
Non-exponential kinetics of unfolding under a constant force
Samuel Bell and Eugene M. Terentjev1

Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE,
U.K.

We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic ‘core’
inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in
AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with
hydrophobic or hydrogen-bonded cores. We find the introduction of super-hydrophobic units leads to a
stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This
leads to the average non-exponential population dynamics, which is consistent with a variety of experimental
data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin
of non-exponential relaxation laws.

I. INTRODUCTION

Self-assembly and controlled unfolding of biological
macromolecules is a fundamental process in cell biology,
and is crucial to life itself. It has proven to be a rich
area of research, and while there has been much progress
and understanding achieved, there is still much left to dis-
cover. Part of the reason for this is the unique set of inter-
actions for each protein sequence, and the resulting com-
plexity of the phase space, as well as the many mecha-
nisms for denaturation, including temperature, pH, force
and enzymatic action.

The response of biomolecules to mechanical forces has
been a popular area of study within biophysics1. The
sensitivity of experimental tools like optical tweezers and
atomic force microscopy (AFM), and their ability to work
in a ‘wet’ environment, have made them ideal for probing
biology with mechanical forces at a molecular level. They
have been used extensively to characterise the unfolding
kinetics of a range of biomolecules2,3. As well as working
with DNA, many experiments have focused on compact
globular structures, such as the Ig domain, an important
subdomain of several proteins, including titin4–6.

AFM experiments can be performed in the position-
clamp mode, where the force is measured by the can-
tilever5, or in the force-clamp mode, where a constant
force is applied and the resulting extension measured.
In force-clamp experiments, biomolecules typically show
all-or-nothing transitions between folded and unfolded
states7,8, meaning that denaturation occurs abruptly and
completely once a critical force is reached in the case
of force-ramp, or a characteristic time is reached if a
constant force is applied. The transition from stable to
metastable configurations with increasing applied force
has been treated theoretically, and indeed found to be
first order9–11.

Initially, the kinetics of transitions were studied using
a two-state system, with a potential barrier modified by
the introduction of force12. When the final state is much
lower in energy than the initial state, such a reaction is
essentially irreversible, and the survival probability of the
initial state decays exponentially with time. This is the
regime of the original Kramers problem of escape over
the barrier13.

Recent analysis of ubiquitin unfolding data from single-
molecule pulling experiments has found this simple model
fails at describing the experimental data14,15. Strongly
non-exponential kinetics have been also found in other
biological systems, such as ligand binding in myoglobin,
and are usually attributed to random variations in
molecule conformations14. These ensemble variations
may have an additional time-dependence. As such, some
early work thought of the free energy landscape as a col-
lection of native globular states (of similar but not iden-
tical energies) and extended unfolded states, separated
by a single energy barrier, in a globally connected en-
ergy landscape16,17. This idea of heterogeneity can also
be modeled using disorder theory18. The variation of
unfolding rate in the ensemble of molecules can be de-
scribed by introducing a stochastic internal parameter,
which could follow a chosen pattern of static or dynamic
disorder.

When the rate of change of internal parameter is much
slower than the unfolding rate, we can regard it as fixed
for each molecule, and consider the regime of static, or
quenched, disorder. In this limit, Kuo et al.19 intro-
duced a Gaussian variation in the barrier height to be
surmounted by individual molecules. However, Lannon
et al.15 subsequently found this model to be a poorer fit
to the data than a stretched exponential distribution.

When the internal parameter can no longer be re-
garded as fixed on the time-scale of unfolding, one en-
ters the regime of dynamical disorder18. Recent work by
Hyeon et al.20 have looked at the role of dynamical dis-
order in the unfolding kinetics of macromolecules, and
other work has had some success at fitting ubiquitin un-
folding data using a generalised Langevin equation with
fractional Gaussian noise21. These approaches are still
relatively new, and have yet to be fleshed into a physi-
cal model where parameters are obtained from physical
quantities.

In this paper we take inspiration from earlier work by
Geissler and Shakhnovich22. They studied the mechan-
ical response of random copolymers in equilibrium (a
problem in static disorder). In attempting to adapt their
analysis to look at the unfolding kinetics, we found that a
much simpler model is already showing non-exponential
kinetic features. Even the introduction of only a single
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inhomogeneous residue into an otherwise homogeneous
polymer chain can lead to a significant change in the un-
folding kinetics. Although the position of this residue
could be fully prescribed by the sequence, we found that
its exposure to solvent has to be treated as a random
variable. This variable affects the unfolding rate con-
stant, making the ensemble-average phenomena highly
non-exponential. This could provide a crude but effec-
tive model for hydrophobic cores of biomolecules.

To compare our results and predictions to experimental
data, a set of realistic model parameters will need to be
chosen. For these, we will follow the directly related ex-
periments by Fernandez and Brujic7,14,15,19, where ubiq-
uitin or Ig-like I27 domains of titin were unfolded at con-
stant force. Hence we will take a polymer chain with
N = 100 residues, as a value close to the above pro-
teins. Since the minimal force these authors were us-
ing was ∼ 90 pN, and we have earlier obtained the the-
oretical value for the critical unfolding force f∗ in this
regime11, quite a reasonable value of the globule ‘hy-
drophobic strength’ u = 5kBT has to be chosen (assum-
ing the characteristic size of an amino acid residue is
b ∼ 0.3 nm); at this strength of globule the critical force
for a homopolymer would be f∗ ≈ 4.48(kBT/b) = 59.7
pN, acceptably slightly below what was used in experi-
ment.

II. POLYMER MODEL

We consider a model polymer consisting of a single
type of hydrophobic monomer, with just one additional
‘core’ monomer, which we take to be much harder to
remove from the bulk of a polymer globule than all the
others. This could be a toy model for the hydrophobic
core of a protein, or a particular sequence of residues that
binds to its matching counterpart stronger than others.
We shall assume that the position M of this particular
monomer in the polymer sequence (1 . . . N) is known, and
remains fixed. The reason why we only consider one such
‘locked’ monomer, and not several (as would be the case
in a real folded protein), is simply because the qualitative
features emerging due to the presence of such an internal
‘lock’ are clear already in the singlet case – while the
calculations are kept simpler and transparent.

Given poor solvent conditions, we expect that the un-
stretched polymer is folded in equilibrium, and will form
a compact globule. Following earlier works, we model
the free energy of the globule as the sum of favourable
monomer-monomer pair interactions in the bulk, and un-
favourable monomer-solvent interactions at the surface.
To minimise the free energy, the core monomer will al-
ways be buried deep within the bulk of the globule, and
provide no contribution to the surface energy. The free
energy of the globule can be written as a function of
the number of monomers in the globule Ng, the force-
induced extension of the globule x, the bulk energy of
the monomers, −u, and the additional binding energy of
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FIG. 1. Spherocylinder model of the globular polymer in
poor solvent, being stretched by an application of force f
to its two ends. (a) A tube representation of a chain in
Brownian dynamics simulation; (b) a scheme illustrating the
force-induced asymmetry of the remaining globule with Ng

monomers, one of which has a stronger binding energy in the
globule, −(u + w). Chain can be removed from both ends
when the polymer is unravelling.

the ‘lock’ monomer w, such that the total energy of this
residue in the bulk of the globule is −(u+w). This gives
the free energy of the globule:

Fg(Ng, x) = −Ngu− w +
A(x)

b2
u

2

= −Ngu− w +

(
2Ngb

3x
+

√
πNgx

b

)
u,

(1)

where A(x) is the surface area of the deformed globule,
and b is the monomer size. Following an earlier work11,
for efficient analytical treatment we take the shape of
the globule to be a spherocylinder (see Fig. 1), with
a constant volume Ngb

3. In Eq. (1) we assume that
any monomers on the surface are half-solvated, with the
binding energy −u/2, and that a completely solvated
monomer in the exposed chain segments has the poten-
tial energy level of zero. The term −w may or may not
be present in Fg, depending on whether the w-monomer
is still inside, or has been removed from the globule into
the stretched-out segments.

The surface energy A(x) has an inflection point, which
indicates an instability in the globule past certain exten-
sions (see11 for a detailed discussion). In the force-clamp
regime, this manifests in the globule’s inability to sup-
ply restoring forces beyond a certain critical value of its
extension, xcrit. For a given applied force f , the mini-
mum size of the globule to provide an equal and opposite
restoring force is given by:

Ng(stab) = N −Ns =
2

3π2

(
16fb

3u

)3

, (2)

Globules below this size cannot sustain the applied force
in equilibrium. For compactness of later expressions, we
define the amount of chain that must be removed to reach
this threshold of stability, Ns. We posit that once a glob-
ule has been reduced below its smallest stable size, it will
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rapidly unfold and extend to a chain state, with little re-
gard for features of the globule. This issue will become
important later, when we start calculating the rate at
which a globule transforms into an extended chain.

Since we have chosen to measure the potential energy
of fully solvated monomers as zero (in the poor solvent,
this leads to the negative potential energy of monomers
inside the globule, Eq. (1), the remaining free energy of
the expanded chain with contour length L = b(N−Ng) is
entirely dependent on the chain’s properties. A general
form for this free energy in terms of the chain’s end-to-
end extension, z, was derived by Blundell23, and here
we reduce the full expression to the flexible chain limit,
where the persistence length lp is small – of the order of
the monomer size, lp ≈ b� L:

Fch(z) =
2kBTL

πb (1− (z/L)2)
− 2kBTL

πb
. (3)

The constant term is added to fix the energy of the chain
at zero extension: Fch(0) = 0. This expression is valid
across the different regimes of stretching as the chain is
being pulled. For small deformations, Eq. (3) reduces to
the entropic spring expression, Fch(z) ≈ (2kBT/πLb)z

2.
In the limit of large stretching, z → L, the expres-
sion shows the well-discussed divergence for an inexten-
sible chain, known as the Marko-Siggia or Fixman-Kovac
limit24,25.

In the force-clamp mode of a typical AFM stretching
experiment, we need to work with the Gibbs free energy,

G(f) = F [xeq(f)]− fxeq(f), (4)

where xeq(f) comes from the condition of mechanical
equilibrium. To calculate the Gibbs free energy of the
whole system, we must add the contributions from any
globular part with Ng monomers, G1(f), any chain parts,
G2(f) with a total of Nc = N − Ng monomers, and
whether or not the w-monomer is solvated (i.e. extracted
from the globule):

G(f,N,Ng) = G1(f,Ng) +G2(f,N −Ng)− (w), (5)

To find an expression for the Gibbs free energy of the
remaining globule, G1, we need to use Eq. (1) in (4). In
order to obtain a simple and compact form of the equilib-
rium extension xeq(f), we need to make the assumption
that the globule only suffers a small deformation when
a force is applied; this will be the case when the solvent
is sufficiently poor. Then the deformation is linear with
applied force,

xeq(f) =
3

√
6

π
Ngb3 +

16b2

9πu
f, (6)

where the first term is the diameter of spherical globule.
For the pulled-out chain segment, we need to impose

the condition of mechanical equilibrium as well, finding
the tensile force

f = −∂Fch(z)

∂z
= −4kBT

πlp

( z
L

) 1(
1− (z/L)

2
)2 , (7)
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FIG. 2. Gibbs free energy curves G1 + G2, plotted against
the number of monomers in the extended chain (Nc) for a
fixed value of pulling force f . We can split Nc into two parts,
so exposure of w-monomer can be at different values of Nc.
Exposure of the w-monomer at Nc = Nw leads to a jump
w in the free energy. In (a), this exposure happens before
the top of the free energy barrier, where Nc = N∗

c . In (b),
exposure occurs after the free energy peak, forming a meta-
stable intermediate state. In (c), the exposure happens once
the globule is already unstable, Nw > Ns, where exposure is
not affecting the unfolding rate.

and inverting it to obtain the equilibrium extension
zeq(f) to be then used in Eqs. (3) and (4). Since all
expressions depend strictly on the ratio (z/L), we can
infer that the total extension in response to an applied
force is proportional to the contour length L of the ex-
posed chain. As a consequence, the (negative) Gibbs
free energy of the chain, G2(f), is proportional to the
contour length of the chain, L = Ncb, where the num-
ber of solvated monomers is Nc = N −Ng. As a result,
we can separate the effective chemical potential factor:
G2(f) = Ncµ(f). In the limit of large extension, when
(L− z)/L� 1, this chemical potential takes the form11:

µ(f) ≈ 2kBT

π

(
1

1− ξ2
− 1

)
− fbξ . (8)

Here the dimensionless parameter ξ is a measure of the
fractional extension of the chain relative to its contour
length:

ξ =
zeq
L

= 1− 1√
1 + πfb/kBT

. (9)

This form of the free energy of the extended portion
of the polymer has an important consequence. We can
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in principle divide any chain of Nc monomers into two
separate segments linked in series (see Fig. 1), and the
Gibbs free energy will be the same, regardless of how
we distribute the Nc monomers between the two parts.
This means that monomers can be pulled out of the glob-
ule from either end of the chain, forming two tails of
length z1 and z2 = z − z1, without any additional free
energy penalty. This means that the ‘lock’, positioned at
M < N/2 from one end of the chain, could be exposed to
the solvent for any Nc in the range M ≤ Nc ≤ N . Let us
denote which monomer it is to leave the globule as Nw
(meaning that the exposed chain segments have the total
of Nc = Nw monomers when the ‘lock’ is pulled out).
The exposure of the w-monomer will manifest itself as a
discontinuous jump in the free energy profile G(Nc, Nw)
at Nc = Nw. There are three qualitatively different situ-
ations, depending on the value of Nw, illustrated in Fig. 2
which sketches the dependence of G(Nc) for a fixed value
of applied force f (the dashed region on these plots rep-
resents the unstable globule, with Ng ≤ N −Ns, see Eq.
2). The three regimes are:

(a) The lock could be exposed before the free energy bar-
rier (Nw ≤ N∗c ). This results in a simple two-state
kinetics with an enhanced barrier.

(b) The lock could be exposed past the barrier, in the
stable region of the free energy curve (N∗c < Nw <
Ns). In this case, we have a meta-stable intermediate
state, and a resulting three-state kinetics.

(c) The lock is exposed in the unstable region (Nw >
Ns). This means that the system effectively does not
see the free energy jump and the globule unfolds as
if there was no w-monomer.

III. DISTRIBUTION OF BARRIER SHAPES

We now show that the value of Nw (the total length
of the pulled-out chain for which the w-monomer gets
exposed) is a random variable. The randomness arises
purely because there is a choice in how to distribute the
pulled-out segments z1 and z2 (see Fig. 1) before the
‘locked’ monomer is at the surface. We derive the prob-
ability to have the w-monomer pulled out, given its se-
quential positionM < N/2 along a chain ofN monomers:
P (Nw|N,M). Let us assume that each time a monomer
is pulled from the globule, we have an equal probabil-
ity p = 1/2 of it being pulled from the left or the right.
P (Nw|N,M) is therefore similar to the binomial distri-
bution, with the difference in that we could remove the
w-monomer by approaching from the left or the right,
equivalently. To remove the w-monomer at Nw from
the shorter end, we must first remove M − 1 ordinary
monomers in a total of Nw − 1 exposure events. Let us
call the probability of that PS ; this is given by the bino-
mial expression PS = 2−(Nw−1)

(
Nw−1
M−1

)
. In the same way,

to remove the w-monomer from the longer end, we must
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FIG. 3. The likelihood of the jump occurring at Nw is given by
P (Nw). The distribution P (Nw) is plotted here for N = 100
and several values of the w-monomer’s position, M , in the
sequence along the chain.

remove N −M ordinary monomers first, with probabil-
ity PL = 2−(Nw−1)

(
Nw−1
N−M

)
. The total probability is then

given by the sum 1
2 (PS + PL), which takes the form:

P (Nw|N,M) =
1

2Nw

[(
Nw − 1

M − 1

)
+

(
Nw − 1

N −M

)]
. (10)

Figure 3 gives the shape of this distribution for vari-
ous positions of the w-monomer in the chain sequence.
P (Nw|N,M) = 0 for Nw < M : one cannot remove the
w-monomer without first removing a certain number of
ordinary monomers. It is normalised, as expected for a
probability distribution:

∑
Nw

P (Nw|N,M) = 1.
We will shortly determine how the position of the jump

Nw determines the rate constant of the transition to the
unfolded state. Let us split the population according to
each unfolding trajectory, defined by the value of Nw.
These sub-populations will decay according to their spe-
cific rate constant k(Nw), and the number of folded poly-
mers n(Nw) will vary according to the simple exponential
rate law:

ṅ(Nw, t) = −k(Nw)n(Nw, t) . (11)

However, in experiment, we cannot distinguish between
different sub-populations. Instead, we track how the to-
tal population evolves over time. To calculate this, we
have to weight each sub-population by its fraction, i.e.
average 〈n(Nw)〉. The fraction of the population in the
sub-population n(Nw) is given by P (Nw). Accordingly,
the rate equation for the entire population takes the form:

〈n(t,M)〉 = n0

N∑
Nw=1

P (Nw|N,M)e−k(Nw)t. (12)

In order to efficiently evaluate the ensemble-averaged
population kinetics for the chains unfolding by the pulling
force, we need to make an approximation for the proba-
bility distribution of the random variable Nw. This dis-
crete distribution was given by the Eq. (10) and plotted
(for N = 100) in Fig. 3. It is clear that, although the
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binomial expressions involved are skewed, even at these
moderate chain lengths the Central Limit Theorem holds,
and we can approximate the distribution as a Gaussian
with good accuracy. The conversion from a strict bino-
mial distribution of a random variable X with Nw − 1
‘attempts’ corresponds to replacing it with a continuous
Gaussian26 with the mean y = (Nw − 1)/2 and variance
σ2 = (Nw − 1)/4. For the binomial probability PS con-
tributing to the first term in Eq. (10), the variable is
X = M−1; for the distribution PL in the second term of
Eq. (10), the variable X = N −M . Put together, these
two expressions (Gaussian in the variable X) produce the
final continuous probability density of our actual random
variable Nw:

P (Nw) =

√
1

πy

(
e−

(M−1−y)2

y + e−
(N−M−y)2

y

)
, (13)

where the shorthand y = (Nw − 1)/2 is employed. This
approximate expression turns out to be indistinguishable
from the exact curves in Fig. 3, plotted for N = 100.
The compact analytical expression (13) can now be used
to calculate the observed population kinetics, which re-
places Eq. (12):

〈n(t)〉 =

∫ N−1
2

0

dyP (y)e−k(y)t. (14)

IV. RATE CONSTANTS

The equilibrium rate constants k(Nw) could be found
using a Kramers-like method, first explored by Brinkman
for the case of two-well potential27. The expression for
the rate constant is given by a steady-state limit of the
Ornstein-Uhlenbeck theory for the mean first passage
time28, when the ensemble distribution in the initial po-
tential well had enough time to equilibrate before the
average transition occurs:

k =
kBT

γ

1∫
well

e−βG(Nc)dNc
∫

barrier
eβG(Nc)dNc

, (15)

where γ is the frictional coefficient for the effective energy
landscape characterised by the reaction coordinate Nc;
as usual β = 1/kBT . We use the same approach here to
calculate the rate constants for the three separate cases
identified above.

A. Jump in the unstable region

We start with this region (Nw > Ns), in spite of it
appearing the last on the list and in Fig. 2, because
the transition rate obtained in this regime is unaffected
by the ‘lock’ and forms the reference for all other cases.
When the jump in the free energy happens in this un-
stable region, we are reduced to the homopolymer prob-

lem11, since the extraction of the w-monomer has no ef-
fect on the process (the remaining globule loses its sta-
bility before the ‘lock’ is forced out). The forward rate
constant is given by

k0 =
α

γ

√
ω

2πkBT
καe

−β∆GG , (16)

where ∆GG is the energy barrier at N∗c , see Fig. 2(c)
for illustration. ω is the curvature of the barrier, and
α = (∂G/∂Nc)|Nc=0 is the slope of the native potential
well (which is treated as approximately triangular). The
pre-factor κα is determined by the geometry of the well,
and we define it for the convenience of later expressions:

κα(N∗c ) =

[
1− exp

(
− αN∗c

2kBT

)]−1

. (17)

Note that the rate k0 is not a function of our random
variable Nw.

B. Jump before the barrier

In most cases, when Nw < N∗c , the fixed jump in the
free energy has only a minor effect of slightly distorting
the pre-exponential factor in the basic homopolymer ex-
pression (16) due to the distortion of the native well, see
Fig. 2(a). However, the effective height of the barrier is
increased by the magnitude of this jump. To estimate
the resulting rate constant k1 we can split the integral
over the barrier (having approximated the potential as
harmonic) into two pieces,∫ ∞

−∞
eβGdNc =

∫ Nw

−∞
eβ(G+w)dNc +

∫ ∞
Nw

eβGdNc.

This leads to a modified form of (16):

k1(Nw) = fw(Nw) · k0e
−βw , with (18)

fw =
2

(1− e−βw) erf
(√

ω
2kBT

(N∗c −Nw)
)

+ (1 + e−βw)
.

Naturally, the rate constant k1 reduces to k0 when w = 0,
that is, when there is no ‘locked’ w-monomer present in
the polymer globule. In the special case when Nw = N∗c ,
the exposure happens at the top of the barrier and the
rate constant simplifies to:

k1(N∗c ) =
2k0

1 + eβw
. (19)

C. Intermediate state kinetics

When the jump occurs in the region N∗c < Nw < Ns,
we have three (meta-)stable states and two free energy
barriers between them, see Fig. 2(b). With three-state
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kinetics, one has to make approximations to find an ana-
lytic expression for the rate constant. We choose to follow
the steady-state approximation29, where the intermedi-
ate state is assumed to be in equilibrium with the native
state, and transitions to the extended state are assumed
to be permanent (no refolding). In this approximation,
the rate constant is expressed as

k2 =
kG→IkI→E
kI→G + kI→E

(20)

where G, I, and E refer to the globular (native), the
intermediate, and the extended states, respectively.

kG→I = k0 , (21)

kI→G =
α′

γ

√
ω

2πkBT
κα′e

−β∆GI→G (22)

where α′ is the reverse gradient of the intermediate well,
and ∆GI→G = G(f,N∗c )−G(f,Nw) is free energy barrier
for the transition from the intermediate state back to the
native globular state, see Fig. 2(b) for illustration. The
pre-factor κα′ is given by the same form as Eq. (17), but
with the arguments α′ and (Nw −N∗c ). Finally, the rate
constant of escape into the fully extended state is:

kI→E =
α′2

kBTγ
κ

(1)
α′ κ

(2)
α′ e
−βw . (23)

α′ appears twice in the expression for kI→E , and so is
the pre-factor κα′ : once with the argument (Nw − N∗c )
from the Kramers integral over the triangular well of the
intermediate state, and again with the argument (Ns −
Nw) from the integral over the I → E barrier, which is
also triangular with the same slope α′.

The full expression for the rate k2 in the three-state
regime can be simplified into a form:

k2(Nw) =
k0√

ω
8πkBT

(Ns −Nw)eβwe−
1
2βω(Nw−N∗c )2 + 1

(24)

We can plot the rate constants derived above for a
range of w and f , as illustrated in Fig. 4. For values
of Nw close to N∗c , the expression for k2 deviates from
its expected value where it needs to join the end-point
of k1: here the approximations made by Brinkman (that
of a high barrier) break down. However, we expect that
the value of k1 itself is actually valid at any value of
Nw within the region 0 ≤ Nw ≤ N∗c . Therefore, we
get a good idea of the true profile of k(Nw) in spite of
approximations.

For small Nw � N∗c , the rate constant k1 differs from
the homopolymer rate of escape k0 only by the Arrhenius
factor for the jump, exp(−βw). For Nw > Ns, the rate
is just a constant k0. Because of these constant values
of rates, the average 〈n(t,M)〉, given by Eq. (12), will
retain a simple exponential time dependence in certain
ranges of ‘lock’ monomer positions M .
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FIG. 4. Plots of the rate constants k(Nw)/k0 for N =
100, u = 5kBT for two values of pulling force: f1 = 4.8kBT/b
(only slightly above the critical force f∗), and f2 = 5.3kBT/b.
Two values of the ‘lock’ energy w are shown in the plots.
The segments k1 (at low Nw) terminate at the points when
Nw = N∗

c (f), Eq. (19), labelled by •. The segments in the
three-state regime, k2(Nw), reach the value k0 (1 in the scaled
plots) when Nw = Ns(f).

V. ENSEMBLE AVERAGE

We are now in a position to evaluate the integral in
Eq. (14), and plot the resulting average population dy-
namics against time. In a typical AFM experiment8,14,15

a constant force is applied to a folded protein, and a time
of a sharp unfolding transition is recorded. After many
repeats, a distribution of rupture times is obtained with
great accuracy. The cumulant of this distribution rep-
resents the relative population of chains unfolded up to
time t. With a single rate of unfolding, one expects this
population to grow as (1− e−k0t). To represent the same
population in our analysis, we plot 1 − 〈n(t)〉 in Fig. 5.
In the plot we use constant force slightly above the crit-
ical value f∗, and the fixed added strength of the ‘lock’
that is equal to the hydrophobic strength of the main
monomers. In this representation it is difficult to dis-
tinguish exponential from non-exponential kinetics: all
curves show qualitatively the same cumulative effect of
an increasing fraction of unfolded chains as time passes
under a constant force. It is, however, remarkable that
for all the same parameters of the chain, the mere posi-
tion of the ‘locked’ monomer along the sequence has such
a strong effect on the apparent rate of unfolding.

Note that the time axis in Fig. 5 and subsequent plots
is scaled by a dimensional constant τ = γ/kBT , evident
in the original definition of all rates, Eq. (15). This time
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FIG. 5. We plot the cumulant 1-〈n(t)〉 as an illustration of a
typical experimental trace. We have the same force for each
of the curves, and strength of w-monomer (fb = 4.8kBT, u =
5kBT, w = 5kBT for N = 100), but vary the position of
the w-monomer, M . The linear non-dimensional time axis is
measured in units of 1012, which we shorthand as T =‘tera’.

scale is an inverse of a diffusion constant of fluctuations in
the reaction coordinateNc. To relate it to a more familiar
diffusion constant D of a single residue (monomer), we
have to use the length scale of our monomer: τ = b2/D.
Taking D ∼ 6 · 10−10m2/s for an average amino acid in
water (which is almost certainly an overestimate in this
case), we obtain τ ∼ 1.5 · 10−10s. This means that the
real time scale in Fig. 5 and subsequent plots is mea-
sured in minutes. It is a bit longer than in experiments
we quoted8,14,15, but our aim was not to reproduce the
experimental results quantitatively: we built a minimal
model with a single ‘lock’ to illustrate the point, with
both u and w magnitudes chosen somewhat arbitrarily.
It is very easy to change these parameters slightly and
achieve a much better agreement with measured time
scales, but we believe this is not necessary or particu-
larly beneficial.

To what extent does the ‘lock’ affect the kinetics? To
distinguish the exponential relaxation, we first plot 〈n(t)〉
for different lock positions, M , on a logarithmic scale in
Fig. 6. As in Fig. 5, for a range of w-monomer positions
near the end of the chain, there is a very little change
in the slow single-exponential relaxation. The deviation
from single exponential kinetics (showing as a straight
line in this logarithmic plot) is increasingly evident for
values of M closer to the middle of the chain. Initially,
the decay is fast, and follows a simple exponential law,
as those globules that transition with the fast rate k0

unfold first. It is difficult to discern this regime in the log-
linear plot in Fig. 6, because we concentrate on the long-
time effects. At much longer times, there is a gradual
crossover to a different simple-exponential decay with the
rate constant k0e

−βw, much smaller for significant w. As
M gets larger, the time this crossover occurs increases –
whereas for small M we mostly see the slow exponential
rate.

For small M , the deviation from single exponential ki-
netics will not be observed in experiment. This is easy
to understand: the probability of exposure, P (Nw), is
relatively sharply peaked, so for small M , almost all the
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FIG. 6. The plot 〈n(t)〉 on a logarithmic scale, where 〈n(t)〉
is the same as in Fig 5, for fb = 4.8kBT, u = 5kBT, w =
5kBT and N = 100. For the core located at M ≈ 20 or less,
we have an approximately single exponential decay. For the
intermediate core positions, there is a transition from faster
decay to the single exponential at longer times (leading to
a long tail). Note that as the core gets close to the middle
of the chain the slower (sub-exponential) relaxation becomes
increasingly apparent.
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FIG. 7. The plot 〈n(t)〉 on a logarithmic scale, for N =
100, fb = 4.8kBT, u = 5kBT and varying core strengths, w,
listed in the plot. Solid lines are for a mid-range M = 30, the
matching dashed lines are for M = 42, close to the middle of
the chain. A stronger core (larger w) leads to a very long tail
in the distribution, even for the same position M .

probability mass will lie in the two opposite regions where
the rate constant is independent of Nw. Thus, the en-
semble average 〈n(t)〉 remains a single exponential, with
only a small extra contribution from other rate constants.
Non-exponential effects are most prominent when M lies
close to the middle of the chain where the rate constant
undergoes the rapid change, cf. Fig. 4.

We examine the effect of varying the ‘lock’ strength
w in Fig. 7, comparing a mid-range position M = 30
and near the middle position M = 42. As the ‘locked’
monomer becomes increasingly hydrophobic, the rate of
slow decay k0e

−βw will obviously decrease, and so the
folded molecule is more stable for larger w. It is apparent
that, at short times of folded population decay, all curves
follow the fast simple-exponential relaxation k0 that is
independent of the ‘lock’ strength w. The position of
the crossover to the slow simple-exponential relaxation
with the rate constant k0e

−βw occurs at different times
depending on the ‘lock’ position M .



8

VI. DISCUSSION

In reality, biomolecules have a whole range of varied
local and non-local interactions that help stabilise their
specific structure. Our model does not have the scope to
capture these particular effects, most familiar in protein
folding: it would be irresponsible to suggest any quan-
titative agreement with an experiment. However, if the
interactions of the core residues are much stronger than
all other interactions in the molecule, we feel justified in
taking these other interactions as approximately equal in
strength, as in our model.

Not all cores will influence the unfolding kinetics, and
we have demonstrated that much depends on the position
of such a ‘lock’ along the chain. When the core residues
are close to the terminus of a protein, that protein will
unfold on average after a much longer time than those
where the core residues are in the middle of the protein’s
sequence. However, the globules with core residue close
to the middle of their sequence exhibit a pronounced non-
exponential dynamics (on average) upon the application
of constant force. Unsurprisingly, stronger locks stabilise
the molecule more than weak locks.

What if there are multiple regions in a protein that are
strongly bound together? The probability distribution
now has multiple degrees of freedom: the exposures of the
different cores. The probability will be sharply peaked
around the point M, which is now a vector containing
the sequence positions of the different cores. There may
be small breakage events into smaller globules (but each
larger than the critical size), each protecting a strongly
bound region, before the chain fully extends. These
might manifest as short-lived intermediate plateaus on
the experimental traces.

Experimental work that shows distinctly non-
exponential kinetics of unfolding has been mostly done on
ubiquitin protein14,15,19. The structure of ubiquitin has
been resolved in 198730, where the authors clearly iden-
tify the residues that form the hydrophobic core, which
is created by bonding the α-helical segment (residues 23-
34) with the β-sheet segment. By examining the sequnce
and the folded structure, Fig. 8, we conclude that the
main hydrophobic bond is formed between Ala28 and
Leu43, out of the total sequence of 76 residues. Since
force is applied at the N- and C-termini of the protein,
we say that the intermediate chain segment (28-43) be-
tween these two residues is only exposed to the force upon
the breaking of this bond. Therefore, we introduce an ef-
fective chain length of N = 61, with a lock at M = 28
and N − M = 33. This is close to the middle of the
effective chain, which agrees with the non-exponential
kinetics prediction.

Finally, what about other non-local interactions? We
had nothing to say about these in our analysis, but offer
some thoughts here. One could consider a collection of
springs between two plates, with a constant pulling force
applied to the plates. These springs could have different
breaking energies, and different spring constants. Force

Ala28

Leu43

(a) (b)

FIG. 8. The structure of ubiquitin: (a) the PDB 1ubq ren-
dering, the arrow pointing at the strongest hydrophobic bond
between Ala28 and Leu43; (b) the corresponding sequence
annotation with the labeled hydrophobic residues.

applied will now be spread across these springs, which
will break, according to the same principles as discussed
here. As each springs break, the force will re-distribute
across the remaining springs, and each will have a force
increased. This linkage of the bonds will lead to non-
exponential kinetics as well, as many other effects such a
random variation of sequence.

In this paper we looked at the simplest possible sce-
nario, and found that the introduction of even a sin-
gle specifically-placed inhomogeneity to an otherwise ho-
mopolymer chain already produces non-exponential ki-
netics when chains are unfolded under constant force.
The inhomogeneity leads to a statistical randomness in
the way the chain unfolds and results in stretching of the
decay curve, with a long tail decay after an initial fast
exponential decay (corresponding to the situations when
a significant portion of the chain can be pulled out of the
globule before the ‘lock’ is affected). While this is very
much a toy model, such behaviour mimics quite well the
behaviour of biological macromolecules in AFM pulling
experiments, and we hope this paper offers some insight
into the mechanisms for non-exponential kinetics in these
experiments.
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