state

antisymmetric wave function. While this is a necessary condition for the true density

n, it may not be the case for other trial densities ñ. In fact, unacceptable densities can

easily be obtained in a variational search strategy if this is not done carefully. With this

observation in mind, in 1982 Mel Levy reformulated DFT in such a way that the antisym-

metric origin of the density is guaranteed [57]. Levy used the constrained search method,

which was then widely applied by several authors in similar contexts. The main idea is

to redefine the universal functional F [n] given by Expression (3.10) in the following way:

F [n] = min
Φ→n

{
〈Φ|T̂ + Ûee|Φ〉

}
(3.14)

where n is any non-negative density such that
∫
n(r)dr = N and

∫
|∇n 1

2 (r)|2dr < ∞,

with the additional constraint that the density should arise from an antisymmetric wave

function. The search is thus constrained to the subspace of all the antisymmetric Φ that
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give rise to the same density n, thus eliminating the conceptual difficulty of possible

unphysical densities.

Using DFT one can determine the electronic ground state density and energy exactly,

provided that F [n] is known. In fact, since the density determines the potential uniquely,

by solving the full many-body Schrödinger equation, one can determine uniquely the

many-body wave functions, ground and excited states. In 1965, Kohn and Sham devised

a practical scheme for determining the ground state [58]. The main problem at this stage

is with the kinetic energy:

T = 〈Φ|T̂ |Φ〉 = − h̄2

2m

N∑
i=1

〈Φ|∇2
i |Φ〉 = − h̄2

2me

∫ [
∇2

rρ1(r, r′)
]

(3.15)

because its explicit expression in terms of the electronic density is not known. According

to equation (3.15) the exact calculation of the kinetic energy term requires the knowl-

edge of the Laplacian of the one-body density matrix, which is not related to the density

in an obvious manner. The main problem with the approach is that the kinetic opera-

tor is inherently non-local. The approach suggested by Kohn and Sham starts from the

observation that a system of non-interacting electrons is exactly described by an antisym-

metric wave function of the Slater determinant type, made of one-electron orbitals. As in

Hartree-Fock theory, for such a wave function the kinetic energy can be easily obtained

in terms of one-electron orbitals. In this case the ground state density matrix ρ1(r, r′) is

given by:

ρ1(r, r′) =
∞∑
i=1

fi〈φi|∇2|φi〉 (3.16)

Kohn and Sham’s idea was that, if one can find a system of non-interacting electrons that

produces the same electronic density of the interacting system, then the kinetic energy of

the non-interacting system can be calculated exactly via equation (3.16). However, this is

not the exact kinetic energy of the interacting system. The missing fraction is due to the

fact that the true many-body wave function is not a Slater determinant. There is then a

correlation contribution to the kinetic energy that is not taken into account, which must

be included in the correlation energy term. Kohn and Sham’s approach assumes that the

equivalent non-interacting system, i.e. a system of non-interacting electrons whose ground

state density coincides with that of the interacting system, does exist. This system will

be called the non-interacting reference system of density n(r), and is described by the

Hamiltonian:

ĤR =
N∑
i=1

[
− h̄2

2me

∇2
i + νR(ri)

]
(3.17)

where N is the number of electrons. Here, the reference potential νR(r) is such that

he ground state density of ĤR equals n(r) If that is the case, Hohenberg and Kohn’s

theorem ensures that the ground state energy equals the energy of the interacting system.

This Hamiltonian has no electron-electron interactions. Therefore, its eigenstates can be
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expressed in the form of Slater determinants. For this discussion the assumptions are that

the occupation numbers are 2 for i ≤ Ns and 0 for i > Ns, with Ns = N/2 the number

of doubly occupied orbitals. For simplicity, a possible spin dependence is ignored. This

would arise, for example, in magnetic or open shell systems. Within these assumptions,

the density reads:

n(r) = 2
Ns∑
i=1

|φi(r)|2 (3.18)

while the kinetic term is:

TR[n] = − h̄
2

me

Ns∑
i=1

〈φi|∇2|φi〉 (3.19)

The single-particle orbitals φi(r) are the Ns lowest-energy eigenfunctions of the one-

electron Hamiltonian:

ĤKS = − h̄2

2me

∇2 + νR(r) (3.20)

which are obtained by solving the one-electron Schrödinger equation:

ĤKSφi(r) = εiφi(r) (3.21)

The universal density functional can be re-written to include TR[n] from equation (3.19):

F [n] = TR[n] +
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + ẼXC[n] (3.22)

which defines a modified exchange and correlation energy ẼXC, which accounts also for the

kinetic correlation ignored in TR[n]. By substituting this expression for F into the total

energy functional, Eν [n] = F [n] +
∫
n(r)νext(r)dr, then the Kohn-Sham energy functional

is obtained:

EKS[n] = TR[n] +

∫
n(r)νext(r)dr +

1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + ẼXC (3.23)

In this way the energy functional is expressed in terms of the Ns orbitals that minimise

the non-interacting electronic kinetic energy under the fixed density constraint. The one-

electron orbitals are usually called the Kohn-Sham orbitals. The Kohn-Sham orbitals

satisfy the one-electron Kohn-Sham equations (3.21), but so far there is no expression

for the reference potential νR. All that is know is that νR is a potential that ensures

that the density of the non-interacting reference system is the same as the true density

of the interacting system. It should then be possible to determine it by minimising the

KS functional (3.23) with respect to the density, under the constraint that this density

integrates to N particles. The variational principle is the now applied to the Kohn-Sham

functional:
δ

δn(r)

(
EKS[n]− µ

∫
n(rdr)

)
= 0 (3.24)

obtaining the following equation for the minimising ground state density:

δTR[n]

δn(r)
+ νext(r) +

∫
n(r′)

|r− r′|
dr′ +

ẼXC[n]

δn(r)
= µ (3.25)
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where the functional derivative δTR[n]/δn(r) can be readily obtained by considering the

non-interacting Hamiltonian ĤR of equation (3.17). Since the particles in the reference

system only interact with the reference potential, and not between themselves, this Hamil-

tonian corresponds to the energy functional:

EνR [ñ] = TR[ñ] +

∫
ñ(r)νR(r)dr (3.26)

whose ground state energy is the same as that of the interacting system because they

share the same electronic density. Therefore, in general EνR [ñ] ≥ E0 and the equality is

verified only for the ground state density n. This means that the functional derivative

of EνR [ñ] must vanish for the ground state density. Applying the variational principle to

EνR [ñ], one obtains:
δTR[n]

δn(r)
+ νR(r) = µR (3.27)

where µR is the chemical potential of the non-interacting system, which should coincide

with that of the interacting system µ. Otherwise, if the interacting and the equivalent

non-interacting reference system were put into contact, there would be charge flow from

one to the other. By comparing equations (3.25) and (3.27) and setting µR = µ, one

obtains the following expression for the reference potential:

νR(r) = νext(r) +

∫
n(r′)

|r− r′|
dr′ +

δẼXC[n]

δn(r)
(3.28)

The reference potential depends on the solutions of the one-electron Schrödinger equation

(the Kohn-Sham orbitals) through the electronic density and so the equation must be

solved self-consistently, making sure that the density used to construct the reference

potential coincides (within some tolerance) with that obtained from the solutions of the

equation via (3.18).

3.2.1 Exchange and correlation

The strategy to attack the many-body electronic problem presented in the previous section

consisted of dividing the total energy of an electronic system into a number of different

contributions. The classical electron-electron interaction, or Hartree term, and the inter-

action of the electrons with external fields, in particular that of the atomic nuclei, are

known as explicit functionals of the electronic density. It can be seen that their only

dependence on the electronic variables is through the electronic density. In that sense it

is said that they are functionals of the density. The non-interacting kinetic energy and

the exchange energy are known as functionals of the non-interacting orbitals, which are in

turn (unknown) functionals of the density. The correlation energy is a big unknown. The

exchange energy, although well known as a function of the single-particle orbitals, involves

the calculation of computationally expensive integrals. In addition, up to date there is no

approximation available where the correlation energy is treated at a comparable level of
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accuracy. Therefore, if exchange is treated exactly as a functional of the orbitals, it will

not be able to compensate for any errors introduced when approximating the correlation

term.

Electrons will repel one another according to Coulomb’s law with a repulsion energy of
1

|r−r′| . Therefore electrons will move in order to avoid one another. In other words, their

motion will be correlated. For a given basis set, to be discussed in the next section, the

correlation energy is equal to the difference between the exact energy and the energy cal-

culated using the Hartree-Fock approach. To illustrate the importance of this correlation

energy, for the helium atom, the difference in energy between treating the interactions

between the two electrons in an average, as opposed to an instantaneous, manner is on

the order of 1 eV, or 23 kcal mol−1, and in general this can be thought of as the error,

per electron pair, in the Hartree-Fock approach [59]. In addition, it was in 1925 when

Wolfgang Pauli formulated the quantum mechanical principle, that now bears his name,

stating that no two identical fermions may simultaneously occupy the same quantum

state [60]. The result of this is that the wave function of indistinguishable fermions must

be antisymmetric, or change its sign, upon the exchange of two identical fermions. The

resultant exchange interaction alters the expectation value of the energy, upon the overlap

of wave functions of two or more electrons, as it increases the expectation value of the

separation between the particles. The effects of this exchange interaction were discovered

by Werner Heisenberg [61] and Paul Dirac [62] in 1926; it has no classical analogue.

It seems sensible to treat both the exchange and correlation terms to a similar level

of approximation. The idea now is to look for consistent approximations to exchange and

correlation where both terms are treated in a similar manner. One of the natural starting

points is the homogeneous electron gas, which is a simplified model for metallic systems.

This is the simplest system of correlated electrons, and as such has been studied in great

detail. Using the homogeneous electron gas as a reference may not seem a particularly

good idea for molecular systems, as their electronic densities are far from uniform. Per-

haps this was the reason why DFT took so long to be adopted by the computational

chemistry community, because most of the available approximations are derived from the

homogeneous electron gas. The most widely used approaches to the exchange-correlation

problem within DFT are the local density and generalised gradient approximations (LDA

and GGA, respectively). The LDA has been for a long time the most widely used approxi-

mation to the exchange-correlation energy. It was proposed in the seminal paper by Kohn

and Sham [58]. The main idea is to consider a general inhomogeneous electronic system as

locally homogeneous, and then to use the exchange-correlation hole corresponding to the

homogeneous electron gas, which is known to an excellent accuracy. In practice, energy

terms local in the density are calculated by integrating over the volume of the system,

with the corresponding energy density calculated at the values that the electronic density

assumes at every point r in the volume.
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One defines the exchange-correlation energy as:

EXC =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
[g(r, r′)− 1]drdr′ (3.29)

where the electron-electron pair distribution, or pair correlation function, represents the

probability of finding an electron at r given that there is another electron at r0. The

presence of this electron discourages other electrons from approaching it because of the

Coulomb repulsion. Therefore, the pair distribution function interpolates from zero at

r = r0 to one at infinite distance. The original definition (3.29) of the exchange-correlation

energy, which does not contain kinetic contributions, can be used only if the exact ex-

pression for the kinetic energy is known. However, within DFT this is not the case. In

Kohn-Sham theory the non-interacting expression for the kinetic energy is used, and then

the exchange-correlation term is redefined as:

ẼXC[n] = EXC[n] + T [n]− TR[n] (3.30)

which defines a modified exchange and correlation energy ẼXC, different from the EXC

given by (3.29) in that it accounts also for the kinetic correlation ignored in TR. The

kinetic contribution to the exchange term is given by Pauli’s principle, and this is already

contained in TR[n] and in the density when adding up the contributions of the Ns, or N ,

lowest eigenstates according to (3.18) and (3.19). Therefore, the exchange term is not

modified by the introduction of the non-interacting reference system.

One can interpret the exchange-correlation energy ẼXC[n] as the Coulomb interaction

between the electronic density and some displaced charge density. This can be done by

defining the exchange-correlation hole in the following way:

ñXC(r, r′) = n(r′)[g̃(r, r′)− 1] (3.31)

so that the exchange-correlation energy is written:

ẼXC[n] =
1

2

∫ ∫
n(r)ñXC(r, r′)

|r− r′|
drdr′ (3.32)

where g̃(r, r′) is obtained by averaging the pair correlation function g(r, r′) over the

strength of the electron-electron interaction, of which details can be found elsewhere [63].

The XC hole ñXC represents a fictitious charge depletion due to exchange and correlation

effects, i.e. due to the fact that the presence of an electron at r reduces the probability

of finding a second electron at r′ in the vicinity of r. It corrects for the fact that the

Hartree contribution to the energy completely ignores this depletion. If one separates the

exchange and correlation contributions it is easy to see that the displaced electron arises

exclusively from the exchange part. This is a consequence of how the electron-electron

interaction has been separated.

In the LDA, one re-writes the expression for the (non-local) exchange-correlation hole

in the following way [58]:

ñLDA
XC (r, r′) = n(r)

{
g̃HEG

[
|r− r′|, n(r)

]
− 1
}

(3.33)
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where g̃HEG is the pair correlation function for the homogeneous electron gas. This pair

correlation function depends only on the distance between r and r′ (the system is homo-

geneous), and must be evaluated for the density n that locally assumes the value n(r).

With this definition the exchange-correlation energy can be written as the average of an

energy density εLDA
XC [n]:

ẼLDA
XC [n] =

∫
n(r)ε̃LDA

XC [n(r)]dr (3.34)

weighted with the space-dependent electronic density of the system. The expression for

the exchange-correlation energy density in terms of the exchange-correlation hole is:

ε̃LDA
XC [n] =

1

2

∫
ñLDA

XC (r, r′)

|r− r′|
dr′ (3.35)

While the exchange-correlation energy EXC[n] should be a functional of n, there is no rea-

son why the energy density should also be so. In fact, in general εXC is not a functional of

the density. From its very definition it is clear that it has to be a non-local object, because

it reflects the fact that the probability of finding an electron at r depends on the presence

of other electrons in the surroundings, through the exchange-correlation hole. However, in

the LDA it becomes a functional of the density because it corresponds to a homogeneous

system where ρ is the same everywhere. In 1989, Jones and Gunnarsson discussed thor-

oughly the LDA, by analysing the performance for different types of systems, in particular

atomic and molecular, but also solids. Many of the successes of the approximation can

be traced back to two fundamental properties of the LDA exchange-correlation hole:

• It satisfies the sum rule expressing that the exchange-correlation hole contains ex-

actly one displaced electron. This is because for each r, g̃HEG is the pair correlation

function of an existing system, i.e. the homogeneous gas at density n(r).

• Even if the exact ñXC is not spherically symmetrical, what really matters for the

exchange-correlation energy is the spherical average of the hole. This spherical

average is reproduced to a good extent by the LDA, whose ñXC is already spherical.

One of the most significant components missing from the LDA is a description of

the variation of the electron density from place to place and this approximation can be

improved upon by including the gradient of the electron density. Increased numerical

accuracy has been demonstrated in the literature for many systems using the so-called

generalised gradient approximation (GGA) which has resulted in an entire family of func-

tionals based on this approach. GGA functionals contain an additional term that includes

the gradient of the electron density:

ẼGGA
XC [n(r)] =

∫
n(r)ε̃GGA

XC

(
n(r),∇n(r)

)
dr (3.36)

with the corresponding exchange-correlation potential equal to:

νGGA
XC = ε̃GGA

XC

(
n(r)

)
+ n(r)

∂ε̃GGA
XC (n

(
r)
)

∂n(r)
+ n(r)

∂ε̃GGA
XC (n

(
r)
)

∂∇n(r)
(3.37)
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where the terms with partial derivatives in equation (3.37) are due to the change in the

exchange-correlation hole with density. This derivative also appears in the equivalent

LDA potential. For an insulator, this derivative is discontinuous across a band gap,

due to the fact that the nature of the states change discontinuously as a function of the

density. The result is a ‘derivative discontinuity’ where the Kohn-Sham potential for every

electron in a material changes by some constant amount, following the addition of a single

electron [64,65]. However, the largest error of this approximation actually arises from the

gradient contribution to the correlation term. Provided that the problem of the correlation

term can be cured in some way, such as the real space cutoff method of David C. Langreth

and M. J. Mehl [66], the biggest problem remains with the exchange energy. One of the

main lessons learnt from the early works of Gross and Dreizler [67] and Perdew [68] is

that the gradient expansion has to be carried out very carefully in order to retain all

the relevant contributions to the desired order. Another important lesson is that these

expansions easily violate one or more of the exact conditions required for the exchange

and correlation holes, such as the normalisation condition, the negativity of the exchange

density, or the self-interaction cancelation. Perdew showed that imposing these conditions

to functionals that originally do not verify them results in a remarkable improvement of

the quality of exchange energies [68]. On the basis of this type of reasoning, a number

of modified gradient expansions have been proposed along the years, mainly between

1986 and 1996. These have been named generalised gradient approximations (GGAs).

Normally GGAs improve over some of the drawbacks of the LDA, although this is not

always the case. A thorough comparison of different GGAs has been done by Filippi et

al. [69].

The specific GGA functional formulated by Perdew, Burke and Ernzerhof (PBE) [70]

has proved remarkably successful in many DFT applications. This particular form of the

GGA retains the correct features of the LDA and combines them with the inhomogeneity

features that are assumed to be energetically the most important ones. It sacrifices a

few correct, but less important, features, like the second-order gradient coefficients in the

slowly varying limit and the non-uniform scaling of the exchange energy in the rapidly

varying density region. The PBE functional is very satisfactory from a theoretical point

of view, because it verifies many of the exact conditions for the XC hole, and it does not

contain any fitting parameters. It is the PBE functional that is used throughout the DFT

calculations presented in this dissertation.

One of the most significant problems with DFT as a theory is that each electron

moves in the potential of the total electron density which includes the electron. This

self-interaction error is clearly incorrect as a single, isolated electron will not be repelled

by itself. Within Hartree-Fock theory, the diagonal Coulomb integrals, corresponding to

the self-interaction, are exactly canceled by the corresponding diagonal exchange integrals.

Despite being a seemingly simple concept, within DFT a proper mathematical formulation

of this problem still remains a challenge. The self-interaction error is the origin of many
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qualitative and quantitative failings within DFT and many authors are providing continual

efforts toward its removal [71]. One approach to remove this error from DFT is to include

the Hartree-Fock expression for the exchange interaction. Formally, this approach scales

as the fourth power of the number of orbitals, but a current area of research is to make

this cost linear for localised orbitals [72].

The problems discussed for the LDA result in energy differences which are significantly

larger than ‘chemical accuracy’, generally defined as an accuracy of 1 kcal mol−1. The cal-

culated difference between the highest occupied and lowest unoccupied molecular orbitals

(HOMO-LUMO gap) is often very much underestimated in the LDA. GGA functionals

still suffer from the self-interaction error discussed and still underestimate HOMO-LUMO

gaps. In general, DFT approximates both the exchange and correlation energies whilst

Hartree-Fock ignores correlation but calculates the exchange exactly. Therefore, adding

a fraction of the Hartree-Fock exchange energy to the DFT energy, resulting in so-called

hybrid functionals, can significantly improve upon the calculated HOMO-LUMO gap com-

pared to the GGA. However, it is not always clear what fraction of the exact exchange

energy should be added to the functional. It has also been shown that whilst hybrid

functionals may give an initially larger gap for the same system compared to the gap

calculated using a GGA functional, upon increasing the system size this value is shown

to decrease. Therefore there are clearly other effects reducing the gap value and these

are discussed in Chapter 5 of this dissertation. In addition to the underestimation of

HOMO-LUMO gaps, another significant problem with regards to the biomolecular sys-

tems described in this dissertation, caused by the self-interaction error, is the generally

poor description of transition states. For the general dissociation of any molecule into two

fragments, such as the transition state calculated in the next chapter, it has been shown

that when one of the fragments has an electron affinity similar to the ionisation energy of

the other fragment, the self-interaction error will cause each fragment to have a fractional

charge at large separation and, as a result, the total energy is too low [73]. However,

despite the faults which have been outlined here, there is ongoing work to improve upon

existing exchange-correlation functionals. The methods discussed in this dissertation will

also be applicable when more accurate linear-scaling exchange-correlation functionals are

available that include a greater proportion of Hartree-Fock exchange.

3.2.2 Basis sets

At the very start of this chapter, Dirac notation was used to express the Schrödinger

equation. This is a most elegant approach to working with quantum mechanics without

needing to specify a representation. However, when wanting to perform electronic struc-

ture calculations, a representation for the operators and wave functions must be chosen.

This representation can be fixed by specifying the basis set, which is generally defined as a

collection of vectors that spans a space in which a problem is solved. In the same way that

î, ĵ and k̂ defines a cartesian, three-dimensional linear vector space, within computational
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software packages the basis set will often refer to the set of non-orthogonal one-particle

functions used to build molecular orbitals. In general, a wave function ψ can be written

as:

ψ =
∑
i

ciφi (3.38)

where, in this deliberately general example, φi could perhaps represent a set of atomic-

like orbitals and ci would be their associated coefficients. The basis sets used in formal

quantum mechanics will be complete in that they perfectly represent any wave function in

the space that they span. However, the basis sets chosen to perform electronic structure

calculations must be truncated for practical computation and thus a wide variety of

approximations are used. Ideally basis sets will use a minimal number of functions,

demonstrate systematic convergence upon making the basis set more complete and not

impose any assumed property of the system onto the calculations. As the purpose of

most computational investigations is to find the equilibrium ionic configuration for a set

of atoms, it is also imperative that the basis set must allow accurate calculation of forces.

Most often, molecular orbitals are built from a linear combination of atomic orbitals where

an orbital is defined as a one-electron function. In the majority of total energy packages

available, these atomic orbitals are represented by atom-centred Gaussian type orbitals

(GTOs) in the form of:

φGTO
abc (x, y, z) = Nxaybzce−ζr

2

(3.39)

where N is a normalisation constant, a,b and c control the angular momentum L = a +

b + c and ζ controls the width of the orbital whereby a high ζ is associated with a tight

function and a low ζ gives a diffuse function. Due to the Gaussian product theorem which

makes GTOs relatively easy to compute, they are widely used amongst computational

chemists. A weakness of GTOs is that they produce less accurate results than Slater type

orbitals (STOs) [74], however it takes longer to compute integrals using STOs. Through

a linear combination of GTOs, one can approximate an STO, often called an “STO-nG”

basis, despite it being a combination of contracted GTOs. An example of one of the

simplest, minimal basis sets is STO-3G where each STO is represented by three GTOs.

An asterisk after the G would indicate that polarisation functions have been added. A

second asterisk will be added if polarisation functions have been applied to the hydrogen

atoms. The notation, introduced by Pople, of 3-21G tells us that three GTOs are used

for the core, two for the first valence orbital and one for the second valence orbital. This

is a double-valence or double-zeta basis set. Triple- and quadruple-zeta basis sets have

three and four basis functions for each atomic orbital, respectively. This number can be

increased as it has been shown that having different sized functions allows the orbital to

adapt according to proximity to other atoms. A disadvantage to atom-centred orbitals

is that as the basis set moves with the atoms, so the wave functions will change as the

atoms move. This gives rise to Pulay forces [75] which must be calculated as corrections to

the Hellmann-Feynman forces, which will be described in Section 3.5.1. Other basis sets
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which are also used widely by computational chemists include the correlation-consistent

basis sets which can be converged systematically to the complete basis set limit [76] where

in this limit the energy can be extrapolated to, in principle, yield an exact solution. The

notation for these types of basis sets includes cc-pVTZ to denote a triple-zeta valence set

with polarisation functions and ‘aug-’ will be prepended to indicate the use of additional

diffuse functions.

A choice of basis set used very widely amongst condensed matter physicists is plane

waves, which are the solution of the Schrödinger equation for free electrons and have the

general form of eiG.r where G is some wavevector. By increasing the maximum value of the

wavevectors of the plane waves retained in the basis set, the basis set can systematically

be made more complete. The basis set is usually defined by an energy cutoff where the

kinetic energy of an electron with associated wavevector G is:

Ecutoff =
h̄2G2

2me

(3.40)

However, large areas of vacuum in a system are computationally expensive when using

a plane-wave basis set as plane waves fill all space. Despite this, a significant advantage

of the approach is that the basis does not change when the atoms move so there are no

associated Pulay forces.

3.2.3 The pseudopotential approximation

The atomic wave functions are eigenstates of the atomic Hamiltonian, therefore they must

all be mutually orthogonal. Since the core states are localised in the vicinity of the nu-

cleus, the valence states must oscillate rapidly in this core region in order to maintain

this orthogonality with the core electrons. This rapid oscillation results in a large ki-

netic energy for the valence electrons in the core region, which roughly cancels the large

potential energy due to the strong Coulomb potential [77]. Thus the valence electrons

are much more weakly bound than the core electrons. In 1934, Hans G. A. Hellmann

therefore replaced these effects by a Zusatzpotential [78], which is repulsive in the core

region and therefore keeps the electrons out of the core (Pauli repulsion). The potential

that originates in the atomic nuclei is far from smooth. In the simplest case of hydrogen

the potential is −1/r, which diverges at the origin. The 1s wave function does not di-

verge, but it exhibits a cusp at the origin, and decays exponentially with distance. For

heavier atoms the wave functions associated with core states are even steeper. Therefore,

a plane-wave expansion of the wave functions in a real system is a difficult task, because

the number of plane-wave components required to represent such steep wave functions is

huge. However, it would be desirable to retain the simplicity of the plane-wave approach.

In 1937, Slater suggested another possible solution to the problem, where the plane-wave

expansion was augmented with the solutions of the atomic problem in spherical regions

around the atoms, and the potential was assumed to be spherically symmetric inside the
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spheres, and zero outside, in the augmented plane wave (APW) method [79]. In order to

overcome this shape approximation of the potential, in 1940, Conyers Herring proposed

an alternative method consisting of constructing the valence wave functions as a linear

combination of plane wave and core wave functions [80]. By choosing appropriately the

coefficients of the expansion, this wave function turns out to be orthogonal to the core

states, hence the name of orthogonalised plane wave (OPW) method. Since the trou-

blesome region is taken care of by the core orbitals, the part that must be represented

by the plane waves is rather smooth, and a smaller number of plane-wave components is

required to reproduce the valence states. One can go a step beyond the OPW approach,

and eliminate the core states altogether by replacing their action with an effective poten-

tial, or pseudopotential. This pseudopotential, however, cannot just be anything. It has

to be constructed carefully in order to reproduce accurately the bonding properties of the

true potential.

Electrons are indistinguishable and a separation into pure core, pure valence and mixed

core/valence terms for the electronic Hamiltonian is therefore not possible. Nevertheless,

it is convenient to classify the electronic states of an atom into: (i) core states, which

are highly localised and not involved in chemical bonding, (ii) valence states, which are

extended and responsible for chemical bonding, and (iii) semi-core states, which are lo-

calised and polarisable, but generally do not contribute directly to chemical bonding. The

most common pseudopotential approach consists of not allowing the relaxation of core

states according to the environment (frozen core approximation), although some polaris-

able core approaches have been proposed. In general, this is a very good approximation

that reproduces total atomic energies within 0.01 eV [81]. Semi-core states are often

treated as part of the frozen core, but when their contribution is important they have to

be included in the valence. The valence states, due to orthogonalisation with respect to

the core states of the same symmetry, show a marked oscillatory behaviour with a num-

ber of nodes equal to n− l− 1, n being the principal quantum number and l the angular

momentum. Nodeless wave functions (l = n− 1) are not oscillatory but, due to the lack

of orthogonalisation, they create strongly bound states that are markedly peaked close to

the nucleus. This is the case of the 1s state in H, the 2p states in C, N, O, and F and

the 3d states in transition metals. When the basis set chosen is that of plane waves, the

computation of Hamiltonian matrix elements requires the Fourier decomposition of the

wave functions. Features like the above are very stringent for plane waves, because sharp

peaks require a very large number of plane waves to achieve convergence in the expansion,

and this translates into a vast amount of computational resources (the dimension of the

matrix to diagonalise becomes very large). Based on the observations that: (i) core states

are not fundamental for the description of chemical bonding, and (ii) a good description

of the valence wave functions inside the core region is not strictly necessary, there is no

lack of crucial information if the inner solution (inside some cutoff radius) is replaced with

a smooth, nodeless pseudo-wave function, which is not a solution to the original atomic
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problem. Being nodeless, it now corresponds to the lowest-lying state of an effective,

pseudo-atomic problem where the true potential has been replaced by a pseudopotential.

There are two essential steps in pseudopotential theory. The first is that the core elec-

trons are removed from the calculation, and the interaction of the valence electrons with

the nucleus plus the core states (including orthogonalisation) is replaced by an effective,

screened potential. The screened potential depends on the angular momentum of the

valence electrons because of the different orthogonality conditions. For instance, in the C

atom, the 2s valence state has to be orthogonal to the 1s core state, but the 2p valence

state does not feel the orthogonality constraint of the 1s state because they have different

angular quantum numbers. Therefore, within the core region, these two states feel very

different potentials from the ionic core. At large distances the potential is −ZV /r inde-

pendently of the angular momentum, because the ionic core is seen as a point charge of

magnitude equal to the valence charge ZV . For each angular momentum l the pseudopo-

tential should have the valence l-state as the ground state. The second step is that the

full ionic core-electron interaction (often called ion-electron interaction), which includes

the orthogonality of the valence wave functions to the core states, is replaced by a softer

pseudopotential. The solution of the atomic Schrödinger equation for the pseudopoten-

tial is a pseudo-wave function different from the true wave function. The pseudopotential,

however, is constructed in such a way that its scattering properties and phase shifts are

the same as those of the all-electron potential, although the radial pseudo-wave function

has no nodes inside the core region.

In 1959, James Charles Philips and Leonard Kleinman [82] showed that one can con-

struct a smooth valence wave function that is not orthogonalised to the core states, by

combining the core and the true valence wave functions into a pseudo-wave function that

satisfies a modified Schrödinger equation. They then showed that it is possible to con-

struct a pseudo-Hamiltonian with the same eigenvalues of the original Hamiltonian but a

smoother, nodeless wave function. The associated potential was called a pseudopotential.

This pseudopotential acts differently on wave functions of different angular momentum.

When the total pseudopotential acts on the electronic wave function, projection operators

select the different angular components of the wave function, which are then multiplied by

the pseudopotential corresponding to the angular component. Next, the contributions of

all the angular components are added up to form the total pseudopotential contribution

to the Hamiltonian matrix elements that enter the Schrödinger equation. Pseudopoten-

tials of this kind are usually called non-local because they act differently on the various

angular components of the wave function as a consequence of the exchange with the core.

However, as the pseudopotential corresponding to the angular components is a local op-

erator in the radial coordinate, a better name for this type of expression is semi-local

or angular-dependent. If all the angular components of the pseudopotential are taken

to be the same, then the pseudopotential is said to be local. In principle, local versions

can be constructed that verify the required properties for all angular momenta, but they
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tend to be quite hard (many plane-wave components are required), and are difficult to

construct. That is why it is easier and computationally more effective to use non-local

pseudopotentials.

There is an enormous freedom in how pseudopotentials are constructed, the details of

which extend beyond the scope of this dissertation. The problem with empirical potentials

which were determined primarily through fitting experimental energy bands [83], was that

they lacked transferability, namely that a pseudopotential constructed for some specific

environment can be used for the same atomic species but in a different environment.

The first non-empirical approach to pseudopotentials was the one devised by Philips and

Kleinman. This approach, however, had a severe problem: the normalised pseudo-wave

function had an amplitude different from that of the all-electron wave function. Outside

the core the shapes were the same but the wave functions were only proportional to

each other through a normalisation factor. This was not acceptable because it led to an

incorrect valence charge distribution, and thus to deviations in the bonding properties. It

is important that outside the core region the true and pseudo-wave functions are the same.

The construction of a pseudopotential is an inverse problem: given a pseudo-wave function

that: (i) beyond some distance decays exactly as the all-electron wave function, and (ii) is

an eigenstate of a pseudo-Hamiltonian with the same eigenvalue as the all-electron wave

function, the pseudopotential is obtained by inverting the radial Schrödinger equation

for that pseudo-wave function. Its solution is uniquely determined by the value of the

wave function and its derivative at any given point. These two conditions can be equally

realised by specifying the value of the (dimensionless) radial logarithmic derivative of

the wave function, together with a normalisation condition, and this can be done for all

values of angular momentum l. This involves the phase shifts of the partial waves from

scattering theory. Therefore, if the all-electron potential and the pseudopotential are

the same outside some cutoff radius rc, then the all-electron and pseudo-wave functions

are proportional if the corresponding logarithmic derivatives are the same. When the

pseudo-wave function is further required to preserve the norm inside the cutoff radius

this property is called norm-conservation, and it was first introduced in 1979 by Hamann,

Schlüter, and Chiang (HSC) [84].

A key result from HSC was to realise that the norm of the wave function also appears

in a very important identity related to the Friedel sum rule. The norm-conservation con-

straint is tightly linked to the concept of transferability through this sum rule and the

expression shows that the first order energy variation of the phase shift is proportional to

the norm of the wave function in the pseudised region. Therefore, the norm-conservation

condition, imposes that, to first-order in the eigenvalue, the logarithmic derivatives of the

all-electron and pseudo-wave functions vary in the same way. This implies that a small

change in the eigenvalue due to changes in the external potential (the environment) pro-

duces only a second-order change in the logarithmic derivative. Therefore, the condition

of matching logarithmic derivatives, which by construction is strictly verified only for the
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value of the reference energy used to obtain the wave function, becomes approximately

valid in a range of eigenvalues around the reference. In this way, pseudopotentials derived

from atomic calculations can be exported to other environments. When an atom is part

of a molecule or a solid, its electrons feel the influence of the other atoms (the so-called

molecular or crystal field). This implies that the electronic eigenvalues are shifted from

their atomic values, but the transferability property ensures that the all-electron and

pseudo-wave functions still coincide outside the cutoff radius. The norm-conservation

constraint guarantees that the pseudopotential is useful, not in every energy range, but

at least in environments such that the eigenvalues do not depart significantly from the

eigenvalues used in its construction. For example, a pseudopotential for H in the H2

molecule may not be useful for hydrogen at very high pressures because the energy ranges

are completely different, but a pseudopotential for Si constructed with the bulk solid in

mind will be useful for the Si surface or for liquid Si under similar external conditions.

The straightforward recipe for improving transferability is to reduce the cutoff radius,

because in this way the pseudo-wave function becomes closer to the all-electron result.

However, the reduction of rc is limited by the (not strictly necessary) condition of a node-

less pseudo-wave function; the cutoff radius cannot be made smaller than the position of

the outermost node of the all-electron wave function. The conditions proposed by HSC

for the construction of norm-conserving pseudopotentials are that (i) the eigenvalues of

the pseudo-wave functions coincide with those of the all-electron wave functions for a

chosen electronic configuration of the atom; (ii) The pseudo-wave function is nodeless,

and it is identical to the all-electron wave function outside a suitably chosen cutoff ra-

dius rc; (iii) the norm of the true and pseudo-wave functions inside the pseudized region

(r < rc) is the same (the norm-conservation condition); (iv) the logarithmic derivatives

of the all-electron and pseudo-wave function agree for r ≥ rc.

To illustrate in an example, Figure 3.1 shows a norm-conserving pseudopotential for

oxygen, within the PBE approximation to DFT. The pseudopotential has been generated

for the neutral configuration [1s2]2s22p4, where the 1s orbital is a core state and 2s and

2p are in the valence. Figure 3.1(a) shows the actual 2s and 2p components of an oxygen

pseudopotential, together with the unscreened Coulomb potential −6/r. Notice how the

pseudopotentials approach the Coulomb potential and merge with it at the cutoff radii.

Figure 3.1(b) shows the all-electron and pseudo-wave functions for the two pseudized

states, 2s and 2p. The cutoff radii are 0.84 Åand 0.79 Å, respectively. The pseudo-energies

are virtually the same. The total energies are different because the pseudo-atom does not

contain the 1s electrons explicitly. Notice how little pseudisation can do for the 2p state,

which is already nodeless at the all-electron level. However, the effect is more important for

the 2s state, where pseudization has eliminated the node, thus making the pseudo-wave

function much smoother. Throughout the calculations within this dissertation, norm-

conserving pseudopotentials have been used. Despite the robust methods outlined in this

section, practical limitations from computational resources dictate that even the largest
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Figure 3.1: (a) Pseudopotentials for the 2s and 2p states of O (solid lines), and the

unscreened −ZV /r Coulomb potential (ZV = 6). (b) All-electron (solid lines) and pseudo-

wave functions (dashed lines) for the O 2s (negative values) and 2p (positive values)

valence states. Figure adapted from Ref. [81].

supercomputers in the world will only allow a system comprising around 500 atoms to

be treated with conventional DFT. This is of little use to scientists wishing to explore

the realms of biologically relevant systems as a typical biomolecule will contain many

more than 500 atoms. One approach toward solving this problem is the focus of the next

section.

3.3 Linear-scaling DFT

In recent years, DFT simulations have become increasingly widespread in the simulation

of biological systems at the level of individual atoms and electrons. A limiting factor

in applying conventional first-principles approaches to large systems is the unfavourable

computational requirements which typically increase as the third (or greater) power of

the number of atoms in the system. However, methods to overcome this computational

bottleneck, resulting in approaches where the computational effort increases linearly with

the number of atoms, have been under development for two decades [11] and are still ad-

vancing today [12]. These methods provide explicit treatment of the electrons, naturally

taking into account the electronic charge transfer and polarisation, for systems contain-

ing many thousands of atoms and are transferable to any chemical environment. These

advances in linear-scaling first-principles techniques now allow system sizes on the order

of tens of thousands of atoms to be routinely accessed [85]. Following this phenomenon
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of larger systems becoming accessible, a natural progression has ultimately been to apply

density-functional methods to systems of biological interest. The Fritz Haber Institute

ab initio molecular simulations (fhi-aims) package [86] implements an all-electron/full-

potential treatment with computational expense that scales linearly with the size of the

system. fhi-aims has, amongst other things, been applied to folding processes in helices

and polypeptides with a recently developed DFT+VdW approach [87]. The TeraChem

package [88] has recently been used to optimise the structures of more than 50 polypep-

tides of sizes ranging up to 590 atoms. Large-scale real-space DFT calculations on the

electron states of silicon nanowires have been reported [89]. System sizes of 107,292 atoms

were treated during the evaluation phase of the k computer using 442,368 cores and the

rsdft code [90]. A report in 2000 demonstrated linear-scaling DFT calculations on a dry

DNA model comprising 715 atoms using the siesta code [91]. More recent work used

the conquest code to perform calculations on a B-DNA decamer system with explicit

water molecules and counter ions resulting in a total system size of 3439 atoms [92]. The

same code has also been used to calculate total energies and forces of a hydrated ten-mer

of DNA using DZP basis sets and comparison to results from the amber force field were

made [93]. Linear-scaling methods have also been applied to solvent/solute interaction

energy studies of drug molecules [94]. Work implementing low-order-scaling approaches

applied to DNA has also been reported [95]. The frozen molecular orbital (FMO) ap-

proach has been shown to be efficient for biomolecular systems with many published

results [96]. One of the largest known systems investigated came from FMO studies of

the active sites of influenza A viral haemaglutinin that also used a polarisable continuum

model and was applied to a 24,000 atom protein [97]. The onetep code [98], which has

been used for the majority of the calculations presented in this dissertation, has previously

been used by others to perform geometry optimisations characterising binding energet-

ics of small molecules to the metalloprotein myoglobin [99] and also to measure binding

of small molecules to T4 lysozyme in solution [100]. There are now a variety of other

codes with linear-scaling capabilities [101–107]. Recent developments in the simulation

of optical spectroscopy [108], dynamical mean field theory with applications to human

respiration [109] and methods to aid interpretation of the electronic structure [110, 111]

also broaden the scope of biomolecular simulations. This section outlines the ideas be-

hind density-functional theory with computational time scaling linearly as the number

of atoms in the system is increased. A more detailed discussion of the current state of

linear-scaling methods is available elsewhere [12].

In order to see the origin of the cubic scaling bottleneck hindering conventional density

functional approaches, one must consider equations (3.21) and (??). The solutions to

(3.21) extend over the entire system (see Figure 3.2) such that the overlap integral in

(??) requires a computational effort that scales linearly with the number of atoms in the

system. However, the number of orbital pairs and the associated number of constraints

from (??) is proportional to the square of the number of atoms in the system. Therefore
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the overall computational effort scales as N3. The Hohenberg-Kohn theorems, discussed

Figure 3.2: (a) One delocalized orbital ψi(r) from a conventional DFT calculation with

the Castep code on a peptide [112]. (b) Three optimised NGWFs φα(r), φβ(r) and φγ(r)

from a onetep calculation on the same peptide [113].

in Section 3.2, rely on accurate calculation of the electron density in order to provide

important information regarding a system. However, if one is interested in generating

a linear scaling method, it can be more helpful to not work in terms of the electron

density. There are a handful of ways one can go about this, including the Fermi operator

expansion [114], divide-and-conquer [115] and orbital minimisation [116] methods. The

particular approach that this dissertation will focus on, as is implemented within the

onetep code that is discussed later, instead works in terms of the density matrix:

ρ(r, r′) =
∑
n

fnψn(r)ψ∗(r′) (3.41)

where fn is the occupancy and the Kohn-Sham orbitals are ψn(r) and ψn(r′). The density

matrix is idempotent, such that:

ρ2(r, r′) =

∫
dr′′ρ(r, r′)ρ(r′′, r′) = ρ(r, r′) (3.42)

which requires the orthonormality of the orbitals from equation (3.21) and the Aufbau

principle of singly occupying all states up to the chemical potential, which itself follows

from the Pauli exclusion principle. Therefore this ensures the single occupancy of all

states up to the chemical potential. The density matrix can then be seen as the position

representation of the projection operator onto the space of occupied states ρ̂. The charge

density n(r) can now be found from the diagonal elements of the density matrix:

n(r) = 2ρ(r, r) (3.43)

and the total energy of the system can be defined by:

E = 2Tr(ρ̂Ĥ) (3.44)

where Ĥ is the Hamiltonian from equation (3.21), whose solutions can be found by min-

imising the energy with respect to the density matrix, subject to idempotency and nor-

malisation constraints:

2

∫
drρ(r, r) = Ne (3.45)



40 Large Scale Quantum Mechanical Enzymology

ensuring the density-matrix corresponds to a system of Ne electrons. However, despite

this density-matrix reformulation of Kohn-Sham DFT, there still remains the fact that

the number of occupied states is directly proportional to N , with each state extending

over the entirety of the system so the amount of information in the resultant density-

matrix will scale quadratically, as will any associated density-matrix manipulation. If a

linear-scaling method is to be found, the nearsightedness of quantum mechanics will need

to be exploited. It is Walter Kohn’s principle of nearsightedness [117, 118] that tells us

the electronic structure of quantum many-body systems is localised. Kohn defines a local

volume described in terms of a typical de Broglie wavelength associated with the ground

state wave function of the system. Any changes to distant parts of the system (far from

all points in the local volume) have a negligible effect on the electronic structure in the

local volume. Combined with the consequence of quantum interference effects, the density

matrix for systems with a finite band gap is short ranged:

lim
|r−r′|→∞

ρ(r, r′) ∼ exp
(
−γ|r− r′|

)
→ 0 (3.46)

where the decay constant γ depends on the energy gap between the highest occupied

and lowest unoccupied molecular orbitals (HOMO-LUMO gap), a quantity which is in-

dependent of system size and which is the focus of Chapter 5. Therefore the significant

information contained in the density matrix scales linearly with the size of the system.

The principles discussed in this section are implemented practically in the onetep code

which is the focus of discussion in the next section.

3.4 The ONETEP code

onetep [98] is a linear-scaling DFT package designed for use on parallel computers [119]

that uniquely combines near-complete basis set accuracy with a computational cost that

scales linearly with the number of atoms. This allows an accurate QM description of

systems of thousands of atoms [85], including a range of applications to biomolecular sys-

tems [99,120–122]. Linear scaling is achieved with onetep by reformulating conventional

Kohn-Sham DFT [56, 58] in order to exploit the “near-sightedness” of the single-particle

density matrix in non-metallic systems [117,118]. In terms of Kohn-Sham orbitals the den-

sity matrix is expressed as in equation (3.41). However, as the search for the ground state

in terms of the density matrix can not be made in terms of the original six-dimensional

object, the most common approach is to assume that the density matrix is separable and

to work in terms of localised orbitals. Within onetep, the density matrix is represented

as:

ρ(r, r′) =
∑
αβ

φα(r)Kαβφ∗β(r′) (3.47)

where φα(r) are non-orthogonal generalised Wannier functions (NGWFs) [123] that are

localized in real space. In practice, linear scaling arises from enforcing strict localisation
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of the NGWFs onto atom-centred regions of fixed radii {rα}. The density kernel (Kαβ)

is a representation of fn in the duals of the NGWFs and is required to be sparse. This

is achieved by discarding elements corresponding to NGWFs centred further apart than

some user-defined cutoff rK . However, a consequence of the non-orthogonality of the

NGWFs, combined with the fact that the density kernel is related to the duals of the

NGWFs and not the NGWFs themselves, the kernel cutoff rK is not simply rα + rβ.

Optimising the NGWFs in situ allows for a minimal number of NGWFs to be used

whilst maintaining plane-wave accuracy. The basis set underlying the NGWFs consists of

periodic cardinal sine (psinc) functions [124] that are related to plane waves by a unitary

transformation. The use of a plane-wave basis allows for an unbiased approach to DFT

calculations with systematically improvable accuracy through varying a single parameter

similar to the energy cutoff in conventional plane-wave DFT packages. The NGWFs

are then those functions, when traced with their corresponding optimised density kernel,

which reproduce the ground-state density-matrix, whence the ground-state energy [125]:

E0 = min
n
E[n] = min

ρ̂
E[ρ̂]ρ̂=ρ̂2 = min

K,φ
E[K, φ]KSK (3.48)

The task is to then extremise the total energy with respect to idempotent density matri-

ces. This is achieved in practice via two nested conjugate gradient variational minimisa-

tions. Within the inner loop, for some fixed NGWF expansion, the energy is minimised

with respect to the density kernel elements. Then in the outer loop, the total energy is

minimised with respect to the coefficients of the NGWF psinc expansion whilst the den-

sity kernel remains fixed. In order to impose the idempotency constraint from equation

(3.42), a combination of a penalty functional method [126] and the approach of Li, Nunes

and Vanderbilt [127] (and independently of Daw [128]), based on McWeeny’s purification

transformation [129], is used. The purification transformation is defined in terms of some

auxiliary matrix σ(r, r′):

ρ(r, r′) = 3σ2(r, r′)− 2σ3(r, r′) (3.49)

Multiple iterations of this transformation will result in any eigenvalues around zero van-

ishing quadratically while the eigenvalues close to one will converge to that value. In the

case of ρ(r, r′), these eigenvalues are the occupation numbers fn. Therefore, expressing

ρ(r, r′) as such, combined with optimising σ, will apply the constraint of idempotency,

subject to the occupation numbers remaining in a sensible interval, something that is

expected if a system is physically meaningful. General linear-scaling approaches imple-

menting a fixed set of local orbitals will usually use atomic-type functions. Typically,

these will be initiated as a solution to the Kohn-Sham equation for atoms inside spherical

confinement potentials, obtained using an atom-solver approach as described in the next

section. Using a minimal set of orbitals, in order to minimise calculation time, often leads

to inaccuracies. This issue can be resolved by simply adding to the set of orbitals used,

creating split valence, or multiple-zeta, sets where often additional polarisation functions

are included to treat the atomic response to an applied E field. A different approach,
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Figure 3.3: (a) A psinc basis function used to expand the NGWFs in ONETEP [131]. (b)

An illustration of the ‘FFT box’ technique used in onetep [131].

the one which is used in onetep, optimises the orbitals within the environment of the

system under calculation, meaning one no longer has to increase the orbital set to ensure

transferability. In addition, following this in situ optimisation, basis set superposition

error corrections are not needed [130].

3.4.1 The periodic cardinal sine function basis set

In order for the NGWFs to be successfully optimised, they must be expanded in terms of

a primitive set of functions. This is achieved in onetep by using a basis set of periodic

cardinal sine (psinc) functions [123,124]. There is one function centred on each point of a

mesh commensurate with the simulation cell and a representation of a single basis function

can be seen in Figure 3.3(a). Through varying the fineness of the mesh used for the psincs,

the quality of the basis set can be controlled in a manner corresponding to the energy

cutoff used to control plane-wave basis sets. These psincs are related to plane waves by a

unitary transformation and so give the advantages of both the localised-orbital type and

the plane-wave type of basis sets. This relation also allows the efficient calculation of the

kinetic energy through the use of fast Fourier transforms (FFTs) [132]. FFTs performed

over the entirety of the simulation cell would scale as O(M logM) for each NGWF, where

M is the number of grid points. In order to achieve linear-scaling behaviour, the ‘FFT

box’ technique is used [133, 134]. In this scheme, the transforms are performed within a

box large enough to enclose all overlapping NGWFs and an illustration of this approach

can be seen in Figure 3.3(b). The number of grid points in the box is fixed throughout the

calculation and depends only on the spacing of the psinc grid and the maximum number

of overlapping NGWFs. Therefore, linear-scaling behaviour can be maintained.

For an atom-centred basis set, care must be taken when selecting the basis functions

for the system being studied in order to ensure computational accuracy and efficiency.

Whilst the in situ NGWF optimisation in onetep seeks to ameliorate these problems
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surrounding careful basis set selection, a sensible choice of initial functions will neverthe-

less speed up the optimisation process. In order to provide a sensible estimate of the form

of the initial NGWFs, resulting in an initial starting wave function closer to the ground

state of the system, the atom solver can be used that performs a Kohn-Sham DFT cal-

culation on a pseudoatom in a spherical confinement potential [135]. NGWFs are then

initialised as pseudoatomic orbitals, which are obtained through solving the Kohn-Sham

equation for a free atom, where the Hamiltonian from equation (3.20) can be decomposed

into kinetic, local potential and non-local potential contributions:

Ĥ = −1

2
∇2 + Vloc(r) + V̂nl (3.50)

where Vloc(r) is the local effective potential and and V̂nl is the nonlocal part of the pseu-

dopotential. The local potential effective potential Vloc(r) is defined as:

Vloc(r) = V PS
loc (r) + VH[n(r)] + Vxc[n(r)] + Vconf(r) (3.51)

where V PS
loc (r) is the local part of the pseudopotential, Vxc[n(r)] has the same form as

(3.37) and VH[n(r)] is the Hartree potential for a spherical charge distribution. Vconf(r) is

a confining potential of the form [86]:

Vconf(r) = S exp

[
−wl

r −Rc + wl

]
(r −Rc)

−1 (3.52)

where the value of this potential is zero for small to medium distances from the atomic

centre but it increases rapidly when close to a predetermined confinement radius Rc. This

is used to ensure a smooth decay of the atomic orbitals outside Rc. S is the maximum

height of the confining potential at r = Rc, and wl is the width of the region over which

it is applied. Throughout the calculations in this dissertation, values of S = 100 Ha and

wl = 3.0 a0 are implemented for all l-channels, or angular momenta, used. As the atomic

eigenstates are solved for the native pseudopotential and exchange-correlation functional

of the system being studied, they are a much better starting choice than atom-centred

basis sets commonly used in quantum chemistry such as all-electron GTOs.

It is important to note at this stage that, as with all grid-based methods, if the prepa-

ration of the calculation is not carefully checked, this approach can suffer from so-called

space rippling problems whereby the homogeneity of space is lost by the discretisation.

This can result in spurious forces appearing. This effect is most apparent when consider-

ing the oscillation of the total energy when a single atom is moved across the simulation

box, demonstrating the so-called ‘eggbox’ effect [136–138]. The problem will diminish for

grids that are fine enough and, hence, convergence with respect to the grid spacing, to

an acceptable level, must be obtained for all calculations [139, 140]. For all calculations

presented in this dissertation, NGWFs were initialised as atomic orbitals obtained using

the atom solver approach described in this section to solve the Kohn-Sham equation for

atoms in spherical confinement potentials, with a 1s configuration for hydrogen, a 2s2p

configuration for carbon, nitrogen and oxygen and a 3s3p configuration for sulphur, when

the relevant chemical elements are required.
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Figure 3.4: (a) Schematic representation of the supercell approach for treating isolated

molecules with periodic boundary conditions (PBCs). The molecule is embedded in a

repeated unit supercell with boundaries demarcated by dashed lines. (b) Schematic rep-

resentation of the padded cell in the cutoff Coulomb approach. Figure adapted from

Ref. [144].

3.4.2 Cutoff Coulomb interactions

The plane-wave pseudopotential method was developed with crystalline matter in mind,

in which periodic boundary conditions (PBC) are required for the calculations. As the

Hartree interaction is diagonal in reciprocal space, FFTs are used to calculate the Hartree

potential and associated energy. When calculating the properties of bulk solids the

influence of periodic images is desirable as it models the true extended bulk system.

However, when simulating isolated, finite systems within PBCs the supercell approxima-

tion [141–143] must be used. This method replaces a truly isolated system with periodic

images with vacuum added around the system to minimise the influence of the periodic

replicas on one another. A representation of this approach can be seen in Figure 3.4(a).

This approach has been shown to introduce so-called finite size effects whereby the calcu-

lated total energy of the system, along with other properties, varies with the size of the

supercell [145]. In addition, with particularly large systems there is scope for significant

long-range redistribution of the charge due to effects of the periodic images. In order to

reach the truly isolated, non-periodic limit, one can simply increase the size of the cell, but

this can result in a prohibitively large size for systems such as biomolecules. Even though,

in principle, the speed of a onetep calculation is independent of cell size, provided enough

CPUs are available, in practice, memory requirements limit the cell size. In addition, the

decay of the interaction of periodic replicas of a monopole charge goes as 1
r

so, in practice,

the infinite limit is impossible to reach for systems with a non-zero charge. One solution
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to this problem is to truncate the Coulomb interaction in real space [146,147] and this ap-

proach has been implemented in the onetep code [148] and the octopus code [149,150].

Using a modified form of the Coulomb interaction, the usual FFT approach can still be

used along with a periodic supercell, but the Coulomb potential is confined within the

primary simulation cell. Essentially, the periodic, background-neutralised Coulomb po-

tential is replaced with a bare counterpart. This replacement interaction is truncated

to ensure no part of the simulation cell feels the potential from any of the neighbouring

periodic images. It is desirable to maintain the simplicity of a diagonal interaction in

reciprocal space. In order to achieve this whilst avoiding the influence of periodic images,

the following, ‘cutoff’, form for the Coulomb potential should be used:

VCC(r− r′) =

 1
|r−r′| , r− r′ ∈ R1

0, r− r′ 6∈ R1

(3.53)

where R1 is defined as a region of specific shape chosen such that whenever it is centred

on some point r, where the Hartree potential is required, it encloses all r′ for which

n(r + r′) 6= 0. The region may be anywhere inside the simulation cell or it may just

comprise any amount of non-zero density. Calculation of the Hartree potential using the

cutoff Coulomb potential in onetep is performed on a unit cell padded with vacuum

such that, for a spherical cutoff region R1, the contribution of the electrostatic potential

from a periodic image never falls within the cutoff Coulomb radius Rcc of the unit cell for

all points where the Hartree potential is required. The padded cell can be seen in Figure

3.4(b). Lmol is the length scale of the isolated molecule, defined as the largest distance

between the edges of the any two NGWFs on the molecule. Lcell and Lpad are the side

lengths of the (cubic) unit and padded cells, respectively. The sphere, of radius Rcc, must

encapsulate all non-zero density in the unit cell of the molecule for all points where VH(r)

is required. By setting Lpad ≥ Lmol + Rcc one can ensure that densities from periodic

images never intersect the density within the unit cell. Using this form of the potential

has consequences. The corresponding cutoff form of the Coulomb interaction must also

be used as a replacement for the long-ranged Coulombic tails of the ion cores in the local

pseudopotential form. In a similar vein, when calculating the forces acting on the ion

cores, the periodic Coulomb and Ewald terms are replaced with their cutoff Coulomb

forms. The spherical variant of the cutoff Coulomb approach has been used throughout

the calculations in this dissertation to eliminate all interactions of the molecules with

their periodic images.

3.4.3 Implicit solvation

The accurate simulation of the biochemical processes that take place in proteins and

enzymes requires careful treatment of solvation effects. Simply including more water

atoms in a simulation results in very expensive calculations requiring extensive averaging
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over the solvent degrees of freedom. Only a small proportion of the solvent molecules are

involved chemically; it is the long range electrostatic effects of the solvent that are most

significant. In the implicit solvent approach implemented in onetep it is only the atomic

details of the solute that are kept. The solute is then placed inside a suitably defined

cavity and the solvent environment is represented by an unstructured dielectric continuum

outside of this cavity. A plethora of approaches for treating solvation of molecules is

available, a review of which is available elsewhere [151]. Many of the models proposed in

the literature are based on the self-consistent reaction field (SCRF) mechanism whereby

the effect of the electric field due to the dielectric, polarised by the solute, is included

within the Hamiltonian self-consistently. Notable variants of the SCRF-type model which

are widely used are the polarisable continuum model (PCM) [152] and the conductor-like

screening model (COSMO) [153]. Within the many models proposed the shape of the

cavity containing the solute has varied. More recent proposals have constructed cavities

based on overlapping atomic spheres of varying radii, requiring numerous parameters.

Another such example of heavy parameterisation is the SMD model [154], founded in

the integral equation formalism of the PCM approach [155]. In this particular solvation

model, the ‘D’ stands for density, denoting the full solute electron density is used without

defining partial charges.

In contrast to this, a recent proposal defines the dielectric as a functional of the

electronic density of the solute [156]. This was then further developed to include the

calculation of the cavitation energy, defining it in terms of the quantum surface of the

solute [157]. In other SCRF-type models the solute cavity has a discontinuous boundary.

In this formulation a smooth transition of the relative permittivity is defined by:

ε[n(r)] = 1 +
ε∞ − 1

2

(
1 +

1− (n(r)/n0)2β

1 + (n(r)/n0)2β

)
(3.54)

where n(r) is the electronic density of the solute, ε∞ is the bulk permittivity, β is a param-

eter controlling the transition of ε[r] from unity to ε∞ and n0 is the value of the density for

which the permittivity drops to half that of the bulk. However, the original formulation

did not include dispersion-repulsion effects and also required an a posteriori correction to

the energy in vacuum obtained in periodic boundary conditions in order to approximate

open boundary conditions. These shortcomings are overcome by Dziedzic et al. who in-

clude dispersion interactions with the solvent, using appropriate boundary conditions and

redetermining the two parameters in the dielectric functional [158, 159]. Another issue

with the original formulation is that as the dielectric cavity responds self-consistently to

changes in the electronic density the functional derivative of the electrostatic energy now

introduces a numerical instability. Dziedzic et al. circumvent this instability without loss

of accuracy by fixing the dielectric cavity. This is achieved by first solving the homogenous

Poisson equation (HPE) for the system in vacuum:

∇2φHPE(r) = −4πρtot(r) (3.55)
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in open boundary conditions, where, in principle, one would set up Dirichlet boundary

conditions, of the form:

φvac
BC(r) =

∫
Ω

ntot(r
′)

|r− r′|
dr′ ∀ r ∈ ∂Ω (3.56)

over the simulation cell (Ω) on the faces of the simulation cell (∂Ω). However, in practice,

in order to reduce the computational cost, a coarse-grained version of the electron density

(nCG
tot ) is used. This density is constructed as a set of NCG point charges corresponding

to a cubic block of the simulation cell. The magnitude of each point charge is the sum of

the charges on the grid points belonging to the block and the charge is positioned at Rl,

the centre of charge of the block. The integral in equation (3.56) can now be replaced by

a sum over this small number of point charges, so the potential on the faces of the cell is

approximated as:

φvac
BC(r) ≈

NCG∑
l

nCG
tot (Rl)

|r−Rl|
∀ r ∈ ∂Ω (3.57)

The electronic density is represented by n(r) and ntot(r) is the total density due to

the electrons and nuclei (or rather, the ionic cores in the case where pseudopotentials

are used). The converged electronic density from vacuum is then used to generate the

density-dependent dielectric cavity in solution, obtained from direct solution of the inho-

mogeneous Poisson equation in real space (the equation is homogeneous in vacuum and

inhomogeneous in solution), again under open boundary conditions:

∇ ·
(
ε[n(r)]∇φ(r)

)
= −4πntot(r) (3.58)

However, in solution it is equation (3.58) that needs to be solved but the open boundary

conditions can no longer be obtained from equation (3.57). In this instance, the form for

the potential is:

φsol
BC(r) ≈ 1

ε∞

NCG∑
l

nCG
tot (Rl)

|r−Rl|
∀ r ∈ ∂Ω (3.59)

where the dielectric permittivity is assumed to be homogeneous and to have the bulk value

of ε∞ everywhere. By constructing the dielectric cavity by application of equation (3.58) to

the converged electronic density of the solute obtained from the vacuum calculation, and

keeping the cavity fixed throughout the calculation in solvent, the numerical instability

is avoided and the associated reduction in accuracy is insignificant. The implicit solvent

approach outlined by Dziedzic et al. is implemented in onetep. In short, when using this

approach, through the use of a smeared-ion formalism the molecular Hartree energy is

obtained not in reciprocal space, like standard onetep, but rather by solving the Poisson

equation in real space, as described. To briefly discuss the practicalities of the calculations,

the results are achieved via the use of a multigrid approach detailed elsewhere [100,158].

Within all implicit calculations presented in this dissertation, the ion smearing width is

0.8 a0 and the values of the solvation parameter β and electronic density threshold n0
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were 1.3 and 3.5×10−4 a.u. respectively, as proposed in Ref. [160]. The relative dielectric

permittivity of the solvent was set to 80.0 for all implicit solvent calculations. A limitation

of multigrid solvers is that every dimension of the grid used in the solver must be a magic

number, defined to be of the form 32k+1, with allowed sizes of 33, 65, 97, 129, 161, 193, 225

and so on. Therefore, there is a certain granularity to the allowed grid sizes for the solver.

In onetep a fine grid is used in solvation with even dimensions, and thus never magic.

To resolve this difficulty, only the subset of the fine grid that is obtained by rounding its

dimensions down to the nearest magic number is used in solvation calculations. For a

calculation with a psinc grid spacing 0.5, and a cubic cell 42.5 a0 in size, this will yield

a fine grid that is 170×170×170. This value of 170 will be rounded down to the nearest

magic number, 161, and only the lower portion of the fine grid, 161×161×161 in size, will

be passed to the multigrid. It is then up to the user to ensure that no electron density

is contained within the unused margin of 162 to 170. If any NGWFs extend beyond that

portion then there will be errors introduced to the calculations. As a rule of thumb,

one should have at least about 10 a0 of vacuum/solvent around the molecule’s NGWFs

(not atomic positions) on each side of the simulation cell but should also be mindful of

minimising the margin, so that as little memory as possible is wasted, as the memory

requirement of the solver grows cubically with the grid size.

3.4.4 Calculating the local/partial density of states

The density of states (DoS) is defined as the measure of how many states or, in an

electronic structure calculation, how many eigenstates there are at a particular energy

or specifically in an energy window. The DoS can be used to analyse the electronic

structure of a system and can often be used to compare with experimental techniques

such as scanning tunnelling microscopy. In order to provide the required eigenvalues and

eigenvectors, the problem to be solved is the generalised eigenproblem:∑
β

HαβM
β
n = εn

∑
β

SαβM
β
n (3.60)

where Mβ
n is a matrix describing the eigenvectors, taking the form of:

|ψn〉 =
∑
β

Mβ
n |φβ〉 (3.61)

From the resulting eigenvalues {εn} and eigenvectors Mβ
n the total density of states n(E)

can be obtained:

n(E) =
∑
n

δ(E − εn) (3.62)

where, in practice, the delta function is often replaced with some Gaussian broadening

function of user-specified width, typically on the order of 0.1 eV. The physical justification

for this lies in the fact that thermal fluctuations will broaden energy levels in a system.
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The total DoS of a system may not be particularly useful when considering a system with

inherently local features such as surfaces, defects or reaction centres. This quantity is even

less useful in large-scale systems studied in this dissertation. In such scenarios it would

be more informative to enquire as to what the DoS associated with a particular atom or a

certain group of atoms is equal to. Local density of states (LDoS) calculations can provide

some of the most valuable sources of information required to interpret and understand

electronic structure calculations. The LDoS gives a description that encompasses both

the spatial and the energetic distribution of the single-particle eigenstates, simultaneously.

By performing a diagonalisation of the Hamiltonian matrix in the basis of the NGWFs,

the LDoS decomposition is achieved. This is performed in the local-orbital framework of

onetep after NGWF and density kernel convergence has been reached. This procedure

has a cubic scaling computational cost associated with it, but also has a low prefactor

due to the small NGWF basis. In order to calculate the local density of states for a given

region, each eigenstate must be projected onto the local orbitals contained within that

region. What is obtained is a series of functions for each of the chosen regions, which

may be the NGWFs of a single atom, or those of a group of atom types. These may

be NGWFs of a single atom, or perhaps a group of atom types. Examples of the LDoS

capabilities in onetep can be found in the literature [161, 162] and also in Chapter 5 of

this dissertation.

3.4.5 Empirical dispersion corrections

Traditional DFT, with commonly used exchange-correlation density functionals, provides

an incomplete description of the dispersion interactions required for an accurate descrip-

tion of protein complexes and enzymes, which would be captured by a ‘perfect’ functional.

The DFT energy can be corrected for dispersion by modifying it as such:

EDFT+D = EDFT + Edisp (3.63)

where the dispersion energy correction for N atoms is given by:

Edisp(rij) = −s6

∑
ij,i>j

C6,ij

r6
ij

fdamp(rij) (3.64)

where s6 is a global scaling factor, typically used to adjust the correction to the repulsive

behaviour of the chosen density functional [163]. C6,ij is a dispersion coefficient for atom

pair ij. fdamp(rij) is a damping function that is equal to unity at large separations (rij)

and 0 at small distances [164,165]. This damping function is required because electronic

structure calculations provide an adequate description of the short-ranged attractions,

therefore the empirical correction will become superfluous at small distances. If a damping

function is not applied to the dispersion term then the total energy will be distorted, due

to the resulting significant artificial strengthening of every covalent bond. All calculations
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presented in this dissertation use the form of the damping function due to Elstner et al.

[166] which takes the form of:

fElstner
damp (rij) =

1− exp

[
−cdamp

rij
r0,ij

]7
4

(3.65)

where cdamp is the damping constant and r0,ij is a quantity determined by the van der

Waals radii of the atomic pair i and j. In order to improve the description of enzyme

systems treated using large scale DFT with onetep, dispersion correction schemes have

been implemented within the code [165]. Ref. [165] optimised the C6,ij coefficients, the

r0,ij and the cdamp coefficients against a benchmark set of complexes with dispersion

interactions where the binding energies are known for high accuracy. This optimisation

was achieved by adjusting the parameters in equation (3.64) in order to minimise the

difference between the value of the dispersion energy and the error in the binding energy

for each complex. The result of the work presented in Ref. [165] is that onetep now

has optimised parameters to describe dispersion interactions in four types of damping

functions from the literature which can be used with up to six different density functionals

present in the code.

3.4.6 Electrostatic embedding and the QM/EE approach

Electrostatic embedding significantly reduces the computational costs associated with

large-scale DFT calculations. Within the quantum mechanics/electrostatic embedding

(QM/EE) approach implemented in onetep, a portion of the total system is represented

in terms of highly localised classical charge distributions [167]. By electrostatically cou-

pling the quantum system with classical charge distributions, the effects of the environ-

ment in which the quantum system is embedded are accurately represented. The energy

of the total embedded system is defined as:

EQM/EE = EQM + Eint + EEE (3.66)

where EQM is the electronic energy of the quantum system that has its associated charge

density and wave functions polarised by the potential due to the embedded charges.

The interaction energy between the electrons and nuclei of the quantum system and the

embedded charges (Eint) is represented as:

Eint =
Nat∑
J

Nemb∑
a

ZJ

∫
qa(r−Ra)

|r−RJ |
dr−

Nemb∑
a

∫ ∫
qa(r−Ra)n(r′)

|r− r′|
drdr′ (3.67)

for an environment of Nemb atomistic charge distributions qa(r−Ra) localised around the

point Ra and evaluated at position r. The first term on the right hand side of equation

(3.67) represents the Coulomb interaction energy between Nat nuclei of atomic number

ZJ and the second term represents the Coulomb interaction energy between the charge
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density n(r) and the embedded charges. The energy of interaction between the embedding

charges, EEE, is represented as:

Nemb∑
a,b>a

∫ ∫
qa(r−Ra)qb(r

′ −Rb)

|r− r′|
drdr′ (3.68)

Within DFT calculations, the embedded charges are present throughout the QM calcu-

lation via an SCF approach and the resulting charge density is polarised by the classical

charge distribution. In order for self-consistent embedding to occur, the Kohn-Sham

Hamiltonian previously defined in equation (3.21) requires an additional term to describe

the potential each electron will experience from the embedded charges:

ĤKS/EE = T̂ + V̂H + V̂xc + V̂ext + V̂emb (3.69)

where the potential due to the embedded charges, V̂emb, is represented by:

V̂emb(r) =

Nemb∑
a

∫
qa(r

′ −Ra)

|r− r′|
dr′ (3.70)

Throughout this dissertation the tip3p model [168] for the charge distribution of water

has been used where q(O) = −0.834e and q(H) = 0.417e.

3.4.7 Natural bond orbital analysis

NBO analysis provides a chemical picture of bonding in terms of localised Lewis-type

bond and lone pair orbitals. Such an analysis is helpful as state-of-the-art first-principles

electronic structure calculations, whilst able to provide an accurate description of the

system under study in terms of the total electron density, often do not provide a very

good description of the qualitative chemical information available. onetep has been

interfaced with the NBO 5 analysis program [169] in order to provide chemical insights into

subregions of large systems by studying effects such as electronic delocalisation [170]. An

example of this type of analysis for methylamine, showing the expected double occupancy

of Lewis-type bonding orbitals and vacancy of their antibonding counterparts, can be seen

in Figure 3.5. This approach works by transforming optimised NGWFs from onetep

into atom-centred, orthogonal natural atomic orbitals (NAOs) [171], then into natural

hybrid orbitals (NHOs) [172]. NHOs are the individual atom-centred hybrids that then

constitute a two-centred natural bond orbital (NBO). NBO analysis can be performed

within a localised region (such as an enzyme active site) in such a way as to ensure the

results are in fact identical to a calculation on the entire system.

One of the most interesting and biologically relevant effects that can be studied with

this combined approach is electronic delocalisation. Delocalised charge transfer repre-

sents a deviation from the ideal Lewis description in the NBO formalism. The variational

energetic lowering due to charge transfer from bonding to anti-bonding NBOs [173] can
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Figure 3.5: Examples of NBOs representing the (a) C-N σ bond, (b) C-N σ∗ antibond and

the nitrogen n lone pair of methylamine, obtained in onetep from the final optimised

NGWFs. NBOs have been normalized to unity and plotted with an isosurface value of

±0.05 a.u. (red is positive and blue is negative). Figure adapted from Ref. [170].

be estimated through the use of second-order perturbation theory [174–176]. In the in-

stance of a σi → σ∗j donor-acceptor interaction, the stabilising effects can be estimated

by inspecting the elements of the first nonzero energetic correction due to off-diagonal

couplings:

∆E
(2)
i→j∗ =

∑
j 6=i

fi
〈σi|Ĥ|σ∗j 〉2

εj∗ − εi
(3.71)

where εi = 〈σi|Ĥ|σi〉 and εj∗ = 〈σ∗j |Ĥ|σ∗j 〉 are the orbital energies of the donor and ac-

ceptor NBOs, respectively. These ∆E(2) values can be thought of as an intermolecular

analogue of the stabilising intramolecular donation of electron density in hyperconjuga-

tion [177,178]. An example is the n→ σ∗ secondary hyperconjugation interaction of a hy-

drogen bond involving intermolecular delocalisation (charge transfer) between a lone pair

donor n and an antibond acceptor σ∗ of an adjacent molecule. It has been shown that such

interactions are prevalent within biological systems, acting to stabilise protein and nucleic

acid structures and also regulating their interactions with their environment [174, 175].

It has also been shown that the energetic lowering due to charge transfer that is calcu-

lated by second-order perturbation theory is correlated with the strengths of hydrogen

bonds [176]. Thus the framework gives a means to qualitatively assess hydrogen-bond

strength from a single large-scale DFT calculation. In Chapter 6 of this dissertation, an

investigation of the interactions within an enzyme-substrate complex, using the natural

bond orbital (NBO) analysis approach outlined here, has been performed, detailing the

interactions between lone pair and antibonding orbitals between the substrate and active-

site residues. By inspecting the changes in ∆E(2) energies at the stationary points in an

enzyme-catalysed reaction, the stabilisation effects on the TS arising from donor-acceptor

interactions between the substrate and active-site residues can be estimated. NBOs are

ultimately constructed from natural atomic orbitals (NAOs) [171] and these form the

basis of natural population analysis (NPA), a widely used method for assigning atomic

partial charges. These NPA charges are shown to be less basis set dependent than the

often used Mulliken charges.



Computational techniques 53

3.4.8 Density derived electrostatic and chemical method for com-

puting net atomic charges

It has been shown in this dissertation that, by virtue of the Hohenberg-Kohn theorems

and Kohn-Sham ansatz, the ground state electronic density is sufficient to derive all the

information about a system. However, the electron density, by itself, is often not very

useful for understanding chemical reactions and it can be conceptually more convenient

to assign electrons to individual atoms or fragments. Net atomic charges (NACs) can

be used to both understand the chemical states of the atoms in some material and also

to accurately represent the electrostatic potential of the material outside of the region

occupied by its electron distribution. As will be discussed in Section 3.6, the treatment

of molecules as a collection of point charges following the laws of classical mechanics is

the basis for most molecular mechanics methods. The same section will also discuss how,

for commonly used force fields, the partial charges are fitted to reproduce the QM elec-

trostatic potential of small molecules in an ESP scheme. The resultant ESP charges are

well-suited for force fields, reproducing ab initio multipole moments and electrostatic in-

teractions between molecular fragments. However, there is no unique method available for

the partitioning of the rigorously calculated quantum mechanical (QM) electron density

among the individual atoms. Furthermore, different charge derivation schemes can often

lead to very different results. In order to aid in the interpretation of QM simulations,

atomic point charges should respond in a chemically intuitive manner to their environ-

ment. In addition, within biological systems the correct treatment of electrostatics is vital

in the accurate determination of the associated molecular interactions.

Electron density-based atoms-in-molecule (AIM) charge partitioning, which is based

on the Hirshfeld approach [179], differs from the ESP technique in that the NACs are

assigned by dividing a converged electron density into a union of overlapping basins.

Shortcomings of the original Hirshfeld method included an arbitrariness in the choice of

reference atomic densities used to define these overlapping atomic basins. Such problems

are addressed in recently proposed iterative extensions to the Hirshfeld method, in which

reference densities are successively improved until self-consistency is achieved in the it-

erative Hirshfeld (IH) scheme [180] so the resultant atomic densities closely resemble the

reference densities of free ions in vacuum, giving chemically meaningful properties. An

alternative to the IH scheme is termed iterated stockholder atoms (ISA) where the spher-

ical average of the partitioned atomic density is used as a reference density. This scheme

is argued to be less empirical than the IH approach, producing a better fit to the electro-

static potential by constraining the atomic densities to be as close to spherical as possible,

ensuring there are no higher order multipoles and allowing the charges to reproduce the

desired electrostatic properties. The density derived electrostatic and chemical charges

(DDEC) method [181] combines the IH and ISA approaches to assign atomic charges

from the electron density. DDEC charges simultaneously reproduce the chemical states

of atoms in a material and the electrostatic potential surrounding the material’s electron
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density distribution. The formal mathematical details of the DDEC approach can be

found in Ref. [181] and references therein. Previously, the use of a DDEC AIM scheme

was always limited by the computational expense of the underlying QM method. This is a

problem as the DDEC approach has many features making it suitable for designing flexi-

ble force fields [182]. To resolve this issue, recent work has implemented a DDEC method

into onetep and this has been shown to generate system-specific charges for a range of

large-scale biomolecular systems [183]. An accurate description of the electrostatic poten-

tial is critical in understanding enzymatic reaction mechanisms and so, where indicated,

the DDEC method has been used in this dissertation to derive accurate atomic partial

charge values from a converged electron density using full-DFT. For all DDEC analysis

presented in this work, the mixing parameter χ is set to a value of 3
14

which is shown

to give optimum balance between minimising atomic multipoles whilst also maximising

chemical accuracy [184]. Vacuum reference densities for Hirshfeld analysis were generated

internally by solving the Kohn-Sham equation for free atoms in the presence of a charge

compensation sphere [183, 185] and were conditioned to the chemical environment via

the method described in Ref. [184]. It has been shown that this approach is suitable for

biomolecular systems [183], such as those studied in Chapters 5 and 6. In addition, these

charges can be compared with NPA values to ensure consistency of results.

3.5 Structural optimisation

It is the stationary points on the potential energy surface that hold the most impor-

tant information regarding chemical reactions. These points are defined as the nuclear

configurations at which the energy gradient is zero as the forces on the system vanish,

specifically:
∂E(X)

∂Xα

= 0 for 1 ≤ α ≤ 3N (3.72)

The aim of geometry optimisation is to locate these stationary points on the potential

energy surface. One of the main objectives within this dissertation is finding the stationary

points that correspond to local energy minima and the transition states that connect

them. This will allow an enhanced understanding of these chemical reactions in the gas

and solution phase along with those catalysed by enzymes.

3.5.1 Calculation of forces

The general idea of the force conjugate to any parameter in the Hamiltonian was first

formulated by Ehrenfest in 1927 [186]. It was he who first recognised that this relation

is crucial for the correspondence of classical and quantum mechanics. What Ehrenfest

showed was an expression for force equal to the expectation value of the operator that

corresponds to acceleration 〈d2x̂
dt2
〉. These ideas were then implicit in other works by Born

and Fock [187] that followed in 1928 and later made explicit by Güttinger [188] in 1931.
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These formulae were included in later work by Pauli [189, pp. 83-272] in 1933 but it

was Hellmann who reformulated them as a variational principle in a form ready to ap-

ply to molecules [190] in 1937. In 1939, Feynman derived the force theorem [191], ex-

plicitly pointing out that the force on a nucleus is independent of the electron kinetic

energy, exchange and correlation, depending only on the charge density. It is the term

“Hellmann-Feynman theorem” that has appeared to stick, now being widely used amongst

the community of computationalists implementing force calculations. The force theorem

gives us the force conjugate to any parameter describing our system of interest, in this

case the parameter is the position of a nucleus RI , and the force on this nucleus can be

written as the negative total derivative of the energy with respect to this parameter:

FI = − dE

dRI

(3.73)

and in the limit of a complete basis set the theorem holds for self-consistent solutions

[192–194]. The Hellmann-Feynman theorem has been shown to hold in DFT [195]. In

practice, DFT calculations employ a finite number of basis functions. When the basis

functions depend explicitly on the positions of the ions, corrections to the Hellmann-

Feynman forces must be calculated, in the form of Pulay forces [75]. Within onetep,

the in situ optimisation of the NGWFs with respect to the psinc functions, a systemati-

cally improvable basis set independent of the position of the atoms, should, in principle,

eliminate the correction due to Pulay forces from the total ionic forces. It has been

shown that for strict localisation constraints, especially with small localisation regions,

there can be non-negligible Pulay forces that must be calculated as a correction to the

Hellmann-Feynman forces in the ground state [140]. Geometry optimization calculations,

which rely heavily upon accurate evaluation of the total ionic forces, show much better

convergence when Pulay forces are included. In onetep, equation (3.73) is redefined in

order to include the terms of the implicit dependency of the density kernel and NGWFs

on the nuclear coordinates, as well as the explicit dependency of the energy on the nuclear

coordinates:

− dE

dRI

= − ∂E

∂RI

− ∂E

∂Kβα

∂Kαβ

∂RI

−
∫

dr
δE

δφα(r)

∂φα(r)

∂RI

(3.74)

However, due to the LNV algorithm described in Ref. [127], the total energy is converged

with respect to the density kernel to a very high tolerance, giving the condition of:

∂E

∂Kαβ
= 0 ∀ αβ (3.75)

and this can be routinely achieved. However, the task of achieving energy convergence

with respect to the expansion of the NGWFs with their underlying psinc basis set is

somewhat more difficult, resulting in ∂E
∂φα
6= 0 so the last term in equation (3.74) remains,

such that:

FPulay =

∫
dr

δE

δφα(r)

∂φα(r)

∂RI

(3.76)
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needs to be calculated along with the Hellmann-Feynman term ∂E
∂RI

. Obtaining the de-

sired tight convergence of energy with respect to the psinc expansion of the NGWFs can

be very difficult due to the kinetic energy operator, which has the effect of spreading

the NGWFs across the cell. With the added constraint of strict localisation within a

sphere, the resulting NGWF energy gradient converges, but often to a small non-zero

value. In this instance the total energy will converge quadratically with respect to the

KS states but the associated forces will converge at a slower rate. Therefore the residual

NGWF energy gradient has an insignificant effect on the ground state energy but the

FPulay term is non-negligible and needs to be retained in the calculation of forces. It

is expected that Pulay forces will be more significant in the description of the forces in

weakly bonded systems such as biomolecules, especially when calculated using localised

orbitals of small radii. The Pulay corrections applied to the Hellmann-Feynman forces

calculated in onetep [140] lead to an improvement in the consistency between ground

state energies and the associated forces acting on the system for any size of localisation re-

gion. Biomolecular systems which have significant numbers of weakly bound components

are much better described when Pulay corrections to the forces are included and, as such,

these corrections are used throughout the calculation of forces within this dissertation.

Many algorithms have been suggested for the problem of locating local energy minima

on the potential energy surface. One of the fastest methods that can be applied to large

systems of biomolecular interest is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm and this is implemented in onetep. This implements a quasi-Newton approach

and constructs an approximate inverse Hessian matrix of second derivatives from energy

gradients calculated at a specified number of previous points. These approaches are used

to structurally optimise energy minima for large-scale biomolecular systems investigated

in this dissertation.

3.5.2 Normal mode analysis

The characterisation of atomic structures via the calculation of normal modes is an im-

portant aspect of biomolecular simulation that should not be overlooked. The process

of normal mode analysis (NMA) is primarily used for identifying and characterising the

slowest, or lowest frequency, macromolecular motions that would be otherwise inacces-

sible using other methods such as short timescale molecular dynamics. NMA can, in

principle, be applied to system sizes ranging from small protein-ligand complexes up to

the ribosome. NMA is defined as the study of harmonic potential wells by some ana-

lytical means. To begin studying normal modes, a stable configuration that represents

the minimum of the potential energy surface of the system is required. Figure 3.6 illus-

trates a two-dimensional (ri) representation of a harmonic potential well. The directions

ei are the associated normal modes. It can be instructive to imagine the potential well

as a bowl in which a classical sphere moves around. If the sphere is moved along one

of the normal modes, it will move back and forth in this direction, whereas in any other
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direction it would be deflected by the potential along some perpendicular direction. It

is only the normal mode directions that are independent for the system. As such, os-

cillations of the sphere along either of the normal modes will have a defined frequency

related to the curvature of the bowl, or potential, along this direction of motion. In order

Figure 3.6: A two-dimensional harmonic potential well. The two Cartesian coordinate

axes of the system are r1 and r2, the two normal mode directions are e1 and e2 [196].

to understand this framework mathematically one must first consider an N -dimensional

potential V = V (X1, X2, . . . , XN) with generalised coordinates Xi. Assuming that the

energy of the system at some initial position X0
i is given by V (X0

i ) then the energy at

a new position Xi = X0
i + hi may be approximated through the use of a Taylor series

expansion, up to second order [197]:

V (Xi) ≈ V (X0
i ) +

∑
j

∂V

∂Xj

∣∣∣∣
Xij=X0

ij

hj +
1

2

∑
i,j

hi
∂2V

∂Xi∂Xj

∣∣∣∣
Xij=X0

ij

hj (3.77)

which can be written much more elegantly using matrix notation:

V (X) ≈ V (X0) + GTh +
1

2
hTHh (3.78)

where G is the gradient vector and H is the Hessian matrix of second derivatives. It is

now helpful to recall that the eigenvectors ei of our symmetric Hessian can be chosen to

be mutually orthogonal with eigenvalues λi, expressed as:

Hei = λiei (3.79)
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and it is the eigenvalues λi that describe the curvature of the potential along the normal

mode directions. When considering the physical interpretation of normal modes, it is the

eigenvalues λi that describe the energetic cost of displacing the system of one unit of length

along eigenvector ei. So in fact, NMA is classifying the potential deformations of a protein

by their energetic cost. In the presence of a realistic potential, low frequency modes will

be associated with collective and delocalised deformations whereas high frequency modes

will correspond to local deformations. This can be thought of as arising from the non-

linearity of the interaction terms. Short-ranged interactions, such as bond stretching,

are stronger, and more rapidly varying with position, than long-ranged interactions such

as electrostatics. In practice, when NMA is applied to an isolated system the first six

eigenvalues should be zero, but in reality, this test is often failed due to errors in the

calculated forces and Hessian matrix. The six zero eigenvalues are due to the fact that they

describe the six rigid-body movements of the system. These movements are translation

along three independent axes and rotation about three independent axes. These incur

no energy cost and as such are ignored in the analysis. Therefore, in practice, the ‘non-

zero’ modes are usually taken to refer to the lowest energy modes possessing non-zero

energies. An energy minima on the potential energy surface will have Hessian eigenvalues

that are all positive, whereas a transition state will have one negative eigenvalue. In the

next chapter, NMA will be used to confirm that this is the case for the calculated energy

minima and transition states.

3.5.3 Transition state searching

In comparison to local minima, locating transition states is often much more difficult. One

defines a transition state (TS) as a stationary point on the potential energy surface where

one of the eigenvalues of the Hessian matrix of second derivatives is negative [198]. A TS

therefore corresponds to a local energy maximum in one eigendirection but a minimum

in all others. A TS, by definition, has a negative force constant and thus an imaginary

vibrational frequency. This tells us that the corresponding motion described by the asso-

ciated normal coordinate will lower the energy, hence showing that the current TS is not

a stable structure in that eigendirection. The calculation of transition states is vital in

the prediction of activation energies for enzymatic reactions as it is the TS that must be

passed through in order to make the transition from reactant to product. As discussed

earlier in Chapter 2, it is transition states that are stabilised by enzymes in order to allow

a reaction to occur at a faster rate. A large range of methods exist for calculating transi-

tion states. Many have been proposed on the basis of the so-called eigenvector-following

technique which is described in Section 3.5.5. This is a so-called single-ended method as it

only requires an initial structure, acting as a TS approximant, to start off the calculation.

Other methods which are double-ended require two equilibrium geometries between which

it is expected a transition state lies that connects the two.
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3.5.4 Linear and quadratic synchronous transit methods

The linear synchronous transit (LST) method performs a series of single point calculations

on a set of linearly interpolated structures between given reactant (initial) and product

(final) atomic configurations as illustrated in Figure 3.7. The path may be defined by:

riab(f) = (1− f)rR
ab − frP

ab (3.80)

where rR
ab and rP

ab are the internuclear distances between atoms a and b in the reactant

and product, respectively. In addition, the interpolation parameter f runs from 0 to 1.

A significant drawback with equation (3.80) is that it over-specifies the geometry of the

Figure 3.7: Single-point projections of idealised structures (red) between minima (green)

and transition state (blue) structures [199].

system. This can be understood from the fact that the number of distinct internuclear

separations for a molecule comprising N atoms is equal to N(N−1)/2 which for a molecule

of N > 7 is greater than the 3N Cartesian degrees of freedom for the system. Therefore

the transit path must instead be defined through the use of geometries with internuclear

separations as close as possible to the idealised values, found by minimising the following

function [200]:

S(f) =
1

2

∑
a 6=b

(rab − riab(f))2

riab(f)4
+ 10−6

∑
ζ=x,y,z

∑
a

(ζa − ζ ia(f))2 ≥ 0 (3.81)
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where the interpolated Cartesian position of an atom is represented by ζ ia and the actual

coordinate is ζa. By construction, equation (3.81) is identical to equation (3.80) at the

reactant and product geometries, when the interpolation parameter (f) is equal to either

zero or one, respectively. However, equation (3.80) can give multiple structures that

satisfy the constraints on internuclear separations at, for example, the LST maximum.

So by minimising S, for fixed f , using the coordinates from (3.80), one can solve for the

new coordinates, which makes a better interpolation, to a first approximation.

The LST maximum estimate is further improved by minimising the geometry, with

respect to the generalised reaction coordinate of the structure, defined by:

p =
dR

dR + dP

(3.82)

where dR(P) is equal to the distance between the reactant (product) and any other geom-

etry of the molecule such that:

d2
R(P) =

1

N

∑
a

(ζa − ζR(P)
a )2 (3.83)

The value of the reaction coordinate p from equation (3.82) runs from 0 at the reactant to

1 at the product state. So far, this transit path has been constructed purely on the basis

of geometric analysis alone, without the use of energy calculations. The maximum energy

structure along this pathway provides the first estimate of the TS structure. A conjugate

gradient (CG) refinement is then performed on this maximum in directions conjugate to

the reaction pathway, with the resultant structure used as an intermediate to define the

quadratic synchronous transit (QST) pathway, defined by:

riab(f) = (1− f)rR
ab − frP

ab + γf(1− f) (3.84)

where γ ensures that the QST pathway includes this newly calculated intermediate struc-

ture. An example of LST/QST searching in practice is illustrated in Figure 3.8 where

the activation barrier converges with calculated reaction coordinate from equation (3.82).

Firstly, the single-point energies of the reactant and product state geometries are calcu-

lated, with a reaction coordinate of 0 and 1 respectively. Using these two energy points,

the energy maximum along the LST path is located (black line: LST 1). A CG optimisa-

tion of this structure, in directions conjugate to the reaction pathway, is then performed

(red triangles: CG 1). Naive application of the CG saddle-point algorithm discussed by

Govind et al. will usually prove unsuccessful because the system will have a tendency

to fall to a point on the energy surface below the saddle and repeated application of CG

minimisations will optimise the system to one of the local minima in the vicinity of the

transition state rather than the saddle point itself. A tendency of the optimisation pro-

cess to veer away from the saddle towards a minimum will manifest itself as a build up of

the gradient in the direction of negative curvature s0. In the practical scheme devised by

Govind et al. the conjugate gradient process must be restarted with a new maximisation
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Figure 3.8: Linear and quadratic synchronous transit searching in practice, leading to

the resultant transition state. The activation energy (∆E) converges toward the reaction

coordinate (p) of the transition state conformation.

step if the gradient in the direction s0 becomes too large. In this scheme the gradient in

the direction of s0 is monitored, and the conjugate gradient process is terminated when

this build up extends beyond some tolerance factor. A new maximum is then searched for

along the QST pathway connecting the reactant, product and the best transition state

structure (blue line: QST 1). A new CG cycle is then initiated (red triangles: CG 2).

If the residual forces on the TS approximant fall below some user-specified tolerance,

the calculation is considered to have converged. The LST/QST algorithm, based on the

original inception by Halgren and Lipscomb [201] and modified by Govind et al. [200]

has been successfully applied using implementations in the Castep code [202–205] and

the DMol software package [206–217]. The LST and QST approaches discussed here are

implemented in the onetep code and have been used throughout this dissertation to

calculate activation energies.

3.5.5 The eigenvector-following approach

The principle of eigenvector-following lies in maximising the energy in one eigendirection

whilst simultaneously minimising the energy in all other eigendirections. Recalling equa-

tion (3.79) we can write an arbitrary vector y as a linear combination of the Hessian
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eigenvectors:

y =
∑
i

aiei (3.85)

where ai are scalar coefficients. We are now confronted with the fact that for large

biomolecular systems comprising thousands of atoms it is undesirable, or sometimes un-

feasible, to calculate the Hessian matrix of second derivatives. In this instance it is

advisable to use a variational approach in order to find the smallest eigenvalue and its

corresponding eigenvector. This particular eigenvector is that of the ‘softest’ mode, as

higher-order modes can be found using eigenvector-following but these often correspond

to transition states higher in energy than the true TS. Now if one considers taking a step

in some arbitrary direction y the expected value for y can be defined as the Rayleigh-Ritz

ratio [20]:

λ(y) =
yTHy

y2
(3.86)

and by defining y in terms of the Hessian eigenvectors from equation (3.79) as in equation

(3.85) and recalling that the eigenvalues of these mutually orthogonal eigenvectors are λi

then a lower bound for λ(y) can be found:

λ(y) =

∑
i a

2
iλi∑

j a
2
j

=

∑
i a

2
i (λi − λmin)∑

j a
2
j

+ λmin ≥ λmin (3.87)

and differentiating with respect to aα yields:

∂λ

∂aα
=

2aα∑
j a

2
j

(
λα −

∑
i a

2
iλi∑

j a
2
j

)
(3.88)

There are nontrivial turning points that exist for λ(y). In practice it has been found that

minimising λ(y) with respect to y ensures λ(y) becomes the smallest eigenvalue of the

Hessian whilst y becomes the corresponding eigenvector. In order to avoid the explicit

calculation of the Hessian, the numerical second derivative of the energy is used as an

approximation to λ(y):

λ(y) ≈ V (X0 + ξy) + V (X0 − ξy)− 2V (X0)

(ξy)2
(3.89)

where ξ � 1 and differentiating whilst keeping |y| = 1 gives:

∂λ

∂y
=
∇V (X0 + ξy)−∇V (X0 − ξy)

ξ
(3.90)

Once the smallest eigenvalue and its corresponding eigenvector are known, an uphill step

can be taken in the direction of the eigenvector in order to find the transition state. The

magnitude of this step is derived in detail elsewhere [218]:

h =
2F

|λmin|
(

1 +
√

1 + 4F 2/λ2
) (3.91)
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where F is the component of the gradient along the eigenvector emin corresponding to the

smallest eigenvalue λmin. A hybrid eigenvector-following/minimisation approach is then

used that combines this uphill step along emin with minimisation in all the orthogonal di-

rections, generating the transition state when the gradient drops below a certain tolerance.

In practice, TS conformations obtained from LST/QST calculations may be more accu-

rately refined using the gradient-only version of hybrid eigenvector-following [20,219,220].

The procedure detailed here is repeated until a stationary point with a negative eigenvalue

and a maximum magnitude of energy gradient below 0.01 eV/Å per atom is obtained.

The hybrid eigenvector-following technique described here is implemented in the OPTIM

code which has been interfaced with onetep. This approach has been used in this dis-

sertation, where indicated, in order to compare activation energies to less rigorous, but

computationally less expensive, LST/QST approaches.

3.6 Classical force fields

In order to accurately explore the conformational space of large, complex systems, within

the limits of reasonable computational resources, a representative potential energy func-

tion, or force field, is required to approximate the atomic interactions. Force fields should

be simple and easily differentiable, whilst preserving the characteristic features of the more

accurate, yet time consuming, ab initio methods that are necessary for describing the elec-

tronic structure of the system. They are a common tool for studying macromolecules of

biological interest. Amongst other things, force fields allow the structure-activity relation-

ships of macromolecules to be studied in atomic detail. Whilst the quantum mechanical

techniques outlined previously can be applied to systems up to tens of thousands of atoms,

empirical approaches can be routinely applied to systems comprising hundreds of thou-

sands of atoms. In fact, a total system size of 320 billion atoms has been studied using

molecular dynamics, representing a cubic piece of metal with an edge length on the mi-

crometer scale [221]. On a more practical length scale of calculations, the dynamics of

systems can also be investigated, up to the nanosecond time regime and beyond. The

essential job of any force field is to map the structure R onto the energy U(R) of a sys-

tem of interest. A force field is usually expressed as sums of two-, three- and, sometimes,

four-body particle interactions. Some of the common and more important contributions

to force fields are illustrated in Figure 3.9. Ideally, a minimal set of functions will be

used to describe the molecular structure. A harmonic treatment is usually applied to the

bonds, angles and out of plane distortions (improper dihedrals). The torsional and dihe-

dral terms are described by a sinusoidal expression. On the non-bonded side, a Coulombic

term is used to treat the electrostatics. This is usually combined with a Lennard-Jones

term to describe the atomic repulsion and dispersion interaction. The form used in the
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Figure 3.9: Key contributions to biomolecular force fields.

most commonly found biomolecular force fields is as follows:

U(R) =
∑

bonds b

Kb(rb − r0)2 +
∑

angles a

Kθ(θa − θ0)2 +
∑

dihedrals d

Kχ

(
1 + cos(nχd − σ)

)

+
∑

impropers η

Kη(φη − φ0)2 +
∑

nonbonded pairs ij


C(12)

ij

r12
ij

−
C

(6)
ij

r6
ij


+

∑
i<j

qiqj
rij

(3.92)

where rb is the bond length, θa is the valence angle, χd is the dihedral angle, φη is the

improper angle and rij is the separation between nonbonded atom pairs i and j. The

intramolecular parameters are parameterised against experimental and ab initio observ-

ables. The associated equilibrium values are denoted by a 0 subscript. Kb and Kθ are

the force constants for bond length and valence angle, respectively. The dihedral force

constant, multiplicity and phase angle are represented by Kχ, n and σ respectively. The

improper force constant and improper equilibrium angle are represented by Kη and θη.

The C
(6)
ij and C

(12)
ij are the van der Waals terms and the final summation treats the

electrostatic interactions.

Classical force fields have been established as an invaluable tool for the investiga-

tion of many systems of biological relevance. Extensive development of force fields and

the parameterisation thereof has provided a vast toolkit containing a multitude of clas-

sical approaches to treat the common amino acids found in enzymes. The generic terms

presented in equation (3.92) are commonly used within many biomolecular force fields,

including charmm [222], amber [223,224], gromos [225] and opls [226]. Within which,
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the canonical ensemble (NVT) and the isothermal-isobaric ensemble (NPT) are two key

approaches that are used when simulating biomolecular systems. However, all protein

force fields have a significant drawback in that the calculated results can sometimes de-

pend strongly on the choice of parameters used for interatomic potentials. Force fields

can not accurately describe electron bond cleavage and formation, electronic states and

by association, spectroscopy. In addition, the inclusion of transition metals or unusual

ligands or functional groups that are difficult to correctly parameterise within force fields

are also more accurately treated within a DFT framework. The atomic partial charges

used within the majority of standard force fields are often fit to the electrostatic potentials

of small molecules calculated via expensive quantum chemical calculations. Whilst this

process generates accurate partial charges for small molecules such as amino acids in the

gas-phase, using these values for an entire protein will neglect long-range electronic polar-

isation and give only an average picture. A recent DFT investigation of an entire protein

in water demonstrated that net charges of residues can vary by up to 0.5e from their puta-

tive integer values [170], while the electrostatic potential generated by force field charges

may differ significantly from accurate ab initio simulations [183, 227]. In addition, force

fields can not include charge transfer effects, so they have issues with transferability and

accuracy. A number of validation studies have gathered an overall consensus that, whilst

fixed charge models offer computationally tractable descriptions and are robust enough

for calculating the equilibrium properties of homogeneous systems, away from these am-

bient conditions significant discrepancies between experiment and simulation have been

seen [228, 229]. These discrepancies caused through the use of the fixed charge approx-

imation have an effect on dynamical properties and heterogeneous systems in general.

The problems outlined here can be partially overcome by implementing a mixture of QM

within classical force fields, in hybrid QM/MM approaches, which are discussed in the

next section.

3.7 Hybrid quantum mechanics/molecular mechan-

ics approaches

The extensive conformational sampling which is required to accurately treat the entirety

of a biomolecule is unfeasible with conventional quantum mechanical (QM) approaches

due to computational demands. Due to the problems with force fields, described in the

previous section, combined with the fact that many enzyme-catalysed reactions involve

the breaking and forming of electron bonds, methods using a combination of classical

molecular mechanics (MM) force fields and QM methods are often implemented. In these

so-called QM/MM approaches [13,230–232], a small part of a system, usually a region of

chemical interest in which important changes such as covalent bond breaking and forming

take place, is treated with QM in order to describe the electronic structure of specific

fragments. The remainder of the system is then treated with a comparatively simple
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empirical potential in order to describe the protein and water environment surrounding the

QM region. The level of QM theory used must be balanced against computational expense

which results in less rigorous methods often being used in comparison to conventional

quantum chemistry calculations on small molecules. Particular applications that have

proved sturdy test-beds for QM/MM approaches include citrate synthase [233], P450cam

[234] and lysozyme [13,235,236], while many more are reported in the literature [237].

There are two predominant schools of thought concerning how to approach QM/MM

methods. The additive approach describes the total energy as:

Etot = EQM + EMM + EQM-MM (3.93)

where EQM is the energy of the QM region calculated with the QM method. The energy

of the MM region calculated with the force field approach is represented by EMM. The

interaction energy between the two regions is represented by EQM-MM. Whereas in the

subtractive approach the total energy is described as:

Etot = EMM-tot + EQM − EMM-QM (3.94)

where EMM-tot and EMM-QM are the energies of the total and QM systems, respectively,

calculated by the MM approach. In studies of enzyme catalysis it is mainly the additive

method which is used, treating the substrate undergoing a reaction with a QM approach

and the surrounding protein and solvent with MM. The use of atomistic simulations to

model enzyme-catalysed reactions, starting from the pioneering works of Warshel, Levitt

and others [13, 44] has risen to prominence in recent years, leading to the new field of

computational enzymology [45,46].

Due to the computational expense of conventional QM approaches, the QM region in

a QM/MM simulation is often restricted to include only the reactive groups, an approach

rationalised mainly by chemical intuition. The validity of this approach and how the QM

region size impacts calculated properties has been investigated in a handful of systems

but no definitive conclusions have been reached. A QM/MM study of the dependence

of the central QM atom force error on the size of the QM region demonstrated that

convergence was only achieved at a size of between 300 and 500 atoms, depending on how

the region is chosen, when describing the QM system using PM3 and AM1 semiempirical

methods [238]. Similarly, a QM/MM study of a twin arginine pair in adenovirus Ad11,

implementing the HF/SVP level of theory for the QM atoms, demonstrated a QM region

of 437 atoms was required to generate converged isomerisation energies [239]. Further,

to achieve spectral convergence of QM/MM excited states of photoactive yellow protein,

a QM region of 723 atoms was required in which the QM atoms were described at the

TD-ωPBE/6-31G(d) level [240]. Results such as these suggest that inconsistencies in the

treatment of long-range electrostatic interactions between QM and MM regions [238] may

occur, which can critically affect results due to the polar nature of many enzyme active

sites.
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QM/MM can also suffer from inaccuracies due to the coupling scheme used to link

the two regions, for which numerous approaches exist. The results from simulations can

depend strongly on this choice and it may not always be straightforward to converge the

results or test the methodology applied. In explicit solution models or enzyme systems

whereby the substrate and any co-factors are not covalently bound to the enzyme, this

partitioning does not prove to be a problem. However, in the case of a QM region describ-

ing a ligand covalently bound to a protein, it would be unrealistic to simply truncate the

QM region, therefore treating the bond as being homolytically or heterolytically cleaved.

A QM/MM boundary that slices through a covalent bond will first need to address the

dangling bonds of any cleaved QM atoms, followed by ensuring the QM region is not over-

polarised by the neighbouring MM charges. In addition, the bonded MM terms involving

atoms from each subsystem must be selected as to avoid double-counting. There are three

broad ways in which this can be achieved. The first involves link-atom schemes [241,242]

that introduce an additional atomic centre into the QM region, typically a hydrogen atom,

that is not part of the real system but acts to saturate any dangling bonds. Secondly,

boundary-atom schemes [243] replace the MM atom at the border between regions with a

boundary atom that then appears in each region. In the QM region it mimics the severed

bond and the MM residue bonded to it, whilst the MM region ‘sees’ a normal MM atom.

Lastly, localised-orbital schemes [13] place hybrid orbitials at the boundary, keeping some

of them frozen, in order to cap the QM region.

Another potential problem encountered by QM/MM calculations is that of electron

leakage. This is the phenomenon whereby positively charged classical point charges can

act as traps for the electron density from the QM region [231, 244–250]. This problem

emerges due to a lack of Pauli repulsion from the electron cloud that would normally

surround a positively charged atom, resulting in over-polarisation of the electron den-

sity at short range by an incorrect and purely attractive potential. A further problem

with QM/MM approaches is the error associated with the choice of force field. It has

been shown that different force fields, or even different versions of the same force field,

can produce qualitatively different results [251–253]. One systematic study of the fold-

ing behaviour of non-amyloid peptides indicated that amber99 favours helical structure,

gromos96 [254] may overestimate β conformations but opls-aa [255] results in balanced

α and β structures [253]. It has also been shown that nonpolarisable force fields have a

tendency to overestimate the coordination number and rigidity of the solvation shell of

typical cations and ions [256,257]. However, advances are being made in the development

of polarisable approaches [258], such as the amoeba force field [259], where the fixed

partial charge model is improved upon by the use of atomic multipole-based electrostatics

and explicit treatment of dipole polaristation. These approaches have not been used in

QM/MM studies due to a lack of accurate paramaterisation and the need for a framework

to interface polarisable force fields with QM calculations. In general, QM/MM investiga-

tions of enzymatic reactions require a significant investment in the setup and preparation
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of the system in question before the calculations can even begin [231]. Any errors intro-

duced at this stage through unsuitable choices will propagate throughout the study and

cannot be recovered at a later phase of the calculations [232].

In order for computational enzymology to have impact in other communities it is

important to make simulation methods and their associated results accessible to non-

specialists [237]. This is a central theme of this dissertation and is evidenced by the re-

moval of the additional complexity of the selection of force field parameters and QM/MM

boundary partition scheme in later chapters. An alternative to the hybrid schemes out-

lined in this section, is to perform QM calculations on an entire system, or a significant

part of it. Unbiased ab initio calculations of peptides, harnessing the power of GPUs,

have been shown to be able to predict protein structure at the same level as empirical

force fields that have been extensively paramaterised specifically for that purpose [260].

The same calculations demonstrated that ab initio approaches can predict the structures

of proteins with regions of disorder to a much greater accuracy than that of force fields.

Other investigations have also shown that DDEC charges generated from large-scale DFT

calculations perform better than standard amber ff99sb atomic partial charges in repli-

cating protein dynamics when incorporated within classical force fields [183]. Using the

linear-scaling first principles approach described in Section 3.4, explicit treatment of the

electrons can be performed, taking into account the electronic charge transfer and polari-

sation, for systems containing many thousands of atoms and the methods are transferable

to any chemical environment. These types of investigations are the subjects of Chapters

5 and 6.

3.8 Summary

This chapter has outlined the capabilities of the various tools used within this disserta-

tion and the approaches taken when simulating systems of biological interest. It is the

combination of the techniques described in this chapter that will allow the study of the

properties of complex biomolecules such as enzymes, described in the previous chapter.

Best practices and efficient methodologies for the general treatment of biomolecular sys-

tems using the methods outlined in this chapter, from classical to QM/MM to full-DFT,

will be the focus of Chapter 5. Building upon these methodologies, an investigation into

the Bacillus subtilis chorismate mutase enzyme will be discussed in Chapter 6. Before ex-

tending to much larger systems of biomolecular interest, the next chapter will validate the

methods described in this chapter through investigations of well-studied small molecules

with the goal of reproducing known results.
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Validation studies

“Aristotle maintained that women have fewer teeth than men; although he was twice married,

it never occurred to him to verify this statement by examining his wives’ mouths”

Bertrand Russell, Impact of Science on Society - Ch. 1 (1952)

There are few principles that should be prioritised over the process of validation. To

ensure one can rely on the results that emerge from proof-of-principle calculations, such

as those presented in Chapter 6, one must be able to reproduce, or closely approximate,

results seen both in experiment and more advanced levels of theory and computation,

whilst keeping in mind any technical issues present in the approaches. The calculations

presented in this chapter are designed to provide confidence in the methods available in

the onetep and OPTIM codes and the efficient interface that exists between the two for

searching for stationary points on the potential energy surface. A primary method of

interest within this dissertation is structural optimisation, comprising both energy min-

imisation and transition state searching. To ensure the reactants and products, along

with the transition states that connect them, can be trusted when investigating enzyme

catalysed reactions, the methods must first be validated against the structures of small

molecules in vacuo. The simple ethene molecule has a well-defined structure and accu-

rately observed normal mode frequencies. Therefore structural optimisation procedures

and normal mode analysis methods will be used to attempt to reproduce what is seen in

experiment. Ethene will be the focus of Section 4.1. The well-studied alanine dipeptide

has proved to be a particularly good example for verifying new methods or extensions to

existing approaches in order to validate the particular advances made. In addition, the

structural properties this molecule possesses are very similar to those found in the back-

bone of many proteins. Therefore, if the structural properties of dialanine energy minima

and transition states, in vacuo, can be accurately reproduced, this will provide confidence

of the ability of the methods to tackle the protein structures found in real systems. This

molecule is the subject of Section 4.2. The focus of the chapter then shifts to the peri-

cyclic rearrangement of chorismate to prephenate in Section 4.3. In order to be able to

consider the complexities involved in describing enzyme reactions, the structural optimi-

sation procedures in onetep must be validated against a relevant small-scale reaction.

69
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This work will not only validate the structural optimisation procedures in onetep but

will also test the interface that exists between onetep and OPTIM in order to further re-

fine the linear and quadratic synchronous transit (LST/QST) transition state candidates

with rigorous hybrid eigenvector-following methods. The chapter concludes with a brief

summary outlining the findings and their significance to the remainder of the dissertation.

4.1 Ethene

Figure 4.1: Convergence of ethene energy gain per atom. Inset: convergence of total

energy with increasing equivalent plane wave cutoff energy and a skeletal representation

of the ethene molecule with experimental measurements determined via microwave spec-

troscopy [19]. The spacing of the psinc grid was explicitly set in order to compare with

the cutoff used in an equivalent plane wave calculation.

Ethene is a simple, unsaturated hydrocarbon with the chemical formula H2C=CH2.

The molecule is widely used in industry and its production exceeds that of any other

organic compound. It is also used within the agricultural sector to accelerate the ripening

of fruit. A representation of the molecule can be seen in Figure 4.1. The main objective of
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Figure 4.2: Convergence of ethene (a) carbon-carbon double-bond length, (b) carbon-

hydrogen bond length and (c) carbon-hydrogen angle during onetep structural optimi-

sation. The NGWFs used for the optimisation were localised in radii of 8a0 (black line)

and 10a0 (blue line). A comparison is made with experimental values (red line) [19].

studying ethene is to validate the onetep/OPTIM interface for a small molecule. Prelim-

inary convergence tests were performed, using a reasonable starting guess of coordinates,

in order to demonstrate the convergence of calculated properties. Figure 4.1 shows total

energy convergence with respect to equivalent cutoff energy in onetep. For increasing

equivalent plane wave cutoff, the total energy for the molecule decreases, as is expected

for variational methods. Therefore there is a gain in energy upon increasing the cutoff.

This energy gain, per atom, is shown to converge to the meV level.

Figure 4.2 compares the calculated bond lengths and angles angles at each step through

the optimisation procedure with those obtained from microwave spectroscopy [19]. It is

the PBE functional [70] combined with dispersion corrections due to Elstner et al. [166]

that is used throughout the DFT calculations presented in this chapter and the remainder

of this dissertation. The figure shows that the calculations localising the NGWFs in a

radius of 8.0 a0 yielded converged bond lengths and angles in the onetep structural opti-

misation. Using this value with the converged equivalent plane wave cutoff energy of 1050

eV, as suggested from Figure 4.1, the geometry of the structure was then optimised using

onetep until the maximum calculated force on any atom decreased below 0.01 eV/Å.

The geometry optimisation yielded a C=C double-bond length 1.57% shorter than that

observed via spectroscopy and a shorter C−H bond by 0.33%, along with a 0.28% wider

H−C=C angle. The magnitude of these errors are typical of those found in density-

functional studies [262]. A normal mode analysis was then performed on this structurally

optimised conformation. By definition, for the zero-frequency modes, the geometry of
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Figure 4.3: (a) Analysis of normal modes performed using the onetep/optim interface

(using NGWFs of radii ranging from 8.00a0 to 10.75a0) compared with (b) experimental

observation. [261]

the molecule is not altered. Non-linear molecules have three zero-frequency rotational

modes, hence 3N − 6 normal modes. The calculations in Figure 4.3(a), corresponding

to the normal modes illustrated in Figure 4.3(b), yield a systematic error with experi-

ment of 26%. Whilst these sorts of errors are toward the upper bound of those expected

within DFT implementing PBE functionals, previous authors have demonstrated underes-

timates in calculated frequencies using density-functional methods [263], and many DFT

methods have been shown to yield inaccurate estimates for C−H frequencies [264, 265].

However, Figure 4.3(a) shows that qualitative agreement has been found between cal-

culated and experimentally observed normal modes. Six ‘zeroes’ along with a band of

eight finite frequencies followed by a band of four frequencies at approximately twice

as large a frequency have been calculated. These match qualitatively with what is ob-

served experimentally [261], shown in Figure 4.3(b). Previous authors have demonstrated

that onetep is able to achieve plane wave accuracy [139, 266] upon increasing NGWF

radii and fineness of the psinc grid. Temperature effects have not been considered but

these could potentially be important. Normal mode analysis assumes harmonic potential

wells and the harmonic frequencies have been calculated at 0K, whereas the experimental

observations were performed at room temperature.
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4.2 Alanine dipeptide

The alanine dipeptide, terminally blocked by methyl groups, is regarded as a prototype

of non-proline/non-glycine protein residues [267]. This is due to the full φ/ψ sampling

that dialanine allows, without the added complexity of the sidechain degrees of freedom.

If the calculated potential energy surfaces for the vacuum and the solvated dialanine con-

formations are combined, it can be shown that the molecule is able to adopt every (φ, ψ)

dihedral angle combination observed for α-helix and β-sheet structures within protein

complexes [268, 269]. The dialanine molecule is deceptively simple but the effective po-

tential energy surface of the dipeptide displays of the order of five minima. However, this

precise number depends on the method of solvation (or lack thereof) and the particular

form of the effective potential model used [270]. Dialanine is a very good candidate for

validating any previously untested computational approaches, as many studies exist in

the literature, starting from Peter Rossky and Martin Karplus’ pioneering 1979 publica-

tion [271], that investigated the molecule from the perspective of kinetics [270,272], ther-

modynamics [273–277] and spectroscopy [278–282]. Dialanine along with the alanine tri-

or tetrapeptides [283] are often simulated at the ab initio level in order to parameterise the

amino acid backbone force fields used within molecular mechanics calculations [284,285].

It is normally the case in standard empirical molecular mechanics force fields that bonded

and non-bonded terms derived from dialanine calculations will be used to model the back-

bone of all non-glycine and non-proline residues [286]. However, there are a few particular

instances where this is not the case, notably the amber force field where the backbone

atomic partial charges may vary for each residue [287].

Conformational changes from one dialanine energy minimum to another involve rota-

tion about the backbone dihedral angles, passing through transition state structures. At

least four such transitions occur in a force field description of dialanine. As such, this

small molecule provides an extremely good test for transition state searching techniques.

The molecule in the gas phase has a conformational space with well-defined minima and

transition states that are present without the need for surrounding solvent or protein.

Therefore, the inclusion of additional protein scaffolds such as enzyme active sites are

not required in the calculations, making them inexpensive and a good starting point for

further investigations involving enzyme-catalysed transition state searching on substrates

embedded within a large protein matrix such as the calculations presented in Chapter 6

of this dissertation. In principle, when repeated over multiple residues, β structures, with

a φ range from -60◦ to -170◦ and a ψ range from 120◦ to 170◦, correspond to extended β-

sheet secondary structures. C7ax structures, with a φ of around 50◦ and ψ of around -130◦,

are associated with the formation of turns and loops within protein secondary structure.

Previous authors have calculated minima and transition states of dialanine using the

charmm22 force field in vacuum (c22vac) [251] and the resulting structures are shown

in Figure 4.4. The minima and transition states from Ref. [251] are simple geometrically

defined objects, which are temperature independent and the calculated harmonic
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(a) C7eq

(b) β (c) C7ax

(d) (C7eq ↔ β)‡1 (e) (C7eq ↔ β)‡2

(f) (C7eq ↔ C7ax)‡ (g) (β ↔ C7ax)‡

Figure 4.4: Dialanine TS minima (a-c) and transition state (d-g) conformations yielded

from the in vacuo c22vac potental in Ref. [251]
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C7eq β C7ax

c22vac [251] onetep c22vac [251] onetep c22vac [251] onetep

φ -81.4 -84.3 -151.4 -157.6 69.7 73.6

ψ 70.5 71.3 170.6 160.3 -67.6 -54.3

C1-C5=O6 121.3 122.7 121.2 123.0 120.6 121.9

C1-C5-N7 116.6 115.2 116.4 114.7 115.9 114.6

O6=C5-N7 122.0 122.1 122.4 122.3 123.5 123.5

C5-N7-H8 120.4 119.4 121.5 123.0 118.2 116.9

C5-N7-C9 123.3 123.1 122.8 122.1 125.9 127.1

C9-N7-H8 116.3 117.5 115.6 114.7 115.8 115.9

C9-C15-N17 116.8 113.0 117.6 115.4 117.9 115.6

C9-C15=O16 121.9 122.9 120.8 121.7 120.6 120.2

O16=C15-N17 121.3 124.0 121.5 122.8 121.4 124.3

H18-N17-C15 118.5 117.2 120.4 118.9 117.9 117.7

C15-N17-C19 122.4 121.5 121.6 122.0 122.6 121.5

C19-N17-H18 119.0 120.4 118.1 119.1 119.3 120.8

C1-H2 1.11 1.09 1.11 1.09 1.11 1.09

C1-H3 1.11 1.09 1.11 1.09 1.11 1.09

C1-H4 1.11 1.09 1.11 1.09 1.11 1.09

C11-H12 1.11 1.09 1.11 1.09 1.11 1.09

C11-H13 1.11 1.09 1.11 1.09 1.11 1.09

C11-H14 1.11 1.09 1.11 1.09 1.11 1.09

C9-H10 1.08 1.09 1.08 1.09 1.08 1.09

C19-H20 1.11 1.09 1.11 1.09 1.11 1.09

C19-H21 1.11 1.09 1.11 1.09 1.11 1.09

C19-H22 1.11 1.09 1.11 1.09 1.11 1.09

N7-H8 0.99 1.01 1.00 1.02 0.99 1.01

N17-H18 1.00 1.02 0.99 1.01 1.00 1.02

C1-C5 1.48 1.51 1.48 1.51 1.48 1.51

C9-C11 1.54 1.51 1.54 1.53 1.55 1.52

C9-C15 1.53 1.54 1.52 1.52 1.53 1.54

C5-N7 1.34 1.36 1.34 1.36 1.34 1.36

C9-N7 1.45 1.46 1.44 1.44 1.46 1.47

C15-N17 1.35 1.35 1.35 1.35 1.35 1.35

C19-N17 1.44 1.45 1.44 1.45 1.44 1.45

C5=O6 1.22 1.23 1.22 1.23 1.22 1.23

C15=O16 1.23 1.23 1.23 1.23 1.23 1.23

Table 4.1: Dialanine geometrical parameters from c22vac and onetep minimum energy

bond lengths in Ångströms, indicated by N1-N2 labels, and bond angles in degrees (◦),

indicated by N1-N2-N3 labels. The dihedral angles φ and ψ are defined as those involving

C5−N7−C9−C15 and N7−C9−C15−N17, respectively.
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(C7eq ↔ β)‡1 (C7eq ↔ β)‡ (C7eq ↔ β)‡2 (C7eq ↔ C7ax)‡ (β ↔ C7ax)‡

c22vac [251] onetep c22vac [251] c22vac [251] onetep c22vac [251] onetep

φ -104.8 -124.1 -99.3 -1.1 71.0 125.7 71.8

ψ 139.8 109.8 -72.3 -69.8 -48.2 -120.1 -56.9

C1-C5=O6 121.2 122.1 120.9 120.1 121.9 119.7 121.9

C1-C5-N7 116.4 115.4 116.2 115.4 114.7 114.9 114.6

O6=C5-N7 122.45 122.50 122.9 124.6 123.4 125.4 123.5

C5-N7-H8 120.4 120.7 119.2 116.0 116.6 116.8 117.0

C5-N7-C9 123.2 121.1 123.3 130.4 127.6 130.0 127.3

C9-N7-H8 116.1 117.8 117.5 113.6 115.6 113.2 115.8

C9-C15-N17 117.4 114.7 117.7 118.3 116.2 118.4 115.3

C9-C15=O16 121.2 122.0 121.5 120.5 119.0 120.3 120.0

O16=C15-N17 121.4 123.3 120.8 121.2 124.8 121.3 124.6

H18-N17-C15 120.4 118.5 120.4 118.5 117.4 119.5 117.4

C15-N17-C19 121.5 122.3 118.2 119.5 121.9 118.5 121.9

C19-N17-H18 118.0 119.2 121.4 121.7 120.6 121.9 120.7

C1-H2 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C1-H3 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C1-H4 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C9-H10 1.08 1.09 1.08 1.08 1.09 1.08 1.09

C11-H12 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C11-H13 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C11-H14 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C19-H20 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C19-H21 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C19-H22 1.11 1.09 1.11 1.11 1.09 1.11 1.09

N7-H8 0.99 1.01 0.99 0.99 1.01 0.99 1.01

N17-H18 0.99 1.01 0.99 0.99 1.02 0.99 1.02

C1-C5 1.48 1.50 1.48 1.48 1.51 1.48 1.51

C9-C11 1.54 1.53 1.54 1.54 1.52 1.55 1.52

C9-C15 1.52 1.52 1.53 1.53 1.54 1.52 1.54

C5-N7 1.34 1.36 1.34 1.34 1.36 1.34 1.36

C9-N7 1.45 1.46 1.45 1.46 1.47 1.46 1.47

C15-N17 1.35 1.36 1.35 1.35 1.35 1.35 1.35

C19-N17 1.44 1.45 1.44 1.44 1.45 1.44 1.45

C5=O6 1.22 1.23 1.22 1.22 1.23 1.22 1.23

C15=O16 1.23 1.23 1.23 1.23 1.23 1.23 1.23

Table 4.2: Dialanine geometrical parameters from c22vac and onetep transition state

structures in Ångströms, indicated by N1-N2 labels, and degrees (◦), indicated by N1-N2-

N3 labels. The dihedral angles φ and ψ are defined as those involving C5-N7-C9-C15 and

N7-C9-C15-N17 respectively.

frequencies are temperature independent and correspond to normal mode analysis for the

stationary points. Therefore the geometries can be directly compared with onetep ge-

ometry optimised minima and LST/QST TS structures. The investigation in Ref. [251]

calculated the dialanine free energy surfaces using a superposition of partition functions

based upon harmonic densities of states sampled at local energy minima and transition

states. The relative free energies of the stationary points, which are calculated from

the harmonic vibrational densities of states at the relevant temperature, are quoted in

Ref. [251] at room temperature. As such, the resulting ∆F values represent the harmonic

free energy at 298K, relative to the C7eq minimum energy conformation. The investi-
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Structural ∆E / kcal mol−1 GRC / arb. units

Conformation c22vac onetep c22vac onetep

C7eq 0.00 0.00 - -

β 0.91 1.14 - -

C7ax 2.05 1.31 - -

(C7eq ↔ β)‡ - 5.22 - 0.39

(C7eq ↔ β)‡1 1.50 - 0.43 -

(C7eq ↔ β)‡2 4.88 - 0.42 -

(β ↔ C7ax)‡ 7.78 1.73 0.74 0.84

(C7eq ↔ C7ax)‡ 8.48 1.58 0.53 0.83

Table 4.3: Comparison of energy differences (∆E / kcal mol−1) and generalised reaction

coordinates (GRC / arb. units) [201] between c22vac potential minima and transition

state structures [251], recalculated to generate temperature-independent potential ener-

gies, and those in the present chapter. The PBE functional [70] with empirical dispersion

corrections [165] have been used for the onetep calculations presented.

gation presented in this chapter has taken the minima and transition state structures

from Ref. [251] and calculated the temperature independent potential energies, using the

classical c22vac potential, that can be compared directly with onetep activation and

reaction energies. Such a comparison is made in Table 4.3.

Tables 4.1 and 4.2 compare the structural parameters of dialanine calculated from

Ref. [251] and onetep simulations. First considering the minima structures in Table

4.1, the bond lengths and angles calculated using onetep structural optimisation is in

good agreement with the classical potential, yielding differences of between 1 and 2%. In

addition, similar differences are present in the bond lengths and angles calculated using the

LST/QST TS searching approach for the transition state structures present in Table 4.2.

The onetep-calculated torsion angles for the minima, presented in Table 4.1, display a

difference of between 1 and 6 % with the classical potential, except for the ψ angle for C7ax

which yields a discrepancy of 20% with the classical approach. However, the torsion (φ,ψ)

angles, for the transition state structures, presented in 4.2 show significant discrepancies

in the structures structurally optimised using onetep compared to the classical potential.

This reflects on the lack of a rigorous treatment for dispersion interactions in DFT and

the empirical corrections that have been applied in these calculations. Therefore it is

unsurprising that the torsion angles from DFT calculations do not agreed entirely with

those from a classical potential. However, another source of the discrepancies for the

transition state structures are the errors that are present in the classical approach, such

as the fact that the force field is unlikely to be parameterised for structures in their

transition state, but instead in their energy minima.

Table 4.3 compares the relative enthalpies calculated using onetep structural optimi-
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sation with the temperature-independent potential energies calculated using the c22vac

classical potential for the structures presented in Ref. [251]. The generalised reaction

coordinate, as explained in Ref. [201], was calculated for the converged transition state

structures, yielded from c22vac and onetep simulations, using equations (3.82) and

(3.83). Table 4.3 reveals that the energetic ordering of the c22vac energy minima is

reproduced in onetep calculations. It is fairly well agreed upon that the equatorial C7

conformation, C7eq, is that of the global energy minimum of the in vacuo dialanine poten-

tial energy surface. This structure gained its name as a result of the seven-atom central

ring structure present and the equatorial orientation of the alanine sidechain with respect

to this structure [288]. Raman experiments, NMR and depolarised Rayleigh scattering

observations also suggest this conformation is the most energetically favoured in both

aqueous and non-aqueous solution [289]. It is stated in Ref. [251] that the β conforma-

tion is entropically favoured as it allows for more conformational flexibility than the C7eq

conformation. However, the entropic contribution, included within the harmonic free en-

ergies calculated in Ref. [251] (∆F values shown in Table 1 of the paper), is not significant

enough to change this ordering. This is also shown to be the case when re-calculating

the temperature-independent potential energy differences (∆E), as has been done in this

investigation. An important structural characteristic that onetep describes well is the

hydrogen bond between the C5=O6 and N17−H18 groups of the two peptide links. As

these hydrogen-bonding interactions are very important in the stability of protein struc-

tures in general, and also in the catalytic rate enhancement produced by enzyme active

sites, this is a very encouraging result.

The TS structures presented in Table 4.2 were calculated using the LST/QST ap-

proach, using only the C7eq, β and C7ax energy minima structurally optimised in onetep

calculations. No additional information was required from the classical simulations in

order to obtain the transition states. By the nature of the LST/QST approach, only one

transition state can be found between two structures. However, with the TS searching

performed in Ref. [251], two TS structures were found for the C7eq ↔ β transition. As a

sanity check, the (C7eq ↔ β)‡1 and (C7eq ↔ β)‡2 transition state structures, located from

c22vac simulations, were used in separate QST calculations as an initial approximant for

the mid-point between the energy minima calculated using onetep. In each instance, the

final structure, generated by onetep QST simulations, adopted the identical conforma-

tion to when no initial guess for the mid-point was supplied, indicating the robust nature

of the LST/QST TS searching approach.

The conformational space accesible to dialanine can be illustrated in two dimensions

by plotting the φ angles against the ψ angles, in a so-called Ramachandran plot named

after its inventor G. N. Ramachandran [290]. Such plots for dialanine described by a

variety of classical force fields are presented in Figure 3 of Ref. [251]. On inspecting the

Ramachandran plot for c22vac vacuum simulations, it is clear that the (C7eq ↔ β)‡1
structure requires the least amount of atomic rearrangement in order to pass from the



Validation studies 79

initial to final energy minima via this transition state conformation. Therefore, it is the

(C7eq ↔ β)‡1 transition state structure that is most likely to be found in each instance

of LST/QST calculations, which provide a less rigorous, though computationally less

expensive method compared to the reaction path Hamiltonian superposition approach

used in Ref. [251]. In a similar manner to the discrepancies seen in the torsion angles,

the onetep-calculated GRC values also display significant differences compared to the

classical potential. Again this is likely to be due to the lack of parameterisation of the

classical force field at a transition state. However, these differences then leads to the

underestimate of the activation energy for the (β ↔ C7ax)‡ and (C7eq ↔ C7ax)‡ TS

structures from DFT compared to the classical potential.

Throughout this analysis it must be kept in mind that the results from onetep sim-

ulations are fully quantum mechanical and the results from c22vac simulations are from

a classical force field. It would appear that one needs to move to a higher level of QM

theory in order to clarify the energetics of the small molecule around the transition state.

From the current level of QM, the DFT and classical results are in good agreement close

to the energy minima and, crucially, this is where protein backbones are. It is not always

entirely clear whether there are perhaps spurious transition state structures which appear

on the classical potential energy surface which will not appear on the equivalent quantum

mechanical surface. In the Ramachandran plots in Figure 3 of Ref. [251] where there are

either three or four minima present, depending on which version of the charmm force

field is used and there are either four or five transition states present. In addition, depend-

ing on which type of implicit solvent model is used, within the same charmm version,

there are five or six minima present and either six or eight transition states, depending on

the solvation model used. The Ramachandran (φ,ψ) plots in vacuum also show quantita-

tive differences for different versions of the charmm forcefield and qualitative differences

when compared to the amber forcefield. In addition, the energetic ordering shown from

classical methods may in fact be skewed by inaccuracies present in the force field. The

main aim of this section was to validate the onetep LST/QST transition state searching

capabilities against a well-studied molecule, dialanine, but in order to provide some clar-

ity into the issue discussed in Ref. [251], where it is shown that different classical force

fields result in some qualitative and quantitative differences in their associated potential

energy surfaces, further investigations, that remain outside the scope of this dissertation,

will need to be undertaken. This still remains an ongoing issue but the potential energy

surfaces of small molecules is not the primary concern of this dissertation. The focus of

this chapter shall now move to another small molecule, the understanding of which may

have far-reaching consequences within enzymology-related calculations in general.
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4.3 Pericyclic chorismate rearrangement

Before one can even begin to consider the complexities introduced by explicitly including

the active-site residues and associated protein scaffold in an enzyme reaction, or the

solution surrounding the substrate in the equivalent reaction in water, the structural

optimisation procedures in onetep must be validated. The calculations presented here

are intended to validate the geometry optimisation methods and the LST/QST transition

state searching algorithm on the chorismate to prephenate rearrangement in vacuum. This

Figure 4.5: Decreasing calculated RMS force on the transition state structure during the

eigenvector-following optimisation procedure. Inset: The pericylic Claisen rearrangement

of chorismate to prephenate.

particular rearrangement takes place both in solution and in the presence of the Bacillus

subtilis chorismate mutase (CM) enzyme but the focus of this section is on the reaction

in the gas phase. The reaction is illustrated in Figure 4.5. Calculations by other authors

on the substrate in the gas phase have found that many local minima are stable in vacuo

but are subsequently unstable in the presence of the CM active site [291]. A much more

detailed description of CM is given in Chapter 6. However, the purpose of this chapter is to

determine the accuracy of the algorithms used in later investigations in this dissertation.
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Therefore, rather than searching for global minima, the optimisation of the reactant and

product state structures is initiated with conformations close to the configurations found

within the CM enzyme. As discussed in the previous section detailing calculations on

dialanine, onetep does not include entropic contributions to transition state activation

energies. However, in the rearrangement of chorismate to prephenate it has been shown

experimentally that the entropic contributions are orders of magnitude smaller than the

enthalpic contributions. Therefore it is likely that the onetep calculations will yield an

accurate description of the reaction.

The associated energy of reaction, yielded following geometry optimisation in onetep,

is −17.0 kcal mol−1 and, following LST and QST searches for the transition state, the

activation energy was determined to be 29.7 kcal mol−1. The energy of reaction for

the chorismate rearrangement was shown to converge with an energy cutoff of 1020 eV,

corresponding to a psinc grid spacing of 0.45 a0, with the NGWFs localised to a radius

of 5.3 Å. Repeating the optimisation process with a 1687 eV cutoff, corresponding to a

grid spacing of 0.35 a0, and NGWFs with a 7.4 Å radius, showed the energy of reaction is

converged to within 0.05 kcal mol−1 and the resultant activation energy was converged to

within 0.1 kcal mol−1. The transition state structure obtained from LST/QST calculations

was then further refined using the gradient-only version of hybrid eigenvector-following

[20, 219, 220] using the interface that exists between onetep and OPTIM, as discussed in

Chapter 3. However, using the parameters shown to converge the reaction and activation

energies (psinc grid spacing: 0.45 a0, NGWF radii: 5.3 Å), a geometry with a single

negative Hessian eigenvalue could not be found. This is due to the ‘eggbox’ effect [136–138]

which, as discussed in Chapter 3, is important to avoid and the effect is detrimental

for the gradient-only variant of hybrid eigenvector-following used in the onetep/OPTIM

calculations. The activation energy calculated for the reaction varied significantly upon

translating the atomic coordinates by 0.2 a0, a fraction of the psinc grid size in use,

despite previous successful convergence testing for the size of NGWF radii and fineness

of the psinc grid. However, upon using an energy cutoff of 1687 eV, corresponding to a

psinc grid spacing of 0.35 a0, with the NGWFs localised to a 7.4 Å radius, the activation

energy changed by only 0.01 kcal mol−1 upon translating the atomic coordinates by 0.2

a0.

Following convergence testing, the higher cutoff and NGWF radii values were used

in order to converge the eigenvalue and minimise the RMS force on the substrate. The

forces generated by using the more rigorous parameters are a much closer representation

of the true derivatives of the total energy. The RMS force on the transition state is

shown to decrease during the eigenvector-following procedure in Figure 4.5. This addi-

tional eigenvector-following optimisation altered the activation barrier by less than 0.1

kcal mol−1. The resultant structure following eigenvector-following yielded an RMSD

value of less than 0.01 Å compared to the structure found using the LST/QST approach.

Therefore, this work on the vacuum structure confirms that the LST/QST approach gives
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essentially the identical transition state to eigenvector-following. Furthermore, it is clear

that this computationally less expensive method can be used with confidence on the large

systems tackled in Chapter 6. It has previously been found that the LST/QST approach

can provide reasonable starting points for accurate refinement of transition states in small

molecule systems [202–205] and this has been confirmed in the TS searching on the cho-

rismate substrate in this chapter. What has not been shown in the literature is whether

the TS approximant found from the LST/QST approach can provide a converged activa-

tion energy. This will be the focus of Chapter 6 The accuracy achieved by LST/QST for

the current problem probably reflects the simplicity of the pathway. The LST/QST and

eigenvector-following converged transition state was additionally characterised via nor-

mal mode analysis in OPTIM and found to have one imaginary frequency. The gas phase

minima were found to have only real frequencies.

4.4 Summary

The task of describing complex chemical processes, such as those involved in enzyme

catalysis, at the same high level of accuracy as rigorous quantum chemical calculations on

small molecules in the gas phase is a highly active area of research. A first step toward this

goal is the validation of the theoretical methods developed by applying them to smaller

systems that approximate the properties of interest of the target real systems. In addition,

the delicate balance of quantum accuracy along with computational efficiency must also

be obtained. This chapter has demonstrated the use of density-functional methods for

the study of systems of organic and biological interest, namely ethene, dialanine and

the chorismate to prephenate rearrangement. The results obtained from calculations on

ethene yield bond angles and bond lengths in agreement with experiment. It would

be prudent to note that it is only the internal energy of the molecules that is being

calculated here. There is no consideration of entropy in these calculations. In principle it

would be possible to calculate the entropy and subsequent free energy of these molecules

by calculating the electronic, rotational and vibrational partition functions. Computing

the vibrational frequencies required to evaluate the vibrational free energy contribution

is much more computationally expensive compared to calculating the electronic energy

alone, though of course an approximation is possible based on the approximate Hessian

generated during the minimisation procedure. When considering different conformations

of large biomolecular complexes such as proteins or enzymes, there can be large differences

in the contribution of the entropy to differences in the free energy, so it is important to

carefully choose the system under study such that the entropic contributions are small or

that the only comparisons made with experiment are the changes in enthalpy.

From the present work on dialanine, onetep DFT structural optimisation yield bond

lengths and angles that agree well with the c22vac classical potential parameterised using

high-level QM calculations on small molecules. However, relatively large discrepancies
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were found in the torsion angles of the transition states, which is to be expected due to

the lack of a rigorous treatment for dispersion interactions in DFT but is also linked to

the deficiencies present in classical force fields in describing regions away from where they

are parameterised. This shows that the resultant coordinates from a parameterised force

field can in some instances produce better torsion angles, but it is also important to use a

method incorporating minimal parameters in the model. This not only allows the model

to be transferable but also ensures that multiple potential energy surfaces are not found

from the use of models with differing parameters, as shown in Ref. [251]. Ultimately, the

work on dialanine has shown the validity of using an approach, such as that utilised in

Chapter 6, where the atomic coordinates calculated from a classical potential are used

to act as a protein matrix to surround an enzyme active site. This will allow QM-based

methods to be used to break and form electron bonds, something that can not be described

classically, and to perform TS searching, whilst the surrounding protein remains in the

classical coordinates and torsion angles.

The work on the chorismate to prephenate rearrangement obtained converged transi-

tion states, found using LST/QST, that were further refined using eigenvector-following.

This additional refinement resulted in the activation barrier changing by less than 0.1

kcal mol−1. It is therefore sensible to use the computationally less expensive LST/QST

method for the large-scale DFT calculations that are the subject of Chapter 6. The sys-

tems focussed on in that chapter, and also Chapter 5, will be water clusters, benchmark

proteins and a significant portion of an enzyme.



Chapter 5

Explaining the closure of calculated

HOMO-LUMO gaps in biomolecular

systems

“Discovery consists of seeing what everybody has seen and thinking what nobody has thought.”

Albert Szent-Györgyi (1893-1986)

It is quite alarming that several publications exist in the literature raising serious

questions about the applicability of DFT techniques to large-scale systems such as water

clusters and proteins [260, 292–296]. These investigations have demonstrated that calcu-

lated energy differences between the highest occupied and lowest unoccupied molecular

orbitals (HOMO-LUMO gaps) are vanishingly small, or in some cases non-existent, for

biomolecular systems. Such systems should ideally display insulating behaviour, if the

calculations are to be trusted. These unphysical results are generally attributed to the

treatment of exchange in the density functional used. If true, this would be a serious

impediment to the further application of state-of-the-art DFT techniques to systems of

biological relevance. The work discussed in this chapter indeed confirms that DFT elec-

tronic structure calculations are hindered by vanishing HOMO-LUMO gaps in large water

and protein clusters. However, in contrast to the investigations by previous authors, the

work presented in this chapter conclusively demonstrates that the issue results not from

the choice of density functional used within the calculations but from improper treatment

of the interface between the system under simulation and the vacuum in which it is con-

tained. It is shown that this produces large, spurious electrostatic fields, thus closing the

HOMO-LUMO gap.

5.1 Introduction

In order to address the issue of vanishingly small HOMO-LUMO gaps, the work in this

chapter provides practical and realistic solutions for ensuring the HOMO-LUMO gap is

84
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maintained as the number of atoms in the system is increased. Some of the approaches

used here in an attempt to prevent the closure of the HOMO-LUMO gap include struc-

tural optimisation of water/vacuum interfaces using classical methods; the screening of

molecular dipole moments through the use of implicit solvation; and embedding the quan-

tum mechanical system in the potential of classical point charges representing the water

environment. The biomolecular systems used in this process consist of protein molecules

containing up to 2386 atoms. I believe that the practical solutions demonstrated here

should allow the continued investigation of complex biomolecular systems through the

use of Kohn-Sham DFT. This work has important implications for the use of large-scale

density-functional theory in the simulation of biomolecular systems, especially where there

is crucial dependance on the accurate calculation of the energy differences between molecu-

lar orbitals, such as in the simulation of photoemission, optical absorption and electronic

transport. In addition, the work outlined in this chapter also addresses a widely-held

misconception about the unsuitability of applying Kohn-Sham DFT to such systems.

5.2 Vanishing HOMO-LUMO gaps

Despite the considerable interest in the use of ab initio simulations for the study of com-

plex biomolecular systems, as mentioned above, there still remains a growing concern

that DFT, in conjunction with pure exchange-correlation functionals (those defined as

containing no Hartree-Fock exchange), may be inappropriate for the simulation of large

molecular clusters. Two of the recent reports that show unphysical vanishing HOMO-

LUMO gaps in systems such as proteins [292] and even water clusters [293], additionally

blame poor convergence during the self-consistent electronic structure optimisation proce-

dure on this vanishing gap. Poor self-consistent field (SCF) convergence has been shown

both for BLYP and for B3LYP DFT functionals [297] and also for LDA and PBE func-

tionals when simulating large Glu-Ala helices [102]. In addition, Grimme and co-workers

have experienced SCF convergence problems when performing generalised gradient ap-

proximation calculations on large protein fragments including cation-ion pairs, due to

the self-interaction error creating a vanishing HOMO-LUMO gap [296]. Investigations

carried out using the TeraChem package, with BLYP and B3LYP functionals, to op-

timise polypeptide structures in vacuo reported a lack of SCF convergence, caused by

self-interaction and delocalisation errors giving vanishing HOMO-LUMO gaps, for many

of the peptides that were simulated [260]. Similar problems have been observed when

using molecular fractionation with conjugated caps to compute ab initio binding energies

in vacuum for protein-ligand complexes of between 1000 and 3000 atoms [298].

The SCF convergence issues that have been seen by many in the literature are widely

blamed upon the well-known phenomenon of pure functionals underestimating the HOMO-

LUMO gap, within Kohn-Sham DFT, of semiconductors and insulators [294,299,300]. In

biological systems Rudberg et al. have shown in Ref. [292] that these issues result in
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complete closure of the gap. However, while the lack of the derivative discontinuity of the

exchange-correlation potential at integer particle numbers, discussed in Chapter 3, and

errors in the single-particle eigenvalues resulting from the approximate nature of the func-

tional itself will indeed act to reduce the gap, there is no inherently obvious reason why

the effect should get worse as the system size increases [299], as reported by Rudberg et al.

Furthermore, approximations to energy-dependent electron self-energies [301], which lie

beyond the conventional Kohn-Sham formalism, need to be improved in order to recover

the gap [302]. In addition, problems in predicting the gap have been linked to the incor-

rect description of systems that will contain fractional charges at large separation [303]

as discussed in Chapter 3. This prediction of metallic behaviour, in systems that should

generally demonstrate insulating characteristics, is concerning. It is clear from previous

authors’ work related to the band gap issue that the use of the Hartree-Fock approach

overestimates the gap whilst hybrid functionals, defined as those that include a certain

portion of Hartree-Fock exchange, often get quite close to experimental values for the

gap, but do not solve the underlying problem of gap closure. In addition, as the size of

the water clusters investigated is increased, all types of functional, both pure and hybrid,

demonstrate a decrease in the gap until eventually it closes entirely. Previous authors have

also shown that recovery of a sizeable gap and consequently robust self-consistent con-

vergence of the electronic energy levels is possible. Refs. [292] and [295] achieved this by

including embedded electrostatic point charges in the system to represent water molecules

around an inner cluster treated with quantum mechanics whilst Ref. [298] simulated the

system within a dielectric medium. The results therefore point to the possibility that the

vanishing gap is in fact actually a surface effect and, thus, not an inherent difficulty when

performing pure Kohn-Sham DFT calculations.

Within this chapter, the onetep software package has been used to investigate the

HOMO-LUMO gap of water clusters and protein systems. In agreement with previous

work on similar systems performed in Ref. [292] it has been found that, indeed, the

gap often vanishes in vacuo. However, whilst these calculations show what others have

seen before, this work provides conclusive evidence that the issue is actually not related

to the use of a pure exchange-correlation functional at all. It is, in fact, a result of

the approach used to prepare the system in the first place. In the following sections a

number of practical measures for preparing large systems are outlined. These approaches

counter the vanishing HOMO-LUMO gaps seen in previous works, opening the way for

the continued investigation of systems of biological interest with Kohn-Sham DFT.

5.3 Water clusters

The correct treatment of water is crucial for accurate and realistic simulations of biomolec-

ular environments. However, recent large-scale density-functional simulations in Ref. [292]

using pure functionals have encountered SCF convergence problems when simulating iso-
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Figure 5.1: DFT HOMO-LUMO gaps of water clusters of increasing radius extracted from

a larger 50 Å cube of water equilibrated at 300 K using classical molecular dynamics.

Black line: Extracted straight from bulk water. Blue line: After classical minimisations

are performed on each extracted cluster. Red line: Simulating the extracted clusters in

an implicit solvent model. Dashed line: HOMO-LUMO gap of bulk water.

lated clusters of water, due to the HOMO-LUMO gap decreasing to zero when the cluster

radius becomes larger than approximately 10 Å. This vanishing gap phenomenon is dis-

cussed in the present chapter and the results from simulations performed for the current

work are summarised in Figure 5.1. Through a combination of amber and onetep, the

HOMO-LUMO gap of a 2010-atom system of bulk water was calculated. A periodic su-

percell of water molecules was generated using the tleap module of the amber package

with the tip3p force field. The Coulomb interactions were then treated using the Particle

Mesh Ewald sum, with a real space cutoff of 10 Å. The cutoff length for the Lennard-

Jones interactions was also set to this distance of 10 Å. The system was minimised in the

NVT ensemble before being heated to a temperature of 300K, in six stages, in the NPT

ensemble. A production run of 5 ns at a temperature of 300 K was then performed from

which snapshots were generated and saved at equal picosecond time intervals. Subsequent

calculations on the last snapshot with the onetep code showed a clearly defined band

gap of 4.2 eV. This value is consistent with previous DFT calculations of water employing

the PBE gradient-corrected functional and is what one would expect to see for a bulk

insulator. In addition to bulk water, isolated spherical water clusters of increasing size
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Figure 5.2: Rearrangement of water molecule orientation to maximise hydrogen-bonding

and to minimise the electrostatic energy.

have also been investigated. These clusters were extracted from an initial 50 Å cube of

water comprising 14,289 atoms that had previously been prepared in an identical manner

to the 2010-atom system described above.

Recalling the quantum confinement effect, whereby, if the diameter of a material is of

the same magnitude as the wavelength of the electronic wave function, then the electronic

and optical properties can deviate substantially from those of bulk materials, one would

generally expect to see the HOMO-LUMO gaps of these clusters as being larger than that

of bulk water. One might also expect the HOMO-LUMO gap value to tend toward the

bulk value as the size of the system was steadily increased. However, in agreement with

Ref. [292], Figure 5.1 (black line) shows that the HOMO-LUMO gap quickly approaches

zero for systems containing more than around 200 atoms. It is this observation that has

led many to question the applicability of pure DFT functionals to large systems, such as

water clusters and proteins [260, 292, 295, 296, 298]. However, the results demonstrating

the insulating nature of very large periodic supercells of bulk water indicate that the

problem is not the size of the system in itself but rather, the small HOMO-LUMO gap is

in fact caused by the interface between the water and the surrounding vacuum introduced

by the cluster. To understand this further, one must look more closely at the properties

of bulk water. Bulk water consists of a continuous hydrogen-bonded network of water

molecules; there is a dipole moment associated with each water molecule. The process

for preparing the water clusters, which involves extracting a cluster, freezing the atomic

positions and surrounding with vacuum, can potentially result in a large surface dipole

being created. As a rough estimate, if one considers the dipole moment of a single isolated

water molecule to be on the order of 0.73 e.a0 then this will produce a potential difference
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of around 0.4 V between opposing points of some sphere of radius 5 Å with the water

molecule located in the centre of the sphere. In general, the molecular dipoles within

the cluster are orientated in such a way as to mostly cancel out any long-ranged effects,

as is illustrated in Figure 5.2, however, those dipoles on the surface of the sphere are

not compensated by their neighbours. Therefore, depending on the orientation of these

dipoles around the surface of the entire cluster, a large cluster may retain a large net

dipole moment. In order to test this hypothesis, clusters were extracted from the 14,289-

atom cube and their associate classical dipole moments were calculated. A tip3p point

charge model was used for the water and Figure 5.3(a) (green line) shows the classical

dipole moment of the water clusters averaged over the 5000 snapshots from the molecular

dynamics simulations. These results reveal that the dipole moment increases with system

size as the created surfaces become larger in area. A similar trend in the dipole moment

with cluster size is observed for QM calculations of single snapshots as can be seen in

Figure 5.3(b).

To see whether these large dipole moments can cause the closure of the gap, one must

also consider the potential due to the dipoles which is generated from the effective surface

charge produced. In order to comprehend this, one must consider a uniform array of

identical dipoles between two surfaces such as that illustrated in Figure 5.4. Internally,

the heads and tails of the dipoles will be adjacent and thus will cancel, however, at the

bounding surfaces, no such cancellation occurs. Instead, on one surface the dipole heads

create a positive surface charge, whilst at the opposite surface the dipole tails create a

negative surface charge. These two opposite surface charges create a net electric field

in a direction opposite to the direction of the dipoles. To illustrate this effect further,

the electrostatic potential calculated from density-functional simulations is plotted on a

plane behind the 16 Å water cluster in Figure 5.5(a). The DFT-calculated electrostatic

potential clearly reveals a dipolar potential. Now that one can see that water clusters

that are extracted from equilibrated bulk periodic calculations display large multipole

moments, as measured both by MM and QM, the natural next question to ask is what

effect does this have on the computed HOMO-LUMO gap ? One approach to answering

this question would involve calculating the density of states (DoS) of the water cluster.

More specifically, the local density of states (LDoS) will give us a more localised picture of

what is happening. Figure 5.5(a) also shows the LDoS for a 16 Å water cluster, alongside

the DFT electrostatic potential. In order to determine the LDoS, the water clusters

are nominally divided into 10 slabs in a direction perpendicular to the dipole moment.

Then the slab local density of states is defined as the sum of the contributions to the

total DoS from the local orbitals centered on the atoms within each slab. The plot in

Figure 5.5(a) displays a clear shift in the LDoS as a function of the position along the

dipole moment vector. This shift is due to the electric field pushing some states higher in

energy and some states lower in energy. This effect can be considered as analogous to the

concept of Fermi-level pinning found in polar semiconductor nanorods [304,305]. In that
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Figure 5.3: (a) Average dipole moments of water clusters of increasing radius calculated

using the tip3p point charge model. Green line: averaged over 5000 snapshots extracted

from a larger 50 Å cube of water. Blue line: averaged over 1400 snapshots extracted from

the bulk and minimised using an MM force field. (b) Quantum mechanically calculated

total dipole moment of water clusters of increasing radius. Black Line: onetep-calculated

QM dipole moment from the final molecular dynamics snapshot at each radius. The dipole

moment increases with radius in the same manner as in our classical simulations. Blue

line: onetep-calculated dipole on the same snapshot after classical minimisation, which

reduces the dipole moment across the cluster. Red line: onetep implicit solvent calcula-

tions. In this case, the dielectric medium supports a higher dipole moment, although the

net potential is screened at large distances.
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Figure 5.4: Schematic figure to illustrate that a uniform array of identical dipoles is

equivalent to a surface charge.

particular case, the Fermi energy coincides with a finite density of states at either end

of the rods. In the case of the water clusters the Fermi energy coincides with a non-zero

DoS on opposite surfaces of the extracted sphere. When the radius of the water cluster

increases such that the surface potential is of sufficient magnitude to bridge the HOMO-

LUMO gap, it would be expected that the gap will disappear completely. Given the

apparent electrostatic nature of the vanishing HOMO-LUMO gap, it would make sense

to postulate that there is no fundamental problem in the use of pure density-functionals

in the simulation of large systems, but simply that the issue manifests itself at smaller

system sizes than it would do for hybrid functionals which have an inherently larger gap.

It would therefore be expected that any method that corrects for these surface effects

will also restore the HOMO-LUMO gap, which is consistent with observations made by

other authors. By embedding the system in a set of classical point charges outside the

electron distribution to represent, for example, the aqueous environment of the water

or protein cluster, work in Ref. [292] has shown that the HOMO-LUMO gap may be

restored. In these particular cases there were no significant changes seen to occur to the

electronic density of the inner water molecules. In the work presented in Ref. [295], the

only significant changes in electronic density were observed on the water molecules that

were close to the surface of the cluster. The investigation reported in Ref. [298] also found

that the use of a dielectric medium with permittivity ε = 4 leads to robust self-consistent

field convergence of proteins in vacuum, therefore this approach implies that screening of

the surface dipole is sufficient to restore the HOMO-LUMO gap. In the remainder of this

chapter a number of methodologies for setting up a QM cluster are tested and
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Figure 5.5: Electrostatic potential for a water cluster of 16 Å radius and local density of

electronic states (LDoS) for groups of atoms as a function of position along the dipole

moment vector of the cluster. The dipole moment vector (coloured arrow) runs from the

red line to blue. The black line is the total density of states (DoS) and the green dashed

line is the DoS for bulk water. Each line in the LDoS plot is normalised by the number

of molecules contained in the slab. The electrostatic potential ranges from -0.3 V (red)

to +0.3 V (blue). The slice is 24.6 Å behind the water cluster. (a) Snapshot extracted

from bulk water. The dipole moment is high, the LDoS is strongly dependent on position

relative to the dipole moment vector, and the total range of states is much wider than for

bulk water. (b) After classical minimisation of the same snapshot. (c) Simulated using

the onetep implicit solvent model. In both cases, the dipole moment is reduced and the

DoS closely resembles the bulk.
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are shown to allow density-functional calculations to be performed using either pure or

hybrid functionals, without closure of the gap, so that the ensuing results are accurate

and realistic. The electric field across a water cluster will be reduced if the atomic posi-

tions are allowed to relax, either by some form of structural optimisation or a simulated

annealing procedure. The particular form of geometry optimisation applied to the wa-

ter clusters was fast conjugate gradient (CG) optimisation followed by Newton-Raphson

(NR) minimisation until the root mean square force decreased below 10−4 kcal mol−1 Å−1

during CG minimisation and below 10−10 kcal mol−1 Å−1 for NR minimisation. This

substantially reduced the average dipole moment of the extracted water clusters, as mea-

sured using classical tip3p point charges. The effects of the optimisation can be seen in

Figure 5.3(a) (blue line). In addition, Figure 5.1 (blue line) reveals that clusters that have

undergone MM minimisation all have their HOMO-LUMO gaps restored to values close

to the bulk water value of 4.2 eV. It is also expected that an implicit solvation model

will reduce this observed shift in electronic states on opposite surfaces of the sphere by

screening the electrostatic potential across the entirety of the cluster. It can be seen in

Figure 5.1 (red line) that when the extracted water clusters are simulated with implicit

solvent using onetep, the HOMO-LUMO gap is again restored to the value found in bulk

water. In panels (b) and (c) of Figure 5.5 it is shown that following classical minimisation

the dipole moment of the 16 Å water cluster is significantly reduced and the associated

electrostatic potential is negligible when simulated in the dielectric medium. For both the

case of classical minimisation and the use of implicit solvation, the local density of states

is much less dependent on position along the dipole moment vector and it much more

closely resembles the bulk density of states, shown in Figure 5.5 (green dashed line), as

should be expected for a large water cluster.

5.4 Protein systems

The problems of vanishing HOMO-LUMO gaps are not only found in water but also in

biomoleclar systems Therefore, the next area of focus must be on proteins, to ensure

that the computational approaches used are reliable and that the results being produced

are accurate and trustworthy. In order to investigate the claims made in Ref. [292], six

protein conformations: methionine-enkephalin (1PLW) [306], the RGD peptide (1FUL)

[307], transthyretin (1RVS) [308], the third intradiskal loop of bovine rhodopsin (1EDW)

[309], the seventh transmembrane helical domain of bovine rhodopsin (1FDF) [310] and

ubiquitin (1UBQ) [311], were accessed from the Brookhaven National Laboratory Protein

Data Bank (PDB) [312] as starting configurations for the calculations. With regards to

the specific onetep parameters used in both these and the water cluster calculations

presented in this chapter, an energy cutoff of 916 eV was used, corresponding to a psinc

grid spacing of 0.475 a0. The NGWFs were localised in real space with radii of 5.3 Å. For

the case of the 1PLW protein, upon increasing the NGWF radii from 5.3 Å to 6.4 Å , the
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HOMO-LUMO Gap / eV

PDB ID Atoms Charge in vacuo QM water Implicit Solvent QM/EE

1PLW 75(456) 0 0.0 3.7 3.7 3.5

1FUL 135(453) -1 n/a 2.7 2.6 2.6

1RVS 172(670) 0 n/a 3.4 3.7 2.9

1EDW 399(978) -1 n/a 3.1 3.7 2.6

1FDF 419(1526) 3 n/a 1.9 3.3 1.6

1UBQ 1231(2386) 0 n/a 2.6 3.4 2.4

Table 5.1: HOMO-LUMO gaps for a range of proteins from the PDB. Atom number in

parentheses includes a 5 Å solvation shell of water used in classical minimisation and

QM/EE simulations. Systems that did not converge are indicated by n/a. Vacuum

calculations and implicit solvent simulations did not include any explicit water molecules.

calculated HOMO-LUMO gap was found to be converged to within 3 meV. Repeating

these calculations at an energy cutoff of 1020 eV, corresponding to a grid spacing of 0.45

a0, the calculated HOMO-LUMO gap was converged to within 6 meV. The NGWFs in

onetep are optimised in situ to represent the valence states, however, previous experience

shows that these NGWFs describe the conduction states well for at least the first 1 to

2 eV above the LUMO and thus produce the same level of gap as equivalent plane-wave

calculations. At energies beyond this point, however, work reported in Ref. [108] shows

that the density of states is not well-represented by NGWFs and should be discounted.

In the instance that a set of starting configurations that had been obtained from

the PDB had more than one conformation available, the structure labelled as ‘model

1’ was used in each case. It is worth noting that these coordinates are resolved from

NMR investigations and so give the positions of the hydrogen atoms. Therefore, with no

prior preparation, the coordinates extracted from the PDB were placed straight into a

calculation in onetep in vacuo. The computed HOMO-LUMO gaps for these structures

can be seen in Table 5.1. As would be expected for this method of system preparation

(or lack thereof !), the simulations did not produce finite HOMO-LUMO gaps and so

therefore did not converge for any of the proteins apart from the smallest system that was

studied. In plotting the DFT electrostatic potential far from the 1UBQ protein, a strong

dipole moment is revealed, as can be seen in Figure 5.6(a). It is also clear from the local

density of states in Figure 5.6(b) that a number of electronic states for the protein are

close to the Fermi level. Clearly the problem of the vanishing HOMO-LUMO gap is very

similar in nature to that found in water clusters. Other authors have also since shown

that the number of protein electronic states close to the Fermi level can be reduced by

simulating the protein in a dielectric medium [122]. Perhaps some clarity can be gained

from stepping back a little and thinking about protein characteristics from a broader

viewpoint.

When considering the general properties of protein secondary structure, all the back-
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bone hydrogen bonds in an α-helix point in the same direction. This is due to the fact that

all the peptide units are aligned in the same orientation along the helical axis. A peptide

unit has a well-defined dipole moment, arising from the differing polarity of the N−H and

the C′−O groups and the partial double bond character of the N−C bond [313]. The

accepted value for the dipole moment of the individual peptide units is around 0.9 to 1.3

e.a0 [314]. Around 97% of the peptide dipole moments point in the direction of the helical

axis and this percentage is insensitive to the dihedral angles [315]. The amino terminus

has a partial positive charge and the carboxyl terminus has a partial negative charge.

Therefore, the overall effect on the resulting α-helix is a significant net dipole, which to

a first approximation one can deduce as being equal to N×1.1 e.a0 for N residues [316].

The most common location for an α-helix in a protein is on the outside of the structure,

where one side will face the hydrophobic interior of the protein and the other will face

the solution [317]. The α-helices that are not part of an enzyme active site, or a protein

binding site in general, will often have a negatively charged side-chain at the amino termi-

nus or a positively charged residue at the carboxyl terminus. These dipole-compensating

residues act to stabilise the helical form of the peptide in solution. In addition to these

stabilising residues, for a protein solvated in aqueous solution, the effective dipole of an

α-helix will be reduced as a result of solvent screening of the peptide group charges. The

solvent generates a reaction field that acts against the field generated by the vacuum

dipole, leading to the screening and effective lowering of the dipole moment [318]. When

calculating these structures in vacuo, due to a lack of electrostatic reaction field that was

generated by the solvent, the strength of the α-helix dipole, when compared to aqueous

solution, may increase drastically [319]. The most significant factor in this increase in

dipole moment is likely to be charged side chains such as solvent-exposed Arg, Lys, Glu

and Asp. As described in Chapter 2, these residues are generally charged in physiological

conditions at pH 7. When simulated in vacuo these residues are unscreened and, without

correction, the α-helix dipole moment due to these untreated side chains will be large,

causing an undesired shift in the surface electronic states. It has also been found that

when in aqueous solution the effective dipole moment is found to have a strong depen-

dence on the position and orientation of the helix with respect to the solvent. It is of

note that additional secondary structure motifs such as β-sheets carry comparatively little

dipole moment. However, in calculations, the surrounding solvent must be treated with

care otherwise spurious and unphysical effects are likely to arise.

In an attempt to recover the expected HOMO-LUMO gaps in proteins, similar tech-

niques to those described in the previous section have been used. The protein structures

were solvated in a 50 Å water cube using the tip3p force field and all of the protein

interactions were described using the amber ff99SB biomolecular force field. NVT min-

imisation was initially performed on the system before equilibrating in the NPT ensemble

up to a temperature of 300 Kelvin in six equal steps. A 5 ns NVT production run was then

performed in order to generate the final structures. Throughout the minimisation, equi-
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Figure 5.6: Electrostatic potential and local density of states (LDoS) for groups of atoms

as a function of position along the dipole moment vector (coloured arrow) of ubiquitin.

The dipole moment vector runs from red to blue. The black line is the total density of

states. Each line in the LDoS plot is normalised by the number of molecules contained

in the slab. Panel (a) shows the experimental structure with no solvation and the elec-

trostatic potential ranges from -0.2 V (red) to +0.2 V (blue). The slice is 42.9 Å behind

the protein. Panel (b) shows the LDoS along the dipole moment of the same protein

structure, this time after having been simulated with implicit solvent.

libration and production runs, harmonic constraints of 100 kcal mol−1 Å−2 were imposed

upon the protein structure. Following these runs in a 50 Å water cube, the majority of the

water molecules were stripped from the system. 5 Å of the surrounding water molecules

were retained from the simulations for each protein. The solvent geometry was then opti-

mised via fast conjugate gradient (CG), followed by Newton-Raphson (NR) minimisation,

until the root mean square force decreased below 10−4 kcal mol−1 Å−1 during CG min-

imisation and below 10−10 kcal mol−1 Å−1 for NR minimisation. During this process the

protein residues remained constrained. The resulting protein configurations were used as

the starting vacuum conformations for onetep calculations.

Following classical minimisation on the 1FDF structure in vacuo, the electronic struc-



Explaining the closure of calculated HOMO-LUMO gaps in biomolecular systems 97

ture calculation again failed to converge. The calculations thus have shown that whilst

classical optimisation is able to restore the HOMO-LUMO gap for water clusters, this

approach is unsuitable for proteins. This result can be understood from the fact that the

protein residues are fixed in their secondary structure conformations. This constraint re-

sults in much less opportunity for the structural mobility of proteins in general, especially

when compared to water. In order to proceed beyond the methods used to successfully

recover the HOMO-LUMO gap of the water systems, a more effective strategy will be to

include the effects of the protein environment through the use of explicit water molecules

or, the computationally less intense, implicit solvation. Either approach should screen the

effect of the charged residues within the system.

The first step is to take each protein structure that has been solvated by the classically

minimised 5 Å layer of water and simulate them in onetep using full DFT for the

entire system, up to a maximum system size of 2386 atoms, in order to re-calculate

the electronic structure. Calculations using implicit solvent have also been performed

for the protein structures in their vacuum configurations. The strategies of using either

explicit or implicit solvation both restore the HOMO-LUMO gaps to similar values. It

can be seen in Figure 5.6(b) that the density of states for the implicitly solvated system

resembles more closely that of an insulator. As mentioned in Chapter 3, by representing

the explicit water layer by embedded point charges through the use of a tip3p charge

distribution and removing the water molecules from the calculation, the computational

costs associated with a calculation can be dramatically reduced. To explore whether

this approach retains the correct gap the explicit water layer surrounding the protein

conformation has also been removed and, instead, represented by embedded point charges

with a tip3p charge distribution. In this instance, the calculated HOMO-LUMO gap is

restored to a value very similar to that of the simulation using a full QM water layer.

This result shows that classical charges can indeed reproduce the correct electrostatic

environment. Overall, Table 5.1 reveals that the use of implicit solvent largely produces

a HOMO-LUMO gap that is of greater magnitude than when an explicit water layer

is considered or embedded charge distributions are used. The significant outliers are

shown in the QM water and QM/EE gap values for the 1FDF protein. It is likely that

these particular methods struggle with the net charge of +3e, indicating that in such

systems where there is a significant net charge, an implicit solvent approach must be

used. Furthermore, these discrepancies in the gap values are more pronounced as the

system sizes increase. The use of explicit QM water manages to produce significant gap

values up to the mid-range of the systems in this study but Table 5.1 shows that for

larger systems it is necessary to use the computationally more expensive implicit solvent

model. As an additional viable alternative to restore the calculated gap, charged residues

within the 1FDF protein are mutated to alanine, and any charged groups of the N- and C-

terminus are hydrogen-capped. Alanine is used because of its non-bulky, chemically inert,

methyl functional group that adequately mimics the secondary structure preferences that
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many other amino acids possess. The calculated HOMO-LUMO gap increases by 1.3 eV,

using this technique, after the original calculation on the unmodified structure failed to

generate sensible eigenvalue occupancy. This is achieved by reducing the spurious dipole

moment caused by the vacuum-exposed charged residues.

5.5 Summary

This chapter has confirmed recent findings from Ref. [292] that DFT electronic structure

optimisation can be hindered by vanishing HOMO-LUMO gaps in large water and pro-

tein clusters, systems that should, in fact, display insulating behaviour. This problem has

been shown to manifest itself in clusters prepared with improper treatment of the interface

between the system and the surrounding vacuum. From the examples presented in this

chapter it has been shown that unequilibrated vacuum/water interfaces combined with

X-ray protein crystal structures taken straight from experimental repositories can exhibit

strong molecular dipole moments. The present work on water has shown that starting

from a continuous polar substance, where each molecule has a fairly large dipole moment,

the randomly arranged network of dipoles will then rearrange in order to minimise the

electrostatic energy. The protocol used in this chapter involved extracting a cluster from

a larger classical simulation, or in the case of the proteins, simulating an entire structure

using the experimental coordinates obtained from NMR or X-ray. This process of extract-

ing a smaller cluster, freezing the atomic positions and surrounding with vacuum, results

in a large surface dipole being exposed. Larger and larger extracted clusters have surfaces

further apart which results in increasing net dipole moments due to the larger surface

areas. The spurious electric fields associated with these unphysical dipole moments will

reduce the HOMO-LUMO gap by raising the energies of the electronic states on one side

of the cluster and lowering the energies of those on the other side. Depending on the

value of the local electric field, a large enough cluster will have the HOMO-LUMO gap

closed completely

By investigating the local density of states of these systems, decomposed into slabs

along the direction of the molecular dipole moment, it has been proved that the energies

of the electronic states are shifted by the electric field generated across the cluster. This

then results in the Fermi energy being pinned by states on opposite surfaces of the water

cluster, leading to the HOMO-LUMO gap closing, something that should not happen for

these structures. Whilst, in the literature, this effect is widely associated with the use

of the PBE gradient-corrected functional, the results presented here emphasise that this

effect should not be particular to the PBE functional used in these calculations. Previ-

ous authors have shown that hybrid functionals tend to have an intrinsically wider gap

and Refs. [260] and [298] have demonstrated that calculations, for systems comprising

thousands of atoms, implementing those functionals do converge. However, it is expected

that, even for functionals containing Hartree-Fock exchange, the HOMO-LUMO gap is
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still likely to close upon increasing system size at the time when DFT methodological

advances allow such access to larger systems. The development of linear-scaling function-

als with accurate Hartree-Fock exchange is a current area of research [72]. With such

methods available it would be prudent to test the HOMO-LUMO gap dependence on

increasing system size for the particular cases outlined in this chapter.

Practical solutions for restoring the HOMO-LUMO gap in water clusters and protein

systems have been demonstrated in this chapter. The methodologies used have ranged

from classical structural optimisation of the interfaces between water and vacuum, to the

screening of molecular dipole moments through the implicit solvation of protein struc-

tures. It has been shown that implicit solvation seems to give the best correspondence

between the HOMO-LUMO gaps of large isolated explicit water clusters and that of bulk

water obtained in periodic calculations. The use of implicit solvation techniques also

restores larger HOMO-LUMO gaps for proteins to a greater extent than when 5 Å of

the surrounding water molecules, retained from bulk periodic simulations, are explicitly

simulated. The systems investigated here comprised up to 2386 atoms and the practical

solutions demonstrated in this chapter have implications for the remainder of the disser-

tation as they show that the proposed methodologies for treating biomolecular structures

will generate sensible and reliable results. It has also been shown that the use of clas-

sical charges can reproduce the correct electrostatic environment, and hence restore the

HOMO-LUMO gap, whilst also significantly reducing the computational cost of the sim-

ulation, compared to using explicit QM water. This has positive implications for future

DFT studies of biomolecular systems, as the computational costs can be reduced by such

approaches. However, of more immediate importance is the fact that the next chapter

relies heavily on this approach in order to reduce the computational costs for large clusters

of water molecules undergoing full-DFT structural optimisation. Therefore, the results

presented in this chapter instil confidence in the approach used in the next chapter. The

calculations presented here could be further extended to systems such as the myoglobin

protein (PDB ID: 1A6N) to investigate whether other purely quantum mechanical phe-

nomena, such as the spin states on an iron ion, will be better described compared with

experimentally resolved structures as a result of following the classical structural optimi-

sation procedures discussed in this chapter. Another potential application area of impact

could be the spectroscopy of proteins, where the HOMO-LUMO energy levels of central

pigments are crucial [96,122]. In general, I am hopeful that the insights from the investi-

gation presented in this chapter will be a small contributor toward allowing the continued

modelling and simulation of biomolecular systems through the use of Kohn-Sham DFT.

One such system, where there is additional complexity to the protein structure, is an enzy-

matic reaction in which a small molecule is undergoing some chemical reaction catalysed

by the surrounding protein structure. Such a system is the focus of the next chapter.



Chapter 6

A density-functional perspective on

the chorismate mutase enzyme

“You can never cross the ocean unless you have the courage to lose sight of the shore”

Christopher Columbus (1451-1506)

The last two decades have witnessed the continual and concerted effort toward the

development of powerful tools which allow DFT calculations to be efficiently performed for

systems containing thousands of atoms. The challenge of performing quantum mechanical

simulations on such large systems is not just the computational cost of a calculation

for, say, a 1000-atom system, but also the fact that such large systems have complex

free energy landscapes thus significantly increasing the number of calculations needed to

extract meaningful predictions of the properties of such systems. The efficiency of the

linear-scaling DFT code onetep, along with significant associated computing resources,

allow real science to be performed, rather than simply allowing a small number of single-

point energy calculations to be performed, which would be the case if conventional cubic-

scaling DFT codes were used. A key aim in this chapter is to calculate an activation and

reaction energy for the conversion of chorismate to prephenate, catalysed by the Bacillus

subtilis chorismate mutase (CM) enzyme, which is fully converged with respect to the size

of the system. In doing so, a powerful proof-of-principle demonstration of the predictive

power of DFT calculations in biology will be demonstrated, which will, hopefully, in turn,

provide a very powerful push for the adoption of first-principles modelling techniques

within biologically-relevant disciplines. In this context, it is worth noting that it was

successful Grand Challenge applications in the early 1990’s that led to the widespread

adoption of DFT within the physical sciences. It is my impression, garnered from experts

in the field with much more experience than I, that we are very close to a similar tipping

point for the adoption of DFT in biology. However, for this to take place it will require

the successful demonstration of proof-of-principle Grand Challenge applications such as

accurate simulations of an entire enzyme. It is my hope that the calculations presented

in this dissertation will serve as a modest foundation for the further pursuit of such

100
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milestones within biomolecular simulation.

On the specifics of the work included in this chapter, a benchmark study on a large

portion of the CM enzyme using linear-scaling density-functional theory is discussed.

As outlined in Chapter 3, treating the entirety of an enzyme with conventional QM ap-

proaches is largely unfeasible due to computational demands, so hybrid QM/MM methods

are often applied instead. A recent QM/MM study has identified reaction pathways for

the rearrangement of chorismate to prephenate in solution and catalysed by CM [320].

However, due to the advances in linear-scaling density-functional methods outlined in

Chapter 3, it is now possible to apply these approaches to accurately predict transition

state geometries and energetics through treating a system of thousands of atoms at the

fully quantum mechanical level. QM/MM may suffer from inaccuracies introduced by

using classical force fields and from the coupling scheme used to link the two regions.

However, a full-DFT approach will allow a comparison to be made with hybrid methods

to investigate these inaccuracies. Through the use of the onetep code, large-scale DFT

calculations are performed on structures taken from the CM pathways in Ref. [320], in

order to address the convergence of energies of activation and reaction with respect to the

total size of the fragment considered.

6.1 Introduction

The CM enzyme is relatively simple, but has still managed to generate much controversy

and debate amongst enzymologists, despite just catalysing a one-step pericyclic reaction.

The enzyme catalyses the Claisen rearrangement of chorismate to prephenate, the gas

phase version of which has been discussed in Chapter 4. Within the larger scheme of the

biological process, the reaction is situated at a branch point in the shikimate metabolic

pathway [321]. This particular pathway is crucial for generating the aromatic amino

acids phenylalanine, tyrosine and tryptophan. In terms of practical applications, it has

been shown that herbicides that inhibit the biosynthesis of amino acids prove to be very

useful tools within the weed management industry. The particular success of these types of

herbicides has been due to their low toxicity in mammals, in other words, these herbicides

inhibit pathways that are lacking in mammals. There are now several types of herbicides

used within the industry with primary targets, or sites of action, that are associated with

the targeted and specific inhibition of enzymatic activity within biosynthetic pathways

for amino acids [322]. As discussed in Chapter 3, synthesised molecules which act as

transition state analogues are competitive inhibitors of enzyme activity, binding more

tightly to the active site than the natural or expected substrate in the reaction. A major

difference with designed transition state analogues is that the dissociation rate will be

orders of magnitude slower. Therefore, once the synthesised molecule binds, the enzyme

is essentially inactivated. Such an analogue has been synthesised for the CM enzyme [323]

and has been used to crystallise the enzyme [324]. The deregulation of the shikimate
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Figure 6.1: Rearangement of the substrate (magenta) from chorismate to prephenate

within the CM active site (yellow) and surrounding protein (grey) in the (a) reactant, (b)

transition state and (c) product conformations from DFT-optimised structures.
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pathway results in the accumulation of very high levels of shikimate and shikimate-3-

phosphate, and in some plant species this accumulation can account for up to around

16% of plant dry weight in sink tissues, where the products of photosynthesis are used

or stored. Important building blocks for other metabolic pathways are also reduced by

uncontrolled carbon flow through the shikimate pathway and reduced levels of aromatic

amino acids cause a significant reduction in protein synthesis. It has been shown that the

shikimate pathway exists only in fungi, bacteria and higher plants [325]. Therefore CM

inhibitors may be useful in the development of herbicides, fungicides and antibacterial

therapeutics [323] with low toxicity. Work investigating catalysis within CM may then be

able to elucidate more general principles of catalysis and TS analogue binding that can

then be harnessed in order to understand further a variety of other enzymes.

A key factor in why CM has undergone much study, both through computation [320,

326–329] and experiment [324, 330–337], is the fact that there is no covalent bonding

between the substrate and the enzyme active-site residues [330–334]. This can be seen in

Figure 6.1. It is this characteristic of the enzyme that has led the majority of researchers in

the field who are treating the enzyme computationally, to do so using QM/MM whereby

the substrate is treated with a quantum mechanical method and the active site and

surrounding enzyme residues and water molecules are treated with a classical molecular

mechanics approach. In addition, it has been shown that the reaction also takes place

in aqueous solution, with a similar mechanism [335]. Such an observation allows a direct

comparison of the reaction in the two environments. Therefore, the catalytic enhancement

of the enzyme can be calculated via simulation and directly compared with experimental

observations. Experimental investigations have found the enthalpy of activation to be

lowered from 20.71 ± 0.35 kcal mol−1 in a water environment [335] to 12.7 ± 0.4 kcal

mol−1 in the presence of the CM enzyme [333]. This lowering of the activation barrier,

in going from one environment to another, translates to a catalytic enhancement to the

reaction rate of approximately 106. The enthalpy of reaction in water has been shown,

via calorimetric measurements, to be equal to -13.2 ± 0.5 kcal mol−1 [334]. The QM/MM

study detailed in Ref. [320], of the reaction both in enzyme and solution environments at

the B3LYP/6-31G(d)/charmm27 level of theory, yielded activation energies of 17.4 ± 1.9

kcal mol−1 in water and 11.3 ± 1.8 kcal mol−1 in enzyme. To have a greater understanding

of the accuracy of these simulations and to place them within historical context, these

results are in much closer agreement with experiment than the first reported QM/MM

study of the CM enzyme [326]. This early work of Ref. [326] gave an activation barrier

of 17.8 kcal mol−1 in enzyme at the AM1/charmm27 level of theory, giving somewhat of

an overestimate of the reaction barrier. However, more recent work detailing a QM/MM

investigation of the reaction in enzyme yielded an activation energy of 1.4 kcal mol−1 [338].

This study used the same initial X-ray structure as Ref. [320] and prepared it in the same

way. The QM region comprised 24 atoms and was treated at the B3LYP/6-31G(d) level,

again identical to the approach adopted in Ref. [320]. Where the investigations differ is in
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the classical methods used to describe the MM region of the simulations. Ref. [338] treated

4117 atoms of the surrounding enzyme and water molecules with the amber 4.0 force

field, whereas in Ref. [320] the charmm27 force field was used to describe 7053 atoms of

the environment. Results such as those in Ref. [338] demonstrate the range of estimates

available for QM/MM calculations. This underestimation of the experimentally observed

barrier by an order of magnitude highlights the importance of careful path sampling

and potentially indicates the differences in results that can be obtained from the use of

differing parameterisation sets available in different force fields. This is only a whistle-stop

tour of the notable CM investigations present in the literature but a broad survey of CM

simulations can be found elsewhere [232,327].

As outlined in Chapter 3, a central theme of this dissertation is to attempt to make

simulation approaches and their associated results more accessible to non-specialists. This

will allow computational enzymology to have impact in other scientific communities. I

feel that the present exploratory work contained within this chapter also contributes

to this aspiration as it removes the additional complexity inherent in the selection of

force field parameters and of choosing a QM/MM boundary partitioning scheme. The

motivation for treating atoms beyond that of the CM substrate with QM methods stems,

in part, from mutagenesis experiments that demonstrate the significant role the Arg90

residue, illustrated in Figure 6.1, plays in catalysis within the CM enzyme [339]. The

experimental findings from Ref. [339] corroborated predictions from prior theoretical work

[326, 340] and agreed with the expected outcomes from previous experimental proposals

[333, 341]. In addition to these investigations, computational studies have been shown

to demonstrate the significant involvement of the Glu78 and Tyr108 sidechains [342]

along with the Arg7 charged residue [343] within CM catalysis. Activation energies have

been shown to change by just 1 kcal mol−1 upon including the charged residues Glu78

and Arg90, along with the substrate, in the QM region, compared to only including the

substrate, at the PBE/DVZP/amber level [328]. However, within the same calculations,

a much more significant difference in reaction energy of 5.7 kcal mol−1 was observed. This

result not only displays the difficulties involved in calculating a converged reaction energy

within this reaction but it also indicates that a larger QM region will be needed at that

level of theory in order to converge the calculated reaction energy. Furthermore, studies at

the AM1/charmm27 level of theory that included the same additional charged residues

as Ref. [328], found a change of 3.1 kcal mol−1 in the activation energy [343]. It has been

proposed that polarisation in the neighbouring charged residues and the associated charge

transfer from the substrate to the active site may be important for catalytic activity in

CM [342,343]. As the fixed charge approximation is generally assumed within force field

approaches, and QM/MM may encounter the problem of electron leakage, as discussed

in Chapter 3, the behaviour proposed in Refs. [342] and [343] may not be accurately

described by the previous approaches used by other authors. In addition, coupled-cluster

calculations performed in Ref. [329] on the active site of CM have demonstrated that by
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increasing the total size of the system from only the substrate to also include 4 active-site

residues – namely Arg7, Arg63, Glu78 and Arg90 – surrounding the substrate, changes

the activation barrier by around 0.7 kcal mol−1. However, as this is the largest system

size accessible with coupled-cluster approaches, the study provides a very limited test of

convergence of energies with respect to the size of the QM region. Ultimately, it is unclear

whether the computed value of the barrier will continue to change upon the addition of

further active-site residues.

Chapter 3 discusses the fact that conventional QM methods incur a computational

cost that typically increases as the third, or greater, power of the number of atoms

in the system. Nevertheless, an increasingly viable alternative approach to QM/MM

schemes is to perform QM calculations on a significant portion of an enzyme. Previous

authors have taken CM enzyme structures, which have been optimised at the RHF/6-

31+G(d,p)/amber level of theory, and have performed single-point energy calculations

at the all-electron quantum chemical level, using the fragment molecular orbital (FMO)

method [344]. The Effective FMO (EFMO) method has also been used to investigate

CM [345], yielding averaged enthalpies of activation and reaction. The activation barrier

overestimates experiment by 5.5 kcal mol−1. The energy of reaction was found to be

strongly basis set-dependent, varying from -5.5 to a positive value of 0.8 kcal mol−1, in

contrast with many predictions from other levels of theory of a very exothermic reaction.

Within the EFMO approach, an active region is defined as the active site of the enzyme,

in a similar manner to that of QM/MM simulations. Ref. [345] reports a doubling in

computational costs upon increasing the number of atoms in the EFMO active region

from 129 to 241. Following this increase, the activation barrier changes only by 0.2 kcal

mol−1 but the reaction energy changes by 2.3 kcal mol−1. In contrast to QM/MM cal-

culations, within EFMO simulations the atoms outside the active region remain frozen.

The electrons of the fixed fragments are kept in place by using frozen orbitals across any

bonds to the active region. The system in Ref. [345] was prepared using the approach

outlined in Ref. [320], optimising the geometry of the transition state analog previously

used in Ref. [323] to crystallise the enzyme, generating an initial conformation for the

reactant state. However, Ref. [320] uses a fully flexible model for both the substrate

and the enzyme allowing the entire protein to adjust, contrary to Ref. [345] where active

fragments have been pre-chosen.

Whilst the authors of Ref. [345] claim their work can be better considered an approx-

imation to a full-QM calculation, the work detailed in this chapter uses the linear-scaling

DFT code onetep to perform completely quantum mechanical calculations on a CM

fragment. It is through the use of onetep in the work in this chapter that I hope

to avoid the inherent errors that can be encountered using hybrid methods discussed

in this dissertation. By applying onetep, the entire enzyme fragment chosen can be

treated at the same quantum mechanical level of theory. The investigation presented

in this chapter takes CM reaction pathways that have been previously optimised at the
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B3LYP/6-31G(d)/charmm27 level in Ref. [320]. From these pathways, protein fragments

ranging up to 1999 atoms have been extracted. Each protein fragment has a well-defined

optimisation region, centred on the substrate, which is structurally optimised in onetep

whilst the remainder of the fragment is kept fixed. Reaction energies are calculated as

the total energy difference between the optimised reactant state and product state config-

urations, following geometry optimisation. Activation energies are calculated as the total

energy difference between the optimised reactant state and transition state conformations,

following transition state searching in the LST/QST formalism, using the optimised re-

actant and product state structures as end-point conformations. Following an exhaustive

literature search I am confident that the work in the present chapter is the only reported

study taking optimum CM structures from a QM/MM level of theory and re-optimising

with full-DFT, thus requiring no further input from classical approximations to generate

a QM-only transition state conformation and associated activation barrier.

The next section outlines the preparation process applied to the systems considered,

along with their associated optimisation procedures. The results are presented through

Sections 6.3 to 6.7. Further synoptic analysis and a discussion of the results is presented

in Section 6.8 and the chapter is brought to a close in Section 6.9.

6.2 General preparation and optimisation of systems

In this chapter, CM structures in their reactant and product state configurations have

been extracted from QM/MM pathways optimised in Ref. [320]. These minimum energy

stationary point conformations have then been re-optimised using density-functional the-

ory in onetep. To briefly outline the protocol used to generate the QM/MM pathways

presented in Ref. [320], Claeyssens and co-workers took the CM structure reported in

Ref. [324] with Protein Data Bank ID 2CHT, which, in its crystal structure, has a transi-

tion state analogue bound to the enzyme active site [323]. The chorismate substrate was

then optimised separately in the gas phase at the RHF/6-31G(d) level. This molecule was

then used to replace the transition state analogue bound to the active site [327,346]. Mul-

tiple structures were then generated through semi-empirical QM/MM molecular dynamics

at the SCCDFTB/charmm22 level. This was achieved by constraining the substrate to

be close to the transition state, as defined by a reaction coordinate described by the dif-

ference in C-O bond breaking and C-C bond forming distance. The substrate was treated

with B3LYP/6-31G(d) and the surroundings for both environments were treated with the

charmm27 and tip3p force fields. Following initial equilibration purely based on molec-

ular dynamics, reaction pathways were generated via restrained optimisation for fixed

reaction coordinate moving from the transition state forward in the reaction coordinate

to the product state conformation and backward to the reactant state configuration. This

process yielded 28 snapshots for each enzyme pathway and 30 snapshots for each pathway

in water. In total, 16 pathways were generated in enzyme by this process and 24 in water.
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It is clear from the literature that molecular dynamics has been shown to be a very useful

tool for providing initial structures for the study of enzymatic reactions [347–349], so the

initial CM structures should be reliable. A much more detailed description of the prepa-

ration of the system and the protocol followed for the QM/MM simulations is available

elsewhere [327,346,350,351].

6.2.1 Specific preparation of the enzyme system

An initial spherical cluster, that was centred on the substrate, was extracted from one of

the QM/MM pathways, detailed in Ref. [320], in the reactant state configuration. This

extract of the total system contained the substrate, the 57 nearest residues to the substrate

and the 41 closest water molecules to the substrate. In total the structure contained 999

atoms and any terminated peptide bonds were protonated accordingly, using the Open

Babel software package [352]. Within this protein fragment, an optimisation region was

defined to comprise the substrate, the four nearest water molecules and three nearest

active-site residues, namely Arg7, Glu78, and Arg90, which are illustrated in Figure 6.1.

All other residues and water molecules were defined to comprise the outer, or fixed, region.

From the same pathway, all of the same residues and water molecules were extracted in

their product state conformation. The residues from the product outer region were then

replaced by the residues from the reactant outer region. The individual reactant and

product optimisation regions were then structurally optimised whilst the outer region

remained fixed. This type of optimisation scheme ensures that the calculated total energy

differences are directly attributable to any local changes in the active site whilst accounting

for the long-ranged polarisation and steric constraints of the surrounding protein scaffold

of the enzyme. This model assumes that there are no significant changes in the structure

of the outer region when moving from the reactant to product conformation of the enzyme.

These assumptions agree with the experimental observation that there are no large-scale

changes in the enzyme conformation during the course of the reaction [324,336,337]. These

assumptions are also consistent with the QM/MM approach used in Ref. [320] whereby

the outer 5 Å of the outer structure is frozen with all other atoms free to move. As a

result there are no significant structural changes in the outer region of the system when

comparing the reactant and product state enzyme conformations along the pathways from

QM/MM. Transition state searching has also been performed using the onetep-optimised

reactant and product state structures as end point conformations. At this point it must

be emphasised that no information regarding the transition state structure was taken

from the QM/MM calculations.

The aim of Chapter 4 of this dissertation was to demonstrate that validation is an

important aspect of any computational investigation. It is of vital importance to ensure

that energies of reaction and activation are converged with respect to the size of the

atomic region undergoing structural optimisation. Therefore for the 57-residue system,

the optimisation region was also increased to include the substrate, the four closest water
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molecules and the nine nearest active-site residues, namely Arg7, Phe57, Ala59, Arg63,

Cys75, Glu78, Arg90, Tyr108 and Arg116, which are illustrated in Figure 6.1. A larger

structure in the same conformation, from the same pathway, was also extracted. This

structure in total comprises the substrate, the 99 nearest residues and the 129 nearest

water molecules to the substrate. This fragment contains 1999 atoms and can be seen

in Figure 6.2. The same three-residue optimisation region as is contained within the

Figure 6.2: Exemplar 1999-atom CM fragment. The substrate, nine active-site residues

and four water molecules are shown in colour and the remainder of the residues and water

molecules are shown in grey.
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57-residue system was allowed to optimise for the 99-residue fragment.

The work carried out in Ref. [292] reports vanishing HOMO-LUMO gaps for systems

such as proteins and even water clusters, leading to poor convergence of the self-consistent

electronic structure optimisation procedures. This resultant occupation of the lowest un-

occupied molecular orbitals is unphysical as proteins should generally display insulating

behaviour with large HOMO-LUMO gaps. However, in Chapter 5, it was shown that van-

ishing HOMO-LUMO gaps are the result of large surface dipoles being created across an

extracted water or protein cluster surrounded by vacuum. In addition, the work presented

within that chapter demonstrated practical solutions for reducing the dipole moment,

recovering the HOMO-LUMO gap in these systems through means of classical minimi-

sation, implicit solvation and/or the use of embedded classical point charges. Chapter 5

also showed that classical minimisation performed in solution prior to electronic structure

calculations will allow the system to retain any major structural features obtained dur-

ing a fully solvated molecular dynamics simulation and reduce any electrostatic artefacts

that may arise from performing the subsequent electronic structure calculations in vacuo.

Following on from the work in Chapter 5, that showed mutating charged residues – on the

surface of the extracted protein, to alanine, helped to significantly increase the calculated

gap of the 1FDF protein, potentially dangling charged residues on the outer shell of the

CM structure were identified as leading to a vanishing HOMO-LUMO gap if not correctly

treated. Ordinarily, these residues would form salt bridges or would be solvent-exposed

in their real environment but in the model presented here, they are vacuum-exposed. The

specific residues, within this category in the present studies, were His58 and Glu19 in the

57-residue fragment and Lys24, Lys185, Arg203 and Glu208 in the 99-residue fragment.

The best course of action was therefore to mutate the Glu19 to Ala and de-protonate

the His58 in the 57-residue fragment. Similarly, with the 99-residue fragment the four

vacuum-exposed charged residues were mutated to alanine and the dangling histidine

residue was de-protonated, thereby neutralising all vacuum-exposed charged residues.

The overall effect of these changes was to reduce the number of protein states close to the

Fermi level, ultimately improving the convergence of the electronic structure optimisation

procedures, and ensuring a significant HOMO-LUMO gap was maintained for the system.

Following these mutations, the resulting improvements seen in the occupation eigenvalues

surrounding the Fermi Energy are in agreement with the findings of other authors who

implemented similar approaches [99].

First turning attention to the 57-residue system, five initial configurations were taken

from the optimised pathways calculated in Ref. [320]. Starting the optimisation procedure

from a range of QM/MM reactant and product state configurations ensures that the DFT-

optimised structures give a representative sample of the reactive conformations, and their

associated enthalpies of activation and reaction, found in the enzyme system at room

temperature. Therefore, building on the robust approach presented in Ref. [320] where

multiple pathways have been investigated for the reaction in the CM enzyme, the average
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reaction and activation energy will need to be calculated in order to take into consideration

local minima present along the pathway. Once optimised structures for the reactant and

product state conformations were generated and their associated reaction energies and

forces were shown to converge, those structures were then used as the starting point for

transition state searching performed using the linear and quadratic synchronous transit

approaches described in Chapter 3. The energies calculated in this investigation do not

include entropy, but as the experimental values available include enthalpies of activation

and reaction, combined with the fact that entropic effects in the enzyme are relatively

small and are not considered to be significant [333], this is a valid comparison to make.

Within the onetep calculations presented in this chapter, the PBE functional, including

dispersion corrections, is used to describe the entire system at the full-DFT level. With

regards to the specific parameters used for the simulations performed in onetep, the

NGWFs have an equivalent plane wave energy cutoff of 1020 eV, corresponding to a psinc

grid spacing of 0.45 a0. An increase in NGWF radii from 5.3 Å to 6.4 Å led to a change in

reaction energy of 0.3 kcal mol−1 for the chorismate to prephenate reaction in the largest

protein system discussed here. Repeating the calculation with an energy cut-off of 1290eV

changed the reaction energy by 0.1 kcal mol−1.

QM/MM calculations on the optimised enzyme pathways detailed in Ref. [320] have

been repeated, in order to compare the results from the large-scale density-functional

calculations, performed in this chapter, directly with QM/MM. These new QM/MM cal-

culations make use of the PBE density functional with empirical dispersion corrections

based on the formulation by Grimme et al. [353] to describe the QM region. In com-

parison, Ref. [320] made use of the B3LYP density functional, which was not dispersion

corrected, in order to calculate the QM parts of the calculation. It has been shown that

the inclusion of dispersion within QM/MM calculations has a significant effect on B3LYP-

calculated energies and geometries of transition states and encounter complexes, in the

case of cytochrome P450, and is also argued to be important in modelling reactions catal-

ysed by other enzymes [354,355]. The 6-31G(d) basis set used for the new set of QM/MM

calculations is the same, along with the associated calculation protocol, as implemented

within Ref. [320]. In comparison to these new QM/MM calculations, the difference with

the full-DFT calculations lies in the basis set used. Therefore it may be instructive, at

this point, to compare these basis sets more closely. The so-called 6-31G basis is a split-

valence double-zeta basis set; the core orbital is a contracted Gaussian-type orbital made

of 6 Gaussians, and the valence is described by two orbitals – one contracted Gaussian-

type orbital made of 3 Gaussians, and one single Gaussian. 6-31G(d) is then a 6-31G

basis set with added d polarisation functions on non-hydrogen atoms. Previous work

in the CM literature [329], has shown that, for the reaction, the computed LCCSD(T0)

barrier heights agree with the full CCSD(T) values at the basis-set limit to within 1kcal

mol−1. Here, the acronyms refer to coupled-cluster (CC) theory with single (S) and dou-

ble (D) excitations combined with an (approximate (T0)) triples (T) correction and local
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approximations (L). However, these calculations are prohibitively expensive and are not

routinely used. For reasons of computational convenience, the 6-31G(d) basis set is used.

With regards to basis set used in the current study, the psinc basis, that used within

onetep, is a systematic basis set, the accuracy of which may be tuned with a single

adjustable parameter. In addition, the activation and reaction energies for the system

have been converged with respect to the spacing of the psinc grid. The onetep calcula-

tions describe the entire enzyme fragment at the full-DFT level. As a result, this yields

a more accurate description of the surrounding active site and associated protein scaffold

compared to the force field description in the QM/MM calculations presented here.

6.2.2 Specific preparation of system in solution

In a manner identical to that of the enzyme system preparation, an initial structure,

centred on the substrate, was extracted from one of the QM/MM pathways in solution,

in the reactant state configuration. The solution system comprises a total of 2025 atoms

divided into three regions and a schematic representation of this can be seen in Figure 6.3.

Within this total structure, the chorismate substrate and the 76 closest water molecules

were chosen as the region that undergoes structural optimisation. The optimisation region

is then surrounded by 199 water molecules that are fixed in their positions from QM/MM

calculations but are now treated with QM. The remaining 392 water molecules are repre-

sented as classical tip3p electrostatic point charges fixed in their positions from QM/MM

calculations. This use of classical point charges aids in convergence of the onetep den-

sity kernel and is necessary to restore the HOMO-LUMO gap, as shown in Chapter 5.

The chorismate substrate and the subsequent 76 closest water molecules from the same

pathway in the product state configuration were also extracted and then surrounded by

the RS fixed atoms and electrostatically embedded point charges. Adopting the principles

outlined in Chapter 4, two additional systems were prepared to check the convergence of

calculated properties. The first additional structure defines the substrate and the closest

123 water molecules to be those undergoing structural optimisation. 248 water molecules

then surround this region, fixed in their QM/MM positions and treated with QM. The

remaining 296 water molecules are treated as embedded classical point charges. The sec-

ond additional structure defines the optimisation region as the substrate and the closest

170 water molecules. Surrounding this region are 303 water molecules fixed in QM/MM

positions that are treated with QM. The 194 water molecules that remain are treated

as tip3p point charges. A total system size of 2025 atoms was maintained for each of

the water spheres extracted in each of the three-region models used. Further QM/MM

calculations were also performed on the water pathways calculated in Ref. [320]. These

calculations again use the PBE functional with empirical dispersion corrections based on

the Grimme formulation.



112 Large Scale Quantum Mechanical Enzymology

Figure 6.3: Schematic representation of the three-region optimisation model for the water

systems considered.

6.3 Rearrangement in Enzyme

By treating the entirety of the protein fragment at the full-DFT level within onetep, the

DFT-optimised structures and total energies of the reactant and product state of the 999-

atom system can be computed. The resulting optimised reactant and product structures

can be seen in Figure 6.1. In addition, the figure also shows the transition state conforma-

tion solved using first-principles transition state searching. These resultant structures are

in excellent agreement with the corresponding conformation from the QM/MM-calculated

pathways in Ref. [320], which are not shown here. The 999-atom protein fragment with

an associated 98-atom optimisation region yields energies of activation and reaction of
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13.4 and −7.7 kcal mol−1, respectively. These can be seen in Table 6.1. The table also

# Mobile : Frozen Atoms Energies / kcal mol−1

∆‡Etot ∆Etot

98 : 901 13.4 -7.7

211 : 788 13.5 -8.0

98 : 1901 13.3 -7.9

98 : 901 (Implicit Solvation) 13.6 -8.2

Table 6.1: Energies of activation (∆‡Etot) and reaction (∆Etot) for increasing size of

optimisation region and total fragment.

shows that the activation and reaction energies for the 999-atom system change by 0.1

and 0.3 kcal mol−1, respectively, when the number of atoms in the optimisation region is

increased from 98 to 211 atoms, thus increasing the total number of that are structurally

optimised from three to nine. The resultant change of activation and reaction energies,

after increasing the total size of the fragment from 999 to 1999 atoms whilst maintaining

an optimisation region of 98 atoms, amount to 0.1 and 0.2 kcal mol−1, respectively.

As discussed in Chapter 5, performing large-scale density-functional calculations with

a cluster geometry in vacuo can, in some instances, lead to a large surface dipole moment.

If incorrectly treated, this may then lead to poor convergence of the density kernel occu-

pancies and may potentially have an effect on the energetics of the substrate in the centre

of the extracted cluster. In order to test that this effect has been minimised here, addi-

tional implicit solvent calculations have been performed on the three optimised stationary

point structures along the reaction pathway for the 999-atom system. The same implicit

solvation approach has been used as in the previous chapter to screen any surface dipole

moment and increase the HOMO-LUMO gap in problem cases of water clusters and pro-

tein fragments. Following this approach, the HOMO-LUMO gaps of the DFT-optimised

protein clusters are always greater than 0.6 eV and increase by 0.3 eV upon including

implicit solvent. Table 6.1 also reveals that through the use of implicit solvation on the

optimised structures, the energies of activation and reaction are changed by just 0.2 and

0.5 kcal mol−1, respectively. One should therefore be convinced that the calculated prop-

erties of interest are well and truly converged for the smallest cluster studied, comprising

999 atoms, with an associated optimisation region of 98 atoms. It should hopefully also

be evident that the use of an implicit solvent model to additionally include the effects of

the environment is not necessary for the systems in the present chapter.

In order to compute an average for the calculated energies of activation and reaction

for the chorismate to prephenate rearrangement in CM, five pathways were selected from

Ref. [320]. For each pathway, the structures of the end points were extracted, truncated to

form the 999-atom cluster described previously and re-optimised using large-scale density-

functional approaches with an associated optimisation region comprising 98 atoms. Table
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6.2 compares the averaged values calculated using onetep with averages from QM/MM

calculations and also experimental enthalpies of activation and reaction. The averaged

energies of activation and reaction, calculated using onetep, are equal to 13.6± 1.3 and

−7.8± 0.5 kcal mol−1, respectively. Here the results are presented in the form of µ± σ√
n
,

where µ is the sample mean, σ√
n

is the standard error of the mean, σ is the sample

standard deviation and n is the sample size. Table 6.2 also shows that the calculated

value for the activation energy of 13.6±1.3 kcal mol−1 is in excellent agreement with both

the experimental value of 12.7± 0.4 kcal mol−1 and the B3LYP/charmm27 calculations

conducted by other authors. However, when comparing the averaged reaction energy,

calculated with onetep, to that of QM/MM calculations in Ref. [320], it is evident

that the averaged full-DFT values predict a significantly less exothermic reaction for the

chorismate to prephenate rearrangement in the presence of CM. However, following an

exhaustive literature search, no experimental information regarding this reaction energy

in the presence of CM could be found.

In order to further elucidate the effect on the calculated energies of treating an entire

enzyme fragment with QM, additional QM/MM calculations using PBE+D/charmm27

have been performed. As a result, the exchange-correlation functional used to describe the

QM region is directly comparable with that used in onetep. However, it is important to

note that the 6-31G(d) basis set used in the QM/MM calculations is less accurate than the

onetep psinc basis approach, which has been shown to approach the complete basis set

limit [124]. Table 6.2 reveals that the calculated activation energy is significantly under-

estimated by PBE+D/charmm27, which can be ascribed directly to inaccuracies in the

molecular mechanics force field and the QM basis set. The underestimation of activation

barriers using a PBE functional within QM/MM calculations has been previously reported

in the literature [328, 356]. The calculated reaction energy in the QM/MM approach is

again significantly more exothermic compared to that predicted by calculations performed

in onetep. It has also been shown in Ref. [328] that the use of a PBE functional in a

QM/MM calculation can overestimate the energy of reaction. However, once again, the

lack of experimental reaction enthalpy data precludes any conclusions from being drawn

from this particular result. The above results should, however, instil confidence that all

Energies / kcal mol−1

∆‡Etot ∆Etot

onetep 13.6 ± 1.3 -7.8 ± 0.5

B3LYP/charmm27 [320] 11.3 ± 1.8 -18.2 ± 1.3

PBE+D/charmm27 7.5 ± 0.4 -19.7 ± 0.5

Experiment [333] 12.7 ± 0.4 –

Table 6.2: Comparison of energies of activation (∆‡Etot) and reaction (∆Etot), from the

literature, to those in the present work.
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other remaining discrepancies between onetep calculations and experiment or QM/MM

are due to the approximations within full-DFT such as the PBE exchange-correlation

functional, the pseudopotential approach and the use of the underlying psinc basis set.

In order to examine the differences between the full-QM non-bonded interactions and

the QM/MM approximations, Table 6.3 compares the interaction energies between active

site and substrate for the optimised enzyme systems with results from the literature and

also with additional QM/MM simulations carried out for the present chapter. Within

Relative Energies / kcal mol−1

∆‡Eint ∆Eint ∆‡Eenv ∆Eenv ∆‡Esub ∆Esub

onetep -2.1 ± 0.3 12.7 ± 0.9 0.6 ± 0.2 -0.5 ± 0.1 15.1 ± 1.2 -20.0 ± 1.2

B3LYP/charmm27 [320] -7.3 ± 2.0 7.0 ± 2.5 – – – –

PBE+D/charmm27 -8.5 ± 0.8 7.5 ± 0.5 2.8 ± 0.2 -3.8 ± 0.5 13.2 ± 0.3 -23.4 ± 0.3

Table 6.3: Comparison of relative interaction energies in enzyme, from the literature, to

those in the present work. The energies of interaction are defined relative to the RS,

measured at the TS (∆‡Eint) and the PS (∆Eint). Also shown are the components from

the environment (∆(‡)Eenv) and from the substrate (∆(‡)Esub) as defined in equation (6.1).

this chapter the interaction energy is defined as:

Eint = Etot − (Esub + Eenv) (6.1)

where Eint is calculated as the total energy of the whole system Etot less the components of

energy of the substrate Esub and that of the environment Eenv, which is the reorganisation

energy due to the enzyme in the protein environment or due to the water molecules in the

solution environment. The latter two terms are single-point energies from calculations on

sub-systems extracted from the optimised structures. No further re-optimisation is used

to calculate these interaction terms. The interaction energy should ideally be stabilising

at the transition state due to favourable Coulombic interactions between the dianionic

substrate and the surrounding positively charged active-site residues.

From Table 6.4 it can be seen that all interaction energies, calculated using full-DFT,

are converged to within 0.5 kcal mol−1 with respect to the size of the optimisation re-

gion and the total size of fragment simulated. The calculated interaction energies from

# Mobile : Frozen Atoms Relative Energies / kcal mol−1

∆‡Eint ∆Eint ∆‡Eenv ∆Eenv ∆‡Esub ∆Esub

98 : 901 -2.1 ± 0.3 12.7 ± 0.9 0.6 ± 0.2 -0.5 ± 0.1 15.1 ± 1.2 -20.0 ± 1.2

211 : 788 -1.8 13.0 0.7 -0.7 14.6 -20.3

98 : 1901 -2.2 12.9 0.4 -0.5 15.1 -20.3

Table 6.4: Convergence of calculated interaction energies with respect to the size of the

total fragment considered and the associated optimisation region.
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QM/MM approaches at the transition state are an overestimate compared to those cal-

culated using full-DFT within onetep. In QM/MM, the strain energy in the enzyme is

calculated using an entirely classical approach and, as such, is expected to be strongly

dependent on the accuracy of the force field being used. This can be understood from

the present simulations, as the charmm27 force field also overestimates the changes in

the enzyme strain energy, at both the transition and product states, when compared to a

full-DFT approach. Table 6.3 shows that the cost in reorganisation energy for the enzyme

to pass from the chorismate reactant to the transition state structure is 0.6 kcal mol−1 on

average, which is around 30% of the gain in substrate-enzyme interaction energy. It is of

note that the strain energy stored in the enzyme is less than 1 kcal mol−1 over the entire

course of the reaction, which may be a favourable design feature in these astonishing

natural catalysts. Table 6.3 shows that the ∆‡Esub energy calculated with onetep and

PBE+D/charmm27 are both significantly smaller than the activation energy calculated

in vacuo of 29.7 kcal mol−1.

6.4 Natural bond orbital analysis

As discussed in Chapter 3, although density-functional calculations can provide a very

accurate description of a system in terms of its total electron density, problems can often

arise when trying to decompose intermolecular interactions into chemically intuitive local

quantities in order to generate a more qualitative description of the electronic behaviour.

In the particular case of CM catalysis, it is the contributions of individual active-site

residues to transition state stabilisation that are of interest. For this reason, a natural

bond orbital (NBO) analysis has been performed on a subsystem comprising the substrate

and surrounding in the optimisation region. Such an analysis allows the electron density

to be re-described in terms of localised Lewis-type bonds and anti-bonds, along with lone

pair orbitals. It is the delocalisation of electronic density from filled to vacant NBOs that

causes a variational lowering of the total energy. This phenomenon is particularly impor-

tant for hydrogen bonds. However, whilst it is important to keep in mind that no quan-

titative conclusions can realistically be drawn from just the charge transfer component,

this has been shown previously to be strongly correlated with hydrogen-bonding strength

in simple systems [174–176]. The three sets of NBOs that are estimated, via second order

perturbation theory, to provide the strongest stabilisation energy to the substrate at the

transition state are shown in Figure 6.4. As is expected for these types of interactions,

each of them involves the delocalisation of electronic density between the substrate and

neighbouring charged active-site residues. Specifically, they are all interactions from lone

pairs (n) to anti-bonding (σ∗) orbitals.

With regards to the details of the interactions, the analysis of the substrate nO → σ∗NH

interaction with the Arg90 charged residue reveals a favourable change in second-order

perturbation energy in going from the reactant to transition state conformation ∆∆‡E(2)
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Figure 6.4: The three most stabilising NBO interactions at the transition state.

The red/green isosurface represents positive/negative NBOs on the enzyme and the

blue/yellow isosurface represents those on the substrate.

of −11.4 ± 3.1 kcal mol−1. The same interaction shows an unfavourable change in go-

ing from the reactant to product state conformation ∆∆E(2) of 7.2 ± 2.9 kcal mol−1.

This particular interaction indicates that the Arg90 charged residue is both helpful in

stabilising the transition state and also in destabilising the product, leading toward the

eventual unbinding and dissociation of the substrate. Focussing attention on the crystal-

lographically observed water molecule, there exists an nO → σ∗OH interaction between this

molecule and the substrate. This interaction gives ∆∆‡E(2) = −8.6± 0.8 kcal mol−1, sta-

bilising the transition state, whilst a separate observed water molecule is involved in the

same type of interaction giving ∆∆E(2) = 3.4± 0.9 kcal mol−1, destabilising the product.

There also exists a substrate nO → σ∗NH interaction with the Arg7 charged residue, giving

∆∆‡E(2) = −2.4±0.4, stabilising the transition state combined with ∆∆E(2) = 1.7±0.3,

destabilising the product. The NBO analysis shows that the charged Glu78 active-site

residue stabilises the transition state with ∆∆‡E(2) = −3.1±1.0. Therefore, this analysis

suggests that overall the active-site structure has evolved to an extent that the charged

residues are accurately positioned to provide optimal orbital overlap with the substrate at

the transition state, thereby strengthening the intermolecular interaction, as seen in Ta-

ble 6.3, and ultimately lowering the activation energy barrier compared to the equivalent

reaction in solution, which is discussed further in Section 6.6.
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6.5 Structural analysis

Active Site H-N-H bond angle χ / ◦

Residue Reactant Transition State Product

χRS
ONETEP χRS

QM/MM χTS
ONETEP χTS

QM/MM χPS
ONETEP χPS

QM/MM

Arg7 118.9± 0.1 121.6± 0.1 118.9± 0.1 121.5± 0.1 118.6± 0.1 121.2± 0.1

Arg90 118.1± 0.1 122.0± 0.1 118.0± 0.1 122.0± 0.2 117.6± 0.1 121.6± 0.1

Arg63 116.9 118.8 116.9 119.2 116.1 119.4

Table 6.5: Comparison of selected H-N-H bond angles of three arginine residues hydrogen-

bonded with the substrate in the CM active site. The QM/MM values are from calcula-

tions presented in Ref. [320] and the onetep values are those calculated following struc-

tural optimisation. The Arg7 and Arg90 bond angles are averaged over the five pathways

in which the residues were structurally optimised. The Arg63 residue was optimised in

the system comprising 211 mobile atoms over a single selected pathway.

No information regarding the QM/MM structure of the transition state was used in

the current LST/QST simulations performed with onetep. Despite this, there exists very

little difference between the structures computed using full-DFT when compared with the

original QM/MM structures. Indeed, the hydrogen-bonding network is identical in the

two sets of structures, at all three stationary points of the reaction. There are, however,

some more subtle deformations in the three charged arginine active-site residues that are

hydrogen-bonded to the substrate. A structural analysis has been made of the H-N-H

angles for the part of the guanidinium groups of each charged arginine active-site residue

that is hydrogen-bonded with the substrate. The results of this analysis can be seen in

Table 6.5. Following the analysis one can assert that, other than the fact that the H−N−H

bond angles are consistently smaller in the structures calculated with onetep, compared

to QM/MM, it is not particularly clear if the identified NBO interactions are correlated

with any change in ionic structure. Therefore, selected dihedral angles, defined using

the atomic positions highlighted in Figure 6.5, were also measured for the three arginine

residues in the initial QM/MM structures and following optimisation in onetep. In all

three cases it is clear that there is a significant distortion of the arginine guanidinium group

away from planarity. This can be seen in Table 6.6. Ab initio simulations of Arg radicals

have shown that the planarity of this guanidinium group can be affected by its charge

state [357, 358]. In addition, it has been shown that the environment of the arginine

residue can also affect its planarity [359]. Whilst the classical force field will indeed

allow some flexibility of the dihedral angle, the particular arginine distortion identified

in the onetep-optimised structures is not accurately treated in conventional QM/MM

calculations as the residue is not contained within the QM region. Many authors have

discussed the importance of the Arg90 residue in stabilising the transition state within
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Figure 6.5: Atomic positions (connected by a dashed line) used in the definition of the

dihedral angles presented in Table 6.6 for the three arginine residues hydrogen-bonded

to the substrate, calculated before and after structural optimisation. The two carbon

atoms highlighted, C2 and C15, display the most significant charge redistribution during

the reaction in enzyme. A hydrogen-bond is formed between H0 of Arg90 and O13 of

the substrate. The H−N−H angles shown in Table 6.5 are calculated with H0 and its

neighbouring nitrogen and hydrogen atoms.

Active Site Dihedral Angle φ / ◦

Residue Reactant Transition State Product

φRS
ONETEP φRS

QM/MM φTS
ONETEP φTS

QM/MM φPS
ONETEP φPS

QM/MM

Arg7 −14.8± 1.7 −7.3± 0.6 −13.9± 1.5 −6.7± 0.7 −11.7± 1.5 −5.7± .6
Arg90 −11.9± 1.2 −3.2± 0.7 −13.8± 1.3 −4.0± 0.6 −14.4± 1.5 −5.7± 0.5

Arg63 −13.7 −1.3 −16.7 −5.1 −18.5 −6.6

Table 6.6: Comparison of selected dihedral angles of three arginine residues hydrogen-

bonded with the substrate in the CM active site. The QM/MM values are from cal-

culations presented in Ref. [320] and the onetep values are those calculated following

structural optimisation. The Arg7 and Arg90 dihedral angles are averaged over the five

pathways in which the residues were structurally optimised. The Arg63 residue was op-

timised in the system comprising 211 mobile atoms over a single selected pathway.
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the CM active site, yet its inclusion within a larger QM region, than is commonly used to

treat this system, has not been reported. Therefore, the work presented in this chapter

is the first observation of the resultant changes in dihedral angle for the Arg90 residue

following structural optimisation at the full-DFT level.

6.6 Rearrangement in solution

A review on catalysis penned by Nobel laureate Arieh Warshel [360] states that in or-

der to generate a more quantitative understanding of catalysis one must ask the question

“catalysis relative to what ?” and it is almost immediately apparent how one can go about

answering this. One must investigate the uncatalysed version of the reaction in water.

As outlined in Section 6.2.2, the equivalent rearrangement of chorismate to prephenate

in solution has also been investigated. It is shown in Table 6.7 that both the energies of

Mobile Atoms Frozen Atoms Point Charges Energies / kcal mol−1

∆‡Etot ∆Etot

252 597 1176 29.8 −4.7

393 744 888 23.5 −10.0

534 909 582 23.9 −9.7

Table 6.7: Energies of activation (∆‡Etot) and reaction (∆Etot) for increasing size of

optimisation region, along with number of frozen atoms and electrostatic point charges.

activation and of reaction are converged with respect to the size of the optimisation region

used. However, it should be made clear that a much larger optimisation region, compris-

ing more than 300 atoms, is required in the liquid phase compared with the simulation

bound to the relatively structured enzyme. The best course of action, following these

convergence tests, is to proceed with investigating the QM/MM pathways using a 534-

atom optimisation region in order to make a comparison with experiment and additional

QM/MM simulations. These findings are presented in Table 6.8. The averaged activation

Energies / kcal mol−1

∆‡Etot ∆Etot

onetep 24.1± 1.1 −9.4± 2.2

B3LYP/charmm27 [320] 17.4± 1.9 −16.7± 2.2

PBE+D/charmm27 20.8± 3.9 −23.4± 0.9

Experiment [334] 20.71 ± 0.35 -13.2 ± 0.5

Table 6.8: Comparison of energies of activation (∆‡Etot) and reaction (∆Etot) in water,

from the literature, to those in the present work.
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Relative Energies / kcal mol−1

∆‡Eint ∆Eint ∆‡Eenv ∆Eenv ∆‡Esub ∆Esub

onetep -1.2 ± 1.2 14.0 ± 1.5 6.8 ± 0.7 -1.2 ± 0.5 18.5 ± 0.8 -22.2 ± 1.6

PBE+D/charmm27 -7.0 ± 2.4 -1.6 ± 3.2 4.9 ± 2.3 -6.5 ± 1.3 22.9 ± 3.5 -15.3 ± 1.6

Table 6.9: Comparison of interaction energies in solution, from PBE/MM, to those in the

present work. The interaction energies are split into components relative to the transition

state (∆‡Eint) and relative to the product state (∆Eint) and comprise the components

from the water environment (∆(‡)Eenv) and from the substrate (∆(‡)Esub).

and reaction energies are equal to 24.1±1.1 and −9.4±2.2 kcal mol−1, respectively. These

values are in agreement with experiment to within 4 kcal mol−1. In a similar manner to the

result in the enzyme, the activation barrier has again been overestimated. The calculated

reaction energy in solution is similar to the value in enzyme of -7.8 kcal mol−1. However,

both of these values are underestimated with respect to the experimentally observed heat

of reaction. It can be seen in Table 6.8 that the magnitude of the error, relative to ex-

perimental results, of the B3LYP/charmm27 calculations (−3.3 kcal mol−1) is similar to

the full-DFT approach in onetep (3.4 kcal mol−1), although B3LYP/MM provides an

underestimate and full-QM provides an overestimate. A PBE+D/charmm27 approach

yields a good agreement with the experimentally observed activation energy, which is

perhaps more likely to be a fortuitous result. However, the simulations still have their

flaws as the averaged reaction energy is very much overestimated.

It is prudent to note at this point that the reaction conformation in water found in this

chapter, which is based on the global minimum found in enzyme, is very likely to be one

amongst many local minima present in the system in water. Previous authors have shown

that the global minimum energy structure in the enzyme has a different conformation to

the optimal structure found in solution [361]. It has been proposed that an associated

free energy difference, estimated in Ref. [361] as 1.2 kcal mol−1, is likely to contribute to

the overall barrier to the non-enzymatic reaction in aqueous solution. Another exhaustive

literature search could not find an associated correction to the enthalpy barrier but this

fact is unlikely to significantly affect the conclusions drawn from the present calculations.

In an identical manner to the enzyme system, the total energies calculated for the

water system have additionally been decomposed into interaction energy between the

substrate and water, internal energy of the substrate and associated energy of the water

environment. These decomposed energies can be seen in Table 6.9. The convergence of

these component energies with respect to system size can be seen in Table 6.10. It can

be seen that, again, the energy components are converged to within 0.5 kcal mol−1 with

respect to the size of the optimisation region used in the simulation. As is expected for

the water environment, which is less rigid than the protein system, the standard errors for
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the individual components of the energy are much larger than those found in enzyme. It

can now be seen that the discrepancy in calculated reaction energies between the full-DFT

and QM/MM approaches, that both implement the PBE functional, is in fact dominated

by the interaction energy between the substrate and the surrounding environment. This

result could well be due to the electron leakage effect. Such an effect has been reported by

other authors where the electron density is over-polarised by point charges [244,248,249].

There may also be charge transfer between the substrate and the surrounding water that

can not be incorporated within existing classical force field approaches; this hypothesis is

investigated in the following section.

6.7 DDEC and NPA charge analysis

The overall charge distributions of the enzyme-substrate complex and the solvated sub-

strate have been investigated using both natural population and DDEC atoms-in-molecule

analysis. The total charge on the substrate in the three stationary point conformations

during the reaction, along with the associated charge redistribution, are given in Table

6.11. The results from both types of charge analysis show that the net charge on the

substrate is, on average, 0.63 e and 0.79 e, lower in magnitude than the formal charge of

−2 e assigned to the molecule, for the NPA and DDEC approaches, respectively. This is

an indicator of significant charge transfer to the surroundings. This is likely to have im-

plications for the contributions of the internal and the interaction energies to the relative

interaction and activation energies, as demonstrated in Table 6.3. Although Table 6.11

shows the NPA charge analysis approach yields a slightly more negative total charge for

the substrate, the redistribution of charge across the reaction is in fact very similar for

both analyses, showing a consistent increase in negative charge on the substrate over the

course of the reaction. Whilst one should be cautious to jump to conclusions based on the

0.013 e to 0.025 e net charge redistributions over the entirety of the substrate shown in

Table 6.11, it is more instructive to look at the local atom-specific charge redistributions.

Upon doing so, one can see that the most significant charge redistribution during the

course of the reaction in the enzyme is found to be located on the C2 and C15 carbon

atoms on the substrate, following the labelling convention in Ref. [320] and that shown

Mobile Atoms Relative Energies / kcal mol−1

∆‡Eint ∆Eint ∆‡Eenv ∆Eenv ∆‡Esub ∆Esub

252 -0.8 17.8 12.1 -0.8 18.5 -21.7

393 -1.6 14.5 6.5 -1.9 18.6 -22.6

534 -1.1 14.1 6.7 -1.4 18.4 -22.1

Table 6.10: Convergence of energy components with regard to the size of the optimisation

region used.
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in Figure 6.5. The associated change in charge for C2 is −0.24± 0.003 e. The change in

charge for C15 is equal to 0.27 ± 0.012 e. Both of these results agree with the natural

population analysis previously performed in Ref. [320]. The charge values from those

analyses are corroborated by DDEC charges which reveal a similar change in charge over

the course of the reaction of −0.29± 0.013 e for C2 and 0.28± 0.011 e for C15.

The analyses have also indicated that there is a redistribution of charge on the Arg90

active-site residue. There is a hydrogen-bond between the H0 and O13 atoms highlighted

in Figure 6.5. The result of this is a charge redistribution on H0, relative to the reactant,

equal to 0.02± 0.001 e at the transition state and 0.03± 0.001 e at the product. Whilst

these values are an order of magnitude less than the observed charge redistributions for

the C2 and C15 atoms on the substrate, following the charge analysis of surrounding

active site and protein scaffold, the charge redistribution localised to the Arg90 hydrogen

bond is an order of magnitude larger than any other redistribution over the course of the

reaction. This result indicates that the enzyme is relatively unaffected by the reaction of

the substrate. The net charge, derived from natural population analysis, for the substrate

in water is shown in Table 6.12. The table reveals that the charge on the substrate is

less negative than the equivalent charge in enzyme, thereby again indicating significant

charge redistribution. For the substrate in solution, the net charge again becomes more

negative during the course of the reaction, as was seen to occur in the equivalent enzyme

reaction. The partial charges, for both the NPA and DDEC schemes, are converged to

within 0.01 e with respect to the size of the optimisation region used, as can be seen in

Table 6.13. Once again it is the C2 and C15 carbon atoms on the substrate that are

found to have the most significant charge redistribution during the reaction, matching

the prior natural population analysis from Ref. [320]. In short, overall the enzyme is

relatively unaffected by the substrate reaction, as the charge changes are small. However,

the charge changes are statistically significant (evidenced by the error bars) and the NPA

and DDEC methods agree.

It is important to note at this point that one of the main aims of implementing the

DDEC atoms-in-molecules scheme within onetep, as discussed by its main developers

in Ref. [183], is to ultimately replace the partial charges in standard force field approx-

imations with those derived from an optimised ground state electron density. Previous

authors have incorporated the DDEC charges, derived from onetep, of three proteins

Method Charge Redistribution / e Total Charge on Substrate / e

∆‡qsub ∆qsub qRS
sub qTS

sub qPS
sub

NPA −0.014± 0.003 −0.025± 0.009 −1.36± 0.02 −1.37± 0.02 −1.39± 0.01

DDEC −0.013± 0.005 −0.028± 0.008 −1.19± 0.01 −1.21± 0.01 −1.22± 0.01

Table 6.11: Charge redistribution (∆(‡)qsub) and total charge on the substrate (qsub) in

enzyme.
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Method Charge Redistribution / e Total Charge on Substrate / e

∆‡qsub ∆qsub qRS
sub qTS

sub qPS
sub

NPA −0.022± 0.013 −0.058± 0.024 −1.16± 0.014 −1.18± 0.013 −1.22± 0.014

DDEC −0.018± 0.026 −0.040± 0.023 −1.13± 0.014 −1.14± 0.006 −1.17± 0.010

Table 6.12: Charge redistribution (∆(‡)qsub) and total charge on the substrate (qsub) in

water.

into a classical force field and run molecular mechanics simulations to compute NMR

order parameters and scalar couplings [183]. The bonded and Lennard-Jones parame-

ters were taken directly from the AMBER ff99SB force field but the atom-centered point

charges were replaced by the DDEC/ONETEP charges. DDEC AIM charges performed

better than mean field force field charges in providing a suitable electrostatic environment

that maintained protein stability throughout a 10 ns trajectory while remaining dynam-

ically consistent with experimental observations. The study also compared the NMR

scalar coupling which provides a measure of hydrogen bond dynamics within a protein.

DDEC/onetep charges performed at least as well as AMBER charges, illustrating that

backbone N-H and C=O bond polarisation is also suitably described by the DDEC elec-

tron density partitioning approach to charge derivation. The only difference between the

simulation protocols was in the point charges and the improvement in the calculated order

parameters was due to the inclusion of native state polarisation in their calculations As an

exploratory step, the protein-specific charges derived from the optimised electronic density

of the CM fragments considered in this chapter were incorporated within the charmm27

force field and QM/MM simulations were run in a PBE+D/charmm27+DDEC approach.

It must be noted that this method still does not reduce error due to electron leakage. Due

to the fact that the protein fragments were extracted from a larger protein cluster in

QM/MM pathways presented in Ref. [320], and in order to reduce the complexity of in-

corporating the protein-specific charges – the DDEC partial charges were used for the

Method Mobile Charge Redistribution / e Total Charge on Substrate / e

Atoms ∆‡qsub ∆qsub qRS
sub qTS

sub qPS
sub

NPA 252 −0.028 −0.055 −1.10 −1.15 −1.21

393 −0.025 −0.058 −1.18 −1.20 −1.22

534 −0.021 −0.056 −1.18 −1.21 −1.24

DDEC 252 −0.019 −0.041 −1.06 −1.09 −1.11

393 −0.020 −0.036 −1.08 −1.13 −1.15

534 −0.017 −0.045 −1.11 −1.15 −1.16

Table 6.13: Convergence of charge redistribution of the substrate in water, with respect

to the size of the optimisation region used.
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inner 1999 atoms of the protein structure and the charmm27 values were used for the

remainder of the enzyme. The resultant energy of activation and of reaction were 3.3 ±
0.2 and -8.3 ± 0.9 kcal mol−1, respectively. Both the energy of reaction and the activation

barrier have been significantly underestimated by this approach. This indicates that there

exists a fundamental flaw in this particular method of incorporating the protein-specific

charges. In principle, one could combine the DDEC method of charge derivation with

a much more accurate QM method, perhaps toward the MP2 level, where affordable, to

describe the substrate in a QM/MM scheme. One of the benefits of generating partial

charges derived from a single DFT calculation of an entire biomolecule is that the en-

vironmental polarisation is naturally included. By only calculating the charges for the

smaller extract and incorporating this alongside existing force field partial charges, with

no adequate partitioning method, the error on the activation energy is very pronounced.

One reason why the approach could have failed is the possibility that the rest of the force

field will need re-parameterising. Whilst the results of Ref. [183] are one piece of evidence

that the DDEC scheme behaves well with existing force fields, much more work needs to

be done to investigate the scheme, and specifically its use within QM/MM simulations,

and these initial results support this. Whilst the immediate next steps are beyond the

scope of this chapter, investigations such as these should be the focus of future work.

6.8 Discussion

The work presented in this chapter comprises a benchmark study which compares the

results from full-DFT calculations of a large section of the Bacillus subtilis chorismate

mutase enzyme with state-of-the-art QM/MM simulations from Ref. [320] and also with

experimental investigations from Refs. [333] and [334]. For the total system comprising

999 atoms, full-DFT calculations implementing structural optimisation and LST/QST

transition state searching methods, that have been validated against hybrid eigenvector-

following techniques, have yielded an energy of activation of 13.6 kcal mol−1. This result

is in very good agreement with both QM/MM investigations and experimental studies.

However, this test of large-scale DFT does not include any explicit considerations of en-

tropic effects and, as a result, comparisons have been made only to experimental enthalpies

of activation and of reaction. It is important to note that while it is fortunate that a direct

comparison with experimental enthalpies of activation and reaction can be made in the

particular case of the CM enzyme, large-scale DFT calculations may be less applicable

to reactions that are expected to be strongly entropy-dependent. The main focus of this

work lies primarily on the retention of the reactant and product structures in local energy

minima nearest to those which were taken from optimised QM/MM calculations.

The activation energy has been shown to converge upon increasing the number of

active-site residues treated in the optimisation region from 3 to 9. In addition, the acti-

vation energy has been shown to be converged on increasing the total protein fragment
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∆∆‡Etot ∆∆‡Eint ∆∆‡Eenv ∆∆‡Esub

onetep −10.5 −0.9 −6.2 −3.4

Experiment [333,334] −8.0± 0.4 −− −− −−
∆∆Etot ∆∆Eint ∆∆Eenv ∆∆Esub

onetep 1.6 −1.3 0.7 2.2

Table 6.14: Changes in total energies, along with their components (kcal mol−1), in going

from a water to protein environment.

size from 999 atoms to 1999 atoms. An implicit solvent model has also been used to

demonstrate the robustness of this calculated energy of activation. As well as being

converged with respect to the size of the optimisation region and the total size of the

protein fragment considered, the activation energy of 13.6 kcal mol−1, calculated here, is

in good agreement with QM/MM calculations and with experimental studies. The calcu-

lated energy of reaction, from the present study, underestimates experimental values from

investigations in water from Ref. [334]. A decomposition of the calculated energies into

components comprising substrate, interaction and reorganisation has been performed. By

treating all of these components at the same QM level of theory, additional insight into

the mechanism of rate enhancement in CM is provided. This decomposition reveals that

the use of classical force fields within the framework of QM/MM simulations results in an

overestimation of the interaction terms between the substrate in the QM region and the

associated active-site residues in the MM region. The method of embedding the systems

in a set of electrostatic point charges has also been used to investigate the equivalent

reaction in a water environment. Embedding tip3p charges within the full-DFT sys-

tem comprising 2025 atoms gives a calculated energy of activation of 24.1 kcal mol−1.

Upon comparison to experimental work in Ref. [334], this value has been shown to be

an overestimate. The activation energy is, however, converged with respect to the size of

optimisation region considered. An identical decomposition procedure was followed for

the solution system to investigate the non-bonded interactions between the substrate and

surrounding water environment. A direct comparison of the activation barrier and reac-

tion energy from enzyme with their corresponding values in solution allows the catalytic

rate enhancement in CM to be studied further. These calculated relative energy changes

have been collected together in Table 6.14. Combining Tables 6.2 and 6.8, it can be seen

that the calculated energy barrier for the reaction decreases from the uncatalysed value of

24.1 kcal mol−1 in water to the catalysed value of 13.6 kcal mol−1 in the presence of CM.

This reduction of activation energy by 10.5 kcal mol−1 in the enzyme compares extremely

favourably with the reduction in the heat of activation barrier determined experimentally

in Refs. [333] and [334]. From the decomposition of the total energies it can clearly be

seen that the most significant component in the reduction of the activation energy by

CM (∆∆‡Etot) arises due to the more favourable reorganisation energy for the reaction
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in the enzyme compared to in solution. Comparing Tables 6.3 and 6.9 shows that the

reorganisation energy value decreases from 6.8 kcal mol−1 in the water environment to

0.6 kcal mol−1 in the presence of CM, giving a relatively large and negative value for

∆∆‡Eenv. This observation is consistent with the notion that the CM active-site residues

are favourably orientated to interact strongly with the substrate in its transition state

conformation, thereby not introducing any significant strain into the structure of the en-

zyme. In addition, the gas phase water-optimised substrate has an activation energy of

18.5 kcal mol−1 compared to the enzyme-optimised barrier of 15.1 kcal mol−1 and the

in vacuo water-optimised reaction energy is −22.2 kcal mol−1 compared to the enzyme-

optimised reaction energy of −20.0 kcal mol−1. Therefore, a secondary contributor to the

catalytic rate enhancement is the fact that the change in the internal energy of the sub-

strate is lower in the enzyme than in solution. This effect is reminiscent of the so-called

near-attack conformation theory of enzyme catalytic rate enhancement [362–364], but

it only contributes around 30% of the total barrier lowering found in this investigation.

However, the details of this debate are outside the scope of the present chapter. It has

also been demonstrated from the in vacuo-optimised conformation that both the enzyme

and solution environments stabilise the substrate at the transition state in comparison to

the gas phase. Table 6.14 also shows the calculated changes to the heat of reaction in

going from a solution to enzyme environment. Although there is no experimental data

available to enable a comparison to be made, it is perhaps not surprising that the reaction

energy is similar in the two environments as, in general, enzymes are able to catalyse a

reaction thereby speeding up their rate, but they do not change the standard free energy

change of the reaction overall [18]. In this case, the interaction and internal substrate

energy differences are of similar magnitude, but opposite in sign.

In addition to the energetics of the reaction, an investigation into the natural bond

orbitals of the system has been described in this chapter. Such an analysis allows one to

break down the contributing factors to catalysis further still, so that the importance and

catalytic significance of individual active-site residues can be discussed. The particular

charged active-site residues that have been shown to be vital in stabilising the transition

state at the substrate were Arg7, Glu78 and Arg90. It is these residues which, combined

also with a crystallographically observed water molecule, are expected to be important in

lowering the value of ∆‡Etot in the enzyme relative to the equivalent reaction in water.

These particular active-site residues have also been shown to destabilise the substrate in its

product state conformation, the result of which will eventually allow the substrate to dis-

sociate and be released to allow it to continue along the shikimate catalytic pathway [321].

The most favourable NBO interaction with the substrate was shown to be with the Arg90

charged active-site residue. A significant deviation from planarity has been observed in

the guanidinium group of Arg90, which has not previously been observed in QM/MM

calculations in Ref. [320]. In addition, a shortening in length of its hydrogen bond with

the substrate, in comparison to QM/MM calculations from Ref. [320], has been observed.
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This prediction from full-DFT, of the significant contribution of Arg90 to CM catalysis,

is in qualitative agreement with experiments implementing site-specific mutagenesis [339]

and also matches theoretical predictions of previous authors [326, 327, 340, 346, 365] and

proposals devised following experimental investigations [333, 341]. However, despite the

clear presence of a discussion of the catalytic significance of Arg90 in the literature, the

work presented in this chapter is the first report of the link between the residue’s struc-

ture, following structural optimisation, and associated catalytic effect. This chapter has

also shown that the Arg7 charged active-site residue demonstrates a favourable NBO in-

teraction with the substrate, combined with a shortening of its hydrogen bond length

with the substrate at the transition state. It has also been observed that, following struc-

tural optimisation, Arg7 displays significant changes in dihedral angle compared to its

value in QM/MM. The last of the charged active-site residues predicted to have cat-

alytic significance following optimisation using full-DFT is Glu78. The favourable NBO

interaction between this residue and the substrate at the transition state is in qualitative

agreement with experimental investigations demonstrating the importance of the residue

in the CM-catalysed reaction [366].

6.9 Summary

Large-scale density-functional calculations are very much a necessity if a substrate is cova-

lently bound to an enzyme active site and one wishes to avoid the additional complexities

involved in partitioning individual QM and MM regions through chemical bonds. A re-

cent review on linear-scaling methods in Ref. [12] outlines many areas where large-scale

DFT calculations are expected to play an important role. However, the review ultimately

concludes that the applications of such approaches are still rather limited. In addition,

the outcome of this survey suggested that the accuracy and efficiency of the techniques

involved still require further investigation, and that it is not obvious as to what quan-

tities can be accurately calculated by large-scale DFT studies. Nevertheless, treating

entire proteins with quantum mechanics is becoming more widespread [99, 120, 121, 367]

and will potentially increase not only the accuracy, but also the range, of problems open

to investigation in fields ranging from small molecule therapeutics to molecular biology,

enzymology and biomimetics.

Despite the work of previous authors and the encouraging results from the exploratory

investigation presented in this chapter, it is evident from the investigations of the previous

and present chapter that the issues involved in the accurate treatment of enzyme systems

can not be tackled with large-scale QM approaches alone. Instead, a combined strategy

utilising the relative strengths of MM, QM/MM and large-scale QM methods is required.

In the present chapter it has been shown that, using the capabilities of the onetep

code, one can start from QM/MM calculated reactant and product state structures and

accurately predict the correct transition state in what is a fairly straightforward reaction.
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However, when water molecules are involved – as is the case here, a preliminary reaction

path is needed such that a reasonable mapping from water positions in the reactant to

their positions in the product state can be obtained. This can be achieved from less

computationally expensive semi-empirical approaches, on the condition that the reaction

path is qualitatively correct. Whilst care has been taken to ensure that all calculated

energies are converged with respect to the total size of the system and the number of

atoms undergoing structural optimisation, it is likely that the optimisation region in

less rigid protein structures will need to be extended in order to ensure the convergence

of elastic energy with system size. However, the process of deciphering the allosteric

role of the protein scaffold within enzyme catalysis remains outside of the scope of the

present chapter. In order to improve upon the current description of the QM optimisation

and constrained regions, improved linear-scaling density functionals that contain a more

rigorous treatment of electron exchange and correlation must be used. The improvement

of such functionals is a current active area of research and the method developments

presented in Ref [72] are expected to be the foundation of many key future improvements

to the onetep code. Ultimately, such advancements should enable one to be able to

run Hartree-Fock and hybrid-DFT calculations on systems of the size discussed in the

present chapter. In addition to this, large-scale DFT+U approaches [99,368] and methods

harnessing dynamical mean field theory [369] ought to be used when treating strongly

correlated transition metals within systems of biological interest such as the active sites

of organometallic enzymes.

The present chapter comprises a proof-of-principle demonstration of the power of

linear-scaling density-functional methods applied to large-scale systems of biomolecular

interest. This work has combined the methodological development that was presented in

Chapter 5, and has applied the validation techniques that were discussed in Chapter 4, to

a real-world reaction of biomolecular relevance taking place in water and also catalysed

by the CM enzyme. One of the final aims of this dissertation is to be able to proceed

from the work outlined here and to use large-scale DFT calculations to improve the de

novo computational design of enzymes and also to allow a range of biomimetic design

principles to be drawn from the biological catalysts that are seen in nature, in order to

utilise their properties in advancing industrial catalytic processes along with biomedical

applications.



Chapter 7

Concluding remarks

“Have no fear of perfection - you’ll never reach it”

Salvador Dali (1904-1989)

The proof-of-principle investigations reported in this dissertation have demonstrated

the ability of large-scale density-functional calculations, combined with molecular me-

chanics and hybrid quantum/classical approaches, to accurately predict the electronic

structure of enzymes and the energetics of their associated catalysed reactions. With the

advent of new and powerful linear-scaling methods opening up potential applications in

the biosciences, new lessons need to be learned about how it is best to apply them. In this

dissertation, it has been shown how to adequately prepare systems to enable large-scale

electronic optimisation. In addition, it has been shown that by working in combination

with hybrid quantum mechanics/molecular mechanics methods to perform sampling of

the conformational space, reliable and accurate results can be obtained for systems of

biomolecular relevance which both match well with experiment and also improve upon

the description available at other levels of theory. Therefore the overarching theme of the

dissertation is that there is not necessarily one catchall approach to biomolecular simula-

tion but that in order to sufficiently sample the conformational space for, and accurately

treat the electronic structure of, a system, a combined strategy of MM, QM/MM and full

QM is needed.

7.1 Summary of dissertation

The first three chapters of this dissertation provided the historical, biological and compu-

tational background and laid out the reasons why there is much to be pursued in the field

of computational enzymology. Chapter 4 demonstrated the ability of these computational

methods to accurately treat small molecules that have biological relevance. Simulating

ethene, dialanine and the chorismate to prephenate transformation, structural optimi-

sation and analysis techniques were tested in onetep and OPTIM and compared with

experimental observations. Overall, the investigations presented in the chapter provided

130
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the necessary validation of the approaches discussed and gave confidence that the results

generated by them later in the dissertation would be reliable, particularly that the transi-

tion state searching methods can be trusted. The chapter also detailed the first reported

use of the LST/QST algorithm in onetep and the first time this has been combined with

the powerful eigenvector-following techniques available in the interface with the efficient

OPTIM code.

Chapter 5 provided a roadmap of system preparation to enable convergence of the

electronic structure of inhomogeneous systems – a subject that had been causing increas-

ing debate over the last few years. Recent findings from Ref. [292] that the calculated

HOMO-LUMO gap in water and protein systems does vanish under particular system

preparation conditions, were confirmed; this characteristic is unphysical. However, it

was shown that unequilibrated vacuum/protein interfaces arising from using X-ray crys-

tal structures taken straight from experimental repositories can exhibit strong molecular

dipole moments, and that these are ultimately responsible for this phenomenon. The

work in the chapter then demonstrated general practical solutions for restoring the gap in

systems comprising up to 2386 atoms. One of the approaches involved mutating protein

charged surface residues to alanine if they were identified as potentially causing a closure

of the HOMO-LUMO gap. This opened up the calculated gap, from negligible to 1.3 eV,

for the 1FDF protein. Other solutions to the gap closure problem included classical

structural optimisation of the interfaces between water and vacuum, to the screening of

molecular dipole moments through the implicit solvation of protein structures, combined

with the use of embedded classical point charges. The implications for the remainder of

the dissertation were also discussed.

Chapter 6 investigated the enzymatic mechanisms of the Bacillus subtilis chorismate

mutase enzyme and the chorismate to prephenate rearrangement that it accelerates rel-

ative to the equivalent reaction in water. The work in the chapter demonstrated that

by combining the powerful methods available for performing large-scale DFT with the

robust methodologies and best practices developed during this dissertation, calculated

values for energies of activation and reaction could be converged with respect to the size

of the fragment extracted from the full protein. The calculated activation energy barrier

was found to be lowered by 10.5 kcal mol−1 in the presence of the enzyme, compared to

the uncatalysed reaction in solution, a result which is in good agreement with experiment.

Furthermore, due to the full-DFT nature of the simulations, additional information can

be obtained from these calculations that is previously not discussed in QM/MM investi-

gations or studies using methods based purely on classical approaches such as molecular

dynamics. The catalytic rate enhancement provided by the enzyme is attributed to strong

overlap between orbitals on the substrate and several charged active-site residues which

results in strong intermolecular hydrogen bonding at the transition state whilst inducing

negligible strain in the enzyme. One specific example from the work is the observation

linking the structure of the Arg90 residue in the CM active site with its catalytic effect.
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The work presented in Chapter 6 is the first such investigation to do so, emphasising

the benefits of large-scale QM simulations and demonstrating how they can complement

additional molecular dynamics and quantum/classical simulations. In addition, this proof-

of-principle demonstration of powerful large-scale DFT methods shows their relevance in

studying systems of genuine biological interest and, I hope, will produce new insight into

enzymatic principles from an atomistic perspective.

One of the key aims of this dissertation has been to establish a computational method-

ology, allowing the full quantum-mechanical treatment of systems in enzymology. A sug-

gested three-point plan, encapsulating the procedures developed in this dissertation is

discussed in the following:

1. Initial starting coordinates from experiment (PDB) or theory

One should start with experimentally resolved coordinates that have been archived

in a repository such as the Brookhaven National Laboratory Protein Data Bank

(PDB) [312]. Ideally, the method of crystallisation should be of a form where the

hydrogen atoms have been explicitly indicated such as in solution NMR, as with

every structure studied in Chapter 5 apart from 1UBQ. However it is not feasible to

expect solution NMR structures to be available for enzymes. Typically, this method

of crystallisation is only applicable to relatively small protein structures. In the case

of 1UBQ in Chapter 5 the structure was resolved using X-ray diffraction. In this

case, a resolution of 1.8 Å or better should only be accepted, as is the case with

1UBQ. However, as is often the case, the hydrogen atoms may not be explicitly

indicated and the resolution of the diffraction resolved structure may be worse than

1.8 Å . In such instances, then software packages, such as Molprobity [370], should be

used to add hydrogens, assign tautomeric states and generally refine Xray structures

or NMR ensembles before simulations should begin.

2. Refine with hybrid quantum mechanics/molecular mechanics (QM/MM)

Minimisation techniques should then be used in order to adequately sample the

configuration space of the system in a computationally less expensive, though less

rigorous, manner, through the use of classical potentials. However, within many

systems in enzymology it is likely that structures will contain some substrate or

transition state analogue, used to crystallise the enzyme, that has not been parame-

terised for the particular classical potential being used. Therefore it may not always

be feasible to perform sampling in a purely classical manner. In addition, classical

potentials can not describe the cleavage and formation of electron bonds. This is a

key feature of many enzyme-catalysed reactions that are important to study in en-

zymology. Therefore, one must use a level of QM in simulations that allow electron

bond rearrangement. This can be achieved using the hybrid QM/MM approach

that treats a user-defined region of the system with QM, allowing the electronic

structure of the system to be accurately treated, whilst using a less rigorous classi-
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cal potential to describe the protein matrix and surrounding solvent. In addition,

techniques that combine classical sampling within a QM/MM framework, such as

those presented in Ref. [320], are then advisable to use. By doing so, one can then

generate different reactant structures, acting as starting points, that will allow mul-

tiple reaction pathways to be constructed. This will then allow temperature effects

to be modelled, in an approximate manner, which are important to consider. Such

conformational sampling is not feasibly done at the full-QM level due to the restric-

tion of computational resources. Therefore this QM/MM stage is very difficult to

avoid at the moment.

3. Further refinement with full-quantum mechanics (QM)

It important to ensure that the calculated properties of interest for the system are

converged with respect to the QM region, which is difficult to do within QM/MM

due to the multitude of different approaches for interfacing the QM and MM re-

gions. The investigations discussed in this dissertation instead perform full-QM

calculations on a significant portion of a system using DFT. In addition, for protein

systems the accurate treatment of the solvent is crucial. Chapter 5 demonstrated

that structural optimisation of water/vacuum and protein/vacuum interfaces using

classical methods are required to prevent the closure of the HOMO-LUMO gaps of

water clusters and protein molecules. However, one can only ensure these gap values

are accurately maintained using full-QM approaches. Such approaches used in this

dissertation have included the screening of molecular dipole moments through the

use of implicit solvation, surrounding the system with explicit water layers and em-

bedding the quantum mechanical system in the potential of classical point charges

representing the water environment. In the case of significant net charge (+3e) in

a protein, the work in Chapter 5 has shown that an implicit solvent will be neces-

sary to accurately treat the system. Implicit solvation yields the closest agreement

between the HOMO-LUMO gaps of large isolated explicit water clusters and that

of bulk water. The work in Chapter 5 also demonstrated that the use of implicit

solvation techniques restores larger HOMO-LUMO gaps for proteins to a greater

extent than when 5 Å of the surrounding water molecules, retained from bulk peri-

odic simulations, are explicitly simulated. Activation energies are often calculated

in a QM/MM framework by proceeding from reactant to product by using some

simply defined reaction coordinate. However, the work presented in Chapter 6 of

this dissertation uses the more rigorous LST/QST algorithm to accurately calculate

the full-QM transition state for an enzyme-catalysed reaction, both in water and in

the presence of the enzyme. The DFT-predicted reduction in activation barrier from

water to enzyme, of 10.5 kcal mol−1 is in good agreement with the experimentally

observed reduction of 8.0 kcal mol−1.
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7.2 Suggestions for further work

A recurring theme throughout this dissertation is that there is not just one computational

method that can be simply applied to biomolecular systems. Therefore the most effective

way to proceed will be to ensure a robust strategy can be formulated to enable accurate

and reliable investigations to be performed using multiple approaches, with each method

complementing the others. As mentioned in Chapter 6, it has been shown that replacing

standard amber ff99sb atomic partial charges with those calculated from large-scale

DFT simulations incorporating the DDEC approach generates a force field that is better

at replicating protein dynamics. This arises because of the error in the original force

field description of the protein electrostatic potential. This is an artefact due mostly to

the atomic partial charges for the force field being fitted to the electrostatic potential of

small molecules, neglecting the important long-range electronic polarisation present in the

protein. A future goal, leading out of the work presented in this dissertation, will be to

extend upon the work in Ref. [183] and to treat CM in a force field where DDEC charges

replace the standard atomic partial charges. Thereby, the active site will be treated with

an accurate QM method and a DDEC-augmented force field will describe the surrounding

environment.

Transition metals have a distinct presence at the reactive centres in molecules active

in biological catalytic cycles [371]. Within such systems, mid-row 3d transition metals

facilitate reactions as diverse as methane-to-methanol conversion at an antiferromagneti-

cally coupled dimetal center [372,373], unactivated alkane halogenation by a high-energy,

high-spin ferryl-oxo center in the SyrB2 halogenase [374], and oxygen binding at iron por-

phyrins in haemoglobin [375]. Therefore, the development of techniques that allow one to

progress beyond DFT, employing large-scale DFT+U approaches [99, 368] and methods

harnessing dynamical mean field theory [369], are of particular importance. In addition, a

more rigorous treatment of electron exchange and correlation may improve the agreement

between density-functional calculated activation barriers and experiment. The develop-

ment of such functionals is a current topic of research [72] and a first step to test what will

be a key future improvement to the onetep code will be to observe the dependence of

calculated HOMO-LUMO gap on system size for larger proteins and water clusters than

the ones studied in Chapter 5.

I strongly believe that one of the Grand Challenge areas in large-scale computational

biology will be to understand how the electronic structure of biomolecular systems informs

their function. Further, as the length scale on which accurate QM-optimised structures

are calculated is increased, the aim will be to decipher the allosteric role of the protein

scaffold within enzyme catalysis using these fast and accurate computational methods.

The investigations carried out in this dissertation provide confidence and proof-of-concept

results for studying large, biologically relevant systems from a DFT-based perspective.

The continued understanding of biological systems at an atomic and electronic level will

allow a detailed picture of the mechanisms of enzyme active sites to be constructed.
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Such a picture will ultimately be of use in biomimetic approaches attempting to solve

many important problems such as hydrogen storage and carbon capture. Exploratory

computational work helping to inform on how to redesign hydrogen-abstracting enzymes

toward alternative products is already underway [376], along with the application of first-

principles catalyst design to carbon capture through biomimetic means [377, 378]. In

addition, experimental investigations have recently shown the existence of an enzyme

that efficiently hydrogenates carbon dioxide to produce liquid formate that can be safely

transported and used as a high energy-density power source for hydrogen fuel cell devices

[379]. As such, there remains still a lot to learn from biology as to how one can most

efficiently develop catalytic solutions for some of the most challenging global problems. I

feel that biomimetic first-principles based design will be a significant factor in the success

of these solutions. The ability to predict the properties and function of an enzyme that

has yet to be experimentally characterised and facilitating the design of new enzymes,

leading to their subsequent synthesis – for both industrial and biomedical purposes, are

significant goals in the field. It is the anticipation of achieving milestones such as these

that shall fuel the continual development and application of computational techniques to

problems in enzymology.



Bibliography

“Lesser artists borrow, great artists steal”

Igor Stravinsky (1882-1971)

[1] F. H. Westheimer and J. E. Mayer. J. Chem. Phys. 14, 733 (1946).

[2] T. L. Hill. J. Chem. Phys. 14, 465 (1946).

[3] J. Drostovsky, E. D. Hughes and C. K. Ingold. J. Chem. Soc. 173 (1946).

[4] N. L. Allinger, M. A. Miller, L. W. Chow, R. A. Ford and J. C. Graham. J. Am.

Chem. Soc. 87, 3430 (1965).

[5] B. J. Alder and T. E. Wainwright. J. Chem. Phys. 27, 1208 (1957).

[6] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller. J.

Chem. Phys. 21, 1087 (1953).

[7] S. Lifson and A. Warshel. J. Chem.Phys 49, 5116 (1968).

[8] M. Levitt and S. Lifson. J. Mol. Biol. 46, 269 (1969).

[9] R. Car and M. Parrinello. Phys. Rev. Lett. 55, 2471 (1985).

[10] W. Yang. Phys. Rev. Lett. 66, 1438 (1991).

[11] S. Goedecker. Rev. Mod. Phys. 71, 1085 (1999).

[12] D. R. Bowler and T. Miyazaki. Rep. Prog. Phys. 75, 036503 (2012).

[13] A. Warshel and M. Levitt. J. Mol. Biol. 103, 227 (1976).

[14] A. L. Bowman, I. M. G. and Mulholland, A. J. Chem. Commun. 37, 4425 (2008).

[15] P. Nozières. Annu. Rev. Condens. Matter Phys. 3, 1 (2012).

[16] T. Takano. J. Mol. Biol. 110, 569 (1977).

[17] F. Sanger and H. Tuppy. Biochem. J. 49, 463 (1951).

136



Bibliography 137

[18] B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts and P.

Walter. Essential Cell Biology, third edition. Garland Science, (2010).

[19] Structural information (determined by microwave spectroscopy) from CRC Hand-

book of Chemistry and Physics, 88th edition.

[20] D. J. Wales. Energy Landscapes. Cambridge University Press, Cambridge, (2003).

[21] W. T. Astbury. Trans. Faraday Soc. 29, 193 (1933).

[22] L. Pauling, R. B. Corey and H. R. Branson. Proc. Natl. Acad. Sci. USA 37, 205

(1951).

[23] A. Bairoch. Nucleic Acids Res. 28, 304 (2000).

[24] E. Fischer. Ber. Chem. Ges. Berl. 27, 2985 (1894).

[25] H. Eyring and M. Polanyi. Z. Phys. Chem. Abt. B 12, 279 (1931).

[26] M. G. Evans and M. Polanyi . Trans. Faraday Soc. 31, 875 (1935).

[27] L. Pauling. Am. Sci. 36, 50 (1948).

[28] M. M. Mader and P. A. Bartlett. Chem. Rev. 97, 1281 (1997).

[29] R. A. Copeland, J. P. Davis, G. A. Cain, W. J. Pitts and R. L. Magolda. Biochem.

35, 1270 (1996).

[30] V. L. Schramm. Annu. Rev. Biochem. 80, 703 (2011).
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[107] P. Ordéjon. Phys. Status Solidi b 217, 335 (2000).

[108] L. E. Ratcliff, N. D. M. Hine and P. D. Haynes. Phys. Rev. B 84, 165131 (2011).

[109] C. Weber, D. D. O’Regan, N. D. M. Hine, P. B. Littlewood, G. Kotliar and M. C.

Payne. Phys. Rev. Lett. 10, 110 (2013).

[110] L. P. Lee, D. J. Cole, M. C. Payne and C.-K. Skylaris. J. Comp. Chem. 34, 429

(2013).

[111] L. P. Lee, D. J. Cole, C.-K. Skylaris, W. L. Jorgensen and M. C. Payne. J. Chem.

Theory Comput. 9, 2981 (2013).

[112] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark

and M. C. Payne. J. Phys.: Condens. Matter 14, 2717 (2002).

[113] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne. J. Chem. Phys. 122,

084119 (2005).

[114] S. Goedecker and L. Colombo. Phys. Rev. Lett. 73, 122 (1994).

[115] W. Yang. Phys. Rev. Lett. 66, 1438 (1991).

[116] E. Tsuchida. Phys. Soc. Japan 76, 034708 (2007).

[117] W. Kohn. Phys. Rev. Lett. 76, 3168 (1996).

[118] E. Prodan and W. Kohn. Proc. Natl. Acad. Sci. USA 102, 11635 (2005).

[119] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne. Phys. Stat. Sol. (b)

243, 973 (2006).

[120] D. J. Cole, C.-K. Skylaris, E. Rajendra, A. R. Venkitaraman and M. C. Payne.

Euro. Phys. Lett. 91, 37004 (2010).

[121] D. J. Cole, E. Rajendra, M. Roberts-Thomson, B. Hardwick, G. J. McKenzie, M.

C. Payne, A. R. Venkitaraman and C.-K. Skylaris. PLoS Comp. Bio. 7, e1002096

(2011).

[122] Cole, D. J., Chin, A. W., Hine, N. D. M., Haynes, P. D., and Payne, M. C. J. Phys.

Chem. Lett. 4, 4206 (2013).

[123] C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Dieguez and M. C. Payne. Phys.

Rev. B 66, 035119 (2002).



142 Large Scale Quantum Mechanical Enzymology

[124] A. A. Mostofi, P. D. Haynes, C.-K. Skylaris and M. C. Payne. J. Chem. Phys. 119,

8842 (2003).

[125] D. D. O’Regan, M. C. Payne and A. A. Mostofi. Phys. Rev. B 85, 193101 (2012).

[126] P. D. Haynes and M. C. Payne. Phys. Rev. B 59, 12173 (1999).

[127] X. -P. Li, R. W. Nunes and D. Vanderbilt. Phys. Rev. B 47, 10891 (1993).

[128] M. S. Daw. Phys. Rev. B 47, 10895 (1993).

[129] R. Mc Weeny. Rev. Mod. Phys. 32, 335 (1960).

[130] P. D. Haynes, C.-K. Skylaris, A. A. Mostofi and M. C. Payne. Chem. Phys. Lett.

422, 345 (2006).

[131] P. D. Haynes, C.-K. Skylaris, A. A. Mostofi and M. C. Payne. Phys. Stat. Sol. (B)

243, 2489 (2006).

[132] C.-K. Skylaris, O. Diéguez, P. D. Haynes, and M. C. Payne. Phys. Rev. B 66,

073103 (2002).

[133] C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, C. J. Pickard, and M. C. Payne.

Comput. Phys. Commun. 140, 315 (2001).

[134] A. A. Mostofi, C.-K. Skylaris, P. D. Haynes and M. C. Payne. Phys. Rev. B 147,

788 (2002).
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[227] P. Söderhjelm and U. Ryde. J. Comput. Chem. 30, 750 (2009).

[228] J. W. Ponder and D. A. Case. Adv. Protein Chem. 66, 27 (2003).

[229] A. D. MacKerell Jr. J. Comput. Chem. 25, 1584 (2004).

[230] J. L. Gao and D. G. Truhlar. Annu. Rev. Phys. Chem. 53, 467 (2002).

[231] H. M. Senn and W. Thiel. Top. Curr. Chem. 268, 173 (2007).

[232] H. M. Senn and W. Thiel. Angew. Chem. Int. Ed. 48, 1198 (2009).

[233] A. J. Mulholland, P. D. Lyne and M. Karplus. J. Am. Chem. Soc. 122, 534 (2000).

[234] R. A. Friesner and V. Guallar. Annu. Rev. Phys. Chem. 56, 389 (2005).

[235] C. B. Post and M. Karplus. J. Am. Chem. Soc. 108, 1317 (1986).

[236] A. L. Bowman, I. M. Grant and A. J. Mulholland. Chem. Commun. , 4425 (2008).

[237] R. Lonsdale, K. E. Ranaghan and A. J. Mulholland. Chem. Commun. 46, 2354

(2010).
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[359] Z. B. Maksić and B. Kovacêvić. J. Chem. Soc., Perkin Trans. 2, 2623 (1999).

[360] M. H. M. Olsson and W. W. Parson and A. Warshel. Chem. Rev. 106, 1737 (2006).

[361] S. D. Copley and J. R. Knowles. J. Am. Chem. Soc. 109, 5008 (1987).

[362] S. Hur and T. C. Bruice. J. Am. Chem. Soc. 125, 1472 (2003).

[363] S. Hur and T. C. Bruice. J. Am. Chem. Soc. 125, 5964 (2003).

[364] S. Hur and T. C. Bruice. J. Am. Chem. Soc. 125, 10540 (2003).

[365] B. Szefczyk, A. J. Mulholland, K. E. Ranaghan and W. Andrzej Sokalski. J. Am.

Chem. Soc. 126, 16148 (2004).

[366] P. Kast, J. D. Hartgerink, M. Asif-Ullah and D. Hilvert. J. Phys. Chem. B 118,

3069 (1996).

[367] I. S. Umfistev, N. Luehr and T. J. Martinez. J. Phys. Chem. Lett. 2, 1789 (2011).

[368] D. D. O’Regan, N. D. M. Hine, M. C. Payne and A. A. Mostofi. Phys. Rev. B 85,

085107 (2012).

[369] C. Weber, D.J.Cole, D.D. O’Regan and M.C.Payne. Proc. Natl. Acad. Sci. USA

111, 5790 (2014).

[370] V. B. Chen, W. B. Arendall III, J. J. Headd, D. A. Keedy, R. M. Immormino, G.

J. Kapral, L. W. Murray, J. S. Richardson and D. C. Richardson. Acta Crystallo-

graphica D66, 12 (2010).

[371] H. J. Kulik and N. Marzari. Fuel Cell Science: Theory, Fundamentals, and Biocatal-

ysis, Chapter 14: Catalytic activity of transition-metal complexes. Wiley, (2010).

[372] K. Yoshizawa. J. Inorg. Biochem. 78, 23 (2000).

[373] K. Yoshizawa and T. Yumura. J. Inorg. Biochem. 96, 257 (2003).

[374] L. C. Blasiak, F. H. Vaillancourt, C. T. Walsh and C. L. Drennan. Nature 440, 368

(2006).

[375] S. P. D. Visser, F. Ogliaro, Z. Gross and S. Shaik. Chem. Eur. J. 7, 4954 (2001).

[376] H. J. Kulik and C. L. Drennan. J. Biol. Chem. 288, 11233 (2013).



Bibliography 155

[377] S. E. Wong, E. Y. Lau, H. J. Kulik, J. H. Satcher Jr., C. A. Valdez, M. Worsely, F.

C. Lightstone and R. D. Aines. Energy Procedia 4, 817 (2011).

[378] H. J. Kulik, S. E. Wong, S. E. Baker, C. A. Valdez, J. H. Satcher Jr., R. D. Aines

and F. C. Lightstone. Acta Crystallographica C: Structural Chemistry (Special issue

on computational materials discovery) (2013).

[379] K. Schuchmann and V. Müller. Science 342, 1382 (2013).


