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spoudèc tou, âkartèran ton å tžÔrhc tou t�n �llh �mèran n� shkwsth̃

n� mpoukk¸soun ... âkartèran, âkartèran ... tÐpote. �N� p�w, lalẽi,
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Abstract

Mixed-Integer Programming has been a vital tool for the chemical engineer

in the recent decades and is employed extensively in process design and control.

This dissertation presents some new Mixed-Integer Programming formulations

developed for two well-studied problems, one with a central role in the area of

Optimisation, the other of great interest to the chemical industry. These are the

Travelling Salesman Problem and the problem of scheduling cleaning actions for

heat exchanger networks subject to fouling.

The Travelling Salesman Problem finds a plethora of applications in many

scientific disciplines, Chemical Engineering included. None of the mathematical

programming formulations proposed for solving the problem considers fewer than

O(n2) binary degrees of freedom. The first part of this dissertation introduces a

novel mathematical description of the Travelling Salesman Problem that succeeds

in reducing the binary degrees of freedom to O(ndlog2(n)e). Three Mixed-Integer

Linear Programming formulations are developed and the computational perfor-

mance of these is tested through computational studies.

Sophisticated methods are now available for scheduling the cleaning actions

for networks of heat exchangers subject to fouling. In the majority of these, only

one form of cleaning is used, which restores the performance of the exchanger

back to its clean level. Ishiyama et al. [2011b] recently revised the scheduling

problem for the case where there are several cleaning methods available. The

second part of this dissertation extends their approach, developed for individual

units, to heat exchanger networks and explores the concept of selection of cleaning

techniques further. Mixed-Integer Programming formulations are proposed for

the scheduling task, for two fouling scenarios: (i) chemical reaction fouling and

(ii) biological fouling. A series of results are presented for the implementation of

the scheduling formulations to networks of different sizes.
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Chapter 1

Introduction

Mathematical programming has become an indispensable tool for the chemical

engineer over the past 40 years. Optimisation is widely used in process design,

process control, process identification, model development [Biegler, 2010] and

more recently in product and molecule design [Pistikopoulos et al., 2010].

The class of optimisation problems that involve both continuous variables and

discrete variables are generally known as Mixed-Integer Programming problems.

Mixed-Integer Programming finds a plethora of applications in Chemical Engi-

neering. These include the scheduling of batch processes, the synthesis of complex

reactor networks and the retrofit of heat exchanger networks [Floudas, 1995].

In this work, some new Mixed Integer Programming formulations are pre-

sented for two very different problems, one of great theoretical and practical

value, and the other a real industrial problem. The dissertation is divided into

two parts:

I. Travelling Salesman Problem

II. Scheduling cleaning actions for heat exchanger networks subject to fouling

The Travelling Salesman Problem has a central role in Mathematical Pro-

gramming. It was the systematic study of the problem that led to the devel-

opment of the areas of Integer Programming and Mixed-Integer Programming

and directed the way for the discovery of many rigorous and heuristic optimisa-

tion tools. Today, the problem finds numerous applications across all scientific

1



1. Introduction

disciplines. Those related to Chemical Engineering include the vehicle routing

problem, machine scheduling problem and genome mapping.

Hitherto, all existing mathematical formulations of the Travelling Salesman

Problem have required O(n2) binary degrees of freedom or more. The aim of the

current work is the development of a mathematical description for the problem

that involves fewer than O(n2) binary variables.

Chapter 2 reviews the basic aspects of the Travelling Salesman Problem. A

major part of the chapter is devoted to the description of some well-accepted for-

mulations found in the literature. The basic rigorous algorithms used to identify

optimal tours are introduced briefly and some successful tour searching heuristic

procedures are mentioned.

Chapter 3 introduces the novel mathematical description of the Travelling

Salesman Problem. A new class of mathematical programming formulations is

developed, based on work in Binary Arithmetic. The detailed presentation of

the proposed Mixed-Integer Programming formulations is followed by computa-

tional studies, which aim to test their computational performance in practice.

At the end of the chapter, their relationship to other well-known formulations is

discussed.

The second part of this dissertation revisits the problem of scheduling the

cleaning actions for heat exchanger networks subject to fouling. Fouling remains

a long-standing problem in industrial process heat transfer. It dominates the

performance of heat transfer devices and causes acute financial losses. An effec-

tive mitigation strategy for the rectification of the negative effects of fouling is

the regular cleaning of the dirty devices. In recent years, decision-making tools

have been used to schedule the cleaning actions in an attempt to minimise the

associated losses.

A novel scheduling study, presented by Ishiyama et al. [2011b] for an isolated

heat exchanger, introduced the important problem of competition between two

alternative cleaning techniques on the basis of length, cost and effectiveness. The

aims of the current work are to extend the approach of Ishiyama et al. [2011b] to

heat exchanger networks and to explore the concept of choice of cleaning methods

further.

Chapter 4 introduces the phenomenon of fouling and discusses its negative im-
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pact on heat transfer processes. The focus is primarily on heat exchangers. Sub-

sequent sections of the chapter review previous scheduling approaches presented

for isolated heat exchangers or networks of units. It is decided to investigate

the problem of scheduling the cleaning actions for: (i) heat exchanger networks

subject to chemical reaction fouling and (ii) heat exchanger networks subject to

biological fouling.

Chapter 5 describes in detail the Mixed-Integer Programming formulation

proposed for the scheduling task for networks subject to chemical reaction fouling.

The chapter includes a description of the fouling model used to quantify the

negative effect of the deposits on heat transfer performance. It concludes with a

discussion regarding appropriate solution methods for the scheduling problem.

In Chapter 6 the proposed scheduling formulation is tested in practice. Case

studies are presented where it is used to generate cleaning schedules for an isolated

unit and two heat exchanger networks. A series of results is presented in each

case, considering the impact of variations in the fouling parameters.

Chapter 7 is concerned with the novel study of scheduling cleaning actions

for heat exchanger networks subject to biological fouling. Two Mixed-Integer

Programming formulations are presented for this scheduling task, which involves

the choice between three cleaning methods. A series of results are obtained for

a small network, using one of the scheduling formulations. These are presented

and discussed at the end of the chapter.

Chapter 8 presents conclusions and recommendations for future work.

3
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Chapter 2

Basic aspects of the problem

This chapter reviews the basic aspects of the Travelling Salesman Problem. The

first section presents a brief history of the problem. Section 2.2, which is of prime

interest for this work, focuses on the mathematical description of the problem

and an overview of some well-established Mathematical Programming formula-

tions is provided. Subsequent sections give a short description of some of the

most important solution methods and establish the importance of the problem

in the areas of Applied Mathematics, Engineering and Computer Science. Some

applications of the problem related to Chemical Engineering are also provided.

2.1 History of problem

“Given a finite set of discrete points and the distance between each pair of them,

find the shortest route to visit all of them exactly once and return to the starting

point”. This humble-sounding task is one of the most notorious and intensively

studied problems of computational mathematics, namely the Travelling Salesman

Problem (TSP). It remains unknown who coined this nifty name for the problem.

In the paragraphs that follow, some of the most important moments in the de-

velopment of the TSP are retraced. The source is the detailed historical survey

by Cook [2011].

Leonard Euler was the first person to study tour problems while trying to

solve a puzzle known as ‘The Bridges of Königsberg’. Euler also studied the re-
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2. Basic aspects of the problem

lated Knight’s Tour problem in chess, where one needs to find a closed tour for

the knight to visit all the squares in the board and return to its initial position.

Naturally, he managed to solve both puzzles and in doing so he laid the founda-

tions for Graph Theory [Aldous and Wilson, 2000]. One century later, another

mathematician, Sir William Rowan Hamilton, was investigating possible tours

through all twenty corners of a dodecahedron. He drew the construction known

as the Icosian graph and was trying to identify closed walks that touched all the

vertices (corners) only once. Such a tour is called a Hamiltonian circuit. Follow-

ing this, the salesman’s problem is defined, in mathematical terminology, as the

task of finding the Hamiltonian circuit of minimum weight on a given graph.

Graph Theory is esoteric for the salesman on the road. For him, the search

for the shortest possible tour still continues. To his aid came the Austrian mathe-

matician Karl Menger, who was the person who introduced the TSP to the mathe-

matical community. Menger, in the 1920s, began investigating the closely-related

problem of finding the shortest path without the need to return to the initial

point. He called this the ‘Messenger Problem’. It is speculated that Menger ex-

changed ideas on the matter with the American mathematician Hassler Whitney

during a visit at Harvard University. Afterwards, Whitney posed the problem to

the mathematical community at one seminar given in Princeton University, and,

by the late 1940’s, it was a recognised challenge.

The first systematic treatment of the TSP appeared in [Dantzig et al., 1954],

where the authors presented the first mathematical formulation for the problem

and crafted a computational method to solve it. These prominent mathematicians

identified the shortest route for travelling through the capitals of all 49 states of

the U.S. This was a challenge that had beset the research community for 15 years.

The interest of a wider research community was sparked by a TV commercial

in 1962 by Procter & Gamble, which promoted a competition with a $10000 prize,

enough money to buy a house at the time. The task was to identify the shortest

route starting from Chicago, travelling through 32 destinations across the U.S.

and finally return back to the starting point. The research community responded

enthusiastically to the challenge and at the end there was a tie between a number

of contestants.

Until today, the travelling salesman problem remains an open challenge and
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the interest of researchers has increased rather than diminished. The validity of

the statement is apparent when one considers the numerous articles written on

the problem every year.

2.2 Problem formulations

Adopting the notation employed in Graph Theory, the task is to find the Hamil-

tonian circuit of minimum weight for a graph G = (V,A), where V = {1, 2, . . . , n}
is the set of vertices (cities) and A = {(i, j) : i, j ∈ V } the set of arcs (connecting

lines).

Let us focus our interest on the different formulations proposed for the Asym-

metric Travelling Salesman Problem (ATSP). In this variant of the problem the

length of an arc depends on the direction in which it is travelled. This is the

general case and it includes the special case of the symmetric problem where the

distance between two cities is independent of the direction of travel.

There are a number of excellent reviews in the literature, such as [Langevin

et al., 1990], [Orman and Williams, 2007] and [Öncan et al., 2009], which describe

and compare the large number of proposed formulations. This section considers

a selection of the most well-known.

It is essential at this point to review the terms Integer Programming (IP),

Linear Programming (LP) and Mixed Integer Programming (MIP). An IP prob-

lem involves only integer variables, whereas an MIP one involves both continuous

and integer variables. Finally, an LP problem involves only continuous variables

which are related to each other by linear constraints only.

The basic model (BM) [Dantzig et al., 1954] for the ATSP is as follows:

min.
n∑
i=1

n∑
j=1

cijxij (2.1)

s.t.
n∑
i=1

xij = 1 (2.2)

n∑
j=1

xij = 1 (2.3)
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2. Basic aspects of the problem

xij = {0, 1}; i, j = 1, 2, . . . , n (2.4)

{(i, j) : xij = 1, i, j = 2, 3, . . . , n} does not contain subtours (2.5)

where the binary variables xij are equal to 1 if and only if the arc (i, j) is present

in the optimal solution and cij is the length of arc (i, j). Constraints (2.2), (2.3)

and (2.5) eliminate subtours for all vertices.

The key aspect of a TSP formulation is how to formulate the constraints that

break subtours. A subtour is a closed loop that does not contain all the cities.

The majority of TSP formulations have this basic model in common and the only

difference is found at the subtour elimination constraints. There are however

some formulations, such as the time-dependent models, that do not follow this

line drawn by Dantzig et al. [1954]. In the description of the various formulations

that follows, the objective function is given only when the (BM) does not apply.

2.2.1 Classical formulation

The classical TSP formulation was proposed by Dantzig et al. [1954] (DFJ for-

mulation). The set of elimination constraints for their IP model is given by

n∑
i∈Q

n∑
j∈Q

xij ≤ |Q| − 1 for all Q ⊆ {1, 2, . . . , n} and 2 ≤ |Q| ≤ n− 1. (2.6)

Equation (2.6) defines O(2n) constraints, a very large number even for small prob-

lems (∼ 1 million for 20 cities). Nevertheless, the ingenuity of their proposal lies

in the fact that only a relatively small number of these facet defining inequalities

[Grötchel and Padberg, 1985] needs to be added progressively to the model to

reach the optimal solution. Dantzig et al. [1954] managed to solve by hand a

42-cities problem by incorporating only 9 inequalities out of a two trillion set of

constraints.

2.2.2 Sequential formulations

An extended category of formulations is based on a model first presented by Miller

et al. [1960] (MTZ formulation) for a vehicle routing problem. Firstly, there is
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the need to introduce O(n) supplementary continuous variables, ui, which denote

the sequence in which vertex i is visited. The elimination constraints take the

form:

ui − uj + (n− 1)xij ≤ n− 2; i, j = 2, 3, . . . , n; i 6= j. (2.7)

There are O(n2− n+ 2) constraints defined in equation (2.7). One can intro-

duce simple bounds on the continuous variables, but this is not necessary. This

is an MIP model. Many improvements of the MTZ formulation have appeared

in the literature over the years, such as those by Desrochers and Laporte [1991],

Gouveia and Pires [2001] and Sherali and Driscoll [2002].

2.2.3 Commodity flow formulations

The class of commodity flow formulations follows from the work of Gavish and

Graves [1978]. This class is further divided to: (i) single-commodity flow; (ii) two-

commodity flow and (iii) multi-commodity flow models. The earliest single-

commodity flow model introduced by Gavish and Graves [1978] (GG formulation)

and the first multi-commodity flow model that belongs to Wong [1980] (Wong

formulation) are presented here. An example of a two-commodity flow model is

that by Finke et al. [1984], but Langevin et al. [1990] subsequently showed that

it is equivalent to the GG formulation.

Before stating the constraints for the GG model, first there is the need to

introduce O(n2) continuous variables zij which describe the flow of a single com-

modity to vertex 1 from every other vertex. The elimination constraints are given

by

n∑
j=1

zji −
n∑
j=2

zij = 1; i = 2, 3, . . . , n (2.8)

0 ≤ zij ≤ (n− 1)xij; i = 1, 2, . . . , n, j = 2, 3, . . . , n. (2.9)

The above set has O(n2) constraints. The GG model belongs to the MIP

class.

Wong [1980] formulated the first multi-commodity flow model using additional
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O(n3) continuous variables to describe the flow of 2(n− 1) commodities between

vertex 1 and the other vertices. A set of O(2n3) elimination constraints is defined

by

n∑
j=1

w
(1,l)
ij −

n∑
j=1

w
(1,l)
ji = 0; i, l = 2, 3, . . . , n; i 6= l (2.10)

n∑
j=2

w
(1,l)
1,j −

n∑
j=2

w
(1,l)
j,1 = 1; l = 2, 3, . . . , n (2.11)

n∑
j=1

w
(1,i)
ij −

n∑
j=1

w
(1,i)
ji = −1; i = 2, 3, . . . , n (2.12)

n∑
j=1

w
(k,1)
ij −

n∑
j=1

w
(k,1)
ji = 0; i, k = 2, 3, . . . , n; i 6= k (2.13)

n∑
j=2

w
(k,1)
1,j −

n∑
j=2

w
(k,1)
j,1 = −1; k = 2, 3, . . . , n (2.14)

n∑
j=1

w
(i,1)
ij −

n∑
j=1

w
(i,1)
ji = 1; i = 2, 3, . . . , n (2.15)

0 ≤ w
(1,l)
ij ≤ xij; i, j = 1, 2, . . . , n; l = 2, 3, . . . , n (2.16)

0 ≤ w
(k,1)
ij ≤ xij; i, j = 1, 2, . . . , n; k = 2, 3, . . . , n. (2.17)

This is also a MIP model. Another well-accepted multi-commodity flow for-

mulation is that by Claus [1984], which uses only (n − 1) commodities. For the

sake of brevity, it is not described here. Finally, multi-commodity formulations

are, among others, the ones presented by Gouveia and Pires [2001] and Sherali

et al. [2006].

2.2.4 Time dependent formulations

The next category of formulations originates from the work of Fox et al. [1980].

Here, the classical problem is generalized as a time-dependent scheduling problem

where the cost of any given arc is related to its position in the tour [Gouveia and

Voß, 1995]. The problem is known as the Time Dependent TSP (TDTSP) and it
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is equivalent to the single machine scheduling problem.

A single machine is at the initial state, where job 1 is being processed. A

number of (n − 1) jobs must be performed before the machine returns to the

initial state. The cost of a task depends on its position in the sequence and the

preceding job. Thus, a cost cijk is incurred when job j is processed directly after

job i in the kth position and the corresponding binary variable rijk will be equal

to 1. The optimisation problem is stated as follows:

min.
n∑
i=1

n∑
j=1

n∑
k=1

cijkrijk (2.18)

s.t.
n∑
j=1

n∑
k=1

rijk = 1; i = 1, 2, . . . , n (2.19)

n∑
i=1

n∑
k=1

rijk = 1; j = 1, 2, . . . , n (2.20)

n∑
i=1

n∑
j=1

rijk = 1; k = 1, 2, . . . , n (2.21)

n∑
j=1

n∑
k=2

krijk −
n∑
j=1

n∑
k=1

krjik = 1; i = 2, 3, . . . , n (2.22)

rijk = {0, 1}; i, j, k = 1, 2, . . . , n (2.23)

This formulation requires O(n3) binary variables and O(4n) constraints and

it belongs to the IP class. Other TDTSP formulations can be found in the work

of Picard and Queyranne [1978] and Gouveia and Voß [1995].

2.2.5 Comparison of TSP formulations

Travelling Salesman Problem formulations are compared in terms of computa-

tional efficiency. The solution of TSP instances is computationally intense, es-

pecially as the number of cities increases. Therefore, it is beneficial to define

an efficiency scale where the formulations which require the least computational

effort are placed at the top, and those which force the solver into an endless run

at the bottom. The criterion for the classification is the LP-relaxation of each
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formulation [Gouveia and Voß, 1995; Langevin et al., 1990; Öncan et al., 2009].

The LP-relaxation of an IP (or MIP) model is simply the IP (or MIP) model

itself without the integrality conditions. Thus, the integer variables of IP (or

MIP) are now continuous (with lower and upper bounds) in the LP-relaxation.

Removing the integrality conditions means that the optimal solution of the LP-

relaxation, zrelLP, cannot exceed (since we are performing a minimisation) the opti-

mal solution of the IP model, zIP. Hence, the solution of the relaxation provides

a lower bound on the solution of the original model (zIP ≥ zrelLP). Moreover, an

LP-relaxation is said to be strong if the gap between zrelLP and zIP is relatively

small. A good IP (or MIP) formulation must have a strong LP-relaxation since

in general less computational effort will be required by the solver to reach the

optimal solution. For that to happen the LP-relaxation must be well-constrained.

The most recent comparative analysis of a number of well-known TSP for-

mulations is that by Öncan et al. [2009]. The authors have summarized results

obtained by previous researchers and they also established new relationships,

where non-existent, between the examined formulations. Herein, the interest

is focused on the models detailed above. Table 2.1 summarises the number of

binary variables, continuous variables and constraints for the described formula-

tions and Table 2.2 shows the relationships between these models [Öncan et al.,

2009]. Each model in the first column is classified as stronger, weaker or equiv-

alent with respect to the models in the first row. The word “Unknown” denotes

that a relationship is yet to be established between two formulations.

Table 2.1: Size of different ATSP formulations

Formulation Binary Variables Continuous Variables Constraints

DFJ O(n2) - O(2n)

MTZ O(n2) O(n) O(n2)

GG O(n2) O(n2) O(n2)

Wong O(n2) O(n3) O(2n3)

FGG O(n3) - O(4n)

On the efficiency scale, the DFJ and Wong formulations are placed at the top,

whereas the GG and MTZ formulations are located at the bottom. To date, the
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Table 2.2: Comparison of ATSP formulations

DFJ MTZ GG Wong FGG

DFJ - Stronger Stronger Equivalent Unknown

MTZ Weaker - Weaker Weaker Weaker

GG Weaker Stronger - Weaker Weaker

Wong Equivalent Stronger Stronger - Unknown

FGG Unknown Stronger Stronger Unknown -

relationship of the FGG formulation to the DFJ and Wong formulations has yet

to be established.

2.3 Searching for an optimal tour

The TSP has acted as an engine of discovery for many rigorous and heuristic

optimisation approaches. To date, these methods are used to solve many different

decision problems.

2.3.1 Exact methods

There are two rigorous methods for the exact solution of TSP instances, namely

the cutting-plane technique and the branch-and-bound technique. These tech-

niques are applicable to IP and MIP problems as well. The general framework

of the two methods is briefly described below. This is essential background for

understanding the computational studies presented in Chapter 3.

2.3.1.1 Cutting-plane method

The main idea of the cutting-plane approach was introduced by Dantzig et al.

[1954]: the LP-relaxation of the IP problem is solved iteratively while progres-

sively adding violated constraints, such as subtour elimination constraints, until

the solution produced is a closed tour. The name cutting-plane derives from

the fact that these added constraints act as cuts which progressively restrict the

feasible region containing the optimal solution.
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The cuts added at each step are relevant to the solution of the LP-relaxation

at that step. A valid cut must satisfy two criteria: (i) it excludes no feasible

integer solution and (ii) it is violated by the current solution. The difficulty of

applying this solution technique lies with the fact that the number of valid cuts

can be very large [Cook, 2011].

An extended catalogue of valid cuts, e.g. the constraints defined by (2.6),

exists for the travelling salesman problem. Nevertheless, using the library is not

an easy task. Sorting out the cuts that violate the solution of the LP problem at

each step is a great challenge. Correspondingly, much of the ongoing research on

the topic is focused on finding effective ways to identify possible cuts from the

catalogue.

Shortly after the fundamental work of Dantzig et al. [1954], the method was

generalised for the larger class of IP problems by Gomory [1958]. Gomory’s

algorithm gave birth to what we call today the general cutting-plane method. The

importance of his work is due to the fact that he described a routine for generating

the desired cuts automatically. Thus, the added constraints are named Gomory

cuts. The solution procedure can be summarized as follows: the LP-relaxation

of the IP problem is solved at each iteration while progressively adding Gomory

cuts until the optimal basic solution acquires integer values.

The cutting-plane method, general or TSP associated, has one drawback: the

number of added cuts can become very large. As a result, the solution of the

LP-relaxation at each step will become computationally expensive.

2.3.1.2 Branch-and-Bound method

The branch-and-bound method was first presented by Land and Doig [1960] and

was given its name by Little et al. [1963]. The method applies a “divide and

conquer” scheme which can be visualised using a binary tree structure. The use

of the method is illustrated using a small problem. The IP problem is:

min. z = 5x1 + 6x2 + 4x3 + 11x4 (2.24)

s.t. 5x1 + 8x2 + 6x3 + 4x4 ≥ 12 (2.25)

x1, x2, x3, x4 = {0, 1}. (2.26)
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The solution procedure is as follows.

1. Solve the LP-relaxation of the problem. This yields the solution:

(node 0) x1 = 0, x2 = 0.75, x3 = 1, x4 = 0, zrel = 8.5

which violates the integrality conditions. Variable x2 has a fractional value,

therefore it must be forced to take an integer value. Accordingly, the prob-

lem is divided into two sub-problems, one for x2 = 0 and one for x2 = 1.

The variable x2 is called the branching variable.

2. Apply integrality conditions on x2 at node 0. Enforcing x2 = 0 and solving

the corresponding LP-relaxation gives

(node 1) x1 = 1, x2 = 0, x3 = 1, x4 = 0.25, zrel = 11.75

which is not an integer solution. Enforcing x2 = 1 and solving the corre-

sponding LP-relaxation yields

(node 2) x1 = 0, x2 = 1, x3 = 0.67, x4 = 0, zrel = 8.67

which is also a fractional solution. As noticed, the objective value at nodes

1 and 2 is greater than the objective value at node 0. This was expected to

happen since more constraints were added. In general, as more constraints

are added, the objective value is expected to get worse (increase) or at

least remain unchanged. It can never be improved. The progress of the

branch-and-bound procedure is illustrated in Figure 2.1.

At this point there are two unacceptable solutions, each of which involves

a variable with fractional value. Obviously, a choice needs to be made:

which of the two will be the next branching variable? This is an important

decision since it can have a large effect on how quickly the problem is solved

[Williams, 1993]. A number of heuristic rules exist in the bibliography.

Here, after an arbitrary choice, branching is applied on variable x4. This

means that the tree is developed further past node 1.
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(node 0)
zrel = 8.5
fractional

(node 1)
zrel = 11.75
fractional

x2 = 0

(node 2)
zrel = 8.67
fractional

x2 = 1

Figure 2.1: Branch-and-bound example: solution tree after stage 2

3. Apply integrality conditions on x4 at node 1, recalling that x2 = 0. Setting

x4 = 0 and solving the corresponding LP-relaxation results in an infeasible

solution (node 3). Setting x4 = 1 and solving the LP-relaxation gives the

fractional solution:

(node 4) x1 = 0.4, x2 = 0, x3 = 1, x4 = 1, zrel = 17.

Figure 2.2 shows the updated solution tree.

(node 0)
zrel = 8.5
fractional

(node 1)
zrel = 11.75
fractional

(node 3)
infeasible

x4 = 0

(node 4)
zrel = 17
fractional

x4 = 1

x2 = 0

(node 2)
zrel = 8.67
fractional

x2 = 1

Figure 2.2: Branch-and-bound example: solution tree after stage 3

Up to this point, an integer solution has yet to be obtained. Let us now
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return to node 2 and select x3 as the next branching variable.

4. Apply integrality conditions on x3 at node 2, with x2 = 1. Solving the LP

problem for x3 = 0 gives

(node 5) x1 = 0.8, x2 = 1, x3 = 0, x4 = 0, zrel = 10.

which again is a fractional solution. On the other hand, solving the LP-

relaxation for x3 results in

(node 6) x1 = 0, x2 = 1, x3 = 1, x4 = 0, zrel = 10

which is an integer solution. This is a significant step forward since the

integer solution identified provides an upper bound for the optimal objective

value of the IP problem. Any node that has an objective value greater or

equal to 10 can now be eliminated from the solution procedure. Further

development of such nodes will not provide any improvement. In branch-

and-bound jargon, it is said that these nodes can be fathomed. In this

fashion, the waiting nodes 4 and 5 are fathomed. Moreover, node 3 is

also fathomed since the associated LP-relaxation is found to be infeasible.

Therefore, it is now proven that the solution at node 6 is the optimal integer

solution. At this point, the search is terminated. The solution tree after

stage 4 is shown in Figure 2.3.

During the solution of this example, only the case where just one variable

took a fractional value at an examined node was encountered. Unfortunately

this is not the case in most real problems. Fortunately though, contemporary

branch-and-bound solvers include heuristic strategies for the selection of the next

branching variable and the selection of the next node to be developed.

One very important feature, which is also the main disadvantage of the branch-

and-bound method, is that it requires the solution of a series of LP-relaxations of

the initial IP problem. The LP-relaxation of a given node provides a lower bound

on the objective value of all subordinate nodes. If the LP-relaxations solved in

the course of the procedure are strong, then fewer nodes will be examined and

the optimal solution is obtained more quickly [Williams, 1990]. Therefore, it is
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(node 0)
zrel = 8.5
fractional

(node 1)
zrel = 11.75
fractional

(node 3)
infeasible

fathomed

x4 = 0

(node 4)
zrel = 17
fractional

fathomed

x4 = 1

x2 = 0

(node 2)
zrel = 8.67
fractional

(node 5)
zrel = 10
fractional

fathomed

x3 = 0

(node 6)
zrel = 10
integer

optimal
solution

x3 = 1

x2 = 1

Figure 2.3: Branch-and-bound example: solution tree after stage 4

crucial that the LP-relaxations are well-constrained [Williams, 1993], or “tight”

in branch-and-bound jargon.

An explicit enumeration of the example requires the solution of 24 LP problems

(number of nodes for the full solution tree). However, using the branch-and-bound

method the optimal point was identified after solving seven LP problems. For

this reason, the method is also called implicit enumeration.

2.3.1.3 Hybrid methods

State-of the art algorithms for IP problems utilise a hybrid of the cutting-plane

and branch-and-bound methods. These hybrid algorithms are called branch-and-

cut and are proven to be the most successful in terms of computational efficiency.

The cutting-plane scheme is applied at the top and at the nodes of the branch-

and-bound tree. Adding cutting planes during the branch-and-bound search can

speed up the solution procedure considerably [Mitchell, 2002]: the LP-relaxations

solved at each node of the tree will be better constrained and therefore provide

better (tighter) bounds.
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2. Basic aspects of the problem

2.3.2 Heuristic approaches

In the class of heuristic approaches the undisputed leader is a search technique

developed by Lin and Kernighan [1973]. This tour improvement method is known

as the Lin-Kernighan heuristic and it takes as an input a complete tour and tries

to modify it in order to produce an alternative solution of lower cost. The Lin-

Kernighan heuristic is widely used in conjunction with exact algorithms when

attacking large problems, because it can successfully provide initial tours which

are very close to the optimal solution. In fact, in many cases these initial tours are

proven to be the optimal solutions. A variant of the initial heuristic developed by

Helsgaun [2009] was the first to identify the optimal solution for the largest TSP

instance (85900 cities) solved to date, at the time of writing this dissertation.

Another popular heuristic that is used in computational studies of TSP is sim-

ulated annealing. A 400-city problem was solved by Kirkpatrick et al. [1983] as a

test problem in the paper that introduced the method to the scientific community.

Finally, another well-established heuristic which is widely used in optimisation,

the neural network technique reported by Hopfield and Tank [1985], was also

tested using two travelling salesman problems.

2.4 Travelling Salesman & Computational Com-

plexity Theory

One of the reasons the TSP has been studied so extensively is its relation to

Computational Complexity Theory. This area is common ground for theoretical

Computer Science and Mathematics and is concerned with the inherent difficulty

of computational problems.

Before moving on, let us introduce the notions of polynomial (P) and non-

deterministic polynomial (NP) problems. For the class P of computational prob-

lems there exist algorithms that solve them in polynomial time, whereas, roughly

speaking, for class NP problems no such algorithms are known (yet?). To formally

define the NP class one can say that it consists of all the decision problems (‘yes’

or ‘no’ problems) for which if the answer is positive, a certificate of correctness

can be issued in polynomial time. However, if the answer is negative it is not
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known whether the correctness can be checked in polynomial time.

Within the NP class there are the NP-complete problems. Now, an NP prob-

lem is NP-complete if every problem in NP can be reduced to it in polynomial

time. The travelling salesman problem is NP-complete. Proving that an NP-

complete problem can be solved in polynomial time, and therefore, P=NP, will

fetch an award of one million dollars from the Clay Institute of Mathematics. Ev-

ery year, tens of research articles appear in the bibliography claiming the award.

A large percentage of these, base their proof on the discovery of a polynomial-

time running algorithm that solves the TSP. None of them has survived close

examination. The search continues.

2.5 Applications in Chemical Engineering

The TSP is found in a large number of applications across many scientific areas

[Applegate et al., 2007; Gutin and Punnen, 2002]. Those related to Chemical

Engineering are the following:

a) Vehicle routing problem

TSP models are used to calculate optimal itineraries for vehicles that need

to travel between a number of destinations. These can be delivery or pick-

up trucks, laundry vans, school buses or a helicopter connecting the onshore

base of an oil company to the offshore platforms [Cook, 2011]. A taxonomic

review of the literature that refers to the problem can be found in [Eksioglu

et al., 2009].

b) Machine scheduling problem

The scheduling of repeated tasks to be carried out by industrial machines

is a common setting for TSP applications. The different versions of the

problem, along with other aspects, are described by Chen et al. [1998].

c) Genome mapping

An interesting application was reported by [Agarwala et al., 2000]. The

authors utilised TSP models to order chromosome markers while recon-

structing genome maps.
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d) X-ray diffractometer aiming in crystallography

A TSP model was used by Bland and Shallcross [1989] to determine se-

quences of X-ray diffraction measurements in crystallography. The travel

costs in this case refer to the time required to reposition the crystals and

to aim the X-ray instrument.

2.6 Conclusions

The Travelling Salesman Problem is a well-studied fundamental problem in the

area of Mathematical Programming. The study of the problem led to the devel-

opment of the disciplines of Integer and Mixed-Integer Programming. It has also

acted as an engine of discovery for some important optimisation methods.

Today the problem holds a central role in Computational Complexity theory.

Nevertheless, its importance is not only theoretical since it is found in numer-

ous practical applications such as vehicle routing, machine scheduling and data

organisation.

The development of a robust solution framework for attacking large travelling

salesman problems remains an open challenge. The two essential components of

a successful framework are: a tight mathematical formulation and an efficient

solution algorithm.

This work is not concerned with the discovery of a novel solution method but

rather with the development of a new modelling approach for the problem. A

number of different mathematical formulations have been proposed for the TSP,

some more well-accepted than others. None of the existing formulations includes

fewer binary degrees of freedom than O(n2). It is the primary aim of the current

work to develop a mathematical formulation which uses fewer than O(n2) binary

variables.
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Chapter 3

Formulations & computational

studies

A general overview of the Travelling Salesman Problem was presented in Chap-

ter 2. Among the various relevant aspects, a number of different mathematical

programming formulations of the problem were presented. The choice of formu-

lation is critically essential since the TSP belongs to the NP-complete class and

the solution of large problems requires intense computational effort. Thus, it is

crucial to model the problem in a fashion that will ease the computational burden

on the solver.

Towards that end, a new family of formulations is presented in this chapter,

which attempts to reduce the complexity of the problem by reducing the number

of binary degrees of freedom. The computational efficiency of the proposed formu-

lations is then tested and the results of the computational studies are presented

at the end of the chapter.

3.1 Inspiration

The primary aim is to propose a mathematical description for the TSP that

involves fewer binary variables than O(n2). The approach taken is based on work

in Binary Arithmetic, and binary tree structures in particular.

Let us consider the binary tree in Figure 3.1. This is a directed graph where
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3. Formulations & computational studies

the circles denote the vertices. The root vertex is at level 0 and the leaves of

the tree are the vertices at level 3. The vertices in levels 1 and 2 are called

intermediate vertices. An edge that connects the parent vertex with the left child

is assigned the value 0 and it is assigned the value 1 if it reaches the right child.

Thus, starting from the root, to get to leaf-1 one must follow the edge-sequence

000. Similarly, to reach leaf-6 the only way is to follow the path 101.

root

leaf-1

0

leaf-2

1

0

leaf-3

0

leaf-4

1

1

0

leaf-5

0

leaf-6

1

0

leaf-7

0

leaf-8 Level 3

Level 2

Level 1

Level 0

1

1

1

Figure 3.1: Binary tree with 8 leaves

The binary tree in Figure 3.1 is regular because each intermediate vertex has

two children, and it is full because all its leaves are at the same level. All binary

trees considered in this work are regular and full.

It is apparent that one can store up to 8 objects on the leaves of this tree to

create a binary data structure. The position of a certain object will be described

by a binary string. Can these objects be the cities of a travelling salesman

problem? Yes, the cities can be placed sequentially on the leaves according to

their position in the tour.

Let us explore the scheme where the set of cities is repeatedly partitioned into

left-right orientation from the root to the last level of a binary tree, where the

cities are allocated on the leaves according to their order in the optimal tour.

The proposed formulation is explained in detail in the following section.
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3.2 Novel formulation

Let us consider the graph G = {V,A}, where V = {1, 2, . . . , n} is the set of ver-

tices (cities) and A = {(i, j) : i, j ∈ V } the set of arcs, on which the Hamiltonian

cycle of minimum cost has to be identified. The length of the arcs is given by

the cost matrix C = {cij : (i, j) ∈ A}. Also, consider the binary tree B = {L, P}
where L = {1, 2, . . . , nl} is the set of levels and P = {1, 2, . . . , np} is the set of

leaves (available positions for the allocation of objects). It is a property of binary

trees that

np = 2nl. (3.1)

Now, for the binary tree structure to have enough positions to store the se-

quence of vertices for the optimal cycle, it is required that np ≥ n. If n is an

exact power of 2 then obviously np = n. For the rest of the analysis the general

case where n is not an exact power of 2 is considered. Thus, np > n and the

number of levels is equal to

nl = dlog2(n)e (3.2)

where the ceiling function d.e, applied on a real number, returns the smallest

integer number greater than the real number.

3.2.1 Basics

Here the basics of the proposed formulation are discussed. As already mentioned,

the position of a city on the tree will be coded by a binary string. For that purpose,

let us introduce the binary variables ril, for i ∈ V ; l ∈ L, such that:

ril =

0, if city i is directed left at level l

1, if city i is directed right at level l.
(3.3)

At each level l of the tree, every city is allocated a left or right orientation.

Therefore, ndlog2(n)e of these binary variables are needed to describe the position

of all the cities. Decoding the binary string, the position of vertex i on the cycle

is given in decimal base by
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posi = 1 +
nl∑
l=1

2nl−lril; i = 1, 2, . . . , n (3.4)

Assuming that the starting point of the tour is always vertex 1:

r1,l = 0; l = 1, 2, . . . , nl (3.5)

and, since there are more leaves than cities the position of the remaining vertices

on the optimal tour is restricted by

1 ≤
nl∑
l=1

2nl−lril ≤ n− 1; i = 2, 3, . . . , n (3.6)

To determine the partitioning of cities to left-right branching at each level,

the following set of constraints is necessary:

n∑
i=1

ril =
n∑
k=1

tkl; l = 1, 2, . . . , nl (3.7)

The parameters tkl are calculated using Algorithm 3.1 which defines the ‘target’

binary strings since the number of leaves of the tree is generally greater than the

number of cities in the problem.

Algorithm 3.1: Nodal binary string analysis

for k = 1 to n do
temp = k − 1
for l = nl to 1 do

tkl = temp mod 2
temp = btemp/2c

end for
end for

As an aside, the set of constraints given by Equation (3.7) is equivalent to

n∑
i=1

ril =
n

2
; l = 1, 2, . . . , nl (3.8)
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when the cardinality of set V is an exact power of 2.

The constraints defined in equation (3.7) are not sufficient to allocate a unique

binary string to a city. For this reason, the variables zik, for i ∈ V ; k ∈ P , are

defined such that:

zik =

0, if city i is not allocated on leaf k

1, if city i is allocated on leaf k.
(3.9)

The zik variables are continuous and constrained within [0, 1]. They will be forced

to take the value of 0 or 1 by the binary variables ril, viz.

zik ≤ α(tkl) + β(tkl)ril; i, k = 1, 2, . . . , n; l = 1, 2, ..., nl (3.10)

zik ≥ 1−
nl∑
l=1

[α(1− tkl) + β(1− tkl)ril]; i, k = 1, 2, . . . , n. (3.11)

where the functions α(v) and β(v) are defined as

α(v) =

1, if v = 0

0, if v = 1
(3.12)

β(v) =

−1, if v = 0

1, if v = 1.
(3.13)

Finally, it is necessary to use the variables xij, for i, j ∈ V , such that:

xij =

0, if arc (i, j) is not present in the optimal tour

1, if arc (i, j) is present in the optimal tour
(3.14)

Unlike existing formulations, the variables xij are continuous and constrained

within [0, 1] in this work. These variables can be forced to take binary values

using the following constraints [Millar and Cyrus, 2000]:

zik + zj,k+1 − 1 ≤ xij; i, j = 1, 2, . . . n; k = 1, 2, . . . , n− 1 (3.15)
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zi,n + zj,1 − 1 ≤ xij; i, j = 1, 2, . . . , n (3.16)

Constraints (3.15) – (3.16) force the variables xij to take the value of 1 if arc (i, j)

is included in the optimal tour. Otherwise, the lower bound is inactive. Due to

the fact that variables xij appear in the objective function multiplied by positive

coefficients, they will be driven to their lower bound, which is 0, if the constraints

do not enforce a value of 1.

Equations (3.15) – (3.16) define O(n3) constraints. The issue of reducing the

number of these adjacency constraints is examined next.

3.2.2 Adjacency of binary leaves

Consider two cities i and j, for i, j ∈ V , which occupy consecutive positions on the

leaves of a binary data structure. Assuming that city j is positioned immediately

after city i, it is true that:

posj − posi = 1 (3.17)

or using equation (3.4):
nl∑
l=1

2nl−l(rjl − ril) = 1 (3.18)

A link between equation (3.18) and the xij variables must be established, such

that:

xij = 1, if
nl∑
l=1

2nl−l(rjl − ril) = 1 (3.19)

0 ≤ xij ≤ 1, if
nl∑
l=1

2nl−l(rjl − ril) 6= 1 (3.20)

It is desired to reduce the order of adjacency constraints (3.15) – (3.16) to less

than O(n3). To achieve this, the constraints must be derived using the three

indices i, j ∈ V and l ∈ L. Recall that the cardinality of set V is n and that of

set L is nl = dlog2(n)e.

Theorem 3.1. Given two cities i and j and the binary representation of their

positions, posi and posj, in the tour by variable sets ril, rjl ∈ {0, 1} with l =
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1, 2, . . . nl, then if and only if the cities are allocated adjacently such that the

position of city j is greater by 1 from the position of city i, posj = posi + 1, the

following properties hold:

Property A:

There exists exactly one and only one l′ ∈ L such that

ril′ = 0 and rjl′ = 1 (3.21)

Property B:

For 1 ≤ l < l′ (l = 1, 2, . . . , (l′ − 1))

ril = rjl (either both 0, or both 1) (3.22)

Property C:

For l′ < l ≤ nl (l = (l′ + 1), (l′ + 2), . . . , nl)

ril = 1 and rjl = 0 (3.23)

The converse is also true: if the three properties do not hold simultaneously

for a pair of cities i and j, then these are not placed on adjacent leaves of the

binary tree (i.e. the arc (i, j) is not present in the tour).

The following lemma:

Lemma 3.1. If and only if posj = posi then ril = rjl, ∀ l ∈ L.

Lemma 3.2. If and only if posj > posi then there exists an l′ = min
l∈L

l for which

ril′ = 0, rjl′ = 1 and ril′′ = rjl′′, with l′′ = 1, 2, . . . , l′ − 1.

and the formulae given below are used to prove the theorem.

k∑
i=1

2k−i = 2k − 1 (3.24)

m∑
i=1

2k−i = 2k − 2k−m (3.25)

k∑
i=
m+1

2k−i =
k∑
i=1

2k−i −
m∑
i=1

2k−i = 2k−m − 1 (3.26)
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Proof. Let posj > posi. If properties A, B & C hold simultaneously then

posj − posi =
l′−1∑
l=1

2nl−l(rjl − ril)− 2nl−l
′
(rjl − ril) +

nl∑
l=l′+1

2nl−l(rjl − ril)

= 2nl−l
′ −

nl∑
l=l′+1

2nl−l = 2nl−l
′ − (2nl−l

′ − 1) = 1.

The converse must also be true. Consider the three cases:

1. Property A does not hold

Taking into account Lemmas 3.1 – 3.2, property A does not hold when

ril′′ = 0 and rjl′′ = 1 for one or more l′′ ∈ [l′ + 1, nl]. This also violates

property C.

Let us examine the case where this happens only for one index l′′. Thus,

ril′ = 0, rjl′ = 1

ril′′ = 0, rjl′′ = 1.

The difference between the two positions is:

posj − posi =
l′−1∑
l=1

2nl−l(rjl − ril) + 2nl−l
′
(rjl′ − ril′) +

l′′−1∑
l=l′+1

2nl−l(rjl − ril)+

2nl−l
′′
(rjl′′ − ril′′) +

nl∑
l=l′′+1

2nl−l(rjl − ril)

= 2nl−l
′
+

l′′−1∑
l=l′+1

2nl−l(rjl − ril) + 2nl−l
′′

+
nl∑

l=l′′+1

2nl−l(rjl − ril).

The minimum of this subtraction is achieved when ril = 1 and rjl = 0 in

both summations. Hence,

posj − posi ≥ 2nl−l
′ −

l′′−1∑
l=l′+1

2nl−l + 2nl−l
′′ −

nl∑
l=l′′+1

2nl−l
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≥ 2nl−l
′ − (

nl∑
l=1

2nl−l −
l′∑
l=1

2nl−l −
nl∑
l=l′′

2nl−l)+

2nl−l
′′ − (2nl−l

′′ − 1)

≥ 2nl−l
′ − (2nl − 1) + (2nl − 2nl−l

′
) + (2nl−(l

′′−1) − 1) + 1

≥ 2 · 2nl−l′′ + 1

≥ 3.

In the same fashion, the statement posj − posi > 1 can be proven to be

true if the above occurs for more than one index l′′. Thus, if property A is

violated, the cities are not placed in consecutive order.

2. Property B does not hold. It follows from Lemma 3.2 that if property B

does not hold then properties A and C do not hold either.

3. Property C does not hold. For this to happen, there are two possible sce-

narios:

(a) There is at least one l′′ ∈ [l′ + 1, nl] for which ril′′ = 0 and rjl′′ = 1.

This violates property A.

(b) There exists at least one l′′ ∈ [l′ + 1, nl] for which ril′′ = rjl′′ .

Let us assume that there is only one such index l′′. The difference

between the two positions is:

posj − posi =
l′−1∑
l=1

2nl−l(rjl − ril) + 2nl−l
′
(rjl′ − ril′) +

l′′−1∑
l=l′+1

2nl−l(rjl − ril)+

2nl−l
′′
(rjl′′ − ril′′) +

nl∑
l=l′′+1

2nl−l(rjl − ril)

= 2nl−l
′
+

l′′−1∑
l=l′+1

2nl−l(rjl − ril) +
nl∑

l=l′′+1

2nl−l(rjl − ril)

The minimum of this subtraction is achieved when ril = 1 and rjl = 0
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in both summations. Thus,

posj − posi ≥ 2nl−l
′ − (2nl − 1) + (2nl − 2nl−l

′
)+

(2nl−(l
′′−1) − 1)− (2nl−l

′′ − 1)

≥ 2 · 2nl−l′′ − 2nl−l
′′

+ 1

≥ 2nl−l
′′

+ 1

≥ 2.

Similarly, the statement posj−posi > 1 can be proven to be true if the

above occurs for more than one index l′′. It is obvious that if property

C does not hold then the cities are not allocated on adjacent leaves.

The challenge to face now is how to utilise the results of Theorem 3.1. At

first, it is essential to construct a test in order to check if two cities follow the

same branch of the tree at a given level. For this purpose, the variables eijl, for

i, j ∈ V ; l ∈ L \ {nl} are defined as follows:

eijl =

0, if cities i and j follow opposite branches at level l

1, if cities i and j follow the same branch at level l.
(3.27)

The variables eijl are continuous and constrained within [0, 1], but can be

forced to take binary values by using the following set of constraints:

1− (ril + rjl) ≤ eijl; i, j = 1, 2, . . . , n; i 6= j; l = 1, 2, . . . , nl − 1 (3.28)

(ril + rjl)− 1 ≤ eijl; i, j = 1, 2, . . . , n; i 6= j; l = 1, 2, . . . , nl − 1. (3.29)

Constraints (3.28) – (3.29) will force the variable eijl to take the value of 1 if

the binary variables ril and rjl of the two cities i and j, respectively, are equal at

level l. If this is not the case, the variable is left loose within its bounds, and, due

to the fact that it is associated with variables xij (see equations (3.30) – (3.32)),

it will attain the value of its lower bound which is 0. The equality test is not

required for the last level, l = nl.
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The ultimate goal is to impose lower bounds equal to 1 on the xij variables, if

the properties of Theorem 3.1 are met for each pair of cities i and j. To achieve

that, the following logical checks are employed:

xij ≥ [(1− ri,1) + rj,1 − 2]︸ ︷︷ ︸
Property A

+

[
nl∑
l=2

[ril + (1− rjl)]− 2(nl − 1)

]
︸ ︷︷ ︸

Property C

+1;

i, j = 1, 2, . . . , n (3.30)

xij ≥ [(1− ril′) + rjl′ − 2]︸ ︷︷ ︸
Property A

+

[
l′−1∑
l=1

eijl − (l′ − 1)

]
︸ ︷︷ ︸

Property B

+

[
nl∑

l=l′+1

[ril + (1− rjl)]− 2(nl − (l′ + 1) + 1)

]
︸ ︷︷ ︸

Property C

+1;

i, j = 1, 2, . . . , n; l′ = 2, 3, . . . , (nl − 1) (3.31)

xij ≥ [(1− ri,nl) + rj,nl − 2]︸ ︷︷ ︸
Property A

+

[
nl−1∑
l=1

eijl − (nl − 1)

]
︸ ︷︷ ︸

Property B

+1;

i, j = 1, 2, . . . , n (3.32)

Constraints (3.30) – (3.32) impose the adjacency properties and are used for

nl ≥ 3. For nl ≤ 2 only the set of constraints given by (3.30) is required.
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3.2.3 Asymmetric Travelling Salesman model

It is now time to put the various components together and build the asymmetric

TSP model. Two new formulations are suggested. The only difference between

the two are the adjacency constraints. The basic formulation is as follows:

min.
n∑
i=1

n∑
j=1

cijxij (3.33)

s.t.
n∑
i=1

xij = 1; j = 1, 2, ..., n (3.34)

n∑
j=1

xij = 1; i = 1, 2, ..., n (3.35)

n∑
i=1

zik = 1; k = 1, 2, ..., n (3.36)

n∑
k=1

zik = 1; i = 1, 2, ..., n (3.37)

zik ≤ α(tkl) + β(tkl)ril; l = 1, 2, ..., nl; i, k = 1, 2, ..., n (3.38)

zik ≥ 1−
nl∑
l=1

[α(1− tkl) + β(1− tkl)ril]; i, k = 1, 2, ..., n (3.39)

xi,1 = zi,n; i = 1, 2, ..., n (3.40)
n∑
i=1

ril =
n∑
k=1

tkl; l = 1, 2, ..., nl (3.41)

r1,l = 0; l = 1, 2, . . . , nl (3.42)

1 ≤
nl∑
l=1

2nl−lril ≤ n− 1; i = 2, 3, ..., n (3.43)

0 ≤ xij ≤ 1; i, j = 1, 2, ..., n (3.44)

0 ≤ zik ≤ 1; i, k = 1, 2, ..., n (3.45)

ril = {0, 1}; i = 1, 2, ..., n; l = 1, 2, ..., nl (3.46)

+ adjacency constraints.

It is required that city i = 1 is the starting and finishing point of the tour.
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Thus, constraint (3.40) is used to close the loop. Moreover, the self-looping arcs

are eliminated by setting cii = ∞. Constraints (3.34) – (3.35) ensure that each

city is the end-point of one outgoing arc and the start-point of one incoming arc.

Also, constraints (3.36) – (3.37) guarantee the uniqueness of the allocation of

each city to each position and vice versa. In addition, the tightening constraints

(3.43) are included. These constraints are redundant, but they can be used in

order to tighten the feasible domain.

On one hand, for the first formulation named Tree-1, the adjacency con-

straints are given by equations (3.15) – (3.16), thus constraint (3.40) is excluded.

On the other hand, the adjacency constraints for the second formulation called

Tree-2 are defined by equations (3.28) – (3.32). Table 3.1 shows the number of

binary and continuous variables for the two formulations and the cardinality of

the constraints set.

Table 3.1: Size of proposed ATSP formulations

Formulation Binary variables Continuous variables Constraints

Tree-1 O(ndlog2(n)e) O(n2) O(n3)

Tree-2 O(ndlog2(n)e) O(n2dlog2(n)e) O(n2dlog2(n)e)

3.2.4 Manhattan Travelling Salesman model

Let us now consider the asymmetric TSP where the distance between the cities is

calculated using the rectilinear metric. This is referred to as the Manhattan-TSP.

The distance between two points in the rectilinear metric is commonly known as

the Manhattan distance. With reference to Figure 3.2, the Manhattan distance

between points 1 and 2 (solid line) is given by

dM = |x1 − x2|+ |y1 − y2| (3.47)

whereas the Euclidean distance (dashed line) is given by

dE =
√

(x1 − x2)2 + (y1 − y2)2. (3.48)
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y
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(x1, y1)

(x2, y2)

Figure 3.2: Manhattan distance on a system of Cartesian coordinates

Let us assume that the pair of coordinates (x
(0)
i , y

(0)
i ) for each city is available.

It is then easy to assign coordinates (x, y) to a leaf of the binary tree according

to which city is placed there:

xk =
n∑
i=1

x
(0)
i zik; k = 1, 2, . . . , n (3.49)

yk =
n∑
i=1

y
(0)
i zik; k = 1, 2, . . . , n. (3.50)

The pair of variables (xk, yk) represents the coordinates of posk. It follows

that the rectilinear distance between two adjacent leaves, k and k + 1, can be

calculated by

dMk
= l

(x)
k + l

(y)
k ; k = 1, 2, . . . , n (3.51)

where

l
(x)
k ≡ |xk − xk+1|; k = 1, 2, . . . , n− 1 (3.52)

l
(y)
k ≡ |yk − yk+1|; k = 1, 2, . . . , n− 1. (3.53)

Equations (3.52) – (3.53) can be replaced by the following inequalities:

− l(x)k ≤ xk − xk+1 ≤ l
(x)
k ; k = 1, 2, . . . , n− 1 (3.54)

− l(y)k ≤ yk − yk+1 ≤ l
(y)
k ; k = 1, 2, . . . , n− 1. (3.55)
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Following the above, a unique formulation for the Manhattan-TSP may be

constructed if the coordinates of all the cities are known. The proposed formula-

tion is:

min.
n∑
k=1

(l
(x)
k + l

(y)
k ) (3.56)

s.t.
n∑
i=1

zik = 1; k = 1, 2, ..., n (3.57)

n∑
k=1

zik = 1; i = 1, 2, ..., n (3.58)

zik ≤ α(tkl) + β(tkl)ril; l = 1, 2, ..., nl; i, k = 1, 2, ..., n (3.59)

zik ≥ 1−
nl∑
l=1

[α(1− tkl) + β(1− tkl)ril]; i, k = 1, 2, ..., n (3.60)

n∑
i=1

ril =
n∑
k=1

tkl; l = 1, 2, ..., nl (3.61)

1 ≤
nl∑
l=1

2nl−lril ≤ n− 1; i = 2, 3, ..., n (3.62)

xk =
n∑
i=1

x
(0)
i zik; k = 1, 2, . . . , n (3.63)

yk =
n∑
i=1

y
(0)
i zik; k = 1, 2, . . . , n (3.64)

− l(x)k ≤ xk − xk+1 ≤ l
(x)
k ; k = 1, 2, . . . , n− 1 (3.65)

− l(x)n ≤ xn − x1 ≤ l(x)n (3.66)

− l(y)k ≤ yk − yk+1 ≤ l
(y)
k ; k = 1, 2, . . . , n− 1 (3.67)

− l(y)n ≤ yn − y1 ≤ l(y)n (3.68)

xk, yk, l
(x)
k , l

(y)
k ≥ 0; k = 1, 2, . . . , n (3.69)

0 ≤ zik ≤ 1; i, k = 1, 2, . . . , n (3.70)

ril = {0, 1}; i = 1, 2, . . . , n; l = 1, 2, . . . , nl (3.71)

Constraints (3.66) and (3.68) are used to close the route. The Manhattan

formulation features O((ndlog2(n)e) binary variables, O(n2) continuous variables
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and O(n2) constraints.

3.3 Computational studies

The computational performance of the proposed formulations is tested in prac-

tice using small instances of the problem. Furthermore, the efficiency of Tree-1

and Tree-2 formulations is compared against the efficiency of the MTZ formula-

tion [Miller et al., 1960] and the Wong formulation [Wong, 1980], on the basis

of the strength of their LP relaxation. For the computational studies, the prob-

lems are modelled in GAMS
TM

[Brooke et al., 1992] and solved using CPLEX R©

10.1.1 [GAMS, 2010] on an ASUS
TM

Chassis computer with 2.21 GHz CPU. The

CPLEX R© 10.1.1 solver employs a hybrid of the branch-and-bound and cutting

plane methods, i.e. a branch-and-cut algorithm.

3.3.1 ATSP case studies

The ATSP formulations, Tree-1 and Tree-2, are applied to three small problems:

(i) n = 8; (ii) n = 10 and (iii) n = 12. The asymmetric cost matrices for (i) and

(ii) are produced using a random-number generator. For the third problem the

cost matrix is symmetric and the data are part of the gr17 instance reported by

Reinelt [1991]. The cost matrices of all three problems are given in Appendix A.

Table 3.2 summarises the optimal solutions of the three instances. The number of

nodes refers to the nodes of the solution tree (branch-and-bound tree) examined.

The three problems are also modelled according to Miller et al. [1960]. The

tours reported in Table 3.2 are in agreement with the optimal tours obtained

when solving the MTZ models.

Let us now observe closely the results reported in Table 3.2. The Tree-1

formulation emerges as superior to the Tree-2 formulation in terms of computa-

tional performance. Firstly, the solver successfully produced a solution for the

largest instance tested, n = 12, when using the Tree-1 formulation, whereas for

the Tree-2 case it failed to converge after 1 day of execution time. Moreover,

the solver requires considerably less CPU time to converge for cases n = 8 and

n = 10 when implementing Tree-1. The large gap in performance becomes more
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Table 3.2: Solution report for ATSP case studies

Formulation Optimal tour Nodes CPU time (s)
n = 8

Tree-1 31 3 0.3
Tree-2 31 78 1.8

n = 10

Tree-1 70 2 0.4
Tree-2 70 602 33.7

n = 12

Tree-1 1799 3200 362.8
Tree-2 not solved after 1 day of execution

apparent when comparing the nodes examined during the branch-and-cut scheme

for the two formulations. For n = 10 the solver visits 2 and 602 nodes for Tree-1

and Tree-2, respectively.

This difference arises due to one crucial factor on which the computational

performance of a branch-and-bound algorithm (and correspondingly of a branch-

and-cut algorithm) depends. This is the quality of the LP-relaxations solved

at each node of the solution tree. If these LP-relaxations are strong, then the

solver will examine fewer nodes and will converge to the optimal solution faster

[Williams, 1990].

Clearly, Tree-1 produces stronger LP-relaxations than the Tree-2 formulation.

This is due to the fact that the adjacency constraints (3.30) – (3.32) which are part

of Tree-2 formulation involve a large number of binary variables and continuous

variables in comparison to the adjacency constraints (3.15) – (3.16) which are

included in the Tree-1 formulation. Hence, the former constraints are not as

tight as the latter.

The formulations were also applied to larger instances (12 < n ≤ 20) without

any success. The solver failed to converge after one day of execution. For all

intents and purposes, the running time for small instances like the ones
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examined here should not be more than a few minutes, as reported elsewhere

[Applegate et al., 2007].

3.3.2 Manhattan-TSP case studies

The Manhattan formulation is applied to two problems with n = 8 and n = 10

cities. The coordinates for the two problems are those of real cities and are given

in Appendix A. The computational performance of the Manhattan formulation is

compared against the performance of the Tree-1 formulation. When implementing

Tree-1, the cost matrix was calculated using the set of coordinates prior to the

execution of the solution algorithm. Table 3.3 shows the solution report for the

aforesaid computational studies. The optimal itineraries for the two instances are

presented in Figures 3.3(a) and 3.3(b).

Table 3.3: Solution report for Manhattan-TSP case studies

Instance Optimal tour Nodes CPU time (s)
n = 8

Manhattan 4630.74 132 1.8
Tree-1 4630.74 49 1.2

n = 10

Manhattan 289.1 3861 127.6
Tree-1 289.1 16 1.1

On the basis of the above examples, the computational performance of the

Manhattan model appears to be worse than that of Tree-1. For the former, the

solver visits many more nodes of the solution tree and, also, it requires more CPU

time to converge.

As an aside, the solver failed to converge when the Manhattan model was

tested for instances with (12 < n ≤ 20). During the solution of an instance of

n = 15 cities the memory demand for the storage of the solution tree exceeded

100 megabytes.
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Figure 3.3: Optimal itinerary for Manhattan-TSP case studies

3.3.3 Comparison with existing formulations

The next step in the evaluation of the proposed formulations is to compare their

computational efficiency with those of existing formulations. Let us focus our

interest on the more general ATSP formulations, Tree-1 and Tree-2. The Man-

hattan formulation is not included in the analysis.

It is customary to conduct such a comparison by using the LP-relaxations of
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the examined formulations. The Tree-1 and Tree-2 formulations are compared

against the MTZ formulation [Miller et al., 1960] and the Wong formulation

[Wong, 1980]. The MTZ formulation is proven to be one of the weakest among

the existing formulations, while the Wong formulation is proven to be one of the

strongest [Öncan et al., 2009]. Three TSP instances found in TSPLIB [Reinelt,

1991] are modelled with respect to the four formulations. The LP relaxation of

all four models is solved and the optimal value of the relaxed objective function,

zrelLP is reported in Table 3.4. The length of the optimal tour of each problem is

also given in Table 3.4.

Table 3.4: Comparison of LP-relaxations: optimal objective function value

Problem zrelLP Optimal tour
Tree-1 Tree-2 MTZ Wong

gr17 1652 1652 1656 2085 2085
fri26 833 833 835.48 937 937
dantzig42 533 532 535.65 697 699

It is helpful to recall our discussion in Section 2.2.5: for an efficient formula-

tion, the gap between the optimal objective value of the LP-relaxation, zrelLP, and

the optimal objective value of the original problem should be small. The results

of Table 3.4 confirm that Wong is more efficient than MTZ. It is notable that

for Wong the gap for gr17 and fri26 is 0% and it is only 2.8% for the dantzig42

problem.

As for the proposed formulations, they are ranked in the last two places. The

LP-relaxations of Tree-1 and Tree-2 are shown to be slightly weaker than those

of MTZ for all three instances. Hence, it is safe to place them at the bottom of

the computational efficiency scale of the existing TSP formulations. Tree-1 and

Tree-2 are proved to be poorly constrained.

The values of the LP-relaxations for the two smaller problems are equal for

Tree-1 and Tree-2. Nevertheless, as already seen in Section 3.3.1 the Tree-1

formulation is more computationally efficient than Tree-2.
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3.4 Conclusions

A novel family of mathematical formulations, originating from work in Binary

Arithmetic and binary tree structures in particular, was developed for the Trav-

elling Salesman Problem. The proposed mathematical description succeeds in

decreasing the binary degrees of freedom for the problem to O(ndlog2(n)e).
The three new formulations are named Tree-1, Tree-2 and Manhattan. The

first two apply to the general case of the asymmetric TSP while the third applies

only to the Manhattan-TSP case (the distance between two cities is calculated

on the basis of the rectilinear metric).

The results of test studies suggest that the computational performance of the

new formulations in practice is poor. Computational tests have shown that using

the three formulations to model problems with a number of cities 12 < n ≤ 20

leads to excessive computational effort.

In comparison to Tree-1, the Tree-2 formulation emerges as inferior in terms

of computational performance. When implementing Tree-2 the solver requires

notably more CPU time and it visits far more nodes of the solution tree than

when implementing Tree-1, on the same problems. Also, the results in Section

3.3.2 suggest that it is safe to discard the Manhattan formulation in favour of

Tree-1.

The computational efficiency of the Tree-1 and Tree-2 formulations was com-

pared to that of the Wong formulation [Wong, 1980] and to that of the MTZ for-

mulation [Miller et al., 1960]. The criterion for the comparison was the strength

of the LP-relaxation of the formulations. Both Tree-1 and Tree-2 are shown to

have weaker LP-relaxations than those of Wong and MTZ.

The comparison revealed a major disadvantage: the proposed formulations

are not tightly constrained. In turn, the larger feasible region forces the solver

to span a large portion of the solution tree before yielding the optimal tour.

This is the reason why the formulations can only be applied to very small TSP

instances. To overcome this drawback, additional constraints need to be added

to the formulations. Finding appropriate constraints is not a trivial task but it

is the only recourse for continuing this work.
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Chapter 4

Background

The first part of this dissertation was dedicated to a central problem of Mathe-

matical Programming, namely the Travelling Salesman Problem. The problem is

considered to be the cornerstone on which the areas of Integer Programming and

Mixed-Integer Programming developed.

Mixed-Integer Programming is used in the second part of this dissertation to

optimise the operation of heat transfer devices. The study of heat transfer and

the operation of heat transfer units is a matter of great industrial importance

and it lies at the core of Chemical Engineering.

This chapter introduces a major industrial problem: fouling of heat transfer

surfaces. The negative impact of fouling is described and the physical/chemical

mechanisms that lead to the formation of fouling layers are outlined briefly. One

of the main fouling mitigation methods for industrial heat transfer units is reg-

ular cleaning. Subsequent sections review the use of decision-making tools in

scheduling cleaning actions for process heat transfer devices subject to fouling.

4.1 Fouling & heat transfer processes

Fouling is a phenomenon prevalent in many industrial heat transfer processes: it

is the deposition of unwanted materials on heat transfer surfaces. The thermal

conductivity of such dirt-deposits is low [Müller-Steinhagen, 2000] and as a result,

fouling has a negative impact on the efficiency of heat transfer.
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To counter-balance the reduction in heat transfer efficiency the operator needs

to provide additional energy to the process by increasing the consumption of com-

bustible fuels or increasing the flow of utility, with associated financial penalties.

Adequate control measures must be taken to mitigate the negative effect of foul-

ing.

To avoid high operating cost the engineer must take precautionary measures

or apply effective mitigation strategies. For the former the heat transfer units

must be over-designed: the engineer takes into account the thermal inefficiencies

caused by fouling by assigning extra heat transfer surface to the device. This

strategy results in additional capital expenditure. Alternatively, the units might

be replaced with expensive non-fouling devices if these are available. The miti-

gation of fouling is achieved through the use of anti-fouling chemicals and/or the

regular on-line or off-line cleaning of the heat exchangers. These lead to high

maintenance costs as well as loss of production during the cleaning period.

The reduction of heat transfer efficiency is not the only result of fouling. The

presence of dirt layers in the channels of a heat transfer device causes a reduction

in the flow area, which leads to an increase in pressure drop. In turn this results

in reduced throughput and loss of production if the pumping power is limited.

To avoid such a scenario more pumping power and additional electricity costs are

required. Also, additional capital expenditure is required since the devices must

be designed to operate at high pressure.

Despite the fact that fouling is a well-established problem in many industries

it has only received detailed attention in the last forty years [Bott and Melo,

1997]. It is a problem that necessitates careful energy and financial management.

4.2 Fouling in heat exchangers

A heat exchanger is a device whose purpose is to transfer thermal energy from

a hot stream to a cold stream. Real-life processes sometimes involve networks of

heat exchangers in serial and/or parallel configurations. A simplified schematic

representation of such a device is shown in Figure 4.1.

Thermal energy is transferred from the hot stream to the cold stream through

the heat exchanger wall. The two streams can flow in co-current mode, as in
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heat transfer wall

cold stream

hot streamheat

Figure 4.1: Simplified representation of a heat exchanger, co-current flow

Figure 4.1, or in other configurations such as counter-current mode and cross-

flow. The amount of heat, Q, recovered from the hot stream for single phase heat

transfer (none of the streams changes phase) is given by

Q = FUA∆Tlm (4.1)

where F is the configuration correction factor, U is the overall heat transfer coef-

ficient, A is the heat transfer area and ∆Tlm is the logarithmic mean temperature

difference between the streams. The overall heat transfer coefficient for a clean

heat exchanger, assuming that the cold and hot side areas of the tubes are the

same, is given by
1

U
=

1

hhot
+

1

hcold
+Rw (4.2)

where hhot and hcold are the film heat transfer coefficients of the hot and cold

stream, respectively, and Rw is the thermal resistance of the wall. If, however,

the heat exchanger suffers from fouling, equation (4.2) is modified to include the

thermal resistance of the deposits on both sides of the wall, viz.

1

U
=

1

hhot
+

1

hcold
+Rw +Rf,hot +Rf,cold (4.3)

The thermal fouling resistances Rf,hot and Rf,cold depend on the thickness and

the thermal conductivity of each layer. The overall thermal fouling resistance,

Rf,tot, is given by

Rf,tot = Rf,cold +Rf,hot. (4.4)

An accurate prediction of the fouling resistances is very difficult since reliable

estimation models are usually not available [Ishiyama et al., 2009].
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The main reason for the lack of robust estimation models is the number and

the complexity of different mechanisms responsible for the formation of the foul-

ing layers. Epstein [1983] identified five fouling types based on the key phys-

ical/chemical mechanism causing the formation of the deposit. In each case,

fouling involves five successive steps, any one of which (or combination thereof)

can be rate-determining.

4.2.1 Mechanisms of heat exchanger fouling

The taxonomy of fouling mechanisms into five major classes is accepted by many

researchers in the field. The classes are:

a) Crystallisation fouling

It is a broad class that can be divided into two categories. For the first cate-

gory, the formation of the fouling layer is caused by the growth of salt crys-

tals on the heat transfer surface. The salts (the term salts is also taken to

include non-mineral species such as fats and waxes) are originally dissolved

in the bulk fluid. Normal-solubility salts crystallise when cooled below their

solubility limit, while inverse-solubility salts crystallise when heated above

the limit. Furthermore, supersaturation may arise if an amount of solvent

evaporates or when two streams are mixed. For the second category, for-

mation of the fouling layer is caused by the cooling of a pure liquid or melt

below its freezing point: solid material is then generated at the cold wall.

This is often termed ‘freezing fouling’.

b) Particulate fouling

The process stream contains suspended particles which deposit on the heat

transfer surface. Fine particles may accumulate on surfaces of any orienta-

tion while relatively large particles settle on lower horizontal surfaces due

to gravity.

c) Chemical reaction fouling

Chemical reactions between some components of the stream generate fouling

precursors in the bulk fluid and/or on the heat transfer surface. The surface

material is not one of the reactants but may play a role as a catalyst. This
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type of fouling is common in petroleum refineries, polymer production and

food processing.

d) Corrosion fouling

The heat transfer wall is involved in a chemical reaction, often a corro-

sion mechanism, which generates a fouling layer. If the corrosion products

are removed from the surface fouling does not occur (but the mechanical

integrity is compromised).

e) Biological fouling (biofouling)

The fouling layer is caused by the attachment and growth of micro-organisms

(micro-biofouling) such as bacteria, fungi and algae or macro-organisms

(macro-biofouling) such as mussels and barnacles. In some cases, biofoul-

ing is a serious risk for human health. However, in other cases it can be

useful: it is a key feature of waste water treatment.

Many industrial fouling problems involve a combination of these mechanisms

[Bott, 1988]. Nonetheless, the classification scheme helps decompose this compli-

cated phenomenon into topics that can be studied separately in order to provide

fundamental understanding of the causes of the problem.

To assist the detailed study of each mechanism, Epstein [1983] also proposed

five sequential events that occur during the formation of a fouling layer. The

consecutive steps are:

1. Initiation

The formation of a fouling layer of appreciable thickness on a clean heat

transfer surface often occurs after a delay. A crucial factor for the occurrence

of this delay period is the cleanliness of the heat transfer surface [Epstein,

1988]. The length of the initiation period can vary from few seconds to

several days [Müller-Steinhagen, 2000] depending on the dominant fouling

mechanism. For crystallisation fouling the delay period is associated with

the crystal nucleation process. In cases of biological fouling it is linked with

the conditioning of the surface (colonisation) to favour micro-organism or

macro-organism attachment. Blöchl and Müller-Steinhagen [1990] reported

that no initiation occurs for particulate fouling.
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2. Mass transport

At least one of the key components involved in the formation of the fouling

layer is transported from the fluid bulk to the heat transfer surface.

3. Attachment

After a key component is transported to the surface region to form fouling

precursors, these attach to the surface where the fouling layer is formed.

4. Growth retardation

The growth of the fouling layer can be decelerated by several mechanisms

such as increasing surface repulsion due to electrical interactions or decreas-

ing oxygen diffusion rate as the corrosion layer thickens [Epstein, 1983].

Furthermore, the growth of the layer can be hindered by the removal of

parts of the deposit.

5. Ageing

The physical/chemical properties of the fouling layer are altered due to

prolonged exposure to process conditions. Considering the effect of ageing

on fouling layers is an important aspect of this work, as explained below.

4.2.2 Ageing

Ageing has been for many years the least understood and the least investigated

step of fouling formation [Müller-Steinhagen, 2000]. Until recently, it was usually

ignored in modelling attempts and in the analysis of experimental data. It has

attracted the interest of fouling researchers in the last decade and the advances

in the subject have been reviewed by Wilson et al. [2009].

The effect of ageing on the physical/chemical properties of a deposit depends

on the formation mechanism. For most mechanisms the aged deposit is stronger

than the fresh deposit: it has a more cohesive structure. For crystallisation foul-

ing, it has been reported by Brahim et al. [2003] that the initial porous crystalline

matrix becomes denser over time to yield a more stable material. In chemical

reaction fouling, experimental studies conducted by Fan and Watkinson [2006]

showed the structural evolution of fluid-coker deposits from an amorphous con-

glomerate to a coherent graphitic arrangement. On the other hand, in some cases
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of biological fouling, ageing can weaken the initial fouling layer and cause deposit

sloughing [Müller-Steinhagen, 2000].

The structural properties of the fouling layer have a direct impact on the

choice of the appropriate cleaning method. The extent of ageing can determine

the ease with which a fouling layer can be removed: harder (stronger) deposits are

more difficult to remove from surfaces [Pogiatzis et al., 2012]. Also, an increase

in the deposit hardness is usually accompanied by an increase in the thermal

conductivity [Ishiyama et al., 2011a].

Experimental results reported by Er and Lee [2010] (reproduced with permis-

sion by Pogiatzis et al. [2012]), for fouling layer gums formed by auto-oxidation

of linseed oil, show such an increase in thermal conductivity as the initial deposit

ages. The change in thermal conductivity has significant consequences on the dy-

namics of fouling formation and the efficiency of the heat transfer process. The

increase in thermal conductivity with time changes the thermal resistance of the

deposit layer and thereby the temperature distribution across the layer [Pogiatzis

et al., 2012]. The deposit/bulk-fluid interface temperature is recognized to be a

key variable influencing fouling kinetics [Ishiyama et al., 2010a].

4.2.3 Fouling models

The purpose of a fouling model is to assist the designer or the operator of a heat

exchanger to make an assessment of the impact of fouling on the performance of

the unit [Bott, 1995]. In that respect, the two idealised curves shown in Figure 4.2

have been proposed for the prediction of the thermal fouling resistance, Rf , of a

fouling layer over time. These curves are often observed in practice on laboratory

units and on process units [Epstein, 1983].

The parameter tI represents the length of the initiation period. An initiation

period may not always occur or it may be so short as to be negligible. It is usually

ignored in modelling approaches as it is very difficult to predict [Bott, 1995].

Curve A on Figure 4.2 represents situations where the thickness of the de-

posit increases steadily with time. The evolution of the overall thermal fouling

resistance is given by

Rf = at (4.5)
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t

Rf

B

A
A: linear rate
B: asymptotic

tI

Figure 4.2: Idealised evolution of thermal fouling resistance

where t is time and a the slope of the line.

Curve B exemplifies the asymptotic fouling behaviour. The growth of the

layer is decelerated due to auto-retardation mechanisms [Epstein, 1988] which

cause a gradual decrease of the deposition rate, e.g. ever-reducing wall catalysis

of chemical reaction fouling as the deposit layer builds on the wall or because of

a decrease in the deposit/bulk-fluid interface temperature. Eventually a steady

state is reached when there is no net increase of the thickness of the fouling layer.

At that point the asymptotic value of the thermal fouling resistance, Rf∞ , is

attained. The model proposed by Kern and Seaton [1959] is commonly used to

describe the asymptotic fouling behaviour:

Rf = Rf∞(1− e−t/b) (4.6)

where b is a time constant and t is the time elapsed since fouling started.

The idealised curves shown in Figure 4.2 may fail to describe the fouling

process. In a real-life application, an ideal situation may not be achieved. Parts of

the deposit may be removed due to periodic weakening [Epstein, 1988]. Changes

in crystal structure, chemical degradation, the development of thermal stresses or
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the slow poisoning of micro-organisms can all be causes for weakening the deposit

[Epstein, 1988].

The fouling behaviour and kinetics depend on the following operating param-

eters [Müller-Steinhagen, 2000]: (i) foulant concentration in stream; (ii) surface

temperature; (iii) surface roughness and (iv) flow velocity.

4.2.4 Cleaning fouled heat exchangers

Fouling and cleaning are symbiotic processes, as outlined by Wilson [2005]. The

periodic cleaning of heat exchangers is essential in order to maintain the heat

recovery efficiency within desirable limits. The removal of unwanted deposits is

necessary even for well-designed devices because the operating conditions may

deviate considerably from the design conditions [Müller-Steinhagen, 2000].

Cleaning techniques can be categorized into chemical and mechanical meth-

ods. Chemical cleaning methods attempt to remove the fouling layer using chemi-

cal agents that react with the deposit layer causing it to dissolve, soften or detach

from the heat transfer surface, while mechanical methods remove the deposit by

applying shear forces (other mechanisms exist, e.g. ultrasound). The former have

certain advantages: chemical techniques are relatively quick, less costly, do not

damage the surfaces of the exchanger if the correct agent is chosen and can be

performed in situ. In contrast, mechanical methods are usually more effective in

removing resilient deposits and there is less need to handle dangerous chemicals

or dispose of chemical waste. Mechanical methods usually require direct access

to the fouled surface so the dirty heat exchanger must be disassembled. For the

recirculation of chemical agents there is no need to dismantle the unit if it has

been designed for cleaning-in-place.

An effective mitigation strategy may include a combination of both cleaning

types. The choice of the appropriate method relies on the physical/chemical

characteristics of the fouling layer and the costs associated with each cleaning

technique. For optimal energy and financial management the choice of method

and the timing of cleaning require the use of decision-making tools.
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4.3 Scheduling of cleaning actions

Let us firstly define the term heat exchanger cycle. The operation of a fouled

heat exchanger is succeeded by a maintenance period during which the unit is

cleaned in order to restore the heat recovery efficiency (partially or completely,

depending on the cleaning method). Hence, a heat exchanger cycle is divided in

two periods: the operating period and the cleaning period. The duration of the

cleaning period will depend on the severity of fouling and the type of cleaning.

Let us consider now the maintenance decisions the operator needs to make.

When the process involves only a single heat exchanger, then she needs to decide

the length of the operating period and the cleaning method (if more than one

are available). If, however, the process involves a network of interacting heat

exchangers, then she also needs to choose which units are to be cleaned at a

given time. There might be a restriction in the number of units that can be

cleaned at the same time. Other constraints, such as key target temperatures or

heat transfer duties, may also exist.

The optimal management of the heat transfer process is achieved through

the minimisation of energy losses and maintenance expenditure. It would be

beneficial for the minimisation to be performed over the life cycle of the process

or the time span between process shut-downs. Hence, the existence of a function

that captures the process and maintenance costs is essential. This cost function

is then minimized over the desired time horizon with respect to the decision

variables (cleaning and timing choices) to yield the optimal cleaning schedule.

The effect of fouling on the heat recovery process is quantified by the heat duty

which is related to the thermal fouling resistances. It has not yet been possible to

apportion a single measurement of the overall thermal fouling resistance, Rf,tot,

between the two sides of the wall. In all the studies presented below it is assumed

that fouling occurs only on one side of the heat transfer surface (i.e. that one

process stream is ‘clean’).

Let us assume that the duration of the cleaning period is fixed. The general
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form of the cost function is the following:

z =

∫ tf

0

p(t)dt + m(y) (4.7)

where function p(t) refers to process costs: energy losses due to fouling and lost-

production opportunity due to cleaning, integrated over a time horizon of length

tf . The energy losses due to fouling depend on the timing of cleaning actions

(timing decisions). Function m(y) refers to maintenance costs and y is the array

of cleaning decisions. The cleaning choices correspond to ‘yes’ or ‘no’ decisions

(should we clean exchanger i? / should we clean using a chemical method?)

which can be expressed by binary variables. Therefore, y is an array of binary

values.

The next section reviews the research already conducted on the subject. To

facilitate the discussion, the work on single units is presented first before moving

on to the more general case of heat exchanger networks. In all the approaches

described below two common assumptions are made: (i) there is only one avail-

able cleaning action and (ii) the properties of the fouling layer are uniform and

constant.

4.3.1 Single heat exchanger

Let us consider the case of a single heat exchanger and assume that a cleaning

action which removes the deposits completely is available. Since the cleaning

action restores the effectiveness of the unit, the minimisation needs only to be

performed over one heat exchanger cycle. This optimised cycle is then repeated

over again. The time horizon is given by

tf = top + tcl (4.8)

where top is the length of the operating period (decision variable) and tcl is the

duration of the cleaning period (fixed, only one cleaning action is available).

Hence, the operator needs only to calculate the optimal length of the operating
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period top. The simplified objective function is the following:

z =

∫ top+tcl

0

p(t)dt + c (4.9)

where c is the fixed maintenance cost.

The scheduling problem as described above was first considered by Epstein

[1979] who devised an analytical solution for determining the optimal heat ex-

changer cycle for an evaporator subject to fouling. The optimal duration of the

operating period can be calculated analytically using the first derivative, viz.

dz

dtop
= 0 (4.10)

The solution of equation (4.10) provides an analytical result for the calculation of

the optimal operating period length, t∗op. Epstein [1979] assumed that the amount

of deposit at a given time t was proportional to the amount of heat transferred

up to that time.

Casado [1990] extended the analytical approach of Epstein [1979] to a single-

phase counter-current heat exchanger used in a crude oil preheat train. He pre-

sented a detailed economic model and explored the major operating trade-offs

that dictate the existence of a minimum cost. Casado [1990] also presented an

algorithm for computer implementation where the analytical formula was solved

using a trial-and-error procedure.

Zubair et al. [1992] argued that stochastic fouling models must be used to cap-

ture the true performance of a heat exchanger. In that vein, Sheikh et al. [1996]

introduced uncertainty in the linear fouling model and presented a reliability-

based cleaning strategy.

4.3.2 Heat exchanger networks

Scheduling the cleaning actions for heat exchanger networks subject to fouling is

the main topic of this work. The scheduling framework developed for a network

should be readily applicable to the special case of a single unit.

Let us assume that a cleaning action is available, which removes the deposits
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completely. The cost function is given by equation (4.7), where the binary array

y corresponds to unit choices. The cost function is non-differentiable and, hence,

an analytical formulae cannot be derived. The optimal cleaning schedule for the

network can only be obtained using numerical optimisation tools.

Let us now examine the scheduling problem with respect to mathematical

programming theory. The presence of the binary array y means the problem is

described by a Mixed-Integer Programming (MIP) formulation. It is desirable for

the MIP formulation to be convex as the identification of the global solution is

guaranteed for convex formulations. Nevertheless, identifying the global solution

for convex MIP problems can be very expensive computationally. For non-convex

formulations, it is not always possible to issue a certificate of global optimality.

4.3.2.1 Non-convex formulations

The scheduling problem is described by a non-convex Mixed-Integer Nonlinear

Programming (MINLP) formulation, primarily due to equation (4.1). The ther-

mal fouling resistance may also be nonlinearly related to some other variable

depending on the complexity of the fouling model. Smäıli et al. [1999] were the

first to formulate the problem as a non-convex MINLP while trying to optimise

the performance of a network of 11 units, representing a preheat train in a sugar

refinery, over a horizon of 120 days. Subsequently, Smäıli et al. [2001] presented

an improved MINLP formulation which was used to obtain cleaning schedules for

two oil refinery networks over a time-horizon of three years. Smäıli et al. [2001]

used two different models to estimate the thermal fouling resistance: the linear

and the asymptotic.

To calculate the process costs, p(t), the operation of the network must be

simulated in time. In that respect, Smäıli et al. [2001] discretised time: the

horizon was divided into periods of fixed and equal length. Each period was

further divided into an operating sub-period and a cleaning sub-period (both

of fixed length). If a cleaning action was selected, it was performed during the

cleaning sub-period while the other units continued to operate normally. In this

case, the binary array y corresponds to unit and timing decisions (e.g. the value

of yij denotes if unit i is cleaned at period j or not).
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The length of the operating sub-period can also be allowed to vary, e.g.

[Markowski and Urbaniec, 2005]. It will then be a decision variable for the MINLP

problem. Such an MINLP formulation is highly non-convex [Markowski and Ur-

baniec, 2005] and it may be impossible to solve (depending on how many variables

and constraints are involved).

Smäıli et al. [1999], Smäıli et al. [2001] and Markowski and Urbaniec [2005]

attempted to optimise the MINLP formulations they constructed using rigor-

ous optimisation methods developed for convex problems. Applying such exact

algorithms to non-convex programming problems is a heuristic approach. An

alternative path is to use heuristic solution techniques which usually require less

computational effort than exact algorithms to yield a sub-optimal solution.

In that fashion, Smäıli et al. [2001] proposed a simple greedy solution proce-

dure to act as a competitor to the rigorous optimisation algorithm. The greedy

solver considers cleaning actions in the current period and the effect of those

actions over a ‘sliding’ horizon (selected number of periods in the future). The

difference between the costs when the exchanger is cleaned and when no cleaning

occurs is calculated for each unit. The heat exchanger that exhibits the largest

return, given that it is greater than a predetermined threshold, is chosen to be

cleaned. The greedy solver was found to produce worse solutions than the exact

algorithm.

Calculating the return for each heat exchanger at each period requires the

simulation of the operation of the network several times. Ishiyama et al. [2009]

proposed the use of a ‘merit list’ to identify favourable candidates to be compared

in a full simulation in order to reduce the computational effort. Furthermore,

they included model-based representations of the fouling kinetics and considered

the impact of fouling on the hydraulic performance of crude oil preheat train

networks.

Ishiyama et al. [2010b] extended the above scheduling approach to deal with

the problem of controlling the inlet temperature of a de-salter. A de-salter is

an essential device on an oil refinery: it removes inorganic substances from the

crude oil to prevent damages such as the deactivation of catalysts used in the

process. The operation of the de-salter depends on the upstream temperature,

which varies due to deposits’ build-up in the exchangers. The inlet temperature
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is also affected by cleaning actions performed on heat exchangers upstream in the

network.

Smäıli et al. [2002] proposed a variant of simulated annealing [Kirkpatrick

et al., 1983] for optimising the cleaning schedule for two networks of 14 and

25 heat exchangers, respectively. The best schedules found were compared to

solutions obtained using an exact algorithm. The values of the heuristic and

exact objective (total cost) were found to be very close for both networks. In

fact, for the larger network the heuristic solver identified a solution which was

slightly better. Furthermore, for the same network the heuristic solver generated

the solution with considerably less computational effort. Here, a linear fouling

model was used.

Sanaye and Niroomand [2007] scheduled the cleaning actions for a heat ex-

changer network used in ammonia and urea production. The authors neglected

to describe the heuristic technique they used to schedule the cleaning actions.

Rodriguez and Smith [2007] used simulated annealing [Kirkpatrick et al., 1983]

to simultaneously optimise the cleaning schedule and the operating conditions to

mitigate the negative effect of fouling on an oil refinery network. According to the

‘fouling threshold’ concept [Panchal et al., 1999] which the authors employed, the

deposition rate for chemical reaction fouling in crude oil heat exchangers depends

on the bulk velocity and the surface temperature. Optimising the profile of these

two operating variables can reduce the amount of fouling significantly. Rodriguez

and Smith [2007] controlled the stream splitters and bypasses to manipulate the

fluid velocity and in turn surface temperature.

4.3.2.2 Convex formulations

Georgiadis and co-workers [Georgiadis et al., 1999, 2000] presented a Mixed-

Integer Linear Programming (MILP) formulation where they tried to avoid the

drawbacks associated with non-convex models. The linearisation of the model

was achieved by replacing the logarithmic temperature difference in equation

(4.1) with the arithmetic mean average. The authors considered a linear fouling

model and created time profiles for the overall heat transfer coefficient, U , of each

unit. Hence, U was a parameter in their formulation and not a variable. The
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MILP formulation was used to schedule the cleaning actions for heat exchanger

networks used for the sterilisation of milk.

Following the approach of Georgiadis et al. [2000], Lavaja and Bagajewicz

[2004] used the time profiles of the overall heat transfer coefficient, U , to devise an

MILP formulation for the problem without introducing any linear approximation

to the nonlinear heat duty equation (4.1). They considered only the linear fouling

model but stated that the approach is easily extended to the case of asymptotic

fouling. The MILP formulation of Lavaja and Bagajewicz [2004] is examined

more carefully in Chapter 5.

4.4 Motivating study

The scheduling studies reviewed in the previous section considered the physi-

cal/chemical properties of the fouling deposits to remain constant throughout

the operation of a heat exchanger. However, it is probable that the properties

of a foulant will change over time due to the prolonged exposure to process con-

ditions. The ageing of the deposit might result in structural changes as well as

changes in thermal conductivity (see Section 4.2.2). Furthermore, in all previ-

ous studies it was assumed that an available cleaning action restores the unit to

its original performance (completely clean state): the selection between different

cleaning methods was not considered.

Ishiyama et al. [2011a] were the first to introduce the economic competition

between two cleaning methods in a scheduling study. In their novel work, fouling

was defined as the combination of deposition and ageing phenomena and the

selection of the appropriate cleaning method relied on the extent of ageing.

The study focused on an isolated evaporator operating under chemical reac-

tion fouling and included the selection between solvent (chemical) cleaning and

mechanical cleaning. There, it was assumed that ageing converts the initial de-

posit into a harder and more conductive form which is not susceptible to removal

by the chemical cleaning method. A simple heuristic search that favoured the

selection of the method with the lowest daily average cost was used to obtain

mixed cleaning schedules.

In summary, Ishiyama et al. [2011b] investigated the benefits of applying
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mixed cleaning strategies rather than cleaning using only one technique. In ad-

dition, they incorporated, for the first time, the effects of ageing on fouling and

cleaning dynamics in a scheduling study. This work aims to extend their approach

to heat exchanger networks.

4.5 Conclusions

Fouling is identified as a major problem in industrial process heat transfer. It is

responsible for large energy and throughput losses resulting in financial penalties.

Fouling is a complicated phenomenon. Epstein [1983] presented a classifica-

tion scheme that describes the formation of a fouling layer as the result of five

different deposition mechanisms, acting separately or in synergy. Furthermore,

he suggested that the formation of a fouling layer can be decomposed to five

sequential steps: initiation, mass transport, attachment, growth retardation and

ageing.

One of the main mitigation strategies for industrial heat transfer devices sub-

ject to fouling is regular cleaning. The cleaning of fouled units involves the

formulation and optimisation of a scheduling problem. The goal is to minimise

the maintenance costs and the process losses, which include energy losses due to

fouling and lost-production opportunity during the cleaning intervals.

A number of scheduling studies have been presented for isolated heat ex-

changers or heat exchanger networks subject to fouling. Various mathematical

formulations have been proposed for the scheduling problem and different op-

timisation tools have been used to obtain cleaning programs. All studies that

preceded the work of Ishiyama et al. [2011b] considered the physical/chemical

properties of the fouling deposits to remain constant in time, and that a cleaning

action restores the heat exchanger to its original clean condition. None of these

studies has taken under consideration the effect of ageing on fouling and cleaning

dynamics or the competition between cleaning methods.

Motivated by the work of Ishiyama et al. [2011a], the current work focuses on

developing optimal mixed cleaning campaigns for heat exchanger networks. The

situation where more than one method is available, giving different degrees of

cleaning, is investigated. Two scenarios are studied: (i) heat exchanger networks
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subject to chemical reaction fouling and (ii) heat exchanger networks subject to

biofouling.

For the first scenario, the scheduling approach proposed by Ishiyama et al.

[2011b] for a single evaporator is extended to accommodate heat exchanger net-

works. Here, the extent of ageing has a direct impact on the selection between two

competing cleaning methods: the more conductive aged material can be removed

only by a mechanical action, while chemical actions are capable of removing only

the ‘softer’ fresh deposit.

The second scenario refers to the novel study of scheduling the cleaning ac-

tions for heat exchanger networks subject to biological fouling. The scheduling

problem features the selection between three cleaning methods: (i) a simple wa-

ter flush, which removes most of the biofilm but leaves the surface colonised and

ready to restart growth when process operation resumes; (ii) chemical cleaning,

which removes all biofilm and imposes a short initiation period and (iii) chemical

cleaning followed by disinfection, which resets the unit to its original clean state.

The scheduling formulation for the chemical reaction fouling scenario is de-

scribed in Chapter 5 along with the proposed solution methods. Chapter 7 in-

troduces two mathematical programming formulations for the biological fouling

scenario.
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Chapter 5

Chemical reaction fouling:

formulation & solution methods

The previous chapter introduced the negative effect of fouling on industrial heat

transfer. It also established the importance of using optimisation tools to schedule

the cleaning actions for heat exchanger networks subject to fouling. Two scenar-

ios were identified, based on the fouling mechanism and the selection between

available cleaning techniques.

The current chapter describes the scheduling problem for the chemical reaction

fouling scenario. Firstly, after a brief heat transfer analysis, the two-layer fouling

model used to calculate the thermal resistance of the deposits is introduced. The

main part of the chapter is dedicated to the description of the mathematical

programming formulation. This includes the time representation, the constraints

and the objective function of the scheduling problem.

The last section discusses the suitability of an existing numerical solver for

the type of mathematical programming problem proposed. Subsequently, two

alternative solution procedures are suggested as more suitable. The first applies

Generalised Benders Decomposition while the second is inspired by Model Pre-

dictive Control.
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5.1 Heat transfer analysis

The scheduling model is developed for networks of single-pass shell-and-tube heat

exchangers. Figure 5.1 shows the schematic representation of such a unit, operat-

ing in counter-current mode. The model can be easily modified to accommodate

different types of heat exchangers and other flow configurations.

tube
inlet

shell
outlet

tube
outlet

shell
inlet

Figure 5.1: Schematic representation of a shell-and-tube heat exchanger (counter-
current mode)

For a unit in operation, the following assumptions are made:

a) it is in counter-current mode; consequently the configuration correction

factor, F , is equal to one;

b) the cold stream flows on the tube side and the hot stream on the shell side;

c) neither of the streams changes phase within the unit;

d) the specific heat capacities of the streams are constant;

e) the mass flow rate of both streams remains constant.

The rate of heat transfer of a shell-and-tube heat exchanger operating in

counter-current mode is given by equation (4.1). The logarithmic mean temper-

ature difference for the unit is calculated as follows:

∆Tlm =
(Th,o − Tc,in)− (Th,in − Tc,o)

ln[(Th,o − Tc,in)/(Th,in − Tc,o)]
(5.1)

63



5. Chemical reaction fouling: formulation & solution methods

where T is the temperature with subscripts c, h, in and o referring to cold, hot,

inlet and outlet stream, respectively. Equation (4.1) can then be rewritten as

follows:

Q = UA
(Th,o − Tc,in)− (Th,in − Tc,o)

ln[(Th,o − Tc,in)/(Th,in − Tc,o)]
. (5.2)

The energy balance for the unit is

Q = ṁcCp,c(Tc,o − Tc,in) = ṁhCp,h(Th,in − Th,o) (5.3)

where ṁ represents the mass flow rate and Cp is the specific heat capacity. Com-

bining equations (5.2) and (5.3) yields

Th,o = Tc,in + (Th,in − Tc,o) exp(UAC) (5.4)

with C given by

C =
ṁhCp,h − ṁcCp,c
ṁhCp,hṁcCp,c

. (5.5)

The negative effect of fouling on the heat transfer process is quantified through

equation (5.4). Accumulation of deposits will cause a decrease of the overall heat

transfer coefficient U .

5.2 Fouling analysis

The key requirement is to be able to track the effect of fouling on heat recov-

ery and on cleaning effectiveness. A two-layer model is used to estimate the

thermal fouling resistance. The two layers are: the fresh deposit and the aged

material. The fresh deposit is susceptible to removal by both mechanical action

and chemical action. On the other hand, the more resilient aged material can

only be removed by mechanical cleaning. Hence, a mechanical action restores the

efficiency of a unit fully, while a chemical action does not.

The concept of a two-layer model was described by Atkins [1962] while con-

sidering fouling in crude oil preheat trains. Atkins [1962] proposed that there are

two discrete events taking place during the formation of fouling. At first, a layer

of soft material is deposited, which is then converted to a harder layer due to
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ageing. The transition from soft to hard layer was modelled as a phase change so

that the growth of the aged layer followed a moving front.

Crittenden and Kolaczkowski [1979] extended the concept proposed by Atkins

[1962] and presented the first quantitative two-layer model. The conversion of

fresh deposit to hard material was assumed to be first order in foulant concen-

tration and to follow an Arrhenius-type temperature dependency.

The two-layer concept was used by Ishiyama et al. [2011a] for the investigation

of the thermal and hydraulic aspects of ageing on heat exchangers. The authors

used the terms ‘gel’ and ‘coke’, borrowed from the crude oil fouling literature, to

describe the fresh deposit and aged material, respectively. The same terminology

is used in the current study. Ishiyama et al. [2011a] compared the evolution of

the thermal fouling resistance over time for different ageing kinetic schemes under

constant heat flux operation and under constant wall temperature operation.

In their scheduling approach Ishiyama et al. [2011b] used the simplest possible

form of the two-layer model, where the rates of gel formation and coke formation

are constant. The same model is used here. Before introducing the model, the

following assumptions are made:

a) deposition occurs only on the tube side of the heat transfer wall (the shell

side is free of fouling). It is recognised that in practice both streams may

give rise to fouling but this scenario is not considered in this work.

b) The formation of foulant is entirely due to chemical reactions between the

components of the stream.

c) The duration of the initiation period is negligible.

d) The gel and coke formation rates are uniform at all locations along the

tubes of the heat exchanger.

e) The density of the two layers remains constant.

f) The coke layer is more thermally conductive than the gel layer.

The growth of the gel layer is expressed as the competition between gel for-
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mation and coke formation, viz.

dδg
dt

= kg − kc (5.6)

where δg the thickness of the gel layer, kg the gel formation rate and kc the coke

formation rate. The growth of the coke layer is given by

dδc
dt

=

kc, if δg > 0

0, if δg = 0
(5.7)

where δc is the thickness of the aged deposit. Figure 5.2 shows the growth of the

two layers as moving fronts in time.

heat transfer wall heat transfer wall

δc

δg
coke

gel

time

Figure 5.2: Growth of gel and coke layers in time

Recall that fouling occurs only on the cold side of the shell-and-tube heat

exchanger. Treating the two layers as a pair of thin insulating slabs, the thermal

fouling resistance, Rf , for the unit is as follows:

Rf =
δg
λg

+
δc
λc

(5.8)

where λg and λc are the thermal conductivities of the gel layer and coke layer,

respectively. The aged material is more conductive than the fresh deposit: λg <

λc.

Equation (4.3) can be rewritten as follows:

1

U
=

1

U0

+Rf =
1

U0

+
δg
λg

+
δc
λc

(5.9)

where U0 is the overall heat transfer coefficient for a foulant-free heat exchanger
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given by
1

U0

=
1

hhot
+

1

hcold
+Rw. (5.10)

The growth of the two layers in the tubes of a heat exchanger will cause a

reduction in flow area and this will lead to an increase in pressure drop. If fouling

is severe, this will affect the pumping capacity as it is assumed that the mass flow

rate of the cold stream is maintained constant. The effects of fouling on pressure

drop are not considered in this work.

5.3 Time representation

The optimisation of the cleaning schedule for a heat exchanger network operating

under fouling requires the calculation of the process costs p(t) as noted in Section

4.3.2.1. To calculate the process costs the operation of the network must be

simulated.

The system to be simulated is dynamic due to equations (5.6) – (5.7). Hence,

an integration scheme is required to obtain numerical solutions for the differential

equations and to integrate the process costs p(t) over the examined time horizon.

For that purpose, orthogonal collocation is chosen for its precision and its need

for relatively few discretisation points [Biegler, 2010]. Among the different collo-

cation schemes, Radau collocation is chosen due to the fact that it allows large

time steps for systems with slow time scales [Biegler, 2010].

Let us assume that the cleaning actions are scheduled over a time horizon tf .

To achieve discretisation, the time horizon is divided into a finite number of

periods, np, of fixed length. In turn, each period is divided into three elements of

fixed length each of which contains four collocation nodes. Figure 5.3 shows the

graphic representation of a discrete period.

The first element considered to be the operating sub-period has length top,

which is assumed to be constant in this work. Elements 2 and 3 correspond

to the cleaning sub-periods and their added length corresponds to the duration

of a mechanical cleaning, tme. The length of the third element corresponds to

the duration of a chemical cleaning, tch. The duration of both cleaning actions

is assumed to be constant and independent of the thickness of the layers. The
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element 1 element 2 element 3

operation
top

mechanical
cleaning
tme

chemical
cleaning
tch

Figure 5.3: Schematic representation of a discrete time period (filled circles: col-
location nodes)

length of the time horizon is calculated as

tf = np(top + tme). (5.11)

where np is the number of periods. If a mechanical action is to be performed in

a given period, it will start at the beginning of element 2 and finish at the end of

element 3 (end of period). Similarly, a chemical action will be performed during

element 3. If no cleaning action is decided for a period the unit is considered to

operate without any disruptions through elements 2 and 3.

The solution of the differential equations and the integral in each element

are approximated by 3rd order polynomials. To facilitate discussion, the use of

orthogonal collocation is briefly reviewed.

Let us consider the following ordinary differential equation:

dv

dt
= f(v(t), t), v(0) = v0. (5.12)

The time profile of variable v(t) is to be approximated using a 3rd order Lagrange

interpolation polynomial over the finite element shown in Figure 5.4, where τ0,

τ1, τ2 and τ3 are the collocation nodes and h the length of the element. Using

Radau collocation: τ0 = 0, τ1 = 0.155051, τ2 = 0.644949 and τ3 = 1. The first

collocation node at τ0 corresponds to the initial condition

v(t0) = v0. (5.13)
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v0 v1 v2 v3

hτ0 hτ1 hτ2 hτ3
t0 t1 t2 t3

h

Figure 5.4: Orthogonal (Radau) collocation over finite element

Also,

v(ti) = vi; i = 1, 2, 3 (5.14)

where

ti = t0 + hτi; i = 1, 2, 3. (5.15)

In Radau collocation the final element times are used as nodes, thus avoiding

the need for extrapolation. The variables vi for i = 1, 2, 3 are obtained by solving

the following system of algebraic equations:

3∑
i=0

vi
dqi(τk)

dτ
= hf(vk, tk); k = 1, 2, 3 (5.16)

where

qi(τ) =
∏
j=0
j 6=i

τ − τj
τi − τj

. (5.17)

and
dqi(τ)

dτ
=

3∑
j=0

3∏
m=0
m 6=i,j

(τ − τm)/
3∏

n=0
n6=i

(τi − τn). (5.18)

The use of orthogonal collocation for the purposes of this work is described in

the section that follows. The next section introduces the proposed mathematical

programming formulation for the scheduling problem.

5.4 Mathematical programming formulation

The task is to identify the optimal cleaning schedule for a heat exchanger network

subject to chemical reaction fouling. Let us assume that U ′ = {1, 2, . . . , nu} is
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the set of units, P = {1, 2, . . . , np} the set of discrete periods and M = {ch :

chemical, me : mechanical} the set of available cleaning modes.

The binary variables yijm, for i ∈ U ′; j ∈ P ; m ∈M , are such that:

yijm =

1, if cleaning mode m is chosen for unit i at period j

0, if cleaning mode m is not chosen for unit i at period j
(5.19)

The following set of constraints:∑
m∈M

yijm ≤ 1; i = 1, 2, . . . , nu; j = 1, 2, . . . , np (5.20)

is necessary to ensure that at most one cleaning mode is selected for unit i at

period j.

5.4.1 Constraints

The scheduling formulation includes two groups of constraints. The first group

corresponds to the simulation of the network’s operation, while the second group

refers to process constraints.

5.4.1.1 Simulation constraints

All simulation constraints are equality constraints. The efficiency of the heat

exchanger network decays in time due to the growth of gel layer and coke layer

on the heat transfer surface of the units. The thickness of gel and coke layers and

the temperature profile of each unit are calculated at the collocation nodes of the

time elements.

Let us define the set of time elements E = {1, 2, 3} and the set of collocation

nodes O = {0, 1, 2, 3}. Moreover, let us assume that:

a) the heat exchangers are completely clean (fouling-free) at the beginning of

the examined time horizon;

b) the gel formation rate is always greater than the ageing rate: kg > kc.
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During the cleaning sub-periods the gel formation and ageing formation rates

need to be controlled: if a unit is chosen to be cleaned, with either method, then

the rates must be fixed to zero to stop the growth of the layers. For that purpose,

the variable gel formation rate rijklg and the variable coke formation rate rijklc are

introduced, together with the following set of constraints:

Element 1: operation

rij,1,lg = kg (5.21)

rij,1,lc = kc (5.22)

Element 2: potential mechanical cleaning

rij,2,lg = kg(1− yij,me) (5.23)

rij,2,lc = kc(1− yij,me) (5.24)

Element 3: potential mechanical or chemical cleaning

rij,3,lg = kg(1−
∑
m∈M

yijm) (5.25)

rij,3,lc = kc(1−
∑
m∈M

yijm) (5.26)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np; l = 0, 1, 2, 3

Constraints (5.23) – (5.24) set the rates to zero during element 2 if a mechanical

action is chosen, while constraints (5.25) – (5.26) fix the value of the rates at zero

during element 3 if either of the cleaning actions is selected.

Applying orthogonal collocation, the thickness of the gel layer, δijklg , and the

thickness of the coke layer, δijklc , for i ∈ U ′; j ∈ P ; k ∈ E; l ∈ O, are defined by

3∑
l=0

δijklg

dql(τ
n)

dτ
= hk(rijkng − rijknc ) (5.27)

3∑
l=0

δijklc

dql(τ
n)

dτ
= hkrijknc (5.28)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 1, 2, 3; n = 0, 1, 2, 3
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where hn is the length of element n: h1 = top, h
2 = tme− tch and h3 = tch. Recall,

the term
dql(τ

n)

dτ
, for n = 0, 1, 2, 3, is a constant.

The units are free of fouling at the beginning of the time horizon. The initial

condition for the thickness of each layer for the first element of the first period is:

δi,1,1,0g = 0 (5.29)

δi,1,1,0c = 0 (5.30)

i = 1, 2, . . . , nu.

The initial conditions for the first element of every other period must set the

thickness of the layers to be equal to that at the end of the previous period.

Hence:

δij,1,0g = δi,j−1,3,3g (5.31)

δij,1,0c = δi,j−1,3,3c (5.32)

i = 1, 2, . . . , nu; j = 2, 3, . . . , np.

For the second element of the periods, the initial conditions depend on whether

a mechanical action is performed or not, as follows:

δij,2,0g = δij,1,3g (1− yij,me) (5.33)

δij,2,0c = δij,1,3c (1− yij,me) (5.34)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np.

If a mechanical action is performed, then the thickness of both layers, δg and δc,

is set to zero by constraints (5.33) – (5.34). Otherwise, it is forced to be equal to

the thickness of the layers at the end of element 1.

Finally, for the third element the initial conditions are crafted to account for

a mechanical or chemical action, viz.

δij,3,0g = δij,2,3g (1−
∑
m∈M

yijm) (5.35)

δij,3,0c = δij,2,3c (1− yij,me) (5.36)
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i = 1, 2, . . . , nu; j = 1, 2, . . . , np.

Constraint (5.35) is used to set the thickness of the gel layer, δg, to zero if either

of the cleaning actions is performed, while constraint (5.36) sets the thickness

of the coke layer, δc, to zero only if mechanical cleaning is selected. If chemical

cleaning is selected, then the value of δc is fixed to be equal to the thickness of

the coke layer at the last node of element 2. Equations (5.33) – (5.36) define

nonlinear constraints due to bilinearities of continuous/binary variables.

The negative effect of fouling on the heat transfer process is quantified through

equation (5.4). Replacing U from equation (5.9) and discretising, this becomes

T ijklh,o = T ijklc,in + (T ijklh,in − T
ijkl
c,o ) exp

( AiCi

1
U i
0

+
δijklg

λg
+ δijklc

λc

)
(5.37)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 1; l = 0, 1, 2, 3

for the first element of the time periods. For the second and third elements

the nonlinear expression of the temperatures must be altered to account for any

cleaning actions. While a unit is cleaned the outlet temperature of both streams

must be set to be equal to the inlet temperature of the streams, i.e. the stream

is bypassed to the next unit. Therefore, equation (5.37) is modified to

T ijklh,o = T ijklc,in + (T ijklh,in − T
ijkl
c,o )[

(1− yij,me) exp
( AiCi

1
U i
0

+
δijklg

λg
+ δijklc

λc

)
+ yij,me

]
(5.38)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 2; l = 0, 1, 2, 3

and

T ijklh,o = T ijklc,in + (T ijklh,in − T
ijkl
c,o )[

(1−
∑
m∈M

yijm) exp
( AiCi

1
U i
0

+
δijklg

λg
+ δijklc

λc

)
+
∑
m∈M

yijm
]

(5.39)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 3; l = 0, 1, 2, 3
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for elements 2 and 3, respectively. Equations (5.37) – (5.39) define nonlinear

equality constraints.

The discrete energy balance for the units is given by

ṁi
cC

i
p,c(T

ijkl
c,o − T

ijkl
c,in ) = ṁi

hC
i
p,h(T

ijkl
h,o − T

ijkl
h,in) (5.40)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 1, 2, 3; l = 0, 1, 2, 3.

5.4.1.2 Process constraints

The process constraints are set by the configuration of the units of the network.

For heat exchangers in series such as the ones shown in Figure 5.5, the constraints

refer to the inlet and outlet temperatures of the connected devices as follows:

T ijklc,o = T i+1,jkl
c,in (5.41)

T ijklh,o = T i+1,jkl
h,in (5.42)

j = 1, 2, . . . , k = 1, 2, 3; l = 0, 1, 2, 3.

Constraint (5.41) corresponds to Figure 5.5(a) where the cold stream connects

units i and j, while constraint (5.42) refers to Figure 5.5(b) where the hot stream

connects the two exchangers.

i i+1

(a) cold stream connection

i

i+1

(b) hot stream connection

Figure 5.5: Units in serial configuration (solid line: cold stream; dashed line: hot
stream)

For two heat exchangers in parallel configuration, as shown in Figure 5.6, the
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following constraint∑
m∈M

yijm +
∑
m∈M

yi+1,jm ≤ 1; j = 1, 2, . . . np (5.43)

ensures that only one of the units is selected for cleaning at a given period.

i

i+1

Figure 5.6: Units in parallel configuration (solid line: cold stream; dashed line:
hot stream)

5.4.2 Objective function

The general form of the objective function of the scheduling problem is given by

equation (4.7) in Section 4.2.4 and it involves the process costs (energy losses due

to fouling and lost-production opportunity due to cleaning), p(t), integrated over

the examined time horizon, tf , plus the maintenance costs, m(y). Recall that:

z =

∫ tf

0

p(t)dt + m(y). (4.7)

The current work focuses on a class of heat exchanger networks called preheat

trains. A preheat train is used when a cold stream needs to be heated to a certain

temperature before entering some other process. Figure 5.7 shows such a heat

exchanger network.

The cold stream is required to be at a target temperature, Ttarget, before

entering the process following the preheat train. The initially fouling-free heat

exchanger network achieves the temperature target. However, the accumulation

of foulant in the units will cause the final temperature, Tf , of the cold stream to

75



5. Chemical reaction fouling: formulation & solution methods

cold
stream

1 2 3 4 5

678

9

10

11

12

13

14

furnace

fuel

heated
stream

Figure 5.7: Example of a preheat train (solid line: cold stream; dashed lines: hot
streams

deviate from the temperature target, Ttarget. For that purpose, it is assumed that

a furnace is used to provide the lost energy to the cold stream.

Following the above, the integrated process costs for the network are given by∫ tf

0

p(t)dt =
nu∑
i=1

fe

∫ tf

0

(Qi
0 −Qi(t))dt︸ ︷︷ ︸

energy losses +
lost-production opportunity

=
nu∑
i=1

fe

[
tfQ

i
0 −

∫ tf

0

Qi(t)dt

]
(5.44)

where Q0 is the heat duty for a fouling-free exchanger and fe the cost of energy.

The integral terms in equation (5.44) are calculated using orthogonal colloca-

tion as follows:

I1 =

∫ tf

0

Q(t)dt (5.45)

3∑
l=0

I ijkl1

dql(τ
n)

dτ
= hkṁi

cC
i
p,c(T

ijkn
c,o − T

ijkn
c,in ) (5.46)
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i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 1, 2, 3; n = 0, 1, 2, 3

The initial conditions are the following:

I ij,1,11 = 0; i = 1, 2, . . . , nu; j = 1, 2, . . . , np (5.47)

I ijk,01 = I ij,k−1,31 ; i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 2, 3 (5.48)

Due to the discontinuities introduced to the model by the binary variables, the

process costs are estimated separately for each period. For that purpose the value

of the integrals is fixed to zero at the beginning of each period.

To facilitate understanding, the calculation of the energy losses plus the lost-

production opportunity for unit i in period j in which a mechanical cleaning

action is performed is illustrated. Figure 5.8 shows the time profile of the heat

duty for unit i at period j. Area 1 represents the heat exchanged, area 2 the energy

t

Qi

Qi
0

1

2

. . . . . .

period j

tj−1 tj

3

Figure 5.8: Variation of heat duty with time for unit i in time period j (1: heat
exchanged, 2: energy losses and 3: lost-production opportunity)

losses and area 3 the lost-production opportunity in period j, respectively. Area

1 is calculated by I ij,3,31 . The sum of areas 2 and 3 is given by

A2 + A3 = (tj − tj−1)Qi
0 − I

ij,3,3
1 (5.49)

where tj−1 = (j − 1)
3∑

k=1

hk and tj = j
3∑

k=1

hk.
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The maintenance costs depend only on the number of mechanical and chemical

actions performed as it is assumed that the duration of cleaning is independent

of the amount of foulant. The cost of each cleaning mode is fixed and it is given

by the cost vector C = {cm : m ∈M}.
The objective function for the discrete scheduling model is given by

z =
nu∑
i=1

np∑
j=1

fe
(
Qi

0

3∑
k=1

hk − I ij,3,31

)
+

nu∑
i=1

np∑
j=1

∑
m∈M

yijmcm. (5.50)

5.4.3 Characteristics of the proposed scheduling formula-

tion

The mathematical programming formulation can be implemented for other types

of heat exchanger networks without modifying the set of constraints. Only the

objective function has to be altered since it refers to a class of heat exchanger

networks known as preheat trains.

The scheduling formulation detailed above is a non-convex MINLP problem

due to the nonlinear equality constraints defined by equations (5.37) – (5.39).

These constraints include products of continuous variables with nonlinear func-

tions of continuous variables. The equality constraints defined by equations (5.33)

– (5.36) are also nonlinear as they consist of bilinear products of binary and con-

tinuous variables. However, these can be replaced by linear constraints if nec-

essary by introducing additional variables. This is not required here since the

decomposition algorithm suggested for the solution of the problem (see Section

5.5.2) can treat such bilinear products explicitly [Floudas, 1995]. Due to the non-

convex nature of the scheduling formulation a number of sub-optimal points will

exist. The number of local optima is expected to increase as the number of units

and/or periods increases.

The non-convex MINLP scheduling problem includes O(120× nu× np) con-

tinuous variables and O(2 × nu × np) binary variables. Also, it is comprised of

O(72×nu×np) equality constraints and O(nu×np) inequality constraints which

involve only binary variables. The decision variables (degrees of freedom) for the

scheduling problem are the binary variables only.
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5.4.4 The MILP formulation of Lavaja & Bagajewicz

For the scheduling problem with only one available cleaning method, a successful

linearisation framework was presented by Lavaja and Bagajewicz [2004] based on

the idea of parametrising the heat transfer coefficient of the units with the aid of

the binary variables of the formulation.

In the initial formulation of Lavaja and Bagajewicz [2004], the non-linearity

arose only by products of continuous variables with binary variables and products

of binary variables. The authors used standard transformations (see [Williams,

1990]) to rewrite the constraints including these products in exact equivalent lin-

ear form. The transformations require the use of additional continuous variables

and constraints. However, the number of variables and constraints to be added

grows rapidly as the number of periods and the number of units increases, making

the solution of the resulting MILP problems computationally unaffordable.

To overcome this drawback, Lavaja and Bagajewicz [2004] suggested a de-

composition method based on the assumption that the cleaning schedule of an

individual unit is not affected by the cleaning decisions for the rest of the units.

Using this decomposition technique the computational effort for obtaining a so-

lution is reduced significantly. Nonetheless, such an assumption is not valid for

large networks with strong couplings between heat exchangers arising from hot

streams passing through units in series.

To the author’s understanding, the linearisation framework proposed by Lavaja

and Bagajewicz [2004] is very difficult to adapt to the scheduling problem studied

in this work. The presence of two layers on the heat transfer surface renders the

parametrisation of the heat transfer coefficient to be extremely difficult. More-

over, even if one succeeds in adapting such a formulation to the case under study,

the resulting models will require a prohibitively large computational effort to

solve.
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5.5 Solution methods

The non-convex MINLP scheduling problem is of the general form:

min.
y

z = f(x, y)

s.t. g(x, y) = 0 (SP)

h(x) = 0

w(y) ≤ 0

x ∈ X ⊆ <nx

y ∈ Y = {0, 1}ny

where x is the vector of continuous variables, y is the vector of binary variables,

nx the dimension of vector x and ny the dimension of vector y.

The practical goal when dealing with non-convex problems is to obtain ‘good’

local optima. In that respect, solution algorithms addressing convex MINLP

problems can be used to solve the scheduling problem (SP) even if such an ap-

proach is considered to be heuristic, in the sense that there is no guarantee that

the global solution will be obtained. This line of approach is adopted in this

work.

A number of well-known solution algorithms for MINLP problems employ a

decomposition strategy. Such are the Generalised Benders Decomposition (GBD)

[Benders, 1962; Geoffrion, 1972] and the Outer Approximation (OA) [Duran and

Grossmann, 1986]/ Equality Relaxation (ER) [Kocis and Grossmann, 1987] algo-

rithms. The iterative structure of the decomposition algorithms is illustrated in

Figure 5.9. The MINLP problem is decomposed into a Nonlinear Programming

Primal: NLP
problem

Master: MIP
problem

Figure 5.9: Iterative structure of decomposition algorithms

(NLP) problem, the Primal problem, where the binary variables y are fixed and

one MIP problem, the Master problem. The Primal problem provides an upper
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bound to the MINLP problem and the set of continuous variables to be used by

the Master problem. Conversely, the Master problem provides a lower bound for

the MINLP problem and the set of binary variables to be used by the Primal

problem.

If the MINLP problem is convex, then at some iteration the upper bound

provided by the Primal problem will become equal to the lower bound provided

by the Master problem and the algorithm terminates having produced the global

solution. For a non-convex MINLP problem the lower bound provided by the

Master problem is not always valid: there is the danger of cutting off parts of

the feasible region. Consequently, the global solution may be excluded from the

search at some iteration. In such an event, the lower bound will exceed the upper

bound at some iteration and the algorithm will terminate.

5.5.1 Outer approximation/Equality relaxation

One decomposition-based optimiser is DICOPT R© [Kocis and Grossmann, 1989],

included in the GAMS
TM

[Brooke et al., 1992] modelling system. The DICOPT R©

solver is based on the OA/ER decomposition algorithm.

There are two drawbacks [Floudas, 1995] when applying the OA/ER algorithm

to the non-convex MINLP scheduling problem (SP). Briefly, these are:

a) the formulation of the master problem at each iteration involves the lineari-

sation of the objective function and the nonlinear constraints around the

primal solution. Linear approximations for non-convex functions are often

invalid.

b) A large number of constraints is added to the master problem at each it-

eration. Therefore, the computational effort for solving the corresponding

MIP Master problem increases significantly after a few iterations.

Thus, the OA/ER algorithm is not a suitable candidate for the solution of

large instances of the MINLP scheduling problem (SP), the main reason being

that the size of the Master problem will grow rapidly as the number of units

and the number of time periods increases. As a result, the algorithm will require

prohibitively long computational times to converge.
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5.5.2 Generalised Benders Decomposition algorithm

A more appropriate solution algorithm for the problem of interest to this work

is Generalised Benders Decomposition [Benders, 1962; Geoffrion, 1972]. The key

feature of GBD, that is of interest to this work, is that only one constraint is added

to the Master problem at each iteration. As a result, the size of the corresponding

MIP Master problem remains small even after a large number of iterations. On the

other hand, one may argue that the Master problem in GBD provides looser lower

bounds than the Master problem in OA/ER [Grossmann and Kravanja, 1995] and

thus potentially requires many more iterations. However, for this application this

may work to our benefit since the MINLP problem is non-convex and the danger

of cutting off parts of the feasible region decreases.

There are three Nonlinear Programming (NLP) sub-problems to be derived

from problem (SP) with respect to GBD [Floudas, 1995]:

a) NLP relaxation: the binary requirements for variables y are lifted. Here,

variables y are continuous and constrained within the interval [0, 1]. The

NLP sub-problem is the following:

min.
y

zR = f(x, y)

s.t. g(x, y) = 0 (NLP-R)

h(x) = 0

w(y) ≤ 0

x ∈ X ⊆ <nx

y ∈ Y = [0, 1]ny .

which yields a lower bound zR to problem (SP) if it has a feasible solution

[Grossmann and Kravanja, 1995].

b) NLP sub-problem for fixed binary variables yk: this is the Primal problem

and it is defined as follows:

min. zkPr = f(x, yk)

s.t. g(x, yk) = 0 (NLP-Pr)
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h(x) = 0

x ∈ X ⊆ <nx .

The Primal problem yields an upper bound zkf to (SP) provided it has

a feasible solution [Grossmann and Kravanja, 1995]. The index k ∈ K

corresponds to the iteration counter for the decomposition algorithm (K is

the set of iterations).

In fact, there are no decision variables in the problem (NLP-Pr): once all the

binary variables are fixed the behaviour of the system is fully determined.

Thus, the solution of the Primal problem corresponds to the solution of a

square matrix of equations (simulation of the network’s operation). Hence,

it is guaranteed that it will always have a feasible solution. The set of con-

straints w(y) need not be included in the problem since the binary variables

y are fixed.

c) NLP feasibility sub-problem for fixed yk. The task here is to minimise

the infinity-norm, l∞, (among other appropriate norms) measuring the in-

feasibility of the corresponding (NLP-Pr) sub-problem. Since the Primal

problem is never infeasible, the NLP feasibility sub-problem can be omitted.

The Master problem corresponding to (SP) is the following MILP problem:

min.
y,θ

θ

s.t. θ ≥ L(xk, y, λkg , λ
k
h); k ∈ K (MILP-M)

w(y) ≤ 0∑
i∈Bk

yi −
∑
l∈Ck

yl ≤ |Bk| − 1; k ∈ K

y ∈ Y = {0, 1}ny

Bk = {i : yki = 1}, Ck = {l : ykl = 0}; k ∈ K

where |Bk| is the cardinality of set Bk and

L(xk, y, λkg , λ
k
h) = f(xk, y) + λk

T

g g(xk, y) + λk
T

h h(xk); k ∈ K (5.51)
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is the Lagrange function evaluated at the solution of the Primal problem at

each iteration. The parameters λk
T

g and λk
T

h are the Lagrange multipliers at the

solution of the k-th Primal problem. The set of integer cuts given by∑
i∈Bk

yi −
∑
l∈Ck

yl ≤ |Bk| − 1; k ∈ K (5.52)

Bk = {i : yki = 1}, Ck = {l : ykl = 0}; k ∈ K

eliminates binary combinations already found at previous iterations.

The inequality constraints defined by

θk ≥ L(xk, y, λkg , λ
k
h); k ∈ K (5.53)

are known as Benders cuts and they produce a non-decreasing sequence of lower

bounds [Floudas, 1995]. Benders cuts represent local underestimators of the

MINLP problem (SP). These underestimators are valid when the MINLP prob-

lem is convex and, particularly, when Slater’s condition for strong duality [Boyd

and Vandenberghe, 2004] holds. This is not true for problem (SP). As a result,

there exists the possibility that some Benders cuts will not be valid and the global

solution will be excluded from the search procedure. Figure 5.10 depicts the sit-

uation where an invalid underestimator cuts off a part of the feasible region that

includes the global solution (point A).

Sahinidis and Grossmann [1991] and Bagajewicz and Manousiouthakis [1991]

have shown that the GBD algorithm may terminate at a local optimum or even

worse at a non-stationary point for non-convex problems. Furthermore, they

have shown that if the starting point is a local minimum then the algorithm

will terminate at this point. This result can be used as a second termination

criterion for the GBD algorithm to guarantee that it will always converge at a

local minimum: the algorithm is restarted at the last solution point obtained

until it terminates at that same point. Algorithm 5.1 gives an overview of the

GBD algorithm implemented in this work.
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x

z

A

Figure 5.10: Invalid Benders cut (underestimator)

5.5.3 Receding Horizon heuristic

A heuristic solution procedure inspired by Control Theory, due to the dynamic na-

ture of the scheduling problem, and particularly Model Predictive Control (MPC)

is also used to solve the MINLP problem (SP). The basic steps in the MPC

method [Camacho and Bordons, 2004] are the following:

a) calculate a control sequence after minimising an apt objective function over

a fixed time horizon;

b) recede the horizon and repeat minimisation after applying the first signal

of the control sequence.

The MPC approach can be adapted to attack the scheduling problem of clean-

ing heat exchanger networks subject to fouling. Here, the control sequence refers

to the cleaning schedule and the first signal corresponds to the cleaning deci-

sions for the first period of the examined number of periods, nRH (nRH < np).

Algorithm 5.2 describes the applied Receding Horizon (RH) heuristic solution

procedure.

Note that the number of periods nRH decreases as the iteration counter j

approaches the value of n′p. The solution procedure stops when j = np. Therefore,
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Algorithm 5.1: Generalized Benders Decomposition

1: Begin
2: Set number of periods nP
3: Solve (NLP-R) ! obtain yR to use as starting point
4: y1 = 1 ∀ yR > 0.5 ! R: Relaxed
5: y1 = 0 ∀ yR ≤ 0.5
6: termination = False
7: while (termination = False) do
8: UB = +∞, LB = −∞ ! UB: upper bound, LB: lower bound
9: criterion = True

10: k = 0
11: while (criterion = True) do
12: k = k + 1
13: Solve (NLP-Pr) for given yk

14: Store xk = x, λk = λ, zkPr
15: if (UB ≥ zkPr) then
16: UB = zkPr
17: x∗ = xk ! x∗: optimal x vector
18: y∗ = yk ! y∗: optimal y vector
19: end if
20: Solve (MILP-M) for xk

21: Store yk+1 = y, LB = θk

22: if (LB ≥ UB) then
23: criterion = False
24: end if
25: end while
26: if (k = 1) then
27: termination = True
28: end if
29: end while
30: Solution: x∗, y∗, UB
31: End

the obtained cleaning schedule is for np periods and it is comparable to the

cleaning schedules obtained using the GBD algorithm.

The merit of using the RH heuristic to solve the scheduling problem (SP) lies

in the size of the sub-problems solved at each iteration: the sub-problems are

relatively small and can be solved with relatively small computational effort. As

the number of units, nu, and/or the number of periods, np, increases it is ex-
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Algorithm 5.2: Receding Horizon heuristic

1: Begin
2: Set number of periods nP
3: Set initial number of periods nRH

4: j = 0 ! j indicates current period (iteration counter)
5: while (nRH ≥ 1) do
6: j = j + 1 ! recede horizon
7: if (nRH + j > nP ) then
8: nRH = nRH − 1
9: end if

10: Solve (SP) for nRH periods using Algorithm 5.1 (GBD)
11: Apply cleaning actions for first period (current period j)
12: end while
13: End

pected that the computational cost for applying the GBD algorithm will increase

significantly. In such cases, the RH heuristic solution procedure may be more

suitable to use.

5.6 Conclusions

A new mathematical programming formulation was presented in this chapter for

the scheduling problem of cleaning heat exchanger networks subject to chemical

reaction fouling. The scheduling problem takes into account the effects of ageing

on fouling and cleaning dynamics. Moreover, it includes the selection between

two cleaning methods, one mechanical and one chemical, which differ in their

ability to remove the aged deposit.

A two-layer fouling model is used to track the effect of fouling on heat recovery

and on cleaning effectiveness. It is assumed that the growth rate of both the gel

layer (fresh deposit) and the coke layer (aged deposit) is constant and independent

of any other parameters. The aged layer is considered to be more conductive than

the fresh deposit and also not susceptible to removal by the chemical cleaning

method.

The proposed formulation is reliant on the availability of the parameters of the

two-layer fouling model. It is very likely that the resulting scheduling problems
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will be highly sensitive to these parameters and reliable estimation of their values

is going to be crucial in the application of the described scheduling formulation.

The scheduling problem is formulated for networks of single pass shell-and-

tube exchangers operating in counter-current mode. It can be easily extended for

other types of heat exchangers and different flow configurations. It is assumed

that deposition of foulant occurs only in the tubes of the units where the cold

stream flows.

The need to simulate the operation of heat exchanger networks in order to

calculate the process costs due to fouling favours a discrete representation of time.

An orthogonal collocation scheme is included in the problem formulation and is

used to obtain numerical solutions for the differential equations, albeit these are

of zero order (the future direction of the work is to replace the simple two-layer

model with a more detailed one, e.g. the first order model described by Ishiyama

et al. [2011a]), and to estimate the integral of the process costs over the examined

time horizon.

The mathematical programming formulation of the scheduling task corre-

sponds to a non-convex MINLP problem. Due to the non-convex characteristics

of the problem it is very difficult to guarantee that a local solution is the globally

optimal point. The non-convexity of the problem arises from the sets of equality

constraints (5.37) – (5.39) and from the constraints defined by (5.23) – (5.26)

(can be replaced by linear constraints if required / can be treated explicitly by

Generalised Benders Decomposition).

The objective function of the scheduling problem is formulated for a special

class of heat exchanger networks called preheat trains. Nonetheless, the schedul-

ing problem may be extended to other types of heat exchanger networks after

minor modifications. A preheat train is used to raise the temperature of a cold

stream to a certain value before it enters some other process. Alas this target

temperature is not achieved due to fouling. The objective function includes the

energy losses due to fouling, the lost-production opportunity during the cleaning

intervals and the maintenance costs.

The standard Outer Approximation/Equality Relaxation decomposition algo-

rithm is deemed as unsuitable to attack large instances of the non-convex schedul-

ing problem. In that regard, two alternative solution methods are proposed.
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The first algorithm applies Generalised Benders Decomposition, a well-known

exact solution method for convex MIP problems. For non-convex problems such

as the one studied here there is a high probability that the global solution will

be excluded by the search procedure at some iteration. Nonetheless, bearing in

mind the unavoidable difficulties associated with non-convex problems, the goal

here is to obtain ‘good’ local solutions with moderate computational cost. For

that purpose, the use of Generalised Benders Decomposition is favourable.

The second solution approach is inspired by Model Predictive Control. The

advantage of this heuristic solution procedure lies in the fact that the scheduling

problem is solved over a short time horizon (instead of the whole time horizon) at

each iteration. Thus, it is expected that a cleaning schedule can be obtained with

relatively small computational effort even for large instances of the scheduling

problem.

89



Chapter 6

Chemical reaction fouling:

computational studies

In Chapter 5, a new MINLP formulation was presented for the problem of schedul-

ing the cleaning actions for heat exchanger networks subject to chemical reaction

fouling and ageing. The proposed formulation is evaluated in the current chapter

through a series of computational studies. At first, the scheduling formulation

is implemented for an isolated heat exchanger and the resulting model is solved

using the Outer Approximation/Equality Relaxation algorithm. Subsequently,

cleaning schedules are obtained for two heat exchanger networks of different size

using the Generalized Benders Decomposition algorithm and the Receding Hori-

zon heuristic procedure. An assessment is presented at the end of the chapter

regarding the produced results and the computational performance of the differ-

ent solution procedures.

6.1 Introductory remarks

For the computational studies, the scheduling problems are modelled in GAMS
TM

[Brooke et al., 1992] installed on an ASUS
TM

Chassis computer with 2.21 GHz

CPU. The DICOPT R© solver (OA/ER algorithm) [Kocis and Grossmann, 1989],

the GBD algorithm and the RH heuristic require the use of an MILP solver and

an NLP solver. The MILP solver is CPLEX R© 10.1.1 [GAMS, 2010] which is a
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branch-and-cut algorithm. The NLP solver is CONOPT3 R© [GAMS, 2010], which

applies the Generalised Reduced Gradient method [Abadie and Carpentier, 1969;

Drud, 1994].

The different scheduling problems studied below are solved for multiple start-

ing points in an attempt to compensate for the difficulty in obtaining the global

solution imposed by the non-convex constraints. To facilitate the exposition of

results, the best-obtained solution out of all starting points is referred to as the

“optimal solution” (even if it is not the global solution).

The cleaning parameters are common for all scheduling tasks examined in

this chapter. Table 6.1 gives the duration and cost for both cleaning actions.

Other common parameters for all case studies are: the thermal conductivity of

Table 6.1: Cleaning parameters

Mode Cost (£) duration (days)
ch 5000 1
me 10000 5

the gel layer, λg = 2× 10−3 kW/m.K, the thermal conductivity of the coke layer,

λc = 8× 10−3 kW/m.K, and the energy cost, fe = 0.5 £/kW.day.

6.2 Isolated heat exchanger

At first, the proposed formulation is used to obtain cleaning schedules for an

isolated heat exchanger. Two cases are studied for different coke formation rates,

while the gel formation rate and all other parameters remain unchanged.

The operating parameters for the unit are given in Table 6.2. The heat transfer

area, A, of the exchanger is 43.3 m2 and the heat transfer coefficient in the clean

state, U0, is 400 W/m2.K. The head load of the unit at a clean state is Q0 = 11

MW. Table 6.3 gives the fouling parameters for the two case studies. The duration

of the operating sub-period, top, is 10 days, hence, the length of a time period is

15 days.

For both case studies, the scheduling model is solved for 100 different starting

points using the DICOPT R© (OA/ER algorithm) solver. The starting points are

random feasible combinations of the binary variables. The cleaning actions are
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Table 6.2: Operating parameters: isolated heat exchanger

Tc,in (oC) Th,in (oC) ṁc (kg/s) ṁh (kg/s) Cp,c (kJ/kg.K) Cp,h (kJ/kg.K)
27 227 135 128 3.1 2.2

Table 6.3: Fouling parameters: isolated heat exchanger

Case study kg (m/day) kc (m/day) kg/kc

A 1.6× 10−6 8× 10−8 20
B 1.6× 10−6 8× 10−7 2

scheduled over 24 periods corresponding to a time horizon of one year. The

optimal schedule (best out of the 100) for both case studies is shown in Table 6.4.

Moreover, the optimal value of the cost function, z∗, for each case study, is given

in Table 6.5 and compared to the anticipated cost when no cleaning is performed,

zno.

Table 6.4: Optimal cleaning schedule: isolated heat exchanger (open circles:
chemical actions; filled circles: mechanical action)

6
4 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
PeriodCase

study

A
B

Mode
ch me

Table 6.5: Objective value for the optimal schedule and for the no-cleaning situ-
ation: isolated heat exchanger

Case study zno×105 (£) z∗×105 (£) Savings
A 6.8 2.5 63 %
B 5.1 2.6 49 %

The results presented in Tables 6.4 and 6.5 are in compliance with the assump-

tion that the aged material is more conductive than the gel layer. For case study

B, where the coke formation rate is ten times higher than that of case study A,

the objective function value for the no-cleaning situation is considerably smaller:

the objective value reflects the amount of heat losses due to fouling. Furthermore,
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for case study A, where the coke formation rate is slow, the optimal schedule does

not include any mechanical cleaning. In contrast, for case study B, a mechanical

action is selected at period 12 as shown in Table 6.4.

The cleaning schedule for case study B suggests that an optimal mixed clean-

ing campaign can be identified, which can be repeated in time. This mixed

cleaning heat exchanger cycle is termed the cleaning super-cycle and it includes

a number of chemical actions to be followed by a mechanical cleaning, which will

reset the unit to the clean state. The advantage of such a mixed cleaning strat-

egy is that the operating time before lengthy cleaning shut-downs is extended by

performing short-length chemical actions.

For case study B the cleaning super-cycle has a length of 12 periods (120

days) as seen in Table 6.4 and it includes 2 chemical actions. The mechanical

cleaning performed at the end of period 12 restores fully the efficiency of the

unit. Subsequently, the same cleaning pattern is observed, albeit, no mechanical

action is performed at period 24 since there is no potential gain in cleaning the

unit at the end of the examined time horizon. For case study A, where the coke

formation rate is slower, a longer time horizon must be considered in order to

obtain a cleaning super-cycle.

Figures 6.1(a) and 6.1(b) show the variation of the gel and coke thickness in

time for case studies A and B, respectively. The timing of the cleaning actions is
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0

20

40
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δ
(m
m
)

(a) Case study A

60 120 180 240 300 360
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(b) Case study B

Figure 6.1: Time profile of gel and coke thickness: isolated heat exchanger
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apparent on both graphs. For case study B, Figure 6.1(b) shows the mechanical

cleaning occurring after 175 days, during which the thickness of both layers is set

to zero. The thickness of the coke layer in case study A increases throughout the

examined time horizon, as shown in Figure 6.1(a), since no mechanical action is

performed.

6.3 Heat exchanger networks

The MINLP scheduling formulation is applied to the two heat exchanger networks

reported by Smäıli et al. [2002]. The first network (referred to as heat exchanger

network I) involves 14 units and introduces some of the complexities found in

refinery networks caused by interconnecting hot streams [Smäıli et al., 2002].

The second network (referred to as heat exchanger network II) consists of 25

units and bears a resemblance to a real network where several units are used in

order to lessen the loss of production due to cleaning. Graphical representations

of the smaller network and the more realistic network are shown in Figures 6.2

and 6.4, respectively.

The two networks are altered in this work: the flash drum included by Smäıli

et al. [2002] is omitted. On the other hand, the desalter is included and therefore

an extra set of constraints needs to be incorporated in the scheduling formulation.

It is assumed that a drop of 10 oC occurs in the desalter. For heat exchanger

network I where unit 5 precedes and unit 6 follows the desalter, the following set

of constraints is added to the scheduling model:

T 6,jkl
c,in = T 5,jkl

c,o − 10; j = 1, 2, . . . , np; k = 1, 2, 3; l = 0, 1, 2, 3. (6.1)

For heat exchanger network II the constraints are the following:

T 8,jkl
c,in =

ṁ6
cT

6,jkl
c,o + ṁ7

cT
7,jkl
c,o

ṁ6
c + ṁ7

c

− 10 (6.2)

T 9,jkl
c,in =

ṁ6
cT

6,jkl
c,o + ṁ7

cT
7,jkl
c,o

ṁ6
c + ṁ7

c

− 10 (6.3)

j = 1, 2, . . . , np; k = 1, 2, 3; l = 0, 1, 2, 3.
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There are no constraints in the scheduling model of either network limiting the

number of cleaning actions to be selected during the optimisation time horizon or

in any of the periods. Furthermore, no firing limit is considered for the furnace,

i.e. no lower limit is imposed on the value of the final temperature of the cold

stream, Tf . Also, it is assumed that while a unit is being cleaned, the cold and

hot streams are bypassed to the next unit.

For each network, two cases are studied with different coke formation rates.

The coke formation rate is selected to be 25 times slower than the gel formation

rate in case studies AI and AII, and 2.5 times slower in case studies BI and BII.

All other parameters remain the same for all four case studies.

The duration of the operating sub-period is chosen to be 25 days, yielding

discrete time periods of 30 days (1 month) in length. The cleaning actions for

each case study are scheduled over 24 periods corresponding to a time horizon,

tf , of two years.

Two cleaning schedules are reported for each case study, one obtained using

the GBD algorithm and the other using the RH heuristic procedure. The GBD

algorithm is applied for 50 starting points which are random feasible combinations

of the binary variables, and the best solution (cleaning schedule with the lowest

objective function value) is presented. For the RH heuristic procedure, the length

of the receding horizon for the MINLP sub-problems is selected to be 6 months

(nRH = 6 in Algorithm 5.2). Recall, the value of nRH decreases as the value of j

approaches that of np (in Algorithm 5.2), e.g. for j = 20 → nRH = 5.

The DICOPT R© MINLP solver was applied to all four case studies with no

success: the OA/ER algorithm failed to converge after a reasonable amount of

time. The algorithm remains trapped for a large amount of time at the first

major iteration and specifically at the second step while trying to solve the MILP

master problem. The failure of DICOPT R© to attack the MINLP models resulting

from the proposed scheduling formulation was anticipated in Chapter 5: a large

number of constraints is added to the master problem at each iteration, creating

an MILP problem whose solution requires intense computational effort.

Sections 6.3.1 and 6.3.2 summarise the results for heat exchanger networks I

and II, respectively, with no reference to the computational performance of the

GBD algorithm or the RH heuristic procedure. The evaluation of the two solvers
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is reserved for Section 6.3.3, where some solution statistics are also presented.

6.3.1 Heat exchanger network I

A schematic representation of heat exchanger network I is shown in Figure 6.2.

Table 6.6 gives the operating and design parameters for the network along with

the gel formation rate for each unit. Recall, the coke formation rate for case

study AI is kc = 0.04kg and for case study BI is kc = 0.4kg. The heat transfer

coefficient at the initial clean state is equal for all units: U i
0 = 0.5 kW/m2.K, for

i = 1, 2, . . . , 14. The mass flow rate of the cold stream is ṁi
c = 95 kg/s for units

i = 1, 2, . . . , 8 and ṁi
c = 47.5 kg/s for units i = 9, 10, . . . , 14 in the split section.

The cold stream enters the first unit of the network at a temperature of 26 oC.

cold
stream

1 2 3 4 5 desalter

678

9

10

11

12

13

14

furnace

fuel

heated
stream

Figure 6.2: Heat exchanger network I

Tables 6.7(a) and 6.7(b) give the cleaning schedules for case study AI obtained

using the GBD algorithm and the RH heuristic procedure, respectively. Operating

the network for 24 months without performing any cleaning actions results in an

objective function value of zno = 9.7× 105£. The optimal objective value for the

GBD algorithm is z∗GBD = 5.9 × 105£, corresponding to 39% savings compared

to when no cleaning actions are performed. Applying the RH cleaning schedule

renders savings of 36% with an objective value of zRH = 6.2×105£. The solutions
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Table 6.6: Problem parameters for heat exchanger network I

Unit Th,in ṁh Cp,h Cp,c A Q0 kg × 10−7

(oC) (kg/s) (kJ/kg.K) (kJ/kg.K) (m2) (MW) (m/day)
1 - 19.1 2.8 1.92 56.6 3.5 1.2
2 296 3.3 2.9 1.92 8.9 0.9 1.8
3 - 55.8 2.6 1.92 208.3 9.3 1.2
4 170 49.7 2.6 1.92 112.9 2.8 1.6
5 237 49.7 2.6 1.92 121.6 5.2 1.6
6 - 34.8 2.8 2.3 110.1 5.8 3
7 205 55.8 2.6 2.3 67.2 1.2 2.2
8 - 45.5 2.9 2.3 67.1 2.4 3
9 249 9.5 2.8 2.4 91 1.5 3.2
10 249 9.5 2.8 2.4 91 1.5 3.2
11 286 22.8 2.9 2.4 61.3 2.1 3.6
12 286 22.8 2.9 2.4 61.3 2.1 3.6
13 334 17.4 2.8 2.4 55.6 2.4 3.8
14 334 17.4 2.8 2.4 55.6 2.4 3.8

obtained using the two methods feature similar objective function values and

comparable cleaning schedules.

The GBD schedule includes 20 chemical actions, while the cleaning pro-

gramme generated by the RH heuristic includes 22 chemical actions. An equal

number of cleaning actions is selected for all units except 6, 7, 11 and 12, by both

solvers. The GBD schedule includes a chemical action for unit 7 which receives

no cleaning in the RH schedule. Also, an extra cleaning is included in the RH

schedule for units 6, 11 and 12 in comparison to the GBD cleaning programme.

No cleaning actions are selected by either solver after period 19. The absence

of cleaning actions at the end of the time horizon is expected since there is

inadequate time to recover enough heat to offset the maintenance cost and the

loss in performance caused by cleaning. This is called the ‘end-zone effect’.

Unit 6 has the second highest heat load, Q0, in the network and a relatively

fast gel formation rate. It is cleaned more frequently than any other exchanger, in

both schedules. Units 8 and 11–14, where the gel formation rate is also relatively

high, receive more than one chemical action. On the other hand, units 9 and 10

are cleaned just once because of their relatively low heat load. Furthermore, in
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Table 6.7: Cleaning schedule for heat exchanger network I: case study AI (open
circles: chemical actions)

(a) GBD algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period Mode

ch meUnits
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Total 20

1

1
3
1
2
1
1
2
2
3
3

z∗GBD = 5.9× 105£

(b) RH heuristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period Mode

ch meUnits
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Total 22

1

1
4

2
1
1
3
3
3
3

zRH = 6.2× 105£
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both cleaning programmes, only one clean is performed on unit 3 even though it

has the largest heat load due to its relatively low gel formation rate.

The large number of chemical actions and the absence of mechanical actions

is a consequence of the slow coke formation rate. The thickness of the gel layer

which poses a high resistance to heat transfer is increasing relatively quickly and

as a response the solvers select frequent chemical actions in order to compensate

the energy losses.

The schedules generated by the two solvers exhibit similar selection patterns

but in the RH schedule the distribution of cleaning actions is more structured.

The RH cleaning programme displays periodicity: the chemical actions for units

which are cleaned more than once are selected after equal time intervals. Units

11–14 are cleaned thrice. The chemical actions for units 11 and 14 are performed

one period after units 12 and 13 are cleaned, respectively.

The cleaning schedules obtained for case study BI are given in Tables 6.8(a)

and 6.8(b). Operating the network without applying any cleaning actions renders

an objective value of zno = 7.2 × 105£. The optimal objective value for the

GBD algorithm is z∗GBD = 6 × 105£, while the objective function value for the

RH heuristic procedure is zRH = 5.9 × 105£. The solution generated from the

RH heuristic in this case study is slightly better than the GBD solution. The

corresponding savings in comparison to zero cleaning actions are 18% for the RH

heuristic and 17% for the GBD algorithm.

A relatively small number of cleaning actions is selected by both solvers.

For this case study, the two schedules are very different. The GBD cleaning

programme includes four mechanical actions and two chemical actions, while

the RH schedule includes only one mechanical action and 6 chemical actions.

Furthermore, the cleaning actions are congested between periods 9 to 12 in the

GBD schedule, whereas the RH schedule is more sparse. There, four out of

the seven actions are performed after the fifteenth period. Nevertheless, both

schedules include the same intuitive choices: only units 6, 8 and 11–14 are cleaned,

where the gel and coke formation rates are relatively high.

For case study BI, fewer cleaning actions are selected by the solvers, including

some mechanical ones, compared to case study AI due to the increase of the coke

formation rate by a factor of 10. The aged material is four times more conductive
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Table 6.8: Cleaning schedule for heat exchanger network I: case study BI (open
circles: chemical actions; filled circles: mechanical actions)

(a) GBD algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period Mode

ch meUnits
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Total 2 4

1

1

1
1

1
1

z∗GBD = 6× 105£

(b) RH heuristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period Mode

ch meUnits
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Total 6 1

2

1

1
1
1
1

zRH = 5.9× 105£
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than the fresh deposit. The objective value for the no-cleaning situation for

case study AI is zno = 9.7 × 105£, whereas for case study BI is zno = 7.2 ×
105£. This corresponds to a decrease of 26%. The preceding facts show the

importance of the thermal conductivities of the two layers, which are parameters

in the fouling model. It should be noted that if the deposits are allowed to get

relatively thick this will affect the hydraulic performance of the network: this

aspect is not considered here.

The GBD and RH schedules include the same intuitive cleaning choices present

in those of case study AI: units 6, 8 and 11–14, which exhibit a high gel formation

rate, are cleaned more than once.

Figures 6.3(a) and 6.3(b) show the variation of the final temperature of the

cold stream, Tf , with time for case studies AI and BI, respectively. The three

profiles displayed on the graphs correspond to the GBD solution, the RH solution

and the zero cleaning actions situation.

For case study AI, the temperature profiles for the two solution methods are

very similar. At the end of the time horizon, both the GBD and RH cleaning

schedules achieve a final temperature, Tf , which is approximately 15 oC higher

than the case where no cleaning actions are performed.

The analogous temperature difference for case study BI is close to 7oC as seen

in Figure 6.3(b). The temperature profiles are very different for the two schedules.

The TGBD
f is superior to TRH

f around the midpoint of the time horizon, but it

becomes inferior during the last periods.

The selection of multiple units to be cleaned in the same period has a com-

mensurate effect on the final temperature, Tf . Large spikes are observed in the

time profile of Tf for both case studies. These large drops in Tf can be avoided if

the permissible number of cleaning actions at each period is restricted. This can

be achieved by the following constraint:

nu∑
i=1

∑
m∈M

yijm ≤ nc; j = 1, 2, . . . , np (6.4)

where nc is the allowed number of cleaning actions for a period. The set of

constraints (6.4) will only participate in the Master problem (MILP-M).
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Figure 6.3: Time profile of Tf : heat exchanger network I
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For industrial networks, the firing limits of the furnace will impose a lower

bound on the value of Tf . In such a scenario, the following set of constraints

needs to be included in the MINLP formulation:

T jklf ≥ T limit
f ; j = 1, 2, . . . , np; k = 1, 2, 3; l = 0, 1, 2, 3. (6.5)

If not absolutely necessary, the addition of inequality constraints involving

continuous variables to the formulation should be avoided. Constraints such as

the ones given by equation (6.5) will cause the Primal Problem (NLP-Pr) to be

infeasible for the given set of fixed binary values at some iterations of the GBD

algorithm. Thus, the feasibility test step (see [Floudas, 1995]) omitted here from

the algorithm will have to be included. In such a case, it is possible that the

computational cost for generating a solution will increase. Even worse, due to

the non-convex solution space of the problem the algorithm might terminate at

an infeasible point.

6.3.2 Heat exchanger network II

A graphical representation of heat exchanger network II is given in Figure 6.4.

The operating parameters, the area and the gel formation rate for each unit are

summarised in Table 6.9 . The overall heat transfer coefficient in the fouling-free

state is U i
0 = 0.5 kW/m2.K for all units i = 1, 2, . . . , 25. The inlet temperature

of the cold stream at unit 1 is 26 oC. The inlet cold stream mass flow rate is

ṁi
c = 95 kg/s for units i = 1, 2, . . . , 5, ṁi

c = 47.5 kg/s for units i = 6, 7, . . . , 13

and ṁi
c = 23.75 kg/s for units i = 14, 15, . . . , 25. The coke formation rate for

case study AII is kc = 0.04kg and for case study BII is kc = 0.4kg.

The optimal cleaning schedule for case study AII, obtained using the GBD

algorithm, is given in Table 6.10. The solver selects 19 chemical actions to be

performed and the objective function value is z∗GBD = 6.7 × 105£. Applying the

GBD schedule yields savings of 21%, with respect to the zero cleaning actions

situation (zno = 8.7× 105£).

Only chemical actions are performed, because of the slow coke formation rate,

and only between periods 7 to 17. The absence of cleaning in the first six periods is

due to the fact that the units are fouling-free at the beginning of the time horizon:
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Figure 6.4: Heat exchanger network II

deposition has yet to cause significant loss of network performance. Moreover,

the lack of cleaning after period 17 is due to the ‘end-zone effect’. Out of the

25 units, eight (1, 3, 6-7, 14–19) do not receive any cleaning and 15 units are

cleaned once. Units 8 and 9, which have a moderate heat load and a moderate

gel formation rate compared to the other units, are cleaned twice.

At the hot end of the network, all heat exchangers of blocks 18-21 and 22-25

receive one cleaning. The units of block 14–17 have high gel formation rates

but are not cleaned. The reason for this is because the heat load, Q0, of these

exchangers is relatively low (0.3 MW) and part of the energy lost due to fouling

is recovered in the blocks downstream (18–21 and 22–25).

Table 6.11 shows the cleaning schedule produced by the RH heuristic proce-
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Table 6.9: Problem parameters for heat exchanger network II

Unit Th,in ṁh Cp,h Cp,c A Q0 kg × 10−7

(oC) (kg/s) (kJ/kg.K) (kJ/kg.K) (m2) (MW) (m/day)
1 - 19.2 2.8 1.92 56.6 4.1 1.2
2 - 55.8 2.6 1.92 96.6 6.5 1.8
3 296 3.3 2.9 1.92 8.5 0.7 1.2
4 - 55.8 2.6 1.92 109.6 7.7 1.8
5 - 49.6 2.6 1.92 129.2 3.4 1.6
6 - 50 2.6 1.92 80.3 2.1 1.6
7 237 50 2.6 1.92 60.8 2.1 1.6
8 - 34.8 2.6 2.3 79.1 3.3 2.2
9 - 34.8 2.9 2.3 79.1 3.3 2.2
10 293 56 2.9 2.3 29.2 1.2 3
11 293 56 2.8 2.3 29.2 1.2 3
12 - 45.6 2.8 2.3 35.4 0.8 3.2
13 - 45.6 2.6 2.3 35.4 0.8 3.2
14 249 19.2 2.8 2.4 31.4 0.3 3.2
15 249 19.2 2.8 2.4 31.4 0.3 3.2
16 249 19.2 2.8 2.4 31.4 0.3 3.2
17 249 19.2 2.8 2.4 41.4 0.3 3.2
18 286 45.6 2.9 2.4 29.7 0.7 3.6
19 286 45.6 2.9 2.4 29.7 0.7 3.6
20 286 45.6 2.9 2.4 29.7 0.7 3.6
21 286 45.6 2.9 2.4 29.7 0.7 3.6
22 334 34.8 2.8 2.4 21.3 0.8 3.8
23 334 34.8 2.8 2.4 21.3 0.8 3.8
24 334 34.8 2.8 2.4 21.3 0.8 3.8
25 334 34.8 2.8 2.4 21.3 0.8 3.8

dure. The corresponding objective function value is zRH = 7.7 × 105£ and the

savings are 7% compared to the no-cleaning situation. The cleaning programme

includes 7 chemical actions, which is noticeably fewer than the GBD schedule

(19 chemical actions). No mechanical actions are selected. Out of the 25 units,

17 are not cleaned at all and among these are the units 14–25 at the hot end of

the network. As in the GBD schedule, units 8 and 9 are cleaned twice and units

2 and 4, which have the highest heat load of all exchangers in the network, are

cleaned once. Also, unit 12 receives a chemical action.
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Table 6.10: Cleaning schedule for heat exchanger network II: GBD algorithm –
case study AII (open circles: chemical actions)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period

Total 19

Mode
ch meUnits

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1

1
1

2
2
1
1
1
1

1
1
1
1
1
1
1
1

z∗GBD = 6.7× 105£
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Table 6.11: Cleaning schedule for heat exchanger network II: RH heuristic – case
study AII (open circles: chemical actions)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period

Total 7

Mode
ch meUnits

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1

1

2
2

1

zRH = 7.7× 105£
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For case study BII the optimal objective value for the GBD algorithm is

z∗GBD = 6× 105£ and for the RH heuristic zRH = 6.2× 105£, while the objective

value for the no-cleaning situation is zno = 6.3 × 105. The resulting savings are

3% for the GBD solution and 2% for the RH solution.

The GBD and RH schedules include only two chemical actions. These are not

presented here. The GBD algorithm selects the two actions close to the midpoint

of the time horizon, with unit 8 being cleaned at period 14 and unit 9 being

cleaned at period 15. In the RH cleaning schedule, unit 8 is cleaned at period 19

and unit 9 is cleaned at period 20.

The small number of cleaning actions in contrast to case study AII is attributed

to the high coke formation rate. The objective value for the no-cleaning situation

is 26% less than that of case study AII, where the coke formation rate is ten

times lower. The decay in performance is relatively slow for the network and

longer time horizons must be considered for possibly more cleaning actions to be

selected.

The time profiles of the final temperature, Tf , for case studies AII and BII are

shown in Figures 6.5(a) and 6.5(b), respectively.

For case study AII, there is a 5 oC difference between the GBD and RH

profiles at some instants, with TGBD
f being always higher than TRH

f after the

seventh period. At the end of the time horizon the GBD algorithm achieves a

final temperature which is 10 oC higher than that of the no-cleaning case. For

the RH heuristic the temperature difference is close to 6 oC.

For case study BII the temperature difference with respect to the no-cleaning

situation is close to 1 oC for both solvers. As observed in Figure 6.5(b) the solvers

allow a temperature drop of approximately 10 oC before selecting a cleaning

action.
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Figure 6.5: Time profile of Tf : heat exchanger network II
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6.3.3 Solution statistics

The size of the studied MINLP problems and some pertinent solution statistics

are reported in this section in order to assist the evaluation of the results obtained.

Table 6.12 shows the number of constraints and the number of continuous and

binary variables for each case study. For the RH heuristic procedure, these num-

bers refer to the size of the MINLP sub-problems solved before the number of

periods is reduced (19 out of the 24 sub-problems). Evidently, the size of the

Table 6.12: Size of studied scheduling problems

Solver Continuous variables Binary variables Constraints
heat exchanger network I

GBD 40320 672 36000
RH 10080 168 9000

heat exchanger network II
GBD 72000 1200 65000
RH 18000 300 16250

MINLP problems under consideration is large and, together with a non-convex

solution space, clearly poses a challenge to both solution procedures.

Table 6.13 gives the execution time for both solvers and for each scheduling

task. The reported time for the GBD algorithm corresponds to the multiple

starting point search. An average execution time can be calculated by dividing

the value shown by 50 (the number of starting points). The ensuing average run

Table 6.13: Execution times

Case study CPU time (min)
GBD RH

AI 132 4
BI 223 5
AII 554 11
BII 526 13

time for the GBD algorithm is very similar to the execution time reported for the

RH solution procedure for all case studies.

The execution times for the RH heuristic are relatively short, if one consid-

ers the size of the original MINLP problem. The execution time for the GBD
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Figure 6.6: Distribution of solutions generated by the GBD algorithm for 50
random starting points

algorithm depends on the starting point which is chosen randomly here. The

execution times for the bigger network are longer than those of network I. This

is expected since the scheduling problem for heat exchanger network II is consid-

erably larger.

Figure 6.6 shows the distributions of the locally optimal objective function

values obtained by the GBD algorithm for the different starting points, for net-

works I and II. The non-convex nature of the scheduling formulation is evident

from the presence of local solutions. The convergence of the GBD algorithm to a

particular local optimum depends on the starting point. In all four case studies

111



6. Chemical reaction fouling: computational studies

the GBD algorithm converged to the reported optimal solution only once. It

is, however, apparent from the dispersion of local solutions that a large number

of local optima lies within a short range (with respect to the magnitude of the

objective values reported). For case study AI, the local points generated lie in a

band of width 0.3× 105 £, for case study BI in a band of width 0.4× 105£ and

for case study BII in a band of width 0.2× 105£. The band is slightly bigger for

case study AII: 0.7× 105.

6.4 Conclusions

The scheduling framework presented in Chapter 5 was used to obtain cleaning

programmes for an isolated unit and two heat exchanger networks operating sub-

ject to chemical reaction fouling. Two cases were studied for each network and

the isolated unit, one with a higher coke formation rate than the other.

The results presented for the single unit exhibited the merits for optimising

the cleaning schedule: considerable savings are achieved compared to the no-

cleaning situation. Furthermore, the results suggest that for an isolated unit, it is

possible to identify an optimal mixed-cleaning campaign which can be repeated

over time. This optimal heat exchanger cycle, called the cleaning super-cycle,

includes a number of chemical actions before concluding with a mechanical action

which resets the unit to a completely clean state. The advantage of adapting

such a mixed-cleaning strategy is that the operating time before time-consuming

mechanical actions is prolonged by performing short-length chemical actions.

The Outer Approximation/Equality Relaxation (OA/ER) algorithm was suc-

cessfully used to obtain cleaning schedules for the isolated heat exchanger, but

failed to generate a solution for the case studies concerning the two heat ex-

changer networks. In all cases, the DICOPT R© solver remained trapped in the

first iteration for a relatively long period of time, as it was not able to solve the

first Master problem. The failure of the solver is due to the large size of the

MINLP scheduling models.

The Generalised Benders Decomposition (GBD) algorithm and the Receding

Horizon (RH) heuristic procedure described in Chapter 5 were used to optimise

the cleaning schedules for a network of 14 units and a network of 25 units. The

112



6. Chemical reaction fouling: computational studies

performance of the GBD algorithm and the RH heuristic procedure are found to

be satisfactory with respect to the computational effort required to generate a

solution.

A multiple starting point search was used in order to increase the possibility

of attaining a ‘good’ quality local solution: for each case study the scheduling

problem was solved by the GBD algorithm for 50 random starting points. These

starting points were feasible combinations of the binary variables. For the major-

ity of the starting points the algorithm converged to a different local optimum,

indicating the non-convex nature of the MINLP scheduling problem. The best

solution found was reported. No multiple starting point scheme was implemented

in conjunction with the RH heuristic.

The schedules generated by the two solution procedures are not always similar

in terms of objective function value or cleaning choices. Also, the schedules

obtained by the GBD algorithm are congested around the midpoint of the time

horizon, while the schedules generated by the RH heuristic are more sparse.

It emerges from the results that when deciding which units to clean the solvers

balance the choice between high heat load and high fouling rates. In that respect,

the units with moderate to relatively high heat load and moderate to relatively

fast fouling rates are selected for cleaning more frequently than units with just

high heat load or just high fouling rates.

The cleaning schedules generated suggest the importance of the thermal con-

ductivities of the two layers. The cleaning programmes for the cases with high

coke formation rate are found to be very different than those with slow coke

formation rate. The increase in the amount of aged material in the system and

the proportional decrease in the amount of fresh deposit lead to a significant

reduction of the energy losses.
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Chapter 7

Biological fouling: formulations

& computational studies

Chapters 5 and 6 discussed the problem of scheduling the cleaning actions for

heat exchanger networks subject to chemical reaction fouling when two cleaning

methods are available. The current chapter studies the scheduling problem for

heat exchanger networks subject to biological fouling assuming that three cleaning

options are available.

The biological fouling model used to describe the progression of the thermal

fouling resistance is described first. Then, two mathematical programming for-

mulations are proposed for the scheduling problem under investigation. Section

7.4 presents and discusses the results obtained from implementing one of the

formulations for a small network of heat exchangers.

7.1 Introductory remarks

The problem of scheduling the cleaning actions for heat exchanger networks sub-

ject to biological fouling is formulated according to the methodology presented

in Chapter 5 for networks operating under chemical reaction fouling. The heat

transfer analysis, the time representation and the process constraints remain the

same. The set of assumptions regarding heat transfer analysis is restated for the

sake of lucidity. For a shell-and-tube unit in operation these are:
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a) it is in counter-current mode. Therefore, the configuration correction factor,

F , is equal to one;

b) the cold stream flows on the tube side and the hot stream on the shell side;

c) none of the streams changes phase;

d) the specific heat capacities of the streams are constant;

e) the mass flow rate of both streams remains constant.

The fouling analysis differs since here the accumulation of deposits is due

to a different formation mechanism. Consequently this brings alterations to the

simulation constraints. Moreover, there are now three available cleaning actions.

7.2 Fouling analysis

The accumulation of foulant is entirely due to the attachment and growth of

micro-organisms on the heat transfer surface. It is assumed that a biofilm is

formed only on the tube side of the exchanger while the shell side remains clean.

The thermal fouling resistance, Rf , is considered to be zero for a period of

time known as the initiation period, during which the heat transfer surface is

colonised by micro-organisms [Bott, 2011]. After this induction period and the

pre-conditioning of the surface, the progression of Rf follows an asymptotic curve

such as the one shown in Figure 4.2.

The three cleaning methods available for the removal of the biofilm are the

following: (i) a water flush which removes most of the biofilm but leaves the

surface colonised and ready to restart growth when process operation resumes;

(ii) chemical cleaning, which removes all biofilm and imposes a short initiation

period; and (iii) chemical cleaning followed by disinfection (referred to as chemical

disinfection for simplicity), which restores the efficiency of the heat exchanger

back to its clean level and results in a longer induction period. The progression

of the thermal fouling resistance after each cleaning action is shown in Figure

7.1(a).
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Figure 7.1: Progression of thermal fouling resistance after cleaning

Curve A shows the evolution of Rf after a water flush cleaning is performed,

where the surface is receptive to immediate biofilm growth. Curves B and C give

the progression of Rf after a chemical cleaning, which imposes a short initiation

period of length
tI
b

(b > 1) and after a chemical disinfection, which results in a

longer induction time, tI , respectively.

Following a cleaning action, it must be determined if an initiation period will

occur and which of the three curves A, B and C will describe the progression

of Rf . The model proposed by Kern and Seaton [1959] can be used to describe

the asymptotic behaviour of Rf , but does not consider the initiation period. The
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latter can be included explicitly in the scheduling formulation but this introduces

additional complexity. Modifications need to be made to the time discretisation

scheme presented in Section 5.3 since two extra elements must be added to each

discrete period (at the beginning of the period) to account for the shorter or longer

initiation time after a chemical action or a chemical disinfection, respectively.

Alternatively, the fouling model proposed by Nebot et al. [2007] can be used

to describe the progression of thermal fouling resistance in time. The evolution of

Rf follows a sigmoidal curve such as the one shown in Figure 7.1(b). The thermal

fouling resistance is modelled as to be negligible for a period of time (t ∈ [0, tflle ]

on the graph) termed as the delay period. Thereafter, the biofilm undergoes

an exponential growth before reaching a steady state, where the thermal fouling

resistance attains the asymptotic value Rf∞ . The delay period during which the

value of Rf is almost zero corresponds to the initiation period during which the

value of Rf is zero.

After a cleaning action is performed, the evolution of Rf will resume from a

different time point (starting time), t0, on the sigmoid curve:

t0 =


0, if chemical disinfection has occured

tchle , if chemical cleaning has occured

tflle , if water flush cleaning has occured

(7.1)

The parameters tflle and tchle are the ‘leap’ times after a water flush action and a

chemical action, respectively. The parameters derive their name from the fact

that the evolution of Rf does not resume from zero but from a point forward in

time (a jump in time takes place). Note that tflle = tI and tchle = tI/b.

The merit of using the model suggested by Nebot et al. [2007] is due to the

fact that it takes into account the existence of the induction period while still

being continuous. It is relatively straightforward to incorporate this fouling model

in the scheduling formulation since it does not require any changes in the time

representation scheme. Hence, the complexity of the scheduling problem does not

increase.

According to Nebot et al. [2007], the fouling rate is given by the following
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second order kinetic expression:

dRf

dt
= k(Rf∞ −Rf )Rf . (7.2)

where k is a constant representing the rate at which the asymptotic value Rf∞

is attained. In this work, the rate is considered to be uniform across the tubes

of the unit. By integration of equation (7.2) an algebraic expression is obtained

which relates the thermal fouling resistance to time as follows:

Rf =
Rf∞

1 + (
Rf∞
Rf0
− 1) exp(−kRf∞t)

(7.3)

where Rf0 represents the thermal fouling resistance during the delay period. Since

Rf is negligible during the early stages when the heat transfer surface is colonised,

the parameter Rf0 has a very small value.

Equation (7.2) is a modified version of the generalised expression for asymp-

totic fouling proposed by Konak [1973] for any deposition mechanism, viz.

dRf

dt
= k(Rf∞ −Rf )

n (7.4)

The term (Rf∞ − Rf ) was postulated by Konak [1973] to be the driving force

for the accumulation of foulant. Integrating equation (7.4) for n = 1 yields the

following expression:

− ln(1− Rf

Rf∞

) = kt (7.5)

which is a form of equation (4.6) proposed by Kern and Seaton [1959].

The differential equation (7.2) used by Nebot et al. [2007] to describe the

growth of the biofouling layer is not a new one. It coincides in form with the

logistic function suggested by the French mathematician Pierre-François Verhulst

in 1838 to describe the self-limiting growth of a biological population.
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7.3 Mathematical programming formulations

The task is to identify the optimal cleaning schedule for a heat exchanger net-

work subject to biological fouling. Let us assume that U ′ = {1, 2, . . . , nu} is

the set of units, P = {1, 2, . . . , np} the set of discrete periods and M = {fl :

water flush, ch : chemical, cd : chemical disinfection} the set of available clean-

ing modes. Two mathematical programming formulations are described below

for the studied problem: one MILP and one non-convex MINLP.

The binary variables yijm, for i ∈ U ′; j ∈ P ; m ∈M , are such that correspond

to ‘yes’ or ‘no’ decisions (cleaning choices and timings) as follows:

yijm =

1, if cleaning mode m is chosen for unit i at period j

0, if cleaning mode m is not chosen for unit i at period j
(7.6)

Time is discretized as detailed in Section 5.3. Accordingly, orthogonal collo-

cation is used in order to acquire numerical estimations for the integrals involved

in the objective function of the scheduling problem. Furthermore, the duration

of a chemical disinfection is equal to the added length of elements 2 and 3 (see

Figure 5.3), while the duration of a chemical cleaning is equal to the length of

element 3 alone. The duration of a water flush cleaning is negligible compared

to the time scales involved in the problem and therefore it is assumed to be zero

days.

To facilitate the description of the proposed formulations the following func-

tion of v is defined:

rf (v) ≡ Rf∞

1 + (
Rf∞
Rf0
− 1) exp(−kRf∞v)

. (7.7)

7.3.1 MINLP formulation

With the intention of avoiding confusion it is clarified that time, the dimension

with the aid of which events are ordered as past, present or future and which is

discretised here, does not coincide with the variable tijkl involved in some of the

constraints given below. Here, the variable tijkl is used in order to keep track of the
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thermal fouling resistance, Rf , for a unit after a cleaning action is performed. It

is because of the discontinuities introduced in the system by the binary variables

that tijkl does not represent the dimension of time. For the remainder of this

chapter, the variable tijkl is referred to as sigmoid time.

Assume that all units are in a completely clean state at the beginning of the

time horizon. The sigmoid time for each unit for the first element of the first

period is given by

ti,1,1,l = τ lh1; i = 1, 2, . . . , nu; l = 0, 1, 2, 3 (7.8)

where, recall, τ l is the normalised position of the l-th Radau collocation node and

h1 the time-length of element 1. For any other period the sigmoid time during

element 1 has to account for any cleaning action as follows:

tij,1,l = τ lh1 + ti,j−1,3,3(1−
∑
m∈M

yi,j−1,m) + ti,chd yi,j−1,ch + ti,flle y
i,j−1,f l (7.9)

i = 1, 2, . . . , nu; j = 2, 3, . . . , np; l = 0, 1, 2, 3.

To understand the set of constraints (7.9) better, suppose that a chemical action

is selected for unit i at period j−1, i.e. yi,j−1,ch = 1. In that case, equation (7.9)

yields the following set of equality constraints:

tij,1,l = τ lh1 + ti,chle ; l = 0, 1, 2, 3.

This correctly reflects the fact that the chemical cleaning action in period j − 1

has effectively reset time, as far as the fouling resistance is concerned, to tchle . The

set of equality constraints that involve the temperatures of the streams is given

by

T ijklh,o = T ijklc,in + (T ijklh,in − T
ijkl
c,o ) exp

( AiCi

1
U i
0

+ rf (tijkl)

)
(7.10)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 1; l = 0, 1, 2, 3

for element 1.
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The sigmoid time for each exchanger for elements 2 and 3 is given by

ti,j,k,l = τ lhk + ti,j,k−1,3 (7.11)

i = 1, 2, . . . ; j = 1, 2, . . . , np, k = 1, 2, 3; l = 0, 1, 2, 3.

There is no need to set the sigmoid time to zero while a unit is cleaned since it

will be controlled to account for the cleaning at the beginning of the next period.

The temperature constraints for element 2 are given by

T ijklh,o = T ijklc,in + (T ijklh,in − T
ijkl
c,o )

[
(1− yij,cd) exp

( AiCi

1
U i
0

+ rf (tijkl)

)
+ yij,cd

]
(7.12)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 2; l = 0, 1, 2, 3

and for element 3 by

T ijklh,o = T ijklc,in + (T ijklh,in − T
ijkl
c,o )[

(1−
∑
m∈M
m6=fl

yijm) exp
( AiCi

1
U i
0

+ rf (tijkl)

)
+
∑
m∈M
m 6=fl

yijm
]

(7.13)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 3; l = 0, 1, 2, 3.

The MINLP formulation is non-convex due to equality constraints (7.9) (these

are treated explicitly by the GBD algorithm), (7.10), (7.12) and (7.13). It in-

cludes O(72×nu×np) continuous variables, O(3×nu×np) binary variables and

O(48×nu×np) constraints (simulation constraints, process constraints, integral

constraints and inequality constraints of binary variables).

7.3.2 MILP formulation

An alternative MILP scheduling formulation can be derived for the problem by

parametrising the thermal fouling resistance along the lines proposed by Geor-

giadis et al. [2000] and Lavaja and Bagajewicz [2004] (for a linear fouling model).

The parametrisation scheme for the asymptotic fouling model by Nebot et al.

[2007] is described below.
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Assume that the completely clean unit i will start operating at the beginning

of period 1. The thermal fouling resistance during the first period is given by

Ri,1,kl
f = rf (τ

lhk +
k−1∑
n=1

hn); k = 1, 2, 3; l = 0, 1, 2, 3. (7.14)

For the second period the thermal fouling resistance takes into account any pos-

sible cleaning action performed in period 1 as follows:

Ri,2,kl
f = rf (τ

lhk +
k−1∑
n=1

hn + ti,chle )yi,1,ch + rf (τ
lhk +

k−1∑
n=1

hn + ti,flle )yi,1,f l (7.15)

rf (τ
lhk +

k−1∑
n=1

hn)yi,1,cd + rf (tp + τ lhk +
k−1∑
n=1

hn)(1−
∑
m∈M

yi,1,m)

k = 1,2, 3; l = 0, 1, 2, 3.

where tp =
3∑

k=1

hk is the time-length of a period. Accordingly, for the third period

the thermal fouling resistance is given by

Ri,3,kl
f =

[
rf (τ

lhk +
k−1∑
n=1

hn + ti,chle + tp)y
i,1,ch + rf (τ

lhk +
k−1∑
n=1

hn + ti,flle + tp)y
i,1,f l

+ rf (τ
lhk +

k−1∑
n=1

hn + tp)y
i,1,cd

]
(1−

∑
m∈M

yi,2,m) (7.16)

+ rf (τ
lhk +

k−1∑
n=1

hn + ti,chle )yi,2,ch + rf (τ
lhk +

k−1∑
n=1

hn + ti,flle )yi,2,f l

+ rf (τ
lhk +

k−1∑
n=1

hn)yi,2,cd

+ rf (2tp + τ lhk +
k−1∑
n=1

hn)
2∏
p=1

(1−
∑
m∈M

yipm)

k = 1,2, 3; l = 0, 1, 2, 3.

If a water flush cleaning is performed at period 1 (yi,1,f l = 1) the above set of
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constraints becomes

Ri,3,kl
f = rf (τ

lhk +
k−1∑
n=1

hn + ti,flle + tp); k = 1, 2, 3; l = 0, 1, 2, 3 (7.17)

and if a chemical disinfection is performed at period 2 (yi,2,cd = 1) it becomes

Ri,3,kl
f = rf (τ

lhk +
k−1∑
n=1

hn); k = 1, 2, 3; l = 0, 1, 2, 3. (7.18)

If no cleaning action is performed in neither periods 1 and 2 the equality con-

straints are the following:

Ri,3,kl
f = rf (2tp + τ lhk +

k−1∑
n=1

hn); k = 1, 2, 3; l = 0, 1, 2, 3. (7.19)

Equations (7.15) – (7.16) include only parameters and binary variables and

equation (7.14) only parameters. The above parametrisation scheme can be gen-

eralised for periods: j = 2, 3, . . . , np. The general form of the thermal fouling

resistance is as follows:

Rijkl
f =

j−1∑
n=1

[(
rf (t

i,ch
le + (j − n− 1)tp + τ lhk +

k−1∑
n=1

hn)yin,ch

+ rf (t
i,fl
le + (j − n− 1)tp + τ lhk +

k−1∑
n=1

hn)yin,fl (7.20)

+ rf (τ
lhk +

k−1∑
n=1

hn + (j − n− 1)tp)y
in,cd
) j−1∏
p=n+1

(1−
∑
m∈M

yipm)

]

+ rf (τ
lhk +

k−1∑
n=1

hn + (j − 1)tp)

j−1∏
n=1

(1−
∑
m∈M

yinm)

i = 1, 2, . . . , nu; j = 2, 3, . . . , np; k = 1, 2, 3; l = 0, 1, 2, 3.

For the first period, there are three different sets of equality constraints relat-

ing the inlet – outlet temperatures of the streams, one for each element. For the
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first element the set is as follows:

T ijklh,o = T ijklc,in + (T ijklh,in − T
ijkl
c,o ) exp

( AiCi

1
U i
0

+ rf (τ lhk)

)
(7.21)

i = 1, 2, . . . , nu; j = 1; k = 1; l = 0, 1, 2, 3.

For element 2 the constraints needs to account for a chemical disinfection, viz.

T ijklh,o = T ijklc,in + (T ijklh,in − T
ijkl
c,o )[

(1− yij,cd) exp
( AiCi

1
U i
0

+ rf (τ lhk +
∑k−1

n=1 h
n)

)
+ yij,cd

]
(7.22)

i = 1, 2, . . . , nu; j = 1; k = 2; l = 0, 1, 2, 3.

Moreover for element 3 the equality constraints are modified to take into account

a chemical disinfection or chemical cleaning as follows:

T ijklh,o = T ijklc,in + (T ijklh,in − T
ijkl
c,o )[

(1−
∑
m∈M
m6=fl

yijm
)

exp
( AiCi

1
U i
0

+ rf (τ lhk +
∑k−1

n=1 h
n)

) +
∑
m∈M
m 6=fl

yijm
]

(7.23)

i = 1, 2, . . . , nu; j = 1; k = 3; l = 0, 1, 2, 3.

The constraints given by equation (7.21) are linear, while the constraints given by

equations (7.22) – (7.23) include only products of binary variables with continuous

variables which can be easily replaced by new linear constraints [Williams, 1990],

with the addition of new continuous variables, as shown next.

The term xy, where x is a continuous variable and y a binary variable, can

be replaced by a new continuous variable v by adding the following logical con-

straints:

v −By ≤ 0 (7.24)

v − x ≤ 0 (7.25)

x− v +By ≤ B (7.26)
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where B is the upper bound for x.

The temperature constraints for the remaining periods, for element 1 are given

by

T ijklh,o = T ijklc,in + (T ijklh,in − T
ijkl
c,o ) exp

( AiCi

1
U i
0

+Rijkl
f

)
(7.27)

i = 1, 2, . . . , nu; j = 2, 3, . . . , np; k = 2; l = 0, 1, 2, 3.

Combining equations (7.20) and (7.27) yields

T ijklh,o =T ijklc,in +

j−1∑
n=1

[
(T ijklh,in − T

ijkl
c,o )

(
Bijkl

1 yin,ch +Bijkl
2 yin,fl +Bijkl

3 yin,cd
)

j−1∏
p=n+1

(1−
∑
m∈M

yipm)

]
+Bijkl

4 (T ijklh,in − T
ijkl
c,o )

j−1∏
n=1

(1−
∑
m∈M

yinm) (7.28)

i = 1, 2, . . . , nu; j = 2, 3, . . . , np; k = 1; l = 0, 1, 2, 3

where

Bijkl
1 = exp

( AiCi

1
U i
0

+ rf (ti,ch + tp(j − n− 1) + τ lhk +
∑k−1

n=1 h
n)

)
(7.29)

Bijkl
2 = exp

( AiCi

1
U i
0

+ rf (ti,fl + tp(j − n− 1) + τ lhk +
∑k−1

n=1 h
n)

)
(7.30)

Bijkl
3 = exp

( AiCi

1
U i
0

+ rf (tp(j − n− 1) + τ lhk +
∑k−1

n=1 h
n)

)
(7.31)

Bijkl
4 = exp

( AiCi

1
U i
0

+ rf (tp(j − 1) + τ lhk +
∑k−1

n=1 h
n)

)
(7.32)

Similarly, for element 2 the constraints are given by

T ijklh,o =T ijklc,in +

{
j−1∑
n=1

[
(T ijklh,in − T

ijkl
c,o )

(
Bijkl

1 yin,ch +Bijkl
2 yin,fl +Bijkl

3 yin,cd
)

j−1∏
p=n+1

(1−
∑
m∈M

yipm)

]
+Bijkl

4 (T ijklh,in − T
ijkl
c,o )

j−1∏
n=1

(1−
∑
m∈M

yinm)

}
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(1− yij,cd) + (T ijklh,in − T
ijkl
c,o )yij,cd (7.33)

i = 1, 2, . . . , nu; j = 2, 3, . . . , np; k = 2; l = 0, 1, 2, 3

and for element 3 by

T ijklh,o =T ijklc,in +

{
j−1∑
n=1

[
(T ijklh,in − T

ijkl
c,o )

(
Bijkl

1 yin,ch +Bijkl
2 yin,fl +Bijkl

3 yin,cd
)

j−1∏
p=n+1

(1−
∑
m∈M

yipm)

]
+Bijkl

4 (T ijklh,in − T
ijkl
c,o )

j−1∏
n=1

(1−
∑
m∈M

yinm)

}
(1−

∑
m∈M
m 6=fl

yijm) + (T ijklh,in − T
ijkl
c,o )

∑
m∈M
m 6=fl

yijm (7.34)

i = 1, 2, . . . , nu; j = 2, 3, . . . , np; k = 3; l = 0, 1, 2, 3.

In equations (7.28), (7.33), (7.34) the binary variables and the binary products

are moved out of the exponentials (terms Bijkl
1 , Bijkl

2 , Bijkl
3 and Bijkl

4 ). This is due

to the fact that one, and only one, of the corresponding terms can be different

from zero.

The nonlinearities in the aforementioned sets of constraints consist of products

of binary variables with continuous variables. These can be linearised by intro-

ducing new variables and additional constraints as shown above. However, by

doing so the size of the resulting MILP models will grow rapidly as the number of

periods and the number of units increases. Applying the MILP formulation for a

heat exchanger network is impractical (as Lavaja and Bagajewicz [2004] reported

for a similar formulation), even if the global minimum can be obtained, since the

solution of the corresponding model will be computationally unaffordable.

7.3.3 Objective function

The objective function depends on the type of network under consideration and

the performance targets imposed by the operator or other interacting processes.

Here, for the computational studies undertaken and presented in the next section,

the objective function needs to include only the energy losses due to fouling, the

lost-production opportunity during cleaning intervals and the cost of the cleaning
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actions, as follows:

z =
nu∑
i=1

np∑
j=1

fe
(
Qi

0

3∑
k=1

hk − I ij,3,31

)
+

nu∑
i=1

np∑
j=1

∑
m∈M

yijmcm (7.35)

where C = {cm : m ∈ M} is the cost vector. The variable I ijkl1 (calculation of

integral for process costs) is involved in the equality constraints (5.46) – (5.48)

given in Chapter 5. These are re-introduced here:

3∑
l=0

I ijkl1

dql(τ
n)

dτ
= hnṁn

cC
n
p,c(T

ijkn
c,o − T

ijkn
c,in ) (5.46)

i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 1, 2, 3; n = 0, 1, 2, 3

I ij,1,11 = 0; i = 1, 2, . . . , nu; j = 1, 2, . . . , np (5.47)

I ijk,01 = I ij,k−1,31 ; i = 1, 2, . . . , nu; j = 1, 2, . . . , np; k = 2, 3. (5.48)

7.4 Computational studies

The MINLP formulation is implemented in the computational studies presented

next. The Generalised Bender’s Decomposition algorithm, described in Chapter

5, is utilised to solve the resulting scheduling models. Cleaning schedules are

obtained for the fictional heat exchanger network shown in Figure 7.2 for three

case studies with different fouling parameters.

1

2

3

cold
stream

Figure 7.2: Heat exchanger network subject to biological fouling

Table 7.1 summarises the operating and design parameters for the three units

of the network. The energy cost is fe = 0.5 £/kW.day. Furthermore, the specific

heat capacity is Cp,h = 2.2 kJ/kg.K and Cp,c = 4.2 kJ/kg.K for the hot streams

127



7. Biological fouling: formulations & computational studies

and cold stream, respectively. The inlet temperature of the cold stream at the

first unit of the network is 25 oC.

Table 7.1: Operating and design parameters for heat exchanger network subject
to biological fouling

Unit Th,in ṁh ṁc U0 A Q0

(oC) (kg/s) (kg/s) (kW/m2.K) (m2) (MW)
1 200 20.5 75 0.55 33 2.6
2 190 20 37.5 0.55 30 1.8
3 210 25.8 37.5 0.55 32.5 2.3

The parameters for the fouling model are given in Table 7.2. For case study

A, the thermal fouling resistance, Rf , in each unit, approaches the relatively

high asymptotic value, Rf∞ , with a relatively fast rate k. For case study B,

the asymptotic value is decreased by a factor of two, while the rate for each

exchanger remains the same compared to case study A. Finally, for case study C

the asymptotic value is equal to that of case study A but the rate, k, is decreased

by 33%. The changes in Rf∞ cause also the parameters tflle and tchle to take different

values.

Table 7.2: Parameters for biological fouling model

Unit Rf∞ Rf0 k tchle tflle
(m2.K/kW) (m2.K/kW) (kW/m2.K.day) (days) (days)

case study A
1 0.8 1×10−4 0.18 19 38
2 0.8 1×10−4 0.22 15 30
3 0.8 1×10−4 0.25 13 26

case study B
1 0.4 1×10−4 0.18 31 62
2 0.4 1×10−4 0.22 26 52
3 0.4 1×10−4 0.25 23 46

case study C
1 0.8 1×10−4 0.12 24 48
2 0.8 1×10−4 0.15 19 38
3 0.8 1×10−4 0.17 17 34

If left unmitigated, the biofilm causes the overall heat transfer coefficient, U ,
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to decrease from 0.55 kW/m2.K at the clean state to 0.38 kW/m2.K at the steady

state (31% drop), for case studies A and C. For case study B, U drops to 0.45

kW/m2.K, representing a 18% decrease compared to the fouling-free state.

The duration of the operating sub-period, top = h1, is chosen to be 10 days,

while the duration of a chemical disinfection, tcd = h2 + h3, is 5 days. Hence,

the length of a time period is 15 days. The duration of a chemical action is

tch = h3 = 1 day. Recall, the duration of a water flush cleaning is considered to

be negligible. The cleaning schedule is optimised over 24 periods (360 days).

Table 7.3 summarises the cleaning parameters used in the case studies.

Table 7.3: Cleaning parameters

Mode Cost (£) duration (days)
fl 1000 0
ch 2500 1
cd 3500 5

A multiple starting point search is performed in order to increase the possi-

bility of finding a ‘good’ local solution. Therefore, the MINLP problem for each

case study is solved for 100 random starting points. These are feasible combina-

tions of the binary variables. Table 7.4 reports the best cleaning schedule and

the objective function value obtained for each of the case studies.

For case study A, operating the examined network without performing any

cleaning action for 360 days corresponds to an objective function value zno =

2.4 × 105 £. Applying the best found cleaning schedule results in 46% savings.

The schedule includes cleaning by all three modes and the units are cleaned

frequently: nine cleaning actions are selected for units 1 and 3 and ten for unit

2. Unit 1 receives all the chemical actions and some water flush actions. Regular

water flush cleaning is performed on units 2 and 3, which also receive one and two

chemical disinfections, respectively. The cleaning actions span between periods 3

to 22.

For case study B, the savings for implementing the best schedule generated are

42% (zno = 1.2 × 105£). Here, the cleaning actions are less frequent compared

to case study A, where fouling is more severe. One chemical disinfection, six

chemical actions and six water flushes are selected. Unit 1 receives only chemical
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Table 7.4: Cleaning schedule for heat exchanger network subject to biological
fouling (open circles: water flush; filled grey circles: chemical cleaning; filled
black circles: chemical disinfection)

(a) Case study A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period Mode

fl ch cdUnits
1
2
3

Total 21 5 2

4 5
9 1
8 1

z∗ = 1.3× 105£

(b) Case study B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period Mode

fl ch cdUnits
1
2
3

Total 6 6 1

3
4 1
2 3

z∗ = 0.7× 105£

(c) Case study C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Period Mode

fl ch cdUnits
1
2
3

Total 9 5 4

2 1 2
2 1 2
5 3

z∗ = 1× 105£
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actions, while unit 2 receives the chemical disinfection. All the cleaning actions

are performed between periods 5 to 22.

The optimal (best found) objective value for case study C is z∗ = 1×105£ and

it yields savings of 54% compared to the no-cleaning situation, where the objective

value is zno = 2.2× 105£. The best found cleaning programme includes cleaning

by all methods. A mixed cleaning campaign is performed on units 1 and 2, while

unit 3 receives only chemical and water flush cleaning.

Figures 7.3, 7.4 and 7.5 show the progression of the thermal fouling resistance,

Rf , in time for each unit, for case studies A, B and C, respectively. The time

profile of Rf for the no-cleaning situation is also displayed on the graphs.

As observed in Figure 7.3(a) the thermal fouling resistance for unit 1, which

has the highest heat load in the network, is maintained below 0.4 m2.K/kW during

the 360 days. For units 2 and 3, Rf reaches the asymptotic value, Rf∞ = 0.8

m2.K/kW, once. When no cleaning is performed, Rf attains the value of Rf∞ in

115 days, 96 days and 85 days in units 1, 2 and 3, respectively.

For case study B, the Rf < 0.3 m2.K/kW throughout the 24 periods for unit

2, while it exceeds this value only once for unit 1 and twice for unit 3. The

asymptotic value is attained after 209 days in unit 1 and after 171 days in units

2 and 3.

For case study C, the thermal fouling resistance of all three units is maintained

at a lower level than that for case study A. The value Rf∞ is reached after 171

days and 136 days for units 1 and 2, respectively. For unit 3, the growth reaches

the steady state after 121 days have elapsed.

For the three case studies, comparing the times in which the asymptotic value

is attained in each unit, it becomes apparent that the decay in network perfor-

mance is faster for case study A than for case studies B and C. Also, it is faster

for case study C than for case study B. This also becomes palpable when compar-

ing the objective values for the no-cleaning situation. The aforesaid explains the

relatively large number of cleaning actions selected for case study A (29 actions)

compared to case studies B (13 actions) and C (18 actions).

It emerges from the results that cleaning by water flush is favoured over the

other two methods when the thermal fouling resistance increases relatively quickly

for these cost parameters. Twenty-one water flush actions are selected for case
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Figure 7.3: Time profile of Rf : case study A
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Figure 7.4: Time profile of Rf : case study B
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Figure 7.5: Time profile of Rf : case study C
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study A, where the decay in heat transfer efficiency is faster than the other

two case studies. The solver prefers the cheapest, albeit less effective, water

flush cleaning which has negligible duration and therefore does not result in loss

of production, rather than the other two more time-consuming and expensive

methods. For case studies B and C, where the rate of decay is slower compared

to case study A, fewer water flush actions are selected.

7.4.1 Solution statistics

The MINLP problem solved for each case study involved 216 binary variables,

5100 continuous variables and 5400 constraints. The execution time for solving

the scheduling problem for 100 different random points was 50 minutes for case

study A and 38 minutes for cases B and C.

Figures 7.6(a) – 7.6(c) show the distribution of the local points obtained during

the multiple starting point search, for case studies A, B and C, respectively. The

local optima generated lie within a band of width 0.5×105£ for case study A, of

width 0.2×105£ for case study B and of width 0.6×105£ for case study C.

7.5 Conclusions

A novel approach was presented in this chapter for the problem of scheduling

the cleaning actions for heat exchanger networks operating subject to biological

fouling. The proposed scheduling approach features the selection between three

cleaning techniques and it explores the concept of selection between cleaning

methods further.

The approach postulates that the receptiveness of the surface to immediate

biofilm growth differs after each cleaning action. The first cleaning method is

a simple water flush which removes most of the biofouling layer but leaves the

heat transfer surface colonised and ready to resume growth as soon as the unit

is back in operation. The second technique, a chemical cleaning, removes all the

biofoulant and imposes a short induction period. The third and most effective

cleaning option refers to chemical cleaning followed by disinfection, which resets

the surface to the clean, non-colonised, state and results in a longer induction

135



7. Biological fouling: formulations & computational studies

1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

5

10

15

z × 105 (£)

fr
eq
u
en

cy

(a) Case study A

0.7 0.8 0.9
0

2

4

6

z × 105 (£)

fr
eq
u
en

cy

(b) Case study B

1 1.1 1.2 1.3 1.4 1.5 1.6
0

5

10

z × 105 (£)

fr
eq
u
en

cy

(c) Case study C

Figure 7.6: Distribution of solutions generated by the GBD algorithm for 100
random starting points
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period. This distinct conditioning of the heat transfer surface by each cleaning

method acts as the selection criterion.

The progression of the thermal fouling resistance in time is modelled according

to the logistic model proposed by Nebot et al. [2007]. The benefit of using this

fouling model arises from the fact that it takes into account the presence of the

induction period during which the growth of biofoulant is sluggish. The evolution

of thermal fouling resistance follows a sigmoidal curve. At first, the thermal

resistance of the biofilm remains negligible for a time interval termed as the “delay

period”, which corresponds to the induction period. Afterwards, the thermal

fouling resistance follows an exponential growth and asymptotic behaviour.

Two different mathematical programming formulations are introduced to de-

scribe the scheduling problem: a non-convex MINLP and an MILP. The former

corresponds to scheduling problems that cannot be solved to global optimality

but remain tractable as the number of units and time periods increases. On the

other hand, the MILP formulation produces problems which can, in principle,

be solved to attain the global optimum but are not tractable for heat exchanger

networks involving more than a few units.

A series of computational studies was presented, demonstrating the imple-

mentation of the non-convex MINLP formulation for a small network of heat ex-

changers. The Generalised Bender’s Decomposition (GBD) algorithm was used

to obtain cleaning schedules in conjunction with a multiple starting point search.

The best mixed cleaning campaigns generated resulted in significant savings com-

pared to the no-cleaning case.

The results of the computational studies are sensitive to the parameters of

the fouling model. Thus, reliable estimation of these parameters is crucial for the

application of the proposed scheduling approach.
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Chapter 8

Conclusions & Recommendations

The theme of the first part of this thesis has been the Travelling Salesman Prob-

lem (TSP). A novel way of describing the problem mathematically has been pro-

posed, which resulted in reducing the binary degrees of freedom, for the first time,

to O(ndlog2(n)e). Three mathematical programming formulations have been in-

troduced and a series of computational studies has been conducted in order to

evaluate their computational performance in practice.

The second part of this dissertation reported the utilisation of Mixed-Integer

Programming (MIP) for scheduling the cleaning actions for heat exchanger net-

works subject to fouling. It described the extension of a novel work presented for

isolated units to networks of exchangers. The concept of choice between alterna-

tive cleaning methods was explored, with respect to the state of the deposit for

networks subject to chemical reaction fouling and the conditioning of the heat

transfer surface for networks subject to biological fouling.

8.1 Travelling Salesman Problem

The novel way of mathematically expressing the Travelling Salesman Problem

originates from work in Binary Arithmetic. The problem is described as the

repeated halving (partitioning) of the set of cities at each level of a regular and

full binary tree to left and right directions. Eventually, the cities are placed

sequentially on the leaves of the tree according to their position in the tour. In
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that respect, the original problem can be viewed as a data storage problem on a

binary tree structure.

The new contribution of this work is that it reduces the binary degrees of

freedom for the Travelling Salesman Problem to O(ndlog2(n)e). To the author’s

knowledge, up to date, no other mathematical description of the problem, among

those found in the literature, succeeded in reducing the required number of bi-

nary variables below O(n2). The current work takes an incremental step towards

decreasing the formulation complexity of the Travelling Salesman Problem.

Two Mixed-Integer Linear Programming (MILP) formulations are developed

for the general case of the Asymmetric Travelling Salesman Problem (ATSP),

where the length of an arc connecting two cities depends on the direction in

which it is travelled. These are the Tree-1 and Tree-2 formulations. Another

MILP formulation is introduced for the special case where the distance between

two cities is calculated on the basis of the rectilinear metric. This special case is

referred to as the Manhattan Travelling Salesman Problem.

8.1.1 Asymmetric formulations

The two asymmetric formulations utilise a set of logical checks which force an arc

to be present in the optimal tour if two cities are placed on neighbouring leaves

of the binary tree. These adjacency constraints are the only difference between

formulations Tree-1 and Tree-2. The set of adjacency constraints proposed by

Millar and Cyrus [2000] is used in the Tree-1 formulation, while for Tree-2 the

logical checks are derived by Theorem 3.1. The Tree-1 and Tree-2 formulations

include O(n3) and O(n2dlog2(n)e) adjacency constraints, respectively.

The proposed formulations were implemented for small instances of the Trav-

elling Salesman Problem (n ≤ 12). It emerged from the results that the Tree-1

formulation is superior in computational performance to the Tree-2 formulation.

In particular, the branch-and-cut solver visits considerably fewer nodes of the

solution tree for Tree-1 than for Tree-2. In fact, the exact algorithm failed to

converge after one day of execution, when applying Tree-2 to a problem involving

12 cities. For the same problem, the optimal solution was obtained after 363 CPU

seconds when Tree-1 was applied. The dissimilar computational performance is
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due to the different adjacency constraints included in each formulation.

Nevertheless, neither Tree-2 nor Tree-1 were successful when applied to prob-

lems involving 12 < n ≤ 20 cities. In all cases the branch-and-cut algorithm

failed to obtain the optimal solution after one day of execution. For all intents

and purposes, the solution of such small problems should be trivial.

The computational efficiency of the two formulations was found to be worse

than that of the well-known formulations proposed by Wong [1980] and Miller

et al. [1960]. The basis for the comparison was the strength of the Linear Pro-

gramming (LP) relaxation of each formulation. The formulation suggested by

Miller et al. [1960] is proven to be one of the weakest in comparison to others

existing in the literature [Öncan et al., 2009]. Therefore, the Tree-1 and Tree-2

are also placed among the weakest formulations.

The key finding that emerged from the computational studies is that the

Tree-1 and Tree-2 formulations are not tightly constrained, which means that

the resulting mixed-integer models have a large feasible region. It is due to this

that the proposed formulations can only be applied to very small instances of the

Travelling Salesman Problem.

8.1.2 Manhattan formulation

The computational performance of the Manhattan formulation in practice is

found to be worse that of Tree-1. For the solution of two small problems (n = 8

and n = 10), noticeably more computational effort is required when implement-

ing the former rather than the latter formulation. Therefore, it is concluded that

the Manhattan formulation is also loosely constrained.

8.1.3 Recommendations for future work

Future attempts for continuation of this work should focus on improving the Tree-

1 formulation. It is strongly recommended that additional constraints are added

to the formulation in order to reduce the size of the feasible region. Nonetheless,

the search for appropriate tightening constraints is not a trivial task and it might

not have fruitful results.
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At the same time, future work should be directed towards developing pertinent

heuristic procedures in order to exploit the hierarchical structure of the asym-

metric formulations. Such a heuristic procedure might be successful in generating

initial tours that are close to the optimal solution.

8.2 Scheduling cleaning actions for heat exchanger

networks subject to fouling

In previous attempts to schedule the cleaning actions for heat exchangers sub-

ject to fouling it was postulated that the only form of cleaning available is one

that restores the performance of the unit back to its clean level. A recent study

presented by Ishiyama et al. [2011b] for an isolated evaporator included the eco-

nomic competition between two cleaning methods: one less time-consuming and

partially effective, the other requiring more resource but giving complete clean-

ing. The work reported in the second part of this thesis extends their approach

to accommodate heat exchanger networks and explores the concept of selection

of cleaning methods further.

The cleaning actions were scheduled for: (i) heat exchanger networks subject

to chemical reaction fouling and (ii) heat exchanger networks subject to biological

fouling. The goal was to minimise the process costs, including those associated

with the energy losses due to fouling and with the loss of production during

cleaning intervals, and the cleaning costs for an arbitrarily chosen time horizon.

8.2.1 Networks subject to chemical reaction fouling

The scheduling task for heat exchanger networks subject to chemical reaction

fouling, as per the work by Ishiyama et al. [2011b], featured the selection between

two methods that achieve a different degree of cleaning. Fouling was defined

as the combination of deposition and ageing phenomena. Ageing was assumed

to convert the initial fresh deposit into a harder and more conductive material

removable only by time and cost intensive mechanical cleaning. A less expensive

and faster chemical cleaning was assumed to remove only the soft deposit. A two
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layer model was used to distinguish soft and aged deposits in order to track the

cleaning effectiveness and the decay in heat transfer efficiency.

A non-convex Mixed-Integer Nonlinear Programming (MINLP) formulation

was proposed to describe the scheduling problem. It was developed for networks

of single-pass shell-and-tube heat exchangers operating in counter-current mode.

The formulation can be altered to accommodate other types of units and flow

configurations without difficulty.

The scheduling formulation was applied to a heat exchanger operating in

isolation. A mixed cleaning cycle can be identified for a unit: a number of

chemical actions that partially restore the performance precede a mechanical

action that resets the exchanger to a clean state and restarts the cycle. This

mixed cleaning campaign was named a super-cycle and succeeds in extending the

operating time before lengthy mechanical cleaning by performing a number of

short-length chemical actions.

Cleaning schedules were also obtained for two preheat train networks of 14 and

25 units. The results suggest the importance of the fouling parameters, namely

the formation rates and the thermal conductivities of the two layers. The reliable

estimation of these parameters is imperative for the application of the proposed

scheduling formulation.

8.2.2 Networks subject to biological fouling

The new study of scheduling cleaning actions for heat exchanger networks sub-

ject to biological fouling involved the competition between three cleaning modes

differing in cost, duration and effectiveness. The evolution of the biofilm was

assumed to follow an exponential growth with asymptotic behaviour, after an

induction period during which the heat transfer surface is colonised. Thermal

fouling is modelled using the relation proposed by Nebot et al. [2007].

The three cleaning types considered are the following: (i) cheap water flush of

negligible duration which removes the bulk of the biofoulant but leaves the surface

colonised and ready to restart growth when process operation resumes; (ii) rela-

tively expensive but short-length chemical cleaning which removes all biofilm and

imposes a short induction period and (iii) expensive and time-consuming chem-
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ical cleaning followed by disinfection, which resets the unit to its original clean

state.

A non-convex MINLP formulation was developed to describe the scheduling

problem. The formulation is applied to a small heat exchanger network in a

series of computational studies. Again, the results of the studies are found to be

sensitive to the parameters of the fouling model.

A MILP formulation can also be derived for the scheduling problem. For that

purpose, it was sufficient to express the thermal fouling resistance (of a unit) at

every node of a given time period as the function of the cleaning decisions of

all previous periods. The resulting constraints include only products of binary

variables with continuous variables, which can be replaced by linear terms using

standard transformations [Williams, 1990]. However, the transformations require

the addition of new continuous variables and extra constraints and cause the

MILP problem to be non-tractable for networks involving more than a few units.

8.2.3 Numerical methods

A direct transcription approach was adopted for the dynamic scheduling prob-

lems. The time horizon under consideration was discretised into a finite number

of periods, which in turn were represented by three elements in time. In each

element the variable profiles were approximated by polynomials, and orthogonal

collocation was used to calculate the values of the variables at selected points. In

particular, Radau collocation was chosen because it allows large time steps for

systems with slow time scales [Biegler, 2010].

The MINLP formulations presented for the two scenarios are non-convex.

Therefore, the resulting scheduling models cannot be solved to global optimality.

Despite the non-convex characteristics of the problems, it was decided to use a

rigorous solution method developed for convex problems, in a heuristic attempt

to obtain ‘good’ quality local optima.

The discretisation of time yielded relatively large scheduling problems. The

problems included a prohibitively large number of nonlinear equality constraints

with respect to the capabilities of the standard Outer Approximation/Equality

Relaxation (OA/ER) decomposition algorithm, which failed to converge to a
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solution (after a considerable amount of time) when applied in practice.

Generalised Benders Decomposition (GBD) was selected as a suitable alter-

native algorithm to handle the relatively large Mixed-Integer Nonlinear Program-

ming problems. This algorithm was found to be superior to the OA/ER algorithm

in terms of computational performance, for this particular case. The reason for

this is that only one constraint is added to the Master Problem (see Section 5.5)

at each iteration of the GBD procedure, whereas the OA/ER algorithm demands

the addition of a relatively large number of constraints.

A heuristic solution procedure based on Model Predictive Control (MPC) was

also used to generate cleaning schedules for the two heat exchanger networks sub-

ject to chemical reaction fouling. At each iteration of the heuristic procedure the

GBD algorithm was utilised to solve the scheduling problem for a small number of

periods. In that respect, the scheduling problem is solved repeatedly over a short

time horizon rather than solved once for a long time horizon. The computational

cost for both approaches proved to be similar.

Inequality constraints involving continuous variables, e.g. performance targets

for a network, were not included in the scheduling formulation considered in this

work. The addition of such inequality constraints would presumably increase the

computational effort required by the GBD algorithm to obtain a local solution

or, in a more pessimistic scenario, cause the solver to terminate at an infeasible

point.

8.2.4 Recommendations for future work

The simple two-layer model included in the scheduling formulation proposed for

heat exchanger networks subject to chemical reaction fouling assumes that the

rates of gel and coke formation are constant throughout process operation. Future

continuation of this work can consider more detailed two layer models, such as

the ones presented by Ishiyama et al. [2011a], where the gel formation rate and

coke formation rate depend on the gel/bulk-fluid interface temperature and the

gel/coke interface temperature, respectively. A more detailed fouling analysis will

lead to more valid estimates of the decay in heat transfer efficiency. However,

these more realistic fouling models are highly nonlinear. As a result, the new
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scheduling formulations might yield MINLP problems that are no longer tractable

by the GBD algorithm employed in the current work. In such an event, other apt

heuristic solution procedures will have to be considered.

Another direction for future study could be to consider the negative impact

of fouling on the hydraulic performance of the heat exchangers. The formation

of fouling in the channels of a unit causes a reduction in the flow area, with an

associated increase in pressure drop. This results in loss of throughput if the

pumping power is limited, and it affects the network profitability directly. This

was ignored in the current work. The increase in pressure drops might influence

the cleaning choices, especially for networks where the rate of formation of the

more conductive aged material is relatively high.

The computational studies conducted for the purposes of this work did not

consider any variations in the cost or the duration of the different cleaning meth-

ods. Future work can focus on analysing the sensitivity of the generated schedules

to different combinations of these parameters.

In addition to heat transfer systems, fouling is a major operational problem in

many mass transfer process [Tang et al., 2011; Wang and Tang, 2011]. Membrane

fouling results in loss of permeability and necessitates the cleaning or replacement

of the fouled units. The problem of scheduling the cleaning actions for networks

of membranes has been studied in the past [Lu et al., 2006; See et al., 1999]. It

would be very interesting to revisit the problem and add novelty to the area by

introducing the concept of choice of cleaning methods.
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Appendix A

Table A.1: Cost matrix for ATSP case study: n = 8

1 2 3 4 5 6 7 8
1 ∞ 29 28 11 2 8 17 6
2 21 ∞ 2 13 12 9 5 23
3 27 24 ∞ 8 7 8 38 3
4 28 23 26 ∞ 1 13 28 25
5 21 2 23 15 ∞ 16 17 41
6 12 18 33 25 3 ∞ 15 2
7 3 13 9 27 24 25 ∞ 19
8 27 8 40 8 27 13 2 ∞

Table A.2: Cost matrix for ATSP case study: n = 10

1 2 3 4 5 6 7 8 9 10
1 ∞ 21 27 22 6 35 33 33 24 41
2 78 ∞ 34 23 46 48 4 2 13 22
3 32 7 ∞ 10 7 11 6 47 10 10
4 21 13 3 ∞ 47 40 48 21 45 17
5 13 27 12 8 ∞ 16 32 5 18 15
6 25 6 10 34 35 ∞ 21 49 4 22
7 25 7 22 25 39 27 ∞ 12 16 10
8 22 28 30 26 28 23 31 ∞ 45 33
9 24 5 39 5 21 5 32 26 ∞ 16
10 29 3 7 31 21 4 26 35 30 ∞
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Table A.3: Cost matrix for ATSP case study: n = 12

1 2 3 4 5 6 7 8 9 10 11 12
1 ∞ 633 257 91 412 150 80 134 259 505 353 324
2 633 ∞ 390 661 227 488 572 530 555 289 282 638
3 257 390 ∞ 228 169 112 196 154 372 262 110 437
4 91 661 228 ∞ 383 120 77 105 175 476 324 240
5 412 227 169 383 ∞ 267 351 309 338 196 61 421
6 150 488 112 120 267 ∞ 63 34 264 360 208 329
7 80 572 196 77 351 63 ∞ 29 232 444 292 297
8 134 530 154 105 309 34 29 ∞ 249 402 250 314
9 259 555 372 175 338 264 232 249 ∞ 495 352 95
10 505 289 262 476 196 360 444 402 495 ∞ 154 578
11 353 282 110 324 61 208 292 250 352 154 ∞ 435
12 324 638 437 240 421 329 297 314 95 578 435 ∞

Table A.4: Coordinates for Manhattan-TSP case study: n = 8

x y
-9.847410E+2 -8.154400E+2
-6.160710E+2 -5.708020E+2
-2.574970E+2 -5.779210E+2
-2.191710E+2 -7.294700E+2
-1.541140E+2 -2.258680E+2
89.83980000 -1.172060E+2

-9.062380E+2 160.76700000
-8.003230E+2 -4.185860E+2
-9.847410E+2 -8.154400E+2
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Table A.5: Coordinates for Manhattan-TSP case study: n = 10

x y
-79.29160000 -21.40330000
-72.07850000 0.18158100
-64.74730000 21.89820000
-50.48080000 7.37447000
-50.58590000 -21.58820000
-36.03660000 -21.61350000
-0.13581900 -28.72930000
-14.65770000 -43.38960000
-29.05850000 -43.21670000
-65.08660000 -36.06250000
-79.29160000 -21.40330000
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T. Öncan, I. K. Altinel, and G. Laporte. A comparative analysis of several

asymmetric traveling salesman problem formulations. Computers & Operations

Research, 36(3):637–654, 2009. 7, 12, 41, 140

A. Orman and H. P. Williams. Optimisation, Econometric and Financial Analy-

sis, volume 9, chapter A survey of different integer programming formulations

of the travelling salesman problem, pages 1–16. Springer-Verlag, Berlin, Ger-

many, 2007. 7

C. B. Panchal, W. C. Kuru, C. F. Liao, W. A. Ebert, and J. W. Palen. Threshold

conditions for crude oil fouling. In T. R. Bott, L. F. Melo, C. B. Panchal, and

E. F. C. Somerscales, editors, Understanding Heat Exchanger Fouling and Its

Mitigatio, pages 2273–2281, Castelvecchio Pascoli, Italy, 1999. Begell House

Inc. 58

J. C. Picard and M. Queyranne. Time-dependent traveling salesman problem and

its application to the tardiness problem in one-machine scheduling. Operations

Research, 26(1):86–110, 1978. 11

E. Pistikopoulos, M. Georgiadis, V. Dua, C. S. Adjiman, and G. Amparo, editors.

Process Systems Engineering: Molecular Systems Engineering, volume 6. John

Wiley & Sons, Weinheim, Germany, 2010. 1

T. Pogiatzis, E. M. Ishiyama, W. R. Paterson, V. S. Vassiliadis, and D. I. Wilson.

Identifying optimal cleaning cycles for heat exchangers subject to fouling and

ageing. Applied Energy, 89(1):60–66, 2012. 50

G. Reinelt. TSPLIB. a traveling salesman problem library. ORSA Journal on

Computing, 3(4):376–384, 1991. 37, 41

C. Rodriguez and R. Smith. Optimization of operating conditions for mitigat-

ing fouling in heat exchanger networks. Chemical Engineering Research and

Design, 85(6):839–851, 2007. 58

N. V. Sahinidis and I. E. Grossmann. Convergence properties of generalized

benders decomposition. Computers & Chemical Engineering, 15(7):481–491,

1991. 84

156



References

S. Sanaye and B. Niroomand. Simulation of heat exchanger network (HEN) and

planning the optimum cleaning schedule. Energy Conversion and Management,

48(5):1450–1461, 2007. 58

H. J. See, V. S. Vassiliadis, and D. I. Wilson. Optimisation of membrane re-

generation scheduling in reverse osmosis networks for seawater desalination.

Desalination, 125(1-3):37–54, 1999. 145

A. K. Sheikh, S. M. Zubair, M. U. Haq, and M. O. Budair. Reliability-based

maintenance strategies for heat exchangers subject to fouling. Journal of En-

ergy Resources Technology, Transactions of the ASME, 118(4):306–312, 1996.

55

H. D. Sherali and P. J. Driscoll. On tightening the relaxations of Miller-Tucker-

Zemlin formulations for asymmetric traveling salesman problems. Operations

Research, 50(4):656–669, 2002. 9

H. D. Sherali, S. C. Sarin, and P. F. Tsai. A class of lifted path and flow-based

formulations for the asymmetric traveling salesman problem with and without

precedence constraints. Discrete Optimization, 3(1):20–32, 2006. 10
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