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Abstract—This work introduces a pantomimic gesture inter-
face, which classifies human hand gestures using unmanned
aerial vehicle (UAV) behaviour recordings as training data. We
argue that pantomimic gestures are more intuitive than iconic
gestures and show that a pantomimic gesture recognition strategy
using micro UAV behaviour recordings can be more robust than
one trained directly using hand gestures. Hand gestures are
isolated by applying a maximum information criterion, with
features extracted using principal component analysis (PCA) and
compared using a nearest neighbour classifier. These features
are biased in that they are better suited to classifying certain
behaviours. We show how a Bayesian update step accounting for
the geometry of training features compensates for this, resulting
in fairer classification results, and introduce a weighted voting
system to aid in sequence labelling.

Index Terms—pantomimic, gesture recognition, human-robot
interaction, principal component analysis, time series classifica-
tion

I. INTRODUCTION

An increased demand for service robots used by the general
public has led to an emphasis on the design of simple and
intuitive user interfaces, allowing for improved human-robot
interaction. While traditional controllers such as joysticks,
game-pads and other haptic interfaces are still abundant, the
importance of speech and gesture in inter-human communica-
tion has led to a significant amount of work on human-robot
interaction using these communication mechanisms.

Traditional approaches to gesture-based robot control have
involved the use of pre-defined codebooks or dictionaries of
gestures, mapped directly to desired robot behaviours [1][2].
These approaches typically require a significant amount of
training on specific users, who also need to be aware of the set
of commands used to select robot behaviour. Unfortunately,
this prerequisite knowledge lowers the usability of gesture-
based robot interfaces.

Logically, it would seem that pantomimic gestures, which
attempt to mimic an object or action, would allow for the most
intuitive interaction with a service robot. Rather than learn a
predefined codebook of commands, a user informed that robot
behaviour is selected by mimicking the desired action would
be able to operate the robot with ease. Of course, difficulties in
interpreting the wide variety of potential pantomimic gestures
that could be used by an operator make the use of pantomimic
gestures for human-robot interaction particularly challenging.
The design of a comprehensive database of all possible
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Fig. 1. Synthetic UAV behaviour trajectories are generated (1a to 1e), and
combined to form a single set of labelled training data. The pantomimic
gesture recognition problem addressed here requires that this training data be
used to assign a human gesture to one of the five behaviour classes. For visual
clarity, summoning and circling behaviours have been centred on the vertical
axis. Note that the passage of time is not shown here, but this information is
available as behaviour trajectories are ordered.

pantomimic gestures for each potential robot behaviour is
obviously infeasible, and as a result most traditional gesture
classification strategies are of little use here. However, the
definition of a pantomimic gesture implies that the gesture
inherently contains spatial and temporal information corre-
sponding to that of the desired action or behaviour. If a
mapping between gesture and robot behaviour could be found,
with a suitable measure of correlation, this information could
be used to select a likely behaviour.

This work focuses on the classification of human gestures
using training data generated from recordings of available
robot behaviours, in an attempt to determine the feasibility
of a pantomimic gesture interface. This type of classification
is particularly challenging since the training and gesture data
may differ in scale, rate of occurrence and be subject to
different motion constraints. To the best of our knowledge,
this paper presents the first use of pantomimic gestures for
human-robot interaction.

In an attempt to address some of these challenges, a sample
human-robot interaction problem using an inexpensive micro
unmanned aerial vehicle (UAV) has been developed. Here,
users are required to control a UAV by supplying pantomimic
gestures corresponding to one of five different behaviours.
Gestures are recorded using a static Kinect sensor and it is
assumed that users have only limited knowledge of the UAV’s
capabilities. This is a particularly useful illustrative example,
as both noisy gesture measurements and robot behaviours are
likely to be observed, resulting in a challenging use case.



IEEE TRANSACTIONS ON ROBOTICS 2

Each of the UAV behaviours in the example problem can
be described by a group of three dimensional time series, as
visualised in Figure 1. Behaviour trajectories are described
by the x, y and z positions of a UAV in Cartesian space, as
they change over time. 200 samples of each behaviour were
generated, with each of these behaviours re-sampled using
linear interpolation to comprise 250 state measurements over
the behaviour duration, corresponding to the longest sequence
length in the training data. The behaviour descriptions are
concatenated to form the training set for the classification
problem. Our goal is to classify human hand gestures, using
these behaviours as training data.

Take-off behaviours typically start at a random position on
a ground plane and move upwards, while landing behaviours
are the opposite, moving downwards from a random hovering
position (variable height) before coming to a rest at ground
level. Hover behaviours are effectively random noise, since
the UAV drifts slowly about a random fixed position above
ground, while summoning behaviours involve the straight line
motion between two random points, at roughly the same
height. Circling behaviours start at random positions above
ground and move along a circular path, with a radius fixed
for the duration of the behaviour, but which varies between
different circling occurrences.

This work applies principal component analysis (PCA) to
extract appropriate features or attributes from gesture tracks for
classification. The approach groups UAV training sequences
into a single matrix and linearly transforms these into a
common space. The parameters used to transform the data
are the principal component loadings. Appropriate 3D human
gesture tracks are selected using a maximum information
criterion. A candidate gesture is classified by projecting it
into this space, and selecting the class with the most similar
principal component loadings, after incorporating evidence
relating to potential feature bias. Bayesian filtering is applied,
and a Hanning window voting strategy used as a final decision
rule.

The paper is organised as follows. Section II provides an
overview of related work, which is followed by a description of
our approach to time series feature extraction and classification
in Section III. Finally, results and conclusions are provided in
Sections IV and V respectively.

II. RELATED WORK

An overview of gesture recognition for the purpose of
human-robot interaction is presented here. Initially, the impor-
tance of gesture in communication is discussed, motivating its
use as a user interface. This is followed by a description of
the state of the art in gesture recognition.

As mentioned previously, an increasing demand for service
robots operating in domestic environments requires that simple
and intuitive interfaces be developed. This is noted by [3], who
highlight the fundamental importance of finding “natural” and
easy-to-use interfaces, given that these robots are intended to
interact directly with humans. Ideally, these interfaces should
require little or no training and limited skills to operate.

Although relatively intuitive, users of traditional robot con-
trol interfaces such as joysticks and game-pads still require a

limited amount of training. With this in mind, it is only natural
that researchers in the field of human-robot interaction look to
inter-human communication mechanisms such as speech and
gesture when designing intuitive user interfaces.

A number of human-robot interfaces relying on speech
recognition have been developed. Unfortunately, the use of
speech recognition is somewhat prohibitive, as it requires
relatively controlled and quiet environments to isolate spoken
commands, and restricts users to specific languages. As a
result, a great deal of interest has been shown in the use of
gesture for human-robot interaction.

Gesture plays a significant role in inter-human communica-
tion, sometimes acting as a primary communication language
(as in the case of sign language) and often providing subsidiary
and complementary information to speech. It is observed
across cultures and ages, and even in individuals blind from
birth [4].

A taxonomy of gesture is provided by [5], which cate-
gorises gestures into four groups; symbolic, deictic, iconic
and pantomimic. Symbolic gestures are those with specific
cultural meaning, and as a result have limited use in human-
robot interaction. Deictic gestures are pointing gestures used
to indicate objects or to convey spatial information by drawing
attention to specific areas. Pointing gestures have been used
previously to indicate target objects and positions to robots,
and [6] have shown that a combination of head and arm pose
can be used to reliably influence robot behaviour.

Iconic gestures are predefined symbols with specific mean-
ing and most commonly used in human-robot interaction.
Here, a developer will define a dictionary or codebook of
gestures, each of which is mapped to a specific behaviour. This
approach has been applied by [7], who used hand symbols to
request various object grasping arrangements.

Pantomimic gestures are those which mimic a desired action
or behaviour. A recent study on pantomimic gestures by [8]
indicates that communicating with a system through gestures
may be easier if an embodied approach is adopted when
designing gesture vocabularies. Embodied interaction is based
on the idea that human experience is formed by engaged
participation in the world and that we convey meaning through
this participation [9]. Intuitively then, it seems that pantomimic
gestures that are an embodiment of robot actions are of most
use for human-robot interaction where behaviours need to
be selected, but they are rarely used, presumably due to
complexity in detection and classification. As pantomimic
gestures typically include more complex gesture arrangements,
variability in gesturing among individuals creates greater dif-
ficulties in gesture classification.

A distinction also needs to be made between static and
temporal gestures. Static gestures are typically iconic symbols
held stationary for a brief period, while temporal gestures can
be broken down into three phases, termed preparation, stroke
and retraction, with [10] noting that most salient information
about a gesture is contained in the stroke phase. As a result,
if temporal gestures are to be recognised and adequately
classified, key features present in the stroke phase need to
be determined.

Gestures are typically described by a large amount of
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multidimensional data. Reliable gesture recognition requires
that salient aspects or features be extracted from this data.
Two methods of dimension reduction are typically applied
when selecting these salient features. The first extracts features
termed most expressive, which best describe the gesture data.
The second finds features termed most discriminating, or
features unique to individual gestures. The latter is typically
more useful when classifying gestures [11], although liable
to overfitting. Before gestures can be classified, however,
they need to be observed and detected using some sensing
mechanism, which usually takes the form of a vision-based
pose estimator.

Once user position has been located and relevant informa-
tion extracted the gesture needs to be classified. If only static
gestures are to be recognised, semantic features can be used
to classify gestures. Triesch and Von Der Malsburg recognised
6 static hand gestures using elastic graph matching [7]. Here,
hand gestures are described by labelled connected graphs with
associated local image descriptors used for matching.

One approach to comparing human hand gestures is to
search through a number of gestures in a training set and
simply select the class most similar to the hand gesture,
using an appropriate distance metric. Unfortunately, standard
distance measures may fail to match trajectories sampled at
different rates, or cases where one trajectory occurs faster than
another.

Most temporal gesture recognition strategies remedy this
by modelling the dynamics of a gesture [10]. A number of
approaches have been used to model the dynamics of gestures,
applying Kalman filtering, particle filters or dynamic time
warping. Dynamic time warping (DTW, [12]) is a popular
similarity measure, which uses dynamic programming to align
two time series so as to minimise some distance measure, a
computationally expensive operation. An alternative similarity
measure is the longest common subsequence [13], found by
searching for the longest subsequences in a time series that
fall within a certain distance of one another. This allows for
the comparison of time series where some parts fail to match
due to noise or measurement errors.

Black and Jepsony [14] developed a probabilistic extension
to dynamic time warping, applying the Condensation (Con-
ditional Density Propagation) algorithm, for use in temporal
gesture recognition. Brethes et al. [15] applied this algorithm
to recognise and track a set of four distinct hand postures in
a video sequence.

A number of techniques used for speech recognition have
been applied to model the semantics of gesture. Finite state
machines such as hidden Markov models (HMM) are fre-
quently used to classify gestures. Using this approach, gestures
are modelled as sequences of templates or model compo-
nents, with varying transition probabilities. An input model is
classified by determining the most likely sequence of states,
given a set of observations. The Viterbi algorithm, described
in detail by [16], is often used to do this. A number of
gesture recognition strategies relying on HMMs have been
proposed, with [17], [6] and [2] all developing HMM classi-
fiers for human-robot interaction. In fact, HMMs have become
so ubiquitous in gesture recognition that [18] note that the

majority of top performing algorithms in the recent ChaLearn
gesture recognition challenge used these. Unfortunately, the
behaviours in Figure 1 are not easily modelled in this way as
they can differ dramatically within classes.

Recent approaches to temporal sequence matching have
applied existing work in word indexing to classify time series.
This has been demonstrated by [19], where 3D trajectories
were broken into basic segments or building blocks, and titled
with an alphabetical label. Trajectories were then indexed
using these alphabet sequences, and new trajectories classified
by matching sequences or words.

As an alternative approach, a number of existing machine
learners largely ignore explicit temporal information and are
designed to recognise classes using a set of attributes or
features. Wavelet transforms have been used for feature-
based time series classification [20], but ideally need to be
specially crafted for individual time series, which can be time
consuming. Impressive classification results were obtained by
[21], using a set of meta-features that represent important
events observed in each time series. More recently, a bag-of-
features approach to time series classification [22] has shown
promising results.

Dimension reduction techniques have also been used for
feature extraction in multidimensional time series classifica-
tion algorithms. Features extracted using multilinear function
factorisation schemes on a single matrix containing all training
data have previously been shown to provide excellent results
in a number of time series classification tasks by [23]. Martin
and Crowley project human motions into a weighted principal
component space [24], then determine a characteristic point
for the motions. Candidate time series are classified by finding
motions with similar characteristic points, and using dynamic
time warping to align these sequences. Principal component
analysis has been applied to motion maps extracted from video
sequences by [25], allowing gesture recognition from a single
training example. PCA was also used by [26] to classify static
hand postures in images, then combined with a finite state
machine to recognise dynamic gestures. Our approach also
makes use of PCA, but operates on 3D trajectories instead of
video sequences.

The novelty in our approach is in the matrix stacking
order we apply to the time series, which involves horizontally
stacking multiple multidimensional time series from different
classes, with timing information down the rows, and the use
of posterior reshaping to extract feature vectors corresponding
to the various dimensions in the original time series after
decomposition.

Lui used higher order singular value decomposition (HO-
SVD) to perform action recognition on video sequences [27].
This approach applies SVD to a number of matrices formed
by unfolding a tensor in multiple ways, but differs from
our work in that the decompositions are only applied to a
single video sequence or third order tensor (time, horizontal
and vertical pixel positions). Our decomposition uses a single
decomposition on a single unfolding instance of a fourth order
tensor (time, gesture category, and behaviour position) and
differs primarily through the inclusion of multiple exemplars
from multiple classes in the matrix that is decomposed. This
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provides features that take the behaviour of other classes
into account. In addition, we use a posterior reshaping of
decomposed time series features, which is not present in [27].

III. METHOD

This section provides a detailed description of the proposed
gesture recognition framework, covering feature extraction,
gesture isolation and classification. Features are extracted from
UAV behaviours, and used to classify human hand gestures,
in an attempt to form a true pantomimic gesture recognition
interface. The use of robot behaviours to classify human hand
gestures can be viewed as a form of transductive transfer
learning [28], where knowledge of a source domain is used
to transfer the ability to perform a task to a different, but
related, target domain. Here, knowledge of the association
between behaviour labels and UAV position recordings is
used to find associations between human body gestures and
behaviour labels. Transfer learning is increasingly being used
to avoid expensive labelling and data capture.

Our approach builds on previous work [23], which showed
that matrix decomposition approaches provide equivalent per-
formance to many state of the art classification algorithms over
a wide range of time series classification problems, including
character recognition on a tablet, Australian sign language
classification and Japanese speaker recognition.

A. Feature extraction

We briefly describe our feature extraction approach, which
relies on PCA, here. The technique can be viewed as a
form of tensor factorisation for automatic feature selection,
where trajectories are unfolded to form a single matrix of
all behaviours. Its primary benefits are classification speed,
negligible training time, and that it is almost entirely data
driven, requiring no specific domain knowledge. PCA is often
used for dimension reduction, and closely related to singular
value decomposition. The SVD is a factorization of a matrix
into the form

X = UΣV*,

where U is a unitary matrix, V* the conjugate transpose of V,
also a unitary matrix, and Σ is a diagonal matrix containing
the singular values of X, all positive and listed in decreasing
order [29].

The magnitude of the singular values can be viewed as
a measure of a mode’s (columns of U) contribution to the
matrix X. A low rank approximation of the matrix X can be
obtained by discarding the modes and basis functions (rows
of V) of X, which correspond to singular values of small
magnitude. A reduced feature set can be extracted from the
data by projecting it using these basis functions: Y = UT

1:mX,
where U1:m is obtained by retaining the first m columns or
modes of U.

PCA transforms data onto a new orthogonal coordinate
system so that the greatest variance of any projection of the
data lies on the first coordinate (the principal component), the
second largest variance along the second coordinate, and so on
[30]. The principal component scores, or projections of points

along the principal components are calculated by centring
each column of a matrix X, then performing singular value
decomposition on the shifted matrix [31]. The scores, P, are
given by the UΣ portion of the singular value decomposition,
while the loadings or coefficients are the columns of V.

Centring occurs by shifting each column of the matrix by
its mean, and is required to ensure that the first principal
component lies in the direction of maximum variance. If mean
centring does not occur, the maximum variance of the data
could potentially lie along the mean of the data, which may
not be desirable.

Dimension reduction using the SVD or PCA may not
produce class features that are easily discriminable. If time
series examples are normally distributed, canonical variates
(CV) can be used to find a linear projection that maximises the
separation between classes and hence improves classification.
Canonical variates is a multi-class extension to Fischer’s linear
discriminant, and described in detail by [32].

We now show how PCA can be used to extract features
from time series. Let X be a matrix of dimension l × nd,
formed by concatenating the sample trajectory matrices for all
behaviour samples used for training. Here, l denotes the length
of the trajectories, with d the number of dimensions in the time
series, and n the number of samples. Centring the columns
of this matrix and applying singular value decomposition then
provides a set of l×l (U), l×nd (Σ) and nd×nd (V) matrices
as illustrated in Figure 2a. This decomposition is similar to
that used directly on images by [33] for PCA-based face
recognition, although we use singular value decomposition to
calculate it.

It is important to highlight the differences between this
stacking and that traditionally used for feature selection using
PCA or canonical variates, which reshapes trajectories into
1D vectors, stacked to form a dl × n matrix, resulting in a
different projection on decomposition (Figure 2b). In essence,
the traditional approach treats each measurement, in every
dimension, and at every time-point, as a separate feature of the
time series, and then extracts the most important sub features
from this set. Bundling all the dimensions into a single vector
in this manner means that structural differences between time-
series are potentially lost when features are extracted.

In contrast, the nd × nd loading matrix V obtained using
our stacking retains a spatial interpretation. Using the proposed
stacking, each dimension of the multi-dimensional time series
is treated as an independent trajectory and the resultant l
dimensional PCA basis functions contain elements common
to all these trajectory samples, regardless of dimension. This
is important for spatial time series, as it allows for associations
to be made between different dimensions in the original time
series space. For example, the summoning trajectory in Figure
1 is very similar to a rotated take-off trajectory, but this
information would be lost by applying PCA to vectorised time
series combining dimensional information. By allowing this
association to be made, spatial differences in the original time
series are exposed in the loadings (see Figure 2a). Information
for each time series sample can be recombined by grouping
the loadings corresponding to each dimension in the original
class example.
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(a) Proposed stacking: trajectories are stacked alongside one another to form a single large matrix X. A set of m, d dimensional representations
(features) of the trajectories can be obtained by multiplying each trajectory by the transpose of the m-th mode or column of U.
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(b) Traditional stacking: trajectories are reshaped into a vector and stacked alongside one another prior to decomposition. A reduced m dimensional
form of the trajectories can be obtained by multiplying trajectories by the transpose of the first m modes or columns of Û.

Fig. 2. The intensity images in the figure (normalised key: ) show the trajectories of Figure 1 as they undergo PCA using the SVD for both
the traditional and proposed stackings (Only a few modes are shown for visual clarity, although the matrix dimensions correspond to the full set of modes).
Visual inspection of the loadings in V for the proposed stacking show that these have retained spatial information present in the original data (eg. Column 1
of V shows visible correlation with X). In contrast, no such connection can be observed between the loadings of V̂ and the original data when the traditional
stacking is used for feature extraction because spatial differences in the original time series are discarded, which results in potentially less separable features.

In short, PCA using the proposed stacking finds a set of
projections that aligns all the input trajectories as best as
possible. Projections (the PCA loadings) for a particular class
of trajectories are likely to be similar, since their time series
probably tended to cluster together in Cartesian space. Further,
since there were likely to be spatial differences across classes
in the original space, the loadings for each dimension in the
time series are also likely to differ across classes, resulting
in more separable features. This is illustrated in Figure 3c,
where the first principal component’s loadings are graphed,
after reshaping to form a three dimensional feature vector. This
feature distribution, coloured according to the corresponding
behaviours, shows clear separation between classes.

Figures 3a and 3b show features for each behaviour in Fig-
ure 1, projected into three dimensions using canonical variates
and the traditional PCA decomposition. The assumption of
uni-modally distributed time series made by canonical variates
was incorrect, and so it has failed to separate class features.
Similarly, the standard PCA decomposition has resulted in a
projection with poorly separated class features because the
associated matrix stacking lacks physical or spatial meaning.

Only the first mode or column of the loading matrix is
shown in Figure 3c, but in practise we could select sufficient
modes to account for a large portion of the variance in the
training data for classification, using the ranked singular values
in Σ to automatically select the most dominant modes, or use
a measure of separability to select an appropriate number of
dimensions.

Take-off
Landing
Summon

Hover
Circle

(a) Canonical variates (b) PCA traditional (c) PCA suggested

Fig. 3. A number of dimension reduction techniques could be used for feature
selection, but it is clear that the separation between UAV behaviour classes is
greatest for the principal component loadings associated with the suggested
matrix stacking order. Figs. 3a and 3b are obtained by projecting the data into
3 dimensions, while Figure 3c is obtained by projecting the data into the first
dimension of the suggested PCA, with a posterior reshaping to form an n×3
matrix.

Many attribute-based learners operate using some form
of spatial or geometric segmentation, using boundaries to
discriminate between classes. Intuitively then, class features
that cluster together and are easily distinguished would be
suited to classification using these boundary-oriented methods.
A measure of the amount of overlap or interaction between
features of different classes should then provide a reasonable
indicator as to the quality of the features. This has been argued
by [34], where the ratio of the number of points in a dataset
with a nearest neighbour sharing the same class to the total
number of points in the set is proposed as a measure of
geometric separability. This measure can be viewed as leave-
one-out analysis using a single nearest neighbour classifier,
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Fig. 4. The figure shows the geometric separability for each behaviour, as a
function of the effective dimensionality of the proposed PCA decomposition.

which will fail more frequently if class features are similar.
Figure 4 shows the geometric separability of features obtained
using the proposed PCA decomposition. The nearest neighbour
was determined by selecting the neighbouring sample with
the minimum standardised Euclidean distance between feature
vectors. Ideally, the separability of features should be as
high as possible, with feature dimensionality low for faster
computation.

Figure 4 suggests that the features are most separable
when four modes are used, corresponding to an effective
dimensionality of twelve, due to the posterior reshaping in
our decomposition. However, this typically only holds when
the expected feature distributions in the test set are distributed
similarly to those used for training. In our transfer learning
case, where UAV behaviours are used to recognise human hand
gestures, this is unlikely to be true for all modes, and it is only
reasonable to expect similar feature distributions in dominant
modes corresponding to general information describing a
behaviour. Indeed, experimental results in Section IV seem
to confirm this, with only a single mode proving useful for
classification.

Note that the suggested PCA decomposition struggles to
separate circling and summoning behaviours when only a
single mode is used, but the separation obtained is still
greater than that of the various other decompositions we have
attempted. We attribute this to the fact that our dataset is
quite comprehensive, containing a wide variety of behaviour
examples, each of which is thus likely to have a number
of neighbours undergoing similar transformations in the PCA
projection.

Unlike gesture recognition schemes that operate on vari-
able length gesture sequences (DTW, HMMs, etc.), matrix
factorisation approaches to time series recognition are applied
to fixed length sequences, and deal with different sequence
lengths in somewhat of a brute force manner, by requiring a
large amount of training data covering all possible variations
in sequences. This could be a problem if little training data is
available, but training data is easy to generate in the case of
pantomimic gesture recognition using UAV behaviours and as
a result this limitation is of no concern.

B. Body part isolation

Recall that our goal is to classify gestures imitating UAV
behaviours, using the UAV training data described in Figure 1.
The Microsoft Xbox 360 Kinect skeleton tracker [35] is used
to record gestures. The Kinect provides 3D positional data in
real time, but individual gesture sequences still need to be
isolated from these positions if they are to be classified. This
occurs by simply buffering the positional information over an
empirically selected time period. In our case we choose this
time period to be about 0.5 seconds, roughly equivalent to
about 15 data samples. Our experimentation showed that this
sequence length was long enough to contain sufficient gesture
information for classification, but short enough to allow online
classification, in that the delay between gesture and recognition
is not noticeable.

Selecting which human body joint to use for behaviour
selection is potentially challenging, as users may decide to
mimic UAV behaviours with left or right hands, or sometimes
even their entire bodies. We remedy this by isolating gesture
tracks for each tracked joint, and select the joint with the track
conveying the greatest amount of information.

Let xij be the i-th sample of the 3D position of the j-th
joint. The maximum information is provided by the track with
the highest approximate entropy [36], that is,

j = argmax
j

(
−

l∑
i=1

p
(
xij − µj

)
log2p

(
xij − µj

))
,

where p
(
xij − µj

)
is the probability approximation obtained

from a histogram of quantised, mean shifted positions in the
track, and l the trajectory length. µj is the mean position of
each track. Human hands typically have far greater reach than
other body parts, resulting in more disorder when they move,
and so tend to be selected most often using this measure. We
can also restrict the joint selection to only use the hands by
simply maximising the entropy measure over a limited joint
set. In this case the measure allows for gestures from both left
and right handed users.

Direct comparison with the UAV training data is difficult
since this is captured at a different scale to arm movements.
This can be solved by scaling the x, y, z hand positions
appropriately.

xs =
rmax

la
x, ys =

rmax

la
y, zs =

hmax

la
z.

Here, la is the average arm length calculated from the Kinect
skeleton tracker, hmax the maximum height the UAV operates
at, and rmax the maximum radius the UAV operates within.

C. Gesture classification

Once gesture sequences are isolated they can be interpolated
to a fixed length (250 samples here, in line with the UAV be-
haviour lengths) and a classifier can be applied, after projecting
the gesture trajectory, X̂, (an l× d dimensional matrix, with l
the trajectory length and d the dimensionality) into the UAV
feature space,

Y = UT
1:mX̂,
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Fig. 5. The fraction of k-nearest neighbours belonging to class i provides
a class distribution for each principal component mode. These distributions
are normalised, and combined by summation, with optional singular value
weighting. The candidate trajectory is then assigned to the class with the
greatest score in the final distribution.

where U1:m is a low rank approximation of U, obtained by
retaining only those m modes or columns accounting for a
given portion of the variance in the training data. This results
in an m × d loading matrix, with each row representing the
projection into the loading space for a particular mode. In
our case, we vote for a corresponding class by determining
the k-nearest neighbours in standardised Euclidean space, as
illustrated in Figure 5. An improved approach could use a
generative model to classify observations, but the geometry
of the feature distributions encountered here is difficult to
model (the concentric circle feature layouts for summoning
and circling behaviours for example). In addition, nearest
neighbour classifiers have strong consistency results [37] and
are typically good indicators of the performance of more
intricate classification schemes.

In applications where training and testing data varies sig-
nificantly, modes of less importance may not be similar and
so intuitively should carry less weight in a classification
scheme. As a result we prefer to average the contributions
of each mode after weighting these by the singular values
corresponding to each mode, to allow for greater emphasis on
more descriptive behaviour modes, rather than performing a
single md dimensional nearest neighbour search.

The distance measure used for the nearest neighbour class
voting should also be chosen carefully. Figure 3c showed that
classes occupy different regions in the principal component
loading space. As a result, the distance summation is unlikely
to correctly classify classes if the training data is spread fairly
widely in some dimensions, but clustered in others. This can be
remedied through the use of a standardised Euclidean distance
measure. Here, the difference between each coordinate in the
candidate class point and the training data is scaled by the
standard deviation along the relevant dimension in the training
data, and the Euclidean distance of these scaled differences
used. Given the concentric circle feature distribution, an im-
proved distance metric could be applied in polar coordinates,
but this requires prior knowledge of the feature distribution,
and we prefer to avoid any requirement for prior knowledge
in order to retain a generic classification process.

Take-off Landing Summon Hover Circle

Take-off

Landing

Summon

Hover

Circle

Fig. 6. A distance matrix showing the distance between features in the UAV
behaviour training for the PCA features (mode 1). Ideally, features should be
as close to one another as possible (dark) for a single behaviour, but farther
away from other behaviours (light).

1) Feature bias compensation: The features selected using
the PCA projection may be better for classifying certain
behaviours than others, because of the geometry of the feature
space. This can be observed in Figure 6, which shows an
intensity map of the standardised Euclidean distances between
the features of each trajectory in the UAV behaviour training
set for the first mode. Here, a hover behaviour is more easily
distinguished using these features than a circle behaviour. In
an ideal case, with all behaviours classified fairly, the intensity
map should contain five dark blocks on the diagonal, and light
squares elsewhere.

We now show how this bias can be compensated for
using a Bayesian update framework. Let fm be a measured
feature vector extracted from a gesture (obtained from Y after
posterior reshaping) and Bi the i-th UAV behaviour, selected
using training data D. The distribution obtained from the
classifier can be written as

P (Bi|fm,D) =
Ni

k
,

where Ni refers to the number of neighbours belonging to the
i-th class and k the total number of neighbours used.

Using Bayes’ rule, and given the independence between the
training data and observed feature, p(fm|D) = p(fm), this
distribution can be written as

P (Bi|fm,D) =
P (fm,D|Bi)P (Bi)

P (fm,D)

=
P (fm|Bi)P (Bi)

P (fm)

P (D|Bi)

P (D)

= P (Bi|fm)
P (Bi|D)

P (Bi)
.

Solving for the posterior probability, P (Bi|fm), we obtain

P (Bi|fm) =
P (Bi|fm,D)P (Bi)

P (Bi|D)
.

Assuming that all behaviours are equally likely to be selected,
the prior, P (Bi), is just a constant scaling factor. The evidence
term, P (Bi|D), allows us to compensate for any bias incurred
due to the geometry of features in the training set. We estimate
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this by classifying each feature in the dataset, using leave-one-
out analysis, and determining the frequency with which each
class is selected:

P (Bi|D) ≈ N c
i

N
,

where N c
i refers to the number of times the i-th class was

selected and N the total number of features in the training set.
Classification decisions made using the posterior probability,
P (Bi|fm), which incorporates this evidence, compensate for
potential behaviour bias.

2) Behaviour selection: Thus far, we have largely ignored
the sequential nature of the gesture recognition task. In prac-
tise, the gesture recognition process would operate online
using a sliding window and be repeated with each new
observation, so it makes sense to incorporate previous posterior
densities into the decision process. Assuming gestures are
Markovian, let P (Bit |Bjt−1

) be the probability of transition-
ing between behaviours j and i over time step t. Our target
density, P (Bit |fm1:t), is the probability of a specific behaviour
occurring at time t given a history of feature measurements
fm1:t

.
This is easily determined using recursive Bayesian estima-

tion,

P (Bit |fm1:t−1) =

Nb∑
j=1

P (Bit |Bjt−1)P (Bjt−1 |fm1:t−1)

P (Bit |fm1:t
) = ηP (Bit |fmt

)P (Bit |fm1:t−1
),

where η is a normalising constant (Here we have used the fact
that P (Bit) is the same for all behaviours and P (fmt) remains
constant over i and folded these terms into the normalisation
constant) and Nb the number of behaviours. Finally, given this
target distribution, we select the behaviour with the largest
probability,

Bt = argmax
it

P (Bit |fm1:t).

Unfortunately, performing gesture recognition online is par-
ticularly challenging, due to misclassification seen during the
preparation and retraction phases of a gesture. For example,
a landing gesture inherently contains a take-off gesture as
preparation, and a take-off gesture in retraction looks like
a landing gesture. As a result, it is particularly important
that the start and end phases of a gesture be determined, a
process known as gesture spotting. DTW has been extended
to isolate patterns from continuous real world data [38], while
the crossing points of behaviour probability distributions were
used for spotting by [39] and [40], with the latter using
conditional random fields to discriminate between vocabulary
gestures and non-sign patterns prior to gesture recognition.
Rudimentary techniques accomplishing spotting using gesture
speed and the distance to a standing state can also be found
in the work of [41] and [42], but an in depth treatment of
this problem is beyond the scope of this work. Henceforth,
we assume that the start and end points of a gesture sequence
are known, and focus on classifying sequences as a whole, in
order to facilitate comparisons.

Given this information, and a sequence of classification
decisions, we can vote on a most likely behaviour for a gesture.

h(t)

B1 B2 B3

stroke

preparation retraction

t = 1 . . . N

B3 B2 B1 B1 B1 B2 B2

Fig. 7. The classification decisions obtained when sliding the window
along the input gesture sequence are weighted by a Hanning window, then
combined to vote for the most likely behaviour describing the entire gesture
sequence. As an example, consider the summoning gesture depicted in the
figure. As the sliding window moves along the sequence, a sequence of
take-off classifications would be made in the preparation phase, followed
by summoning decisions during the gesture stroke, before finally concluding
with a set of landing decisions in retraction. The Hanning window weighting
adds emphasis to the stroke phase of the gesture when the final classification
decision is made.

A direct majority vote was used by [39], but this may not
be ideal. Recall that gestures can typically be divided into
preparation, stroke and retraction phases. Intuitively then, clas-
sification decisions made during the middle of a gesture should
correspond to the stroke phase and carry more importance than
decisions made at the beginning and end of gestures.

This intuition can be applied by voting for a gesture class
by weighting each classification decision using a Hanning
window,

B = argmax
i

(∑
t

g(i, Bt)h(t)

)
, where

h(t) = 0.5

(
1− cos

(
2π

t

N

))
, 0 ≤ t ≤ N, and

g(i, Bt) =

{
1 if i = Bt,

0 otherwise.

This process is illustrated more clearly in Figure 7.

IV. PANTOMIMIC GESTURE RECOGNITION

This section provides experimental results for the pan-
tomimic gesture recognition problem. Results were obtained
by determining the classification accuracy using a dataset of
237 gesture sequences, performed by 5 different participants.
Data was obtained by requesting that each participant per-
form 50 gestures, each corresponding to one of the 5 UAV
behaviours, with these chosen at random. Kinect tracking
failures were removed, reducing the dataset from 250 to 237
gestures, and the start and end points of gestures were manu-
ally labelled. No information other than requested behaviours
was provided, so that the participants would perform gestures
that they found most intuitive and felt best represented the
requested behaviour, in line with our goal of examining the
feasibility of pantomimic gesture recognition. Figure 8 shows
the aligned test and training data.

Study participants were shown a photo of the micro UAV
that the gestures they were performing was intended to control,
and told that the UAV could take-off and land like a helicopter,
hover in one place, fly towards a person (summon) and fly
in circles around a person. Participants were told that their
task was to perform an appropriate gesture to request one of
these actions when instructed to do so by testing software.
The testing software showed users a stick representation of
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(a) Mean-shifted UAV recordings (training data)

(b) Mean-shifted input gestures (test data)

Fig. 8. The aligned test data used for experiments is shown in Figure
8b. Differences between the test set and the UAV training data (Figure 8a)
primarily result from preparation and retraction stages of gesture sequences
in the human gestures, the effects of which are limited through the use of
Hanning window weighting when performing classification.

TABLE I
JOINT SELECTION RATE FOR VARIOUS BEHAVIOURS

Joint Take-off Land Summon Hover Circle
Head 0.33 0.23 0.16 0.20 0.12
Left hand 0.11 0.12 0.18 0.06 0.21
Right hand 0.30 0.28 0.48 0.30 0.28
Left elbow 0.06 0.04 0.02 0.01 0.03
Right elbow 0.11 0.26 0.14 0.33 0.28
Left shoulder 0.05 0.05 0.01 0.08 0.06
Right shoulder 0.01 0.01 0.00 0.00 0.01
Torso 0.02 0.01 0.00 0.01 0.00

themselves along with randomly generated behaviour requests,
allowing 30 seconds for each gesture to be completed. The
participants did not see examples of the UAV performing these
actions, and were left with complete freedom to interpret the
verbal descriptions of the behaviours in their own manner. As
a result, a diverse and varied set of gestures were obtained. For
example, one participant chose to represent a hover behaviour
by performing small flapping motions with outstretched arms,
another held arms outstretched in a gliding motion, while
others simply held out stationary hands in a stopping motion.

A. Joint selection

Table I shows the rates at which upper body joints were se-
lected using the maximum information criterion for the various
UAV behaviours in the sample problem. The majority of our
test subjects were right-handed, which explains the frequent
selection of the right hand and elbow as the primary joint.
When performing take-off and landing gestures, participants
had a tendency to use their entire bodies to mimic these
behaviours, starting with rapid head and shoulder movements,
which led into an arm gesture. As a result, the head is selected
as the preferred joint with relatively high frequency. Circling
behaviours tended to be performed using both hands out
stretched, and so a larger set of joints are selected for this
behaviour. A similar pattern is seen for hovering behaviours,
although this can probably be attributed to the fact that hover
gestures tended to contain little motion, resulting in less of a
difference in entropy measures for the various joints.

TABLE II
CLASSIFICATION ACCURACIES (%) FOR VARIOUS BEHAVIOURS

Method Take-off Land Summon Hover Circle Overall
UAV PCA+B 71.05 61.70 64.18 91.11 70.00 70.89
UAV PCA 71.05 61.70 65.67 91.11 62.50 70.04
UAV CV+B 71.05 63.83 38.81 91.11 20.00 55.70
UAV CV 71.05 63.83 38.81 91.11 17.50 55.27
UAV DTW 68.42 63.83 68.66 71.11 2.50 56.96
UAV HMM 0.00 0.00 88.06 55.56 2.50 35.86
User PCA 65.79 46.81 19.40 31.11 82.50 45.15
User CV 76.32 61.70 5.97 64.44 22.50 42.19
User DTW 65.79 59.57 0.00 82.22 0.00 37.97
User HMM 5.26 65.96 5.97 0.00 60.00 25.74

B. Classification accuracies

Table II shows the results of the gesture sequence recogni-
tion using the suggested PCA classifier, dynamic time warping
and a nearest neighbour canonical variates classifier. Note that
no confidence intervals are provided, as there is no cross
validation or averaging of results here, our training and test
datasets are completely independent.

The PCA-based classifier is compared to one operating on
canonical variate features, a nearest neighbour DTW classifier
searching through mean-shifted training data and a maximum
likelihood classifier using HMMs. The hidden Markov models
were trained for each class using 12 hidden states, operating on
data binned into 8 states, with states selected by performing
k-means clustering on mean-shifted training data. Data was
mean-shifted to allow fair comparison, since classification on
the original data is extremely difficult as it exhibits a great
deal of variability across training samples.

Results obtained by training the classifiers using human
hand gestures as training data (User) are also provided for
comparison. Here, each participant’s gestures were classified
by using recordings of the other participants in the test
dataset as training data, a more traditional gesture recognition
approach. Notation +B refers to the use of the proposed Bayes’
evidence term.

It is clear that the pantomimic approaches using the UAV
behaviour recordings as training information (UAV) provided
superior performance when compared to gesture recognition
schemes trained using human hand gestures. We attribute this
to the fact that the UAV behaviours contain information more
likely to be present in user specific gestures, while user specific
gestures are so variable that it is difficult to find similarities
between participants when attempting to classify using this
data. At first glance, the fact that one person’s gestures are
more similar to UAV behaviour recordings than they are to
those of another participant may seem counter-intuitive, but
readers should bear in mind that the users are attempting
to mimic the UAV behaviours, and not the gesturing styles
of one another. Results obtained when using human gestures
as training data could potentially be improved through the
inclusion of additional training data, but this is difficult to
collect, while UAV training data is easily generated.

The classification accuracies for individual behaviours are
useful to compare the effects of the Bayesian evidence term.
As expected, the inclusion of the Bayesian evidence term
boosted the circling classification rates, providing a fairer
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(a) Accuracy of participants: UAV data

Fig. 9. The accuracy obtained for various participants and behaviours de-
creases with the effective dimensionality of the proposed PCA decomposition
on UAV training data.

classifier. The PCA features appear best suited to classification
across all behaviours. Dynamic time warping performed well
for most gestures, but was unable to detect circling motions
adequately and proved computationally expensive.

The poor performance of the hidden Markov models is to
be expected, due to the large amount of variability in the
summoning and circling behaviours. In attempting to model
this variability, the HMMs trained using this data are able
to explain additional behaviours, resulting in a large number
of misclassifications. This could be avoided by clustering the
behaviours in these classes and training multiple models for
each class, but this is hardly ideal, and the additional training
time complexity makes it infeasible.

Referring back to Figure 6, it seems that the take-off
and landing behaviours should be relatively easily classified
using the pantomimic data, but results obtained do not seem
to corroborate this, with lower than expected classification
accuracies here. This can be explained by the mechanics of
the human arm. A UAV take-off or landing consists of almost
entirely vertical motion, but a human hand mimicking this
moves in a circular arc, pivoting about the shoulder, and as a
result contains a larger lateral motion component, which shifts
the projected feature away from the training features. This
effect occurs across all behaviours, but is most noticeable here.
Despite this, the results obtained here are promising, given the
variations observed across participants for various behaviours.

Figure 9 shows the classification accuracy obtained with the
PCA decomposition obtained from UAV data, as a function
of the effective dimensionality. In contrast to the separability
curves of Figure 4, which suggest that four modes should be
used for classification, it is clear that the best performance
is obtained when only a single mode is used. As expected,
it appears that only the features of the most dominant PCA
mode, which corresponds to general information describing a
UAV behaviour, follow similar distributions to those features
selected when applying this decomposition to human gestures.

Figure 10 shows the classification accuracy obtained with
the PCA decomposition using user gesture recordings, as
a function of the effective dimensionality. In general, poor
performance is exhibited across all modes, and it is clear that
PCA does not produce particularly separable behaviours when
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(a) Accuracy of participants: user data

Fig. 10. Poor classification accuracy is obtained across participants and
behaviours regardless of the effective dimensionality of the proposed PCA
decomposition when it is applied to user training data.

TABLE III
ACCURACY AS A FUNCTION OF JOINT SUBSET

Right hand Left hand Both hands Head + hands
74.68% 46.84% 73.00% 72.15%
Head + arms Full body
72.57% 70.89%

performed on human gesture recordings.
Ideally, we require features from the human gestures that

are both descriptive and discriminative. The latter is required
to aid in classification, while the former implies that the
features should be observed across participants consistently.
The human gesture data we have obtained, although limited,
simply appears too variable to select both consistent and
discriminative features with the methods we have attempted. In
contrast, the use of UAV training data, which is cleaner, cheap
and easy to generate, allows us to leverage prior knowledge
about the general structure of these gestures, because they
are pantomimic. Selecting PCA modes describing a large
portion of the variance allows us to maintain this underlying
information, and we are fortunate that the decomposition also
results in fairly separable classes.

It should be noted that the use of a fixed length sliding
window when classifying is only applicable if input gestures
are all roughly the same length, and that an adaptive window
size would be required for gesture sequences with highly vari-
able lengths. Incorporating an adaptive window size through
the inclusion of gesture spotting prior to gesture classification
would remedy this problem.

While the accuracies provided above are not yet good
enough for practical application, the results obtained still show
the promise of using robot behaviours to train gesture recog-
nition systems. Table III shows that an immediate increase in
accuracy can be obtained by simply constraining the subset
of joints used by the maximum information joint selection
process. Additional increases in accuracy could be obtained by
requiring that users only perform gestures using their hands,
which would simplify the classification task greatly.

Table IV shows the computational complexity of the k-
nearest-neighbour classifiers for comparison with dynamic
time warping and the forward algorithm used to determine
HMM likelihoods. Here, n denotes the number of samples in
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TABLE IV
COMPUTATIONAL COMPLEXITIES AND RUNTIMES

Complexity Runtime
Dynamic time warping O(ndlw) 1.759 s
PCA KNN O(mdl + n(md+ logn)) 0.001 s
Canonical variates KNN O(lp+ n(p+ logn)) 0.001 s
HMM O(T 2l) 0.040 s
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Fig. 11. The figure shows that the proposed matrix stacking produces
PCA features with excellent classification scalability on the Auslan dataset,
particularly when compared to dynamic time warping and classification with
PCA features obtained using the traditional stacking.

the training set, d the number of dimensions describing each
trajectory and l the length of each trajectory. The region used
to constrain the dynamic time warping search is represented
by w. The numbers of modes and nearest neighbours used by
the PCA classifier using the suggested stacking are denoted
by m and k respectively, while p refers to the number of
dimensions used in the canonical variate projection. T refers to
the number of states in the HMM. The canonical variates and
PCA classifiers require far less computation as they operate on
a substantially reduced feature set. Average run-times for each
iteration of the pantomimic gesture recognition using UAV
training data are also provided.

C. Australian sign language recognition

The pantomimic gesture recognition experiments of the
previous section were conducted on only a small number of
behaviour classes. The potential scalability of the proposed
time series classification approach to problems with a larger
number of classes is evaluated by computing the average
classification accuracy obtained using an Australian sign lan-
guage dataset [21]. Auslan is a high dimensional dataset of
sign language comprising 95 gestures with 27 instances of
each sign. Individual signs are described by a 22 dimensional
time series matrix, consisting of the signer’s hand positions,
orientations and finger motions.

Figure 11 shows the average classification accuracy obtained
when 9-fold cross validation is performed on an increasing
number of signs from the dataset. It is clear that the proposed
matrix stacking and time series classification approach (using
a single mode, equivalent to 22 features) is far more scalable
than traditional PCA features (22 were used for a fair com-
parison) and dynamic time warping.

Table V shows the average accuracy obtained on the full
Auslan database for a variety of methods. Here, 5-fold cross

TABLE V
AUSLAN AVERAGE CLASSIFICATION ACCURACY

Approach Accuracy (%)
Metafeatures with voting [21] 97.9± 0.2
Proposed PCA stacking (k = 4,md = 66) 95.1± 0.8
CV + KNN (k = 10, p = 30) 92.2± 1.2
HMM [21] 87.1± 0.6
Traditional PCA stacking (k = 10, d = 66) 78.9± 1.8
DTW 73.7± 1.7

validation was used to facilitate comparison with results re-
ported in the literature, and parameters were tuned to provide
the best results for each method. The table shows that clas-
sification with features obtained using the proposed stacking
provides results comparable with hand selected features and a
voted combination of back-end learners.

It should be noted that this is an easier classification task
than the pantomimic gesture recognition one, as input and
training data are from identical domains. Although worse re-
sults would be expected if an increasing number of behaviours
were included in the pantomimic case, the experiment on
the Auslan data does show that the proposed decomposition
approach has the potential to scale nicely.

The pantomimic gesture recognition scenario introduced
here is not intended for tele-operation. Instead, the use case is
one where high level autonomy is already built into a platform,
and only a subset of behaviours need to be selected, with all
other operation handled autonomously. As a result, it is not
necessary to map a gesture onto every possible manoeuvre as
the number of behaviours available for selection is likely to
remain low. Behaviours encountered are likely to be problem
specific, so it is difficult to provide an estimate of the exact
number of gestures the proposed pantomimic approach would
extend to. However, since the proposed decomposition exposes
spatial differences present in the original task space, our
approach should scale as long as there are spatial differences
in the behaviour recordings.

V. CONCLUSIONS

This paper has applied an extremely fast, yet simple,
classification method based on principal component loadings.
The approach relies on a decomposition that preserves spatial
orientation aspects of multidimensional time series and results
in a set of features with apparent class separability. A Bayesian
update framework that compensates for potential classification
bias has been introduced. A voting window was applied
to improve decisions when an entire gesture sequence is
available, but this is of limited use in an online case, where
gestures need to be recognised as they are occurring. A clearer
idea of the algorithm’s online performance can be obtained by
viewing the video accompanying this paper, which highlights
issues resulting from misclassification during the transition
phases of gestures. The addition of gesture spotting is required
to differentiate between stroke and transition phases if this is
to be remedied.

The applicability of this classification framework to a
pantomimic gesture recognition problem has been discussed.
Here, UAV behaviour descriptions have been used to train a
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PCA loading classifier, and Kinect body tracking to record
gesture sequences. This classification problem is extremely
difficult, as gestures and behaviour recordings may appear
quite different. We have proposed the use of a maximum
entropy measure to select the joint conveying the most in-
formation, which allows us to deal with both left and right-
handed users. Results showed that the technique can be used
to determine desired behaviours when users intuitively mimic
these behaviours using their bodies. We have argued that a
pantomimic gesture recognition system is potentially more
intuitive than one using iconic gestures as users have free
choice over their gestures, and have provided a mechanism
by which human hand gestures can be mapped to robot
trajectories.

It is difficult to compare pantomimic and iconic gestures
directly, as they correspond to different use cases. Pantomimic
gestures would be useful in cases where no domain knowledge
is available, for example in assistant robots deployed in public
areas, while iconic gestures are certain to be more suitable
when only a limited set of pre-determined gestures need to
be recognised, if only because they are easier to detect. A
comprehensive study on the utility of iconic and pantomimic
gestures is left for future work.

Encouraging results showed that the use of UAV behaviour
training data provided more robustness to a larger variety
of gesture types than a gesture recognition scheme trained
using human hand gestures. The latter should provide bet-
ter classification results if used for specific individuals and
gestures, but is clearly unsuited to less constrained problems.
The results provided are promising, as the classification task
addressed here is quite challenging, since participants were
allowed complete freedom over their choice of gestures, which
tended to be extremely varied.
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