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Abstract 1 

Polygenic risk scores (PRSs) are useful for predicting breast cancer risk, but the prediction 2 

accuracy of existing PRSs in women of African ancestry (AA) remains relatively low. We aim to 3 

develop optimal PRSs for prediction of overall and estrogen receptor (ER) subtype-specific 4 

breast cancer risk in AA women. The AA dataset comprised 9,235 cases and 10,184 controls 5 

from four genome-wide association study (GWAS) consortia and a GWAS study in Ghana. We 6 

randomly divided samples into training and validation sets. We built PRSs using individual level 7 

AA data by a forward stepwise logistic regression and then developed joint PRSs that combined 8 

1) the PRSs built in the AA training dataset, and 2) a 313-variant PRS previously developed in 9 

women of European ancestry. PRSs were evaluated in the AA validation set. For overall breast 10 

cancer, the odd ratio (OR) per standard deviation of the joint PRS in the validation set was 1.34 11 

(95% CI: 1.27-1.42) with area under receiver operating characteristic curve (AUC) of 0.581. 12 

Compared to women with average risk (40th-60th PRS percentile), women in the top decile of 13 

the PRS had a 1.98-fold increased risk (95% CI: 1.63-2.39). For PRSs of ER-positive and ER-14 

negative breast cancer, the AUCs were 0.608 and 0.576, respectively. Compared to existing 15 

methods, the proposed joint PRSs can improve prediction of breast cancer risk in AA women.   16 

 17 

 18 

  19 
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Introduction 1 

Breast cancer is the most common cancer in women in the United States and worldwide. It is a 2 

complex genetic disorder caused by high-penetrance genes, multiple common variants, and non-3 

genetic factors. In the last 10 years, genome-wide association studies (GWAS) have identified 4 

more than 180 breast cancer susceptibility loci (1-4). A polygenic risk score (PRS) is an additive 5 

linear combination of the effects of multiple single nucleotide polymorphisms (SNPs) from 6 

GWAS, and can achieve a degree of risk stratification that is useful for risk-based programs of 7 

breast cancer screening and early detection. PRSs have been developed to predict breast cancer 8 

risk in non-Hispanic white, Asian, and Latin American women (5-10). Recently, a large study 9 

has developed a 313-variant PRS for breast cancer risks in women of European ancestry (5). This 10 

PRS model distinguished breast cancer cases from controls (area under receiver operating 11 

characteristic curve, AUC = 0.630 overall), with a better discriminating capacity for ER-positive 12 

breast cancer (AUC = 0.641) than for ER-negative breast cancer (AUC = 0.601).  13 

African Americans have higher risk of developing early-onset breast cancer and about 14 

40% higher breast cancer mortality than other racial/ethnic groups in the United States (11), so it 15 

is very important to have risk-stratified screening in this population, especially for women age 40 16 

to 49 years. Currently, however, reliable PRS models do not exist for women of African ancestry 17 

(AA), including native Africans living in Sub-Saharan Africa and Africa diaspora. Most GWASs 18 

of breast cancer were conducted in women of European ancestry, and given the distinct allele 19 

frequencies and linkage disequilibrium (LD) structures across populations, PRSs developed in 20 

European ancestry populations have an attenuated, though statistically significant, predictive 21 

value when applied to African ancestry populations (12, 13). Recently, we showed that the 313-22 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/single-nucleotide-polymorphisms
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variant PRS exhibits reduced discriminating accuracy in AA, with AUC being 0.571, 0.588, and 1 

0.562 for overall, ER-positive, and ER-negative breast cancer, respectively (14).  2 

To effectively use genetic information, such as allele frequencies and LD, in AA data, we 3 

adopted a forward stepwise logistic regression approach (5) to select genetic variants and then 4 

construct PRSs for AA women by using individual genotypic and phenotypic data. The stepwise 5 

approach can retain SNPs significantly associated with the phenotype at a given threshold and 6 

effectively control the number of noise SNPs used for PRSs. Since the sample sizes of existing 7 

AA datasets are much smaller than those from European-ancestry studies, using only AA data to 8 

develop a PRS may have limited accuracy. To further increase the prediction accuracy, we 9 

adopted the method of Márquez-Luna et al. (15) to develop joint PRSs by combining two 10 

components: 1) optimal PRS trained in women of African ancestry by the stepwise logistic 11 

regression method, and 2) the 313-variant PRS that was previously developed in women of 12 

European ancestry. We used data in women of African ancestry from four breast cancer GWAS 13 

consortia and the Ghana Breast Health Study (GBHS); the four consortia were: ROOT (The 14 

GWAS of Breast Cancer in the African Diaspora consortium), AMBER (The African American 15 

Breast Cancer Epidemiology and Risk consortium), BCAC (Breast Cancer Association 16 

Consortium), and AABC (African American Breast Cancer consortium) (see Supplemental Table 17 

S1). 18 

Results 19 

We have evaluated the three types of PRS methods described in Materials and Methods: 1) PRSs 20 

built by using genome-wide data in women of African ancestry (PRSAFR), 2) the 313-variant PRS 21 

using effect sizes directly from previous European ancestry studies (PRSEUR), and 3) the joint 22 
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and hybrid PRSs (PRSJoint). The evaluation was performed in an African ancestry validation 1 

dataset.  2 

PRSs Built by Using African Ancestry Data Only (PRSAFR) 3 

We built PRS models using preset p-value thresholds for filtering SNPs and selecting SNPs by a 4 

“hard-thresholding” forward stepwise logistic regression in the African ancestry training set (see 5 

Materials and Methods). Table 1 shows the comparison of the performance of these PRS models 6 

developed using AA data only and evaluated in independent validation set. Using the forward 7 

stepwise regression approach, the prediction accuracy of PRSs increased as the p value threshold 8 

increased from 10-5 to 0.1. The accuracy increased only slightly when the p value cutoff changed 9 

from 0.05 to 0.1, while the numbers of SNPs selected for PRSs for three phenotypes increased 10 

about 1.6-fold. Therefore, we used the PRS models with the p value threshold of 0.05 for further 11 

analysis. The covariate-adjusted AUCs of PRSAFR, PRSAFR.ERp , PRSAFR.ERn were 0.535, 0.546, 12 

and 0.548 for overall, ER-positive and ER-negative breast cancer, respectively (16); PRSAFR, 13 

PRSAFR.ERp, and PRSAFR.ERn denote the PRSs for overall, ER-positive, and ER-negative using 14 

29569, 29004, and 28100 SNPs, respectively, selected by stepwise forward regression in the 15 

African ancestry training dataset.  16 

  17 
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Table 1.  Comparison of the performance of PRS models developed using genome-wide 1 

approach in AA data: Results in the validation set 2 

P Value 

Cutoff a 

SNPs Entering 

Model (n) 

SNPs 

Selected (n) 

 
OR (95% CI)b AUC (95% CI)b 

Overall Breast Cancer 

< 10-5 288 62  1.04 (0.99-1.10) 0.509 (0.495-0.524) 

< 10-4 2,053 428  1.03 (0.98-1.09) 0.506 (0.489-0.522) 

< 10-3 19,067 2,351  1.07 (1.01-1.13) 0.521 (0.507-0.535) 

< 10-2 175,161 10,647  1.12 (1.06-1.18) 0.535 (0.519-0.551)) 

< 0.05 829,335 29,569  1.13 (1.07-1.19) 0.535 (0.519-0.551) 

< 0.1 1,615,762 46,854  1.15 (1.09-1.22) 0.541 (0.527-0.556) 

ER-positive 

< 10-5 201 79  1.06 (0.99-1.13) 0.517 (0.499-0.536) 

< 10-4 2026 408  1.04 (0.97-1.12) 0.512 (0.491-0.534) 

< 10-3 20,186 2,339  1.10 (1.03-1.18) 0.529 (0.508-0.550) 

< 10-2 178,697 10,493  1.19 (1.10-1.27) 0.543 (0.523-0.562) 

< 0.05 832,622 29,004  1.22 (1.13-1.31) 0.546 (0.527-0.566) 

< 0.1 1,624,378 45,997  1.22 (1.13-1.31) 0.546 (0.527-0.565) 

ER-negative 

< 10-5 209 50  1.13 (1.04-1.22) 0.531 (0.508-0.554) 

< 10-4 1872 419  1.08 (0.99-1.17) 0.528 (0.506-0.550) 

< 10-3 16,751 2,230  1.03 (0.95-1.11) 0.506 (0.482-0.531)) 

< 10-2 160,097 10,138  1.14 (1.05-1.23) 0.535 (0.510-0.559) 

< 0.05 784,928 28,100  1.20 (1.11-1.31) 0.548 (0.525-0.572) 

< 0.1 1,552,045 44,889  1.23 (1.13-1.33) 0.551 (0.527-0.575) 
a The p value cut off used for selecting SNPs based on their marginal associations with cancer risk and 3 
then in stepwise regression in the training set; 4 
b Odds ratio (OR) per 1 standard deviation (SD) for the PRS. OR for association with breast cancer in the 5 
validation set was derived using logistic regression adjusting for age, consortium/study, and ten PCs. Area 6 
under receiver operating characteristic curve (AUC) of PRSs were calculated under the covariate-adjusted 7 
ROC model adjusting for age, consortium/study, and ten PCs of genotype data. 8 

 9 

The PRS previously developed in women of European ancestry (PRSEUR)  10 

Directly applying the PRS developed in data on women of European ancestry (PRSEUR) to our 11 

study sample of African ancestry, we found that it was significantly associated with breast cancer 12 

risk, with varying prediction accuracy for the three breast cancer phenotypes (Table 2). We 13 

noticed that the PRSs trained in women of European ancestry (PRSEUR) had almost no 14 

correlation with the PRS developed with “hard-thresholding” approach (PRSAFR) that used AA 15 
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data only, suggesting that additional predictive power could be gained if combining these PRSs 1 

together (Supplemental Table S3). 2 

The Joint and Hybrid PRS Models  3 

A joint PRS is a weighted linear combination of the two components PRSs, i.e., PRSJoint = 1 4 

PRSAFR + 2 PRSEUR (see Materials and Methods). Table 3 shows the prediction performance of 5 

the joint and hybrid PRS models in the validation set. For each phenotype, the two-component 6 

joint PRS model performed better than individual PRSs. For overall breast cancer, adding the 7 

PRS developed in European ancestry population (PRSEUR) to the base model developed using 8 

“hard-thresholding” stepwise regression approach (PRSAFR), the AUC increased from 0.535 to 9 

0.577. Similar results were observed for ER-positive and ER-negative breast cancer. 10 

Interestingly, the PRSs developed in European ancestry population contributed more to the two-11 

component joint PRS model for overall (69%) and ER-positive breast cancer (65%). By contrast, 12 

the PRS developed using AA data (47%) has similar contribution to the joint PRS of ER-13 

negative disease as the PRS developed in European ancestry population (53%). The ORs per unit 14 

standard deviation was 1.49 (95% confidence interval, CI: 1.39-1.60) for the joint PRS of ER-15 

positive breast cancer and 1.31 (95% CI: 1.21-1.43) for the joint PRS of ER-negative disease.  16 

The joint PRS for overall breast had lower prediction accuracy (AUC = 0.577) than the 17 

joint PRSs for ER-positive (AUC = 0.608) and almost the same accuracy for ER-negative 18 

disease (AUC = 0.576). Therefore, we calculated the hybrid PRS for overall breast cancer that 19 

combines the PRSs of ER-positive and ER-negative diseases weighted by subtype proportions. 20 

The OR per standard deviation of the hybrid PRS was 1.34 (95% CI: 1.27-1.42) with an AUC of 21 

0.581. The SNPs and corresponding joint effect sizes used for the final joint and hybrid PRSs for 22 

the three phenotypes are listed in Supplemental Tables S4, S5, and S6. 23 
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The contributing weights k (k=1,2) of the two component PRSs (PRSAFR and PRSEUR) in 1 

the joint PRS models (Table 2) were estimated in the validation set with a logistic regression 2 

model including the two components PRSs, so there might be an overfitting problem. For the 3 

two-component joint PRS of overall breast cancer, the liability scale adjusted R2 was 1.86%, 4 

which was very similar to the raw R2 of 1.91%. For ER-positive joint PRS, the adjusted and raw 5 

R2 were 3.60% and 3.66%, respectively. For ER-negative joint PRS, the adjusted and raw R2 6 

were 1.13% and 1.21%, respectively. These analyses suggested that the bias due to overfitting is 7 

minimal.  8 

  9 



10 | P a g e  
 

Table 2. Performance of ancestry-specific and joint prediction PRS models in the validation set 

 Weight (𝛼𝑘) for 

each predictor a 

OR  

(95% CI)a 

P AUC 

(95% CI)a 

Overall Breast Cancer     

PRSAFR (genome-wide threshold P<0.05)  1.13 (1.07-1.19) 7.8x10-06 0.535 (0.519-0.551) 

PRS from European ancestry (PRSEUR)b  1.30 (1.23-1.37) 2.8x10-21 0.571 (0.557-0.585) 

𝛼1PRSAFR + 𝛼2PRSEUR307 𝛼1=0.31, 𝛼2=0.69 1.34 (1.27-1.41) 3.4x10-25 0.577 (0.561-0.593) 

PRShybrid
c  1.34 (1.27-1.42) 3.0x10-26 0.581 (0.566-0.597) 

ER-positive      

PRSAFR.ERp (genome-wide threshold P<0.05)  1.22 (1.13-1.31) 2.7x10-7 0.546 (0.527-0.566) 

PRS from European ancestry (PRSEUR.ERp)b  1.43 (1.33-1.53) 6.1x10-24 0.597 (0.577-0.617) 

𝛼1PRSAFR.ERp  + 𝛼2PRSEUR.ERp 𝛼1=0.35, 𝛼2=0.65 1.49 (1.39-1.60) 1.1x10-28 0.608 (0.588-0.627) 

ER-negative      

PRSAFR.ERn (genome-wide threshold P<0.05)  1.20 (1.11-1.31) 1.1x10-5 0.548 (0.525-0.572) 

PRS from European ancestry (PRSEUR.ERn)b  1.23 (1.13-1.34) 8.7x10-7 0.557 (0.534-0.581) 

𝛼1PRSAFR.ERn  + 𝛼2PRSEUR.ERn 𝛼1=0.47, 𝛼2=0.53 1.31 (1.21-1.43) 1.1x10-10 0.576 (0.553-0.598) 

a Weight (𝛼𝑘) in the joint PRSs was estimated in validation set with a logistic regression model including two component PRSs ( PRSAFR, and 

PRSEUR307) as predictors, and adjusting for age, consortium/study, and ten PCs; Odds ratio (OR) per 1 SD. Area under receiver operating 

characteristic curve (AUC) of PRSs were calculated under the covariate-adjusted ROC model adjusting for age, consortium/study, and ten PCs of 

genotype data.  
b For the 313 SNPs reported by Mavaddat et al. (5) for PRS in women of European ancestry, 307 SNPs appeared in our data of African ancestry. 
c PRShybrid for overall cancer risk is a linear combination of the two joint PRSs for ER-positive and ER-negative breast cancer, with weight of 0.62 

for ER-positive and 0.38 for ER-negative cancer.  
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Table 3 showed associations between breast cancer risk and percentiles of the joint and 

hybrid PRSs. Women in the top 10% and 5% of the hybrid PRS had a 1.98-fold (95% CI: 1.63-

2.39) and a 2.12-fold (95% CI: 1.67-2.69) elevated overall breast cancer risk compared to 

women at average risk (PRS in 40th-60th percentiles), respectively. For ER-positive breast 

cancer, compared to the population average, women in the top 10% and 5% of the joint PRS had 

a 2.20-fold (95% CI: 1.74-2.77) and a 2.58-fold (95% CI: 1.95-3.42) increased risk, respectively. 

For ER-negative breast cancer, those in the top 10% and 5% of the joint PRS had a 1.80-fold 

(95% CI: 1.37-2.38) and a 2.13-fold (95% CI: 1.52-3.00) increased risk, respectively, compared 

to women at average risk.  

 The joint and hybrid PRSs were significantly associated with breast cancer risk in women 

with and without family history of breast cancer (Table 4). We did not see any significant 

interaction between PRS and family history of breast cancer. In addition, family history was 

associated with about 1.76 to 2.05-fold increased risk of overall or subtype-specific breast 

cancer. We only observed slight attenuation of the association of family history with overall 

breast cancer and ER-negative cancer risk after adjusting for PRS (Table 4).   
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Table 3.  Associations between PRS percentiles and breast cancer risk in the validation set 

PRS Category 
No. 

Control 

Overall Breast Cancer   ER-positive   ER-negative 

No. 

Case 
OR (95% CI) a   

No. 

Case 
OR (95% CI) a   

No. 

Case 
OR (95% CI) a 

< 5% 156 100 0.79 (0.59-1.05) 
 

35 0.61 (0.41-0.92) 
 

26 0.74 (0.47-1.18) 

5% - 10% 155 102 0.82 (0.62-1.09) 
 

28 0.52 (0.34-0.81) 
 

39 1.09 (0.73-1.63) 

0% - 10% 311 202 0.81 (0.65-1.00) 
 

63 0.57 (0.42-0.78) 
 

65 0.92 (0.67-1.27) 

10% - 20% 313 180 0.73 (0.58-0.91) 
 

77 0.72 (0.53-0.97) 
 

58 0.84 (0.60-1.18) 

20% - 40% 624 422 0.85 (0.72-1.02) 
 

185 0.82 (0.66-1.04) 
 

111 0.80 (0.61-1.06) 

40% - 60% (ref.) 624 486 1 (ref.) 
 

222 1 (ref.) 
 

141 1 (ref.) 

60% - 80% 624 595 1.22 (1.03-1.44) 
 

266 1.18 (0.95-1.46) 
 

184 1.36 (1.06-1.74) 

80% - 90% 312 350 1.45 (1.19-1.76) 
 

192 1.64 (1.29-2.09) 
 

94 1.39 (1.03-1.87) 

90% - 100% 311 467 1.98 (1.63-2.39) 
 

256 2.20 (1.74-2.77) 
 

127 1.80 (1.37-2.38) 

90% - 95% 155 216 1.83 (1.44-2.34) 
 

107 1.82 (1.35-2.45) 
 

55 1.61 (1.12-2.32) 

>95% 156 251 2.12 (1.67-2.69) 
 

149 2.58 (1.95-3.42) 
 

72 2.13 (1.52-3.00) 

 a Odds ratio (95% confidence intervals) were adjusted for age, consortium and 10 principal components. 
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Table 4.  Associations between polygenic risk scores (PRS) and breast cancer risk by family history of breast cancer in the 

validation set 

Model 
Overall Breast Cancer   ER-positive   ER-negative 

OR (95% CI) a   OR (95% CI) a   OR (95% CI) a 

Association of PRS and cancer risk by family 

history 
     

    PRS unadjusted for family history 1.31 (1.24-1.39)  1.45 (1.35-1.56)  1.31 (1.20-1.44) 

    PRS in women without family history 1.30 (1.22-1.39)  1.45 (1.33-1.57)  1.31 (1.19-1.45) 

    PRS in women with family history 1.34 (1.15-1.56)  1.45 (1.21-1.74)  1.29 (1.04-1.60) 

P for testing interaction between PRS and 

family history 
0.829  0.965  0.779 

Association of family history and cancer risk      

    Family history unadjusted for PRS 1.79 (1.52-2.11)  2.05 (1.70-2.49)  1.76 (1.39-2.23) 

    Family history adjusted for PRS 1.76 (1.49-2.08)   2.05 (1.68-2.49)   1.72 (1.35-2.18) 
a For PRS, odds ratios (95% confidence intervals) per 1 SD were presented. For family history, the odds ratio comparing women with 

versus without family history of breast cancer. In all logistic regression models, age, consortium and 10 principal components were 

adjusted for.  
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 We did not observe a statistically significant interaction between the joint/hybrid PRSs 

and age at diagnosis for overall or subtype-specific breast cancer risk (Supplementary Figure 

S1), although the association between PRS and overall or ER-positive breast cancer risk was 

weak for women 70 years or older.  

We examined association of PRSs and breast cancer risk in two populations: Africans vs.  

African Americans & African Barbadians. In both populations, PRSs were associated with breast 

cancer risk and there was no statistically significant interaction (Supplementary Table S7). There 

was no significant interaction between ancestry groups (<80% African ancestry vs. >80% 

African ancestry) and PRSs. There was a marginally significant heterogeneity effects of the 

PRSs for overall breast cancer and ER-negative breast cancer across the five consortia/studies, 

but not for ER-positive PRS (Supplementary Figure S2). For overall breast cancer, the PRS has a 

moderate association in the ROOT and AABC consortia, and a stronger association in the 

AMBER consortium. 

Absolute Risk of Developing Breast Cancer According to the PRS 

Figure 1 shows the estimated life-time and 10-year absolute risks of breast cancer for African 

Americans according to percentile of the PRSs. The absolute risk of overall breast cancer by age 

80 years was 18.8% for women in the 99th percentile of the hybrid PRS and 4.3% for women in 

the lowest 1st percentile. The absolute risk of ER-positive breast cancer by age 80 ranged from 

2.3% in the lowest percentile of PRS to 17.6% in the highest percentile of PRS. For ER-negative 

breast cancer, the absolute risk by age 80 ranged from 1.3% to 4.8%. By contrast, the absolute 

risk of overall breast cancer by age 80 ranged from 3.2% to 31.3% for European American 

women in lowest and highest percentiles of the 313-variant PRS of European ancestry (5) 

(Supplementary Figure S4). The absolute risk by age 80 ranged from 2.4% to 31.6% for ER-
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positive and from 0.5% to 3.3% for ER-negative breast cancer among European Americans. The 

dotted line in Figure 1D illustrates the age at which women at different categories of the PRS 

reach a threshold of 10-year risk of 2%, which corresponds to the average risk for women age 45 

years in the U.S. This threshold was reached at 35, 38, and 39 years for women whose PRS is 

>99th, 95-99th, and 90-95th percentiles, respectively.  

Discussion 

In this study, we developed and validated joint PRSs of breast cancer among women of African 

ancestry by pooling multiple studies and leveraging an existing polygenic risk score developed in 

European ancestry population. We adopted the method of Márquez-Luna et al. (15) to develop 

the joint PRSs that combined the PRS developed with only data from African ancestry and the 

313-variant PRS developed in women of European ancestry (5). With AUCs of 0.581, 0.608, and 

0.576 for overall, ER-positive, and ER-negative breast cancer, the joint PRSs provide a better 

predictive value than previous PRS models in African ancestry women. Allman et al evaluated a 

77-variant PRS in African Americans and reported an AUC of 0.55 for overall breast cancer risk 

(12). Wang et al reported an AUC of 0.531 for a 34-variant recalibrated PRS in women of 

African ancestry (13). Recently, Du et al evaluated the 313-variant PRS using the same dataset 

as the current study, and reported an AUC of 0.571, 0.588, and 0.562 for overall, ER-positive, 

and ER-negative breast cancer, respectively (14). Although comparing with previous models, the 

improvements in AUCs are not large, the current PRSs can provide better risk stratification, 

making them suitable for clinical use.  

The improved prediction value of the joint PRS models in women of African ancestry 

may be because it has leveraged the strengths of two types of PRSs. The 313-variant PRS was 

developed with very large sample size of 94,075 breast cancer cases and 75,017 controls of 
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European descent in BCAC (5), so it achieves high precision. The PRS model developed using 

“hard-thresholding” genome-wide approach in AA datasets has the advantage that the training 

and validation dataset have the similar LD patterns. Of note, the contribution of the individual 

PRSs to the joint PRSs varied by breast cancer phenotypes. The 313-variant PRS has a better 

performance in predicting ER-positive than ER- negative breast cancer in both European and 

African ancestry populations (5, 14). Consistently, it also contributed more to the ER-positive 

joint PRS in this study. This may reflect that about 80% of breast cancer patients of European 

ancestry has ER-positive disease, so GWAS data in the BCAC contains more genetic 

information on ER-positive disease. By contrast, women of African descent patients have higher 

proportion of ER-negative disease than other populations. Probably because of this, the PRS 

trained in our combined AA dataset had about half contribution to the joint PRS for ER-negative 

risk.  

We also observed that the subtype-specific PRSs performed better than the PRS for 

overall breast cancer risk. This is probably because of breast cancer etiology heterogeneity; many 

genetic variants have different effects on ER-positive and ER-negative breast cancers (4, 17, 18). 

Therefore, we generated a hybrid PRS for overall breast cancer risk that is a weighted average of 

ER-positive and ER-negative joint PRSs. We found that the hybrid PRS had higher prediction 

accuracy than the corresponding joint PRS for overall breast cancer risk. If the finding that “the 

sum of the parts is greater than the whole” can be confirmed in future studies, it could be a good 

strategy to estimate omnibus risk of breast cancer (19). While an overall breast cancer risk model 

and an ER-negative model may be useful for clinical decision making regarding timing and 

frequency of breast cancer screening, an ER-positive model has the additional advantage of 
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potentially identify high risk women who may benefit from chemoprevention with endocrine 

agents.  

Although the joint PRS models have a better predictive performance than previous PRS 

models in African ancestry women, the prediction accuracy is still lower than models reported 

for other racial/ethnic populations. Mavaddat et al reported AUCs of 0.63 and 0.64 for their 313-

variant and 3820-variant PRSs, respectively, for predicting overall breast cancer in women of 

European ancestry (5). Shieh et al examined the performance of 71- and 180-variant PRS for 

overall breast cancer in a large Latino study and reported AUCs of 0.61 to 0.63 (10). Wen et al 

examined a 67-variant PRS for overall breast cancer in East Asians and reported an AUC of 0.61 

(9). In another PRS study of Asians, Ho et al examined a 287-variant PRS and reported an AUC 

of 0.613 for overall breast cancer (20). The weaker performance of PRS in people of African 

ancestry has been observed in other disease phenotypes (21). One study found that the prediction 

accuracy was 4.9-fold lower in Africans on average compared with that in European populations 

for 17 phenotypes, while the reduction in accuracy was 1.6-fold in Hispanic/Latino Americans, 

1.7-fold in South Asians, and 2.5-fold in East Asians (21). These observations are consistent with 

previous studies which showed that poorer PRS performance is related to genetic divergences 

between training and target populations (22, 23). Therefore, several factors could account for this 

disparity, including relatively limited sample size, different LD patterns, allele frequencies, and 

possible heterogeneity in effect sizes between populations. 

To further improve prediction accuracy of PRS in people of African ancestry, it is 

important to include more racially/ethnically diverse individuals in medical genomic research. 

The ongoing Confluence project led by U.S. National Cancer Institute has prioritized large-scale 

genotyping for diverse populations (https://dceg.cancer.gov/research/cancer-types/breast-
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cancer/confluence-project), so it could improve the prediction accuracy of breast cancer PRS. 

Advances in methodologies in statistical genetics could also help to develop a better PRS 

utilizing information hidden in the existing GWAS datasets. For example, sophisticated methods 

that integrate additional biological information, genetic architecture, and LD information can be 

promising to apply to diverse populations (24-26). For African Americans, an admixed 

population, global admixture proportion could help to predict cancer risk (15, 27). We found the 

proportion of European ancestry was not associated with overall and ER-negative breast cancer 

(p>0.3) but marginally significantly associated with ER-positive breast cancer (odds ratio=1.14 

per a 25% increase in European ancestry, p=0.011). Global admixture is essentially the same as 

the first principal component (r=0.996), which was used to control for population stratification, 

so we did not use global admixture in our risk prediction model building. However, local 

ancestry, which is robust to population stratification, could also be tapped in future studies to 

gain statistical power to improve accuracy of genetic risk prediction (28-30).  

The AUC, a discriminating accuracy metric, of the new PRS model is moderate, but the 

model could still provide meaningful risk stratification in the population. Women in the top 5th 

percentile of the new PRS have more than 2-fold elevated breast cancer risk compared to women 

at average risk. For women at average risk, the American Cancer Society strongly recommends 

to initiate regular screening mammography at age 45 years, whose 10-year risk of developing 

breast cancer is about 2% (31). Based on the PRS, we estimated that about 10% of African 

American women have 10-year risk of 2% before they reach age 40. These women could start 

breast cancer screening earlier than age 40 and are possibly eligible for intensive screening 

programs or chemoprevention trials. 
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  In summary, we proposed joint breast cancer PRSs in women of African ancestry, which 

has moderate prediction value, but are still not optimal. We found that the joint model can gain 

more information on ER-positive breast cancer prediction from the existing PRS developed in 

European ancestry population, while GWAS data from African ancestry contributes more 

information to the prediction of ER-negative breast cancer.  

Materials and Methods  

Study Participants and Genotyping 

This study includes women of African ancestry from four breast cancer GWAS consortia and a 

study in Ghana, with a combined sample size of 19,419 participants including 9235 breast cancer 

cases and 10184 controls. Data collection for individual studies of these consortia have been 

described previously (32-36). Sample size and selected characteristics for each consortium and 

study are summarized in Supplemental Tables S1. Women in the study sites in United States and 

Barbados were self-identified as African American or African Barbadian, while women in the 

African study sites were implied to be of African ancestry. African ancestry was confirmed using 

GWAS data. For each consortium/study in this project, individual protocols were approved by 

the relevant Institutional Review Boards at participating centers. All participants provided 

written informed consent in accordance with the local institutional review boards. 

Each consortium/study utilized a different GWAS array. Genotyping and quality control 

(QC) procedures have been described in details in Supplemental Table S1. The GWAS of Breast 

Cancer in the African Diaspora consortium (ROOT) consists of study participants from six 

studies (32), and samples were genotyped using the Illumina HumanOmni 2.5-8v1 array. After 

quality control (QC), 1,657 cases (404 ER-positive, 374 ER-negative) and 2,028 controls from 

the ROOT consortium remained in the analysis. The African American Breast Cancer 
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consortium (AABC) consists of nine epidemiological studies (33, 37, 38). Samples in AABC 

were genotyped using the Illumina Human 1M-Duo BeadChip. After QC, a total of 3,005 cases 

(1,517 ER-positive, 986 ER-negative) and 2,713 controls remained in the analysis. The African 

American Breast Cancer Epidemiology and Risk consortium (AMBER) consists of three studies 

(34). The AMBER samples were genotyped using the Illumina MEGA array, and after QC, 1406 

cases (951 ER-positive, 385 ER-negative) and 2,407 controls remained in the analysis.  Nine 

studies with cases and controls of African ancestry contributed samples to the Breast Cancer 

Association Consortium (BCAC). Genotyping for BCAC was performed using Illumina 

OncoArray (with 260K GWAS backbone) (39). After removing overlapped samples between 

BCAC (OncoArray) with AABC, AMBER and ROOT, a total of 2,268 cases (1,127 ER-positive, 

613 ER-negative) and 1,406 controls remained for the analysis. The Ghana Breast Health Study 

(GBHS) includes 899 cases (296 ER-positive, 277 ER-negative) and 1,630 controls (35, 36). 

Samples in GBHS were genotyped using Illumina Global Screening Array. 

Training Set and Validation Set  

In order to pool the samples from these studies, we conducted uniformed imputation using the 

cosmopolitan reference panel in the 1000 Genomes Project (1KGP) (Phase III release) within 

each consortium/study by the software IMPUTE2 

(http://mathgen.stats.ox.ac.uk/impute/impute_v2.html) (40). After imputation, we filtered in 

variants (~15 million SNP or indel) with average minor allele frequency (MAF) > 0.01 and 

average imputation information score > 0.85. The distribution of imputation info across GWAS 

array was described in Supplemental Table S1. We pooled datasets from the four African 

ancestry consortia and the Ghana study into a combined dataset. Principal components (PCs) of 

genotype data were estimated using EIGENSTRAT in the pooled dataset (41, 42). As shown in 

http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
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the scatter plots of the top five eigenvectors from the principal component analysis 

(Supplementary Figures S3A and S3B), the first PC can distinguish participants from different 

continents (Africa vs. North America) and indicates essentially the global proportion of African 

ancestry. The third and fifth PCs can distinguish countries in Africa. We then randomly split the 

combined dataset into a training set (n=13,598; 70%) and a validation set (n=5,821; 30%). Model 

development was conducted in the training set, while the performance of the PRS models were 

evaluated in the validation set. 

Development of PRSs using Genome-wide Data in Women of African Ancestry 

A PRS can be expressed as   

PRS = β1G1 + β2G2 + … βkGk + … + βKGK   (1) 

where βk is the per-allele log odds ratio (OR) for breast cancer associated with SNP k and serves 

as the weight in PRS calculation, Gk is the allele dosage for SNP k, and K is the total number of 

SNPs included in the PRS. This form of PRS assumes a log-additive genetic model for individual 

SNPs, which was considered appropriate in previous PRS development (5-10). To find an 

optimal PRS, we need to determine which SNPs among all genome-wide variants should be 

included in the PRS according to association test results from the training dataset. We used a 

modified version of the model selection strategy outlined by Mavaddat and colleagues (5), which 

used a “hard-thresholding” forward stepwise logistic regression.  First, we performed single 

SNP-based association tests using multivariable logistic regression in the training set, adjusting 

for age, consortium/study, and the top ten PCs of genotype data. The per allele log-odds ratios 

estimated in the single SNP-based analyses are called “marginal” effect sizes. We estimated the 

association for each of the three phenotypes (overall, ER-positive, and ER-negative breast 

cancer) in parallel. The model development was also separately for each phenotype. In the “hard-
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thresholding” approach, we selected SNPs in three steps. In step 1, we split each chromosome 

into 5Mb bins and sorted SNPs by p value within each bin. To avoid collinear problem in logistic 

regression, we filtered SNPs based on LD such that highly correlated SNPs (LD r2 > 0.9) with 

larger p values were removed. In step 2, we selected SNPs by a series of stepwise forward 

logistic regression in 5 Mb bin. Only SNPs passing the pre-specified p value thresholds were 

included in the multivariable models. The SNP with the smallest (conditional) p value was added 

sequentially to the model, until no further SNPs could be added. We set p value thresholds to be 

10-5, 10-4, 10-3, 10-2, 0.05, and 0.1. In step 3, bins of the same chromosome were combined. SNPs 

on the boundary of two bins (2 Mb boundary) were filtered using LD and stepwise logistic 

regressions as described in steps 1 and 2. Finally, marginal beta coefficients for all selected SNPs 

across the genome were compiled together to calculate a PRS according to Equation 1. We 

labeled this PRS as PRSAFR. For a high p value threshold (e.g. 0.05), there are many 

(uncorrelated) SNPs on one chromosome and our sample size is limited, so the logistic model 

including all SNPs cannot be fit reliably.   

The 313-variant PRS using Effect Sizes from European Ancestry Population (PRSEUR) 

The 313-variant PRS was developed previously using data of European ancestry (5). Although 

its performance in African ancestry populations is not optimal, it still offers moderate 

discriminatory ability (14). Therefore, we directly applied the weights (beta coefficients) from 

the 313-variant PRS in the validation set. Of the 313 variants, 6 variants were removed because 

of low minor allele frequency or imputation score and the remaining 307 variants are shown in 

Supplemental Table S2. Here, we use PRSEUR, PRSEUR.ERp, and PRSEUR.ERn to denote the PRSs 

for overall, ER-positive, and ER-negative phenotypes, respectively, where subscript “EUR” 

indicates the weights are from European ancestry population. 
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Joint and Hybrid PRS Models 

To improve risk prediction in diverse populations, Márquez-Luna et al (15) proposed a 

multiethnic PRS method. The method combines PRS based on European training data with PRS 

based on training data from the target population (such as African Americans). Márquez-Luna 

and colleagues showed that the derived multiethnic PRS significantly improve prediction 

accuracy in the target population and is robust to overfitting (15). Here, we adapted this method 

to construct a joint PRS as a weighted linear combination of two PRSs:  

PRSJoint = 1 PRSAFR + 2 PRSEUR  (2) 

where PRSAFR and PRSEUR are polygenic risk scores described above, and the weights 1 and 2 

were estimated in the validation set using a logistic regression model including PRSAFR and 

PRSEUR as predictors, and adjusting for age, consortium/study, and ten PCs of genotypes. If we let 

1 + 2 = 1, the weights represent the proportional contribution of the two PRSs on the joint 

PRS.  

Since prediction accuracy of the joint PRS for overall breast cancer was relatively low 

compared to that of the joint PRS for ER-positive and very close to that of the joint PRS for ER-

negative breast cancer, we also developed a hybrid PRS as a linear combination of the joint PRSs 

for ER-positive and for ER-negative breast cancer: PRShybrid = η PRSJoint. ERp + (1 - η) PRSJoint.ERn, 

where η = 0.62 was the proportion of ER-positive cases in our study samples.  

Model Evaluation in the Validation Set  

For each PRS model described above, we evaluated its performance in the validation set. As the 

measure of the discriminating accuracy of a PRS, we calculated adjusted AUC using covariate-

adjusted receiver operating characteristic (ROC) regression (16), in which age, consortium, and 
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the top 10 PCs were adjusted for. The adjusted AUC quantifies the pure discriminating accuracy 

of a PRS without confounding from other covariates. In the evaluation of joint PRSs, we 

calculated liability scale adjusted R2 (43), which roughly corrects for overfitting problem from 

estimating the contributing weights 1 and 2 in the validation set.  

To estimate the strength of association, we fit multivariable logistic regression models 

and calculated OR and 95% CI per unit standard deviation of PRS, adjusting for age, consortium, 

and the top 10 PCs. We also categorized PRSs by percentile (<5%, 5-10%, 10-20%, 20-40%, 40-

60%, 60-80%, 80-90%, 90-95%, >95%) in controls, and calculated adjusted OR for each 

category with 40-60% as the reference group. All analyses were done for overall, ER-positive, 

and ER-negative breast cancer, separately.  

We examined whether age or first degree family history of breast cancer modified the 

association between PRS and breast cancer risk by adding interaction terms in logistic regression 

models. We further examined whether the effect of PRS varied between Africans and African 

Americans/African Barbadians, between groups defined by African ancestry (<80% vs. >80%), 

and between the 5 consortium/study.  

Calculation of Absolute Risks 

We calculated the lifetime and 10-year absolute risks of developing breast cancer (overall and 

subtype-specific disease), based on population incidence rates and relative risk estimates for 

different PRS categories after taking into account the competing risk of dying from causes other 

than breast cancer, as described previously (6). The theoretical ORs for women in different PRS 

categories versus women in the 40th-60th percentiles were calculated using the method of Wen 

et al (9), in which PRS was modeled as continuous predictor of breast cancer risk. Other inputs 

included age-specific breast cancer incidence rates in African Americans from Surveillance, 
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Epidemiology and End Results (SEER, 2000-2017) (44) and the non-breast cancer mortality 

rates from Centers for Disease Control and Prevention (CDC 1999-2018) in United States (45). 

Similarly, we calculated absolute risk of ER-positive and ER-negative breast cancer, using 

subtype-specific incidence rates from SEER (44) and without accounting for the competing risk 

of other subtype. As a contrast, we also calculated the lifetime and 10-year absolute risks of 

developing breast cancer (overall and subtype-specific disease) for European Americans using 

existing PRS model in women of European ancestry (5) and breast cancer incidence rates in 

European Americans (44). Further details are provided in the Supplemental Material and 

Methods.  

We conducted the analyses using R v.3.6.0 and Stata v.16. All tests of statistical 

significance were two-sided.  
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Figure 1. Cumulative life-time and 10-Year Absolute Risk of Developing Breast Cancer among 

African Americans 

Table 1.  Comparison of the performance of PRS models developed using genome-wide 

approach in AA data: Results in the validation set 

Table 2. Performance of ancestry-specific and joint prediction PRS models in the validation set 

Table 3.  Associations between PRS percentiles and breast cancer risk in the validation set 

Table 4.  Associations between PRS and breast cancer risk by family history of breast cancer in 

the validation set 
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Supplemental Material and Methods  

 

Calculation of lifetime and 10-year absolute risks 

 

We estimated the lifetime absolute risk as well as the 10-year absolute risk of developing breast 

cancer by age (20-80 years old) for each risk category defined by polygenic risk score (PRS), 

and further estimated the absolute risk for ER-positive and ER-negative breast cancer respec-

tively. Besides relative risk estimates from the PRS model, we also used data on the breast can-

cer incidence rates in the United States (Surveillance, Epidemiology and End Results, SEER 

2000-2017)1 and the cause-specific mortality rates in the United States (Centers for Disease Con-

trol and Prevention, CDC 1999-2018).2  

 

First of all, the overall incidence of breast cancer at age t can be expressed as:  

𝑖(𝑡) =
∑𝑔𝜏𝑔𝜇𝑔(𝑡)𝑆𝑔(𝑡 − 1)

∑𝑔𝜏𝑔𝑆𝑔(𝑡 − 1)
=

∑𝑔𝜏𝑔𝜇𝑜(𝑡)𝑒𝑥𝑝൫𝛽𝑔൯𝑆𝑔(𝑡 − 1)

∑𝑔𝜏𝑔𝑆𝑔(𝑡 − 1)
 

𝑔 -  PRS risk category 

𝜏𝑔 -  frequency of the PRS category in the population 

𝛽𝑔 - coefficient estimate of breast cancer risk in PRS category g compared with the baseline PRS 

category, i.e. log odds ratio 

𝜇0(𝑡) -  breast cancer incidence in the baseline PRS category at age t 

𝜇𝑔(𝑡) -  breast cancer incidence in PRS category g at age t,  𝜇𝑔(𝑡) = 𝜇0(𝑡)𝑒𝑥𝑝(𝛽𝑔) 

𝑆𝑔(𝑡) - the probability of being free of breast cancer to age t in PRS category g: 

            If 𝑡 < 20:  

               𝑆𝑔(𝑡) = 1  and  𝜇𝑔(𝑡) = 0 

            If 20 ≤ 𝑡 ≤ 80: 

               𝑆𝑔(𝑡) = 𝑆𝑔(𝑡 − 1) ⋅ ൣ1 − 𝜇𝑔(𝑡 − 1)൧ = 𝑆𝑔(𝑡 − 1) ⋅ ൣ1 − 𝜇0(𝑡 − 1)𝑒𝑥𝑝(𝛽𝑔)൧ 

 

Because the overall breast cancer incidence rate in the United States (SEER 2000-2017) for each 

age group t, 𝑖(𝑡) is known, we can use the expression above to iteratively estimate the probability 

of being free of breast cancer to age t in PRS category g, 𝑆𝑔(𝑡). The theoretical 𝑂𝑅𝑔 =

 𝑒𝑥𝑝൫𝛽𝑔൯ for women in PRS category g versus women in the 40th-60th percentiles was calcu-

lated using Equation 7 in Wen et al,3 in which PRS was modelled as continuous predictor of 

breast cancer risk. The standard deviation (SD) was 0.31, 0.41, and 0.33 for overall, ER-positive, 

and ER-negative breast cancer PRS, respectively. 

 



Next, we can estimate the lifetime absolute risk of developing breast cancer 𝐴𝑅𝑔(𝑡) considering 

the competing risk of death from causes other than breast cancer through: 

𝐴𝑅𝑔(𝑡) = ∑
𝑢=0

𝑡

𝜇𝑔(𝑢)𝑆𝑔(𝑢)𝑆𝑚(𝑢) 

𝜇𝑔(𝑡) -  breast cancer incidence in PRS category g at age t 

𝑆𝑔(𝑡) -  the probability of being free of breast cancer to age t in PRS category g 

𝑆𝑚(𝑡) - the probability of surviving to age t 

            If 𝑡 < 20:  

               𝑆𝑚(𝑡) = 1 

            If 20 ≤ 𝑡 ≤ 80: 

𝑆𝑚(𝑡) = 𝑆𝑚(𝑡 − 1) ⋅ ሾ1 − 𝑚(𝑡 − 1)ሿ, 𝑚(𝑡) - mortality rate from causes other than breast 

cancer at age t (CDC, 1999-2018) 

 

The 10-year absolute risk of developing breast cancer at age t (20 ≤ 𝑡 ≤ 70) can be estimated 

through: 

𝐴𝑅𝑔(𝑡 + 10) − 𝐴𝑅𝑔(𝑡)

𝑆𝑚(𝑡) ⋅ 𝑆𝑔(𝑡)
 

 

Finally, we repeat the previous steps to estimate the absolute risk of developing ER-positive and 

ER-negative breast cancer, using the subtype-specific incidence rates in the population as well as 

the subtype-specific PRS risk categories. When estimating the absolute risk of developing ER-

positive or ER-negative breast cancer, we assume that the individual is free of any type of breast 

cancer at age t. 

 

References 

 

1. Surveillance, E., and End Results (SEER) Program (www.seer.cancer.gov). (2020). SEER*Stat 

Database: Incidence - SEER Research Data, 21 Registries, Nov 2019 Sub (2000-2017), National 

Cancer Institute, DCCPS, Surveillance Research Program, released April 2020, based on the 

November 2019 submission.  

2. Centers for Disease Control and Prevention, National Center for Health Statistics. (1999-2018 ). 

Underlying Cause of Death 1999-2018 on CDC WONDER Online Database, released in 2020.  

3. Wen, W., Shu, X.O., Guo, X., Cai, Q., Long, J., Bolla, M.K., Michailidou, K., Dennis, J., Wang, Q., 

Gao, Y.T., et al. (2016). Prediction of breast cancer risk based on common genetic variants in 

women of East Asian ancestry. Breast Cancer Res 18, 124. 

 

  

file://///prfs.cri.uchicago.edu/phs/users/dhuo/GWAS/PRS/PRSpaper2/Supplementary/www.seer.cancer.gov


Supplemental Figures  

 

Figure S1. Association of the PRS and breast cancer risk in different age categories (in years) in 

the validation set. (The P for test for heterogeneity was 0.13 for overall breast cancer risk, 0.13 

for ER-positive, and 0.50 for ER-negative breast cancer).  

 
  



Figure S2. Association of the PRS and breast cancer risk in different consortium/study in the 

validation set. (The P for test for heterogeneity was 0.021 for overall breast cancer risk, 0.52 for 

ER-positive, and 0.013 for ER-negative breast cancer).  

 
 

  



Figure S3. Scatter plots of the top 5 eigenvectors from principal component (PC) analysis ac-

cording to study consortium/study (A) and country (B).  
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Figure S4. Cumulative Life-time and 10-Year Absolute Risk of Developing Breast Cancer among European Americans. 

 

  



 



Supplemental Table S1. Descriptive characteristics of analysis population.

Consortium/Study Total Controls Cases

ER 

positive

ER 

negative

Mean age 

(SD), year

Family history 

of breast 

cancer, no. 

(%)

Genotyping 

platform
Quality control 

Number of 

genotyped 

variants 

after initial 

QC

Imputation R‐square 

after filtering, median 

(IQR)

ROOT (The GWAS of Breast Cancer in the African Diaspora consortium) 3685 2028 1657 404 374 48.8 (12.7) 439 (13.8)

Illumina 

HumanOmni

2.5‐8v1 

array

Individuals were excluded based on call rate (CR) ≤ 98%, 

ancestry outlier and relativeness. SNPs were removed 

based on CR <98%, MAF=0, discordant calls, Mendelian 

errors or with HWE P <10‐4. All samples had African 

ancestry > 12% 1837433 0.993 (0.979 ‐ 0.999)

AMBER (The African American Breast Cancer Epidemiology and Risk consortium) 3813 2407 1406 951 385 51.9 (11.4) 423 (11.1)

Illumina 

Human 

Multi‐Ethnic 

Genotyping 

Array 

(MEGA)

Individuals were removed based on genotypic sex not 

female and missing call rate >3%.  SNPs with  missing call 

rate >=2%, >1 discordant call in 86 study duplicates, > 1 

Mendelian error in 17 HapMap trios, HWE p<1e‐4 in a 

homogenous subset of samples, and MAF <0.01 were 

excluded prior to imputation. The African ancestry 

confimation was based on self‐reported African 

Americans or blacks. 1104770 0.983 (0.959 ‐ 0.995)

GBHS (Ghana Breast Health Study) 2529 1630 899 296 277 47.4 (12.7) N/A

Infinium 

Global 

Screening 

Array‐24

Individuals were removed based on a CR < 95%, extreme 

heterozygosity and relativeness. Variants  with CR < 95% 

were excluded. Deviation from Hardy‐Weinberg 

proportions was assessed and no significant deviation was 

detected. Ancestry was assessed using the GLU 

struct.admix module, and participants with <80% African 

ancestry were excluded. 388652 0.876 (0.795 ‐ 0.937)

BCAC Oncoarray (The BCAC and GAME‐ON OncoArray consortium) 3674 1406 2268 1127 613 54.9 (11.5) 783 (23.1)

Illumina 

Infinium 

OncoArray‐

500K 

BeadChip

Individuals were removed based on CR < 95%, ancestry 

outlier and relativeness. Variants with CR < 98%, MAF < 

1%, not in HWE, concordance < 98% or with poor cluster 

in visual inspection were excluded. Overlapping samples 

between ONCO with AABC, AMBER and ROOT were 

further removed. Genetic ancestry was checked using 

STRUCTURE and all samples were with African ancestry 

>20%. 390084 0.953 (0.905 ‐ 0.982)

AABC (African American Breast Cancer consortium) 5718 2713 3005 1517 986 56.6 (12.7) 849 (15.3)

IlluminaHu

man1M‐Duo 

BeadChip

Individuals were removed based on ancestry outlier  

(samples with ≤5% African ancestry), call rate (CR) < 95%, 

1st degree relatedness, gender/sex mismatches. SNPs 

were excluded based on CR < 95%, minor allele frequency 

(MAF) < 1%, and concordance rate < 98%. 1022969 0.974 (0.938 ‐ 0.993)

Total 19419 10184 9235 4295 2635 52.7 (12.7) 2494 (16.2)

ROOT Consortium contributing studies

    NBCS ‐ Nigerian Breast Cancer Study 1335 624 711 42 99 46.5 (12.0) 68 (5.1)

    BNCS ‐ Barbados National Cancer Study 321 229 92 55.4 (13.6) 31 (9.7)

    RVGBC ‐ Racial Variability in Genotypic Determinants of Breast Cancer Study 402 257 145 27 25 42.6 (11.9) 59 (14.9)

    CCPS ‐ Chicago Cancer Prone Study 780 386 394 172 140 45.8 (11.6) 178 (50.0)

    BBCS ‐ Baltimore Breast Cancer Study 197 102 95 45 44 52.9 (13.8) 28 (15.6)

    SCCS ‐ Southern Community Cohort Study 650 430 220 118 66 56.8 (9.0) 75 (12.5)

AABC Consortium contributing studies

    NC‐BCFR ‐ Northern California site of the Breast Cancer Family Registry 469 49 420 218 121 50.1 (9.3) 136 (29.0)

    CARE ‐ Women's Contraceptive and Reproductive Experiences Study, Los 

Angeles component 567 211 356 183 129 48.6 (8.0) 55 (10.1)

    CBCS ‐ Carolina Breast Cancer Study 1222 587 635 272 317 51.5 (11.7) 159 (13.5)

    MEC ‐ Multiethnic Cohort Study 1665 974 691 407 176 67.0 (9.3) 269 (17.1)

    NBHS ‐ Nashville Breast Health Study 483 181 302 142 64 53.2 (10.9) 75 (15.5)

    PLCO ‐ Prostate, Lungs, Colorectal and Ovarian Cancer Screening Trial Cohort 172 116 56 14 6 68.2 (6.3) 17 (10.2)

    SFBCS ‐ San Francisco Bay Area Breast Cancer Study 382 218 164 84 50 55.5 (11.9) 42 (11.0)

    WCHS ‐ Women's Circle of Health Study 497 236 261 131 80 49.8 (9.6) 61 (12.3)

    WFBC ‐ Wake Forest University Breast Cancer Study 261 141 120 66 43 55.1 (11.4) 35 (13.4)

AMBER Consortium

    BWHS ‐ Black Women's Health Study 2464 2153 311 205 64 51.6 (11.6) 211 (8.6)

    CBCS ‐ Carolina Breast Cancer Study 607 1 606 407 186 51.0 (11.3) 102 (17.0)

    WCHS ‐ Women's Circle of Health Study 742 253 489 339 135 53.5 (11.0) 110 (14.9)

BCAC (OncoArray) African ancestry

    2SISTER ‐ The Two Sister Study 45 0 45 28 16 45.0 (4.2) 9 (20.9)

    NC‐BCFR, The Northern California Breast Cancer Family Registry 80 1 79 40 28 46.9 (10.7) 45 (56.3)

    CBCS ‐ Carolina Breast Cancer Study 974 64 910 503 299 51.5 (10.5) 183 (19.6)

    MEC ‐ Multiethnic Cohort Study 1329 700 629 413 138 60.1 (10.2) 183 (16.5)

    NBHS ‐ The Nashville Breast Health Study 146 59 87 17 40 53.0 (10.9) 18 (12.3)

    PLCO ‐ Prostate, Lungs, Colorectal and Ovarian Cancer Screening Trial Cohort 93 68 25 13 2 65.5 (6.3) 9 (9.9)

    SISTER ‐ The Sister Study 317 166 151 92 27 55.4 (8.8) 272 (88.3)

    USRT ‐ The U.S. Radiologic Technologists 68 39 29 56.7 (9.4) 7 (12.5)

    WAABCS ‐ West African Ancestry Breast Cancer Study 622 309 313 21 63 49.0 (12.2) 57 (9.1)
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Number of 
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homogenous subset of samples, and MAF <0.01 were 

excluded prior to imputation. The African ancestry 

confimation was based on self‐reported African 

Americans or blacks. 1104770 0.983 (0.959 ‐ 0.995)

GBHS (Ghana Breast Health Study) 2529 1630 899 296 277 47.4 (12.7) N/A

Infinium 

Global 

Screening 

Array‐24

Individuals were removed based on a CR < 95%, extreme 

heterozygosity and relativeness. Variants  with CR < 95% 

were excluded. Deviation from Hardy‐Weinberg 

proportions was assessed and no significant deviation was 

detected. Ancestry was assessed using the GLU 

struct.admix module, and participants with <80% African 

ancestry were excluded. 388652 0.876 (0.795 ‐ 0.937)

BCAC Oncoarray (The BCAC and GAME‐ON OncoArray consortium) 3674 1406 2268 1127 613 54.9 (11.5) 783 (23.1)

Illumina 

Infinium 

OncoArray‐

500K 

BeadChip

Individuals were removed based on CR < 95%, ancestry 

outlier and relativeness. Variants with CR < 98%, MAF < 

1%, not in HWE, concordance < 98% or with poor cluster 

in visual inspection were excluded. Overlapping samples 

between ONCO with AABC, AMBER and ROOT were 

further removed. Genetic ancestry was checked using 

STRUCTURE and all samples were with African ancestry 

>20%. 390084 0.953 (0.905 ‐ 0.982)

AABC (African American Breast Cancer consortium) 5718 2713 3005 1517 986 56.6 (12.7) 849 (15.3)

IlluminaHu

man1M‐Duo 

BeadChip

Individuals were removed based on ancestry outlier  

(samples with ≤5% African ancestry), call rate (CR) < 95%, 

1st degree relatedness, gender/sex mismatches. SNPs 

were excluded based on CR < 95%, minor allele frequency 

(MAF) < 1%, and concordance rate < 98%. 1022969 0.974 (0.938 ‐ 0.993)

Total 19419 10184 9235 4295 2635 52.7 (12.7) 2494 (16.2)

ROOT Consortium contributing studies

    NBCS ‐ Nigerian Breast Cancer Study 1335 624 711 42 99 46.5 (12.0) 68 (5.1)

    BNCS ‐ Barbados National Cancer Study 321 229 92 55.4 (13.6) 31 (9.7)

    RVGBC ‐ Racial Variability in Genotypic Determinants of Breast Cancer Study 402 257 145 27 25 42.6 (11.9) 59 (14.9)

    CCPS ‐ Chicago Cancer Prone Study 780 386 394 172 140 45.8 (11.6) 178 (50.0)

    BBCS ‐ Baltimore Breast Cancer Study 197 102 95 45 44 52.9 (13.8) 28 (15.6)

    SCCS ‐ Southern Community Cohort Study 650 430 220 118 66 56.8 (9.0) 75 (12.5)

AABC Consortium contributing studies

    NC‐BCFR ‐ Northern California site of the Breast Cancer Family Registry 469 49 420 218 121 50.1 (9.3) 136 (29.0)

    CARE ‐ Women's Contraceptive and Reproductive Experiences Study, Los 

Angeles component 567 211 356 183 129 48.6 (8.0) 55 (10.1)

    CBCS ‐ Carolina Breast Cancer Study 1222 587 635 272 317 51.5 (11.7) 159 (13.5)

    MEC ‐ Multiethnic Cohort Study 1665 974 691 407 176 67.0 (9.3) 269 (17.1)

    NBHS ‐ Nashville Breast Health Study 483 181 302 142 64 53.2 (10.9) 75 (15.5)

    PLCO ‐ Prostate, Lungs, Colorectal and Ovarian Cancer Screening Trial Cohort 172 116 56 14 6 68.2 (6.3) 17 (10.2)

    SFBCS ‐ San Francisco Bay Area Breast Cancer Study 382 218 164 84 50 55.5 (11.9) 42 (11.0)

    WCHS ‐ Women's Circle of Health Study 497 236 261 131 80 49.8 (9.6) 61 (12.3)

    WFBC ‐ Wake Forest University Breast Cancer Study 261 141 120 66 43 55.1 (11.4) 35 (13.4)

AMBER Consortium

    BWHS ‐ Black Women's Health Study 2464 2153 311 205 64 51.6 (11.6) 211 (8.6)

    CBCS ‐ Carolina Breast Cancer Study 607 1 606 407 186 51.0 (11.3) 102 (17.0)

    WCHS ‐ Women's Circle of Health Study 742 253 489 339 135 53.5 (11.0) 110 (14.9)

BCAC (OncoArray) African ancestry

    2SISTER ‐ The Two Sister Study 45 0 45 28 16 45.0 (4.2) 9 (20.9)

    NC‐BCFR, The Northern California Breast Cancer Family Registry 80 1 79 40 28 46.9 (10.7) 45 (56.3)

    CBCS ‐ Carolina Breast Cancer Study 974 64 910 503 299 51.5 (10.5) 183 (19.6)

    MEC ‐ Multiethnic Cohort Study 1329 700 629 413 138 60.1 (10.2) 183 (16.5)

    NBHS ‐ The Nashville Breast Health Study 146 59 87 17 40 53.0 (10.9) 18 (12.3)

    PLCO ‐ Prostate, Lungs, Colorectal and Ovarian Cancer Screening Trial Cohort 93 68 25 13 2 65.5 (6.3) 9 (9.9)

    SISTER ‐ The Sister Study 317 166 151 92 27 55.4 (8.8) 272 (88.3)

    USRT ‐ The U.S. Radiologic Technologists 68 39 29 56.7 (9.4) 7 (12.5)

    WAABCS ‐ West African Ancestry Breast Cancer Study 622 309 313 21 63 49.0 (12.2) 57 (9.1)



Supplemental Table S3. Correlation coefficients among selected PRSs in the validation set
Overall Breast Cancer

PRSEUR307 PRSAFR62 PRSAFR428 PRSAFR2351 PRSAFR10647 PRSAFR29569

Threshold P< 1E-5, PRSAFR62
*

0.075

Threshold P< 1E-4, PRSAFR428 0.034 0.451

Threshold P< 1E-3, PRSAFR2351 0.017 0.252 0.512

Threshold P< 1E-2, PRSAFR10647 0.034 0.141 0.326 0.596

Threshold P< 5E-2, PRSAFR29569 0.031 0.113 0.265 0.469 0.733

Threshold P< 1E-1, PRSAFR46854 0.034 0.111 0.250 0.433 0.668 0.858

ER‐positive

PRSEUR307.ERp PRSAFR79.ERp PRSAFR408.EPRSAFR2339.ERp PRSAFR10493.ERp PRSAFR29004.ERp

Threshold P< 1E-5, PRSAFR79.ERp 0.024

Threshold P< 1E-4, PRSAFR408.ERp 0.019 0.462

Threshold P< 1E-3, PRSAFR2339.ERp 0.012 0.247 0.507

Threshold P< 1E-2, PRSAFR10493.ERp ‐0.018 0.194 0.326 0.598

Threshold P< 5E-2, PRSAFR29004.ERp ‐0.017 0.178 0.248 0.448 0.756

Threshold P< 1E-1, PRSAFR45997.ERp ‐0.007 0.168 0.221 0.410 0.705 0.887

ER‐negative

PRSEUR307.ERn PRSAFR50.ERn PRSAFR419.EPRSAFR2230.ERn PRSAFR10138.ERn PRSAFR28100.ERn

Threshold P< 1E-5, PRSAFR50.ERn 0.072

Threshold P< 1E-4, PRSAFR419.ERn 0.016 0.434

Threshold P< 1E-3, PRSAFR2230.ERn 0.010 0.221 0.494

Threshold P< 1E-2, PRSAFR10138.ERn 0.005 0.110 0.274 0.556

Threshold P< 5E-2, PRSAFR28100.ERn ‐0.004 0.075 0.205 0.410 0.707

Threshold P< 1E-1, PRSAFR44889.ERn ‐0.007 0.069 0.184 0.361 0.639 0.852
*PRSAFR62 denotes PRSAFR using 62 SNPs selected by the threshold 



Supplemental Table S7.  Associations between polygenic risk scores (PRS) and breast cancer risk by populations the validation set

No.  Overall Breast Cancer ER‐positive ER‐negative

Stratified by Population

PRS in Africans 1361

    Mean (SD) in controls 792 0.348 (0.276)  ‐0.118 (0.378) 0.780 (0.253)

    Mean (SD) in cases 569 0.399 (0.308) 0.138 (0.403) 0.819 (0.290)

     OR (95% CI)* 1.34 (1.19‐1.51) 1.60 (1.28‐2.00) 1.18 (0.97‐1.45)

PRS in African Americans & African Barbadians 4460

    Mean (SD) in controls 2327 0.412 (0.293) 0.069 (0.394) 0.793 (0.267)

    Mean (SD) in cases 2133 0.499 (0.299) 0.210 (0.401) 0.867 (0.275)

     OR (95% CI)* 1.28 (1.20‐1.37) 1.37 (1.27‐1.49) 1.23 (1.12‐1.36)

    P for testing interaction 0.54 0.211 0.719

Stratified by Percent of African Ancestry

> 80% African Ancestry 3947

    Mean (SD) in controls 2116 0.395 (0.282) 0.034 (0.380) 0.796 (0.259)

    Mean (SD) in cases 1831 0.473 (0.304) 0.213 (0.393) 0.847 (0.281)

     OR (95% CI)* 1.30 (1.21‐1.40) 1.47 (1.33‐1.62) 1.13 (1.02‐1.26)

< 80% African Ancestry 1874

    Mean (SD) in controls 1003 0.398 (0.308) 0.056 (0.414) 0.778 (0.274)

    Mean (SD) in cases 871 0.489 (0.301) 0.188 (0.416) 0.882 (0.270)

     OR (95% CI)* 1.29 (1.17‐1.43) 1.32 (1.17‐1.49) 1.44 (1.23‐1.67)

    P for testing interaction 0.84 0.145 0.017

* Odds ratio (95% confidence intervals) per 1 SD, adjusted for studies

1.371913

1.537085
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