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High-resolution terrestrial climate, 
bioclimate and vegetation for the 
last 120,000 years
Robert M. Beyer   ✉, Mario Krapp    & Andrea Manica   

The variability of climate has profoundly impacted a wide range of macroecological processes in the 
Late Quaternary. Our understanding of these has greatly benefited from palaeoclimate simulations, 
however, high-quality reconstructions of ecologically relevant climatic variables have thus far been 
limited to a few selected time periods. Here, we present a 0.5° resolution bias-corrected dataset 
of global monthly temperature, precipitation, cloud cover, relative humidity and wind speed, 17 
bioclimatic variables, annual net primary productivity, leaf area index and biomes, covering the 
last 120,000 years at a temporal resolution of 1,000–2,000 years. We combined medium-resolution 
HadCM3 climate simulations of the last 120,000 years with high-resolution HadAM3H simulations of 
the last 21,000 years, and modern-era instrumental data. This allows for the temporal variability of 
small-scale features whilst ensuring consistency with observed climate. Our data make it possible to 
perform continuous-time analyses at a high spatial resolution for a wide range of climatic and ecological 
applications - such as habitat and species distribution modelling, dispersal and extinction processes, 
biogeography and bioanthropology.

Background & Summary
Global climate in the Late Quaternary has played a major role in the formation of a wide range of macroecological 
patterns. Reconstructing climatic conditions has been crucial in advancing our understanding of the spatial and 
temporal dynamics of these processes, ranging from the distribution of species ranges1,2 and extinctions3, to early 
human expansions4 and population genetics5.

Climate models can provide the spatial coverage that localised empirical reconstructions are lacking, yet, 
currently available simulation data for the Late Pleistocene and the Holocene suffer from one of two drawbacks 
that limit their use for ecological applications. On the one hand, a number of equilibrium and transient simula-
tions, from general circulation models (e.g. HadCM36) or earth system models of intermediate complexity (e.g. 
LOVECLIM4), provide reconstructions at a high temporal resolution, however, the relatively low spatial resolu-
tion of the simulated data, and significant biases when compared to empirical observations7, make additional 
curating of model outputs necessary in order to generate ecologically meaningful data. On the other hand, several 
high-resolution and bias-corrected palaeoclimate datasets provide climatic variables in great spatial detail, but 
their temporal coverage of the Late Pleistocene and the Holocene is usually limited to a few snapshots of key time 
periods. A number of these datasets have been made available in readily accessible formats since the mid-2000s, 
and have since been used extensively in ecological applications: the ecoClimate database8 provides data for the 
Mid-Holocene (~6,000 BP) and the Last Glacial Maximum (~21,000 BP); WorldClim9 contains an additional 
reconstruction of the Last Interglacial Period (~130,000 BP); paleoClim10 covers the last 21,000 years.

Here, we fill the gap between these two types of available data, by deriving a high-resolution (0.5°) 
bias-corrected time series of global terrestrial climate and vegetation data covering the last 120,000 years. Gridded 
reconstructions (Table 1) are available at 2,000 year time steps between 120,000 and 22,000 BP, and 1,000 year 
time steps between 21,000 BP and the pre-industrial modern era. Our data include monthly temperature and pre-
cipitation, and 17 bioclimatic variables, which have been used extensively in species distribution models (e.g.11). 
We also provide monthly cloudiness, relative humidity and wind speed (which can be used to derive various 
measures of apparent temperature), as well as reconstructions of global biomes, leaf area index and net primary 
productivity. Our data show a good agreement with empirical reconstructions of temperature, precipitation and 
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vegetation for the mid-Holocene, the Last Glacial Maximum and the Last Interglacial, performing equally well as 
existing high-resolution snapshots of these time periods.

Methods
Monthly climatic variables.  Our dataset is based on simulations of monthly mean temperature (°C), pre-
cipitation (mm month−1), cloudiness (%), relative humidity (%) and wind speed (m s−1) of the HadCM3 general 
circulation model6,12,13. At a spatial grid resolution of 3.75° × 2.5°, these data cover the last 120,000 years in 72 
snapshots (2,000 year time steps between 120,000 BP and 22,000 BP; 1,000 year time steps between 22,000 BP and 
the pre-industrial modern era), each representing climatic conditions averaged across a 30-year post-spin-up 
period. We denote these data by

T m t P m t C m t
H m t W m t
( , ), ( , ), ( , ),

( , ), ( , ), (1)
HadCM3 HadCM3 HadCM3

HadCM3 HadCM3

where = …m 1, , 12 represents a given month, and ∈t T120 k represents a given one of the 72 points in time for 
which simulations are available, denoted T120 k.

We downscaled and bias-corrected these data in two stages (Fig. 1). Both are based on variations of the Delta 
Method14, under which a high-resolution, bias-corrected reconstruction of climate at some time t in the past is 
obtained by applying the difference between modern-era low-resolution simulated and high-resolution observed 

Variable Unit Dimensions

Dimensional variables

Longitude degrees east 720

Latitude degrees north 300

Month — 12

Year before present 72

Climatic variables

Monthly temperature °C 720 × 300 × 12 × 72

Monthly precipitation mm month−1 720 × 300 × 12 × 72

Monthly cloudiness % 720 × 300 × 12 × 72

Minimum annual temperature °C 720 × 300 × 72

Maximum annual temperature °C 720 × 300 × 72

Monthly relative humidity % 720 × 300 × 12 × 72

Monthly wind speed m second−1 720 × 300 × 12 × 72

Bioclimatic variables

BIO1: Annual mean temperature °C 720 × 300 × 72

BIO4: Temperature seasonality °C 720 × 300 × 72

BIO5: Minimum annual temperature °C 720 × 300 × 72

BIO6: Maximum annual temperature °C 720 × 300 × 72

BIO7: Temperature annual range °C 720 × 300 × 72

BIO8: Mean temperature of the wettest quarter °C 720 × 300 × 72

BIO9: Mean temperature of driest quarter °C 720 × 300 × 72

BIO10: Mean temperature of warmest quarter °C 720 × 300 × 72

BIO11: Mean temperature of coldest quarter °C 720 × 300 × 72

BIO12: Annual precipitation mm year−1 720 × 300 × 72

BIO13: Precipitation of wettest month mm month−1 720 × 300 × 72

BIO14: Precipitation of driest month mm month−1 720 × 300 × 72

BIO15: Precipitation seasonality — 720 × 300 × 72

BIO16: Precipitation of wettest quarter mm quarter−1 720 × 300 × 72

BIO17: Precipitation of driest quarter mm quarter−1 720 × 300 × 72

BIO18: Precipitation of warmest quarter mm quarter−1 720 × 300 × 72

BIO19: Precipitation of coldest quarter mm quarter−1 720 × 300 × 72

Vegetation variables

Net primary productivity gC m−2 year−1 720 × 300 × 72

Leaf area index gC m−2 720 × 300 × 72

Biome categorial 720 × 300 × 72

Table 1.  Available reconstructions of environmental variables. Temperature seasonality (BIO4) and 
precipitation seasonality (BIO15) are given by the standard deviation of monthly temperatures and by the 
coefficient of variation of monthly precipitation, respectively. Temperature annual range (BIO7) is given by 
the difference between maximum annual temperature (BIO5) and minimum annual temperature (BIO6). Unit 
abbreviations: mm (millimetres), m (metres), gC (grams carbon).
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climate – the correction term – to the simulated climate at time t. The Delta Method has previously been used to 
downscale and bias-correct palaeoclimate simulations, e.g. for the widely used WorldClim database9. A recent 
evaluation of three methods commonly used for bias-correction and downscaling15 showed that the Delta 
Method reduces the difference between climate simulation data and empirical palaeoclimatic reconstructions 
overall more effectively than two alternative methods (statistical downscaling using Generalised Additive Models, 
and Quantile Mapping). We therefore used this approach for generating our dataset.

Downscaling to ~1° resolution.  A key limitation of the Delta Method is that it assumes the modern-era correc-
tion term to be representative of past correction terms15. This assumption is substantially relaxed in the Dynamic 
Delta Method used in the first stage of our approach to downscale the data in Eq. (1) to a ~1° resolution. This 
involves the use of a set of high-resolution climate simulations that were run for a smaller but climatically diverse 
subset of T k120 . Simulations at this resolution are very computationally expensive, and therefore running substan-
tially larger sets of simulations is not feasible; however, these selected data can be very effectively used to generate 
a suitable time-dependent correction term for each ∈t T k120 . In this way, we are able to increase the resolution of 
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Fig. 1  Method of reconstructing high-resolution climate. Yellow boxes represent raw simulated and observed 
data, the dark blue box represents the final data. Maps, showing modern-era climate, correspond to the datasets 
represented by the bottom three boxes.
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the original climate simulations by a factor of ~9, while simultaneously allowing for temporal variability in the 
correction term. In the following, we detail the approach.

We used high-resolution simulations of the same variables as in Eq. (1) from the HadAM3H model13,16,17, 
available at a 1.25° × 0.83° resolution for the last 21,000 years in 9 snapshots (2,000 year time steps between 
12,000 BP and 6,000 BP; 3,000 year time steps otherwise). We denote these by

T m t P m t C m t
H m t W m t
( , ), ( , ), ( , ),

( , ), ( , ),
HadAM3H HadAM3H HadAM3H

HadAM3H HadAM3H

respectively, where ∈t T k21 , represents a given one of the 9 points in time for which simulations are available, 
denoted T21 k.

For each variable ∈X T P C H W{ , , , , }, we considered the differences between the medium- and the 
high-resolution data at times ∈t T k21  for which both are available,

�Δ = −X m t X m t X m t( , ) : ( , ) ( , ),HadAM3H
HadCM3

HadAM3H HadCM3

where the �-notation indicates that the coarser-resolution data was interpolated to the grid of the 
higher-resolution data. For this, we used an Akima cubic Hermite interpolant18, which (unlike a bilinear interpo-
lant) is smooth but (unlike a bicubic interpolant) avoids potential overshoots. For each ∈t T k120  and each 
τ ∈ T k21 ,

τ+ ΔX m t X m( , ) ( , ) (2)HadCM3 HadAM3H
HadCM3�

provides a 1.25° × 0.83° resolution downscaled version of the data X m t( , )HadCM3  in Eq. (1). The same is true, 
more generally, for any weighted linear combination of the Δ τX m( , )HadAM3H

HadCM3 , which is the approach taken here, 
yielding

∑ τ τ′ = + ⋅ Δ
τ∈

−
� ��������������� ���������������

�
~X m t X m t w t X m( , ) : ( , ) ( , ) ( , ) ,

(3)
T

1 HadCM3 HadAM3H
HadCM3

time variable correction term
k21

�

where τ∑ =τ∈

≥� ��� ���
w t( , ) 1T

0

k21
 for any given ∈t T k125 . We discuss the choice of an additive approach for all climatic 

variables later on. Crucially, in contrast to the classical Delta Method – which, for all ∈t T k125 , would correspond 
to =w t( , present day) 1 and τ =w t( , ) 0 otherwise (cf. Eq. (5)) –, the resolution correction term that is added to 

�X m t( , )HadCM3  in Eq. (3) need not be constant over time. Instead, the high-resolution heterogeneities that are 
applied to the medium-resolution HadCM3 data are chosen from the broad range of patterns simulated for T k21 . 
The strength of this approach lies in the fact that the last 21,000 years account for a substantial portion of the 
range of climatic conditions present during the whole Late Quaternary. Thus, by choosing the weights τw t( , ) for 
a given time ∈t T k125  appropriately, we can construct a T k21 -data-based correction term corresponding to a cli-
matic state that is, in a sense yet to be specified, close to the climatic state at time t. Here, we used atmospheric 
CO2 concentration, a key determinant of the global climatic state19, as the metric according to which the τw t( , ) 
are chosen; i.e. we assigned a higher weight to Δ τX m( , )HadAM3H

HadCM3  the closer the CO2 level at time τ was to that at 
time t. Specifically, we used

τ
τ

′ =
−

w t
t

( , ) 1
(CO ( ) CO ( ))

,
2 2

2

and rescaled these to τ = τ
τ

′

∑ ′τ∈
w t( , ) w t

w t
( , )

( , )T k21

 (Supplementary Fig. 1). In the special case of ∈t T k21 , we have 

=w t t( , ) 1 and τ =w t( , ) 0 for τ ≠ t, for which Eq. (3) simplifies to

′ = ∈ .�
~X m t X m t t T( , ) ( , ) for all k1 HadAM3H 21

Formally, the correction term in Eq. (3) corresponds to an inverse square distance interpolation of the 
ΔXHadAM3H

HadCM3  with respect to CO2
20. We also note that, for our choice of τw t( , ), the correction term is a smooth 

function of t, as would be desired. In particular, this would not the case for the approach in Eq. (2) (unless τ is the 
same for all ∈t T k125 ).

The additive approach in Eq. (3) does not by itself ensure that the derived precipitation, relative humidity, 
cloudiness and wind speed are non-negative and that relative humidity and cloudiness do not exceed 100% across 
all points in time and space. We therefore capped values at the appropriate bounds, and obtain

= ′
= ′
= ′
= ′
= ′ .
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Supplementary Fig. 2 shows that this step only affects a very small number of data points, whose values are 
otherwise very close to the relevant bound.

Bias-correction and downscaling to 0.5° resolution.  In the second stage of our approach, we applied 
the classical Delta Method to the previously downscaled simulation data. Similar to the approach in Eq. (3), this is 
achieved by applying a correction term, which is now given by the difference between present-era high-resolution 
observational climate and coarser-resolution simulated climate, to past simulated climate. This further increases 
the resolution and removes remaining biases in the data in Eq. (4).

Since our present-era simulation data correspond to pre-industrial conditions (280 ppm atmospheric CO2 
concentration)6,12,13, it would be desirable for the observational dataset used in this step to be approximately 
representative of these conditions as well, so that the correction term can be computed based on the simulated 
and observed climate of a similar underlying scenario. There is generally a trade-off between the quality of 
observation-based global climate datasets of recent decades, and the extent to which they reflect anthropogenic 
climate change (which, by design, is not captured in our simulated data) – both of which increase towards the 
present. Fortunately, however, significant advances in interpolation methods21–23 have produced high-quality 
gridded datasets of global climatic conditions reaching as far back as the early 20th century23. Thus, here we used 
0.5° resolution observational data representing 1901–1930 averages (~300 ppm atmospheric CO2) of terrestrial 
monthly temperature, precipitation and cloudiness23. For relative humidity and wind speed, we used a global data 
representing 1961–1990 average (~330 ppm atmospheric CO2) monthly values24 due to a lack of earlier datasets. 
We denote the data by

.T m P m C m H m W m( , 0), ( , 0), ( , 0), ( , 0), ( , 0)obs obs obs obs obs

We extrapolated these maps to current non-land grid cells using an inverse distance weighting approach so 
as to be able to use the Delta Method at times of lower sea level. The resulting data were used to bias-correct and 
further downscale the ~1° data in Eq. (3) to a 0.5° grid resolution via

� �′ = + −. � ����������� ������������ � �
~ ~X m t X m t X m X m( , ) : ( , ) ( , 0) ( , 0) ,

(5)
0 5 1 obs 1

correction term

where ∈X T P C H W{ , , , , }. In particular, the data for the present are identical to the empirically observed 
climate,

′ = .. �X m X m( , 0) ( , 0)0 5 obs

Finally, we again capped values at the appropriate bounds, and obtained
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Similar as in the analogous step in the first stage of our approach (Eq. (4)), only a relatively small number of 
data points is affected by the capping; their values are reasonably close to the relevant bounds, and their frequency 
decreases sharply with increasing distance to the bounds (Supplementary Fig. 2).

In principle, capping values, where necessary, can be circumvented by suitably transforming the relevant var-
iable first, then applying the additive Delta Method, and back-transforming the result. In the case of precipitation, 
for example, a log-transformation is sometimes used, which is mathematically equivalent to a multiplicative Delta 
Method, in which low-resolution past simulated data is multiplied by the relative difference between high- and 
low-resolution modern-era data14; thus, instead of Eq. (5), we would have �

�= ⋅. � �
�~

~

P m t P m t( , ) : ( , ) P m
P m0 5 1

( , 0)
( , 0)

obs

1

. 
However, whilst this approach ensures non-negative values, it has three important drawbacks. First, if present-era 
observed precipitation in a certain month and grid cell is zero, i.e. =P m( , 0) 0obs , then =. �P m t( , ) 00 5  at all points 
in time, t, irrespectively of the simulated climate change signal. Specifically, this makes it impossible for current 
extreme desert areas to be wetter at any point in the past. Second, if present-era simulated precipitation in a grid 
cell is very low (or indeed identical to zero), i.e. � ≈�

~P m( , 0) 01 , then . �P m t( , )0 5  can increase beyond all bounds. 
Very arid locations are particularly prone to this effect, which can generate highly improbable precipitation pat-
terns for the past. In our scenario of generating global maps for a total of 864 individual months, this lack of 
robustness of the multiplicative Delta Method would be difficult to handle. Third, the multiplicative Delta Method 
is not self-consistent: applying it to the sum of simulated monthly precipitation does not produce the same result 
as applying it to simulated monthly precipitation first and then taking the sum of these values. The natural equiv-
alent of the log-transformation for precipitation is the logit-transformation for cloudiness and relative humidity, 
however, this approach suffers from the same drawbacks.

Minimum and maximum annual temperature.  Diurnal temperature data are not included in the avail-
able HadCM3 and HadAM3H simulation outputs. We therefore used the following approach to estimate mini-
mum and maximum annual temperatures. Based on the monthly HadCM3 and HadAM3H temperature data, we 
created maps of the mean temperature of the coldest and the warmest month. In the same way as described above, 
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we used these data to reconstruct the mean temperature of the coldest and warmest month at a 1.25° × 0.83° res-
olution by means of the Dynamic Delta Method, yielding

� �
~ ~T t T t( ) and ( ),1
coldest month

1
warmest month

Mid-Holocene Last Glacial Maximum
Mean annual temperature (°C)
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Fig. 2  Comparison between modelled mid-Holocene and Last Glacial Maximum temperature, precipitation 
and vegetation (maps), and pollen-based empirical reconstructions (markers; uncertainties not shown)32,34. For 
visualisation purposes, empirical biomes were aggregated to a 2° grid, and the set of 27 simulated biomes was 
grouped into 9 megabiomes.
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for ∈t T k120 . We then used observation-based 0.5° resolution global datasets of modern-era (1901–1930 average) 
minimum and maximum annual temperature23, denoted

T T(0) and (0),obs
min

obs
max

to estimate past minimum and maximum annual temperature as

= + −

= + −
.

.

� � �

� � �

~ ~

~ ~

T t T t T T

T t T t T T

( ) : ( ) (0) (0),

( ) : ( ) (0) (0), (6b)
0 5
min

1
coldest month,

obs
min

1
coldest month,

0 5
max

1
warmest month,

obs
max

1
warmest month,

� �

� �

respectively. This approach assumes that the difference between past and present mean temperature of the coldest 
(warmest) month is similar to the difference between the past and present temperature of the coldest (warmest) 
day. Instrumental data of the recent past suggest that this assumption is well justified across space (Supplementary 
Fig. 3).

Land configuration.  We used a reconstruction of mean global sea level25 and a global elevation and bathym-
etry map26, interpolated to a 0.5° resolution grid, to create land configuration maps for the last 120,000 years. 
Maps of terrestrial climate through time were obtained by cropping the global data in Eq. (6a and b) to the appro-
priate land masks. Values in non-land grid cells were set to missing values, except in the case of below-sea-level 
inland grid cells, such as the Aral, Caspian and Dead sea.

Bioclimatic data, net primary productivity, leaf area index, biome.  Based on our reconstructions 
of minimum and maximum annual temperature, and monthly temperature and precipitation, we derived 17 
bioclimatic variables27 listed in Table 1. In addition, we used the Biome4 global vegetation model28 to compute net 
primary productivity, leaf area index and biome type at a 0.5° resolution for all ∈t T k120 , using reconstructed 
minimum annual temperature, and monthly temperature, precipitation and cloudiness. Similar to a previous 
approach21, we converted cloudiness to the percent of possible sunshine (required by Biome4) by using a standard 
conversion table and applying an additional latitude- and month-specific correction. Since Biome4 estimates ice 
biomes only based on climatic conditions and not ice sheet data, it can underestimate the spatial extent of ice. We 
therefore changed simulated non-ice biomes to ice, and set net primary production and leaf area index to 0, in 
grid cells covered by ice sheets according to the ICE-6g dataset29 at the relevant points in time. Whilst our data 
represent potential natural biomes, and as such do not account for local anthropogenic land use, maps of actual 
land cover can readily be generated by superimposing our data with available reconstructions of global land use 
during the Holocene30.

Data Records
Our dataset, containing the variables listed in Table 1, is available as a single NetCDF file on the Figshare data 
repository31. All maps are provided at 2,000 year time steps between 120,000 BP and 22,000 BP, and 1,000 year 
time steps between 22,000 BP and the (pre-industrial) modern era. We used a 0.5° equirectangular grid, with lon-
gitudes ranging between 179.75°E and 179.75°W, and latitudes ranging between 59.75°S and 89.75°N.

Technical Validation
Proxy data-based reconstructions of past climatologies allow us to evaluate our dataset by means of empirical 
records, and compare its performance against that of existing model-based snapshots of specific time periods. 
Here, we used empirical reconstructions of mean annual temperature, temperature of the coldest and warmest 
month, and annual precipitation for the Mid-Holocene and the Last Glacial Maximum32, and reconstructions 
of mean annual temperature for the Last Interglacial Period33. Overall, our data are in good agreement with the 
available empirical reconstructions (Fig. 2, Supplementary Fig. 4). For each variable and time period, residual 
biases across the value spectrum are approximately normally distributed around zero, with the possible exception 
of precipitation, where, at the lower end of the value spectrum, a few empirical reconstructions suggest slightly 
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Fig. 3  Quantitative comparison between our data and empirical reconstructions of available climatic 
variables32,33, and data from other climate models. Blue bars and black error bars represent the median and 
the upper and lower quartiles of the set of absolute differences between our data and the available empirical 
reconstructions (cf.15 for details). Supplementary Fig. 4 shows all individual data points that these summary 
statistics are based on. Grey error bars show the equivalent measures for palaeoclimate data available on 
WorldClim v1.49, i.e. from the IPSL-CM5A-LR, MRI-CGCM3, BCC-CSM1-1, CNRM-CM5 and CCSM4 
models (Mid-Holocene), the MPI-ESM-P and MIROC-ESM models (Mid-Holocene and Last Glacial 
Maximum) and the CCSM4 model (Last Glacial Maximum and Last Interglacial Period).
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higher values than our dataset (Supplementary Fig. 4). By construction of the Delta Method, our modern-era data 
is identical to the observed climate. Simulated vegetation, a product of temperature, precipitation and cloud cover 
data, also corresponds well to empirical biome reconstructions available for the Mid-Holocene and Last Glacial 
Maximum34 (Fig. 2). The performance of our data under the available empirical palaeoclimatic reconstructions 
is well within the range of that of downscaled and bias-corrected outputs from other climate models available for 
specific points in the past (Fig. 3).

Usage Notes
The dataset comes with fully commented R, Python and Matlab scripts that demonstrate how annual and monthly 
variables can be read from the NetCDF file, and how climatic data for specific points in time and space can be 
extracted and analysed.

Code availability
Code used to generate our dataset is available on the Open Science Framework35.
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