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Abstract 

Study of 3D genome organisation in budding yeast by heterogeneous polymer 

simulations 

Zahra Fahmi 

Investigating the arrangement of the packed DNA inside the nucleus has revealed the essential role 

of genome organisation in controlling genome function. Furthermore, genome architecture is 

highly dynamic and significant chromatin re-organisation occurs in response to environmental 

changes. However, the mechanisms that drive the 3D organisation of the genome remain largely 

unknown. To understand the effect of biophysical properties of chromatin on the dynamics and 

structure of chromosomes, I developed a 3D computational model of the nucleus of the yeast S. 

cerevisiae during interphase. In the model, each chromosome was a hetero-polymer informed by 

our bioinformatics analysis for heterogeneous occupancy of chromatin-associated proteins across 

the genome. Two different conditions were modelled, normal growth (25°C) and heat shock 

(37°C), where a concerted redistribution of proteins was observed upon transition from one 

temperature to the other. Movement of chromatin segments was based on Langevin dynamics and 

each segment had a mobility according to their protein occupancy and the expression level of their 

corresponding genes. The model provides a significantly improved match with quantitative 

microscopy measurements of telomere positions, the distributions of 3D distances between pairs 

of different loci, and the mean squared displacement of a labelled locus. The quantified contacts 

between chromosomal segments were similar to the observed Hi-C data. At both 25°C and 37°C 

conditions, the segments that were highly occupied by proteins had high number of interactions 

with each other, and the highly transcribed genes had lower contacts with other segments. In 

addition, similar to the experimental observations, heat-shock genes were found to be located closer 

to the nuclear periphery upon activation in the simulations. It was also shown that the determined 

distribution of proteins along the genome is crucial to achieve the correct genome organisation. 

Hence, the heterogeneous binding of proteins, which results in differential mobility of chromatin 

segments, leads to 3D self-organisation. 
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1. Introduction 

Major breakthroughs in the field of chromatin biology have revolutionised our understanding of 

genome organisation and the links to gene regulation. The first section (1.1) reviews the 

fundamental properties of the dynamic chromosome structure. Extensive experimental and 

computational methods have been developed to dissect the features of the genome structure. These 

methods are reviewed in sections 1.2 and 1.3. In this project, I have adopted a computational 

approach to investigate the mechanisms that drive the 3D self-organisation of chromosomes in S. 

cerevisiae (section 1.4). 

1.1. Genome organisation 

Intensive studies over the past decades have revealed multiple levels of organisation in eukaryotic 

genomes. On the most basic level, the DNA wraps around the core histones, made up of eight 

histone proteins, to make a nucleosome, the fundamental subunit of the chromatin fibre 

(Ramakrishnan 1997; van Holde 1989). In higher eukaryotes, the chromatin then folds to build 

higher order genomic structures of different scales such as sub-megabase topologically associated 

domains (TADs), megabase A and B compartments, and chromosomal territories (Bonev & Cavalli 

2016; Sewitz et al. 2017b). The nucleus is a highly crowded environment with efficiently packed 

and organised chromatin and hundreds to thousands of protein species engaged in various types of 

interactions, such as protein-protein, DNA-protein, chromatin-chromatin and chromatin-lamina 

interactions. It is now known that these interactions play an important role in controlling the 

organised structure and the transcriptional activity of the genome (Long et al. 2016; Gómez-Díaz 

& Corces 2014; Flavahan et al. 2016), which changes upon differentiation, internal and external 

conditions (Javierre et al. 2016; Sewitz et al. 2017a; Lazar-Stefanita et al. 2017; Guidi et al. 2015). 

However, a comprehensive view of the mechanisms that drive organisation and dynamics of this 

highly complex system remains elusive. 

 

Many research projects have investigated the linear arrangement of DNA, identifying the local 

regulatory elements that modulate transcription, such as transcription factor binding sites and their 

consensus sequences (Levine & Tjian 2003), enhancers (Long et al. 2016), histone modifications 

(Smolle & Workman 2013), and sites of DNA methylation (Schübeler 2015). Activator and 

repressor proteins recruit enzymes, such as histone acetyltransferase or histone deacetylase, that 

modify histones. Histone modifications control gene expression by altering the local chromatin 

https://paperpile.com/c/VxVM1B/9gRI+BNAE
https://paperpile.com/c/VxVM1B/29mY+UvQp
https://paperpile.com/c/VxVM1B/29mY+UvQp
https://paperpile.com/c/VxVM1B/A2MY+yvcn+YVVm
https://paperpile.com/c/VxVM1B/A2MY+yvcn+YVVm
https://paperpile.com/c/VxVM1B/H8g2+golw+P7kV+ZPNH
https://paperpile.com/c/VxVM1B/DhEE
https://paperpile.com/c/VxVM1B/A2MY
https://paperpile.com/c/VxVM1B/Sqd0
https://paperpile.com/c/VxVM1B/QHa8z


2 
 

structure and inhibiting or attracting DNA binding factors (Dindot & Cohen 2013). In addition, 

DNA methylation can repress transcription through blocking the binding of transcription factors or 

mediating the binding of repressors (Jaenisch & Bird 2003). 

 

More recently, it has become possible to quantitatively investigate the 3D genome architecture. 

This has greatly enhanced our understanding of gene regulatory mechanisms, by showing how the 

three-dimensional organization of the genome influences gene regulation (Cavalli & Misteli 2013; 

Babu et al. 2008; Zuin et al. 2014; Dixon et al. 2016; Schmitt, Hu, Jung, et al. 2016; Lupiáñez et 

al. 2015). Many genes occupy preferred, non-random positions within the nucleus: In mammals, 

gene-poor or transcriptionally inactive regions are located close to the nuclear envelope in most 

cell types, whereas gene-rich or transcriptionally active regions prefer to localize at the borders of 

chromosome territories, away from the nuclear periphery (Foster & Bridger 2005; Nagano et al. 

2013). Manipulating the position of genes can also affect their activity; for human and mouse cells, 

it has been shown that relocating genes from their normal position to regions close to the nuclear 

periphery results in gene silencing (Reddy et al. 2008; Finlan et al. 2008). On the other hand, the 

single-celled eukaryote S. cerevisiae displays a mosaic arrangement of heterochromatin and 

euchromatin at the nuclear periphery, with active genes located close to the nuclear pores (Casolari 

et al. 2004), and inactive genes associated with other parts of the nuclear periphery and the nuclear 

centre (Zimmer & Fabre 2011).  

 

This organisation is achieved within a highly dynamic nucleoplasm (Lanctôt et al. 2007; Vazquez 

et al. 2001; Misteli 2001). For example, in mammalian cells, GFP-tagged proteins were measured 

to diffuse with diffusion coefficients of 0.24 - 0.53 μm2s-1, taking 24 - 54 seconds to travel 5 μm, a 

distance almost equal to the radius of the nucleus (Phair & Misteli 2000). Tagged chromosomal 

loci in living S. cerevisiae cells move more than 0.5 μm, equivalent to half of the nuclear radius, 

within a few seconds (Heun et al. 2001).  

1.2. Experimental methods for studying genome organisation 

Investigation of 3D chromatin organisation by novel experimental techniques has unravelled some 

of the key features of this intricate system of how genome structure relates to the function of the 

genome. A subset of these techniques are described in more detail in sections 1.2.1, 1.2.2, and 

1.2.3.  

https://paperpile.com/c/VxVM1B/OHGq
https://paperpile.com/c/VxVM1B/RtGO
https://paperpile.com/c/VxVM1B/CvwVp+F5Vnh+t8eIB+7dM4x+CzqMu+AZUsr
https://paperpile.com/c/VxVM1B/CvwVp+F5Vnh+t8eIB+7dM4x+CzqMu+AZUsr
https://paperpile.com/c/VxVM1B/CvwVp+F5Vnh+t8eIB+7dM4x+CzqMu+AZUsr
https://paperpile.com/c/VxVM1B/wH7hM+OpJQj
https://paperpile.com/c/VxVM1B/wH7hM+OpJQj
https://paperpile.com/c/VxVM1B/RtAap+WQPNT
https://paperpile.com/c/VxVM1B/5cBg9
https://paperpile.com/c/VxVM1B/5cBg9
https://paperpile.com/c/VxVM1B/AcGk7
https://paperpile.com/c/VxVM1B/rj2OP+f3OoA+5azG7
https://paperpile.com/c/VxVM1B/rj2OP+f3OoA+5azG7
https://paperpile.com/c/VxVM1B/KwOJ3
https://paperpile.com/c/VxVM1B/cnfOB
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1.2.1. Microscopy 

Fundamental discoveries in the field of nuclear structure and dynamics have been facilitated by 

microscopy techniques (Pederson 2011; Lakadamyali & Cosma 2015). Initially, electron 

microscopy has aided the investigation of important nuclear elements, such as nucleosomes (Oudet 

et al. 1975; Olins & Olins 1974; Wilson & Costa 2017), the nuclear pore complexes (Callan & 

Tomlin 1950; Gall 1964; Gall 1967; von Appen & Beck 2016), and the nuclear lamina (Fawcett 

1966; Zwerger & Medalia 2013). More recently, the structure of transcriptionally silent and active 

chromatin domains (Machida et al. 2018; Wang et al. 2014; Boettiger et al. 2016; Fussner et al. 

2010), and the interactions of chromatin with lamina (van Steensel & Belmont 2017; Kind et al. 

2013; Kind et al. 2015) have been explored by both electron and super resolution microscopy 

methods.  

 

Different fluorescence microscopy techniques, such as fluorescence recovery after photobleaching 

(FRAP) (Liebman & Entine 1974), fluorescent in situ hybridisation (FISH) (Pinkel et al. 1988; 

Lichter et al. 1988; Cremer et al. 1988), and fluorescent repressor operator system (FROS) 

(Robinett et al. 1996; Straight et al. 1996) have been adopted to detect the location and movement 

of proteins and DNA loci. By analysing the recovery of fluorescent signal over time, the binding 

rate of transcription factors (Mueller et al. 2008) and the binding of histone H1 protein were 

investigated (Stasevich et al. 2010). FISH experiments, which use fluorescent RNA probes to detect 

target DNA sequences, have shown that certain genes loop out of their chromosomal territory upon 

activation (Ferrai et al. 2010; Chambeyron & Bickmore 2004). In addition, they have indicated that 

the occupied volume by a chromosome can increase in the presence of transcription in human cells 

(Croft et al. 1999). In the operator/repressor system (FROS), bacterial repressors fused to 

fluorescent proteins bind to the repeats of operators that are integrated at target chromatin loci 

(Lassadi & Bystricky 2011) (Fig. 1.1). Using particle tracking, the mean square displacement and 

the spatial distribution of specific chromatin regions were measured in S. cerevisiae cells (Hajjoul 

et al. 2013; Dieppois et al. 2006; Miele et al. 2009). 

 

https://paperpile.com/c/VxVM1B/ov1Pb+ZUwOw
https://paperpile.com/c/VxVM1B/8f5ZL+Oszqc+DYXVs
https://paperpile.com/c/VxVM1B/8f5ZL+Oszqc+DYXVs
https://paperpile.com/c/VxVM1B/VMeGn+wBggF+5zVLS+7wXvp
https://paperpile.com/c/VxVM1B/VMeGn+wBggF+5zVLS+7wXvp
https://paperpile.com/c/VxVM1B/oxHEl+oOitc
https://paperpile.com/c/VxVM1B/oxHEl+oOitc
https://paperpile.com/c/VxVM1B/RIox5+OBAhh+dgodo+usjtX
https://paperpile.com/c/VxVM1B/RIox5+OBAhh+dgodo+usjtX
https://paperpile.com/c/VxVM1B/4o8Nx+jetuP+rtcaU
https://paperpile.com/c/VxVM1B/4o8Nx+jetuP+rtcaU
https://paperpile.com/c/VxVM1B/yssSa
https://paperpile.com/c/VxVM1B/qcnmm+leDwj+5IdCy
https://paperpile.com/c/VxVM1B/qcnmm+leDwj+5IdCy
https://paperpile.com/c/VxVM1B/YXAi4+K3e74
https://paperpile.com/c/VxVM1B/btJeg
https://paperpile.com/c/VxVM1B/MGSPb
https://paperpile.com/c/VxVM1B/2ZHYt+omJ5E
https://paperpile.com/c/VxVM1B/GW1qq
https://paperpile.com/c/VxVM1B/VxFEK
https://paperpile.com/c/H7zatn/TYgG+2th5+7Tz0
https://paperpile.com/c/H7zatn/TYgG+2th5+7Tz0
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Figure 1.1. Fluorescent repressor operator system (FROS) (modified from Miele et al. 2009). (A) The 

lac and tet operator arrays were inserted into chromosomal loci and bound by fluorescently labelled lac and 

tet repressor proteins. (B) The spatial localisation of tagged loci in live S. cerevisiae cells, calculated from 

measurements of stacks of images that were acquired at different focal depths. Bar is 2 μm. 

1.2.2. Chromosome Conformation Capture Methods  

The chromosome conformation capture (3C) technique (Dekker et al. 2002) and its derivatives, 

such as 4C, 5C, Hi-C, and capture Hi-C (de Laat & Dekker 2012; Sajan & Hawkins 2012; Han et 

al. 2018; Schmitt, Hu & Ren 2016), were developed to investigate the 3D structure of chromosomes 

by analysing the interactions between chromatin regions. These techniques rely on the re-ligation 

of digested DNA in fixed cells, which leads to a list of ligation products consisting of fragments in 

close spatial proximity. In high-throughput chromosome conformation capture (Hi-C) assay 

(Lieberman-Aiden et al. 2009) the library of ligation products is sequenced and mapped to the 

reference genome to generate the genome-wide chromatin interaction maps (Fig. 1.2A,B). The 

analysis of Hi-C contact maps has suggested the fractal globule structure for chromosomes in 

human cells (Lieberman-Aiden et al. 2009; Mirny 2011) (Fig. 1.2C), which was previously 

proposed by Grosberg et al (Yu. Grosberg et al. 1988; Grosberg et al. 1993). Hi-C experiments in 

S. cerevisiae cells have confirmed the Rabl configuration of their chromosomes, i.e. showing that 

centromeres cluster at one pole of the nucleus as well as the co-localisation of telomeres and their 

proximity to the nuclear membrane (Duan et al. 2010) (Fig. 1.2D). Hi-C data have also allowed the 

discovery (Dixon et al. 2012; Sexton et al. 2012; Nora et al. 2012) and extensive study of 

topologically associated domains (TAD) (Xia 2018; Fraser et al. 2015) (Fig. 1.2B). As Hi-C is 

performed on a population of cells, the results show the average of an ensemble of structures of 

several thousands or millions of cells. To overcome this averaging effect, single-cell Hi-C has been 

https://paperpile.com/c/H7zatn/7Tz0
https://paperpile.com/c/VxVM1B/rCphK
https://paperpile.com/c/VxVM1B/tuT83+BKsZA+9PhTx+juPrc
https://paperpile.com/c/VxVM1B/tuT83+BKsZA+9PhTx+juPrc
https://paperpile.com/c/VxVM1B/HBXv0
https://paperpile.com/c/VxVM1B/HBXv0+cbmk9
https://paperpile.com/c/VxVM1B/yXvXy+0iWxI
https://paperpile.com/c/VxVM1B/EOEuF
https://paperpile.com/c/VxVM1B/vCmWR+FmznQ+GFkFJ
https://paperpile.com/c/VxVM1B/uchNV+T1ghP
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developed. This has revealed the robust structure of domains at megabase level across the cell 

population, despite cell-to-cell variable inter-domain interactions (Nagano et al. 2013).   

 

Figure 1.2. Hi-C experiment. (A) A schematic overview of the Hi-C protocol (Sewitz et al. 2017a). The 

result of the experiment is a list of pairwise interactions. (B) A part of a Hi-C contact map, which visualises 

the pairwise interactions between genomic loci (modified from (Ulianov et al. 2015)). A self-interacting 

genomic region, which has lower interactions with neighbouring regions, is called a TAD. (C) A schematic 

view of a fractal globule (Lieberman-Aiden et al. 2009). (D) The Rabl-like structure of chromosomes in S. 

cerevisiae was inferred from Hi-C data (Duan et al. 2010). 

 

Hi-C data are affected by various systematic biases, such as spurious ligation products and artefacts 

from PCR amplification, which need to be filtered out (Schmitt, Hu & Ren 2016; Osborne & 

Figure 1.2B,C,D removed for 

copyright reasons. The copyright 

holders are 2015 Elsevier Inc., 

2009 American Association for 

the Advancement of Science, 

and 2010 Springer Nature. 

 

https://paperpile.com/c/VxVM1B/beDDV
https://paperpile.com/c/H7zatn/FrOO
https://paperpile.com/c/H7zatn/HW2J
https://paperpile.com/c/H7zatn/gO1B
https://paperpile.com/c/H7zatn/s10a
https://paperpile.com/c/VxVM1B/juPrc+PhOYi
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Mifsud 2017). In addition, other biases could arise from differential length and mappability of 

interacting fragments and GC content at ligation junctions (Yaffe & Tanay 2011). Different 

software tools and algorithms have been developed to remove these biases and normalise the 

contact maps (Imakaev et al. 2012; Servant et al. 2015). The comparison of these tools (Forcato et 

al. 2017) has shown that there is not any one pipeline that outperforms the others in all different 

analyses. Moreover, the characteristics of output contact maps could be dependent on the selected 

pipeline.  

1.2.3. Chromatin states 

How a specific type of protein (Bina 2013; González-Mariscal et al. 2014; Lüscher & Vervoorts 

2012; Bondos et al. 2015) or a histone modification (Zhang et al. 2015; Creyghton et al. 2010; 

Barrera et al. 2008; Deckert & Struhl 2001; Liang et al. 2004; Schübeler et al. 2004) can regulate 

the transcriptional activity of genes has been studied extensively for different cell types. Over the 

recent years, the regulatory role of combinatorial patterns of protein binding and histone marks has 

been investigated (Strahl & Allis 2000; Sparmann & van Lohuizen 2006; Hediger & Gasser 2006). 

This has led to the determination of chromatin states based on the recurring combinations of 

chromatin-associated proteins (Filion et al. 2010), histone marks (Ernst & Kellis 2010; Ernst et al. 

2011; Kharchenko et al. 2010; Fiziev et al. 2017), or both (Liu et al. 2011; Riddle et al. 2011; 

Kasowski et al. 2013). In most chromatin state analyses, the chromatin immunoprecipitation (ChIP) 

technique has been adopted to identify protein-DNA interactions (Baker 2011). This technique 

relies on antibodies targeted against specific histone modifications or chromatin-associated 

proteins to find the bound DNA fragments (Das et al. 2004; Kuo & Allis 1999).  

 

Different studies have shown that chromatin states correspond to distinct functional regions 

(modENCODE Consortium et al. 2010), which have characteristic spatial organisation (Boettiger 

et al. 2016; de Graaf & van Steensel 2013; Fraser et al. 2015). The determined chromatin states in 

human cells have allowed the study of chromatin regulatory elements, their function and their 

associated loci and histone modifications (Ram et al. 2011). In addition, it has been revealed that 

different differentiation states coincide accurately with distinct chromatin states determined by 

histone modifications (Larson & Yuan 2012). Our group was the first to determine chromatin states 

for S. cerevisiae (Sewitz & Lipkow 2016), by analysing the genome-wide binding pattern of 201 

chromatin-associated proteins obtained from ChIP datasets (Venters et al. 2011) (section 1.4.2). 

https://paperpile.com/c/VxVM1B/juPrc+PhOYi
https://paperpile.com/c/VxVM1B/37x4u
https://paperpile.com/c/VxVM1B/RtQ3Q+cf18x
https://paperpile.com/c/VxVM1B/8OdE5
https://paperpile.com/c/VxVM1B/8OdE5
https://paperpile.com/c/VxVM1B/a9HR0+pC3MH+V3DFW+KbNNr
https://paperpile.com/c/VxVM1B/a9HR0+pC3MH+V3DFW+KbNNr
https://paperpile.com/c/VxVM1B/r55gN+zAICj+vStKq+0gF5c+fvvOn+8Nckk
https://paperpile.com/c/VxVM1B/r55gN+zAICj+vStKq+0gF5c+fvvOn+8Nckk
https://paperpile.com/c/VxVM1B/Zr6iy+5iQJ0+5Sjs3
https://paperpile.com/c/VxVM1B/K9my1
https://paperpile.com/c/VxVM1B/qRpGo+srpHw+19H3b+2S9jN
https://paperpile.com/c/VxVM1B/qRpGo+srpHw+19H3b+2S9jN
https://paperpile.com/c/VxVM1B/AOeAs+38dEs+qokQz
https://paperpile.com/c/VxVM1B/AOeAs+38dEs+qokQz
https://paperpile.com/c/VxVM1B/mdjAt
https://paperpile.com/c/VxVM1B/Zmo2G+pHQRp
https://paperpile.com/c/VxVM1B/OlHH5
https://paperpile.com/c/VxVM1B/dgodo+euHgw+T1ghP
https://paperpile.com/c/VxVM1B/dgodo+euHgw+T1ghP
https://paperpile.com/c/VxVM1B/kDYtN
https://paperpile.com/c/VxVM1B/5cRfH
https://paperpile.com/c/VxVM1B/MGNPL
https://paperpile.com/c/VxVM1B/gHT6t
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These chromatin states indicate close correlations between the protein occupancy and the 

transcriptional activity of genes (Sewitz et al. 2017a).  

1.3. Computational models for studying genome organisation 

Computational models provide the most direct way to explore mechanisms, as all components, 

interactions, reactions and forces are defined, and any observed behaviour must be a consequence 

of these. During recent years, a wide range of models of the full or partial genome has been 

developed to analyse the interplay of genome structure and function. In this section, I have 

categorised these models into three major groups: models of epigenetic modification dynamics, 

protein-DNA models, and polymer-based models. 

1.3.1. Models of epigenetic modification dynamics 

Histone proteins can be covalently modified on several residues after translation (Allfrey et al. 

1964), which leads to the recruitment of transcriptional regulatory proteins and structural proteins 

over a local chromatin region. For example, the combined deacetylation and methylation of the 

lysine at position 9 of Histone H3 (H3K9) is required to create a binding site for the Swi6/HP1 

silencing factor (Shankaranarayana et al. 2003; Nakayama et al. 2001). Binding of silencing factors 

facilitates the modification of histones on adjacent nucleosomes, and sequential rounds of 

epigenetic modification and protein binding leads to the spreading of heterochromatin over a 

chromatin region (Grewal & Moazed 2003). Specialised boundary elements inhibit the 

heterochromatin extension and therefore separate silent and active chromatin domains (Labrador 

& Corces 2002; West et al. 2002). 

  

To understand the mechanisms behind the epigenetic memory of monostable domains, predictive 

models have investigated the behaviour of H3K9 methylation domains (Hodges & Crabtree 2012; 

Hathaway et al. 2012; Müller-Ott et al. 2014; Erdel & Greene 2016). Simulations at single 

nucleosome resolution showed that confined and heritable steady states of histone marks can be 

achieved by modelling linear propagation of histone modifications from nucleation sites to adjacent 

nucleosomes. Turnover of modified nucleosomes could also happen simultaneously (Hodges & 

Crabtree 2012; Hathaway et al. 2012). In contrast, another model assumed loop-driven spreading 

of histone marks with sparse nucleation sites. By adjusting parameters such as modification rates, 

the model was shown to be robust against replication (Erdel & Greene 2016) and the response 

towards transient perturbations was in line with experimental data (Müller-Ott et al. 2014). 

https://paperpile.com/c/VxVM1B/golw
https://paperpile.com/c/VxVM1B/2zriT
https://paperpile.com/c/VxVM1B/2zriT
https://paperpile.com/c/VxVM1B/OOLCP+kEPIW
https://paperpile.com/c/VxVM1B/z8ZA2
https://paperpile.com/c/VxVM1B/F30aX+wvvh4
https://paperpile.com/c/VxVM1B/F30aX+wvvh4
https://paperpile.com/c/VxVM1B/B0Ly8+7zNo1+yyvev+yfJGS
https://paperpile.com/c/VxVM1B/B0Ly8+7zNo1+yyvev+yfJGS
https://paperpile.com/c/VxVM1B/B0Ly8+7zNo1
https://paperpile.com/c/VxVM1B/B0Ly8+7zNo1
https://paperpile.com/c/VxVM1B/yfJGS
https://paperpile.com/c/VxVM1B/yyvev
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Genomic regions of high epigenetic dynamics are bistable states, characterised by the presence of 

both activating and repressive histone marks (Bernstein et al. 2006) (Fig. 1.3). They have been 

observed for confined chromatin domains in various cell types (Rohlf et al. 2012; Tee et al. 2014). 

To study the features and dynamics of these states, several computational models have been 

developed (Dodd et al. 2007; Micheelsen et al. 2010; Dodd & Sneppen 2011; Angel et al. 2011; 

David-Rus et al. 2009; Sedighi & Sengupta 2007; Mukhopadhyay et al. 2010; Berry et al. 2017). 

In these models, a region of chromatin is represented as a sequence of nucleosomes. At every time 

step, each nucleosome has a state or a rate of histone modification based on its histone marks, with 

rules that govern state transitions or changes in rates. These models have shown that nonlinear 

positive feedback loops are required for robust and heritable bistable epigenetic states. Positive 

feedback loops arise when modifications of one nucleosome stimulate the modifications of other 

nucleosomes. The required non-linearity can be achieved in different ways: 1) via the cooperativity 

of two or more nucleosomes with the same histone marks, which recruit histone modifiers on other 

nucleosomes (Micheelsen et al. 2010; Dodd & Sneppen 2011; Angel et al. 2011; David-Rus et al. 

2009; Dodd et al. 2007; Sedighi & Sengupta 2007; Mukhopadhyay et al. 2010); 2) through two-

step feedback loops, where the switch of histone modification states of nucleosomes occurs via an 

intermediate state, i.e. the state first changes to the intermediate state and then to the favoured state 

(Dodd et al. 2007; Berry et al. 2017; Angel et al. 2011); 3) through the local transcription rate, 

which can be affected by silencing, in turn leading to a change in the local modification rate 

(Sedighi & Sengupta 2007); 4) through interactions between non-neighbour nucleosomes (Dodd et 

al. 2007). The role of long-range interactions in the regulation of epigenetic dynamics has been 

investigated using 3D polymer models of chromatin, where monomers of the same epigenetic state 

have self-attractive interactions (Michieletto et al. 2016; Jost & Vaillant 2018). These models have 

shown how the interplay between the folding of chromatin and the linear spread of epigenetic 

marks results in stable confined domains. Another mathematical model with a 1D array of 

nucleosomes has been formulated to study the dynamics of histone modification in bivalent 

domains, where active and repressive histone marks coexist on nucleosomes (Ku et al. 2013). These 

domains are important elements in stem cells, and according to the model’s prediction, their 

formation process is generally slow. The model also suggested that a coordinated set of parameters, 

such as recruitment and exchange rates of marks, leads to established and maintained bivalent 

domains over several cell cycles. 

 

https://paperpile.com/c/VxVM1B/RXNFK
https://paperpile.com/c/VxVM1B/Ami4q+VpJ3v
https://paperpile.com/c/VxVM1B/DuUqO+ka16C+zf7mk+0AwQa+pnpBA+Vhsrw+GVOPA+c5kIG
https://paperpile.com/c/VxVM1B/DuUqO+ka16C+zf7mk+0AwQa+pnpBA+Vhsrw+GVOPA+c5kIG
https://paperpile.com/c/VxVM1B/ka16C+zf7mk+0AwQa+pnpBA+DuUqO+Vhsrw+GVOPA
https://paperpile.com/c/VxVM1B/ka16C+zf7mk+0AwQa+pnpBA+DuUqO+Vhsrw+GVOPA
https://paperpile.com/c/VxVM1B/DuUqO+c5kIG+0AwQa
https://paperpile.com/c/VxVM1B/Vhsrw
https://paperpile.com/c/VxVM1B/DuUqO
https://paperpile.com/c/VxVM1B/DuUqO
https://paperpile.com/c/H7zatn/u0fH+oNuC
https://paperpile.com/c/VxVM1B/rPtXm
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Figure 1.3. Overview of a bistable domain (Dodd & Sneppen 2011). A chain of nucleosomes with 

activating (blue) and silencing (red) histone marks is depicted. Readers are proteins that form bridges 

between nucleosomes of the same epigenetic mark. Readers can recruit writers, i.e. histone modifying 

enzymes, to propagate their histone marks. Barriers, such as specific DNA-bound proteins, stop the 

propagation of epigenetic marks. 

1.3.2. Protein-DNA models 

Transcription factors (TF) affect the transcriptional activity of specific genes through binding to 

specific DNA sequences (Ptashne & Gann 2002). It has been proposed that these proteins search 

for their target sequences through facilitated diffusion (Berg et al. 1981; Berg et al. 1982; Berg & 

von Hippel 1985), i.e. alternating rounds of 3D diffusion in the solution, sliding along the DNA, 

short-range excursions called hopping, and intersegmental transfer between DNA segments 

(Schmidt et al. 2014). The characteristics of this search mechanism have been widely studied and 

computational models of different scales have brought new insights into its dynamics. All models 

discussed in this section have focused on facilitated diffusion of TFs. 

 

At the most detailed, atomistic level, molecular dynamics (MD) simulations have been used to 

explain how e.g. the lac repressor protein (LacI) moves along DNA (Marklund et al. 2013) and 

how it identifies its target site (Furini et al. 2013). LacI is modelled to take a helical path to probe 

the DNA, with its DNA binding interface being insensitive to modest bends in DNA conformation. 

The hydrogen bonds formed between the DNA and the LacI interface are dynamic and flexible, 

allowing fast sliding of the protein (Marklund et al. 2013). This was found to enable the protein to 

probe the DNA quickly and reach the proximity of the target site. Once the specific DNA sequence 

is bound, it becomes significantly slower, resulting in the formation of a stable protein-DNA 

structure and a drop in enthalpy (Furini et al. 2013; Iwahara & Levy 2013). Another fine-grained 

Figure 1.3 removed for copyright reasons. The copyright holder is 2011 Elsevier Ltd. 

https://paperpile.com/c/H7zatn/5yVE
https://paperpile.com/c/VxVM1B/VuDqN
https://paperpile.com/c/VxVM1B/oWqJ2+YSqwV+sYiPO
https://paperpile.com/c/VxVM1B/oWqJ2+YSqwV+sYiPO
https://paperpile.com/c/VxVM1B/dlN16
https://paperpile.com/c/VxVM1B/QSY0l
https://paperpile.com/c/VxVM1B/xijsr
https://paperpile.com/c/VxVM1B/QSY0l
https://paperpile.com/c/VxVM1B/xijsr+HGuO6
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MD simulation has proposed that binding of the CSL (CBF1/Suppressor of Hairless/LAG-1) 

protein to the DNA can transmit a signal through the protein structure according to the bound 

sequences. This influences the inter-domain dynamics of the protein and consequently its 

functional activities (Torella et al. 2014). 

  

The effects of DNA conformation on the dynamics of TF proteins probing the DNA were explored 

via coarse-grained MD simulations, where proteins interact with the DNA via electrostatic 

interactions (Bhattacherjee & Levy 2014a; Bhattacherjee & Levy 2014b). The geometry of DNA 

was tuned by two factors, curvature and the degree of helical twisting. Highly curved or highly 

twisted DNA was seen to lead to a decrease in sliding frequencies and an increase in hopping events 

(Bhattacherjee & Levy 2014a) (Fig. 1.4A). In addition, introducing curvatures in the DNA 

conformation was found to increase the frequency of jumping events of a multidomain protein 

between distant DNA sites. However, curvature does not necessarily result in faster search kinetics 

as sliding happens less often (Bhattacherjee & Levy 2014b). Hence, an optimal DNA conformation 

can lead to a balanced number of searching events and maximal probing of DNA. 

 

Figure 1.4. Protein-DNA models. (A) The search path of Sap1 protein along 100 bp circular DNA 

(modified from (Bhattacherjee & Levy 2014a)). The DNA, which is coloured in orange, was twisted to 

different extents. The twist of DNA affected the sliding (cyan) and the hopping (green) dynamics of the 

protein. (B) The DNA was modelled as a bead-spring chain (size of each bead = 2.5 nm) and three protein 

types, crowders, blockers, and searchers, were modelled as spheres (Brackley et al. 2013). The crowders 

had 3D diffusion, blockers had 1D diffusion along the DNA, and searchers had facilitated diffusion.  (C) 

Figure 1.4A,B removed for copyright reasons. The 

copyright holders are 2014 Oxford University Press and 

2013 American Physical Society. 

 

https://paperpile.com/c/VxVM1B/xTeml
https://paperpile.com/c/VxVM1B/FN1YM+n96eX
https://paperpile.com/c/VxVM1B/FN1YM
https://paperpile.com/c/VxVM1B/n96eX
https://paperpile.com/c/H7zatn/Km1R
https://paperpile.com/c/H7zatn/7ni9
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The nucleus of S. cerevisiae with diffusing transcription factor (TF) (light blue particle), target genes (orange 

region), and DNA segments modelled as grey stacks (modified from (Schmidt et al. 2014)). The dark blue 

line shows the trace of the search path of the TF. To bind to the target gene, the TF had to enter the orange 

region, which was specified by the binding radius.  

 

To investigate the role of nonspecific DNA-protein interactions during the search for specific target 

sites, Monte Carlo simulations were adopted (Mahmutovic et al. 2015; Tabaka et al. 2014; Das & 

Kolomeisky 2010). It was argued that the binding of the LacI repressor to nonspecific DNA is 

controlled by either activation or steric effects instead of being limited by diffusion (Mahmutovic 

et al. 2015; Tabaka et al. 2014). Furthermore, it was shown that for efficient and fast probing of 

DNA, moderate ranges of nonspecific binding energies and protein concentrations are required 

(Das & Kolomeisky 2010). The necessity for moderate DNA-protein binding strength has been 

indicated for proteins with different subdiffusive motions using simulations based on Brownian 

dynamics (Liu et al. 2017). 

 

Large-scale computer simulations have been performed to study the search kinetics of transcription 

factors both in prokaryotic and eukaryotic cells. Software called GRiP (Gene Regulation in 

Prokaryotes) (Zabet & Adryan 2012b) provides a simulation framework for analysing the 

stochastic target search process of TF proteins. In GRiP the DNA is modelled as a string of base-

pairs and TFs are highly diffusing components that interact with DNA sequences or with each 

other. This framework has been utilised to build a detailed model of facilitated diffusion, where TF 

orientation on the DNA, cooperativity of TFs, and crowding were incorporated (Zabet & Adryan 

2012a). A similar model was adopted to dissect the effects of biologically relevant levels of mobile 

and immobile crowding on TF performance in a bacterial cell (Zabet & Adryan 2013): Immobile 

crowding fixed on the DNA raises the occupancy of target sites significantly, whereas both mobile 

and immobile crowding have negligible impacts on the mean search time. Another model of the 

bacterial genome has taken two types of crowding molecules into account (Brackley et al. 2013) 

(Fig. 1.4B). Proteins that bind to and move along DNA (1D crowding), do not change the search 

time significantly, even at very high densities. However, crowding molecules diffusing freely in 

3D space increase the frequency of 1D sliding of TFs along DNA, while they enhance the 

robustness of the search time against any change in protein-DNA affinity.  

 

https://paperpile.com/c/H7zatn/jeDc
https://paperpile.com/c/VxVM1B/hhn7v+3NyuE+ChSEF
https://paperpile.com/c/VxVM1B/hhn7v+3NyuE+ChSEF
https://paperpile.com/c/VxVM1B/hhn7v+3NyuE
https://paperpile.com/c/VxVM1B/hhn7v+3NyuE
https://paperpile.com/c/VxVM1B/ChSEF
https://paperpile.com/c/VxVM1B/BpFH7
https://paperpile.com/c/VxVM1B/o47d0
https://paperpile.com/c/VxVM1B/A2Rsy
https://paperpile.com/c/VxVM1B/A2Rsy
https://paperpile.com/c/VxVM1B/VpPW4
https://paperpile.com/c/VxVM1B/Zhd7x
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How chromatin folding affects the dynamics of TFs has been studied by a polymer model of 

chromatin, where protein species could bind at both specific and non-specific sites (Cortini & 

Filion 2018). The results of the model were in line with experimental data: highly compact 

chromosome conformation decreases the concentration of TFs, while TFs colocalise at chromatin 

loop anchors within open chromatin regions. A different approach based on the Gillespie stochastic 

simulation algorithm has been developed to analyse the influence of macromolecular crowding on 

gene expression in stem cells (Golkaram et al. 2017). The crowding was assumed to be correlated 

with the local chromatin density, which was calculated using Hi-C data. Diffusive TFs and RNA 

polymerases were only moving in the proximity of promoters, as crowding would not allow them 

to diffuse to other regions between rebindings. The model predicted that an increase in chromatin 

density during development leads to a rise in transcriptional bursting and subsequently 

heterogeneous expression of genes in a cell population.  

 

Our group has developed a computational model of TF motions in eukaryotes (Schmidt et al. 2014; 

Sewitz & Lipkow 2016) using the particle-based simulator Smoldyn (Andrews et al. 2010) (Fig. 

1.4C). This model has considered different types of movements for TFs: 3D diffusion, sliding, 

hopping and intersegmental transfer. Among others, it showed the importance of inter-segmental 

transfer, and it provided an explanation for the size of nucleosome free regions on the DNA, which 

improve the process of TFs binding to their targets. Similar to a prokaryotic model (Tabaka et al. 

2014) inclusion of 1D diffusion reduced the time to find the target sites by 1 - 2 orders of 

magnitude. 

 

Finally, the complexity of gene regulation in higher eukaryotes has motivated the study of 

evolutionary dynamics of the TF repertoire and their binding preferences. A stochastic model based 

on duplication and mutation of genes suggested that more complex organisms with higher number 

of genes have higher levels of redundancy of TF binding (Rosanova et al. 2017). 

1.3.3. Polymer-based models 

The dynamic nature of the chromatin fibre lends itself to simulating chromatin as an extended, 

highly mobile polymer. Several studies have extended concepts developed in physics and applied 

them to the analysis of chromatin (Tark-Dame et al. 2011; Shukron & Holcman 2017; Koslover & 

Spakowitz 2014). This has led to an understanding of genome-wide data of chromosome folding, 
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and their interactions with each other and with other nuclear elements. In all models presented here, 

the chromatin fibre is a diffusing and self-avoiding chain of beads arranged in 3D space (Fig. 1.5). 

Figure 1.5. Polymer-based models. (A) In the Drosophila co-polymer model, the chromatin was modelled 

as a chain of beads connected by springs (Jost et al. 2014). Each monomer had an epigenetic state: yellow 

(active chromatin), green (HP1-like heterochromatin), blue (Polycomb-like heterochromatin), or black 

(repressive chromatin). There were specific interactions between monomers of the same epigenetic state 

and non-specific interactions between each pair of beads. (B) A model based on loop extrusion, where loop 

extruding factors bind to chromatin and extrude the DNA progressively until they reach the boundary 

elements (modified from (Imakaev et al. 2015)). This model explained the formation of TADs and the 

inward orientation of CTCF sites at TAD boundaries. (C) A schematic view of a section of chromatin 

composed of supercoiled domains of various sizes and different supercoiling levels (Benedetti et al. 2014). 

The grey tube represents the coarse-grained view of chromatin, which would behave like an elastic polymer. 

(D) A chain of active and inactive spherical monomers, which has modelled the chromatin in a confined 

nucleus (Ganai et al. 2014). Active and inactive states were assigned according to the gene density of 

Figure 1.5B removed for copyright reasons. The 

copyright holder is 2015 John Wiley and Sons.  
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chromatin segments. The coloured polygons and circles symbolise the chromatin remodelling enzymes that 

increase the exerted stochastic forces on chromatin segments. 

1.3.3.1. Models based on protein interactions 

The important role of protein interactions in shaping the 3D structure of the genome has been 

investigated by various polymer models. These models can be categorised into four main groups: 

binders, copolymers, top-down, and loop extrusion models.  

 

Binders: chromatin loops have been observed in both eukaryotes and prokaryotes (Hofmann & 

Heermann 2015) and their vital regulatory impact has been demonstrated. Models based on binder 

proteins have suggested that chromatin loops are formed mainly by interactions between specific 

protein complexes like condensin (Cheng et al. 2015) or CTCF (Tark-Dame et al. 2014). These 

models have successfully reproduced general aspects of the experimentally observed genome 

compaction. In addition, the importance of balance between short-range and long-range loops for 

controlling the changes in chromosomes structure has been revealed (Tark-Dame et al. 2014; 

Mifsud et al. 2015). It has furthermore been indicated that the dynamic bridges between condensin 

complexes bring about the intrachromosomal interactions during both interphase and mitosis in 

budding yeast (Cheng et al. 2015). Other models have relied on generic protein bridges to study 

the population of possible 3D genome conformations and predict the 3D distances between selected 

genomic sites (Barbieri et al. 2012; Brackley et al. 2016). One model has incorporated the 

regulatory DNA regions that are binding sites of bridging proteins (Brackley et al. 2016): the 

location of DNase1 hypersensitive sites, CTCF binding cites, and histone modifications were 

mapped onto chromatin segments. On the other hand, the strings and binders switch (SBS) model 

(Barbieri et al. 2012) was not informed by experimentally determined binding site of proteins and 

these sites were evenly distributed along the chromatin fibre.  

 

Copolymers: other models have explored the general effects of protein interactions on chromatin 

structure without having protein particles in the model. A heteropolymer model incorporated 

proteins implicitly, by mapping different epigenetic states onto the beads. Specific interactions 

between beads of the same state were differentiated from non-specific interactions between any 

pair of beads (Jost et al. 2014) (Fig. 1.5A). This copolymer model predicted that inter-TAD 

interactions are highly dynamic, which was in line with Hi-C results. It also predicted the fast 

formation of TADs, followed by a slow and long process of compaction (Jost et al. 2014). The 
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lattice version of this model (Olarte-Plata et al. 2016), and another heteropolymer model (Ulianov 

et al. 2016) with active or inactive epigenomic states for beads, confirmed stronger self-attraction 

for inactive domains (Olarte-Plata et al. 2016; Ulianov et al. 2016) and an increase in their 

compaction as the domain size grows (Olarte-Plata et al. 2016). Other models based their 

assignment on levels of gene activity, with highly active or less active states assigned according to 

their expression levels (Jerabek & Heermann 2012). Highly active chromatin sections had low 

interaction strength while less active ones had higher interaction affinity. The average distances 

between genomic loci, the average volume ratio between highly active and less active regions, and 

the positioning of highly active loci close to the boundary of chromosome territories were all in 

line with experimental measurements.  

 

Top-down models: polymer models based on protein interactions and without relying on pre-

determined information for the state of chromatin beads were developed (Chiariello et al. 2016; 

Giorgetti et al. 2014; Tiana et al. 2016). Using iterative Monte Carlo simulations and comparisons 

to the measured contact frequencies, the parameters of the models were optimised and ensembles 

of chromatin configurations were achieved (Chiariello et al. 2016; Giorgetti et al. 2014; Tiana et 

al. 2016). These models correctly estimated the contact frequencies of TADs (Giorgetti et al. 2014; 

Chiariello et al. 2016) and the mean 3D distances between labelled loci upon perturbations of 

specific sites (Giorgetti et al. 2014). Combined with live-cell measurements, it has been suggested 

that changes in TAD conformations happen fast enough (in a much shorter time frame than the cell 

cycle) to facilitate dynamic interactions between regulatory elements, such as enhancer-promoter 

interactions (Tiana et al. 2016). A homopolymer model (Doyle et al. 2014), which implemented 

chromatin loops in the proximity of enhancer and promoter elements, indicated that the loops can 

either facilitate or insulate the enhancer-promoter interactions significantly. It was shown that the 

regulatory effect of the loop was dependent on the relative positions of loop anchors. To minimise 

the reliance on specific biological data, a heteropolymer model was built based on hierarchical 

folding and statistical physics of disordered systems (Nazarov et al. 2015). This model has two 

types of monomers that can interact with each other. By tuning the 1D sequence of monomers and 

the temperature controlling the folding, the simulated contact maps achieved a resemblance to Hi-

C data. 

  

Loop extrusion model: besides the notion that direct interactions between bound proteins shape 

chromatin loops, another mechanism, called loop extrusion has been proposed (Nasmyth 2001; 
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Alipour & Marko 2012; Fudenberg et al. 2016; Sanborn et al. 2015; Terakawa et al. 2017). This 

model calls for the action of extruding machines, possibly condensin or cohesin complexes, to bind 

and move along the DNA in opposite directions (Nasmyth 2001; Alipour & Marko 2012). This 

leads to the extrusion of DNA loops until domain boundaries, occupied by CTCF proteins, are 

reached (Fudenberg et al. 2016; Sanborn et al. 2015) (Fig. 1.5B). This mechanism can account for 

the compaction and folding of mitotic chromosomes (Nasmyth 2001; Alipour & Marko 2012). 

Furthermore, in combination with polymer physics, the model reproduced the observed decay of 

contact probabilities with increasing genomic distance, leading to simulated contact maps 

consistent with Hi-C data. It also predicted the changes in contact frequencies and 3D distances 

between loci due to CTCF and cohesin perturbations (Sanborn et al. 2015; Fudenberg et al. 2016). 

1.3.3.2. Models based on supercoiling 

Different levels of unconstrained supercoiling have been observed for chromatin (Kouzine et al. 

2013; Naughton et al. 2013), and it is been reported that transcription leads to supercoiling 

(Papantonis & Cook 2011; Kouzine et al. 2008; Wu et al. 1988). To explore the effects of 

supercoiling on genome organisation in both eukaryotic (Benedetti et al. 2014) and prokaryotic (Le 

et al. 2013) cells, detailed polymer models have been employed. In a eukaryotic model, borders of 

TADs were mapped to the chromatin fibre, and strong supercoiling was imposed to the intervening 

chromatin (Benedetti et al. 2014) (Fig. 1.5C). This led to the formation of TADs and contact maps 

broadly consistent with 3C data. In a bacterial model, chromatin was simulated as a dense array of 

plectonemes that were attached to a back bone (Le et al. 2013). By inserting plectoneme free 

regions in the model at the positions of highly expressed genes, the contact frequencies observed 

for chromosomal interaction domains were reproduced. Overall, supercoiling is essential for 

creating chromosomal interaction domains (Le et al. 2013) and topologically associated domains 

(Benedetti et al. 2014). Intriguingly, a recent model investigated the role of supercoiling introduced 

by the transcribing RNA polymerase (Racko et al. 2017): When both CTCF and cohesin were 

included in the simulation, cohesin rings were seen to accumulate at CTCF sites demarking TAD 

borders. These observations are also seen experimentally (Uusküla-Reimand et al. 2016). Under 

these conditions, supercoiled DNA loops were extruded, and the supercoiling was the driving force 

for extruding the DNA loops. This is interesting because until now it was unclear how the 

energetically expensive loop extrusion could be achieved. Now, supercoiling generated by RNA 

polymerase provides a credible and testable hypothesis. 
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1.3.3.3. Models based on dynamical heterogeneity and self-organisation 

Biological systems, such as chromatin fibre, are active matter (Agrawal et al. 2017): a collection 

of active units (i.e. self-propelled), which take energy from ATP-dependent internal sources 

(Menon 2010). Therefore, they are far from thermal equilibrium. Physical models have studied the 

phase-separation of active and passive particles in non-equilibrium systems (Grosberg & Joanny 

2015; Stenhammar et al. 2015; Weber et al. 2016; McCandlish et al. 2012), using high local 

(effective) temperature (Loi et al. 2008), high diffusion speed, or self-propulsion force to drive 

active particles. A significant challenge in this area is to develop physical models of 

heteropolymeric motion applicable to chromatin. Taking into account the heterogeneous 

distribution of ATP-dependent activities across the genome, a heteropolymer model of chromatin 

was developed, in which chromatin segments that harboured more active genes were given a higher 

temperature (Fig. 1.5D). This model reproduced the experimentally observed chromosomal 

territories (Ganai et al. 2014), but only if an unphysiological temperature difference of 20-fold 

between active and inactive segments was assumed. A later version of this model tested 6- and 12-

fold changes in temperature (Agrawal et al. 2017). The results were almost identical for different 

temperature settings, while the proportion of active monomers had a stronger effect on the spatial 

distribution of chromosomes. Using much longer chromosomal segments, similar phase 

separations could already be observed with much smaller differences in temperature, bringing the 

model in closer proximity to real life biological systems (Smrek & Kremer 2017). Still, current 

models are not yet fully able to deal with the structural complexity that is the hallmark of chromatin. 

1.4. The aim of my PhD project  

The budding yeast is a simple yet powerful model organism to study chromatin organisation 

(section 1.4.1). Our group has analysed the genome-wide binding pattern of chromatin-associated 

proteins in S. cerevisiae cells (section 1.4.2), which has revealed the differential protein occupancy 

of chromatin segments. As these differences in protein occupancy are large, and affect a large 

number of protein types, amounting to nearly 50% of all proteins, we asked the question of how 

these changes would affect chromatin mobility and consequently drive the 3D organisation of 

chromosomes. To test this, I have built a 3D computational polymer model, which is informed by 

the bioinformatics analysis of the protein occupancy across the genome (section 1.4.3). 
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1.4.1. Saccharomyces cerevisiae as a model organism 

The budding yeast Saccharomyces cerevisiae is a single-celled eukaryotic microorganism (Fig. 

1.6A). It has a unique set of properties that has made it an ideal model to study various biological 

processes. Firstly, there is a high degree of homology between the fundamental cellular 

mechanisms that govern regulation of gene expression, replication, and many other nuclear 

processes in yeast and higher eukaryotes. Many eukaryotic proteins like basal transcription factors 

(Hahn 2004), chromatin remodelling factors, and histone modifiers, are highly conserved between 

yeast and higher organisms (van Heusden & Steensma 2006). In addition, common features of 

chromatin structure and dynamics have been observed in this organism. While chromosomes fold 

to form higher-order chromatin structures (Lowary & Widom 1989), they have non-random 

interactions with each other (Rodley et al. 2009). They have Rabl-like conformations (Jin et al. 

2000) (Fig. 1.6B), meaning that their centromeres are tightly clustered near the spindle pole body 

(Jin et al. 2000; Jin et al. 1998) (Fig. 1.6C,D) and telomeres co-localization occurs close to the 

nuclear periphery (Gotta et al. 1996; Trelles-Sticken et al. 2000) (Fig. 1.6E). Furthermore, S. 

cerevisiae has a small genome size, of about 12 million base-pairs on 16 chromosomes, compared 

to the 3 billion base-pairs of the human genome. Importantly, this makes it computationally feasible 

to model the dynamics of the whole genome structure in a single simulation, at gene level 

resolution. Experimentally, Hi-C methods give rise to accurate and high-resolution DNA-DNA 

contact data due to its small genome size. Finally, extensive research on budding yeast has led to a 

large number of databases containing experimental data including complete sequencing of the 

genome (Goffeau et al. 1996), genome-wide expression analysis (Holstege et al. 1998), histone 

modifications (Liu et al. 2005), DNA-protein binding (Venters et al. 2011) and chromatin states 

analysis (Sewitz & Lipkow 2016). 
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Figure 1.6. Rabl-like configuration of chromosomes in S. cerevisiae. (A) Electron micrographs of a 

culture of S. cerevisiae cells (Murtey & Ramasamy 2016). (B) A schematic view of the Rabl-like 

conformation of chromosomes during interphase (Taddei & Gasser 2012). (C) The visualisation of 

centromeres (in green), which are not confined by nuclear pore proteins (in red) (Heun et al. 2001). (D) The 

localisation of centromeres close to the spindle pole body (SPB) during late G1 phase (Heun et al. 2001). 

Centromeres, DNA, and the SPB are visualised in green, blue, and red respectively. (E) Peripheral position 

of telomeres in a cell during G1 phase (Heun et al. 2001). The telomere repeat binding protein, Rap1p, the 

nucleolar protein, Nop1p, and the DNA were stained in green, blue, and red respectively. 

1.4.2. Chromatin states in Saccharomyces cerevisiae 

Our group started with an extensive set of protein-DNA-binding data, which were obtained by the 

chromatin immunoprecipitation (ChIP) technique from cells that were grown at 25°C, and 15 

minutes after shifting the culture to 37°C (Venters et al. 2011) (Fig. 1.1A). Principal component 

analysis (PCA) and k-means clustering were applied to determine the chromatin states, and 

subsequently a multivariate Hidden Markov Model was used to map the chromatin states onto the 

genes (Fig. 1.1B,C). This analysis was performed separately for each temperature condition, 

revealing that 80% of the genes have the same chromatin state at both temperatures (Sewitz et al. 

Figure 1.6B removed for copyright 

reasons. The copyright holder is 2012 by 

the Genetics Society of America. 

Figure 1.6C,D,E removed for copyright reasons. The copyright holder is 2001 Elsevier Science Ltd. 
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2017a). The states were sorted by the number of contained genes, and named S1 to S5, from most 

to least frequent (Fig. 1.1D). 

 

Figure 1.7. Determination of chromatin states for S. cerevisiae (Sewitz & Lipkow 2016). (A) The ChIP 

method was used to determine the binding pattern of 201 chromatin-associated proteins. Three ChIP-probes 

were used per gene (Venters et al. 2011). (B) The protein binding data was analysed by principal component 

analysis (PCA); the data points along PCs are k-means clustered. (C) Then, a specific chromatin state was 

assigned to each gene using six principal component scores and a multivariate hidden Markov model 

(HMM). (D) The genome-wide coverage of chromatin states (S1-S5) was determined. (E) Binary HMM 

was employed to determine the fraction of genes in different chromatin states that are bound by a specific 

protein. The fractions were quantified and compared for different choices of the number of components in 

PCA. By selecting the first 6 principal components, the widest spread and 29% variance were achieved. 

 

Gene ontology (GO) enrichment analysis (Sewitz et al. 2017a) (Fig. 1.2A) has shown that the genes 

associated to S1 are essential for basic maintenance of cellular functions. The genes in S2 cover a 

broad range of functions and consequently have a very limited GO enrichment. S3 and S4 genes 

are essential for translation during exponential growth and response to heat-shock, respectively. 

The genes mapped to S5 mainly regulate protein phosphorylation, amino acid metabolism, and 

nucleolus activity. The GO analysis is in agreement with the gene expression levels: S3 genes are 

highly expressed at 25°C, and they get repressed at 37°C, whereas S4 genes get highly upregulated 

at 37˚C (heat-shock) (Sewitz et al. 2017a) (Fig. 1.2B,C).   
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Figure 1.8. Gene ontology analysis and expression level of genes in different chromatin states (Sewitz 

et al. 2017a). (A) Gene ontology (GO) enrichment analysis for the determined chromatin states, using 

Ontologizer tool (Bauer et al. 2008). (B) Summary of GO analysis per chromatin state. (C) The expression 

level of genes in different chromatin states, for both 25°C and 37°C temperatures. The expression array data 

was obtained from (Holstege et al. 1998; Zanton & Pugh 2004). 

 

In addition, the occupancy of individual proteins at different chromatin states were measured 

(Sewitz et al. 2017a). The occupancy of three subunits of the RNA polymerase II complex is shown 

in Fig. 1.3 as an example. Rpb2p and Rpb3p are subunits of the core subassembly (Kimura et al. 

1997), while a small fraction of RNA polymerases II complexes contain Rpb7p, which is essential 
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for heat-shock and stress response (Choder & Young 1993; Jensen et al. 1998). The analysis for 

the occupied fraction of the genome shows that the Rpb7p mostly binds to highly expressed genes, 

i.e. S3 genes at 25°C and S4 genes at 37°C, while the Rpb2p and the Rpb3p have reversed patterns 

(Fig. 1.3B,C). They mostly bind to the genes that will get highly expressed if the condition changes 

and they have the least binding to the genes with the highest expression levels. Therefore, they are 

in a ‘poised’ state, i.e. the highest binding to S4 genes at 25°C and to S3 genes at 37°C. The top 

rank occupancy of all proteins in the dataset (Fig 1.3D) has shown that 85 proteins (42%) bind 

mostly to S4 genes at 25°C. At 37°C, 68 of these proteins relocate to have the highest binding at 

S2 (30 proteins) and S3 (38 proteins) genes. Therefore, a significant proportion of proteins, 38 out 

of 201 proteins (19%), are in a poised state, and they have a concerted movement upon changes in 

temperature (Fig. 1.3E). 

 

Figure 1.9. Poised proteins at normal growth and heat-shock conditions. (A) Structure of RNA 

polymerase II complex, which consists of 12 subunits. Three subunits, i.e. Rpb2p, Rpb3p, and Rpb7p, were 

in the protein binding dataset (Venters et al. 2011). (B) The fraction of the genome that is bound by RNA 

polymerase II subunits was quantified and plotted as stacked bar plots. (C) The fraction data was sorted to 

show the occupancy rank from the lowest to the highest. The Rpb2p and Rpb3p subunits are in poised state: 

the highest occupancy rank to S4 genes at 25°C and to S3 genes at 37°C. The Rpb7p is in an active state as 

it has the highest level of binding to highly transcribed genes. (D) The top rank occupancy for all proteins 

at both 25°C and 37°C temperatures. (E) A schematic view of the coordinated movement of poised proteins 

from S4 genes at 25°C to S3 genes at 37°C. The dissociation of poised proteins upon changes in temperature 

coincides with the high transcription of genes that were formerly bound by those proteins.   
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1.4.3. Aim and approach 

Protein occupancy can affect the local physical properties of chromatin segments by means of a 

range of parameters such as changes in mass, diameter, local viscosity (Oldfield & Dunker 2014; 

Jirgensons 1958), diffusion speed (Jerabek & Heermann 2012; Phillip & Schreiber 2013; Wollman 

et al. 2017), and local electrical charge. The overall impact of these changes could hypothetically 

influence the local mobility of chromatin fibre. It has been shown that the transcriptional activity 

of genes and chromatin remodelling are associated with ATP-driven activities (Talwar et al. 2013; 

Hameed et al. 2012), which induce stochastic fluctuations of DNA (Weber et al. 2012). The 

analysis of chromatin states and the expression levels of genes (section 1.4.2) has indicated the 

unequal protein occupancy of chromatin segments, which is correlated with the differential 

transcriptional activity of corresponding genes. Highly expressed genes, which have lower protein 

occupancy, would have faster movements, while chromatin segments with higher protein 

occupancy would move slower. In this project, we hypothesized that the heterogeneous mobility 

of chromatin segments drives the 3D genome organisation in budding yeast during interphase. To 

test this hypothesis, I have built a 3D polymer model of chromosomes, in which the determined 

chromatin states were mapped onto the chromosomal segments. Then, the stochastic and 

differential mobility of segments was incorporated. Experimental data for the position of telomeres 

(Hajjoul et al. 2013), the distances between pairs of genomic loci, and the peripheral location of 

the HSP104 gene (Dieppois et al. 2006) were employed to validate the results of the polymer 

model. I have also analysed our Hi-C data and compared the results with the simulated contact 

maps. Different predictions of the model for positioning and movement of genes could be tested 

by new experiments in the future. In addition, various features could be added to the model, such 

as mobile proteins and nuclear pore complexes.  

 

 

 

https://paperpile.com/c/VxVM1B/H8MiM+S9qvW
https://paperpile.com/c/VxVM1B/H8MiM+S9qvW
https://paperpile.com/c/VxVM1B/wWbqW+FI428+giRyN
https://paperpile.com/c/VxVM1B/wWbqW+FI428+giRyN
https://paperpile.com/c/VxVM1B/Bo4M1+c1Fht
https://paperpile.com/c/VxVM1B/Bo4M1+c1Fht
https://paperpile.com/c/VxVM1B/vfbzc
https://paperpile.com/c/VxVM1B/h6a97
https://paperpile.com/c/VxVM1B/tnidn
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2. Materials and Methods 

2.1. Building the polymer model 

2.1.1. Polymer simulations using Open Dynamics Engine 

To simulate the dynamic structure of chromosomes in the S.cerevisiae nucleus during interphase, 

I developed a genome-wide heteropolymer model. The model was built by modifying a 

homopolymer model (Wong et al. 2012), which used a physics engine, called Open Dynamics 

EngineTM (ODE, http://www.ode.org/). The results of this model for the spatial conformation of 

genome and chromosomal contacts were consistent with microscopy and Hi-C data. In this model, 

each chromosome was a self-avoiding chain of rigid cylinders, connected by ball-joints, with 

dimensions based on those of compacted DNA as found in the yeast nucleus. Ribosomal DNA 

(rDNA) repeats were modelled as an insert of thicker, shorter segments. All chromosomes were 

tethered to the Spindle Pole Body (SPB) by attaching a cylinder representing a microtubule to the 

centromere-containing chromosomal segment. All cylindrical segments were moving at each time 

step in the x, y, and z dimensions based on Langevin Thermostat dynamics (Eq. 2.1-2.4), while 

their movements were constrained by ball-joints connecting them to their neighbouring segments 

and by the nuclear envelope. Telomeres were pulled towards the nuclear envelope by a separate 

force, which had a magnitude of 0.4 µN. The Langevin thermostat equations are as follows: 

𝐹𝐿𝐶
𝑥 = 𝑐1√

2𝛾𝑘𝐵𝑇

∆𝑡
𝑅(𝑡) − 𝑐2𝛾𝑣𝑥(𝑡)       (Eq. 2.1), 

𝐹𝐿𝐶
𝑦

= 𝑐1√
2𝛾𝑘𝐵𝑇

∆𝑡
𝑅(𝑡) − 𝑐2𝛾𝑣𝑦(𝑡)       (Eq. 2.2), 

𝐹𝐿𝐶
𝑧 = 𝑐1√

2𝛾𝑘𝐵𝑇

∆𝑡
𝑅(𝑡) − 𝑐2𝛾𝑣𝑧(𝑡)       (Eq. 2.3), 

𝐹𝐿𝐶 = (𝐹𝐿𝐶
𝑥 , 𝐹𝐿𝐶

𝑦
, 𝐹𝐿𝐶

𝑧 )         (Eq. 2.4), 

where 𝛾 = 6𝜋𝜂𝑑 and Δ𝑡 =
𝑚

𝛾
. The 𝑅(𝑡) is a random number between -1 and 1 with a uniform 

distribution at time 𝑡. The 𝑘𝐵, 𝑇, and 𝜂 are the Boltzmann constant, temperature, and viscosity, 

respectively. The mass, diameter, and velocity of the segment at time 𝑡 are denoted by 𝑚, 𝑑, and 

𝑣(𝑡). In addition, 𝑐1 and 𝑐2 are the speeding up factors, which equal 1000 and 0.02 respectively 

(Wong et al. 2012).  

 

I increased the resolution of the model by reducing the size of every segment to 2 kb, which is the 

approximate average length of a gene in S. cerevisiae (Goffeau et al. 1996), including 5’ and 3’ 

https://paperpile.com/c/VxVM1B/vopXT
http://www.ode.org/
https://paperpile.com/c/VxVM1B/vopXT
https://paperpile.com/c/VxVM1B/Ilr4u


25 
 

flanking regions (see Table 2.1 for segment properties). As reported before, an increase in rDNA 

radius achieves spatial separation of the nucleolus from the remaining genome (Wong et al. 2012). 

I reduced the radius of the rDNA segments from 100 nm (Wong et al. 2012) to 50 nm, to 

compensate for the lower persistence length of segments. I also ran simulations with rDNA 

segments of 100 nm, 75 nm, and 20 nm radii. I mapped a chromatin state to each segment, as 

described in section 2.1.2. For all segments of a given chromatin state, the compound Langevin 

force, FLC (Eq. 2.4), or other parameters in short test simulations, was then scaled by a factor, as 

described in section 3.1. 

 Standard DNA 

segments 
rDNA segments 

Telomere 

segments 
Microtubules 

Number 5997 375 32 16 

Length (nm) 25 8 0.25 300 

Radius (nm) 10 50 12.5 12.5 

Mass (kg) 4.42e-21 4.42e-21 4.42e-21 4.42e-21 

Chromatin State S1, S2, S3, S4, S5, 

S6 (‘gap state’), or 

S7 (‘NA’ state) 

S7 (‘NA’ state) S1, S2, S3, S4, S5, 

or S7 (‘NA’ state) 

none 

Table 2.1. The properties of segments in the simulations. Measurements based on (Cui & Denis 2003; 

Schalch et al. 2005; Dekker 2008). 

2.1.2. Introducing chromatin states to the model 

I used the 25°C state assignment for main simulations (Chapter 3-5), because the state assignments 

for 25°C and 37°C are highly similar (section 1.4.2), and because this ensured that any observed 

changes were only due to changes in FLC. I mapped genes to segments using a length-agnostic 

approach, i.e., regardless of its length, each gene was associated to one 2 kb cylindrical segment. 

Each segment was assigned the same chromatin state as its mapped gene. The number of segments 

was greater than the number of genes for all chromosomes except chromosome XIV, and after 

mapping genes to segments, an average of 14 segments per chromosome remained unmapped. I 

associated those segments to the largest gaps between genes and considered them as ‘gap state’ 

(S6) segments (Fig. 2.1). Chromosome XIV had one more gene than the number of segments. Here, 

one of the genes with unknown state was ignored and all the other genes were mapped as explained 

above. All rDNA segments had S7 state.  

https://paperpile.com/c/VxVM1B/vopXT
https://paperpile.com/c/VxVM1B/vopXT
https://paperpile.com/c/VxVM1B/IGf7R+hf7wF+bTWxu
https://paperpile.com/c/VxVM1B/IGf7R+hf7wF+bTWxu
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Figure 2.1. Mapping of states onto simulation segments. A schematic view of mapping the genes and the 

gaps between them to the 2 kb-segments in simulations. Chromatin states were mapped accordingly.  

 

For simulations with 37°C state assignment (Chapter 6), I mapped the chromatin state of genes 

during heat-shock onto 2 kb-segments as explained above. In addition, for simulations with 

randomised and clustered states (Chapter 6), I used the 25°C state assignment to build the new lists 

of chromatin states. For the randomised states, the randperm function of MATLAB was employed 

to shuffle the order of states. In one set of lists, “random states (A)”, all states (S1-S7) were 

shuffled, whereas in the other set, “random states (B)”, S6 and S7 were kept at their original 

position, i.e. only S1-S5 were randomised. The number of states for each chromosome was 

preserved. For the clustered states, clusters of different chromatin states were arranged randomly 

along each chromosome. The size of all clusters was 10, except a few that had less than 10 repeats 

of states to preserve the total number of each chromatin state per chromosome. There were two 

types of lists for clustered states: In “clustered states (A)”, S6 and S7 states were positioned at 

borders of S1-S5 clusters; if the number of these states was more than the number of borders, one 

S6 or S7 state was placed at each border and the rest were placed randomly. In “clustered states 

(B)”, S6 and S7 states were held at their original position, which means they could appear inside 

S1-S5 clusters. Thus, there were two types of random states and two types of clustered states. Three 

different lists, per type, were generated to run three stochastic replicates of simulations. For all 

simulations with 37°C, random, and clustered states, the rDNA segments had the same state (S7) 

and the same diameter (50 nm) as in the main simulations.  
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2.2. Simulation process 

2.2.1. Simulation input and initialisation 

Each main simulation started from a configuration, in which all chromosomes were contained 

within the spherical nuclear envelope, without knotting. To determine the starting position of the 

chromosomes, I ran simulations without any state assignment (a homopolymer similar to the 

[uniform] model) to initialise the position of segments. At the beginning, chromosomes were 

vertical fibres, randomly positioned around the spindle pole body inside a capsule (as described in 

(Wong et al. 2012)). During the simulation, the two hemispheres at the ends of the capsule were 

gradually moved towards each other. After c. 350,000 time steps, the capsule converted to a 

complete sphere and then maintained its shape. The simulations were terminated after one million 

time steps and the final structure of chromosomes was used as initial conformations for all 

following main simulations (Chapter 3-6). Each main simulation was run in triplicate, starting from 

three independently obtained chromosome configurations (input 1-3). 

 

The main simulation requires a set of input parameters to be run: 

● the initial position, orientation, length and diameter for each segment; 

● the position of the centromere for all chromosomes; 

● the chromatin state of each chromatin segment; 

● the state-specific scaling factors for changing the FLC, applied to each segment of S1, S2, 

S3, S4 and S5. 

2.2.2. Simulation process and output 

Each simulation had three million time steps. To be within the limits, in which the Langevin 

equation is valid, the time step length was calculated from the mass of a segment and the frictional 

drag coefficient: Δ𝑡 =
𝑚

𝛾
 (Lemons & Gythiel 1997). At each time step, the current positions, linear 

and angular velocities of all segments were noted and the collisions between them were detected 

by the collision detection engine of ODE. Subsequently, the compound Langevin force was 

calculated stochastically for each segment and the resulting vector was multiplied by a state-

specific scaling factor. To keep telomeres close to the periphery, additional forces were applied to 

push them towards the nuclear envelope. The compound Langevin and telomeric forces were 

passed to the ODE to be summed with the constraint forces computed internally for each segment. 

The constraint forces had three different sources: a) forces that kept segments connected to each 

https://paperpile.com/c/VxVM1B/vopXT
https://paperpile.com/c/VxVM1B/L6B8A
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other at ball-joints; b) forces that prevented the segments to inter-penetrate at contact points; c) 

forces that confined the segments inside the nucleus. Next, according to the Euler semi-implicit 

integration scheme and using the Succesive-Over-Relaxation (SOR) method, the position and the 

orientation of segments at the next time step were calculated (Carrivain et al. 2014). At the end of 

the time step, the simulation proceeded for another step. Every one hundred steps, the collision 

data for the last one hundred steps, and the position and orientation of all segments were written to 

output files. In the text, time step may refer to the time unit, Δ𝑡, or to a specific time point in a 

simulation (Fig. 2.2). For example, 𝑛 time steps (time units) means 𝑛 ∗ Δ𝑡 seconds, however, time 

step 𝑛 refers to a specific point in time, i.e. at 𝑛 ∗ Δ𝑡 seconds. This point could be called a time 

point in the simulation as well (Figure 2.2). 

 

Figure 2.2. Time step and time point in simulations. The horizontal line shows time. Different examples 

are given to explain the notion of time step and time point in simulations.  

2.3. Statistical methods 

To compare the peripherality rate of telomeres positions (section 3.3.1), first the confidence 

intervals of the in vivo measurements were estimated as follows: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = [𝑝 + 𝑍0.95√
𝑝(1−𝑝)

𝑁
+

0.5

𝑁
, 𝑝 − 𝑍0.95√

𝑝(1−𝑝)

𝑁
−

0.5

𝑁
]  (Eq. 2.5), 

where 𝑝 is the rate of peripheral positions of telomere and 𝑁 is the total number of measurements 

(Tel3R: 𝑝 = 0.6876, 𝑁 = 80; Tel14L: 𝑝 = 0.6081, 𝑁 = 74). The 𝑍0.95 is the z-score to estimate the 

middle 95% of a normal distribution, and it equals 1.96. The 
0.5

𝑁
 term is used to correct for the fact 

that the binomial distribution of experimental data is approximated by a continuous normal 

distribution (http://onlinestatbook.com/2/estimation/proportion_ci.html).    

 

https://paperpile.com/c/H7zatn/Dtl9
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The binomial test was also used to compare the position of telomeres in simulations with 

experimental data. A two-sided version of the test was employed using the myBinomTest function 

in MATLAB (input arguments: the number of occurrences of telomere within the peripheral region 

as measured in vivo, the total number of in vivo measurements, the rate of peripheral positions of 

telomere in simulations). 

 

To compare the 3D distances between loci, we consulted the statistician Jonathan Cairns 

(Babraham Institute) and according to his advice, I first fitted linear regression models to estimate 

the relationship between the simulation and microscopy data. Then, I used the Vuong test to 

compare the fit of linear models. The linear models were computed by the lm function from the 

‘lmtest’ package and Vuong tests were performed using the vuongtest function from the ‘nonnest2’ 

package in R.  

 

Our 25°C and 37°C Hi-C data were analysed by SeqMonk 

(http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/) at single restriction fragment 

resolution. The output list of interacting fragments was built by setting the following options: Min 

interaction strength (Obs/Exp) 1.0, Max P-value 1.0, Min absolute count 1, and correction for 

physical linkage. To correct for the linear proximity effect (physical linkage), SeqMonk defines a 

correction parameter for distance 𝑑, which equals to the average number of contacts between two 

fragments separated by a genomic distance 𝑑. Then, it normalises the expected contact frequencies 

of two fragments using the calculated correction parameters. Finally, the binomial test is adopted 

to determine the probability of getting more or equal the observed number of interactions, for each 

pair of fragments.  

2.4. Hardware and software 

Simulations were implemented in Python 2.7.3, calling Open Dynamics Engine v. 0.13 

(https://sourceforge.net/projects/opende/) through the PyODE module v. 1.2.0 

(https://sourceforge.net/projects/pyode/files/pyode/1.2.0/). Configuration files, which had defined 

the physical properties and the chromatin states of segments, the scaling factors for changing the 

FLC (or other parameters), and the position of centromeres, were passed to the simulation code. 

Simulations were run on the Babraham Institute Computing Cluster, on Dell Intel Xeon CPU E5-

4620 0, 2.20 GHz, using an average of 1.1 GB RAM. The 3x109 time step simulations took c. two 

months.  

http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
https://sourceforge.net/projects/opende/
https://sourceforge.net/projects/opende/
https://sourceforge.net/projects/pyode/files/pyode/1.2.0/
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The simulations converged within the first 105 time steps, as shown in Fig. 5.7. Unless stated 

otherwise, the figures were created from the first 106 time steps after convergence, to be precise 

from time step 99,901 to 1,099,900. In Fig. 5.1 and Fig. 5.2, the data from all 106 time steps were 

plotted, however, in other figures (Chapter 3-6) 104 non-correlated time points were taken by 

sampling every 100 time steps. To analyse the results of [uniform], [25°C], and [37°C] simulations, 

the data of three stochastic replicate simulations were combined. In Fig. 5.5, Fig.5.6, and Fig. A.4, 

the results of only one replicate are shown. In Fig. 7D, a randomly selected sample of 1x106 out of 

the recorded 12.9x106 data points, which were obtained from the triplicate simulations, was plotted. 

 

Fig. 3.1A and Movie Vid.1 were created from the simulation output files using VMD version 1.9.1 

(Humphrey et al. 1996). Chromosomes were drawn as smooth tubes, connecting the centres of 

segments. Data analysis of simulation output, microscopy data and Hi-C contact maps was 

performed with MATLAB_R2013b, MATLAB_R2017b, R 3.5.0, and Python 2.7.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ks.uiuc.edu/Research/vmd/
https://paperpile.com/c/VxVM1B/7gAtZ
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3. Test and validation of the polymer model 

Our bioinformatics analysis for binding of chromatin-associated proteins has revealed a 

heterogeneous pattern of protein occupancy across the genome. This heterogeneity has been 

determined for two temperature conditions: 25°C (normal growth) and 37°C (heat-shock). To study 

the effects of differential protein occupancy on the dynamic chromosome structure of S. cerevisiae 

cells, I developed a heteropolymer model of the complete yeast genome, consisting of 16 

chromosomes, which contain between 230kb (Chr I) to 1531 kb of DNA (Chr IV). The first section 

of this chapter describes how the model was built (section 3.1). As discussed below, the mobility 

of each chromatin segment was altered according to its protein occupancy. The mobilities of 

segments were quantified and tested in both short test simulations and main simulations (section 

3.2). To evaluate the results of simulations, the 3D distance distributions between various loci, 

locations of telomeres, and the mean square displacements of segments, were measured. Then, they 

were compared to analogous experimental quantifications (section 3.3).  

3.1. Polymer model 

To model the chromatin organisation of S. cerevisiae during interphase, I modified a polymer 

model (Wong et al. 2012) that uses Open Dynamics Engine (ODE, http://www.ode.org/). The 

model simulates chromosomes as chains of rigid cylindrical segments, which move based on 

Langevin thermostat dynamics (Lemons & Gythiel 1997; Berg 1993; Wong et al. 2012; Carrivain 

et al. 2014). I set the size of segments to 2 kb and mapped the determined chromatin states on to 

the segments (see the definition of chromatin states in section 1.4.2 and the mapping in section 

2.1.2) (Fig. 3.1). At each time step, the collisions of segments are detected and recorded. To 

expedite simulations and to get enough collisions between segments, I used the speeded up version 

of compound Langevin force (Eq. 2.4), as it was introduced in the original model (Wong et al. 

2012). This force is called speeded up FLC or just FLC in the text, and the standard version of 

Langevin force is referred to as standard FLC. As a result of the speeding up factors, the time unit 

in the simulations are arbitrary units and not real seconds.  

 

Similar to the previous model, the x, y, and z coordinates of all segments at every 100th time step 

are recorded in output files. To get more detailed information, I extended the code to write the 

movement profile of segments, i.e. linear velocity, angular velocity, linear acceleration, and angular 

file:///C:/Users/fahmiz/AppData/Roaming/Microsoft/Word/(Wong%20et%20al.%202012)
http://www.ode.org/
https://paperpile.com/c/VxVM1B/L6B8A+soFUU+vopXT+HocHj
https://paperpile.com/c/VxVM1B/L6B8A+soFUU+vopXT+HocHj
https://paperpile.com/c/VxVM1B/osa6k
https://paperpile.com/c/VxVM1B/osa6k
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acceleration, to files at every 100th time steps. In addition, for three short intervals of time steps 

(49 time steps long), the coordinates and the movement profiles are stored at each time step.  

 

I developed two variations of the model: [25°C] and [37°C] models, which simulate the normal 

growth (25°C) and heat-shock (37°C) conditions, respectively. Our determination of chromatin 

states has revealed the heterogeneous pattern of protein binding across the genome. Genes at state 

4 (S4) are highly occupied by poised proteins at 25°C, while S3 genes are highly expressed and 

less occupied. At 37°C, there is a reversed situation: S4 genes are highly transcribed and less bound 

by proteins than S3 genes, which are heavily occupied. Protein binding changes various physical 

properties of chromatin segments and hypothetically affects their mobility. In addition, high 

expression levels coincide with more ATP-dependent activities and it has been proposed that these 

activities increase the thermal fluctuations of segments (see section 1.4.3). As the amount of each 

change is not known, I scaled the FLC exerted on segments at each time step to change the mobility 

of segments according to their protein occupancy and expression level. Different factors were 

tested to scale the FLC: for both [25°C] and [37°C] models for highly occupied segments, the force 

was decreased 2, 5, or 10 times. For less occupied segments, i.e. highly expressed genes, the force 

was increased by the same scaling factors at both temperatures (Fig. 3.1B). I also set a control 

simulation called [uniform] model, where the FLC was not scaled. The heteropolymer models with 

5x changes provide the best match to experimental data, and they are represented as [25°C] (FLC: 

S3= 5x; S4=0.2x) and [37°C] (FLC: S3= 0.2x; S4=5x). The radius of rDNA segments was set to 20, 

50, 75, or 100 nm. The results reported in the main text (Chapter 3-6) are obtained from simulations 

with 50 nm rDNA segments, as they produced a good match to the experimental data (see Appendix 

A: Fig. A.1, Fig. A.2, Fig. A.3) and a smaller nucleolus (Fig. 3.1A), which is closer to its reported 

volume (⅓ of the nucleus) (Therizols et al. 2010; Léger-Silvestre et al. 1999).  

 

Fig. 3.1A illustrates a snapshot of the modelled chromosomes at 25°C, where chromatin segments 

are coloured according to their chromatin state and FLC is scaled by a factor of 5. Centromeres are 

attached to the Spindle Pole Body (SPB) by microtubules and telomeres occupy positions close to 

the nuclear envelope. The folding of chromatin fibre and the segregation of DNA segments and 

rDNA segments, which fill a significant part of the nuclear volume, are visible. Vid. 1 demonstrates 

a movie of the same simulation over 49 time steps. 

https://paperpile.com/c/VxVM1B/LWROR+s23VH
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Figure 3.1. Polymer model of the S. cerevisiae genome. (A) A snapshot of dynamic chromosome structure 

in 25°C model, where 5x changes was applied to the FLC. Chromatin segments of different states are 

represented by different colours. Grey coloured microtubule segments attach centromeres to the SPB and 

beige coloured rDNA segments model the nucleolus. The thicknesses of the segments are not drawn to scale. 

(B) The exerted FLC on chromatin segments in [uniform], [25°C] and [37°C] models. 

3.2. Testing the model    

To analyse the changes in segments mobility in response to force alterations, short test simulations 

were run (section 3.2.1). Then the movements of segments were examined in main simulations 
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(section 3.2.2) and the autocorrelation of segment velocities were calculated (section 3.2.3). To test 

the main simulations, 10,000 time steps (from time step 99,901 to 1,099,900) were analysed from 

[uniform], [25°C], and [37°C] models. 

3.2.1. Mobility of segments in short test simulations 

To investigate the effect of changing FLC on the mobility of segments and to examine its 

relationship with protein occupancy, I ran short test simulations. I made a short chromosome 

composed of 18 segments, where the 4th segment was connected to the SPB and the properties of 

15th and 16th segments were changed (Fig. 3.2A). Simulations ran for 5000 time steps and the 

coordinate and movement profile of segments were stored at each time step. In one set of 

simulations, the applied force to segments was scaled, and in the other set, the radius (volume) and 

mass of segments were scaled. To keep the density of cylindrical segments constant, the radius was 

scaled by the square root of the scaling factor of mass. First, simulations were run using the standard 

FLC (Fig. 3.2), then the speeded up FLC was tested (Fig. 3.3), similar to the main simulations. In 

both Fig. 3.2 and Fig. 3.3, each pair of box plots shows the results of one simulation, the left and 

right plots depict the distribution of data for 15th and 16th segments, respectively.  

 

Increasing the force leads to a clear rise in acceleration and displacement of the segment. It also 

raises the mobility of the neighbouring segment, even when this adjacent segment is subject to a 

scaled down force (Fig. 3.2B,C, Fig. 3.3A,B). Reducing the force has an opposite effect on the 

mobility of segments, however, the effect is less noticeable. In the other set of simulations, scaled 

up radius and mass make segments move more slowly, while decreased radius and mass lead to 

faster movements (Fig. 3.2D,E, Fig. 3.3C,D). Two neighbours of different volume and mass 

compete to overwrite the effect of each other on their movements, and it is not clear which one is 

more dominant. Overall, increasing the force has the same qualitative effect on the mobility of 

segments as decreasing the radius and mass and vice versa. Therefore, changing the force has the 

desired effect on the mobility of segments in line with their protein occupancy.  

 

Furthermore, in simulations with speeded up FLC, 5x changes in force or in volume and mass of 

segments result in larger differences in mobilities than 2x alterations (Fig. 3.3A,C vs. Fig 3.3. B,D). 

In addition, segments subject to speeded up FLC move faster compared to the ones with standard 

FLC; however, the same qualitative pattern of changes in mobility is achieved (Fig. 3.2 vs. Fig. 3.3). 

Therefore, speeded up simulations provide internally consistent results.  



35 
 

 

Figure 3.2. Movement of segments in short test simulations with standard FLC. (A) A short chromosome 

with 18 segments. The 4th segment is modelling a centromere and is attached to a fixed point. The properties 

of 15th and 16th segments were altered. (B,D) The linear instantaneous acceleration of segments along the 

x-axis, measured at each time step. The acceleration changes by scaling the force (upper plot) or the radius 

and mass (lower plot). (C,E) The displacement of segments along the x-axis over one time step were 

quantified. In the upper plot, the force is scaled and in the lower one the radius and mass are changed by the 

given scaling factors. For all boxplots, the red line shows the median, and the outliers are not shown. The 

edges of boxes represent the lower and upper quartile values and the maximum whisker length is set to 1.5 

times the interquartile range.  

 



36 
 

 

Figure 3.3. Movement of segments in short test simulations with speeded up FLC. The displacement of 

segments along the x-axis over one time step were calculated. (A) The force was scaled by a factor of 2. (B) 

The force was scaled by a factor of 5. (C) The radius and mass of segments were scaled by √2 and 2 

respectively. (D) The radius and mass were changed by √5 and 5 factors respectively. For all boxplots, the 

red line shows the median, and the outliers are not shown. The edges of boxes represent the lower and upper 

quartile values and the maximum whisker length is set to 1.5 times the interquartile range. 

3.2.2. Mobility of segments in main simulations 

To confirm that segments are moving with different speeds according to their chromatin state, the 

displacement of segments of chromosome XIV were measured in uniform and heteropolymer 

simulations. The displacement equals to the magnitude of the distance between two consecutive 

recorded positions. Positions were stored every 100 time steps, and the displacement was calculated 

from the data obtained from 10,000 time points. The distributions of mean displacement of 

segments reveal that segments move faster in 25°C and 37°C simulations than in uniform 

simulation (Fig. 3.4A). This suggests that, as observed in short test simulations, the effect of 



37 
 

increased force on the mobility of segments and their neighbours is more dominant than the impact 

of decreased force. Therefore, on average segments have faster movements in heteropolymer 

models, while the segments subject to scaled down forces are relatively slow. In the [25°C] model, 

the median of the mean displacement of all S3 segments is higher than that of other segments. In 

particular, the median of S3 segments is about 20 percent higher than that of S4 segments (Fig. 

3.4A(b)). Similarly, the mean displacement of S4 segments has the highest median in [37°C] 

simulations and it is greater than the median of S3 segments by almost 19% (Fig. 3.4A(c)). In the 

[uniform] model, S4 and S5 segments have lower medians than S1-S3 segments (Fig. 3.4A(a)). 

This predicts that the chromatin states are not randomly spread along chromosome XIV, e.g. S4 

and S5 segments might be closer to the immobile centromere. To confirm this prediction, I plotted 

the relative genomic distances of segments of each chromatin state from the centromere of 

chromosome XIV (Fig. 3.4B). As Fig. 3.4.B(a) demonstrates, the median of the genomic distances 

of S4 and S5 segments are lower than the other states. To calculate the relative distance, the linear 

distance of a segment from the centromere (CEN) was divided by the length of the corresponding 

chromosomal arm (Fig. 3.4B(b)). 

 

Figure 3.4. Mean displacement of segments of chromosome XIV. (A) The distributions of mean 

displacements were calculated for 9,999 time periods in [uniform], [25°C], and [37°C] simulations. (B) The 

relative genomic distances of segments from the centromere (CEN) was calculated for each chromatin states. 

For all box plots, the red line is the median. The lower and the upper edges of boxes represent the lower and 
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upper quartile values, respectively. The maximum whisker length is 1.5 times the interquartile range, and 

all points out of this range are outliers, which are not shown. 

 

To further analyse the movement of chromatin segments, the mean square displacements (MSDs) 

were calculated for the same time periods as analysed for Fig. 3.4A. For all chromatin states, the 

lowest MSDs are seen for the segments closest to the centromere and the highest MSDs are for 

telomeres, which are pulled toward the nuclear periphery by an additional force (Fig. 3.5A). In the 

mean MSD plots, S2 has the highest mean MSD for almost all ∆t values (Fig. 3.5B). For [25°C] 

simulations, the effect of changes to the FLC of S3 and S4 segments is evident (Fig. 3.5B(b)), where 

the green trace is constantly higher than the blue one. However, for [37°C] simulations, the green 

trace starts lower than the blue one and towards the middle (after about 0.01 time units), it crosses 

the blue line and remains higher for the rest of ∆t values (Fig. 3.5B(c)). Thus, the effect of FLC 

alteration on movement speed is detectable at small time delays only. For larger time lags (∆t) the 

MSD curves behave more similar to the uniform model, where S4 and S5 segments have smaller 

displacements. Therefore, FLC alterations drive differential movement of segments for smaller time 

delays. These results also suggest that the order of states along the chromosome determines their 

movement for larger time lags.  
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Figure 3.5. Mean square displacement (MSD) plot of chromosome XIV. (A) The MSD plots for all 

segments of chromosome XIV for [uniform], [25°C], and [37°C] simulations. The colours from red to blue 

are associated to the segments from the start to the end of the chromosome. The lowest MSDs were measured 

for the segments closest to the centromere, which is tethered to the spindle pole body. The thick lines 

represent the average MSDs and are drawn in the colour of the chromatin state. (B) Mean MSDs for all 

chromatin states of chromosome XIV. Simulations have been speeded up; therefore, the time unit of 

simulations is not real seconds.  

3.2.3. Autocorrelation of segment velocity in main simulations 

To check if the movement of a segment is not correlated at analysed time steps, i.e. the velocity of 

a segment at one time step is not dependent on its velocity at next analysed time step, I calculated 

the autocorrelation of the x-axis component of the velocity vector. From uniform and 
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heteropolymeric models, the velocity of two individual segments of chromosome XIV were 

quantified for 49 consecutive time steps and for 49 sampled time steps (sampled every 100 time 

steps). Then, I used the autocorr function in MATLAB to calculate the autocorrelation of velocity 

data for 48 time intervals (Fig. 3.6). There is a sharp peak at interval = 0 in all plots as the velocity 

vector is highly correlated with itself. The red dots at interval = 1 are higher than the blue lines in 

Fig. 3.6A(a-f), indicating a high degree of correlation between velocities at consecutive time steps. 

In sampled data, there is no autocorrelation of velocities (Fig. 3.6B(a-f)), hence, sampling the data 

every 100 time steps is sufficient to provide independent stochastic movement data.    

 

Figure 3.6. Autocorrelation of velocity data. The autocorrelation plots were calculated for the x-axis 

component of velocity vectors for the 85th and 91st segments of chromosome XIV. The number of time lags, 

i.e. temporal differences, was set to 48. The blue lines show the lower and upper 95% confidence bounds.  
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(A) The velocities at 49 consecutive time steps were used to compute the autocorrelation profile. (B) The 

velocities at 49 sampled time steps were tested for correlation.  

3.3. Validation of the model by microscopy data 

To validate the polymer model, I compared the results of simulations with experimental data from 

different sources: telomere positions, MSD measurements, and inter-loci distances. All 

computational results are obtained from 10,000 time steps per simulation, and were sampled 

between time steps 99,901 and 1,099,900. The position of telomeres and the distribution of inter-

loci distances between pairs of loci were calculated for uniform and heteropolymeric models, where 

FLC was scaled by a factor of 2, 5, or 10 (sections 3.3.1. and 3.3.2). For uniform, [25°C] and [37°C] 

models, the data of 3 independent replicate simulations were combined. Then, I measured MSD 

plots for two individual segments (section 3.3.3).  

3.3.1. Telomere positions 

To measure the peripherality rate of telomere positions, the nucleus was divided into a central and 

a peripheral region, such that they had equal areas in 2D projection of the nucleus. Microscopy 

measurements reported in (Hajjoul et al. 2013) revealed that the right telomere of chromosome III 

and the left telomere of chromosome XIV locate in the peripheral region with frequencies of 68.8% 

and 60.8%, respectively. To compare these results with simulation data, the 95% confidence 

intervals of in vivo data were determined. P-values were calculated using the binomial test for 

comparisons (Table 3.1). In the uniform model, telomeres are in the peripheral region most of the 

time (Fig. 3.7F: 94.0% and 85.3%), similar to simulations with 2x changes in their FLC (Fig. 

3.7C,G). The results of these simulations are outside the experimentally determined confidence 

intervals, indicating that they are significantly different from the experimental data (p-value<4.0e-

05). Heteropolymeric models with 5x and 10x changes have less peripheral telomeres. The results 

of [25°C] and [37°C] simulations with 5x changes, and 25°C simulations with 10x changes are 

within the confidence intervals and consequently are similar to in vivo data. Binomial tests also 

showed that they are not significantly different (Table 3.1, p-value>0.1). In summary, a 5x change 

in FLC provides a consistently good match to experimental data (see also section 3.3.2), and is more 

conservative and realistic than a 10x alteration. The 5x reciprocal change was therefore adopted as 

the standard for following analyses. The corresponding simulations are labelled with square 

brackets: [25˚C] and [37˚C]. 

 

https://paperpile.com/c/VxVM1B/h6a97
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Figure 3.7. Telomere positions. (A) The peripheral and central regions with equal areas. (B) The positions 

of labelled telomeres, i.e. right telomere of chromosome III (Tel3R) and left telomere of chromosome XIV 

(Tel14L), were measured at room temperature. For Tel3R and Tel14L, 80 and 74 measurements were carried 

out, respectively. The drawn plot is modified from (Hajjoul et al. 2013). (C-I) Telomere positions were 

calculated from 10,000 time points per simulation. The data of the [uniform] model and heteropolymer 

models with 2x changes are significantly different from microscopy data (binomial test: p<1.6e-11 (Tel3R) 

and p<4.0e-5 (Tel14L)). The results of [25°C] and [37°C] simulations and 25°C simulation with 10x 

changes are not significantly different from the in vivo data (binomial test: p>0.1 (Tel3R) and p>0.2 

(Tel14L)), and are within the confidence intervals (Table 3.1).    

 

 Tel3R Tel14L 

n % peripheral p-value n % peripheral p-value 

experiments 80 68.7500 

(55/80) 

n/a 74 60.8108 

(45/74) 

n/a 

Confidence 

interval (%) 

[57.97 ≤ π ≤ 79.53] [49.01 ≤ π ≤ 72.61] 

[uniform] 

FLC: S1-S5=1x 

30,000 94.0067 3.8739e-12 30,000 85.3433 2.1858e-07 

FLC: S3=2x; 

S4=0.5x 

10,000 93.6000 1.5932e-11 10,000 81.1900 3.9920e-05 

https://paperpile.com/c/VxVM1B/h6a97
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FLC: S3= 0.5x; 

S4=2x 

10,000 96.5500 1.5894e-17 10,000 84.8100 4.7146e-07 

[25˚C]  

FLC: S3= 5x; 

S4=0.2x 

30,000 75.1933 0.1952 30,000 62.3233 0.8109 

[37˚C] 

FLC: S3= 0.2x; 

S4= 5x 

30,000 69.0900 1 30,000 68.7100 0.1672 

FLC: S3=10x; 

S4=0.1x 

10,000 59.6000 0.1104 10,000 55.8600 0.4146 

FLC: S3=0.1x; 

S4=10x 

10,000 44.8400 2.2908e-05 10,000 56.3000 0.4828 

Table 3.1. Statistical comparison of telomere positions quantified in vivo and in simulations. The 

binomial confidence intervals for the probability of peripheral positions were calculated from the in vivo 

data (http://onlinestatbook.com/2/estimation/proportion_ci.html). The confidence level was set to 95% and 

continuity correction was applied. Simulations with results within the computed confidence intervals are the 

best match to the experimental data. To further compare the simulation and microscopy data, the binomial 

tests were performed using the MATLAB file exchange function myBinomTest. H0: The experimental data 

is taken from a population with the same distribution as the simulation data. Small p-values indicate that the 

distributions are significantly different. 

3.3.2. 3D distance distribution of pairs of labelled loci 

To gain a better insight into chromosome organisation, I analysed the physical distances between 

pairs of loci on chromosome XIV. The in vivo data was obtained using confocal microscopy 

(strains, images and analysis by the group of Kerstin Bystricky, Toulouse), and it was compared to 

the simulation data from my model. In the Bystricky group, a series of yeast strains, each with a 

pair of fluorescently labelled loci at different genomic distances, were created (Fig. 3.8A,B). Next, 

using live cell imaging the 3D distances between loci were measured. I plotted their comprehensive 

dataset, where the number of distance measurements ranged from 498 to 1233 per labelled strain 

(Fig. 3.8D). 

 

In simulations, I identified the segments that correspond to the closest genes of the sites of the 

labelled insertions. Then, the 3D distances between pairs of segments were quantified for 10,000 

time points, for each of the triplicate simulation runs. (Fig. 3.8E-K). In all figures, for small linear 
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gaps between loci (27-79 kb), increasing the linear distance results in longer 3D distances. 

However, there is a drop at 150 kb and then a plateau for larger genomic distances (220-495 kb). 

In uniform and heteropolymeric models with 2x and 10x changes in FLC, the medians of box plots 

increase monotonically (Fig. 3.8E,F,H,I,K). The [25°C] and [37°C] models (with 5x changes) 

behave differently, as increasing the 1D distance from 220 kb to 319 kb does not change the 

distribution of 3D distances. Comparing the in vivo and simulation datasets for smaller genomic 

gaps demonstrates that experimental data have consistently higher 3D distances. This difference 

arises from a noise in experimental measurements (Fig. 3.8C). To statistically determine which 

simulation provides a better match to the experimental distance profile, I first fitted linear 

regression models. For each simulation, a linear model, which related the ln-transformed 

experimental distances to the mean of ln-transformed simulation data, was calculated. Then, to 

compare the fit of linear models, the Vuong test (Vuong 1989), a likelihood ratio test for closeness, 

was performed. The test compares the Kullback–Leibler distance of the linear models from the true 

model, i.e. data-generating model (Merkle et al. 2014). The results indicate that the statistical linear 

model derived from microscopy and [25°C] simulation data is significantly closer to the 

experimental data (Table 3.2) than the linear model derived from microscopy and the uniform 

simulation data. The 25°C simulation with 10x changes in FLC is the only simulation that has a 

comparable fit to the fit of [25°C] simulation. However, p-values suggest that the [25°C] simulation 

has a better fit. Moreover, as discussed in the previous section, changing the FLC by a factor of 5 is 

more realistic than a 10x change. Therefore, the simulations with 5x reciprocal changes, labelled 

[25°C] and [37˚C], were adopted as the standard for all following analyses. 

https://paperpile.com/c/VxVM1B/vI1Ha
https://paperpile.com/c/VxVM1B/lCKlE
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Figure 3.8. 3D distance distribution between pairs of labelled loci. (A) The positions of inserted operator 

arrays with fluorescent repressor operator system (FROS) on chromosome XIV for different yeast strains, 

and the distances (in kb) between the genomic positions of the insertions sites. (B) Microscopy image of 

strain YCG54 (“220 kb”), red and green fluorescent spots resulted from the insertion of mRFP- and GFP-

labelled fusion proteins, respectively. Scale bar: 2 µm. (C) Control for experimental noise: The 3D distances 

were measured in strain YPT237 (Therizols et al. 2010), where a single array, tagged by both mRFP- and 

GFP-labelled fusion proteins, was inserted. (D) The distributions of physical distances between labelled loci 

for different strains; the data were measured for about 1000 frames. (E-K) The 3D distance distributions 

between pairs of marked segments for different simulations. The distances were calculated for 10,000 time 

steps for each simulation. For all box plots, the central red line is the median. The bottom and the top lines 

https://paperpile.com/c/VxVM1B/LWROR
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of the boxes represent the 25th and the 75th percentiles, respectively. The maximum whisker length is 1.5 

times the interquartile range, and all points beyond this range are outliers, which are not shown. 

 

Linear model A: Linear model B: Vuong test assumption (H1): 

 

derived from experimental data and 

Model A fits better than 

model B 

Model B fits better than 

model A 

simulation dataset A simulation dataset B p-value significance p-value significance 

[25˚C]   

FLC: S3= 5x; S4=0.2x 

[uniform] 

FLC: S1-S5=1x 

1.76e-5 **** 1 ns 

[37˚C]   

FLC: S3= 0.2x; S4= 5x 

1.25e-15 **** 1 ns 

FLC: S3=2x; S4=0.5x 0.0595 * 0.9405 ns 

FLC: S3= 0.5x; S4=2x 0.000548 *** 0.9995 ns 

FLC: S3=10x; S4=0.1x 0.264 ns 0.7356 ns 

FLC: S3=0.1x; S4=10x 0.00485 ** 0.9952 ns 

Table 3.2. Statistical comparison of 3D distances measured in vivo and in simulations. Linear models 

were derived from ln-transformed experimental data, defined as predicted variable, and the means of ln-

transformed simulation data, defined as predictor variable (10,000 non-correlated data points per distance 

for each independent simulation). Next, the Vuong test was performed to compare the goodness of the the 

fit of the calculated models. Hypotheses for the Vuong test: H0: Model fits are equal; H1A: Model A fits 

better than Model B; H1B: Model B fits better than Model A. As small p-values indicate a better fit, 

according to the columns 3 and 5, the linear model derived from the [25˚C] simulation data is a better fit to 

the experimental data than the linear models derived from any other simulation. To run the Vuong test, the 

R package nonnest2, v. 0.4-1 (https://CRAN.R-project.org/package=nonnest2) (Merkle et al. 2014), was 

used. 

3.3.3. Mean square displacement of chromatin segments 

To further compare the results of simulations with microscopy data, I used MSD plots calculated 

by our group and that of our collaborator, Pietro Cicuta, for the 169 kb locus labelled by LacI-GFP 

fusion on chromosome XIV. The MSD was measured for cells held at 25°C, 30°C, and 37°C (Fig. 

3.9A). I found the closest S3 and S4 segments to the 169 kb locus on chromosome XIV, and then 

I measured the MSD for these two segments for the [uniform], [25°C], and [37°C] simulations 

(Fig. 3.9C,D). Interestingly, the MSDs of both the S3 segment (169 kb) and the S4 segment (181 

kb) show a similar pattern to the in vivo data: The same order of MSDs (for 30°C, 25°C and 37°C) 

https://cran.r-project.org/package=nonnest2
https://paperpile.com/c/VxVM1B/lCKlE
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is preserved for the [uniform], [25°C], and [37°C]. For smaller time delays, the S3 segment has 

faster movements in the [25°C] simulation, which is expected, as S3 segments are subjected to a 

stronger force in this condition (Fig. 3.9C). However, the S4 segment moves slower in [37°C] 

simulations, despite having a scaled up force towards it (Fig. 3.9D). This suggests that the S4 

segment has neighbours with S3 chromatin state that affect the magnitude of its displacements. 

Thus, the local arrangement of chromatin states is an important determinant of movement speed. 

The observation that two segments, which are in close linear proximity but belong to different 

chromatin states, have a very similar MSD profile, suggests that the overall arrangement of the 

genome has a crucial role in regulating the mobility of segments at larger time scales. 

 

Figure 3.9. MSD plots for 169 kb locus on chromosome XIV. (A) The mean squared displacements were 

measured for the 169 kb locus at different temperatures (Avelino Javer and Sven Sewitz, unpublished); the 

data were captured from 400 frames. (B) This locus was labelled by LacI-GFP fusion in S. cerevisiae cells. 

The strain was provided by Kerstin Bystricky. (C,D) The MSDs for S3 segment at 169 kb and for S4 

segment at 181 kb, for three different simulations. The trajectories were measured from 10,000 time steps. 

As simulations have been speeded up, the time unit of simulations is not real seconds.  

  

 



48 
 

4. Hi-C and simulation contact maps 

To understand how chromosomes are arranged inside the nucleus, I analysed the results of Hi-C 

experiments performed by our group. The first step was to build contact maps, which show which 

pairs of chromosome fragments had been in close proximity in the yeast nucleus. Subsequently, 

these contacts were quantified according to the chromatin state of interacting fragments.  

 

A common practice in Hi-C analysis is to divide the genome into equal size bins and report the 

number of interactions between each pair of bins (Lajoie et al. 2015). This reduces the noise in 

sparse datasets and provides a measure of normalisation (e.g. interactions per Megabase). However, 

it also reduces the resolution. In S. cerevisiae, the average size of a gene (2 kb) is of the same order 

of magnitude as an average HindIII restriction fragment (2.7 kb), the fragments of our Hi-C 

experiments. As our lab is interested in studying the effects of differential protein occupancy of 

genes, I carried out the Hi-C analysis at single restriction fragment resolution (section 4.1). As a 

result, the resolution of the interaction maps was comparable to the resolution of the protein binding 

data. Alternatively, I could have binned the protein occupancy data to make it comparable with 

binned interaction maps, however, this would have led to bins with an ambiguous and ineffective 

mixture of binding data.  

 

For comparison, full contact maps of 2 kb segments were quantified for different simulations. 

These results are discussed in section 4.2. To dissect how the protein occupancy of chromatin 

segments influences the genome structure, I calculated the state-wise contact maps for both Hi-C 

and simulation data (section 4.3). 

4.1. Full Hi-C contact maps 

To explore the chromosome conformation during normal growth (25°C) and heat-shock (37°C) 

conditions, our group performed Hi-C experiments in duplicate on S. cerevisiae cells. To this end, 

we replicated the growth conditions for the protein binding dataset we had based our chromatin 

states analysis on: One set of cells was grown at 25°C, and the other set was grown at 25°C and 

then shifted to 37°C for 15 minutes. The biological replicates are distinguished by “A” or “B” 

affixes: 25.A, 25.B, 37.A, 37.B. During Hi-C, the DNA was digested with the HindIII restriction 

enzyme, which resulted in restriction fragments of an average length of almost 2.7 kb. To process 

the sequencing reads generated by the experiments, a bioinformatics tool called HiCUP (Wingett 

https://paperpile.com/c/VxVM1B/F8eHC
https://paperpile.com/c/VxVM1B/N1gfy
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et al. 2015) was used by Steven Wingett (Babraham Institute): The reads were mapped to the 

reference genome, then the artefacts of experiments, such as PCR duplicates and products of self-

ligation or re-ligation, were filtered out. Finally, the processed data was reported as pairs of reads 

in BAM files. To analyse the read pairs and calculate the number of contacts between chromatin 

regions, two software tools were employed: HOMER (Heinz et al. 2010) and SeqMonk 

(http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/). The results of HOMER and 

SeqMonk are reported in sections 4.1.1 and 4.1.2, respectively.  

4.1.1. Hi-C analysis by HOMER 

HOMER (Hypergeometric Optimization of Motif EnRichment) is an extensive package for 

processing different experimental data, such as expression arrays, ChIP-seq, or Hi-C (Heinz et al. 

2010), and trusted in the field. It is capable of aligning the pair of reads, captured by Hi-C, with the 

genome. It can normalise the data for the genomic distance between interacting chromatin loci to 

distinguish the chromatin regions that are close to each other in 3D, despite their long linear 

distance. HOMER assumes that chromatin regions would have equal read coverage if the 

experiment did not have any technical biases. Thus, it corrects the data by iterative matrix balancing 

to reach equal coverage for chromatin sections. To quantify the number of interactions, HOMER 

splits the genome into bins with equal sizes.  

 

In order to implement the analysis at the resolution of single restriction fragments, I modified the 

HOMER source code (written in C++). To apply the required changes, first I had to learn how the 

normalisation algorithms were designed and implemented. Therefore, I used the debugger tool of 

Microsoft Visual Studio to navigate through the extensive source code of Hi-C analysis and find 

the right lines to edit. Specifically, I completed the partial implementation of the 

getCoverageRestrictionFragments method of TagLibrary class in SeqTag.cpp file. This method 

has the main role of defining the interacting regions as restriction fragments. Other methods in the 

SeqTag.cpp file were tweaked accordingly (Table 4.1).  

 

 

 

 

https://paperpile.com/c/VxVM1B/N1gfy
https://paperpile.com/c/VxVM1B/yGmfX
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
https://paperpile.com/c/VxVM1B/yGmfX
https://paperpile.com/c/VxVM1B/yGmfX


50 
 

Method Class Functionality 

getCoverageRestrictionFragments  TagLibrary  Defining chromatin regions as fragments 

adjustPETagTotalsWithModel  PeakLibray Iterative matrix balancing 

adjustTotalsThread  ChrPeaks Part of iterative matrix balancing 

loadSequence   

ChrTags 

Loading the reference genome 

getPETagDistribution  Part of distance normalisation 

findRestrictionSites  Finding restriction fragments 

makeHiCMatrix  Calculation of contact map 

Initialize  HiCBgModelChr Initialisation of parameters for the analysis 

Table 4.1. Updated methods in HOMER. The name of methods, their class, and their functionality. They 

are all in SeqTag.cpp file and they were modified to implement the Hi-C data analysis at single restriction 

fragment resolution.  

 

Next, the source code was compiled and the binary executable files, makeTagDirectory and 

analyzeHiC, were produced. The makeTagDirectory preprocesses the data and the analyzeHiC 

command executes the main analysis and normalision. The BAM files were converted to Hi-C 

summary files by a Python script, provided by Csilla Várnai (Babraham Institute), and they were 

given as input files to the makeTagDirectory command:   

makeTagDirectory <output tag directory> -restrictionSite AAGCTT -genome 

<reference genome file> -format HiCsummary <input read file> 

Other input parameters were the sequence of the reference genome and the sequence that is 

recognised by the restriction enzyme (AAGCTT). The output was a directory of processed data, 

which was used by the next command: 

analyzeHiC <input tag directory> -res site -superRes site -restrictionSite 

AAGCTT <normalisation option> > <output matrix file> 

Both -res and -superRes options set the resolution of analysis; -res defines the size of genomic bins 

and -superRes defines the size of the window for counting the number of interactions for each bin. 

I set these parameters to “site”, which means single restriction site. Two different normalisation 
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options were tested: -norm, which normalises for both read coverage and distance; -simpleNorm, 

which normalises only for the read coverage. The output file was the normalised interaction matrix.  

 

The commands were run for all Hi-C data. A section of a full contact map of 25°C data (25.A), 

which is normalised for both coverage and distance, is shown in Fig. 4.1B. To demonstrate the 

increased resolution of Hi-C map, the contact map was calculated and plotted for 10 kb bins as 

well (Fig. 4.1A). The clusters of red dots indicate that the centromeric region of chromosome II 

has a high number of contacts with that of chromosome I. In contrasts, this region avoids contacts 

with arms of chromosome II, which have moderately high contact frequencies with each other (Fig. 

4.1).  

 

Figure 4.1. Hi-C contact map by HOMER. Sections of normalised contact maps for Hi-C 25°C data 

(25.A). The data is normalised for both read coverage and distance. The red dots present contacts that 

happened more than expected and the blue ones display the interactions that were less than expected. (A) 

The bins have equal size of 10 kb. The analysis was done by Csilla Várnai using the original version of 

HOMER and I plotted the output matrix. (B) The bins have varied size and each bin is a single restriction 

fragment. Comparing the zoomed-in figures on the left side of each panel shows the significant increase in 

the resolution by using the modified version of HOMER. TreeView program was used to visualise the 

matrices (https://sourceforge.net/projects/jtreeview/). 

 

The fraction of read pairs with different distances between them was calculated by the 

makeTagDirectory command for all Hi-C results. To confirm that there is no bias in Hi-C 

experiments due to different temperatures, I plotted the quantified fractions (Fig. 4.2). The patterns 

are nearly identical; thus, different temperatures did not introduce any systematic bias in the data.  

https://sourceforge.net/projects/jtreeview/
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Figure 4.2. Comparison of Hi-C data for different temperatures. The fraction of Hi-C read pairs for 

binned distances was quantified for 25°C and 37°C data, per biological replicate. The HOMER command 

makeTagDirectory was used to analyse the Hi-C data. The results were stored in 

petag.FreqDistribution_1000.txt file and plotted in MATLAB.  

 

HOMER’s assumption of equal read coverage for chromatin regions holds true if chromosomes 

have fractal globule conformation, as observed for human cells (Lieberman-Aiden et al. 2009). 

However, the yeast genome has a Rabl-like configuration, and as became clear to us in the course 

of this analysis, the same read coverage for all chromatin regions, such as distant telomeric and 

clustered centromeric segments, is not expected. Thus, the read coverage normalisation is not 

desirable for yeast, and we decided to employ SeqMonk to repeat the Hi-C analysis (section 4.1.2). 

The results of HOMER analysis are still reported in this chapter to demonstrate how incorrect 

normalisation can affect the output data (section 4.3.4). 

4.1.2. Hi-C analysis by SeqMonk 

SeqMonk is a program to study high throughput sequencing data, and is capable of quantifying Hi-

C read counts for pairs of restriction fragments 

(http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/). Our Hi-C data was processed by 

SeqMonk and was corrected for linear proximity. This analysis was carried out by Sven Sewitz, 

then I received the output lists of interacting fragments. I combined the lists of two biological 

replicates and I plotted the calculated interaction matrices in MATLAB. Full contact map of 25°C 

and 37°C conditions are shown in Fig. 4.3. The high number of interactions between centromeric 

https://paperpile.com/c/VxVM1B/HBXv0
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
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regions are clearly visible at both temperatures as bright dots. During heat-shock, chromosomes 

tend to have more intra-chromosomal interactions, whereas at 25°C, the frequencies of intra- and 

inter-chromosomal contacts are comparable. 

 

Figure 4.3. Full contact maps analysed by SeqMonk. For each dataset, the read pairs were analysed and 

corrected for linear proximity effect by SeqMonk. Then, for each temperature condition, the data from 

biological replicates were added up. Next, to make the 25°C and 37°C contact maps comparable to each 

other, the calculated frequencies were scaled up to reach 10 million read pairs in total. The results were log-

transformed and plotted in MATLAB. In both plots, all 16 chromosomes are shown, in order from top to 

bottom, and left to right. 

4.2. Full simulation contact maps 

The contacts between chromatin segments were recorded at each time step in the simulations. I 

quantified the contact frequencies for 10,000 sampled time steps, per simulation, and plotted them 

in MATLAB (Fig. 4.4). As segments have excluded volume, adjacent segments cannot collide and 

consequently there are 3 diagonal lines of zeros in calculated contact matrices. The [uniform] 

model has the least number of total contacts, suggesting that the homopolymer is not as compact 

as heteropolymeric models. The total number of contacts in [37°C] is 1.2 times higher than that of 

[25°C], indicating that the model has a more compacted genome conformation at heat-shock 

conditions. Clusters of bright dots illustrate high contact frequencies for certain pairs of segments, 

such as centromeres and linearly proximal segments. To be consistent with Hi-C contact maps, 
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which do not contain the repeats of rDNA, I have omitted the rDNA segments from the full contact 

maps.  

 

Figure 4.4. Full contact maps of simulations. The contact frequencies were calculated in [uniform], 

[25°C], and [37°C] simulations, every 100 time steps, from time step 99,901 to 1,099,900. Then, the contact 

maps of three simulation replicates were added up, per condition. The ln-transformed matrices were plotted 

in MATLAB. The total number of quantified contacts is written at the top of each plot. For all plots, the rDNA 

segments are excluded. 

4.3. State-wise contact maps 

To investigate how contacts are distributed across different chromatin states, state-wise contact 

maps were calculated. For Hi-C data, first the chromatin states were mapped to restriction 

fragments (section 4.3.1). Then, the normalised state-wise contact maps were computed for both 

Hi-C and simulation data (section 4.3.2). To analyse the Hi-C 25°C and 37°C data, the 25°C and 

37°C state assignments were used respectively. For all simulation data, the state assignment of 

25°C was used. The results are compared in section 4.3.3. In addition, the state-wise contact maps 

calculated from HOMER reports are discussed in section 4.3.4. 

4.3.1. Mapping the chromatin states onto HindIII fragments 

To map the chromatin states of genes onto the HindIII restriction fragments, I first had to resolve 

the overlaps between genes. Therefore, I assigned different influence levels to various sections of 

genes according to the transcriptional start site (TSS), upstream activator sequence (UAS), and 

open reading frame (ORF) probes. Since the TSS probe was used to determine the state of a gene, 

it was given the highest priority for state assignment. The UAS probe was given the second highest 

priority, and the ORF probe the lowest priority (Fig. 4.5A). Thus, for a gene on the Watson strand, 
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the sequence between the start of the TSS and the start of the ORF was given the highest influence 

level. The stretch of DNA from the start of the UAS to the start of the ORF had the medium 

influence level. And the lowest level was assigned to the section between start of the UAS and the 

end of the ORF (Fig. 4.5A). Then, the states were assigned according to the following rules: 

Overlaps between sections of the same level of influence resulted in assigning the state of both 

sections to the relevant fragment (rule 1). If a higher-level section and a lower-level section 

overlapped with the same HindIII fragment, the fragment would get the state of the higher-level 

section (rule 2). To implement these rules, I used the coordinates of probes provided by (Venters 

et al. 2011). I updated the coordinates according to the reference genome sequence R.64.1.1 

(released on 03/02/2011) (Engel et al. 2014).  

 

The algorithm of assigning chromatin states to fragments, as described below, led to a list of 

percentages of chromatin states for each restriction fragment (Fig. 4.5B). For gaps between genes, 

state 6 (S6) was assigned. 

1.       Mapping of the lowest influence level sections for each chromosome: 

1.1.    First the overlaps between these sections were identified. 

1.2.   Then states were mapped to fragments. Where there was an overlap, the states of both 

overlapping sections were mapped (rule 1). 

2.       Mapping of the medium influence level sections for each chromosome: 

2.1.    Similar to the previous step, overlaps of regions composed of UAS and TSS probes were 

detected. 

2.2.   Where there was a higher-level region on the top of a lower level one, the states of 

corresponding fragments were updated (rule 2). 

3.       Mapping of the highest influence level sections for each chromosome: 

3.1.    Overlaps between TSS probes were located. 

3.2.    Similar to 2.2.  

https://paperpile.com/c/VxVM1B/gHT6t
https://paperpile.com/c/VxVM1B/gHT6t
http://downloads.yeastgenome.org/sequence/S288C_reference/genome_releases/
https://paperpile.com/c/VxVM1B/WUJAr
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Figure 4.5. Mapping chromatin states to restriction fragments. (A) A schematic view of how probes are 

prioritised for resolving the overlaps of genes. (B) Mapping chromatin states to the corresponding genome 

sequence and restriction fragments. 

4.3.2. Normalisation of state-wise contact maps 

To investigate the interactions of different chromatin states, I calculated the normalised state-wise 

contact frequencies for both Hi-C and simulation data. First, the frequencies of observed contacts 

between different chromatin states were quantified as follows: 

𝑓𝑜𝑏𝑠(𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑆𝑖, 𝑆𝑗)) =
𝑁(𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑆𝑖,𝑆𝑗))

∑ 𝑁(𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑆𝑖,𝑆𝑗))5
𝑖,𝑗=1

        (Eq. 4.1), 

where 𝑁(𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑆𝑖, 𝑆𝑗)) is the number of observed interactions between chromatin states 𝑆𝑖 and 

𝑆𝑖. For Hi-C, the observed interactions of restriction fragments were obtained from SeqMonk or 

HOMER reports. I used the chromatin states of interacting fragments to count the number of 

observed contacts between different chromatin states. Since a fragment could have more than one 

assigned chromatin state, the number of contacts was divided according to the proportions of 
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mapped states (Fig. 4.5B). For simulations, I calculated the observed state-wise interactions using 

the recorded contacts of 2 kb segments and their mapped chromatin states. 

 

Next, the frequency of expected contacts between two states was calculated under the assumption 

that any pair of genomic regions had an equal chance of interacting with each other. Each 

interaction involves two interacting regions (IR), which were HindIII fragments for Hi-C 

experiments and 2 kb segments for simulations. 𝐼𝑅1 and 𝐼𝑅2 represent the first and the second 

interaction regions respectively: 

𝑓𝑒𝑥𝑝(𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑆𝑖, 𝑆𝑗))  = 𝑃((𝐼𝑅1, 𝐼𝑅2) ∈ (𝑆𝑖, 𝑆𝑗), 𝐼𝑅1 ≠ 𝐼𝑅2)   (Eq. 4.2),  

which leads to: 

𝑓𝑒𝑥𝑝 (𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑆𝑖, 𝑆𝑗)) = 𝑃(𝐼𝑅1 ∈ 𝑆𝑖, 𝐼𝑅2 ∈ 𝑆𝑗) + 𝑃(𝐼𝑅1 ∈ 𝑆𝑗 , 𝐼𝑅2 ∈ 𝑆𝑖) − 𝑃(𝐼𝑅1 = 𝐼𝑅2)  

           (Eq. 4.3). 

This implies: 

𝑓𝑒𝑥𝑝 (𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑆𝑖, 𝑆𝑗)) = [𝑃(𝐼𝑅1 ∈ 𝑆𝑖) ∗ 𝑃(𝐼𝑅2 ∈ 𝑆𝑗)] + [𝑃(𝐼𝑅1 ∈ 𝑆𝑗) ∗ 𝑃(𝐼𝑅2 ∈ 𝑆𝑖)] −

 𝑃(𝐼𝑅1 = 𝐼𝑅2) = 2 ∗  
∑ 𝑝𝑟𝑜𝑝𝑠𝑖

𝑅𝑘𝑛
𝑘=1

𝑛
∗

∑ 𝑝𝑟𝑜𝑝𝑠𝑗

𝑅𝑘𝑛
𝑘=1

𝑛
−

∑ 𝑝𝑟𝑜𝑝𝑠𝑖

𝑅𝑘∗𝑝𝑟𝑜𝑝𝑠𝑗

𝑅𝑘  𝑛
𝑘=1

𝑛2   

(Eq. 4.4). 

Where 𝑛 equals to the number of all genomic regions, and 𝑝𝑟𝑜𝑝𝑠𝑖

𝑅𝑘 is the proportion of 𝑆𝑖 in the kth 

region (𝑅𝑘). The proportion of 𝑆𝑖 (1 ≤ 𝑖 ≤ 5) for a restriction fragment was determined in the 

previous section (4.3.1). Each 2 kb segment was assigned to only one chromatin state, thus the 

proportion was 1 for the mapped chromatin state and 0 for the others.     

  

Then, the normalised contact frequencies were calculated as follows: 

𝑓𝑛𝑜𝑟𝑚 (𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑆𝑖, 𝑆𝑗)) = ln
𝑓𝑜𝑏𝑠(𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑆𝑖,𝑆𝑗))

𝑓𝑒𝑥𝑝(𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑆𝑖,𝑆𝑗))
    1 ≤ 𝑖, 𝑗 ≤ 5    (Eq. 4.5). 

For Hi-C experiments, the weighted average of normalised contact maps of biological replicates 

was computed. The total number of read pairs in each experiment was used as the weight of each 

data set. Similarly, the weighted average of the state-wise contacts maps of simulations was 

calculated using the total number of recorded contacts as the weight of each replicate simulation. 
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4.3.3. Comparison of the state-wise contact maps 

The state-wise contact maps were quantified and normalised for Hi-C data using SeqMonk reports 

(Fig. 4.6A,B). In an analogous manner, the state-wise contact maps were analysed for [uniform], 

[25°C], and [37°C] simulations (Fig. 4.6C,D). Strikingly [25°C] and [37°C] simulations have 

similar results to 25°C and 37°C Hi-C data, respectively (see correlation coefficients and p-values 

in Table 4.2). The most important features are as follows: (1) The genes that are highly occupied 

by poised proteins, i.e. S4 at 25°C and S3 at 37°C, have the highest numbers of intra-state 

interactions (Fig. 4.6). (2) The genes that are highly expressed, i.e. S3 genes at 25°C and S4 genes 

at 37°C, have moderate numbers of intra-state contacts in Hi-C and simulations. (3) These highly 

expressed genes have lower number of contacts with other states. The observed patterns suggest 

that there is a spatial separation between the poised genes with lower mobility and the highly 

expressed genes with higher mobility. Other comparisons between these contact maps, e.g. Hi-C 

25°C vs. Hi-C 37°C or Hi-C 25°C vs. [37°C] model, show that the patterns are not correlated at all 

(see Table 4.2).  

 

Figure 4.6. State-wise contact maps for Hi-C, [25°C], and [37°C] simulations. (A,B) The number of 

interactions between chromatin segments were analysed by SeqMonk. The data was corrected for physical 

linkage and a cut-off of ≥3 contacts was applied. Then, the normalised state-wise contact maps were 

calculated for each temperature condition. (C,D) The number of interactions were obtained from 30,000 
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sampled time steps (10,000 per simulation replicate). To calculate the Hi-C and simulation contact maps, 

the interaction of S6 and S7 segments were not counted. The same colour map range was used for all plots. 

 

 

State-wise contact maps  

Correlation 

coefficient 

 

p-value 

 

Significance 

Hi-C 25˚C Simulation [25˚C] 0.8662 2.9712e-5 **** 

Hi-C 37˚C Simulation [37˚C] 0.7409 0.0016 ** 

Simulation [25˚C] Simulation [37˚C] -0.0614 0.8280 ns 

Hi-C 25˚C Hi-C 37˚C -0.0078 0.9781 ns 

Hi-C 25˚C Simulation [37˚C] -0.1734 0.5367 ns 

Hi-C 37˚C Simulation [25˚C] -0.1057 0.7078 ns 

Table 4.2. Correlation of state-wise contact maps of Hi-C, [25°C], and [37°C] simulations. Pearson 

correlation coefficients calculated in MATLAB between two vectors of size 15 (the numerical values of the 

upper-right triangular part of matrices depicted in Fig. 4.6). ****:p-value<0.0001; **:0.001<p-value<0.01; 

ns: not significant. 

 

The [25°C] and [37°C] models, which have provided the best matches to the microscopy data, also 

produced the best match to the Hi-C state-wise contact maps. To explore the state-wise contact 

maps of simulations that were not in line with microscopy measurements, the normalised contact 

frequencies were quantified. When the FLC is scaled by a factor of 2 to simulate the 25°C condition 

(Fig. 4.7B), the generated contact pattern is similar to the 25°C Hi-C data (Fig. 4.6A(a)) (see 

correlation coefficients and p-values in Table 4.3). In addition, the [uniform] model and the 25°C 

simulation with 10x scaled FLC are correlated with the 25°C Hi-C data (Table 4.3). However, they 

do not bear all the hallmarks: Unlike the Hi-C data, S3 segments have a high number of intra-state 

interactions, and S4 segments have fewer interactions with other states (Fig. 4.7A,D). Furthermore, 

the contact maps of [37°C] simulations with 2x and 10x changes in FLC do not provide good 

matches to the experimental data (lower correlation coefficients in Table 4.3). Although, similar to 

the Hi-C data, S4 segments avoid contacts with other chromatin states, they have the highest 

number of intra-state interactions (Fig. 4.7C,E).   
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Figure 4.7. State-wise contact maps for models with 1x, 2x, and 10x changes in FLC. (A) The contact 

maps were calculated by analysing 30,000 sampled time steps from 3 replicate simulations. (B-E) The data 

was obtained from 10,000 sampled time steps for each plot. For all contact maps, the interactions of S6 and 

S7 segments were discarded. The same colour map range was used for all plots. 

 

 

State-wise contact maps  

Correlation 

coefficient 

 

p-value 

 

Significance 

Hi-C 25˚C FLC: S3=2x; S4=0.5x 0.8938 7.1010e-6 **** 

Hi-C 25˚C Simulation [uniform] 0.7309 0.0020 ** 

Hi-C 25˚C FLC: S3=10x; S4=0.1x 0.6807 0.0052 * 

Hi-C 37˚C FLC: S3=0.1x; S4=10x 0.6255 0.0126 * 

Hi-C 37˚C FLC: S3=0.5x; S4=2x 0.5723 0.0258 * 

Hi-C 37˚C Simulation [uniform] 0.4150 0.1240 ns 

Table 4.3. Correlation of state-wise contact maps of Hi-C and simulations. To compare the contact 

maps, the Pearson correlation coefficients were calculated in MATLAB. The rows are sorted by correlation 

coefficient. ****:p-value<0.0001; **:0.001<p-value<0.01; *:0.01<p-value<0.05; ns: not significant. 
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Whilst the focus is on the comparison of Hi-C and simulation contact maps, it is crucial to not lose 

sight of differences in the nature of experimental and simulation data sets. The Hi-C data has been 

obtained from a culture of almost two billion fixed cells, whereas, the simulation data was captured 

from three independently modelled dynamic genomes over one million time steps.   

4.3.4. State-wise contact maps calculated from HOMER reports 

HOMER was employed to analyse our Hi-C data, as explained in section 4.1.1. I used the output 

matrices that were normalised for read coverage, to quantify the contact frequencies of chromatin 

states (Fig. 4.8). As discussed in section 4.1.1, the read coverage normalisation is not appropriate 

for our data. Therefore, the calculated state-wise contact maps illustrate the effect of incorrect 

normalisation on the results. Different types of filters were tested and applied after the read 

coverage normalisation and prior to the quantification of state-wise contact frequencies (Fig. 4.8).  

 

As genes can spread over adjacent restriction fragments, the chromatin states of neighbouring 

fragments can be similar and correlated. Thus, filtering out the interactions of adjacent fragments 

resulted in less prominent intra-state contacts (Fig. 4.8G-L). Filtering out rDNA data or S6 and S7 

interactions did not change the pattern of contacts (Fig. 4.8C-F vs. Fig. 4.8A,B and Fig. 4.8I-L vs. 

Fig. 4.8G,H). As Fig. 4.8 illustrates for all plots, the intra-state contacts are stronger than the inter-

state interactions. In contrast to the SeqMonk and Hi-C results at both temperature conditions, the 

highly occupied segments have a low number of interactions with other states. However, in all 

three types of state-wise contact map, the highly occupied segments have the highest number of 

intra-state contacts (Fig. 4.6A,B). 
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Figure 4.8. State-wise contact maps for Hi-C data analysed by HOMER. The Hi-C data was normalised 

by HOMER for read coverage, different filters applied as described, and then the number of state-wise 

interactions was calculated. The weighted averages of replicates were calculated using the number of total 

read pairs as the weight of each dataset. (A,B) No filter is applied. (C,D) The interactions of the rDNA 

region were discarded. (E,F) The interactions of S6 and S7 states were removed. (G,H) The contacts of 
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immediate neighbours were removed. (I,J) The interactions of adjacent fragments and rDNA region were 

discarded. (K,L). The interactions of adjacent fragments, S6, and S7 states were not counted.  
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5. Positions of contacts and relocation of genes 

Changes in the transcriptional activity of genes can affect their spatial positioning in different cell 

types (Shachar & Misteli 2017). Other factors, such as gene-density of the corresponding chromatin 

region and environmental signals, could also determine the 3D localisation of genes (Meaburn et 

al. 2007; Misteli 2007; Cremer et al. 2006). To determine the spatial distribution of segments 

corresponding to the poised and highly expressed genes, the locations of contacts between these 

segments were recorded during simulations. The distributions of contacts along different axes were 

used to calculate the degree of co-localisation between segments. The 2D projections of contacts 

and their clustering degrees are reported in section 5.1. 

In budding yeast, several genes have been reported to move towards the nuclear envelope upon 

activation (Egecioglu & Brickner 2011). This recruitment leads to physical interactions with the 

nuclear pore complexes and thought to facilitate the transport of messenger RNA into the 

cytoplasm (Brickner & Walter 2004; Guet et al. 2015; Casolari et al. 2005; Drubin et al. 2006; 

Cabal et al. 2006). As an example, the gene that encodes the stress-inducible protein HSP104p 

(Sanchez et al. 1992; Parsell et al. 1994), relocates to the nuclear periphery upon induction 

(Dieppois et al. 2006). To explain these observations, different theories have been proposed 

(Steglich et al. 2013; Egecioglu & Brickner 2011; Drubin et al. 2006; Dieppois et al. 2006; Randise-

Hinchliff & Brickner 2016; Ahmed et al. 2010); however, the underlying mechanisms are not fully 

understood (Randise-Hinchliff et al. 2016). To investigate the relocation of heat-shock genes to the 

nuclear periphery at 37°C, the positions of a heat-shock gene (HSP104) and all S4 genes were 

quantified in simulations (section 5.2). An enrichment analysis of S3 and S4 states was also carried 

out to identify the genes that have neighbours with similar chromatin states. These genes are more 

likely to undergo spatial relocation within the nucleus upon temperature alterations (section 5.2). 

Finally, to assess the robustness of simulation results, the peripherality of S4 genes, the distribution 

of contacts, and the state-wise contact maps were plotted for each simulation replicate (section 5.3).  

5.1. Contact projection 

Segments with the highest protein occupancy are in a poised state and have the highest number of 

intra-state interactions (S4 at 25°C, S3 at 37°C), as described in section 4.3.3. To evaluate the 

positions of these interactions in simulations, the middle point between any pair of colliding 

segments was calculated. Then the coordinates were projected onto 2D planes and the density plots 

were computed using the Python Seaborn library (Fig. 5.1, Fig. 5.2). The projections onto the yz 

https://paperpile.com/c/VxVM1B/IfBoI
https://paperpile.com/c/VxVM1B/Jahjh+GOFEJ+g6Qxd
https://paperpile.com/c/VxVM1B/Jahjh+GOFEJ+g6Qxd
https://paperpile.com/c/VxVM1B/igFRK
https://paperpile.com/c/VxVM1B/HbYT4+feM56+FJDlN+5MVED+L6A0o
https://paperpile.com/c/VxVM1B/HbYT4+feM56+FJDlN+5MVED+L6A0o
https://paperpile.com/c/VxVM1B/ckqeg+MYmG9
https://paperpile.com/c/VxVM1B/tnidn
https://paperpile.com/c/VxVM1B/k36ML+igFRK+5MVED+tnidn+Fs4FG+BhzDx
https://paperpile.com/c/VxVM1B/k36ML+igFRK+5MVED+tnidn+Fs4FG+BhzDx
https://paperpile.com/c/VxVM1B/wgqRb
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and xz planes demonstrate that S3 and S4 segments are separated from the aggregated rDNA 

segments on the spindle pole body distal side of the nucleus, as expected (see Fig. 3.1A). In the 

uniform model, these segments have comparable and moderate levels of compaction. However, in 

the heteropolymeric models, the heavily occupied segments are tightly clustered (Fig. 5.1C,E, Fig. 

5.2C,F) and the less occupied ones are loosely distributed (Fig. 5.1B,F, Fig. 5.2B,G). The 

distributions of contacts along the z-axis confirm the spatial clustering of slow moving poised 

segments (Fig. 5.1G). These segments also have a higher number of intra-state contacts, as the area 

under the corresponding curve is larger: high numbers of S4:S4 and S3:S3 contacts at 25°C and 

37°C respectively. This is in agreement with the state-wise contact maps (see Fig 4.6).  

 

Figure 5.1. Positions of intra-state contacts in simulations. (A-F) Density plots for 2D projections of 

simulated contacts between segments of the same chromatin state. The data was obtained from 3 replicate 

simulations; 1 million time steps (not sampled) per simulation. The plots are normalised to the highest 

density in each panel. The nucleus is oriented as Fig. 3.1A. (A-C) Intra-state contacts of S3 segments; (D-

F) intra-state contacts of S4 segments. (A,D) homopolymer model; (B,E) heteropolymer model representing 
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[25°C]; (C,F) heteropolymer model representing [37°C]. (G) The numbers of contacts were quantified for 

500 bins (each with 4 nm width) along the z dimension. The distributions of [25˚C] (cyan) and [37˚C] 

(orange) conditions are overlaid. (H,I) A schematic view of poised proteins (grey spheres) binding to poised 

segments: S4 segments at 25˚C (H) and S3 segments at 37˚C (I). Hypothetically, the poised genes have 

slower movements as a result of increased protein binding. The length and the number of flanking black 

lines symbolise the degree of segment mobility.  

 

To quantify the clustering level of contacts, we defined a formula based on the distribution of 

contacts along the z-axis, as follows: 

𝑛𝑜𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑑𝑒𝑔𝑟𝑒𝑒 𝑎𝑙𝑜𝑛𝑔 𝑧 𝑎𝑥𝑖𝑠 ≔ ℎ𝑧 𝑤𝑧⁄    (Eq. 5.1), 

where ℎ𝑧 is the height of the curve and 𝑤𝑧 is the width of the distribution at half height (Fig. 

5.2D,H). Since the segments are confined by the limited nuclear volume, a higher number of 

segments leads to more compact conformations. Thus, the normalised clustering degree is defined 

as follows: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑑𝑒𝑔𝑟𝑒𝑒 𝑎𝑙𝑜𝑛𝑔 𝑧 𝑎𝑥𝑖𝑠 ≔ (ℎ𝑧 𝑤𝑧⁄ ) [𝑛 ∗ (𝑛 − 1)]⁄  (Eq. 5.2), 

where 𝑛 is the number of segments and 𝑛 ∗ (𝑛 − 1) is equal to the number of possible segment 

pairs. The measured clustering levels indicate a drastic change in the compaction of poised and 

highly transcribed genes: S3 segments are compacted 5.7-fold upon change from [25°C] to [37°C], 

while S4 segments have a 3.4-fold compaction upon the reverse change, from [37°C] to [25°C] 

(Table 5.1). 

 

To examine the compaction of the whole genome, I calculated the positions of all contacts that had 

occurred in the simulations (i.e. both intra- and inter-state contacts). Then, the clustering levels 

were measured for S1-S5, S1-S6, and S1-S7 segments by analysing the relevant contact 

distributions. The results predict that chromosomes have more compact structures during heat-

shock (cf. Table 5.1: [25°C]/[37°C] and [37°C]/[25°C]). Excluding S6 or S7 segments from the 

calculations did not change the outcome. 
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Figure 5.2. Positions of intra-state contacts in the zx plane. (A-C, E-G) Similar to Fig. 5.1, the density 

plots were calculated for the zx projection of contact positions. They are normalised to the highest density 

in each panel. (D,H) The number of contacts for each bin on the z-axis was quantified; there were 500 bins 

of 4 nm width. To calculate the clustering strength of segments, these shape parameters of the contact 

distributions were used: the height (the vertical dashed lines), and the width at half height (the horizontal 

dashed lines). For each simulation type, 3 million time points from three replicate simulations (1 million per 

replicate) were analysed. 

 

 

State 

Clustering along the z-axis 

[uniform] [25˚C] [37˚C] [25˚C]/[37˚C] [37˚C]/[25˚C] 

intra-state S3 
2.0275e2 1.1125e2 6.3814e2 

0.17434 5.7359 
3.2364e-4 1.7759e-4 1.0186e-3 

intra-state S4 
1.4823e2 3.8656e2 1.1339e2 

3.4091 0.29333 
3.4497e-4 8.9964e-4 2.6389e-4 

all contacts S1-S5 
1.0122e4 1.95e4 2.6713e4 

0.72999 1.3699 
5.8198e-4 7.9724e-4 3.0209e-4 

all contacts S1-S6 
1.0718e4 2.0695e4 2.8181e4 

0.73437 1.3617 
2.9719e-4 5.7381e-4 7.8136e-4 

all contacts S1-S7 
1.0755e4 2.0773e4 2.8299e4 

0.73408 1.3623 
2.6229e-4 5.0661e-4 6.9013e-4 

Table 5.1. Degree of clustering of contacts along the z-axis in simulations. Height / width of distributions 

along the z-axis. In columns 2-4, the first row for each type of contacts is not normalised (Eq. 5.1); the 

second row is normalised by the number of possible segment pairs (Eq. 5.2). 
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The distributions of contacts along the x and y axes are in line with the strong clusters of poised 

genes (Fig. 5.3). To incorporate these data into the calculation of the clustering degree, I expanded 

the equations as follows: 

𝑛𝑜𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑑𝑒𝑔𝑟𝑒𝑒 ≔ (ℎ𝑧 𝑤𝑧⁄ ) ∗ (ℎ𝑦 𝑤𝑦⁄ ) ∗ (ℎ𝑥 𝑤𝑥⁄ )  (Eq. 5.3), 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑑𝑒𝑔𝑟𝑒𝑒 ≔
(ℎ𝑧 𝑤𝑧⁄ )∗(ℎ𝑦 𝑤𝑦⁄ )∗(ℎ𝑥 𝑤𝑥⁄ )

[𝑛∗(𝑛−1)]3    (Eq. 5.4). 

The results of the 3D clustering calculations are more significant than the clustering levels along 

the z-axis (Table 5.2 vs. Table 5.1). The whole genome is ~1.5 times more condensed at 37°C, 

while the co-localisation strength of S3 segments has a 62.6-fold increase. The clustering degree 

of S4 segments changes by a factor of 42.6.  

 

Figure 5.3. Distributions of contacts along x, y, and z dimensions. The numbers of contacts were 

calculated for bins of 4 nm width. Each horizontal axis extends from -1 to 1 μm as the centre of the nucleus 

is (0, 0, 0) and its radius is 1μm. (A-C) Contacts between S3 segments; (D-F) Contacts between S4 

segments. For each plot, the dashed vertical and horizontal lines are the height and the width at half height 

of distributions respectively. 
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State 

Clustering in 3D 

[uniform] [25˚C] [37˚C] [25˚C]/[37˚C] [37˚C]/[25˚C] 

intra-state S3 
1.2886e6 5.0706e5 3.1732e7 

0.015979 62.58 
5.2411e-12 2.0623e-12 1.2906e-10 

intra-state S4 
4.376e5 1.3901e7 3.2642e5 

42.586 0.023482 
5.5162e-12 1.7523e-10 4.1147e-12 

all contacts S1-S5 
1.6173e11 1.3632e12 2.1358e12 

0.63826 1.5668 
4.2994e-12 3.6238e-11 5.6777e-11 

all contacts S1-S6 
1.9292e11 1.6138e12 2.4511e12 

0.65839 1.5189 
4.1124e-12 3.4399e-11 5.2247e-11 

all contacts S1-S7 
1.952e11 1.6398e12 2.4869e12 

0.65938 1.5166 
2.8312e-12 2.3785e-11 3.6071e-11 

Table 5.2. Degree of clustering of contacts in the simulations. Height / width of distributions along the 

x, y, and z axes are multiplied and normalised by the number of possible segment pairs. In columns 2-4, the 

first row for each type of contacts is not normalised (Eq. 5.3); the second row is normalised (Eq. 5.4). 

5.2. Gene relocation 

In our simulations, a change in the temperature condition leads to an alteration in the spatial 

distribution of segments. This led us to speculate that the model might be capable of reproducing 

the relocation of inducible and highly transcribed genes to the nuclear periphery. To test this 

hypothesis, I analysed the positions of S4 segments, which are enriched for heat-shock genes. As 

20% of genes change their chromatin state upon changes in temperature (section 1.4.2), the list of 

S4 segments is not identical in 25°C and 37°C state assignments. Therefore, segments that are 

assigned to S4 state at both 25°C and 37°C conditions have been analysed in this section. First, the 

x, y, z coordinates of these segments were determined at each time step. Then, the distances of 

segments from the z-axis were calculated in [25°C] and [37°C] simulations as follows. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑖𝑡ℎ𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑧 𝑎𝑥𝑖𝑠 = √𝑥𝑖
2 + 𝑦𝑖

2    (Eq. 5.5). 

 

Next, the calculated distances were drawn as density plots for the segment corresponding to the 

HSP104 gene (Fig. 5.4A) and for all S4 segments (Fig. 5.4B). The 3D distances of segments from 

the centre of the nucleus were also quantified (Fig. 5.4C,D). The dashed red line demonstrates the 

border of the peripheral zone, which covers the outermost 33% of the nuclear area. The HSP104 

gene has a broader distribution at 37°C (Fig. 5.4A) and it moves towards the nuclear membrane 

upon activation (Fig. 5.4A,C). In more detail, the number of occurrences of this gene within the 
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peripheral zone has more than doubled (Fig. 5.4C,F) (p<2.2e-16, Wilcoxon rank sum test). This is 

very similar to the results of confocal microscopy measurements for the peripheral positions of the 

HSP104 gene at room temperature and upon induction (Dieppois et al. 2006) (Fig. 5.4E). The 

distribution of all S4 genes also shows a significant shift towards the nuclear periphery at 37°C 

(Fig. 5.4B,D): the number of their peripheral locations has increased by 50 percent (Fig. 5.4G).        

 

Figure 5.4. Peripheral positions of heat-shock genes before and after activation. (A) The 2D distance 

of the HSP104 gene from the z-axis in [25°C] and [37°C] conditions (see Eq. 5.5). (B) The distance 

distribution of all S4 segments from the z-axis. For both (A) and (B), 3x104 sampled time steps were 

analysed and the data was plotted using the Python Seaborn package. (C,D) The 3D distances of the HSP104 

gene and all S4 segments from the centre of the nucleus. The red dashed line specifies the boundary of the 

peripheral region, which covers 33% of the nuclear area in 2D. The solid black lines show the mean of 3D 

distances, per condition, and the dashed black lines indicate the total averages. (E) The percentage of 

peripheral positions for the HSP104 gene (replotted from (Dieppois et al. 2006)). The position of the gene 

locus was tracked by microscopy imaging before and after induction. (F,G) The frequencies of peripheral 

positions for the HSP104 gene and for all heat-shock genes. For (C,F,G), 3x104 sampled time steps from 

https://paperpile.com/c/VxVM1B/tnidn
https://paperpile.com/c/VxVM1B/tnidn
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three simulation replicates were analysed. For (D) a random sample of 1x106 out of the recorded 12.9x106 

data points was plotted.  

 

The relocation of all S4 segments shows the average behaviour of heat-shock genes, which is less 

significant than that of the HSP104 gene (Fig. 5.4F,G). This suggests that there are some S4 genes 

with limited relocation or reversed relocation towards the centre of the nucleus. The 3D distances 

of individual S4 genes from the centre of the nucleus were analysed and confirmed that some S4 

genes prefer central positions when the condition changes from [25°C] to [37°C] (Fig. A.4A). This 

could have two possible reasons: a) The S4 segment has S3 neighbours, which move more slowly 

at 37°C and limit the mobility of the activated heat-shock gene. Therefore, the S4 segment might 

have slower movements at 37°C despite being less occupied by poised proteins. b) The folding of 

chromosomes prevent the segment from moving fast enough to get closer to the nuclear membrane. 

Focusing on the first assumption (a), I performed preliminary analysis of S4 segments. We 

hypothesized that having facilitator neighbours is a necessary condition for a gene to be able to 

relocate to the nuclear periphery upon activation, i.e. S4 genes with S4 neighbours can relocate at 

37°C. To find these genes, I defined the enrichment score of segments for S4 as follows: 

𝑠𝑐𝑜𝑟𝑒𝑆4

𝑖 = 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝑆4

𝑖 + ∑ [(𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝑆4

𝑖+𝑗
+ 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝑆4

𝑖−𝑗
) (𝑗 + 1)⁄ ]5

𝑗=1  (Eq. 5.6), 

where 𝑠𝑐𝑜𝑟𝑒𝑆4

𝑖 is the S4 enrichment score of the ith segment. The 𝑖 + 𝑗 and 𝑖 − 𝑗 are the indices of 

jth neighbours on the right and left hand sides of ith segment, respectively. The 

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝑆4

𝑖±𝑗
equals one if the state of the jth neighbour is S4 and zero if the jth neighbour is in 

any other state. Closer neighbours have more influence on the score of the segment, and distant 

neighbours (>10 kb from the segment) are not taken into account. The scores of segments were 

computed using the state assignments at 25°C and 37°C (section 1.4.2). The S4 segments with high 

enrichment scores have facilitator neighbours. Therefore, they could have faster movements at 

37°C as expected and relocate to the proximity of nuclear membrane. However, segments with low 

scores would probably not be fast enough to be able to shift to the nuclear periphery. The position 

of loci with the highest scores could be analysed in simulations using their 2D distances from the 

z-axis and their 3D distances from the centre of the nucleus (similar to the analysis of HSP104 

gene). In addition, these genes are good candidates to be further studied and compared by 

microscopy imaging before and after activation.  
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I repeated the enrichment analysis of segments for S3 to identify the S3 genes with facilitator 

neighbours: 

𝑠𝑐𝑜𝑟𝑒𝑆3

𝑖 = 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝑆3

𝑖 + ∑ [(𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝑆3

𝑖+𝑗
+ 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝑆3

𝑖−𝑗
) (𝑗 + 1)⁄ ]5

𝑗=1  (Eq. 5.7). 

The S3 enrichment score of segments were measured using the 25°C and 37°C state assignments. 

The relocation of S3 genes with the highest scores could be also studied by our polymer model and 

microscopy experiments upon activation at 25°C.  

 

To verify if the enrichment scores have been able to identify the S4 and S3 genes with faster 

movements at [37°C] and [25°C] conditions, respectively, I analysed the displacement of segments 

with high scores. First, I selected the S4 segments with the highest S4 enrichment scores (>2.5) at 

both temperature conditions and plotted their MSD curves from the [uniform], [25°C], and [37°C] 

models (Fig. 5.5). The MSDs of the HSP104 were also measured (Fig. 5.5Q). The HSP104 gene 

and all chosen loci, except for the last three (Fig. 5.5N-P), have faster mobilities during heat-shock, 

i.e. the orange curves are higher than the cyan ones. 
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Figure 5.5. MSDs of S4 segments with high S4 enrichment score. (A-P) Segments with high S4 

enrichment score (>2.5) were identified. All these segments are assigned to S4 and they have neighbours 

with similar state assignments according to both 25°C and 37°C state assignments. The displacement of 

segments in [25°C], [37°C], and uniform simulations were plotted in MATLAB. The specified loci in kb 

are the centre of analysed segments. (Q) The MSDs of the corresponding segment to the HSP104 gene 

(chromosome XII, 41st segment) were quantified. The score of this segment is 2.78 and 2.45 according to 

25°C and 37°C state assignments, respectively. For all plots, 10,000 sampled time steps were analysed from 

the first simulation replicate. The time unit of simulations is not real seconds.  

 

Next, S3 segments with high S3 enrichment scores (>2.5) were selected and their displacements 

were quantified (Fig. 5.6). All segments, except the loci on chromosome VI (Fig. 5.6 D-F), have 
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faster movements in [25°C] simulations (the cyan curves are higher than the orange ones for all 

time lags).  Therefore, the enrichment scores have been able to find the genes that change their 

movements upon activation in simulations, as expected. In both Fig. 5.5 and Fig. 5.6, the enriched 

loci that do not move faster when they are highly expressed (Fig. 5.5N-P, Fig. 5.6 D-F) could be 

confined by other constraints, such as the folding of chromatin that affects the displacement of 

engaged loci.   

 

Figure 5.6. MSDs of S3 segments with high S3 enrichment score. (A-W) The score of segments for S3 

enrichment was computed. Then, the MSDs of segments with scores higher than 2.7 at both 25°C and 37°C 
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conditions were plotted in MATLAB. The indicated locus in each plot is the centre of the identified segment. 

The time unit is simulations is not real seconds. For all plots, 10,000 non-correlated time points were 

analysed from the first simulation replicate. 

5.3. Convergence of simulations 

To test when the simulation results converge, I calculated the peripherality of all S4 segments for 

shorter time intervals and for six independent simulation runs (Fig. 5.7A(a,b)). The fluctuations of 

peripherality at different time intervals demonstrate the stochasticity of the system. The simulations 

reach the convergence point within the first 105 time steps, and after that point, there is no clear 

trend in the peripherality data. We used these results to choose the analysed simulation period: 

From time step 99,901 to 1,099,900 (the transparent bar in the background of Fig. 5.7A). This time 

interval provides a reliable and robust representation of the system’s behaviour, as demonstrated 

by the results of three key types of analysis, for each of the three simulation replicates. The 

peripherality rate (Fig. 5.7A(c)), the distribution of contacts (Fig. 5.7B), and the state-wise contact 

maps (Fig. 5.7C) have stable patterns across independent replicates. 
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Figure 5.7. Convergence, stochasticity and robustness of the simulations. (A) Peripherality of all S4 

segments calculated for smaller time intervals. Each interval comprises 10,000 time steps, with data 

obtained every 100 time steps. The percentage of S4 positions in the peripheral zone (as defined for Fig. 

5.4: outermost 33% of the nuclear area) is plotted for (a) three independent [25˚C] simulations, and (b) three 

independent [37˚C] simulations. The transparent bars in the background mark the peripherality percentages 

of the entire period from time step 99,901 to 1,099,900. These data are plotted separately in (c). (B) The 

distribution of contacts along the z-axis, calculated as in Fig. 5.1G, for six individual simulations. (C) The 



77 
 

state-wise contact maps, as measured in Fig. 4.6, for each simulation replicate. For each panel in (B) and 

(C), the plots were created from 1x104 data points, sampled from time step 99,901 to 1,099,900.  
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6. Effects of the one-dimensional arrangement of chromatin states on the 

three-dimensional genome structure 

Our lab has determined the chromatin states of genes based on the binding pattern of chromatin-

associated proteins across the genome. The analysis was carried out independently for two growth 

conditions, 25°C and after a shift to 37°C. In 80% of all loci, the state assignment is stable between 

the two temperature conditions (section 1.4.2). To investigate how the overall protein binding 

across the genome determines the 3D genome structure, I have adopted polymer models simulating 

the 25°C and 37°C conditions. For all these simulations (Chapters 3-5), the 25°C state assignment 

was used to remove any confounding effects by the slightly different state assignments and focus 

on the effects of segment mobility changes. Now, to refine the [37°C] model and make it closer to 

37°C condition, I mapped the 37°C state assignment onto 2 kb segments and analysed the results 

of new simulations (section 6.1).  

 

The non-random order of co-regulated and co-functional genes on chromosomes have been studied 

in different eukaryotic cell types (Michalak 2008; Hurst et al. 2004). The 1D proximity of 

functionally related genes (Zhang & Smith 1998), such as well-known DAL and GAL clusters 

(Cooper 1996; Hittinger et al. 2004), and groups of adjacent co-expressed genes (Cohen et al. 2000) 

have been observed in S. cerevisiae. However, only about 2 percent of annotated genes in S. 

cerevisiae are found to be in linear proximity of the genes that are functionally related to them (Yi 

et al. 2007). Our analysis of chromatin states has shown that the distribution of genes of the same 

chromatin state is nearly random across the genome. However, the occurrence of small clusters 

(<=3 gene long) is more often than expected by chance (Sewitz et al. 2017a). A preliminary analysis 

in our lab has compared the impact of natural and artificial order of genes (natural order: 

experimentally determined chromatin states; artificial order: randomised or linearly clustered genes 

along chromosomes) on the concerted redistribution of poised proteins upon changes in 

temperature condition (not shown; Fahmi, Sewitz & Lipkow, in preparation). In simulations with 

natural order of genes, the required time for proteins to relocate to the target genes is shorter than 

simulations with clustered arrangement of genes. However, the required time for the movement of 

proteins and the differences between the overall protein occupancy of poised and active genes in 

simulations with random order of genes is similar to simulations with natural order of genes. To 

investigate the role of the one-dimensional arrangement of chromatin states along the genome on 

the 3D chromosome organisation, I ran and analysed simulations with random and 1D clustered 

patterns of chromatin states (section 6.2).     

https://paperpile.com/c/VxVM1B/8QcVg+zkUso
https://paperpile.com/c/VxVM1B/lfS0z
https://paperpile.com/c/VxVM1B/ZGQSH+pkiuH
https://paperpile.com/c/VxVM1B/bLPSu
https://paperpile.com/c/VxVM1B/3E6R8
https://paperpile.com/c/VxVM1B/3E6R8
https://paperpile.com/c/VxVM1B/golw
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6.1. Simulations with 37°C state assignment 

To make the [37°C] simulations resemble better the 37°C condition, I mapped the determined states 

at 37°C onto 2 kb segments (section 2.1.2) and ran the [37°C] simulations. I also ran the [25°C] 

simulations with 37°C state assignment to evaluate if the slight differences between 25°C and 37°C 

state assignments affect the telomere positions and the state-wise contact maps. In all new 

simulations the mobility of highly occupied segments, S4 at 25°C and S3 at 37°C, were decreased. 

In contrast, the segments corresponding to the highly transcribed gene, i.e. S3 at 25°C and S4 at 

37°C, had faster mobilities. To achieve the differential mobility of segments, the FLC was scaled 

by a factor of 5, similar to the simulations that provided the best results in Chapter 3-5. In all 

simulations, the data was obtained from time step 99,901 to 1,099,900 and combined for three 

replicates, per condition 

6.1.1. Telomere positions 

I measured the positions of the right telomere of chromosome III and the left telomere of 

chromosome XIV. In the simulations with 37˚C state assignment, the telomeres have more 

peripheral positions (Fig. 1.6E,F) compared to both in vivo measurements (Fig. 6.1B) and 

simulations with 25°C state mapping (Fig. 1.6C,D). In addition, the calculated frequencies for the 

peripheral location of telomeres in [37°C] simulations (Fig. 1.6F) are outside the 95% confidence 

interval of in vivo data (Table 6.1). The p-values also confirm that the results are not similar to the 

microscopy data. This divergence was expected as the microscopy measurements were carried out 

at room temperature, 25°C, and the simulations were informed by the protein occupancy of 

chromatin segments during heat-shock, 37°C. The observed increase in the peripherality of 

telomeres in refined [37°C] simulations could be further investigated by performing microscopy 

experiments at 37°C. It is noteworthy that switching from 25°C to 37°C state assignment has 

slightly changed the position of telomeres in [25°C] simulations, although the chromatin states are 

highly similar at two temperatures (Fig. 6.1C,E).  
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Figure 6.1. Telomere positions in heteropolymeric simulations with 25°C and 37°C state assignments. 

(A) Schematic of separating the nucleus into a peripheral and a central region of equal areas (same as Fig. 

3.7A). (B) The positions of the labelled right telomeres of chromosome III (Tel3R) and left telomeres of 

chromosome XIV (Tel14L), measured at room temperature by live-cell microscopy. Number of 

measurements: n=80 for Tel3R and n=74 for Tel14L. (Plot modified from (Hajjoul et al. 2013), same as 

Fig. 3.7B). (C,D) The quantified peripherality rates for telomeres in simulations representing [25°C] and 

[37°C] conditions, with 25˚C state assignment (same as Fig. 3.7D,H).  (E,F) The peripheral position of 

telomeres were measured for [25°C] and [37°C] simulations with 37°C state assignment. These results are 

not in agreement with the in vivo data (see Table 6.1. for p-values). For each simulation plot (C-F), 

n=30,000, i.e. 10,000 non-correlated time points were analysed per simulation replicate.  

 

 Tel3R Tel14L 

n % peripheral p-value n % peripheral p-value 

experiments 80 68.7500 

(55/80) 

n/a 74 60.8108 

(45/74) 

n/a 

Confidence 

interval (%) 

[57.97 ≤ π ≤ 79.53] [49.01 ≤ π ≤ 72.61] 

[25˚C]  

25˚C states 

30,000 75.1933 0.1952 30,000 62.3233 0.8109 

[37˚C] 

25˚C states 

30,000 69.0900 1 30,000 68.7100 0.1672 

 [25˚C] 

37˚C states 

30,000 84.3933 5.1010e-4 30,000 67.7400 0.2142 

 [37˚C] 

37˚C states 

30,000 87.4867 8.9937e-6 30,000 79.8433 2.0477e-4 

Table 6.1. Statistical comparison of telomere positions quantified in vivo and in simulations with 25°C 

and 37°C state assignments. The binomial confidence intervals were calculated for the experimental data 

of the peripherality rate of telomeres (95% confidence level and continuity correction were applied). The 

https://paperpile.com/c/VxVM1B/h6a97
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binomial tests were also used to compare the microscopy and simulation data. MATLAB file exchange 

function myBinomTest was employed. H0: The experimental data is taken from a population with the same 

distribution as the simulation data. Small p-values indicate that the distributions are significantly different. 

Both confidence intervals and p-values show that only the results of simulations with 25˚C chromatin state 

assignment (rows 5-6) match the microscopy data, but not most of those with 37˚C state assignment (rows 

7-8).  

6.1.2. State-wise contact maps 

The normalised state-wise contact maps were calculated for simulations with 37°C state 

assignment. The number of contacts between different chromatin states were quantified and the 

normalisation procedure was performed as explained in section 4.3.2. There are slight differences 

between the corresponding maps, such as higher intra-S4 and lower intra-S3 interactions in [37°C] 

simulations with 37°C state assignment (Fig. 6.2H) compared to both 37°C Hi-C (Fig. 6.2B) and 

[37°C] simulations with 25°C state mapping (Fig. 6.2E). However, the overall pattern of contact 

maps for each temperature condition are very similar. The correlation coefficients and p-values 

(Table 6.2) confirm that the results from [25°C] and [37°C] simulations with 37°C state mapping 

(Fig. 6.2G,H) are highly correlated with the Hi-C contact maps (Fig. 6.2A,B). Interestingly, [25°C] 

simulations with 25°C state assignment and [37°C] simulations with 37°C state mapping have the 

highest correlations with Hi-C maps at 25°C and 37°C, respectively (Table 6.2). I used the 37°C 

state assignment to calculate the contact map of [uniform] simulations (Fig. 6.2F). It shows high 

intra-state contact frequencies for both S3 and S4 segments, which is not in agreement with the Hi-

C contact maps (lower correlation coefficients in Table 6.2).  
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Figure 6.2. State-wise contact maps of [uniform] and heteropolymeric simulations with 25°C and 37°C 

state assignments. All maps are drawn by the same range of colours. (A,B) Normalised contact frequencies 

of 25°C and 37°C Hi-C data. (C,D,E) The analysed state-wise interactions in [uniform], [25°C], and [37°C] 

simulations with 25°C state assignment for segments. (F,G,H) The normalised contact frequencies in 

[uniform], [25°C], and [37°C] simulations, where 37°C chromatin states were mapped onto chromatin 

segments. The S6 and S7 segments were not included in the analysis. For each simulation contact map, 

10,000 non-correlated time points were analysed, per simulation replicate. 

 

 

State-wise contact maps  

Correlation 

coefficient 

 

p-value 

 

Significance 

Hi-C 25˚C Simulation [25˚C] 

25˚C states 

0.8662 2.9712e-5 **** 

Hi-C 37˚C Simulation [37˚C] 

37˚C states 

0.7677 8.3196e-4 *** 

Hi-C 25˚C Simulation [25˚C] 

37˚C states 

0.7520 0.0012 ** 
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Hi-C 37˚C Simulation [37˚C] 

25˚C states 

0.7409 0.0016 ** 

Hi-C 25˚C Simulation [uniform] 

25˚C states 

0.7309 0.0020 ** 

Hi-C 25˚C Simulation [uniform] 

37˚C states 

0.6037 0.0172 * 

Hi-C 37˚C Simulation [uniform] 

37˚C states 

0.5461 0.0352 * 

Hi-C 37˚C Simulation [uniform] 

25˚C states 

0.4150 0.1240 ns 

Simulation [25˚C] 

37˚C states 

Simulation [37˚C] 

37˚C states 

-0.1202 0.6695 ns 

Hi-C 37˚C Simulation [25˚C] 

37˚C states 

-0.1416 0.6148 ns 

Hi-C 25˚C Simulation [37˚C] 

37˚C states 

-0.2640 0.3418 ns 

Table 6.2. Correlation of state-wise contact maps of Hi-C and simulations with 25˚C and 37˚C state 

assignments. For clarity, the two significant correlations from simulations with 25˚C state mapping are 

included (from Table 4.1).  Pearson correlation coefficients calculated in MATLAB between two vectors of 

size 15 (the numerical values of the upper-right triangular part of matrices depicted in Fig. 6.2.A,B,F-H). 

The rows are sorted by correlation coefficient. ***:0.0001<p-value<0.001; **:0.001<p-value<0.01; 

*:0.01<p-value<0.05; ns: not significant. 

6.1.3. Comparison of inter- and intra-state interactions 

To further investigate the distribution of state-wise interactions, I compared the intra- and inter-

state contacts (obs/exp) of S3 and S4 segments. To make the analysis easier, for each simulation, I 

first divided the contact frequencies of these segments by the median of all contact frequencies in 

that simulation (15 values of the upper-right triangular part of the contact matrix (Fig. 6.2), prior 

to log transformation). Then, I plotted the results for Hi-C and simulation data (Fig. 6.3). As shown 

by the state-wise contact maps, the highly occupied genes, S4 at 25°C and S3 at 37°C, have very 

high intra-state contact frequencies in both Hi-C and heteropolymeric simulations. This is also 

visible in Fig. 6.3A: indicated by the blue and green circles in 25°C and 37°C conditions, 

respectively. These segments have moderately high (above median) inter-state interactions, as the 

blue and green stars show in the corresponding plots (Fig. 6.3B). For highly expressed genes, S3 
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at 25°C and S4 at 37°C, the pattern is completely different: they have moderate intra-state 

interactions and low inter-state interactions. The distributions of data in [uniform] simulations with 

25°C and 37°C state assignments are also interesting. Both S3 and S4 segments have very high 

intra-state interactions and moderate inter-state contacts. They seem to be in an intermediate state, 

which could change towards the 25°C or 37°C pattern upon the introduction of differential mobility 

of segments.  
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Figure 6.3. Distribution of intra- and inter-state contact frequencies. The intra- and inter-state contacts 

(observed/expected) of S3 and S4 genes were divided by the median of the calculated contact frequencies 

(the numerical values of the upper-right triangular part of the contact matrices in Fig. 6.2, prior to log 

transformation). The results were plotted in MATLAB (S3: green-coloured values, S4: blue-coloured 

values). The analysis was carried out for Hi-C data and simulations with 25°C and 37°C state assignments. 

(A) Intra-state interactions of S3 and S4 genes measured by Hi-C experiments and simulations of [25°C], 
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[37°C], and [uniform] conditions. (B) Inter-state interactions of S3 segments (4 green asterisks) with S1, 

S2, S4, and S5 segments; and inter-state interactions of S4 segments (4 blue asterisks) with S1, S2, S3, and 

S5 segments. The asterisks corresponding to the same pair of states in different datasets are connected to 

each other by lines to show how their values change. The green and blue dashed lines illustrate the changes 

in the average values of inter-state interactions of S3 and S4 segments, respectively. To better visualise the 

asterisks that have close values, each is offset by a distinct x value. The frequency of S3-S4 contacts is 

drawn twice per dataset. The red lines show the normalised median of each full dataset. 

6.2. Simulations with 1D clustered and random state assignment 

To investigate the influence of the order of states along the chromosome on the overall genome 

organisation, I built lists of either 1D clustered or randomly distributed chromatin states. In each 

case, the total number of segments of each chromatin state per chromosome was kept the same as 

in the 25°C chromatin state determination (section 2.1.2). For the first type of random lists (A), I 

randomised all S1-S7 states. For the second type (B), I kept S6 and S7 at their original positions, 

where they were in 25°C state assignment, and I shuffled the S1-S5 states. For the linearly clustered 

lists, 10-segment long clusters of S1-S5 states were generated and they were randomly placed along 

chromosomes. In the first type of clustered lists (A), S6 and S7 were positioned at the boundaries 

of S1-S5 clusters, while in the second type (B), S6 and S7 had their original position. These random 

and clustered lists are abbreviated in figures as follows: random states (A), random states (B), 

clustered states (A), and clustered states (B). For each type of random and clustered states, three 

distinct lists were generated stochastically, to be used in three simulation replicates. Similar to 

previous simulations, the mobility of highly occupied segments were decreased by reducing the 

FLC by a factor 5. In contrast, the mobility of less occupied segments, i.e. highly expressed genes, 

were increased by increasing the FLC by a factor of 5. For each plot, 30,000 non-correlated time 

points (10,000 from each of triplicate simulations) were analysed from time step 99,901 to 

1,099,900.  

6.2.1. Telomere positions 

To determine how the linear order of chromatin states affected telomere positioning, I measured 

the position of telomeres from clustered and randomised states (Fig. 6.4) and compared the results 

with the microscopy data (Fig. 6.1A,B). In all simulations, the quantified peripherality rates are 

within the calculated confidence interval for the experimental data (Table 6.3). In addition, high p-

values for binomial tests show that the simulated data are not significantly different from the in 
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vivo measurements. It is interesting that despite the changed order of chromatin states, the position 

of telomeres has not diverged significantly from the confidence interval. We can conclude that, in 

our heteropolymeric chromosome model, the peripheral position of telomeres is more strongly 

affected by the quantitative difference in segment mobility (Fig. 3.7) than by the order of segments 

(Fig. 6.4). 

 

Figure 6.4. Telomere positions in simulations with clustered and randomised states. The positions of 

the right telomere of chromosome III (Tel3R) and the left telomere of chromosome XIV (Tel14L) in [25°C] 

and [37°C] simulations with clustered or random chromatin states: clusters of S1-S5 states, where S6 and 

S7 segments were placed at the borders the clusters (A,B); clusters of S1-S5 states, where S6 and S7 were 

at their original positions (C,D); randomised S1-S7 states (E,F); randomised S1-S5 states with S6 and S7 

at their original positions (G,H).   
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 Tel3R Tel14L 

n % peripheral p-value n % peripheral p-value 

experiments 80 68.7500 

(55/80) 

n/a 74 60.8108 

(45/74) 

n/a 

Confidence interval 

(%) 

[57.97 ≤ π ≤ 79.53] [49.01 ≤ π ≤ 72.61] 

Simulation [25˚C] 

clustered states (A): 

S6 and S7 at borders 

30,000 64.7133 0.4847 30,000 52.7767 0.2000 

Simulation [37˚C] 

clustered states (A): 

S6 and S7 at borders 

30,000 62.8600 0.2993 30,000 70.2967 

 

 

0.0761 

Simulation [25˚C] 

clustered states (B): 

S6 and S7 at original 

position 

30,000 74.2033 0.2531 30,000 50.8300 0.1031 

Simulation [37˚C] 

clustered states (B): 

S6 and S7 at original 

position 

30,000 76.3867 0.1143 30,000 50.1933 0.0807 

Simulation [25˚C] 

random states (A): 

S1-S7 

30,000 62.9133 0.2996 30,000 64.0733 0.5473 

Simulation [37˚C] 

random states (A): 

S1-S7 

30,000 71.7167 0.5371 30,000 60.9700 1 

Simulation [25˚C] 

random states (B): 

S6 and S7 at original 

position 

30,000 74.3867 0.2501 30,000 67.8733 0.2131 

Simulation [37˚C] 

random states (B): 

S6 and S7 at original 

position 

30,000 71.1733 0.6229 30,000 66.9633 0.2673 

Table 6.3. Statistical comparison of telomere positions quantified in vivo and in simulations with 

clustered and randomised states. The 95% confidence intervals of the in vivo data were calculated. The 
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peripherality rates of telomeres in simulations with clustered and random states are within the calculated 

confidence intervals. The similarity of the microscopy and simulation data was confirmed by high p-values 

obtained for the binomial tests (MATLAB file exchange function myBinomTest). H0: The experimental data 

is taken from a population with the same distribution as the simulation data. Small p-values indicate that the 

distributions are significantly different. 

6.2.2. State-wise contact maps 

To investigate the effect of 1D arrangement of chromatin states on the spatial structure of chromatin 

states, I quantified the normalised state-wise contact frequencies for simulations with 1D clustered 

and random states (Fig. 6.5) (see section 4.3.2 for the normalisation analysis). In all [25°C] and 

[37°C] simulations, similar to the Hi-C data (Fig. 6.2A,B), the less occupied segments, i.e. S3 at 

25°C and S4 at 37°C, have low interactions with segments of other states (visible as a black cross 

in the state-wise contact maps). In addition, the intra-state contact frequencies of segments with 

high protein occupancy, i.e. slow moving segments, are high and comparable to the observed 

pattern in the Hi-C maps. However, other calculated interactions are very different from the 

observed Hi-C frequencies (Fig. 6.2A,B). All of them have higher obs/exp values, except for the 

intra-state interactions of less occupied segments in random simulations, which are lower than the 

corresponding Hi-C interactions. The calculated Pearson correlations confirm that the simulated 

contact maps of clustered and randomly arranged heteropolymeric simulations are not well 

correlated with the Hi-C contact maps (Table 6.3).   

 

The state-wise contact maps of [uniform] simulations were calculated with the linearly clustered 

and random lists of states mapped onto the interacting chromatin segments (Fig. 6.5A,D,G,J). The 

results show prominently high intra-state interactions for simulations with clustered states (Fig. 

6.5A,D). In simulations with random states, the arbitrary pattern of interactions is evident (Fig. 

6.5G,J). In addition, the position of S6 and S7 segments change the distribution of contacts between 

S1-S5 chromatin states (Fig. 6.5G,J). The [uniform] simulation with random states (A) has a 

moderately high correlation with the Hi-C 25°C state-wise contact map (Table 6.3), although the 

patterns are not visually similar.    
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Figure 6.5. State-wise contact maps of simulations with clustered and randomised states. The 

normalised contact frequencies were calculated for the [uniform], [25°C], and [37°C] simulations. Different 

state assignments were employed for these simulations: clustered S1-S5 states with S6 and S7 at the borders 

of clusters (A-C); clustered S1-S5 states with S6 and S7 at their original positions (D-F); randomised S1-

S7 states (G-I); randomised S1-S5 states, where S6 and S7 were placed at their original positions (J-L). 
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State-wise contact maps  

Correlation 

coefficient 

 

p-value 

 

Significance 

Hi-C 25˚C Simulation [25˚C] 

clustered states (A): 

S6 and S7 at borders 

0.5018 0.0567 ns 

Hi-C 37˚C Simulation [37˚C] 

clustered states (A): 

S6 and S7 at borders 

0.5617 0.0293 * 

Hi-C 25˚C Simulation [25˚C] 

clustered states (B): 

S6 and S7 at original position 

0.4893 0.0642 ns 

Hi-C 37˚C Simulation [37˚C] 

clustered states (B): 

S6 and S7 at original position 

0.5589 0.0303 * 

Hi-C 25˚C Simulation [25˚C] 

random states (A): S1-S7 

0.4909 0.0632 ns 

Hi-C 37˚C Simulation [37˚C] 

random states (A): S1-S7 

0.6006 0.0179 * 

Hi-C 25˚C Simulation [25˚C] 

random states (B): 

S6 and S7 at original position 

0.5347 0.0400 * 

Hi-C 37˚C Simulation [37˚C] 

random states (B): 

S6 and S7 at original position 

0.5087 0.0528 ns 

Hi-C 25˚C Simulation [uniform] 

clustered states (A): 

S6 and S7 at borders 

0.3328 0.2255 ns 

Hi-C 37˚C Simulation [uniform] 

clustered states (A): 

S6 and S7 at borders 

0.3745 0.1691 ns 

Hi-C 25˚C Simulation [uniform] 

clustered states (B): 

S6 and S7 at original position 

0.3948 0.1453 ns 

Hi-C 37˚C Simulation [uniform] 

clustered states (B): 

0.2980 0.2806 ns 
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S6 and S7 at original position 

Hi-C 25˚C Simulation [uniform] 

random states (A): S1-S7 

0.6397 0.0102 * 

Hi-C 37˚C Simulation [uniform] 

random states (A): 

S1-S7 

0.0799 0.7772 ns 

Hi-C 25˚C Simulation [uniform] 

random states (B): 

S6 and S7 at original positions 

0.1885 0.5011 ns 

Hi-C 37˚C Simulation [uniform] 

random states (B): 

S6 and S7 at original positions 

-0.3901 0.1506 ns 

Table 6.4. Correlation of state-wise contact maps of Hi-C and simulations with clustered and 

randomised states. Pearson correlation coefficients were calculated in MATLAB between two vectors of 

size 15 (the numerical values of the upper-right triangular part of matrices depicted in Fig. 6.2.A,B and Fig. 

6.5). *:0.01<p-value<0.05; ns: not significant. 

6.2.3. Comparison of inter- and intra-state interactions 

The ranges of the calculated state-wise contact frequencies of simulations are different from the 

Hi-C data (see colour bar values in Fig. 6.5 vs Fig. 6.2A,B). To better visualise and assess the 

resemblance between the simulation and experimental datasets, I plotted the intra- and inter-state 

interactions of S3 and S4 segments (Fig. 6.6). Similar to Fig. 6.3, the interactions (obs/exp) are 

divided by the median of all contact frequencies in each dataset. The positions of S6 and S7 states 

have slight influences on both intra- and inter-state interactions in [25°C] and [37°C] simulations 

with clustered and randomised states (Fig. 6.6A,B,D,E). Heteropolymeric simulations with 1D 

clustered states have wider ranges of contact frequencies compared to the Hi-C data. The S3-S3 

and S4-S4 interactions are much higher in these simulations compared to the Hi-C data (Fig. 

6.6A,B), while inter-state contacts of S3 segments in [25°C] and those of S4 segments in [37°C] 

simulations are very low (Fig. 6.6D,E). The heteropolymeric simulations with random chromatin 

states have some similarities with the experimental data. The inter-state interactions of fast and 

slow moving segments are low and moderately high, respectively (fast: S3 at 25°C and S4 and 

37°C; slow: S4 at 25°C and S3 at 37°C) (Fig. 6.6D,E). However, unlike the observed Hi-C data, 

the intra-state contacts of S3 segments at [25°C] and those of S4 segments at [37°C] are lower than 

the median (Fig. 6.6A,B). In addition, the highly occupied segments do not have high enough 
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number of interactions with each other (Fig. 6.6A,B). In the [uniform] simulations with clustered 

states, the intra-state contacts are much higher than the median, which indicates that in the absence 

of heterogeneous mobility of segments, the 3D clustering of segments is stronger (Fig. 6.6C). In 

[uniform] simulations with random states, the spread of the data points is small and the inter-state 

interactions of S3 and S4 segments have moderate values, which are not matched with the 

experimental distributions (Fig. 6.6F). 

 

Therefore, all simulations with clustered chromatin states have very different patterns compared to 

the experimental data and other simulations. Heteropolymeric simulations with randomised state 

mappings have some similar features to the Hi-C data and simulations with 25°C state assignment. 

The comparisons between the output of different simulations and experimental data re-confirms 

that the [25°C] and [37°C] simulations with 25°C state assignment provide the best match to the 

Hi-C data. 

 

Figure 6.6. Distribution of intra- and inter-state contact frequencies for simulations with clustered 

and randomised states. The contact frequencies of S3 and S4 segments were divided by the median value 

of all contact frequencies in that simulation (the numerical values of the upper-right triangular part of the 
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contact matrices in Fig. 6.2, prior to log transformation). Then, the results were plotted in MATLAB for Hi-

C and simulation data. The results of [25°C] (A,D), [37°C] (B,E), and [uniform] (C,F) simulations with 

25°C state assignment, 1D clustered and randomised states are represented.  (A-C) The intra-state contacts 

of S3 and S4 segments: green and blue circles respectively. (D-F) The inter-state interactions of S3 and S4 

segments: 4 green asterisks for S1-S3, S1-S2, S3-S4, S3-S5 and 4 blue asterisks for S1-S4, S2-S4, S3-S4, 

S4-S5. The corresponding asterisks in different datasets are connected to each other by lines. The green and 

blue dashed lines illustrate the changes in the average values of intra-state interactions of S3 and S4 

segments, respectively. To better visualise the asterisks that have close values, each star has a distinct x 

value. The red lines show the medians. (clust. states (A): S6 and S7 at borders; clust. states (B): S6 and S7 

at original position; rand. states (A): S1-S7; rand. states (B): S6 and S7 at original positions) 

6.2.4. Total number of interactions 

For the final analysis, I quantified the number of total interactions between S1-S5 segments for 

different simulations. The data is obtained from three simulation replicates per simulation type and 

the mean values are plotted as bar graphs with error bars (Fig. 6.7). The results show that the 

heteropolymeric simulations have higher numbers of total interactions than the [uniform] 

simulations. In addition, the [37°C] simulations have about 12 percent more interactions than the 

[25°C] simulations on average. Similar observations were made in Fig. 4.4, where the total number 

of S1-S7 contacts were quantified for simulations with 25°C state assignment. It is notable that 

changing the state assignment of chromatin segments has not affected this pattern. Switching from 

the 25°C state assignment to the 37°C states has led to more S1-S5 contacts in [25°C] simulations. 

Linearly clustered chromatin states have raised the number of interactions for heteropolymeric 

simulations, while the random state assignments have slightly decreased those numbers. Thus, the 

1D order of the chromatin states that were mapped onto the modelled segments has an impact on 

the total number of interactions between the chromatin segments. 
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Figure 6.7. Total number of interactions in simulations. The total number of contacts between S1-S5 

chromatin segments were quantified for different [uniform], [25°C], and [37°C] simulations. The mean and 

the standard deviation (error bar) of three replicate simulations are represented, per simulation type. (clust. 

states (A): S6 and S7 at borders; clust. states (B): S6 and S7 at original position; rand. states (A): S1-S7; 

rand. states (B): S6 and S7 at original positions) 
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7. Discussion 

7.1. Heterogeneous mobility of chromatin segments leads to self-organisation of 

chromosomes 

To understand the three dimensional organisation of chromatin in S. cerevisiae, I employed a 

heteropolymer model informed by the genome-wide DNA-binding data of chromatin associated 

proteins. Analysis of this data has shown that the distribution of proteins across the genome at two 

growth conditions, normal growth (25°C) and heat-shock (37°C), is highly heterogeneous in each 

case. In addition, the transition from one temperature to another changes the protein occupancy of 

chromatin segments and their transcriptional activity. We propose and provide a computational 

model to show how this affects the mobility of corresponding genes and overall genome 

organisation. In this model of [25°C] and [37°C] simulations, chromatin segments with higher 

protein occupancy are modelled as slow-moving segments, while the highly expressed genes, 

which are less occupied, have higher mobilities. This heteropolymeric model has reproduced the 

experimentally observed patterns for the positioning of telomeres (Fig. 3.7), spatial distances 

between loci (Fig. 3.8), contact frequencies between chromatin segments (Fig. 4.6), and relocation 

of heat-shock genes upon activation (Fig. 5.4). Hence, our proposed mechanism, the differential 

mobility of segments, is an important determinant of the 3D chromatin organisation. 

7.2. Different mechanisms drive 3D genome organisation 

Different computational models have investigated how the organised structure of chromosomes is 

derived by protein-mediated interactions (Giorgetti et al. 2014; Chiariello et al. 2016; Jost et al. 

2014; Brackley et al. 2016; Cheng et al. 2015; Barbieri et al. 2012; Haddad et al. 2017), loop 

extrusion (Sanborn et al. 2015; Fudenberg et al. 2016), and supercoiling of DNA (Le et al. 2013; 

Benedetti et al. 2014; Racko et al. 2017). These models successfully simulated the folding and 

compartmentalization of chromatin structure, as reported by microscopy and Hi-C data. Therefore, 

it could be speculated that these suggested mechanisms, including the heterogeneous mobility of 

chromatin fibre, work together to form and maintain the hierarchical organisation of the genome. 

Each of these factors could influence the various scales of genomic structure in different ways. For 

example, the depletion of CTCF, which works with cohesin to facilitate the formation of TADs 

(Yuen & Gerton 2018), does not interrupt the A and B compartments (Nora et al. 2017; Kubo et 

al. 2017), however it slightly weakens the insulation of most TADs in mouse embryonic stem cells 

(Kubo et al. 2017). These mechanisms could also affect each other: the formation of protein bridges 

https://paperpile.com/c/VxVM1B/O4dbh+XHGX6+gdDuA+9UF4C+jRi4L+Vowrk+Vc185
https://paperpile.com/c/VxVM1B/O4dbh+XHGX6+gdDuA+9UF4C+jRi4L+Vowrk+Vc185
https://paperpile.com/c/VxVM1B/QjsE4+4Bddf
https://paperpile.com/c/VxVM1B/nB1X6+NDsr4+UqUyq
https://paperpile.com/c/VxVM1B/nB1X6+NDsr4+UqUyq
https://paperpile.com/c/VxVM1B/M17vg
https://paperpile.com/c/VxVM1B/7SiFK+H59Pi
https://paperpile.com/c/VxVM1B/7SiFK+H59Pi
https://paperpile.com/c/VxVM1B/H59Pi
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may slow down the mobility of chromatin regions and vice versa, i.e. the slow moving segments 

might have a higher chance of being involved in protein-protein interactions, while the fast moving 

ones might avoid those interactions. Therefore, models based only on effective interactions 

between loci could take the differential mobility of loci into account implicitly; and the other way 

around. Computational models, which combine different mechanistic explanations for the 

organised genome structure, could lead to a comprehensive view of how they influence and 

complement each other at different structural levels.  

7.3. Genes of different chromatin states are spatially separated 

An important feature of living systems is that they have internal sources of energy, which leads 

them to diverge from thermal equilibrium. Due to several nuclear processes that consume or release 

energy and the heterogeneous nature of chromatin, the forces that drive the movement of chromatin 

regions will not be statistically homogenous (Ganai et al. 2014). Some studies have focused on 

ATP-consuming processes, such as transcription, and changed the local temperature (effective 

temperature) (Cugliandolo 2011; Loi et al. 2008) of chromatin regions according to their gene 

density (Ganai et al. 2014; Agrawal et al. 2017). This temperature difference has led to the 

separation of gene-dense and gene-poor chromosomes, which is analogous to the activity-induced 

separation of cold (inactive) and hot (active) polymers (Smrek & Kremer 2017) or particles 

(Grosberg & Joanny 2015). 

 

In our polymer model, statistically heterogeneous forces have been applied to chromatin segments 

to slow down or speed up their movement according to their protein occupancy. The co-localisation 

of slowly moving chromatin segments, which are highly occupied by poised chromatin-associated 

proteins, and the loose, peripheral distribution of fast moving segments, i.e. highly expressed genes, 

are predicted by our polymer model, Hi-C data, and microscopy measurements (Fig. 4.6, Fig. 5.1, 

Fig. 5.2, Fig. 5.4). This is similar to the spatial separation of active (self-propelled) and passive 

spherical particles, where a cluster of less diffusive particles is surrounded by highly diffusive ones 

(Stenhammar et al. 2015; Weber et al. 2016). The driving force behind this separation is a positive 

feedback loop triggered by the aggregation of particles with slower movements, which leads to 

more collisions between them and further slows down their mobility (Gonnella et al. 2015).  

 

The aggregation of poised genes could be mechanistically comparable to the assembly of 

membraneless compartments, such as super enhancers (Hnisz et al. 2017) and stress granules, 

https://paperpile.com/c/VxVM1B/6ZAVx
https://paperpile.com/c/VxVM1B/RJ2K2+hBytu
https://paperpile.com/c/VxVM1B/6ZAVx+SXKXU
https://paperpile.com/c/VxVM1B/jkiIw
https://paperpile.com/c/VxVM1B/exUC6
https://paperpile.com/c/VxVM1B/ixjbC+RzAn1
https://paperpile.com/c/VxVM1B/oJ5jK
https://paperpile.com/c/VxVM1B/Uj3Gz
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which are derived by phase separation (Boeynaems et al. 2018). It has been shown that some of 

these structures are mediated by interactions between intrinsically disordered proteins (Dao et al. 

2018; Burke et al. 2015). This is consistent with the protein disorder analysis performed in our lab, 

which indicated that the poised chromatin segments are enriched for proteins with high levels of 

disordered regions (unpublished).   

7.4. Clusters of poised genes facilitate their rapid activation 

The association of silent or not highly expressed genes with inactive transcription factories, which 

contain RNA polymerase II phosphorylated on Ser5 but not on Ser2, has been shown by ChIP 

experiments (Ferrai et al. 2010; Stock et al. 2007; Wu & Snyder 2008). It has been suggested that 

the presence of these poised transcription factories allows rapid activation of genes in response to 

inducing signals (Sutherland & Bickmore 2009; Rieder et al. 2012). Our group’s genome-wide 

analysis of protein binding data and gene expression levels have shown that a large proportion of 

chromatin-associated proteins, including main subunits of RNA polymerase II, are in a poised state 

in S. cerevisiae cells (Sewitz et al. 2017a). The poised genes, which are highly occupied by poised 

proteins, are seen to co-localise in our polymer models. The high concentration of these genes 

together with their slow movement could facilitate efficient interactions between proteins, which 

could facilitate the formation of inactive transcription factories. The high occupancy of Rbp2p and 

Rpb3p subunits at poised genes could be a sign for the presence of these complexes. In addition, it 

could be envisioned that these pre-assembled factories are already associated with multiple genes 

that would become co-expressed in response to changes in condition. This would lead to fast 

activation of these genes as they are already close to each other and to the transcription factories. 

An alternative possibility is that the poised genes will relocate to the proximity of transcription 

factories upon activation, as shown in mammalian cells (Osborne et al. 2007). These genes could 

aggregate in their poised state, analogous to chromatin hub structures which are formed prior to 

transcription (Mitchell & Fraser 2008), and enter the factories together. Therefore, the co-

localisation of poised genes could contribute to the prompt activation of genes through the 

assembly of inactive transcription factories, aggregation of co-regulated genes before activation, 

or association of poised genes with inactive factories.  

7.5. A loose conformation of active genes allows efficient transcription  

Although compact aggregation of poised genes could provide the required framework for 

preparation of transcription, the genes need to have more space to be able to slide through the 
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transcription machinery while they are transcribed (Sutherland & Bickmore 2009). In addition, a 

more loosely packed chromatin conformation would allow easier access of regulatory elements, 

such as transcription factors and upstream activating sequences (UAS) (Petrascheck et al. 2005), 

to DNA. Hence, the predicted loose distribution of highly expressed chromatin segments would be 

in favour of transcription. This conformation could accommodate discrete clusters of co-expressed 

genes, such as co-localised target genes of the same transcription factor (Ben-Elazar et al. 2013; 

Janga et al. 2008), interchromosomal clusters of genes that are associated with the NPC (nuclear 

pore complex) (Brickner 2017; Brickner et al. 2012), and the nucleolar cluster of tRNA genes 

(Thompson et al. 2003; Haeusler et al. 2008).  

7.6. The heterogeneous mobility of chromatin segments results in compact genome 

structure, which is comparable to mammalian chromosomal domains 

As was shown by (Wong et al. 2012), a homopolymer model of chromosomes with only the rDNA 

treated differently can achieve key characteristics of genome organisation, such as the spatial 

positioning of the genome and inter-chromosomal contacts. This model is identical to our [uniform] 

model, except that the latter has a higher resolution (2 kb vs. 5 kb segments) and thinner rDNA 

segments. The conformation of chromosomes in our homopolymeric model is not as compact as in 

our heteropolymeric models. This is indicated by the position of telomeres very close to the nuclear 

periphery (Fig. 3.7F), higher 3D distances of loci (Fig. 3.8E), lower number of total contacts 

between chromatin segments (Fig. 4.4A, Fig. 6.7), and a lower degree of clustering for the whole 

genome (Table 5.2). These results have also shown that the modelled genome structure in our 

[uniform] simulations is not in quantitative agreement with the microscopy and Hi-C data. 

However, a heteropolymeric model with differential mobility of segments has led to a more 

compact conformation of chromosomes in [25°C] and [37°C] simulations. Higher number of 

contacts between chromatin regions and a higher degree of clustering show that the [37°C] model 

has adopted an even more condensed structure than the [25°C] simulation.  

 

The overall genome structure in budding yeast has different features from the organisation of 

chromosomes in higher eukaryotes. For example, the structure of human chromosomes has a fractal 

globule shape, while chromosomes in yeast are arranged in the Rabl configuration. However, the 

size of the yeast genome (~12 Mbp) has a comparable scale to a single mammalian chromosome, 

which occupies a distinct territory inside the nucleus. Therefore, similar mechanisms might govern 

their organisation and some structural similarities could be noted in comparisons. In human and 
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mouse cells, both active and silent genes have been observed on the interior region of chromosomal 

domains by microscopy experiments (Mahy, Perry, Gilchrist, et al. 2002; Küpper et al. 2007; 

Cremer & Cremer 2010). In other studies, highly transcribed genes were seen to be enriched on the 

outer layer of their chromosomal territory or on extended loops away from the main mass of the 

territory (Volpi et al. 2000; Williams et al. 2002; Mahy, Perry & Bickmore 2002; Chambeyron & 

Bickmore 2004; Nagano et al. 2013). In S. cerevisiae, as the 2D projection of simulated contacts 

has shown, the poised genes are located in the internal zone of the genome and the highly expressed 

genes are present at both interior and exterior layers (Fig. 5.1, Fig, 5.2). Active genes have also 

adopted a less condensed conformation in our polymer models, and some genes are seen to shift to 

the nuclear periphery upon activation, by both microscopy measurements (Taddei et al. 2006; 

Sarma et al. 2007; Dieppois et al. 2006; Brickner & Walter 2004; Casolari et al. 2004) and our 

heteropolymeric models (Fig. 5.4). This indicates that the mechanisms we describe for the entire 

yeast genome could operate on the scale of individual mammalian chromosomes, leading to active 

genes being located at the periphery of chromosome territories, analogous to the nuclear periphery 

in yeast. 

7.7. Heat-shock genes relocate to the nuclear periphery upon activation 

Strikingly, our simple heteropolymeric chromosome model has been able to reproduce the 

relocation of activated HSP104 gene to the proximity of nuclear membrane. Different mechanisms 

have been proposed to explain the relocation of activated genes to the nuclear periphery in budding 

yeast. Some studies have suggested that the mRNA export proteins (Vinciguerra & Stutz 2004; 

Casolari et al. 2005; Dieppois et al. 2006) or transcription factors (Randise-Hinchliff & Brickner 

2016) establish links between the expressed genes and the nuclear pore complex (NPC), however, 

it has been shown that the recruitment of genes to the nuclear periphery happens even in the absence 

of active transcription (Schmid et al. 2006; Brickner et al. 2007) and specific nuclear pore complex 

proteins (Guet et al. 2015). Therefore, it can be concluded that different mechanisms, including the 

heterogeneous mobility of segments, contribute to the positioning of activated genes to the nuclear 

periphery: the mobility effect leads to a rapid shift of activated genes towards the nuclear 

membrane, followed by transcription- or NPC-dependent interactions to maintain the peripheral 

localisation of the gene. The lower absolute values of the peripherality rates of the HSP104 gene 

in our model compared to the microscopy data could indicate that the model is missing factors, 

which stabilise the peripheral location of the gene, such as interactions with proteins of the NPC. 
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In our model, other heat-shock genes shift to the nuclear periphery at 37°C as well. However, a 

group of genes shifts towards the centre of the nucleus upon activation (Fig. A.4). This has led us 

to propose that the positioning of a gene upon activation could be affected by the activity of its 

adjacent genes. An example of such genes are the α-globin genes in mammalians. The difference 

between the position of α-globin genes in mouse and human cells has been explained by their 

distinct local chromatin environment. In mouse, these genes reside on a gene-poor region and 

consequently remain inside their chromosomal territory irrespective of their transcriptional activity 

(Brown et al. 2006). On the other hand, in human cells, the α-globin genes are located on a gene-

rich region, which is enriched for housekeeping genes, and loop out of their chromosomal territory 

even when they are not expressed (Mahy, Perry & Bickmore 2002).    

7.8. The linear arrangement of genes on chromosomes affects the 3D genome 

structure  

The determined lists of chromatin states at 25°C and 37°C conditions are very similar to each other. 

To investigate how the slight differences between these lists influence the chromosome 

conformation, I ran the [25°C] and [37°C] simulation with both 25°C and 37°C state assignments. 

The results have shown that the different state assignments result in some differences in the position 

of telomeres and contact frequencies of chromatin segments. The [25°C] simulations with 25°C 

state assignment provide the best match to the microscopy and Hi-C data at 25°C (Fig. 6.1, Fig. 

6.2). The [37°C] simulations with 37°C state assignment result in contact maps, which have the 

highest correlation with contact maps of Hi-C experiments at 37°C (Fig. 6.2). Therefore, the 

telomeric positions and the state-wise contact frequencies are sensitive to changes in the chromatin 

state of genes, even if 80% of genes remain unchanged. 

 

To further investigate the effect of linear order of genes on 3D genome organisation, I mapped the 

1D clustered and randomised lists of chromatin states to the modelled chromatin segments. In these 

lists, the total number of genes of each chromatin state is the same as the 25°C state assignment. 

The analysed telomeric positions in simulations with clustered and randomised states are in 

agreement with the microscopy data (Fig. 6.4). This suggests that the heterogeneous mobility of 

genes and the preserved number of genes of each chromatin state, per chromosome, is sufficient to 

lead to the observed patterns of telomere positions in living cells, whereas for these features the 

order of states is less important. On the other hand, the normalised state-wise contact frequencies 

that are obtained from simulations with clustered states do not match the Hi-C data (Fig. 6.5, Fig. 
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6.6). However, the heteropolymeric simulations with randomised chromatin states do reproduce 

some of the observed features in Hi-C contact maps. These results are in agreement with our 

analysis  that the natural order of genes is nearly random, as was shown in (Sewitz et al. 2017a), 

and not composed of linear clusters of genes that have similar functions or are in the same 

chromatin state.  

 

Different studies have reported the presence and the importance of linear proximity of  genes 

controlled by the same transcription factor (Janga et al. 2008) or genes with common function (Yi 

et al. 2007), such as genes encoding stably interacting proteins (Teichmann & Veitia 2004) or genes 

of the same metabolic pathway (Lee & Sonnhammer 2003). The proximity of these genes can aid 

the efficient and coordinated regulation of expression (Osbourn & Field 2009). However, we found 

in particle-based simulations that large clusters of co-regulated genes can actually slow down the 

rapid, coordinated movement of regulatory and poised proteins between different sets of genes, 

which is crucial upon changes in cellular environment (not shown; Fahmi, Sewitz & Lipkow, in 

preparation). In addition, having gaps between co-regulated genes might help them to come closer 

to each other in 3D when chromatin folds, this is consistent with the observed periodic position of 

genes that are regulated by the same transcription factor (Képès 2003). The randomised order of 

genes in both particle-based and heteropolymeric simulations has achieved similar results to the 

experimental data. Therefore, it could be postulated that the nearly random spread of genes, where 

small clusters of 2 or 3 genes are more probable than expected by chance (Sewitz et al. 2017a), 

would facilitate both efficient regulation and rapid redistribution of chromatin-associated proteins.  

7.9. Hi-C data analysis 

A growing number of bioinformatics pipelines is being developed to analyse Hi-C data obtained 

from different organisms (Shavit et al. 2016; Lazaris et al. 2017; Servant et al. 2015; Paulsen et al. 

2018). These tools adopt distinct methods to correct the experimental biases and artifacts. 

Therefore, they can generate different results for chromatin interactions from the same input Hi-C 

data (Forcato et al. 2017). The normalisation of our Hi-C data by HOMER and SeqMonk resulted 

in different patterns for the contact frequencies of chromatin states (Fig. 4.6, Fig. 4.8). Similar to 

other Hi-C tools, such as hiclib (Imakaev et al. 2012) and HiC-Pro (Servant et al. 2015), HOMER 

uses iterative matrix balancing, which assumes that all chromatin regions would have a similar 

total number of interactions with other regions if there were no biases. We have learned that this 

method should not be used for the yeast genome as it disregards the Rabl configuration of 
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chromosomes, which results in the centromeric regions to be highly spatially clustered and 

telomeric loci to be closer to the nuclear membrane, which therefore have significantly less contacts 

with the rest of the genome. Hence, this approach could artificially distort expected contact 

frequencies for these regions. This is evident in state-wise contact maps calculated from HOMER 

reports, where the high number of intra-state interactions of poised genes (S4 at 25°C and S3 at 

37°C) has been balanced out by reducing the inter-state contact frequencies of those genes (Fig. 

4.8). Therefore, choosing the right normalisation approach requires careful attention to the genomic 

features of the organism under investigation as they greatly influence the analysis of the data.  

7.10. Future work 

7.10.1. The effect of 1D arrangement of chromatin states on clustering degree of genes and 

gene relocation upon activation 

To study how the 3D genome organisation is influenced by the heterogeneous distribution of 

chromatin-associated proteins and the linear order of genes on chromosomes, I have developed and 

analysed a variety of whole-genome polymer simulations. Additional insights into the organised 

structure of chromosomes can be gained from further analysis of my existing simulation data. 

 

One of the most straightforward steps to take is to investigate the spatial distribution of segments 

in heteropolymeric simulations with 37°C state assignment, and to compare these to the observed 

patterns in simulations with 25°C state mapping. This would clarify whether slight differences in 

25°C and 37°C state assignments affect the degree of 3D clustering of genes and the relocation of 

heat-shock genes to the nuclear periphery upon activation. This analysis can be repeated for 

simulations with artificial orders of genes, i.e. randomised or 1D clustered arrangements of genes. 

The quantified contact frequencies (Fig. 6.5, Fig. 6.6) have predicted a higher co-localisation level 

for genes of the same chromatin state in simulations with 1D clustered states and a lower co-

localisation degree in simulations with randomised states, compared to simulations with natural 

order of genes. The 2D projection of contacts and the quantification of clustering levels would 

specify the magnitude of these differences. According to the proposed hypothesis in section 5.2, 

the chromatin state of neighbouring segments affects the relocation of an activated gene. The 

position of heat-shock genes in simulations with random or clustered states would provide a 

verification of this assumption.  
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7.10.2. Relocation of genes with facilitator and inhibitor neighbours 

Another interesting analysis to undertake is the inspection of the relocation of genes with facilitator 

neighbours, which are identified by high enrichment scores (section 5.2). This could be conducted 

by tracking the position of genes before and after activation using the simulation results and live 

cell imaging. The simulation analysis is not complicated, as previously developed code for the 

relocation study only needs to be tweaked slightly. However, microscopy imaging requires more 

time to be set up, and yeast strains with specific labelled chromosomal loci need to be created or 

sourced from other groups. 

  

In addition, the relocation of genes could be compared to their displacement (MSD curves in Fig. 

5.5 and Fig. 5.6) to test whether the fast movement of activated genes and their relocation to the 

nuclear periphery are correlated in simulations. The MSD analysis and its comparison to gene 

relocation could be repeated for the tracked loci by microscopy experiments.  

 

My current calculation of enrichment score of a gene only takes the effect of neighbouring 

segments with the same chromatin state as the gene into account (Eq. 5.6, Eq. 5.7). However, the 

movement of an active gene could be inhibited by the slow movements of poised adjacent 

segments. For example, an S4 gene with S3 neighbours lacks enhancing neighbours and its 

movement upon heat-shock would be affected by the slow movement of S3 segments. Therefore, 

the calculation of enrichment score could be updated to include the impact of inhibiting neighbours. 

Then, the position of genes with the highest and lowest scores could be studied by our polymer 

model and microscopy experiments. To understand which kind of neighbour has a stronger effect 

on the movement, the relocation of genes with moderate scores, which have both types of 

neighbouring genes, could be analysed. Other factors, such as chromatin loops, that might also 

determine the repositioning of activated genes could be envisaged and tested by both simulations 

and experiments (microscopy and Hi-C).  

7.10.3. Interaction networks and 3D chromosome conformation 

The co-localisation of poised genes and the loose distribution of active genes are shown by our 

polymer model. In addition, the genome is predicted to be more compact during heat-shock. The 

clustering degree of genes and the compaction level of the genome could be further explored by 

calculating the radius of their semicircular distribution in 2D projections (Fig. 5.1, Fig. 5.2). 

Furthermore, to investigate how chromatin is folded at different levels, the Hi-C contact maps can 
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be analysed to build interaction networks of chromatin segments and to infer the 3D structure of 

chromosomes. A project student in our group, who was co-supervised by me, performed the 

network analysis for our 25°C and 37°C Hi-C data (Forquet 2016). Further inspection of these 

networks can identify chromatin regions with distinct structural features, such as small clusters of 

co-regulated active genes. In addition, interaction networks could be built for our simulation data 

and the results could be compared to the Hi-C data (Kidman 2016). This would indicate how the 

heterogeneous mobility of genes and the determined order of chromatin states affect the formation 

and the interaction of chromatin domains at various scales.  

 

Another project student in our group tested different bioinformatics tools, such as MOGEN (Trieu 

& Cheng 2016) and TADbit (Serra et al. 2017), to build consensus 3D genome structures using our 

ensemble Hi-C data (Kidman 2016). This work could be extended by using new pipelines, like 

miniMDS (Rieber & Mahony 2017) and chromosome3D (Adhikari et al. 2016), and the results 

could be compared to the chromosome conformation in our polymer models. The analysis of 

interaction networks and 3D structure of chromosome require the development of new code and 

exploration of different comparison metrics.    

7.10.4. Detailed comparison of 25°C and 37°C conditions 

Poised chromatin-associated proteins display a concerted relocation across the genome upon 

changes in temperature. It has been shown that this relocation coincides with changes in the state-

wise interactions between chromatin segments (Fig. 4.6) and the overall genome conformation 

(Fig. 5.1). However, we have not yet analysed our Hi-C datasets for more subtle changes in 

chromatin structure, and in gene-by-gene interactions. This could be addressed by identifying the 

similarities and differences of full contact maps, networks interactions, and 3D chromosome 

structures at 25°C and 37°C using our Hi-C data. For each type of comparison, the most suitable 

and efficient method should be selected among the many tools that are developed in the field. Then, 

an analogous analysis could be repeated for the results of our polymer model to reveal the effect 

of segment mobility and order of genes on structural changes of the genome when the temperature 

condition changes.  

7.10.5. Model improvement 

Our polymer model could be improved in several aspects:  
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Shorter simulation times could be achieved by parallelising the code. To this end, we recently 

collaborated with a group of computer scientists in Edinburgh, who ported my short test 

simulations to another physics engine. Running this code on Graphics Processing Units (GPUs), 

the Honors student achieved a two-fold speedup for 1000 segments, with a fairly flat relationship 

between runtime and number of segments (Decova 2018). Extrapolating to the 6000 segments of 

our whole genome simulations, the speedup could be as high as 12-fold. We would now port our 

main simulations to their system, to achieve a significant reduction in runtime from two months to 

five days. 

 

The current version of simulation compares the position of all segments with each other to identify 

the interacting segments. This is the slowest part of the code, which could get better by 

implementing a virtual lattice to divide the nuclear space into small pieces and assess the position 

of segments in the same or adjacent pieces. A wider range of input parameters, such as scaling 

factors for the FLC, could be tested with faster simulations.  

 

Mobile and explicit protein species and their concerted movement upon changes in temperature 

can be introduced. The first version could have only poised protein molecules, however, later 

versions could incorporate various types of proteins, once more data is revealed about all recruited 

proteins and their biophysical properties at different states.  

 

The properties of the rDNA and microtubule segments, the joints that connect chromatin segments 

to each other, and the attractive forces between telomeres and the nuclear membrane could be 

adjusted to achieve a more realistic representation of the yeast genome.     

7.10.6. Statistical analysis improvement 

There are common statistical tests to compare two data distributions, however there is not any well-

known test that compares a whole set of distributions with another set of distributions. For the 

measured 3D distances between loci, we have eight distance distributions for each simulation type 

(Fig. 3.8). To compare each set of eight distributions as a whole with the entire eight distance 

distributions measured by live cell microscopy (not in a pair-wise manner), a two-step approach 

with some estimates was adopted. In the future, we could collaborate with statisticians to come up 

with other methods to compare the data with more accuracy and fewer approximations. 
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7.11. Conclusion 

In this work, the dynamic 3D organisation of the budding yeast genome was studied using 

heteropolymer simulations, which were informed and verified by quantitative experimental data. 

The principal finding is that biologically meaningful 3D self-organisation can be achieved through 

differential mobility of differentially occupied chromatin segments. These results contribute a 

fundamentally new mechanism and complement recent advances in the field of genome 

organisation and biophysics. They provide the foundation for an emerging field, and studies that 

seek to understand how the different mechanisms influence each other.  
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Appendix  

 

 

Figure A.1. Telomere positions in simulations with different radius rDNA thickness. (A) A Schematic 

view of the peripheral and central regions with equal areas (same as Fig. 3.7A). (B-E) The positions of 

labelled telomeres, i.e. right telomere of chromosome III (Tel3R) and left telomere of chromosome XIV 

(Tel14L), in [uniform], [25°C], and [37°C] simulations with different radius for rDNA segments: 20 nm 

(B); 50 nm (C); 75 nm (D); 100 nm (E). For all plots (B-E), the data was combined from three simulation 

replicates. For simulations with 100 nm rDNA segments (E), 64,100 sampled time points (5,900 from the 

first replicate and 29,100 from the other two replicates) were analysed, whereas for other simulations (B-

D), the data were taken from 30,000 non-correlated time steps (10,000 per simulation). These data were 

compared to the microscopy measurements (Fig. 3.7B, Table A.1).  
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  Tel3R Tel14L 

n % 

peripheral 

p-value n % 

peripheral 

p-value 

 experiments 80 68.7500 

(55/80) 

n/a 74y 60.8108 

(45/74) 

n/a 

Confidence 

interval (%) 

[57.97 ≤ π ≤ 79.53] [49.01 ≤ π ≤ 72.61] 

20 nm 

rDNA 

[uniform] 

FLC: S1-S5=1x 

30,000 87.8500 5.3358e-06 30,000 75.2167 0.0066 

[25˚C]  

FLC: S3= 5x; 

S4=0.2x 

30,000 74.7433 0.2460 30,000 65.9100 0.3907 

[37˚C] 

FLC: S3= 0.2x; 

S4= 5x 

30,000 52.3500 0.0034 30,000 66.3167 0.3264 

50 nm 

rDNA 

[uniform] 

FLC: S1-S5=1x 

30,000 94.0067 3.8739e-12 30,000 85.3433 2.1858e-07 

[25˚C]  

FLC: S3= 5x; 

S4=0.2x 

30,000 75.1933 0.1952 30,000 62.3233 0.8109 

[37˚C] 

FLC: S3= 0.2x; 

S4= 5x 

30,000 69.0900 1 30,000 68.7100 0.1672 

75 nm 

rDNA 

[uniform] 

FLC: S1-S5=1x 

30,000 90.7533 3.1350e-08 30,000 86.1033  6.8183e-08 

[25˚C]  

FLC: S3= 5x; 

S4=0.2x 

30,000 77.0867 0.0835 30,000 60.6533  1 

[37˚C] 

FLC: S3= 0.2x; 

S4= 5x 

30,000 64.9900 0.5582 30,000 76.1667  0.0037 

100 nm 

rDNA 

[uniform] 

FLC: S1-S5=1x 

64,100 93.8050 7.9179e-12 64,100 88.1342  1.8961e-09 

[25˚C]  

FLC: S3= 5x; 

64,100 74.6708 0.2466 64,100 62.1092  0.8117 
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S4=0.2x 

[37˚C] 

FLC: S3= 0.2x; 

S4= 5x 

64,100 83.0109 0.0016 64,100 73.5819  0.0170 

Table A.1. Statistical comparison of telomere positions quantified in vivo and in simulations with 

different rDNA thickness. The binomial confidence intervals for the probability of peripheral positions 

were calculated from the in vivo data (http://onlinestatbook.com/2/estimation/proportion_ci.html). The 

confidence level was 95% and continuity correction was applied. Simulations with results within the 

calculated confidence intervals are the best match to the experimental data. The simulation and microscopy 

data were further compared using binomial tests (MATLAB file exchange function myBinomTest). H0: The 

experimental data is taken from a population with the same distribution as the simulation data. Small p-

values indicate that the distributions are significantly different. According to the confidence interval and the 

p-values, the [25°C] and [37°C] simulations with 50 nm rDNA segments have provided the best match to 

the experimental measurements. 
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Figure A.2. 3D distance distribution between pairs of labelled loci in simulations with different rDNA 

thickness. (A-D) The 3D distances between loci separated by different genomic distances were quantified 

in simulations. The rDNA radius equals 20 nm in A, 50 nm in B, 75 nm in C, and 100 nm in D. For each 

type of simulation, the data from triplicate simulation runs were combined. For A-C, 30,000 sampled time 

steps and for simulations with 100 nm rDNA segments, 64,100 non-correlated time points were analysed. 

The results of simulations were compared to the in vivo measurements (Fig. 3.8D, Table A.2). 

 

 Linear model 

A: 

Linear model B: Vuong test assumption (H1): 

 

derived from experimental data and 

Model A fits better than 

model B 

Model B fits better than 

model A 

simulation 

dataset A 

simulation dataset B p-value significance p-value significance 

20 nm 

rDNA 

[25˚C]   

FLC: S3= 5x; 

S4=0.2x 

 

[uniform] 

FLC: S1-S5=1x 

0.99 ns 1.7e-4 *** 

[37˚C]   

FLC: S3= 0.2x; S4= 5x 

5.75e-5 **** 0.99 ns 

50 nm 

rDNA 

[25˚C]   

FLC: S3= 5x; 

S4=0.2x 

 

[uniform] 

FLC: S1-S5=1x 

1.76e-5 **** 1 ns 

[37˚C]   

FLC: S3= 0.2x; S4= 5x 

1.25e-15 **** 1 ns 

75 nm 

rDNA 

[25˚C]   

FLC: S3= 5x; 

S4=0.2x 

 

[uniform] 

FLC: S1-S5=1x 

1.021e-9 **** 1 ns 

[37˚C]   

FLC: S3= 0.2x; S4= 5x 

p=<2e-16 **** 1 ns 

100 nm 

rDNA 

[25˚C]   

FLC: S3= 5x; 

S4=0.2x 

 

[uniform] 

FLC: S1-S5=1x 

p=1.251e-3 ** 0.999 ns 

[37˚C]   

FLC: S3= 0.2x; S4= 5x 

p=<2e-16 **** 1 ns 

Table A.2. Statistical comparison of 3D distances measured in vivo and in simulations with different 

rDNA thickness. Linear models were derived from ln-transformed experimental data, defined as predicted 

variable, and the means of ln-transformed simulation data, defined as predictor variable. Then, the Vuong 

test was performed to compare the fit of the calculated linear models. Hypotheses of the Vuong test are as 

follows: H0: Model fits are equal; H1A: Model A fits better than Model B; H1B: Model B fits better than 

Model A. Small p-values indicate a better fit. To run the Vuong test, the R package nonnest2, v. 0.4-1 
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(https://CRAN.R-project.org/package=nonnest2) (Merkle et al. 2014), was used. ****:p-value<0.0001; 

***:0.0001<p-value<0.001; **:0.001<p-value<0.01; ns: not significant. According to the p-values, the 

linear models derived from the [25˚C] simulations with ≥50 nm rDNA segments have provided better fits 

to the experimental data than the linear models derived from [uniform] and [37˚C] simulations. 

 

 

Figure A.3. State-wise contact maps of [25˚C] and [37˚C] simulations with different rDNA thickness. 

(A-D) The normalised state-wise contact maps were quantified from three simulation replicates as explained 

in section 4.3.2. For simulations with 20 (A), 50 (B), and 75 (C) nm rDNA segments, the data was taken 

from 10,000 non-correlated data points, per independent simulation. For simulations with 100 nm rDNA 

segments (D), 5,900 sampled time points were analysed, per simulation replicate. These results were 

compared to the Hi-C contact maps (Fig. 4.6A,B, Table A.3).  

 

https://cran.r-project.org/package=nonnest2
https://paperpile.com/c/VxVM1B/lCKlE
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State-wise contact maps  

Correlation 

coefficient 

 

p-value 

 

Significance 

20 nm 

rDNA 

Hi-C 25˚C Simulation [25˚C] 0.8630 3.4383e-5 **** 

Hi-C 37˚C Simulation [37˚C] 0.7561 0.0011 ** 

50 nm 

rDNA 

Hi-C 25˚C Simulation [25˚C] 0.8662 2.9712e-5 **** 

Hi-C 37˚C Simulation [37˚C] 0.7409 0.0016 ** 

75 nm 

rDNA 

Hi-C 25˚C Simulation [25˚C] 0.8543 5.0069e-5 **** 

Hi-C 37˚C Simulation [37˚C] 0.7570 0.0011 ** 

100 nm 

rDNA 

Hi-C 25˚C Simulation [25˚C] 0.8634 3.3810e-5 **** 

Hi-C 37˚C Simulation [37˚C] 0.7495 0.0013 ** 

Table A.3. Correlation of state-wise contact maps of Hi-C and heteropolymeric simulations with 

different rDNA thickness. Pearson correlation coefficients calculated in MATLAB between two vectors of 

size 15 (the numerical values of the upper-right triangular part of matrices depicted in Fig. 4.6A,B and Fig. 

A.3). ****:p-value<0.0001; **:0.001<p-value<0.01; ns: not significant. 
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Figure A.4. Relocation of S4 segments upon changes in temperature condition. The 3D distances of 

genes from the centre of the nucleus and their median values were quantified in [25˚C] and [37˚C] 

simulations. Then, the genes with the highest differences in their median values at [25˚C] and [37˚C] 

conditions were analysed and their distances were plotted using the Python Seaborn library function 

violinplot. The first group of genes have more peripheral position at [25˚C] (A), whereas, the second group 

has more peripheral positions at [37˚C] (B). The data was obtained from one simulation replicate, i.e. 10,000 

time points (rDNA = 50 nm). 


