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1 Introduction

One of the most interesting non-perturbative phenomena that can characterize a quantum
field theory is the one of infra-red (IR) duality. This occurs when two distinct microscopic
theories flow to the same fixed point at low energies. A famous example of this is the
Seiberg duality [1]. This applies to SQCD in 4d with the minimal amount of supersymme-
try, namely N = 1, which is also the set-up we will consider in this paper. The advantage
of considering supersymmetric models is that we can compute exactly various Renormal-
ization Group (RG) flow invariants, which we can then match between the two theories
to provide strong evidence of the duality. One type of such invariants are supersymmetric
partition functions on various compact manifolds, which can be expressed in the much
more manageable form of ordinary matrix integrals using localization techniques (see [2]
for a review and references therein).

An intriguing question in this context is whether there is some minimal set of fun-
damental dualities from which all the others can be derived. For example, if we consider
quiver gauge theories, we can apply the Seiberg duality or variants thereof locally on some
gauge nodes so to find new dual frames. This sort of manipulations can be performed
very explicitly at the level of the integrals of supersymmetric partition functions. Very
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recently in [3], building on the results of [4], it was shown that following such a strategy
the 3d N = 4 mirror symmetry [5] as well as its 4d N = 1 ancestor [6] can be derived
by a piecewise dualization algorithm based on two duality moves, which can, in turn, be
derived by sequentially applying the Aharony duality in 3d [7] or the Intriligator-Pouliot
(IP) duality in 4d [8].

The set of possible manipulations that we can perform on a gauge theory using funda-
mental dualities can be drastically enlarged if we employ a technique called deconfinement.
This consists of trading a matter field in a rank-2 representation of the gauge group for an
auxiliary gauge node by using an s-confining duality, in the sense of [9].1 In other words, we
can find a dual frame where the rank-2 matter is absent, but we have an additional gauge
node, and the two theories are related by an application of the s-confining duality on the
new node. One can then perform new dualizations of the auxiliary quiver theory obtained
from the deconfinement, which can lead to a non-trivial dual frame of the original theory.

Some examples of deconfinements in 4d N = 1 theories first appeared in the physics
literature in [10–15]. Deconfinement appeared more recently also in lower dimensions.
For example, various 3d N = 2 dualities [16–20] have been derived with an iterative (or
sequential) application of the deconfinement procedure. An example of deconfinement also
appeared in the context of 2d N = (0, 2) theories in [21].

Interestingly the technique of deconfinement has also appeared elsewhere in the liter-
ature, even if in a different disguise. One strong evidence for a duality is the matching
of the supersymmetric indices or partition functions of dual theories. For example, the
4d supersymmetric index [22–25] can be written in terms of elliptic functions, and each
duality implies a highly non-trivial identity between elliptic hypergeometric integrals which
are extensively discussed in the math literature, see for example [26, 27]. In particular,
in [28, 29] it was shown that the integral identities for various of the s-confining dualities
of [9] can be derived by iterating integral identities for some more elementary dualities like
the Seiberg duality or the IP duality, with a strategy that is nothing but the deconfinement
technique we described before in the field theory.

Another incarnation of the technique of deconfinement was observed in [16] where
it was established a correspondence between the S2 × S1 partition function of certain 3d
N = 2 gauge theories and the correlation functions of 2d CFTs in the free field realization.
2d free field correlators are expressed in terms of Dotsenko-Fateev integrals which can be
manipulated by iterating a fundamental set of integral identities. In particular, in [16] it
was shown how the manipulations of the Liouville 3-point free field correlator leading to
the DOZZ evaluation formula [30, 31] by iterative use of fundamental integral identities
discussed in [32] have a field theory avatar as the sequential deconfinement procedure
for the 3d N = 2 s-confining duality relating the U(N) gauge theory with one adjoint
and one fundamental flavors to a Wess-Zumino (WZ) proposed in [33]. Building on the
correspondence between 3d supersymmetric indices and free field correlators, in [17] various

1According to [9], a theory is called s-confining when it admits an IR dual description everywhere in the
moduli space in terms of a Wess-Zumino (WZ) model whose fields are mapped to gauge invariant operators
in the original gauge theory and with a dynamically generated superpotential among them that preserves
the same global symmetries as those of the gauge theory.
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new 3d N = 2 dualities were found by uplifting known integral identities for 2d free field
correlators in Liouville CFT appearing in [32]. In particular, the integral kernel function
that shows up in the multipoint Liouville correlator has been related to the 3d M [SU(N)]
theory, which admits a further uplift to the 4d N = 1 E[USp(2N)] theory, which was
shown to provide the building block for E-string compactifications on a torus in [34].

In this paper, we discuss various new 4d N = 1 IR dualities, most of which are
derived using the technique of deconfinement. We start in section 2 by revisiting the
known s-confining duality for the USp(2N) gauge theory with one antisymmetric and six
fundamental chiral fields [9]2 and showing how to derive it by deconfining the antisymmetric
field via the IP duality.

We then consider various possible generalizations of this duality. In section 3, we
consider a linear quiver gauge theory with USp nodes and matter in the fundamental,
bifundamental and antisymmetric representation. Using deconfinement, we show that this
theory is also dual to a simple Wess-Zumino model.

In section 4, we consider a similar linear quiver theory, but with a different arrangement
of the fundamental fields, and show using deconfinement that it enjoys a self-duality that
we call cross-leg duality. Moreover, we propose that by suitably adding some singlet fields
to this theory, it enjoys a global symmetry enhancement from the manifest SU(3)3 global
symmetry to E6, and we perform some checks of this claim.

Finally, in section 5, we propose a duality between the USp(2N) gauge theory with one
antisymmetric and 6+2k fundamental chirals, 2k of which interact with the antisymmetric
with a cubic superpotential, and a quiver gauge theory that can be obtained by gauging
one of the USp(2k) symmetries of the E[USp(2k)] theory of [34] with six fundamental
chiral fields and some singlets. This duality is a 4d ancestor of the 3d rank stabilization
duality of [17], to which it reduces upon circle compactification followed by suitable real
mass deformations. This is the only duality in this paper for which we don’t present a
derivation using deconfinement.

Even if we won’t investigate the relation to free field correlators further in this paper,
all the dualities that we are going to discuss can be shown to reduce in 3d to dualities
that naturally arise from such connection with 2d free field correlators. The simplest ex-
ample is the confining duality for USp(2N) with one antisymmetric and six fundamentals
of [9]. In [33] it was shown that this duality reduces in 3d to the confining duality for a
U(N) gauge theory with one adjoint and one fundamental flavors, which as we mentioned
above is related to the 3-point correlator of Liouville theory. Similarly, the dualities that
we will consider in sections 3 and 4 can be related to integral identities for the free field
correlators for the 3-point function of the Toda CFT [36, 37]. Interestingly the manipula-
tions performed in CFT on the free field integrals to derive such identities are completely
analogous to the deconfinement procedure we will discuss in sections 3 and 4. Finally, the
rank stabilization duality is related to the correlation function involving 3 primaries and k
degenerate operators in Liouville theory [17, 32].

2See also [35] for a geometric derivation of this duality in terms of a sphere compactification of the 6d
N = (1, 0) E-string SCFT.
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SU(6)x U(1)t U(1)R0

A 1 1 0
Qa 6 1−N

3
1
3

βi 1 −i 2

Table 1. Transformation properties of the matter fields under the gauge group.

The interplay between physics and math perspective fostered by localization has led
to a significant progress in our understanding of supersymmetric dualities. The fact that
the same tools, or different avatars of the same tool as we have seen for the deconfinement,
appear both in physics and math indicates an even deeper connection and reinforces the
hope that this interplay can help us organize the vast landscape of dualities.

Note added. While completing this work, we became aware of [38] which has some
overlap with the results of section 2. We thank the authors of [38] for coordinating the
submission.

2 Confining duality for USp(2N) gauge theory with antisymmetric mat-
ter

In order to explain the deconfinement strategy that we are going to use to derive new
dualities in the next sections, we first apply it to re-derive the well-known duality by
Csaki, Skiba and Schmaltz between a USp(2N) gauge theory and a WZ model [9].

More precisely, the electric theory is a USp(2N) gauge theory with six fundamental
chirals Qa, one antisymmetric chiral A and N chiral singlets βi with superpotential3

W =
N∑
i=1

βiTrNAi . (2.1)

The content of the theory is schematically represented in figure 1. The charges under the
global symmetry group SU(6)x ×U(1)t4 are given in the following table:

Here U(1)R0 is a possible choice of UV trial R-symmetry that is non-anomalous and
consistent with the superpotential. The charges of the fields under U(1)t are fixed requiring
that U(1)R is not anomalous, where U(1)R is defined taking into account the possible mixing
of the R-symmetry with the other abelian symmetry

R = R0 + tqt , (2.2)

where qt is the charge under U(1)t and t the mixing coefficient.5 The superconformal
R-symmetry can be determined using a-maximization [39], which sets t = 0.

3For USp(2N) groups, we define the trace with the contraction of indices done with the antisymmetric
tensor J(N) = IN×N ⊗ iσ2. For example, we have TrNA = Aii = J

(N)
ij Aji.

4Throughout the paper, we label symmetries with the corresponding fugacities in the index.
5We recall that the requirement for the U(1)R symmetry to be anomaly free translates into the condition∑
f
T (Rf )Rf = 0 , where the trace is taken over all the fermions of the theory. The Dynkin indices for the

USp(2N) representations of our interest are T (2N) = 1/2 , T (N(2N + 1)) = N + 1 , T (N(2N− 1)) =
N − 1.
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Figure 1. Quiver diagram of the original gauge theory. The round node denotes the USp(2N)
gauge symmetry, while the square node the SU(6) flavor symmetry. The line connecting them
represents the chiral in the bifundamental representation of the two groups, while the arc denotes
the chiral in the antisymmetric representation of the gauge group. The dash over the arc denotes
the tower of βi singlets.

SU(6)x U(1)t U(1)R0

Mk 15 k + 2
3(1−N) 2

3

Table 2. Transformation properties of the gauge invariant operators.

As gauge invariant operators, we can construct the mesons, possibly dressed with
powers of the antisymmetric

Mk = TrN
[
QAkQ

]
, k = 0, 1, 2, · · · , N − 1 , (2.3)

with the following transformation properties under the global symmetries:
Notice that the superconformal R-symmetry implies that these operator have dimen-

sion one and are free. The gauge invariant operators Tk = TrNAk, k = 1, 2, 3, · · · , N are
instead flipped by the βk fields since otherwise they would fall below the unitarity bound.

In [9] it was argued that this theory is dual to a WZ model of 15N chiral singlets.
Following [33], we can write the superpotential by collecting the dual fields in a matrix
µab,i = −µba,i, i = 1, . . . , N , 1 ≤ a < b ≤ 6 as

Ŵ =
N∑

i,j,k=1

6∑
a,b,c,d,e,f=1

εabcdef µab,i µcd,j µef,k δi+j+k,2N+1 . (2.4)

The gauge invariant operators QaAi−1Qb of the electric theory are mapped into the gauge
singlet fields µab,i of the magnetic WZ model.

The singlets βk are not mapped into any operator of the dual WZ model, since we can
argue that these fields can’t take a VEV as in [40, 41]. Indeed, a VEV for βj , for example,
would correspond to turning on TrNAj in the superpotential and the effect of such defor-
mation can be understood by considering the duality discussed in [42]. This duality relates
an USp(2N) theory with one antisymmetric chiral A, 2Nf chirals and W = TrNAK+1

to a dual theory with USp(K(Nf − 2) − N) gauge group. The condition to have a sta-
ble supersymmetric vacuum moduli space which includes the origin is that the dual rank
must be greater or equal then zero, namely we require Nf ≥ N/K + 2. We can then see
that for Nf = 3 the theory with the deformation TrNAj has no stable vacuum, since j ≤ N .
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Figure 2. Equivalent representation of the theory. This form is more suitable for the derivation
of the duality we want to present.

We can look at the duality at the level of the supersymmetric index. The index will
depend on fugacities for the SU(6)x × U(1)t global symmetry, which we denote by xa and
t respectively. For convenience, we define the fugacities xa for the SU(6)x flavor symmetry
such that they satisfy the balancing condition6

t2N−2
6∏

a=1
xa = pq , (2.5)

which can be understood as a consequence of the requirement that U(1)R is not anomalous.
With these conventions, the duality is expressed by the identity7

IA(t, xa) =
N∏
i=1

Γe(pqt−i)
∮
d~zNΓe(t)N

N∏
i<j

Γe(tz±1
i z±1

j )
N∏
i=1

6∏
a=1

Γe(z±1
i xa)

=
N∏
i=1

6∏
a<b

Γe(ti−1xaxb) = IB(t, xa) , (2.6)

where we included the contribution of the vector multiplet in the integration measure

d~zN = [(p; p)(q; q)]N
2NN !

N∏
i=1

dzi
2πizi

1∏N
i<j Γe(z±1

i z±1
j )∏N

i=1 Γe(z±2
i )

. (2.7)

In the following it will be useful to use an equivalent parameterisation where we split
the 6 flavors as in figure 2. We accordingly use the new fugacities ci, yi, which are simply
related to the previous ones by

x1,2 = c1y
±1
1 , x3,4 = c2y

±1
2 , x5,6 = c3y

±1
3 , with t2N−2(c1c2c3)2 = pq . (2.8)

As we have already mentioned in the introduction, the electric theory — once we
compactify to 3d and take a suitable combination of Coulomb branch VEV and real mass

6In order to recover the charge assignment of table 1 we need to shift xa → xat
1−N

3 (pq) 1
6 , so that (2.5)

becomes the standard SU(6)x tracelessness condition
∏6
a=1 xa = 1.

7This elliptic hypergeometric identity was first conjectured in [43].
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deformations — flows to a U(N) theory with one adjoint, three flavors and with a super-
potential M+ +M−, where M± are monopole operators with unit magnetic charge. A
further real mass deformation for U(1)c1 makes two of the flavors massive removing the
monopole superpotential and we obtain a U(N) theory with one flavor and one adjoint,
which is dual to a WZ model [33].8 In [16] it was argued how this 3d duality can be derived
using a sequential deconfinement procedure which parallels the manipulations leading to
the evaluation formula for the 3-point free field correlator in Liouville theory. The idea is
to start with an auxiliary quiver theory where we trade the adjoint matter for an extra
U(N − 1) gauge node with a linear monopole superpotential. We then apply iteratively
the one-monopole [44] and Aharony duality [7] to obtain a recursion in which the rank of
the gauge group is lowered at each step.

For the 4d USp(2N) electric theory we can analogously implement the sequential de-
confinement procedure by trading the tensor matter for a new gauge node, and this is how
we obtain the auxiliary quiver shown in the top left of figure 3, where the antisymmetric
is traded for an extra USp(2N − 2) gauge node. The auxiliary quiver theory has a triangle
superpotential involving the USp(2N − 2) × USp(2N) bifundamental q. There are also
N − 1 singlets βi entering the superpotential as ∑N−1

i=1 βiTrNTrN−1(qq)i. Notice that only
U(1)y1 ⊂ SU(2)y1 is manifest in this frame, but the number of fundamentals attached to
each gauge node is always even to avoid Witten’s anomaly [45]. This specific arrangement
of fields is suggested by the fact that our 4d auxiliary quiver, upon taking the 3d limit com-
bined with the deformations discussed above, reduces precisely to the auxiliary quiver with
linear monopole turned on at the first gauge node used in the 3d deconfinement procedure.

Starting from the auxiliary quiver on the top left corner of figure 3 we can move into
two directions by applying the Intriligator-Pouliot (IP) duality [8]. We recall that the IP
duality relates a USp(2N) gauge theory with 2K fundamental chirals and no superpotential
to a USp(2K − 2N − 4) gauge theory with 2K fundamental chirals, K(2K − 1) singlets
Φαβ and superpotential Ŵ = Φαβqαqβ .

If we apply the IP duality to the first node, this confines; the singlets appearing in the
magnetic side of the IP duality reconstruct the antisymmetric chiral on the USp(2N) node

8The limit reducing the S3 × S1 index to the S3
b partition function is implemented by redefining:

zj = e2πirZj , j = 1, · · · , N,

yi = e2πirYi , ci = e2πir∆i i = 1, · · · , 3,

t = e2πir(iQ−2mA), p = e−2πrb, q = e−2πrb−1
, (2.9)

where r is the radius of S1 and the new parameters in capital letters are in
[
− 1

2r ,
1
2r

]
, and using that:

lim
r→0

Γe
(

e2πirx; p = e−2πrb, q = e−2πrb−1
)

= e−
iπ
6r (iQ2 −x)sb

(
i
Q

2 − x
)
, (2.10)

where Q = b + b−1 and sb is the double-sine function, in terms of which the S3
b partition function can be

written (we follow the conventions of section 5 and appendix A.1 of [4] for the S3
b partition function). The

first deformation to the U(N) theory with monopole superpotential is obtained by redefining

Zi → Zi + s, Yi → Yi + s . (2.11)

and sending s→∞, while the real mass for U(1)c1 corresponds to sending ∆1 → ∆1 + t and t→∞.
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t
1 /2
c3
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1 /2
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t
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c1 y1

−1

t c3

t c2

t c1 y1t
−1
c1 y1

−1
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−k /2
c1 y1

−1
t
k /2
c1 y1

t
k /2
c2

t
k /2
c3

y3

y2

y3

y2

Figure 3. Sequential deconfinement procedure. Applying the IP duality to the USp(2N − 2) node
of the auxiliary quiver in the top left corner we move to the first quiver in the second line, the
original electric theory. Applying the IP duality to the USp(2N) node we move to the second
theory in the second line, with rank decreased by one unit and 15 extra singlets. We can now use
the auxiliary quiver in the top right corner. If we apply the IP to the USp(2N − 4) we go back to
the second theory in the second line, while if we dualize the USp(2N − 2) node we instead move to
the third theory in the second line, with rank decreased by two units and 30 extra singlets. In the
last line we show the result after k iterations and the result after N iterations, the WZ dual frame.

and the βN singlet, so that we recover exactly the original theory, which is the first quiver
in the second line of figure 3. In this sense, we call the procedure of going from the original
quiver to the auxiliary one deconfinement. We can also apply the duality to the second
USp(2N) node, which also confines and we reach the second quiver in the second line.
Now compared to the original theory the rank of the gauge group is lowered by one and 15
extra singlets have been generated. From here, we can construct another auxiliary quiver,
the second one in the first line, this time with gauge group USp(2N − 4) × USp(2N − 2)
and repeat the same procedure. After applying the duality to the second USp(2N − 2)
node, we obtain a quiver with the rank lowered by 2 and 30 extra singlets. We see that at
each iteration we basically just lower by one unit the rank and produce a bunch of extra
singlets. At the k-th setp we will have an USp(2N − 2k) theory with one antisymmetric,
six fundamental chirals and 15k extra singlets. Notice that in figure 3 we don’t recombine
the two chirals charged under U(1)y1 into a SU(2)y1 because this symmetry is broken by

– 8 –



J
H
E
P
0
5
(
2
0
2
2
)
0
6
9

superpotential terms involving the singlets fields at the intermediate steps. Nevertheless, we
still obtain a theory with USp gauge group, one antisymmetric and six fundamentals, and
in this sense we can say that original theory is stable under this sequence of dualizations.
If we iterate the whole procedure N times, the gauge node confines and we end up with a
WZ model of 15N singlets, which is the dual theory we are looking for.

All these steps can be performed at the level of superconformal index. The basic
identity for the IP duality was proven in [28]

∮
d~zN

N∏
i=1

2K∏
α=1

Γe
(
vαz
±1
i

)
=

2K∏
α<β

Γe (vαvβ)
∮

d~zK−N−2

K−N−2∏
i=1

2K∏
α=1

Γe
(
(pq)1/2v−1

α z±1
i

)
,

(2.12)
and it holds provided that the balancing condition

2K∏
α=1

vα = (pq)K−N−1 , (2.13)

corresponding to the fact that the anomaly cancellation is satisfied. The starting point is
the index of the auxiliary quiver in the top left corner of figure 3, which is given by

Iaux(t,ci,yi)=
N−1∏
i=1

Γe(pqt−i)
∮
d~wN−1d~zN

N−1∏
i=1

Γe(c1y
−1
1 t−1/2w±1

i )
N−1∏
i=1

Γe(pqt
1
2−Nc−1

1 y1w
±1
i )

×
N∏
i=1

Γe(tN−1c1y
−1
1 z±1

i )
N∏
i=1

Γe(c1y1z
±1
i )

N∏
i=1

Γe(c2y
±1
2 z±1

i )
N∏
i=1

Γe(c3y
±1
3 z±1

i )

×
N−1∏
i=1

N∏
j=1

Γe(t
1
2w±1

i z±1
j ). (2.14)

The charges of fields in the auxiliary quiver satisfy the constraints coming from anomaly
cancellations and cubic superpotential and are chosen in a such a way that when we ap-
ply the IP duality to the first node, which corresponds to replacing the terms in (2.14)
depending on the USp(2N − 2) fugacities wi as

∮
d~wN−1

N−1∏
i=1

N∏
j=1

Γe(t
1
2w±1

i z±1
j )

N−1∏
i=1

Γe(c1y
−1
1 t−1/2w±1

i )
N−1∏
i=1

Γe(pqt
1
2−Nc−1

1 y1w
±1
i )

= Γe(t)N
N∏
i<j

Γe(tz±1
i z±1

j )Γe(pqt−N )
N∏
i=1

Γe(c1y
−1
1 z±1

i )
N∏
i=1

Γe(pqt1−Nc−1
1 y1z

±1
i ) , (2.15)

we recover the index of the original electric theory in (2.6). Notice that part of the matrix of
gauge singlets of the IP dual (2.15) reconstructs the antisymmetric on the USp(2N) gauge
node and the βN singlet. The SU(2)y1 flavor is reconstructed since no superpotential
breaking it is generated.
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Now we can apply the duality to the second gauge node of the auxiliary quiver, which
corresponds to replacing the terms in (2.14) depending on the USp(2N) fugacities zj as∮

d~zN

N−1∏
i=1

N∏
j=1

Γe(t
1
2w±1

i z±1
j )

N∏
i=1

Γe(tN−1c1y
−1
1 z±1

i )
N∏
i=1

Γe(c1y1z
±1
i )

N∏
i=1

Γe(c2y
±1
2 z±1

i )

×
N∏
i=1

Γe(c3y
±1
3 z±1

i ) = Γe(c2
2)Γe(c2

3)Γe(tN−1c2
1)Γe(c2c3y

±1
2 y±1

3 )Γe(c1c2y1y
±1
2 ) (2.16)

× Γe(tN−1c1c2y
−1
1 y±1

2 )Γe(c1c3y1y
±1
3 )Γe(tN−1c1c3y

−1
1 y±1

3 )Γe(t)N−1
N−1∏
i<j

Γe(tw±1
i w±1

j )

×
N−1∏
i=1

Γe(tN−
1
2 c1y

−1
1 w±1

i )
N−1∏
i=1

Γe(t
1
2 c1y1w

±1
i )

N−1∏
i=1

Γe(t
1
2 c2y

±1
2 w±1

i )
N−1∏
i=1

Γe(t
1
2 c3y

±1
3 w±1

i ) ,

Plugging this into (2.14), we obtain the index

S ×
N−1∏
i=1

Γe(pqt−i)
∮
d~wN−1Γe(t)N−1

N−1∏
i<j

Γe(tw±1
i w±1

j )

×
N−1∏
i=1

Γe(c1(t1/2y1)±1w±1
i )

N−1∏
i=1

Γe(t
1
2 c2y

±1
2 w±1

i )
N−1∏
i=1

Γe(t
1
2 c3y

±1
3 w±1

i ) , (2.17)

where S is the contribution of the gauge singlets produced after the dualization, which is
given by

S = Γe(c2
2)Γe(c2

3)Γe(tN−1c2
1)Γe(c2c3y

±1
2 y±1

3 )
× Γe(c1c2y1y

±1
2 )Γe(tN−1c1c2y

−1
1 y±1

2 )Γe(c1c3y1y
±1
3 )Γe(tN−1c1c3y

−1
1 y±1

3 ) . (2.18)

This is the index of the theory in the middle of the second line of figure 3, an USp(2N − 2)
theory with one antisymmetric, 6 chirals and 15 extra singlets. We call this step one.
Notice that SU(2)y1 is still broken in this frame and the SU(6)x symmetry emerges only in
the IR.

At this point, we can repeat the whole procedure and consider the auxiliary quiver
with gauge nodes USp(2N − 4)×USp(2N − 2) in the top right corner of figure 3. Its index
is given by

Iaux′ = S ×
N−2∏
i=1

Γe(pqt−i)
∮
d~wN−1d~kN−2

N−2∏
i=1

N−1∏
j=1

Γe(t
1
2k±1
i w±1

j )
N−2∏
i=1

Γe(t−1c1y
−1
1 k±1

i )

×
N−2∏
i=1

Γe(pqt2−Nc−1
1 y1k

±1
i )

N−1∏
i=1

Γe(tN−
5
2 c1y

−1
1 w±1

i )
N−1∏
i=1

Γe(t
1
2 c1y1w

±1
i )

×
N−1∏
i=1

Γe(t
1
2 c2y

±1
2 w±1

i )
N−1∏
i=1

Γe(t
1
2 c3y

±1
3 w±1

i ) , (2.19)

where S is the contribution of the 15 singlets given in (2.18). Applying the IP duality
to the first USp(2N − 4) node, we recover the expression (2.17). We can also apply the
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duality to the second gauge node. If we do so, we obtain the index of the third quiver in
the second line of figure 3

Γe(tc2
2)Γe(tc2

3)Γe(tN−2c2
1)Γe(tc2c3y

±1
2 y±1

3 )Γe(tc1c2y1y
±1
2 )Γe(tN−2c1c2y

−1
1 y±1

2 )

× Γe(tc1c3y1y
±1
3 )Γe(tN−2c1c3y

−1
1 y±1

3 )× S ×
N−2∏
i=1

Γe(pqt−i)
∮
d~kN−2Γe(t)N−2

×
N−2∏
i<j

Γe(t k±1
i k±1

j )
N−2∏
i=1

Γe(c1(ty1)±1k±1
i )

N−2∏
i=1

Γe(tc2y
±1
2 k±1

i )
N−2∏
i=1

Γe(tc3y
±1
3 k±1

i ) , (2.20)

where we have the contribution of additional 15 singlets on top of the contribution S

obtained in the previous step. Compared to the original electric theory the rank is now
lowered by two units and a total of 30 extra singlets have been generated.

After k iterations we reach a frame with USp(2(N − k)) gauge group and 15k singlets.
The contribution of the singlets at this step is given by

k∏
i=1

Γe(ti−1c2
2)

k∏
i=1

Γe(ti−1c2
3)

k∏
i=1

Γe(tN−ic2
1)

k∏
i=1

Γe(ti−1c2c3y
±1
2 y±1

3 )
k∏
i=1

Γe(ti−1c1c2y1y
±1
2 )

×
k∏
i=1

Γe(ti−1c1c3y1y
±1
3 )

k∏
i=1

Γe(tN−ic1c2y
−1
1 y±1

2 )
k∏
i=1

Γe(tN−ic1c3y
−1
1 y±1

3 ) . (2.21)

Then we see that if we iterate the procedure k = N times, the gauge node confines and
on the r.h.s. we are just left with the contribution of 15N chiral fields in the antisymmetric
of SU(6)x, which is now fully manifest. Going back to the xa variables, the index is given by

N∏
i=1

6∏
a<b

Γe(ti−1xaxb) , (2.22)

which is what we intended to prove.
The index manipulations described above are exactly the steps leading to the proof

of the elliptic hypergeometric identity (2.6) provided in [28]. As shown in [29] similar
manipulations can be used to prove integral identities corresponding to other s-confining
dualities and reinterpreted in field theory as sequential deconfinements procedures [38].

3 Confining duality for a linear quiver theory

In the following sections we aim to give various generalizations of the confining duality
between the USp(2N) gauge theory with six fundamental chirals and one antisymmetric
chiral and theWZmodel. The strategy that we will use to derive these new dualities is again
based on the deconfinement procedure and on the iterative application of the IP duality.

The first immediate generalization is to consider many gauge nodes, instead of the
single one of the original duality. As our electric theory we will then consider the quiver
theory given in the figure 4, which clearly reduces to the previous case for N = 1.9 The

9Notice that in this section N is the number of gauge nodes in the quiver, while in the previous section
it was the rank of the only gauge node. Hence, setting N = 1 in the quiver theory we are considering now
will give us the theory considered in the previous section with a single USp(2M1) gauge node.
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2M3 4

2
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y1 y2 y3
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22

2Mn 2MN−1 2MN 4

2 2 2

A(1) A(2) A(n) A(N−1) A(N )

B(N )Q(1,2) Q(N−1,N )

D(1) D(2) D(N )

V (1) V (2) V (n) V (N−1)
xa

y1 y2 y3 yn+1 yN

Figure 4. Electric theory in the case of N gauge nodes. Singlet fields are not included in the figure.

gauge group of this theory is ∏N
i=1 USp(2Mi), where we assume that the ranks are ordered

as M1 ≤M2 ≤ · · · ≤MN . The reason for this choice will be clear when we will discuss the
derivation by deconfinement of the duality that we are going to present for this theory, since
this works straightforwardly if this conditions is assumed, and we shall briefly comment on
what happens otherwise later. The matter content is given by the following fields in the
fundamental, bifundamental and antisymmetric representations:

• a chiral field Q(n,n+1) in the bifundamental representation of USp(2Mn) ×
USp(2Mn+1), n = 1, . . . , N − 1;

• a chiral field B(N) in the fundamental representation of the last USp(2MN ) gauge
symmetry and in the fundamental of the SU(4)x flavor symmetry;

• a chiral field D(n) in the fundamental representation of USp(2Mn) and in the funda-
mental of n-th SU(2)yn flavor symmetry of the saw, n = 1, . . . , N ;

• a chiral field V (n) in the fundamental representation of USp(2Mn) and in the funda-
mental of (n+ 1)-th SU(2)yn+1 flavor symmetry of the saw, n = 1, . . . , N − 1;

• a chiral field A(n) in the antisymmetric representation of USp(2Mn), n = 1, . . . , N ;

• gauge singlets β(n)
i , coupled to the trace of powers of A(n), i = 1, . . . ,Mn −Mn−1,

n = 1, . . . , N ;

• gauge singlets γ(n)
i , coupled to the gauge invariant mesons built from the diagonal

chirals of the saw D(n), also dressed with powers of the antisymmetric of the corre-
sponding gauge node, i = 1, . . . ,Mn −Mn−1, n = 1, . . . , N ;

To write the superpotential in a compact form, we define

Q(n,n+1)
abij = Q

(n,n+1)
ai Q

(n,n+1)
bj . (3.1)

– 12 –



J
H
E
P
0
5
(
2
0
2
2
)
0
6
9

R0 U(1)c U(1)t
Q(n,n+1) 0 0 1

2

A(n) 2 0 −1
D(n) MN +Mn−1 −MN−1 −Mn 1 MN−1+Mn−MN−Mn−1−N+n

2

V (n) 2 +MN−1 +Mn+1 −MN −Mn −1 MN+Mn−MN−1−Mn+1+N−n−2
2

B(N) 3+MN−1−2MN

2 −1
2

2MN−MN−1−2
4

β
(n)
i 2− 2i 0 i

γ
(n)
i 4− 2i+ 2MN−1+ −2 i− 1 +N − n+MN+

+2Mn − 2MN − 2Mn−1 +Mn−1 −MN−1 −Mn

Table 3. Charges under the abelian symmetries of the matter fields of the quiver gauge theory.

The superpotential consists of a coupling between the bifundamentals and the antisymmet-
rics, a cubic coupling between the chirals appearing in each one of the triangles and, finally,
flip terms for the diagonal mesons and for the powers of the traces of the antisymmetrics10

Wgauge =
N−1∑
n=1

Trn
[
A(n)(Trn+1Q(n,n+1)−Trn−1Q(n−1,n))]−TrN

[
A(N)(TrN−1Q(N−1,N))]

+
N−1∑
n=1

Tryn+1TrnTrn+1
(
V (n)Q(n,n+1)D(n+1))+

N∑
n=1

Mn−Mn−1∑
i=1

γ
(n)
i TrynTrn(D(n)D(n)A(n) i−1)

+
N∑
n=1

Mn−Mn−1∑
i=1

β
(n)
i TrnA(n) i . (3.2)

In the expression above Trn denotes the trace over the gauge indices of the n-th gauge
node and Tryn denotes the trace over the n-th SU(2) flavor symmetry.

From this Lagrangian description, the manifest global symmetry of the theory is

N∏
i=1

SU(2)yi × SU(4)x ×U(1)t ×U(1)c . (3.3)

The charges under the U(1) symmetries are as usual fixed by the superpotential and by the
fact that U(1)R must be non-anomalous at each gauge node, where again U(1)R is defined
taking into account a possible mixing of a trial UV R-symmetry U(1)R0 and the other

10The reason why we flip only these specific traces of powers of the antisymmetrics will become clear once
we will discuss the duality. In short, the dual theory is a WZ model so we expect all gauge invariant operators
in the quiver theory to get mapped to some simple chiral fields and composites of them. Nevertheless, we
will see that there is no field in the dual WZ that corresponds to these higher powers of the antisymmetrics,
which leads us to conclude that they should vanish in the chiral ring because of quantum effects. The
analytic matching of the indices between the quiver theory and the WZ model that we will provide is strong
evidence for this. Also note that here we assume the βi fields vanish in the chiral ring as well, for the same
reason as in the one node case, which will also be clear from the fact that there are no operators on the
WZ side that βi are mapped to.
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+++

Figure 5. Construction of some of the gauge invariant operators for N = 3. The mesons in violet,
orange and green correspond to E(12)

0 , E(13)
0 and E(23)

0 . Operators V (1)
0 , V (2)

0 , V (3)
0 are respectively

in blue, pink and brown.

abelian symmetries. The trial R-charges and the charges under the abelian symmetries
that we assign are shown in table 3.11

There are three interesting kinds of gauge invariant operators which we will be able to
map to the singlets of the WZ dual model. We have N(N−1)

2 mesons E(nm)
i in the bifunda-

mental representation of SU(2)yn×SU(2)ym with n = 1, . . . , N−1, m = n+1, . . . , N . They
are constructed starting with a diagonal chiral, going along the tail with the bifundamen-
tals and ending on a vertical chiral. Then we have N gauge invariant operators constructed
starting from one diagonal flavor and going along the tail including horizontal bifundamen-
tals and the last chiral B(N) in the fundamental of SU(4)x. These are in the bifundamental
representation of SU(2)yn × SU(4)x and we denote them by V (n)

i with n = 1, · · · , N . For
N = 3 these operators are depicted in figure 5. Finally, there is the meson B̃i constructed
from B(N) in the antisymmetric representation of SU(4)x. These operators carry also a
label i which indicates the level of dressing with powers of the antisymmetrics. Because
of the cubic superpotential between the antisymmetric and the horizontal bifundamental
chirals in an operator like E(nm)

i we can take any combination Aknn A
kn+1
n+1 · · ·Akmm of the

antisymmetrics of the nodes USp(2Mn),USp(2Mn+1), · · · ,USp(2Mm) with the condition
kn + kn+1 + · · · + km = i. For the moment we will remain agnostic on the range of the
index i that gives non-trivial independent chiral ring operators. This will be determined
once we will discuss the operator map with the WZ dual, since only for some values of i
we will get operators that correspond to chiral fields in the WZ model (this is similar to
what discussed in footnote 10).

11Notice that the same charge assignment, in particular the one for the fields β(n)
i , can be obtained by

turning on in the superpotential other combinations of interaction terms of the form β
(n)
i TrnA(m) i than

those with m = n that appear in (3.2). Our analysis, which is based on the supersymmetric index, will
be blind to this different choice, since the index is only sensible to the charge assignment of the fields and
not the specific superpotential terms that enforce them. Nevertheless, we expect that a full analysis of the
superpotential and its mapping at each step of the dervation of the duality that we are going to discuss
would require that the terms in the last line of (3.2) are the one and only that are turned on.
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Gauge th. U(1)R0 U(1)c U(1)t WZ th.
E

(nm)
i 2i+Mn−1−Mn−Mm−1 +Mm 0 Mn−Mn−1+Mm−1−Mm−2i

2 T
(nm)
i

V
(n)
i

4i−1+2Mn−1−2Mn−MN−1
2

1
2

2−4i+MN−1+2Mn−2Mn−1
4 U

(n)
i

B̃i 1+2i+MN−1−2MN −1 −2i+2MN−MN−1
2 Ãi

Table 4. Charges under the abelian symmetries of the gauge invariant operators of the quiver
theory and of the corresponding singlets of the WZ theory.

We claim that this theory is dual to a WZ model of 4∑N−1
i=1 Mi + 14MN chiral fields

transforming as follows:12

• a tower of chiral fields T (nm)
i , i = 1, . . . ,Mn −Mn−1 in the bifundamental represen-

tation of SU(2)yn × SU(2)ym , n = 1, . . . , N − 1, m = n+ 1, . . . , N ;

• a tower of chiral fields Ãi, i = 1, . . . ,MN , in the antisymmetric representation of
SU(4)xa ;

• a tower of chiral fields U (n)
i , i = 1, . . . ,Mn−Mn−1, in the bifundamental representa-

tion of SU(2)yn × SU(4)xa , n = 1, . . . , N .

These fields interact with the superpotential

WWZ =
N∑
n=1

MN∑
i=1

Mn−Mn−1∑
j,k=1

εabcdÃ
ab
i TrynU

(n)c
j U

(n)d
k δi+j+k,1+MN+Mn−Mn−1 (3.4)

+
N−1∑
n=1

N∑
m=n+1

MN∑
i=1

Mn−Mn−1∑
j,l=1

Mm−Mm−1∑
k=1

εabcdÃ
ab
i TrynTrymU

(n)c
j U

(m)d
k T

(nm)
l δi+j+k+l,1+MN+Mn−Mn−1 ,

preserving the same global symmetry of the electric theory ∏N
i=1 SU(2)yi×SU(4)xa×U(1)t×

U(1)c. For N = 2 the WZ model is shown in figure 6. The charge assignments under the
abelian symmetries for the chiral fields in the WZ theory are shown in table 4, along with the
charges of the gauge invariant operators of the gauge theory side that we described above.

From table 4 we deduce that the mapping of operators across the duality is:

E
(nm)
i ←→ T

(nm)
i i = 1, . . . ,Mn −Mn−1

V
(n)
i ←→ U

(n)
i i = 1, . . . ,Mn −Mn−1

B̃i ←→ Ãi i = 1, . . . ,MN . (3.5)

This in particular tells us, as we mentioned previously, that some of the gauge invariant
operators in the quiver theory should vanish quantum mechanically in the chiral ring, since
there is no corresponding chiral field on the WZ side.

The strategy that we use to prove this duality is again based on sequential deconfine-
ment. For simplicity, in the following discussion we focus on the charged fields. The singlets

12For N = 1 we have a duality between a USp(2M1) theory and a WZ model with 14M1 fields which is
differs from the Csaki-Skiba-Schmaltz duality discussed in the previous section by the presence of an extra
set of singlets γ(1)

i , i = 1, · · · ,M1 on the electric side.
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Figure 6. Quiver of the dual WZ theory for N = 2.

can be reconstructed by looking at the results of the derivation with the supersymmetric
index (see appendix A).

Let’s consider first the two node case N = 2 sketched in figure 7. Starting from the
auxiliary quiver in the top left corner we can apply the IP duality to the USp(2M1−2) node
and move to the original theory, the first quiver in the second line. If we instead apply IP
to the USp(2M1) node we move to the second quiver in the second line. The antisymmetric
chiral of the USp(2M2) node has been removed so we can IP dualize also this node which
confines and we reach the third quiver in the second line. This quiver theory has the same
structure of the original one but all ranks are decreased by one unit and some extra singlets
have been created.13 We can say that the original quiver theory is stable under this sequence
of dualizations and we can iterate it to systematically lower the ranks. Indeed we can now
consider the auxiliary quiver in the top right corner. If we IP dualise the USp(2M1 − 4)
node we go back to the third quiver in the second line. If we dualise the USp(2M1 − 2)
node we move to the last quiver in the second line. Here the USp(2M2 − 2) node has no
antisymmetric and we can use the IP duality to confine it and reach the second quiver in
the last line. This quiver has again the same structure of the original quiver theory but all
ranks are now decreased by two units and some extra singlets have been created. Iterating
this sequence of dualizations M1 times we reach the first quiver in the third line. This is
a USp(2M2 − 2M1) theory with one antisymmetric and six fundamental chiral multiplets
and using the duality discussed in the previous section we reach the WZ dual frame.

For longer quivers we similarly consider an auxiliary quiver where we trade the antisym-
metric on the first USp(2M1) gauge node with a new USp(2M1−2) gauge node. Dualising
this node it confines, with part of the singlets reconstructing the antisymmetric on the
USp(2M1) node, and hence we go back to our original theory. If instead we IP dualize the
second USp(2M1) gauge node, we turn it into a USp(2M2 − 2) gauge node removing the
antisymmetric of the USp(2M3) node, so that now it can be dualised. We can now continue

13Notice that, because of their interactions, one SU(2) flavor symmetry is broken as in the single node
case in figure 3.
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We avoid drawing singlets not to clutter the figure.
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duailsing all the gauge nodes proceeding to the right of the tail with the result that the rank
of each gauge node to which we apply the duality shifts from USp(2Mi) to USp(2Mi+1−2).
When we finally apply the duality to the last gauge node, this confines and we obtain a
quiver with the same structure of the original theory but with the rank of each gauge node
lowered by one unit. So the original quiver is stable under this sequence of dualizations
and we can iterate this procedure k times until we obtain a new quiver where all the ranks
are lowered by k units. For k = M1 we completely confine the first gauge node and obtain
a shorter quiver whose first node has group USp(2M2 − 2M1). We can now perform other
2M2 − 2M1 iterations to confine also the second gauge node and obtain a shorter quiver.
Continuing with this strategy we reach a frame with only one remaining USp(2MN −
2MN−1) gauge node, an antisymmetric and six fundamental chirals which we know is dual
to a WZ model. Using this result, we can completely confine also the last gauge node, which
concludes the derivation of the duality between the gauge theory and the WZ model.

At this point it is clear why we required that the ranks are ordered asM1 ≤M2 ≤ · · · ≤
MN . This is indeed needed in order for the quiver to start confining from the left. If instead
the ranks weren’t ordered, one could in principle still apply the deconfinement procedure,
but the derivation we just described would need to be modified. In particular, at some point
of our derivation we would have a quiver with the lowest rank node being in the middle
instead on the very left. This will cause this node to confine before the leftmost one, so that
the quiver actually breaks into two subquivers. It would be interesting to investigate further
what would be the dual theory obtained from deconfinement in case of non-ordered ranks.

All the manipulations we described can be repeated at the level of the supersymmetric
index, keeping track of the singlets produced at each step of the derivation. This allows us
to provide a test of the duality by analytically matching the index of the original theory
and the one of the final WZ model. In appendix A we give all the details of the N = 2
case, while here we will give the index identity for generic N .

The index of the gauge theory depends on fugacities for the global symmetries U(1)t
and U(1)c symmetries, which we denote accordingly by t and c, fugacities for the SU(2)yi
symmetries, which we call yi, and finally fugacities for the SU(4)x symmetry, which we
denote xa. The index identity corresponding to the duality between the quiver gauge
theory and the WZ model is then given by

I(N)
gauge( ~M ;~y,~x; t,c) =

N∏
n=1

Mn−Mn−1∏
i=1

Γe((pq)2−i−MN−Mn−1+MN−1+Mnc−2t−MN−1−Mn+MN+Mn−1+N−n+i−1)

×
N∏
n=1

Mn−Mn−1∏
i=1

Γe((pq)1−iti)
∮ N∏

n=1

d~z (Mn)
N∏
n=1

Γe(pqt−1)Mn
Mn∏
i<j

Γe(pqt−1z
(Mn)±1
i z

(Mn)±1
j )

×
N−1∏
n=1

Mn∏
i=1

Mn+1∏
j=1

Γe(t
1
2 z

(Mn)±1
i z

(Mn+1)±1
j )

MN∏
i=1

4∏
a=1

Γe((pq)
3+MN−1−2MN

4 c−
1
2 t

2MN−MN−1−2
4 xaz

(MN )±1
i )

×
N∏
n=1

Mn∏
i=1

Γe((pq)
MN+Mn−1−MN−1−Mn

2 ct
MN−1+Mn−MN−Mn−1−N+n

2 y±1
n z

(Mn)±1
i )

×
N−1∏
n=1

Mn∏
i=1

Γe((pq)
2+MN−1+Mn+1−MN−Mn

2 c−1t
MN+Mn−MN−1−Mn+1+N−n−2

2 y±1
n+1z

(Mn)±1
i ) =
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3 33

D(1)

V (2)

D(2)

V (1)

2N2M

x y z

Bi
(I ) B j

(II ) Bk
(III )

A(1)

Q

A(2)

Figure 8. The quiver diagram summarizing the field content of the USp(2M) × USp(2N) gauge
theory. Later we will also refer to it as Theory A.

=
MN∏
i=1

4∏
a<b

Γe((pq)
1+2i+MN−1−2MN

2 c−1t
2MN−MN−1−2i

2 xaxb)

×
N−1∏
n=1

Mn−Mn−1∏
i=1

N∏
m=n+1

Γe((pq)
2i+Mn−1−Mn+Mm−Mm−1

2 t
Mm−1+Mn−Mn−1−Mm−2i

2 y±1
n y±1

m ) (3.6)

×
N∏
n=1

Mn−Mn−1∏
i=1

4∏
a=1

Γe((pq)
2Mn−1−MN−1−2Mn+4i−1

4 c
1
2 t

2−4i+2Mn+MN−1−2Mn−1
4 y±1

n xa) = I(N)
WZ ( ~M ;~y,~x; t,c) .

where we put Mn = 0 if n ≤ 0 or n > N . With ~M = (M1, . . . ,MN ) we denote an
N -dimensional vector containing the ranks of the gauge nodes.

4 Cross-leg duality and E6 symmetry enhancement

4.1 The theory

In this section, we study a quiver theory with USp(2M) × USp(2N) gauge group which
enjoys a novel duality, which we call the cross-leg duality, and provide evidence of an IR
enhancement of the global symmetry to E6. Indeed, this theory can be regarded as a multi-
nodes extension of the E6 model in [46, 47]. Also this new cross-leg duality can be proven
by the method of sequential deconfinement. The matter content of the theory, which we
shall also call Theory A, consists of chiral fields in the fundamental, bifundamental and
antisymmetric representations of the gauge group USp(2M)×USp(2N):

• a chiral field Q in the bifundamental representation of USp(2M)×USp(2N),

• six chiral fields D(1)
α and V

(1)
β in the fundamental representation of USp(2M) with

α, β = 1, 2, 3,
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SU(3)x×SU(3)y×SU(3)z U(1)R0 U(1)t U(1)c
Q (1,1,1) 0 1/2 0

A(1/2) (1,1,1) 2 −1 0
D(1) (3,1,1) −1

2M+1 1
4M−

1
2 1

V (1) (1,3,1) −5
6M+ 2

3N+1 5
12M−

1
3N−

1
6 −1

D(2) (1,3,1) 5
6M−

2
3N+1 − 5

12M+ 1
3N−

1
3 1

V (2) (1,1,3) −1
6M−

2
3N+1 1

12M+ 1
3N−

1
3 −1

B
(I)
i (3,1,1) M−2i+2 −1

2M+ i −2
B

(II)
j (1,3,1) 5

3M−
4
3N−2j+2 −5

6M+ 2
3N+j− 2

3 2
B

(III)
k (1,1,3) 1

3M+ 4
3N−2k+2 −1

6M−
2
3N+k− 1

3 2
β

(1)
i (1,1,1) 2−2i i 0
β

(2)
k (1,1,1) 2−2k k 0

Table 5. Charges and representations of the matter fields under the global symmetry, including
the trial R-charge R0.

• six chiral fields D(2)
β and V

(2)
γ in the fundamental representation of USp(2N) with

β, γ = 1, 2, 3,

• two chiral fields A(1) and A(2) in the antisymmetric representation of USp(2M) and
USp(2N) respectively,

• three towers of 3 × 3 antisymmetric matrices of gauge singlet fields B(I)
i , B

(II)
j and

B
(III)
k with i = 1, . . . ,M, j = 1, . . . ,M −N and k = 1, . . . , N assuming M −N ≥ 0

without loss of generality,

• two towers of gauge singlet fields β(1)
i and β(2)

k with i = 1, . . . ,M and k = 1, . . . , N .

The content of the theory is schematically represented by the quiver diagram shown in
figure 8. The matter fields interact via four types of interactions preserving the global
symmetry

SU(3)x × SU(3)y × SU(3)z ×U(1)t ×U(1)c , (4.1)

under which they are charged as shown in table 5. Firstly, we have two types of cubic
couplings: one between the bifundamentals and the antisymmetrics and the other among
the chirals in the triangle of the quiver. Also there is an interaction between B

(·)
k and

some of the mesons dressed by the antisymmetrics. Lastly, the trace of powers of the
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SU(3)x×SU(3)y×SU(3)z U(1)R0 U(1)t U(1)c
D(1)A(1)i−1V (1) (3,3,1) − 4

3M+ 2
3N+2i 2

3M−
1
3N− i+

1
3 0

D(1)A(1)i−1QV (2) (3,1,3) − 2
3M−

2
3N+2i 1

3M+ 1
3N− i+

2
3 0

D(2)A(2)k−1V (2) (1,3,3) 2
3M−

4
3N+2k − 1

3M+ 2
3N−k+ 1

3 0

Table 6. Examples of the gauge invariant operators. Contractions of all color indices are under-
stood.

3 33

2N2M

x y z

Figure 9. Schematic representation of how the gauge invariant operators listed in table 6 are
constructed. For example operators D(1)V (1) are indicated in red, D(2)V (2) in blue and D(1)QV (2)

in green.

antisymmetrics are flipped by β(1)
i and β(2)

k . The total superpotential is explicitly given by

WA = TrM
[
A(1)TrN (QQ)

]
+ TrN

[
A(2)TrM (QQ)

]
+ TryTrMTrN

[
V (1)QD(2)

]
(4.2)

+
M∑
i=1

Trx
[
B

(I)
i TrM

(
A(1) i−1D(1)D(1)

)]
+
M−N∑
j=1

Try
[
B

(II)
j TrM

(
A(1) j−1V (1)V (1)

)]

+
N∑
k=1

Trz
[
B

(III)
k TrN

(
A(2) k−1V (2)V (2)

)]
+

M∑
i=1

β
(1)
i TrMA(1)i +

N∑
k=1

β
(2)
k TrNA(2)k

where M ≥ N is assumed without loss of generality. Here TrM and TrN denote the traces
over the color indices of the USp(2M) and USp(2N) gauge nodes respectively, while Trx,y,z
denote the traces over the three SU(3)x,y,z flavor symmetries.

Some examples of the gauge invariant operators are listed in table 6. As depicted
in figure 9, they are constructed starting from a diagonal link and ending on a vertical
link, which results in the bifundamental representations of all possible pairs of SU(3)s.
Moreover, also here we can dress all these operators with powers of the antisymmetric of
the corresponding gauge node. Note the D(1)QV (2) meson can be equivalently dressed with
A(1) or A(2), as we discussed in the previous section.
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π̃i
( I , II )

3 33

D̃(1)

Ṽ (2)

D̃(2)

Ṽ (1)

2M2 N

y z x

B̃k
(III ) B̃ j

(II ) B̃i
(I )

Ã(2)

Q̃

Ã(1)

π̃i
( I , III )

Figure 10. The quiver diagram for Theory B.

4.2 The duality

We claim that Theory A shown in figure 8 admits a cross-leg dual description that has the
same quiver structure of Theory A with additional gauge singlets π̃(·,·)

i . We call this dual
theory Theory B. The corresponding quiver diagram is shown in figure 10.

The superpotential of Theory B consists of five types of interactions. While the first
four are exactly the same as those of Theory A, we have extra terms coupling the singlets
π̃

(·,·)
i to some of the dual mesons. The total superpotential of Theory B is then given by

WB =TrM
[
Ã(1)TrN (Q̃Q̃)

]
+TrN

[
Ã(2)TrM (Q̃Q̃)

]
+TrzTrMTrN

[
Ṽ (1)Q̃D̃(2)

]
+

M∑
i=1

Trx
[
B̃

(I)
i TrM

(
Ã(1)k−1D̃(1)D̃(1)

)]
+
M−N∑
j=1

Trz
[
B̃

(II)
j TrM

(
Ã(2)j−1Ṽ (2)Ṽ (2)

)]

+
N∑
k=1

Try
[
B̃

(III)
k TrN

(
Ã(2) i−1Ṽ (2)Ṽ (2)

)]
+

M∑
i=1

β̃
(1)
i TrM Ã(1)i+

N∑
k=1

β̃
(2)
k TrN Ã(2)k

+
M∑
i=1

TrxTrz
[
π̃

(I,II)
i TrM

(
D̃(1)Ã(1)i−1Ṽ (1)

)]

+
M∑
i=1

TrxTry
[
π̃

(I,III)
i TrNTrM

(
D̃(1)Ã(1)i−1Q̃Ṽ (2)

)]
, (4.3)

where the last line shows the extra interactions terms including the π̃(·,·)
i singlets. The

charge assignments for Theory B are summarized in table 7.
We can provide the first non-trivial evidence of the duality by checking that all the

anomalies match across the duality. For example, the anomalies for the U(1) global sym-
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SU(3)x×SU(3)y×SU(3)z R0 U(1)t U(1)c
Q̃ (1,1,1) 0 1/2 0

Ã(1/2) (1,1,1) 2 −1 0
D̃(1) (3,1,1) −1

2M+1 1
4M−

1
2 −1

Ṽ (1) (1,1,3) −5
6M+ 2

3N+1 5
12M−

1
3N−

1
6 1

D̃(2) (1,1,3) 5
6M−

2
3N+1 − 5

12M+ 1
3N−

1
3 −1

Ṽ (2) (1,3,1) −1
6M−

2
3N+1 1

12M+ 1
3N−

1
3 1

B̃
(I)
i (3,1,1) M−2i+2 −1

2M+ i 2
B̃

(II)
j (1,1,3) 5

3M−
4
3N−2j+2 −5

6M+ 2
3N+j− 2

3 −2
B̃

(III)
k (1,3,1) 1

3M+ 4
3N−2k+2 −1

6M−
2
3N+k− 1

3 −2
β̃

(1)
i (1,1,1) 2−2i i 0
β̃

(2)
k (1,1,1) 2−2k k 0

π̃
(I,II)
i (3,1,3) 4

3M−
2
3N−2i+2 −2

3M+ 1
3N+ i− 1

3 0
π̃

(I,III)
i (3,3,1) 2

3M+ 2
3N−2i+2 −1

3M−
1
3N+ i− 2

3 0

Table 7. Charges and representations of the matter fields of Theory B under the global symmetry.

metries are given by

TrU(1)3
R0 =M2−M−4M2N2−2MN−N+N2 (4.4)

+ 2
3
(
−5M4 +4M3N+4MN3−5N4

)
,

TrU(1)2
R0U(1)t = 2M2N2 +MN+ 1

2
(
−3M2 +M+N−3N2

)
(4.5)

+ 1
3
(
5M4−2M3−4M3N+2M2N+2MN2−4MN3−2N3 +5N4

)
,

TrU(1)R0U(1)2
t =−M2N2 + 5

6
(
−M4−N4

)
+ 1

2 (−M−N) (4.6)

+ 2
3
(
M3 +M3N+M2−M2N−MN2 +N2 +MN3 +N3

)
,

TrU(1)R0U(1)2
t = 5

12
(
M4 +N4

)
+ 1

4
(
−M2−N2

)
+ 1

3
(
−M3N+M+N−MN3

)
(4.7)

+ 1
2
(
−M3 +M2N+M2N2−MN+MN2−N3

)
.

All anomalies involving U(1)c vanish.
Stronger evidence is provided by the match of the supersymmetric indices of Theory

A and Theory B, which we obtain by implementing at the level of the index the sequential
deconfinement procedure, allowing us to derive this duality.

The sequential deconfinement procedure in this case is sketched in figure 11. We
start from the auxiliary quiver theory with USp(2M − 2) × USp(2M) × USp(2N) gauge
group in the top left corner. If we IP dualize the USp(2M − 2) gauge node, this confines,
the antisymmetric at the USp(2M) node is restored and we go back to Theory A. If we
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instead IP dualize the USp(2M) node, this becomes a USp(2N) gauge node and we obtain
the second quiver in the second line. In the process, the antisymmetric of the original
USp(2N) node becomes massive, so we can IP dualize the USp(2N) node converting it
into a USp(2) gauge node and we obtain the third quiver in the second line. Comparing
this quiver theory with the original one, we can notice that the effect of these dualizations
was to decrease by one unit the rank of the first node from left and to add a new USp(2)
gauge node on the right. This quiver form is stable, in the sense that if we repeat the
whole sequence of dualizations we move to the third quiver in the third line which is still
a three-nodes quiver but now the rank of the first gauge node is lowered by two units, the
central node is still USp(2N) and the last node is increased by one unit to USp(4). If we
iterate the sequence of dualizations k times, we obtain the second quiver in the third line,
which has gauge nodes USp(2M −2k)×USp(2N)×USp(2k). This is one of the k cross-leg
dual frames of our theory. For k = M , we obtain again a two-node quiver identical to the
original one, with restored manifest SU(3)3 symmetry but with the USp(2M) and USp(2N)
gauge nodes swapped. Keeping track of all the singlets generated at each dualization, we
find that this quiver coincides with our Theory B.

We can repeat all these steps at the level of the index (keeping track of singlets) to
obtain the following index identity for the duality between the initial and the final frame:14

IA(~x, ~y, ~z; c, t) =
M∏
i=1

3∏
α=1

3∏
γ=1

Γe
(
(pq)

2
3M−

1
3N−i+1t−

2
3M+ 1

3N+i− 1
3xαz

−1
γ

)

×
M∏
i=1

3∏
α=1

3∏
β=1

Γe
(
(pq)

1
3M+ 1

3N−i+1t−
1
3M−

1
3N+i− 2

3xαy
−1
β

)
IA(~x−1, ~z −1, ~y −1; c−1, t)

= IB(~x, ~y, ~z; c, t) (4.8)

where

IA(~x,~y,~z;c,t) (4.9)

=
M∏
i=1

3∏
α=1

Γe
(

(pq) 1
2M−i+1t−

1
2M+ic−2xα

)M−N∏
j=1

3∏
β=1

Γe
(

(pq) 5
6M− 2

3N−j+1t−
5
6M+ 2

3N+j− 2
3 c2y−1

β

)

×
N∏
k=1

3∏
γ=1

Γe
(

(pq) 1
6M+ 2

3N−k+1t−
1
6M− 2

3N+k− 1
3 c2z−1

γ

) M∏
i=1

Γe
(
(pq)1−iti

) N∏
k=1

Γe
(
(pq)1−ktk

)
×
∮

d~uMd~vNΓe
(
pqt−1)M+N

M∏
i<j

Γe
(
pqt−1u±

i u
±
j

) N∏
k<l

Γe
(
pqt−1v±

k v
±
l

) M∏
i=1

N∏
k=1

Γe
(
t

1
2u±

i v
±
k

)

×
M∏
i=1

3∏
α=1

Γe
(

(pq)− 1
4M+ 1

2 t
1
4M− 1

2 cu±
i xα

) M∏
i=1

3∏
β=1

Γe
(

(pq)− 5
12M+ 1

3N+ 1
2 t

5
12M− 1

3N− 1
6 c−1u±

i y
−1
β

)

×
N∏
k=1

3∏
β=1

Γe
(
(pq) 5

12M− 1
3N+ 1

2 t−
5

12M+ 1
3N− 1

3 cv±
k yβ

) N∏
k=1

3∏
γ=1

Γe
(
(pq)− 1

12M− 1
3N+ 1

2 t
1

12M+ 1
3N− 1

3 c−1v±
k z

−1
γ

)
14Here we are using the notation ~x−1 = (x−1

1 , x−1
2 , x−1

2 ) and similarly for the ~y and ~z fugacities.
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Figure 11. Sketch of the manipulations we perform on the original theory to obtain the cross-leg
duality. We avoid drawing singlets not to clutter the drawing.
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with ∏3
α=1 xα = ∏3

β=1 yβ = ∏3
γ=1 zγ = 1 (and we assumed M ≥ N without loss of general-

ity). Here, xα, yα, zα, c and t are the fugacities of SU(3)x×SU(3)y×SU(3)z×U(1)c×U(1)t,
respectively.

4.3 A self-dual frame with E6 global symmetry

We have seen that Theory A admits several dual frames as shown in figure 11. Especially,
a particular dual frame that we called Theory B has the same quiver structure and the
manifest global symmetry as Theory A. In this regard, Theory A is almost self-dual because
Theory A and Theory B only differ by extra singlets.

Recently it was argued that sometimes such almost self-dual theories can be modified
by reorganizing the extra singlets15 so that they become exactly self-dual, meaning that the
dual frames have exactly the same matter content, including singlets and superpotential,
but there is still a non-trivial map of the operators across the duality. In particular it has
been observed that such exactly self-dual theories often enjoy non-trivial enhancements
of the global symmetry [46–48]. We will shortly see that our model is also such a case:
the gauge singlets of a cross-leg dual pair can be reorganized such that the duality be-
comes an exact self-duality. The modified theory will then exhibit an interesting symmetry
enhancement to the E6 group in the IR.

According to [46, 47], such redistribution of the singlets can be easily determined by
looking at the marginal operators and their relations. Let us first consider the simplest
case: M = N = 1. To examine the marginal operators and their relations, it is useful to
compute the superconformal index. Then we first need to perform the a-maximization,
which determines the mixing coefficients of various U(1) symmetries with the R-symmetry,
which are input parameters for the index. Sometimes there can be an operator O violating
the unitarity bound, i.e. having the conformal dimension less than 1, in which case this
operator decouples and should be flipped by introducing an additional singlet field F and
with interaction ∆W = OF [49]. For M = N = 1, the a-maximization gives the following
mixing coefficient of U(1)t with the R-symmetry:

t = 3−
√

11
3 ≈ 1.1 ≈ 12

11 , (4.10)

where 12
11 is an approximate rational value we use for the index computation. Note that

U(1)c doesn’t contribute to the a-function because all the anomalies involving U(1)c iden-
tically vanish as we have seen in the previous subsection. With this value of the mixing
coefficient, there is no unitarity violating operator. Thus, one can obtain the index of the
interacting theory without any further flip of operators. The resulting index is then given by

I(1,1)
A =1+

(
χ3(x)χ3(y)+χ3(y)χ3(z)

)
t−

1
3 (pq)

16
33 +χ3(x)χ3(z)t

1
3 (pq)

17
33 +t(pq)

18
33 +... (4.11)

+
(
−1−χ8(x)−χ8(y)−χ8(z)+χ6(x)χ3(y)χ3(z)+χ3(x)χ3(y)χ6(z)

)
pq+....

15By this we mean adding new singlet fields on both sides of the duality, such that on one frame they
flip some operators while on the other they flip singlet fields that are mapped to such operators across the
cross-leg duality. In the latter frame, both the new and the old singlets are massive and can be integrated
out. Overall, the effect was of moving some singlets from one side of the duality to the other.
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Note that the index is written in terms of χn, which is the character of an n-dimensional
representation of the SU(3) group. From (4.11), one can detect the contribution of one of
the components of the conserved current multiplet [50]

− (1 + χ8(x) + χ8(y) + χ8(z)) pq , (4.12)

which shows that the global symmetry of the theory is

SU(3)x × SU(3)y × SU(3)z ×U(1)t , (4.13)

which agrees with the manifest symmetry of the theory up to the U(1)c factor. The fact
that the expanded index is independent of c and that all the anomalies involving U(1)c
vanish signals that this is not a faithful symmetry in the IR. From the expansion (4.11) we
see that there are 108 marginal operators, whose contribution to the index is given by(

χ6(x)χ3(y)χ3(z) + χ3(x)χ3(y)χ6(z)
)
pq . (4.14)

In order to read the relations among the multiplets counted by the index, it is con-
venient to evaluate its Plethystic Logarithm (PL) [51],16 which captures the single trace
operators and their relations. For M = N = 1, the PL of the index is given by

PL
[
I(1,1)
A

]
=
(
χ3(x)χ3(y)+χ3(y)χ3(z)

)
t−

1
3 (pq)

16
33 +χ3(x)χ3(z) t

1
3 (pq)

17
33 + t(pq)

18
33

−
(
χ3(x)χ3(y)+χ3(y)χ3(z)+χ3(x)χ3(z)

)
t−

2
3 (pq)

32
33 (4.18)

−
(
1+χ8(x)+χ8(y)+χ8(z)+χ3(x)χ3(y)χ3(z)+χ3(x)χ3(y)χ3(z)

)
pq+ . . . .

In particular, the last line of (4.18) is the contribution of the fermionic single trace operators
belonging to the conserved current multiplet as well as the relations of the marginal opera-
tors. More precisely, we have seen that the first four terms come from the current multiplet,
see (4.12), and so the other two correspond to the relations of the marginal operators.

Indeed, if we look at the first line of (4.11), we find the contributions of the following
operators

TrM=1
[
D(1)V (1)

]
, TrN=1

[
D(2)V (2)

]
, (4.19)

TrM=1TrN=1
[
D(1)QV (2)

]
, (4.20)

TrM=1TrN=1 [QQ] (4.21)
16The PL is defined as

PL[f(x)] =
∞∑
n=1

µ(n)
n

log(f(xn)) , (4.15)

where µ(n) is the Möbius function

µ(n) =


0 , n has repeated prime factors,
1 , n = 1,
(−1)k , n is a product of k distinct primes.

(4.16)

The PL is the inverse function of the Plethystic Exponential (PE)

PE[g(x)] = exp

[
∞∑
n=1

1
n
g(xn)

]
. (4.17)
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in the SU(3)x × SU(3)y × SU(3)z ×U(1)t representations(
3,3,1

)
− 1

3
⊕
(
1,3,3

)
− 1

3
, (4.22)(

3,1,3
)

1
3
, (4.23)

(1,1,1)1 , (4.24)

respectively. We can then take the product of the operators in the first two lines to obtain
marginal operators uncharged under the abelian symmetry in the representation(

6,3,3
)
0 ⊕

(
3,3,6

)
0 ⊕ (3,3,3)0 ⊕

(
3,3,3

)
0 . (4.25)

However, from (4.14), we see that only the first two representations appear in the index,
which implies the latter two are truncated since the marginal operators satisfy the relations
corresponding to those representations. These relations should be encoded in the following
negative contributions in the index

−
(
χ3(x)χ3(y)χ3(z) + χ3(x)χ3(y)χ3(z)

)
pq , (4.26)

which indeed cancel those of the last two operators in (4.25). These precisely coincide with
the last two terms of the PL of the index (4.18).

As argued in [46, 47], one can remove the marginal operators of the theory by flipping
some of their ingredients, which are (4.19) and (4.20) in our case. Once the marginal opera-
tors are removed in this way, the flip fields also provide extra conserved currents having the
same representation as the relations of the original marginal operators and therefore lead
to the enhancement of the global symmetry. Here we introduce π(I,II) and π(II,III) flipping
TrM=1

[
D(1)V (1)

]
and TrN=1

[
D(2)V (2)

]
in (4.19) respectively to remove the marginal op-

erators. Then we also find that TrM=1TrN=1 [QQ] in (4.21) hits the unitarity bound and
becomes free. Once we flip all those operators in (4.19) and (4.21), we obtained the flipped
theory with index:

I(1,1)
flipped = 1+χE6

27 t
1
3 (pq)

4
9 (1+p+q)+ t−1(pq)

2
3 +χE6

351 t
2
3 (pq)

8
9 −

(
1 + χE6

78

)
pq+ . . . , (4.27)

where we have used a new mixing coefficient which is exactly (that is with no approxima-
tion) the one coming from a-maximization

t = 2
3 . (4.28)

As before, U(1)c doesn’t contribute to the a-function because it has the vanishing anomalies.
Now all the terms are neatly organized into the characters χE6

n of the E6 group. For
example, the second term is contributed by the operators

π(I,II) , π(II,III) , TrM=1TrN=1
[
D(1)QV (2)

]
, (4.29)

which are in the representation(
3,3,1

)
1
3
⊕
(
1,3,3

)
1
3
⊕
(
3,1,3

)
1
3
−→ 27 1

3
, (4.30)
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of SU(3)x × SU(3)y × SU(3)z × U(1)t ⊂ E6 × U(1)t. Moreover, we find the contribution
of 79 conserved currents in the adjoint representation of E6 ×U(1)t. This proves that the
flipped theory exhibits the global symmetry enhancement

SU(3)x × SU(3)y × SU(3)z ×U(1)t −→ E6 ×U(1)t . (4.31)

Notice that, as expected, the flipped theory is exactly self-dual under the cross-leg
duality and we have a non-trivial duality map of the operators; e.g. in (4.29) the operators
π(I,II) and TrM=1TrN=1

[
D(1)QV (2)

]
are exchanged under the duality

π(I,II) ←→ TrM=1TrN=1
[
D(1)QV (2)

]
, (4.32)

while π(II,III) is mapped to itself.
The next example we consider is (M,N) = (2, 1). In this case, the a-maximization

gives the mixing coefficient

t = 1
9
(
23−

√
73
)
≈ 1.6 ≈ 8

5 . (4.33)

The index of the original theory is given by

I(2,1)
A = 1 + χ3(x)χ3(y)t

1
3 (pq)

4
15 +

(
χ3(x)χ3(y) + χ3(y)χ3(z)

)
t−

2
3 (pq)

7
15

+ 54 t
2
3 (pq)

8
15 + t2(pq)

3
5 + . . . , (4.34)

where the terms higher than (pq) 1
2 are evaluated without the refinement for the SU(3)3

fugacities for computational simplicity. The second and third terms are the contributions
of the following mesonic operators:

Tr2
[
D(1)V (1)

]
, Tr2

[
D(1)A(1)V (1)

]
, Tr1

[
D(2)V (2)

]
, (4.35)

which should be flipped to obtain the self-dual theory where the marginal operators are
removed leading to the potential enhancement of the global symmetry. In addition, we
find that once those operators are flipped, β(2)

2 corresponding to t2(pq) 3
5 hits the unitarity

bound. Thus, we also flip this operator and obtain the index of the flipped theory as follows:

I(2,1)
flipped = 1 + χE6

27 t
2
3 (pq)

4
9 (1 + p+ q) + t−2(pq)

2
3 + 351 t

4
3 (pq)

8
9 − (1 + 78) pq + . . . , (4.36)

with the exact mixing coefficient
t = 4

3 . (4.37)

Again the terms higher than (pq) 1
2 are evaluated without the SU(3)3 fugacities for compu-

tational simplicity. The last term of the index is consistent with the enhanced IR global
symmetry

E6 ×U(1)t . (4.38)

Lastly, let us consider the example (M,N) = (2, 2). The a-maximization gives the
mixing coefficient

t = 9
4 −
√

73
12 ≈ 1.5 ≈ 17

11 . (4.39)
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The index of the original theory is given by

I(2,2)
A = 1 + 18 (pq)

1
3 + 9 t(pq)

29
66 + 2 t2(pq)

6
11 + 18 t−1(pq)

37
66 + 180 (pq)

2
3 + . . . , (4.40)

where all the SU(3)3 global symmetry fugacities are turned off for computational simplicity.
Note that the product of the second and sixth terms and that of the third and fifth terms
give rise to the marginal operators. In particular, the second and fifth terms are the
contributions of the following mesonic operators:

Tr2
[
D(1)V (1)

]
, Tr2

[
D(1)A(1)V (1)

]
, Tr1

[
D(2)V (2)

]
, Tr1

[
D(2)A(2)V (2)

]
. (4.41)

The self-dual theory can be obtained by flipping those operators. No other operators are
necessarily flipped because, unlike the previous examples, there is no decoupled operator
when the operators given in (4.41) are flipped. Nevertheless, we have found that it is more
convenient to flip β

(i)
2 for i = 1, 2 to expand the index because in that case the mixing

coefficient of U(1)t has a rational value, and we can expand the index with the exact
powers without any approximation. Once the operators in (4.41) and β(i)

2 are flipped, the
index of the self-dual theory is given by

I(2,2)
flipped = 1+27 t(pq)

2
5 (1+p+q)+(1+1) t−2(pq)

8
15 +27(pq)

2
3 + tr

11
15 +(351+27) t2(pq)

4
5

+27 t−1(pq)
14
15 −(78+1+1+1)pq+ . . . (4.42)

with the exact mixing coefficient
t = 22

15 . (4.43)

As before all the SU(3)3 global symmetry fugacities are omitted for computational simplic-
ity. We observe that the coefficients of the expanded index naturally fit the dimensions of
representations of E6. Naively, there are 81 conserved currents, which are expected to be
in the adjoint representation of

E6 ×U(1)t ×G , (4.44)

with an emergent symmetry group G of dimension 2 or larger. Let us first assume G
doesn’t include any abelian factor. The simplest candidate of G is then SU(2)a. In that
case, we expect the term −81 pq will be refined as follows(

1− χE6
78 − 1− χSU(2)a

3

)
pq . (4.45)

The first positive term indicates that there is one marginal operator, while the rest negative
terms are contributed by the conserved current of the enhanced symmetry E6 × U(1)t ×
SU(2)a. Note that the non-abelian emergent symmetry G = SU(2)a doesn’t affect the IR
superconformal R-symmetry.

On the other hand, if G includes an abelian factor U(1)a, in principle, we cannot
completely trust the term −81 pq because some of the contributions could be charged
under U(1)a, and their powers are shifted if U(1)a mixes with the R-symmetry. In that
case, we have at least one emergent U(1) symmetry, but the entire symmetry is not clear.
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πi
( I , II ) πk

( II , III )

3 33

D(1)

V (2)

D(2)

V (1)

2 N2M

x y z

Bi
(I ) B j

(II ) Bk
(III )

A(1)

Q

A(2)

Figure 12. The quiver representation of the self-dual theory, which we propose to have SU(3)3 →
E6 enhancement. Two sets of singlets π(I,II)

i and π(I,III)
k for i = 1, . . . ,M and k = 1, . . . , N have

been added to Theory A.

We have also other evidence that the E6 enhancement can appear for generic (M,N).
Indeed for arbitrary (M,N) we can obtain a self-dual theory by flipping the following
operators:

TrM
[
D(1)(A(1))i−1V (1)

]
, i = 1, . . . ,M , (4.46)

TrN
[
D(2)(A(2))k−1V (2)

]
, k = 1, . . . , N . (4.47)

The resulting theory is represented by a quiver diagram in figure 12. We expect this to
have an E6 enhanced symmetry for any (M,N).

We can provide an additional piece of evidence for our claim that the theory in figure 12
enjoys an E6 global symmetry in the IR. The following discussion holds for generic ranks
(M,N) and avoids any tedious index computation. The idea is that there is a necessary
condition on the anomalies of the SU(3)x × SU(3)y × SU(3)z global symmetries that these
should satisfy in order for the E6 enhancement to be possible.

Suppose that we have a 4d theory with global symmetry G × U(1) and consider the
subgroup H × H̃ ⊂ G. The anomalies of H and H̃ can be uniquely determined in terms
of those of G as follows. Let us assume for simplicity that G, H and H̃ are non-abelian,
as in the case of interest for us, so that the only non-trivial anomalies are those with the
U(1). Then we have

Tr H2 U(1) = I(H ↪→ G) Tr G2 U(1), Tr H̃2 U(1) = I(H̃ ↪→ G) Tr G2 U(1) , (4.48)

where I(H ↪→ G) and I(H̃ ↪→ G) are the embedding indices of H and H̃ in G. If a
representation r of G decomposes into ⊕iri under H, then the embedding index of H in G
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is defined as
IH↪→G =

∑
i T (ri)
T (r) , (4.49)

where T (r) denotes the Dynkin index.
Conversely, if we have a 4d theory with manifest global symmetry H × H̃ × U(1), a

necessary condition for the H×H̃ part to enhance in the IR to G is that the relations (4.48)
hold true. Since it is not possible to compute the anomalies for the IR symmetry G from
the UV description, the condition that should be checked is

Tr H2 U(1)
I(H ↪→ G) = Tr H̃2 U(1)

I(H̃ ↪→ G)
. (4.50)

In our case we have the decomposition SU(3)x × SU(3)y × SU(3)z ⊂ E6 with the
embedding

27→
(
3,3,1

)
⊕
(
1,3,3

)
⊕
(
3,1,3

)
. (4.51)

We then find the embedding indices17

I(SU(3)x ↪→ E6) = I(SU(3)y ↪→ E6) = I(SU(3)z ↪→ E6) =
3× 1

2 + 3× 1
2

3 = 1 . (4.52)

In particular what is relevant for us is that the embedding indices for the three SU(3)x,y,z
subgroups are equal. Hence, a necessary condition for the E6 enhancement is that the
mixed anomalies with all the abelian symmetries are equal for the different SU(3)x,y,z
groups, which we can easily check

Tr SU(3)2
x U(1)t = Tr SU(3)2

y U(1)t = Tr SU(3)2
z U(1)t = MN

2 ,

Tr SU(3)2
x U(1)R0 = Tr SU(3)2

y U(1)R0 = Tr SU(3)2
z U(1)R0 = −MN . (4.53)

From this we can also deduce the anomalies for the enhanced E6 global symmetry

Tr (E6)2 U(1)t = MN

2 , Tr (E6)2 U(1)R0 = −MN . (4.54)

Finally we can try to look at how the action of the Weyl of the conjectured E6 IR global
symmetry group is realised. For this it is useful to look at index identity corresponding to
the self-duality:

Iself-dual(~x, ~y, ~z; c, t) = Iself-dual(~x−1, ~z −1, ~y −1; c−1, t) (4.55)

where

Iself-dual(~x, ~y, ~z; c, t) =
M∏
i=1

3∏
α=1

3∏
β=1

Γe
(
(pq)

2
3M−

1
3N−i+1t−

2
3M+ 1

3N+i− 1
3x−1

α yβ
)

(4.56)

×
N∏
k=1

3∏
β=1

3∏
γ=1

Γe
(
(pq)−

1
3M+ 2

3N−k+1t
1
3M−

2
3N+k− 1

3 y−1
β zγ

)
× IA(~x, ~y, ~z; c, t) .

17We use that the Dynkin index of the (anti-)fundamental representation of SU(3) is 1
2 and that of the

27 of E6 is 3.
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The identity shows that the self-duality implies an emergent Z2 symmetry in the IR, acting
on the global symmetry fugacities as follows:

xα −→ x−1
α ,

yα −→ z−1
α ,

zα −→ y−1
α ,

c −→ c−1 ,

t −→ t , (4.57)

Namely, it consists of the permutation of SU(3)y and SU(3)z and the charge conjugation
on SU(3)x × SU(3)y × SU(3)z ×U(1)c.18

The Z2 symmetry (4.57) turns out to be part of the Weyl group of the enhanced E6
symmetry of the theory in the IR. To show this, we first recall that the root system of E6
can be represented as vectors in a six-dimensional hyperplane in the Euclidean space R9

orthogonal to the following three vectors:

e1 + e2 + e3 , e4 + e5 + e6 , e7 + e8 + e9 , (4.58)

where a set of nine ei is an orthonormal basis of R9. The E6 roots are then given by

(1,−1, 0; 0, 0, 0; 0, 0, 0) , and permutations of (1,−1, 0) , (4.59)
(0, 0, 0; 1,−1, 0; 0, 0, 0) , and permutations of (1,−1, 0) , (4.60)
(0, 0, 0; 0, 0, 0; 1,−1, 0) , and permutations of (1,−1, 0) , (4.61)

1
3 (−2, 1, 1;−2, 1, 1;−2, 1, 1) , and permutations among each (−2, 1, 1) , (4.62)

1
3 (2,−1,−1; 2,−1,−1; 2,−1,−1) , and permutations among each (2,−1,−1) , (4.63)

where the first three lines give the roots of SU(3)3 ⊂ E6. The Weyl group of E6 is generated
by the reflections sα with respect to the root vectors α as follows:

sα(v) = v − 2 (v, α)
(α, α)α , v ∈ R9 (4.64)

where (·, ·) is the inner product on R9. For example, the reflection for α =

18The charge conjugation on U(1)c is trivial because it is not a faithful symmetry.
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(1,−1, 0; 0, 0, 0; 0, 0, 0) gives the following linear transformation

0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



(4.65)

acting on R9.
We have found that the cross-leg duality corresponds to the linear transformation

1
3



−1 2 2 0 0 0 0 0 0
2 −1 2 0 0 0 0 0 0
2 2 −1 0 0 0 0 0 0
0 0 0 1 1 1 −2 1 1
0 0 0 1 1 1 1 −2 1
0 0 0 1 1 1 1 1 −2
0 0 0 −2 1 1 1 1 1
0 0 0 1 −2 1 1 1 1
0 0 0 1 1 −2 1 1 1



, (4.66)

which is the combination of the reflections with respect to the following four root vectors:

(1,−1, 0; 0, 0, 0; 0, 0, 0) , (4.67)
1
3(1, 1,−2; 1, 1,−2, 1, 1,−2) , (4.68)
1
3(1, 1,−2; 1,−2, 1, 1,−2, 1) , (4.69)
1
3(1, 1,−2;−2, 1, 1,−2, 1, 1) . (4.70)

Notice that the transformation (4.66) maps a generic point in the six-dimensional hyper-
plane in R9 orthogonal to the vectors in (4.58)

(x1, x2,−x1 − x2; y1, y2,−y1 − y2; z1, z2,−z1 − z2) (4.71)

to
(−x1,−x2, x1 + x2;−z1,−z2, z1 + z2;−y1,−y2, y1 + y2) , (4.72)
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which is the permutation of SU(3)y and SU(3)z with the charge conjugation of all three
SU(3). This is exactly how the cross-leg duality acts on the SU(3)x × SU(3)y × SU(3)z
symmetry, as shown in (4.57). Therefore, the emergent Z2 symmetry due to the cross-leg
duality corresponds to the Weyl element (4.66) of the enhanced E6 symmetry of the self-
dual theory. Note that this is true for generic ranks M and N , since the cross-leg duality
holds for any rank.

Indeed, one can find four more cross-leg dual frames permuting three SU(3) in different
ways, which are also part of the E6 Weyl group. First recall that we applied the dualization
procedure starting from the SU(3)x flavor node of the original quiver in figure 8. This
gives the dual frame in figure 10, where SU(3)y and SU(3)z are swapped and all three
SU(3) charges are conjugated, which can be represented by the fugacity map: (x, y, z) →
(x−1, z−1, y−1). One can repeat the procedure, now starting from SU(3)y, the left most
node of the dual quiver in figure 10, which leads to another dual frame with the map:
(x, y, z)→ (z, x, y). One can keep repeating this procedure until going back to the original
frame. The sequence of the duality frames we obtain in this way are associated with the
following fugacity maps:

(x, y, z)→ (x, y, z) (4.73)
(x, y, z)→ (x−1, z−1, y−1) (4.74)
(x, y, z)→ (z, x, y) (4.75)
(x, y, z)→ (z−1, y−1, x−1) (4.76)
(x, y, z)→ (y, z, x) (4.77)
(x, y, z)→ (y−1, x−1, z−1) , (4.78)

respectively. Thus, we can identify 1296 = 216×6 elements of the E6 Weyl group, 216 from
the Weyl group of the manifest SU(3)x×SU(3)y ×SU(3)z symmetry and 6 from the cross-
leg dual frames above. On the other hand, the other elements of the E6 Weyl group do
not preserve SU(3)x×SU(3)y×SU(3)z, which may signal the existence of new dual frames
breaking the original SU(3)x × SU(3)y × SU(3)z symmetry. We leave the investigation of
these extra dual frames for the future.

5 Rank stabilization duality

5.1 The duality

In this section, we present a generalization of the confining duality for the USp(2N) gauge
theory in section 2 to a higher number of flavors. More specifically, we introduce additional
fundamental chirals interacting with the antisymmetric via a cubic superpotential. There-
fore, we now have a USp(2N) gauge theory with one antisymmetric and 2k+6 fundamental
chirals of which 2k form a cubic superpotential with the antisymmetric, plus some gauge
singlet flipping fields. We will show that this theory is dual to the E[USp(2k)] theory [34]
whose manifest USp(2k) symmetry is gauged with 6 fundamental chirals, plus some gauge
singlet fields. This duality is the 4d version of the rank stabilization duality that was pro-
posed in 3d in [17]. The reason for the name “rank stabilization” is that the rank N of
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Figure 13. Schematic representation of the 4d rank stabilization duality. We don’t draw singlets,
which are specified in the main text.

USp(2k)y SU(6)x U(1)t U(1)R0

A 1 1 1 0

P 2k 1 −1
2 1

Q 1 6 k+2−2N
6

1
3

βi 1 1 −i 2

Table 8. Transformation properties under the global symmetry FA of the matter fields of Theory
A. The horizontal line separates fields charged under the gauge symmetry from the singlets.

the original theory doesn’t appear anymore as the rank in the dual, but it only appears in
the number of the singlet fields and in the charges of the various fields under the abelian
symmetries. The duality is schematically depicted in figure 13.

The first theory, which we will refer to as Theory A, is a USp(2N) gauge theory with
one antisymmetric chiral A, 2k + 6 fundamental chirals Pn for n = 1, · · · , 2k and Qa for
a = 1, . . . , 6, and N − k chiral singlets βi. The superpotential of the theory is

WA =
2k∑
n=1

TrN AP 2
n +

N−k∑
i=1

βj TrN Aj . (5.1)

Because of the first superpotential term, the flavor symmetry rotating the chirals Pn is
USp(2k). The chirals Qa, instead, don’t enter in the superpotential and are rotated by an
SU(6) global symmetry, as in the k = 0 case. Finally, there is one non-anomalous abelian
symmetry preserved by the superpotential. The full manifest global symmetry of the model
is thus

FA = USp(2k)y × SU(6)x ×U(1)t . (5.2)

The transformation rules of the matter fields under these symmetries and a possible choice
of non-anomalous R-symmetry are summarized in table 8.
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The dual theory, which we will refer to as Theory B, is constructed by gauging the
manifest USp(2k) symmetry19 of E[USp(2k)] with the addition of 6 chirals in the funda-
mental representation of such gauge group pα for α = 1, 2 and p̃a for a = 1, · · · , 4. In the
theory there are also 15N − 5k + 1 chiral singlets that we are going to denote as follows:

µab;i, a < b = 1, · · · , 4, i = 1, · · · , N
µ56;i i = 1, · · · , N − k
µaα;i, a = 1, · · · , 4, α = 1, 2, i = 1, · · · , N − k
ναn, α = 1, 2, n = 1, · · · , 2k
bk . (5.3)

The reason for these names is because in order to write the superpotential in a compact
form it is useful to collect some of them together with some gauge invariant operators that
we can construct from the gauge charged matter fields. First, we define the set of operators
µ̂ab;i = −µ̂ba;i for a < b = 1, · · · , 6 and i = 1, · · · , N as follows:

µ̂ab;i = µab;i, a< b= 1, · · · ,4, i= 1, · · · ,N

µ̂56;i =

µ56;i, i= 1, · · · ,N−k
bN−i+1, i=N−k+1, · · · ,N

(5.4)

µ̂a,α+4;i =

µaα;i, i= 1, · · · ,N−k
Trk

[
Hk+i−N−1p̃apα

]
, i=N−k+1, · · · ,N

a= 1, · · · ,4, α= 1,2 ,

where bn and H are some of the gauge invariant operators of the E[USp(2k)] theory, with
the former ones being singlets under the non-abelian symmetries while the latter being in
the antisymmetric representation of the gauged USp(2k) symmetry (see appendix B). The
superpotential of Theory B can then be written in the following compact form20

WB = WE[USp(2k)] + bk

2k∑
n=1

Trk [ΠnΠn] +
2k∑
n=1

∑
α=1,2

ναnTrk [pαΠn] +

+
N∑

i,j,l=1

6∑
a,b,c,d,e,f=1

εabcdef µ̂ab;iµ̂cd;jµ̂ef ;lδi+j+l,2N−k+1 , (5.5)

where WE[USp(2k)] is the superpopential of E[USp(2k)] and again Π is an operator of
E[USp(2k)] that transforms in the bifundamental representation of its two USp(2k) sym-
metries (see appendix B).

Notice that even if the second line of the superpotential is the same that we had for
k = 0 in (2.4) and so it naively seems to preserve a U(6) structure, this symmetry rotating

19Recall that the E[USp(2k)] theory has two USp(2k) global symmetries in the IR, only one of which is
manifest in the UV. On the other hand, the other is an emergent one enhanced from the SU(2)k symmetry
in the UV. See appendix B.

20It is interesting to notice that the object µ̂ab;i is analogous to µab;i that we had in the k = 0 case in
section 2. The difference is that now the dual is not a WZ model but a gauge theory and accordingly some
of the singlets in µab;i are replaced by gauge invariant operators in µ̂ab;i.
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the 6 chirals in the fundamental representation of the USp(2k) gauge node is explicitly
broken to SU(4)× SU(2)×U(1)2 by the last term in the first line, which treats differently
2 out of the 6 chirals with respect to the remaining 4. In addition, from the E[USp(2k)]
block, we also have two abelian symmetries as well as the manifest SU(2)k symmetry,
which is enhanced to USp(2k) in the IR. Among the four abelian symmetries in total,
the USp(2k) gauging makes one combination gauge anomalous21 and the superpotential
explicitly breaks another one. Thus, the full manifest non-anomalous global symmetry is

FB =
k∏
i=1

SU(2)yi × SU(4)v × SU(2)b ×U(1)s ×U(1)t . (5.6)

As mentioned, ∏k
i=1 SU(2)yi of the E[USp(2N)] block is enhanced to USp(2k)y in the IR.

Moreover, the duality tells us that there should be another enhancement of symmetry:

SU(4)v × SU(2)b ×U(1)s → SU(6)x (5.7)

so that the IR global symmetry of Theory B becomes

USp(2k)y × SU(6)x ×U(1)t , (5.8)

which is the same as the manifest symmetry (5.2) of Theory A. We will give other evidence
for this momentarily. The transformation rules of the matter fields under these symmetries
and a possible choice of non-anomalous R-symmetry are summarized in table 9.

Before presenting some tests for the duality, let us briefly comment on some special
cases which are related to known dualities. For low k, indeed, Theory B significantly
simplifies and we can reasonably expect to recover dualities that already appeared in the
literature. We previously pointed out that for k = 0 the dual Theory B is just a WZ model
and we recover the confining duality of [9] that we discussed in section 2. For k = 1 the
E[USp(2k)] theory consists simply of an SU(2) × SU(2) bifundamental plus a flip of the
associated quadratic operator, without any gauge group. One of the two SU(2) is gauged
to construct Theory B, which is thus a simple single gauge node theory. Hence, modulo
singlet fields the rank stabilization duality for k = 1 relates a USp(2N) gauge theory with
one antisymmetric and 8 fundamental flavors to an SU(2) gauge theory with 8 fundamental
flavors. This duality corresponds to the “rank changing” duality of [48]. If we further set
N = 1 both Theory A and Theory B are SU(2) gauge theories with 8 fundamental chirals
and differ only for singlet fields and superpotential terms involving them. We thus recover
a pair of the known 72 self-dual frames of SU(2) with 8 chirals [47, 48, 53–55].

5.2 Tests

We now move on to the discussion of some tests for the 4d rank stabilization duality.
The strongest one will be the analytic matching of the supersymmetric indices of the

21In order to work out which combination of the four abelian symmetries is anomalous one needs to know
the contribution of the E[USp(2k)] block to the mixed anomaly between the USp(2k) gauge symmetry and
the most general trial R-symmetry. This can be computed using the quiver description of E[USp(2k)] (see
eq. (A.14) of [52]).
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USp(2k)y SU(4)v SU(2)b U(1)s U(1)t U(1)R0

p 1 1 2 0 N−k+1
2 0

p̃ 1 4 1 −1 1−N−k
6

2
3

H 1 1 1 0 1 0

Π 2k 1 1 2 2k−N−2
6

2
3

µab;i 1 6 1 2 3i+k−2N−1
3

2
3

µ56;i 1 1 1 −4 3i+k−2N−1
3

2
3

µaα;i 1 4 2 −1 3i+k−2N−1
3

2
3

ναn 2k 1 2 −2 k−2N−1
6

4
3

C 1 1 1 0 −1 2

Table 9. Transformation properties under the global symmetry of the matter fields of Theory
B. We are also including some important operators of the E[USp(2k)] block. The horizontal line
separates operators charged under the USp(2k) gauge symmetry from the singlets.

dual theories. Even if they are implied by the equality of the indices, in order to better
understand how the duality works we will first discuss the mapping of some gauge invariant
operators and the matching of some of the anomalies.

Mapping some operators. It is interesting to look at how the map of some of the gauge
invariant operators works, since they are very simple on the side of Theory A, while they
map to some more complicated operators in Theory B. Moreover, on the side of Theory B
we only manifestly see the SU(4)v×SU(2)b×U(1)s subgroup of the SU(6)x global symmetry,
so we expect to be able to collect its gauge invariant operators into representations of the
larger symmetry.

On the side of Theory A we have two types of operators. We can have the mesons
constructed with the fundamental chirals Q and P possibly dressed with the antisymmetric
A and the gauge invariant combinations that we can construct with powers of A. Let us
start considering the former ones. We can have three different kinds of mesons, depending
on which combinations of Q and P we use. For example, we can have the following dressed
mesons:

QaA
i−1Qb, i = 1, · · · , N , (5.9)

where as usual the contraction of gauge indices is understood. These operators transform
in the antisymmetric 15 representation of SU(6)x, while they are singlets of USp(2k)y.
On the side of Theory B there is a combination of singlets and gauge invariant operators
which is a natural candidate for mapping to these mesons. This is the set of operators
µ̂ab;i that we already introduced in (5.4). Since the last term of the superpotential (5.5)
containing µ̂ab;i is written in an SU(6) invariant way, we already expect that these operators
indeed form an antisymmetric representation of the enhanced SU(6)x, but we can also
check it explicitly. Indeed, from table 9 we can see that the operators in (5.4) all have
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Theory A USp(2k)y SU(6)x U(1)t U(1)R0 Theory B

QaA
i−1Qb 1 15 k+3i−2N−1

3
2
3 µ̂ab;i

PnPm k(2k− 1)− 1 1 −1 2 C

QaPn 2k 6 k−2N−1
6

4
3 ν̂an

AN−k+i 1 1 N − k + i 0 pαHi−1pβ

Table 10. Transformation properties under the global symmetry FA of some of the gauge invariant
operators of Theory A and B, from which we can understand how these map under the duality.

the same charges under U(1)t and U(1)R0 , while their transformation properties under
SU(4)v × SU(2)b ×U(1)s ⊂ SU(6)x are compatible with the branching rule

15→ (6,1)2 ⊕ (4,2)−2 ⊕ (1,1)−4 . (5.10)

Moreover, the charges of µ̂ab;i under the abelian symmetry U(1)t and the reference R-
symmetry U(1)R0 are precisely equal to those of the operators QaAi−1Qb, so we expect the
two to be mapped to each other under the duality (see table 10).

We can also have mesons constructed from P

PnPm . (5.11)

In this case there is no dressing, since the F-term equations associated to Pn set the dressed
mesons to zero in the chiral ring. These operators form the antisymmetric k(2k − 1) − 1
representation of USp(2k)y, while they are singlets of SU(6)x. The natural candidate on the
side of Theory B for the operators that should map to this meson is the gauge invariant op-
erator C of the E[USp(2k)] block. We can indeed check that the two operators transform in
the same way under all the global symmetries and the reference R-symmetry (see table 10).

The last type of meson that we can construct in Theory B is

QaPn , (5.12)

where the dressed mesons are again set to zero in the chiral ring for the same reason as
before. This operator transforms in the fundamental 2k of USp(2k)y and also in the funda-
mental 6 of SU(6)x. The corresponding operator in Theory B should then be constructed
collecting gauge invariant operators that have the same U(1)t and U(1)R0 charges, that are
all in the fundamental of USp(2k)y and that transform under the SU(4)v × SU(2)b×U(1)s
subgroup of SU(6)x according to the branching rule

6→ (4,1)1 ⊕ (1,2)−2 . (5.13)

The desired operator, which we will denote by ν̂na for n = 1, · · · , 2k and for a = 1, · · · , 6,
is defined as follows:

ν̂an =

p̃aΠn, a = 1, · · · , 4
νa−4,n, a = 5, 6

n = 1, · · · , 2k . (5.14)
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One can check that this operator ν̂na has the same transformation properties under the
global symmetry and the R-symmetry as the meson QaPn of Theory A (see table 10).

Finally, on the side of Theory A we can construct gauge invariant combinations of the
antisymmetric chiral A. Those that are independent and that are not set to zero in the
chiral ring by the F-term equations of the singlets βi are

AN−k+i, i = 1, · · · , k . (5.15)

The operators of Theory B that have the correct charges to be mapped to it are (see
table 10)

pαHi−1pβ , i = 1, · · · , k . (5.16)

This concludes the mapping of the main gauge invariant operators22

Anomalies. Another possible test that we can perform is matching the anomalies of the
theories. In particular, we will focus on the a and c trial central charges. We stress again
that this is expected to follow from the matching of the supersymmetric indices, but it
is useful to compute the a and c central charges to have a better understanding of the
dynamics of the theories.

On the side of Theory A we only have one abelian symmetry U(1)t. The most general
non-anomalous R-symmetry U(1)R is thus parametrized by the mixing coefficient of U(1)t
with the reference R-symmetry U(1)R0

R(t) = R0 + qtt , (5.17)

where R is the R-charge under the generic R-symmetry, R0 is the R-charge under the
reference R-symmetry U(1)R0 , qt is the charge under U(1)t and t is the mixing coefficient.
The trial central charges are then

aA(t) = 3
32
(
3TrR(t)3 − TrR(t)

)
, cA(t) = 1

32
(
9TrR(t)3 − 5TrR(t)

)
. (5.18)

Computing these for Theory A we find

aA(t) = 1
128

(
−9k4t3 +2k3t2((19N+9)t−18)−3k2t

(
t
(
22N2t+14N(t−2)+3(t−6)

)
+16

)
+

+6k(t(N(t(N(10N t+ t−2)+4t−34)+32)−3t+8)−4)+
+5N

(
8−(N−1)t2(N((5N−1)t+12)−4t+6)

))
cA(t) = 1

128
(
−9k4t3 +2k3t2((19N+9)t−18)−k2t

(
(6N(11N+7)+9)t2−6(14N+9)t+44

)
+

+k(t(N(3t(N(10N t+ t−2)+4t−34)+92)−9t+22)−8)+
−5N((N−1)t+2)((N−1)t((5N+4)t+2)−8)) (5.19)

On the side of Theory B there are two abelian symmetries that can in principle mix with
the R-symmetry, U(1)t and U(1)s. Hence, the most general non-anomalous R-symmetry
depends on two parameters, the two mixing coefficients t and s

R(t, s) = R0 + qtt + qss . (5.20)
22Similarly to the k = 0 case, the singlets βj are expected not to get a VEV at the quantum level.
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The trial central charges of Theory B will then be functions of both t and s. Specifically,
we find

aB(t,s) = 1
128

(
−9k4t3+2k3t2((19N+9)t−18)−3k2t

(
t
(
22N2t+14N(t−2)+3(t−6)

)
+16

)
+

+6k
(
t
(
N
(
t(N(10N t+t−2)+4t−34)+72s2+32

)
−3t+8

)
−4
)
+

+(N−1)N t
(
−5t(N((5N−1)t+12)−4t+6)−864s2)−8N

(
108s2(s+2)−5

))
cB(t,s) = 1

128
(
−9k4t3+2k3t2((19N+9)t−18)−k2t

(
(6N(11N+7)+9)t2−6(14N+9)t+44

)
+

+k
(
t
(
N
(
3t(N(10N t+t−2)+4t−34)+216s2+92

)
−9t+22

)
−8
)
+

+N
(
−864s2((N−1)t+2)−5((N−1)t+2)((N−1)t(5N t+4t+2)−8)−864s3)). (5.21)

Despite the explicit dependence on s, one can check that the local maximum of aB(t, s)
corresponds to s = 0 and to a value of t which is the same that we can find maximizing
the trial aA(t) central charge of Theory A. This means that U(1)s doesn’t mix with the
R-symmetry in the IR, which is compatible with the fact that it participates to the en-
hancement to the non-abelian SU(6)x symmetry. Moreover, setting s = 0 one finds that
the a and c central charges of Theory A and B coincide as functions of t

aA(t) = aB(t, s = 0), cA(t) = cB(t, s = 0) , (5.22)

which is another test of the duality.

Supersymmetric index. The strongest test that we can provide for the duality is the
matching of the supersymmetric indices. This amounts to proving the following non-trivial
integral identity:∮

d~zN Γe(t)N
N∏
i<j

Γe(tz±1
i z±1

j )×

×
N∏
i=1

6∏
a=1

Γe
(
(pq)

1
6 t−

2N−k−2
6 xaz

±1
i

) k∏
j=1

Γe
(
(pq)1/2 t−1/2z±1

i y±1
j

)
=

= Γe
(
(pq)

1
3 t

N−2k+2
3 s−4

) N∏
i=1

4∏
α<β=1

Γe
(
(pq)

1
3 t

3i+k−2N−1
3 s2vαvβ

)
×

×
N−k∏
j=1

Γe
(
tj
) 4∏
α=1

Γe
(
(pq)1/3t

3j+k−2N−1
3 s−1b±1vα

)
×

×Γe
(
(pq)1/3t

3j+k−2N−1
3 s−4

) k∏
j=1

Γe
(
(pq)2/3t

−1+k−2N
6 s−2b±1y±1

j

)
×

×
∮

d~wk IE[USp(2k)]
(
~w; ~y; t; (pq)1/3t

2k−N−2
6 s2

)
×

×Γe
(
t
N−k+1

2 b±1w±1
i

) k∏
i=1

4∏
α=1

Γe
(
(pq)1/3t

1−N−k
6 s−1vαw

±1
i

)
. (5.23)

In this identity xa are fugacities for SU(6)x and satisfy the constraint ∏6
a=1 xa = 1, vα are

fugacities of SU(4)v and satisfy the constraint ∏4
α=1 vα = 1, b is the fugacity for SU(2)b, t
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is the fugacity for U(1)t and s is the fugacity for U(1)s.23 IE[USp(2k)] denotes the index of
the E[USp(2k)] theory, which we explicitly define in appendix B. The identity (5.23) holds
provided that the parameters on the two sides are identified as follows:

xa =

sva a = 1, · · · , 4
s−2b±1 a = 5, 6

. (5.24)

This is compatible with the embedding (5.13) of SU(4)v×SU(2)b×U(1)s inside SU(6)x that
we used in the operator map. We prove this identity for arbitrary N and k in appendix C
by using and extending the results of [56].
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A Quiver sequential deconfinement

In this appendix we explicitly show how to derive the index identity (3.6) for the duality of
section 3 using the strategy summarized in figure being a straightforward generalization.
For simplicity we also consider the quiver gauge theory without any additional singlets.
We then expect to recover the β(n)

i and the γ(n)
i singlets all on the r.h.s. of the duality with

flipped charges together with the singlets entering the WZ superpotential.
The index of the electric theory with no singlets is given by (to distinguish it from the

one with the singlets appearing in (3.6) we denote it by Ĩ(N)
gauge)

Ĩ(2)
gauge( ~M ; ~y, ~x; c, t) = Γe(pqt−1)M1+M2

∮
d~z (M1)d~z (M2)

M1∏
i<j

Γe(pqt−1z
(M1)±1
i z

(M1)±1
j )

×
M2∏
i<j

Γe(pqt−1z
(M2)±1
i z

(M2)±1
j )

M1∏
i=1

((pq)
M2−2M1

2 ct
2M1−M2−1

2 y±1
1 z

(M1)±1
i )

×
M1∏
i=1

(pqc−1t−
1
2 y±1

2 z
(M1)±1
i )

M1∏
i=1

M2∏
j=1

Γe(t
1
2 z

(M1)±1
i z

(M2)±1
j )

M2∏
i=1

Γe(cy±1
2 z

(M2)±1
i )

×
M2∏
i=1

4∏
a=1

Γe((pq)
3+M1−2M2

4 c−
1
2 t

2M2−M1−2
4 xaz

(M2)±1
i ) , (A.1)

The index of the auxiliary gauge theory is obtained deconfining the antisymmetric on the
first USp(2M1) gauge node and trading its contribution with an additional integral over

23Notice that in order to recover (2.6) from (5.23) for k = 0 we have to redefine xa → (pq)− 1
6 t

N−1
3 xa.
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USp(2M1 − 2) gauge fugacities. Specifically, the index of the auxiliary theory reads

I(2)
aux = Γe(pqt−1)M2

∮
d~z(M1−1)d~z(M1)d~z(M2)

M1−1∏
i=1

Γe((pq)
M2−2M1−1

2 ct
2M1−M2

2 y−1
1 z

(M1−1)±1
i )

×
M1−1∏
i=1

Γe((pq)
3−M2

2 c−1t
M2
2 y1z

(M1−1)±1
i )

M1−1∏
i=1

M1∏
j=1

Γe((pq)
1
2 t−

1
2 z

(M1−1)±1
i z

(M1)±1
j )

×
M1∏
i=1

Γe((pq)
M2−2

2 ct
1−M2

2 y−1
1 z

(M1)±1
i )

M1∏
i=1

((pq)
M2−2M1

2 ct
2M1−M2−1

2 y1z
(M1)±1
i )

×
M1∏
i=1

(pqc−1t−
1
2 y±1

2 z
(M1)±1
i )

M1∏
i=1

M2∏
j=1

Γe(t
1
2 z

(M1)±1
i z

(M2)±1
j )

M2∏
i=1

Γe(cy±1
2 z

(M2)±1
i )

×
M2∏
i=1

4∏
a=1

Γe((pq)
3+M1−2M2

4 c−
1
2 t

2M2−2−M1
4 xaz

(M2)±1
i )

M2∏
i<j

Γe(pqt−1z
(M2)±1
i z

(M2)±1
j ) . (A.2)

Applying the identity (2.12) for the IP duality to the USp(2M1 − 2) node corresponds to
the evaluation formula∮

d~z(M1−1)
M1−1∏
i=1

Γe((pq)
M2−2M1−1

2 ct
2M1−M2

2 y−1
1 z

(M1−1)±1
i )

M1−1∏
i=1

Γe((pq)
3−M2

2 c−1t
M2

2 y1z
(M1−1)±1
i )

×
M1−1∏
i=1

M1∏
j=1

Γe((pq)
1
2 t−

1
2 z

(M1−1)±1
i z

(M1)±1
j ) =

M1∏
i=1

((pq)
M2−2M1

2 ct
2M1−M2−1

2 y−1
1 z

(M1)±1
i ) (A.3)

×
M1∏
i=1

((pq)
4−M2

2 c−1t
M2−1

2 y1z
(M1)±1
i )Γe(pqt−1)M1

M1∏
i<j

Γe(pqt−1z
(M1)±1
i z

(M1)±1
j )Γe((pq)1−M1tM1) ,

and it is easy to check that plugging this into (A.2) we obtain the index of the original
theory plus the contribution of a singlet Γe((pq)1−M1tM1).

Now we apply the IP duality to the original USp(2M1) gauge node of the auxiliary
quiver, which becomes a USp(2M2 − 2) node. This corresponds to the integral identity∮
d~z(M1)

M1−1∏
i=1

M1∏
j=1

Γe((pq)
1
2 t−

1
2 z

(M1−1)±1
i z

(M1)±1
j )

M1∏
i=1

Γe((pq)
M2−2

2 ct
1−M2

2 y−1
1 z

(M1)±1
i )

×
M1∏
i=1

((pq)
M2−2M1

2 ct
2M1−M2−1

2 y1z
(M1)±1
i )

M1∏
i=1

(pqc−1t−
1
2 y±1

2 z
(M1)±1
i )

M1∏
i=1

M2∏
j=1

Γe(t
1
2 z

(M1)±1
i z

(M2)±1
j )=

=Γe(pqt−1)M1−1
M1−1∏
i<j

Γe(pqt−1z
(M1−1)±1
i z

(M1−1)±1
j )Γe((pq)2c−2t−1)Γe((pq)M2−M1−1c2tM1−M2)

×Γe((pq)
M2

2 t−
M2

2 y−1
1 y±1

2 )Γe((pq)
2+M2−2M1

2 t
2M1−M2−2

2 y1y
±1
2 )

M1−1∏
i=1

((pq)
M2−1

2 ct−
M2

2 y−1
1 z

(M1−1)±1
i )

×
M1−1∏
i=1

((pq)
M2−2M1+1

2 ct
2M1−M2−2

2 y1z
(M1−1)±1
i )

M1−1∏
i=1

((pq) 3
2 c−1t−1y±1

2 z
(M1−1)±1
i )Γe(t)M2

×
M2∏
i<j

Γe(tz(M2)±1
i z

(M2)±1
j )

M2∏
i=1

Γe((pq)
M2−2

2 ct
2−M2

2 y−1
1 z

(M2)±1
i )

M2∏
i=1

Γe((pq)
M2−2M1

2 ct
2M1−M2

2 y1z
(M2)±1
i )
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×
M2∏
i=1

Γe(pqc−1y±1
2 z

(M2)±1
i )

∮
d~z(M2−1)

M2−1∏
i=1

Γe((pq)
3−M2

2 c−1t
M2−1

2 y1z
(M2−1)±1
i )

×
M2−1∏
i=1

Γe((pq)
2M1−M2+1

2 c−1t
1+M2−2M1

2 y−1
1 z

(M2−1)±1
i )

M2−1∏
i=1

Γe((pq)− 1
2 ct

1
2 y±1

2 z
(M2−1)±1
i )

×
M2−1∏
i=1

M2∏
j=1

Γe((pq)
1
2 t−

1
2 z

(M2−1)±1
i z

(M2)±1
j )

M2−1∏
i=1

M1−1∏
j=1

Γe(t
1
2 z

(M2−1)±1
i z

(M1−1)±1
j ). (A.4)

Plugging the above identity into (A.2), we obtain the index of a new quiver theory with
three gauge nodes USp(2M1 − 2), USp(2M2 − 2) and USp(2M2). Notice that the contri-
bution to the index of the antisymmetric on the USp(2M2) gauge node cancels out in this
last step, so that now we can apply the IP duality to it. We then collect all the z(M2)

i terms
and apply the duality to the last node, which confines; this corresponds to the evaluation
formula

∮
d~z(M2)

M2−1∏
i=1

M2∏
j=1

Γe((pq)
1
2 t−

1
2 z

(M2−1)±1
i z

(M2)±1
j )

M2∏
i=1

Γe((pq)
M2−2

2 ct
2−M2

2 y−1
1 z

(M2)±1
i )

×
M2∏
i=1

Γe((pq)
M2−2M1

2 ct
2M1−M2

2 y1z
(M2)±1
i )

M2∏
i=1

4∏
a=1

Γe((pq)
3+M1−2M2

4 c− 1
2 t

2M2−2−M1
4 xaz

(M2)±1
i ) =

= Γe(pqt−1)M2−1
M2−1∏
i<j

Γe(pqt−1z
(M2−1)±1
i z

(M2−1)±1
j )

4∏
a<b

Γe((pq)
3+M1−2M2

2 c−1t
2M2−2−M1

2 xaxb)

×Γe((pq)M2−M1−1c2t1+M1−M2)
4∏
a=1

Γe((pq)
M1−1

4 c
1
2 t

2−M1
4 y−1

1 xa)
4∏
a=1

Γe((pq)
3−3M1

4 c
1
2 t

3M1−2
4 y1xa)

×
M2−1∏
i=1

Γe((pq)
M2−1

2 ct
1−M2

2 y−1
1 z

(M2−1)±1
i )

M2−1∏
i=1

Γe((pq)
M2−2M1+1

2 ct
2M1−M2−1

2 y1z
(M2−1)±1
i )

×
M2−1∏
i=1

4∏
a=1

Γe(pq)
5+M1−2M2

4 c− 1
2 t

2M2−4−M1
4 xaz

(M2−1)±1
i ) . (A.5)

Collecting all the remaining pieces we finally obtain the following expression for the
index

Ĩ(2)
gauge = Γe((pq)M1t−M1)Γe((pq)2c−2t−1)Γe((pq)M2−M1−1c2tM1−M2)Γe((pq)

M2
2 t−

M2
2 y−1

1 y±1
2 )

×Γe((pq)
2+M2−2M1

2 t
2M1−M2−2

2 y1y
±1
2 )

4∏
a<b

Γe((pq)
3+M1−2M2

2 c−1t
2M2−2−M1

2 xaxb)

×Γe((pq)M2−M1−1c2t1+M2−M2)
4∏
a=1

Γe((pq)
M1−1

4 c
1
2 t

2−M1
4 y−1

1 xa)
4∏
a=1

Γe((pq)
3−3M1

4 c
1
2 t

3M1−2
4 y1xa)

×Γe(pqt−1)M1+M2−2
∮
d~z(M2−1)d~z(M2−1)

M1−1∏
i<j

Γe(pqt−1z
(M1−1)±1
i z

(M1−1)±1
j )

×
M2−1∏
i<j

Γe(pqt−1z
(M2−1)±1
i z

(M2−1)±1
j )

M1−1∏
i=1

(pq
M2−2M1

2 ct
2M1−M2−1

2 ((pq) 1
2 t−

1
2 y1)±1z

(M1−1)±1
i )
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×
M1−1∏
i=1

(pq 3
2 c−1t−1y±1

2 z
(M1−1)±1
i )

M2−1∏
i=1

M1−1∏
j=1

Γe(t
1
2 z

(M2−1)±1
i z

(M1−1)±1
j )

×
M2−1∏
i=1

Γe((pq)− 1
2 ct

1
2 y±1

2 z
(M2−1)±1
i )

M2−1∏
i=1

4∏
a=1

Γe(pq)
5+M1−2M2

4 c− 1
2 t

2M2−4−M1
4 xaz

(M2−1)±1
i ) . (A.6)

Notice that if we neglect the contribution of the singlet fields, the expression above corre-
sponds to the index of the same quiver theory we started with, but with the rank of each
gauge node lowered by one unit.

At this point we can repeat the whole procedure that we just described, i.e. construct
the auxiliary quiver and apply sequentially the Intriligator-Pouliot duality to each gauge
node in it. At this stage we will reach a quiver theory which is the same we started with,
but with the rank of each gauge node lowered by two units, besides producing an additional
bunch of singlets.

Then it is easy to understand what happens if we iterate the whole procedure M1
times: we will completely confine the first gauge node, produce additional singlets and
obtain the expression

Ĩ(2)
gauge=

M1∏
i=1

Γe((pq)M1+1−iti−M1−1)
M1∏
i=1

Γe((pq)1+ic−2t−i)
M1∏
i=1

Γe((pq)M2−M1−ic2tM1−M2+i−1)

×
M1∏
i=1

Γe((pq)
M2−2M1+2i

2 t
2M1−M2−2i

2 y±1
1 y±1

2 )
M1∏
i=1

4∏
a<b

Γe((pq)
1+2i+M1−2M2

2 c−1t
2M2−M1−2i

2 xaxb)

×
M1∏
i=1

Γe((pq)M2−M1−ic2tM1−M2+i)
M1∏
i=1

4∏
a=1

Γe((pq)
4i−3M1−1

4 c
1
2 t

3M1+2−4i
4 y±1

1 xa)

×Γe(pqt−1)2M2−2M1

∮
d~zM2−M1

M2−M1∏
i=1

Γe((pq)−M1
2 ct

M1
2 y±1

2 z
(M2−M1)±1
i ) (A.7)

×
M2−M1∏
i=1

4∏
a=1

Γe((pq)
3+3M1−2M2

4 c− 1
2 t

2M2−3M1−2
4 xaz

(M2−M1)±1
i )

M2−M1∏
i<j

Γe(pqt−1z
(M2−M1)±1
i z

(M2−M1)±1
j ).

Notice that the integral over ~z(M2−M1) in the expression above corresponds to the index
of a gauge theory with USp(2M2 − 2M1) gauge group, one antisymmetric chiral and six
fundamental chirals. Then we can simply plug in the known expression for the WZ model
dual to this gauge theory (2.6) and finally obtain (again ĨWZ differs from IWZ used in (3.6)
for singlet fields)

ĨWZ(~x;~y;c, t) =
M1∏
i=1

Γe((pq)M1+1−iti−M1−1)
M1∏
i=1

Γe((pq)1+ic−2t−i)
M1∏
i=1

Γe((pq)M2−M1−ic2tM1−M2+i−1)

×
M1∏
i=1

Γe((pq)
M2−2M1+2i

2 t
2M1−M2−2i

2 y±1
1 y±1

2 )
M1∏
i=1

4∏
a<b

Γe((pq)
1+2i+M1−2M2

2 c−1t
2M2−M1−2i

2 xaxb)

×
M1∏
i=1

Γe((pq)M2−M1−ic2tM1−M2+i)
M1∏
i=1

4∏
a=1

Γe((pq)
4i−3M1−1

4 c
1
2 t

3M1+2−4i
4 y±1

1 xa)
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…

…

2N−2 2N

2 22 2

A(1) A(2) A(N−1)

Q(1 , 2) Q(N−1, N )

D(1 ) D(2) D(N )

V (1 ) V (2 ) V (N−1)

2 4

Figure 14. The quiver diagram for E[USp(2N)]. The crosses represent the singlets bj that flip the
diagonal mesons.

×
M2−M1∏
j=1

Γe((pq)jt−j)
M2−M1∏
j=1

4∏
a<b

Γe((pq)
1+3M1−2M2+2j

2 c−1t
2M2−3M1−2j

2 xaxb)

×
M2−M1∏
j=1

Γe((pq)j−1−M1c2tM1+1−j)
M2−M1∏
j=1

4∏
a=1

Γe((pq)
M1−2M2+4j−1

4 c
1
2 t

2M2−M1+2−4j
4 y±1

2 xa) . (A.8)

Simplifying the contribution of the massive fields, this reads

ĨWZ(~x; ~y; c, t) =
2∏

n=1

Mn−Mn−1∏
i=1

Γe((pq)it−i)

×
2∏

n=1

Mn−Mn−1∏
i=1

Γe((pq)M2+Mn−1−M1−Mn+i−1c2tM1+Mn−M2−Mn−1−1+n−i)

×
M1∏
i=1

Γe((pq)
M2−2M1+2i

2 t
2M1−M2−2i

2 y±1
1 y±1

2 )
M2∏
i=1

4∏
a<b

Γe
(

(pq)
1+2i+M1−2M2

2 c−1t
2M2−M1−2i

2 xaxb

)

×
2∏

n=1

4∏
a=1

Γe
(

(pq)
4i−1+2Mn−1−M1−2Mn

4 c
1
2 t

2−4i+2Mn+M1−2Mn−1
4 y±1

n xa

)
. (A.9)

Notice that the singlets in the first line reconstruct exactly the β(n)
i singlets of the electric

theory when brought on the l.h.s. Similarly, the singlets in the second line reconstruct
exactly the filipping fields γ(n)

i for the dressed diagonal mesons when brought to the l.h.s.
side. All the other singlets appearing in (A.9) are precisely the contribution to the index
of the chiral fields appearing in the WZ that we described above. Then we have proven
I(2)

gauge( ~M ; ~y, ~x; t, c) = I(2)
WZ( ~M ; ~x; ~y; c, t) as given in (3.6).

B A lightening review of E[USp(2N)]

In this appendix we review a few aspects of the E[USp(2N)] theory that are needed in
the main text. This theory was first introduced in [34], see also [4, 6, 35, 52] for other
reviews. In this paper we will use a slightly different definition for it than that originally
used in [34], which is instead the one used in [4, 6, 52].
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2N−2 2N

2 22 2

2 , t−1 2 , t−1 2 , t−1

0 , t 1/2 0 , t 1/2

0 , ct
1−N
2

2 ,c−1 t
N−3
2

0 , ct
2−N
2

2 ,c−1 t
N−4
2 2 ,c−1 t−1 /2

0 , c

2 4

Figure 15. Charges of the matter fields of E[USp(2N)] under the abelian symmetries and the
R-symmetry.

The E[USp(2N)] theory is the 4d N = 1 quiver theory whose field content is summa-
rized in figure 14. The full superpotential is

WE[USp(2N)] =
N−1∑
j=1

Trj
[
A(j)

(
Trj+1Q

(j,j+1)Q(j,j+1) − Trj−1Q
(j−1,j)Q(j−1,j)

)]

+
N−1∑
j=1

Tryj+1 Trj Trj+1
(
V (j)Q(j,j+1)D(j+1)

)
+

+
N−1∑
j=1

bj Tryj Trj
(
D(j)D(j)

)
. (B.1)

It is possible to show [34] using dualities or the superconformal index that the manifest
global symmetry

USp(2N)x ×
N∏
j=1

SU(2)yj ×U(1)t ×U(1)c (B.2)

is enhanced in the IR to

USp(2N)x ×USp(2N)y ×U(1)t ×U(1)c . (B.3)

The charges of all the chiral fields under the two U(1) symmetries as well as their trial
R-charges in our conventions are summarized in figure 15.

The gauge invariant operators of E[USp(2N)] that are important for our discussion in
the main text are the following:

• two operators, which we denote by H and C, in the traceless antisymmetric represen-
tation of USp(2N)x and USp(2N)y respectively;

• an operator Π in the bifundamental representation of USp(2N)x ×USp(2N)y;

Those transforming non-trivially under the enhanced USp(2N)y global symmetry are con-
structed by collecting several gauge invariant operators transforming properly under the
manifest ∏N

j=1 SU(2)yj and with the same charges under all the other symmetries, see [34]
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USp(2N)x USp(2N)y U(1)t U(1)c U(1)R0

H N(2N− 1)− 1 1 1 0 0
C 1 N(2N− 1)− 1 −1 0 2
Π N N 0 +1 0

Table 11. Transformation properties of some of the E[USp(2N)] operators.

for more details. The charges and representations of all these operators under the enhanced
global symmetry are given in table 11.

The supersymmetric index of E[USp(2N)] can be defined recursively as follows:

IE[USp(2N)](~x;~y; t;c) = (B.4)

= Γe
(
pq c−2t

) N∏
j=1

Γe
(
cy±1
N x±1

j

)∮
d~z(N−1)
N−1 Γe(pq/t)N−1

N−1∏
a<b

Γe(pq/tz(N−1)±1
a z

(N−1)±1
b )

×
N−1∏
a=1

∏N
j=1 Γe

(
t1/2z

(N−1)
a

±1x±1
j

)
Γe
(
t1/2cy±1

N z
(N−1)
a

±1
) IE[USp(2(N−1))]

(
z

(N−1)
1 , · · · ,z(N−1)

N−1 ;y1, · · · ,yN−1; t; t−1/2c
)
,

with the base of the iteration defined as

IE[USp(2)](x; y; c) = Γe
(
c x±1y±1

)
. (B.5)

This index coincides up to some prefactor corresponding to singlet fields with the
interpolation kernel Kc(x, y) studied in [56], where many integral identities for this function
were proven. Most of them were then interpreted in [34] as field theory properties enjoyed
by E[USp(2N)]. We will now review very quickly those results that are important for us
in the present paper.

First of all, E[USp(2N)] enjoys various IR dualities. One, called mirror duality in [6],
is actually a self-duality that acts non-trivially on the spectrum of local operators of
E[USp(2N)]. More precisely, E[USp(2N)] is dual to E[USp(2N)]∨, which is the same
theory but with the USp(2N)x and USp(2N)y symmetries exchanged and the U(1)t fugac-
ity mapped to

t→ pq

t
. (B.6)

Accordingly we have the operator map

H ↔ C∨

C ↔ H∨

Π ↔ Π∨ . (B.7)

At the level of the index we have the following identity (Theorem 3.1 of [56]):

IE[USp(2N)](~x; ~y; t, c) = IE[USp(2N)](~y; ~x; pq/t, c) . (B.8)

The reason for the name mirror duality is that in a suitable 3d limit it reduces to the
well-known self-duality of the 3d N = 4 T [SU(N)] theory under mirror symmetry [57].
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There is another duality of E[USp(2N)] called the flip-flip duality. The dual theory,
denoted by FFE[USp(2N)], is defined as E[USp(2N)] plus two sets of singlets OH and OC
flipping the two operators HFF and CFF

WFFE[USp(2N)] =WE[USp(2N)] + Trx
(
OHHFF

)
+ Try

(
OCCFF

)
. (B.9)

In this case the USp(2N)x and USp(2N)y symmetries are left unchanged, while only the
U(1)t fugacity transforms as in (B.6). The operator map is

H ↔ OH

C ↔ OC

Π ↔ ΠFF . (B.10)

At the level of the supersymmetric index we have the following identity (Proposition 3.5
of [56]):

IE[USp(2N)](~x; ~y; t; c) =
N∏
j<l

Γe
(
tx±1
j x±1

l

)
Γe
(
pqt−1y±1

j y±1
l

)
IE[USp(2N)](~x; ~y; pq/t; c) .

(B.11)
As shown in [6], this identity can be derived by iterating (2.12), meaning that the flip-flip
duality can be derived using the IP duality only. Upon reduction to 3d, we recover the
flip-flip duality of T [SU(N)] discussed in [58], which can also be derived by iteratively
applying a more fundamental duality, in this case the Aharony duality [7], as shown in [6]
(see also appendix B of [59]).

Another property of the index of E[USp(2N)] that will important for us was proven in
Theorem 2.16 of [56]. This wasn’t considered before in the physics literature and we will
need it in the next appendix to derive the index identity (5.23) for the rank stabilization
duality

IE[USp(2N)](~x;~y,tk−1v, · · · ,v; t;cd) = Γe
(
c2d2)

Γe (c2)Γe (d2)∏k
i=1

Γe(t1−ic2)
Γe(t1−ic2d2)

N∏
j=1

Γe
(
dcvx±1

j

)
Γe
(
(cv/d)x±1

i

)
×
N−k∏
a=1

Γe
(
c2v y±1

a

)
Γe
(
tkv y±1

a

) ∮ d~zN−k
N−k∏
a=1

Γe
(
(tkv/d)z±1

a

)
Γe
(
c2dv z±1

a

) IE[USp(2(N−k))](~z;~y; t;d)

×IE[USp(2N)](~x;~z,tk−1v/d, · · · ,v/d; t;c) . (B.12)

We call this identity generalized braid relation, since for k = 0 it coincides with the braid
relation appearing in Proposition 2.12 of [56]. While the braid relation was interpreted as
a field theory duality in [34] and derived by iterative application of the IP duality in [4],
we lack of both such things for the generalized braid. It would be interesting to investigate
more these field theory aspects of the generalized braid relation.

There are two other results of [56] that we are going to need (see [6, 34] for their field
theory interpretation). These are basically two evaluation formulas for the supersymmetric
index of E[USp(2N)] when some of its fugacities are properly specialized. For example,
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if we specialize one of the two sets of parameters to a geometric progression, we have
(Corollary 2.8 of [56])24

IE[USp(2N)](~x; tN−1a,tN−2a, · · · ; t;c) =
Γe(t)N

∏N
j<lΓe(tx

±1
j x±1

l )∏N−1
i=1 Γe (t−ic2)

N∏
j=1

Γe
(
acx±1

j

)
Γe
(

c
atN−1x

±1
j

)
Γe (tj) .

(B.13)
Another evaluation formula is obtained by properly specifying the fugacity c in terms of
the fugacity t (Proposition 2.10 of [56])

IE[USp(2N)](~x;~y;t;(pq/t)1/2)=Γe(t)N−1
N∏
j<l

Γe(tx±1
j x±1

l )
N∏

j,l=1
Γe
(
(pq/t)1/2x±1

j y±1
l

)
. (B.14)

C Proof of some new index identities

In this appendix we derive some new elliptic integral identities involving the supersymmet-
ric index of the E[USp(2N)] theory by starting from the results of [56] that we have just
review. Eventually, we will get the index identity (5.23) for the rank stabilization duality.

The most general identity that we will prove is the following:∮
d~zN IE[USp(2N)](~x; ~z; t; c)IE[USp(2N)](~z; ~y, tk−1v, · · · , v; t; d)×

×
N∏
i=1

Γe
(

v
d u2 z

±1
i

)
Γe
(
d vz±1

i

) Γe
(
s0z
±1
i

)
Γe
(
s1z
±1
i

)
=

= Γe
(
c2)Γe

(
d2)

Γe (c2u−2) Γe (d2u2)

k∏
i=1

Γe
(
t1−i 1

u2

)
Γe (t1−id2) Γe

s0
u

(
ti−1v

u d

)±1
Γe

s1
u

(
ti−1v

u d

)±1
×

×
N−k∏
i=1

Γe
(
v
u2 y
±1
i

)
Γe
(
tkv y±1

i

) N∏
i=1

Γe
(
c s0x

±1
i

)
Γe
(
c s1x

±1
i

)
×

×
∮

d~wN−k IE[USp(2N)]

(
~x; ~w, t

k−1v

u d
, · · · , v

u d
; t; c

u

)
IE[USp(2(N−k))](~w; ~y; t; d u)×

×
N−k∏
i=1

Γe
(
tkv
u dw

±1
i

)
Γe
(
d v
u w
±1
i

) Γe
(
s0
u
w±1
i

)
Γe
(
s1
u
w±1
i

)
, (C.1)

which holds when the following balancing condition is satisfied:

s0s1 = pq

c2 u
2 . (C.2)

Notice that this is a sort of generalization of the generalized braid relation (B.12) where
we have pairs of integrated kernel functions IE[USp(2N)], possibly of different lengths, on
both sides.

The proof of (C.1) is very simple and consists of an iterative application of the
generalized braid (B.12). The first step is to rewrite the contribution of the kernel

24This can also be understood as a special case of (3.6).
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IE[USp(2N)](~z; ~y, tk−1v, · · · , v; t; d) on the l.h.s. of (C.1) using the generalized braid rela-
tion (B.12) from right to left
∮

d~zN IE[USp(2N)](~x;~z;t;c)IE[USp(2N)](~z;~y,tk−1v,··· ,v;t;d)×

×
N∏
i=1

Γe
(

v
du2 z

±1
i

)
Γe
(
dvz±1

i

) Γe
(
s0z
±1
i

)
Γe
(
s1z
±1
i

)
=

= Γe
(
d2)

Γe(u−2)Γe(d2u2)

k∏
i=1

Γe
(
t1−i 1

u2

)
Γe(t1−id2)

N−k∏
i=1

Γe
(
v
u2 y
±1
i

)
Γe
(
tkvy±1

i

) ∮ d~zN
∮

d~wN−kIE[USp(2N)](~x;~z;t;c)

×IE[USp(2N)]

(
~z; ~w, t

k−1v

ud
,··· , v

ud
;t; 1
u

)
IE[USp(2(N−k))](~w;~y;t;du)×

×
N∏
i=1

Γe
(
s0z
±1
i

)
Γe
(
s1z
±1
i

)N−k∏
i=1

Γe
(
tkv
ud w

±1
i

)
Γe
(
dv
u w
±1
i

) . (C.3)

Now we can remove the original integral by applying the braid relation, that is the gen-
eralized braid (B.12) in the special case of k = 0. The result is precisely the claimed
identity (C.1).

In the identity (C.1) there are free parameters. We can then try to specialize some of
them and use the evaluation formulas (B.13) and (B.14) to get some simpler identity with
less parameters. The 4d rank stabilization identity (5.23) is obtained specializing the N
parameters ~x to a geometric progression and fixing the parameter d in terms of t

~x = (tN−1a, tN−2a, · · · , a), d =
(
pq

t

) 1
2
. (C.4)

First we combine (B.13) with the mirror duality (B.8) and the flip-flip duality (B.11) to
obtain

IE[USp(2N)](tN−1a, tN−2a, · · · ; ~x; t; c)

=
Γe (t)N ∏N

j<l Γe
(
t(tj−1a)±1(tl−1a)±1

)
∏N−1
i=1 Γe (t−ic2)

N∏
j=1

Γe
(
a c x±1

j

)
Γe
(

c
a tN−1x

±1
j

)
Γe (tj) . (C.5)

Using the identities (C.5) and (B.14), we can evaluate both of the kernel functions on the
l.h.s. and one of those on the r.h.s. as follows:

∮
d~zN

N∏
i=1

Γe
(
acz±1

i

)
Γe
( c

atN−1 z
±1
i

) Γe
(

v
u2

(
t
pq

) 1
2
z±1
i

)
Γe
((

pq
t

) 1
2 v z±1

i

) Γe
(
s0z

±1
i

)
Γe
(
s1z

±1
i

)
×

×
k∏
j=1

Γe
((pq

t

) 1
2 (
tj−1v

)±1
z±1
i

)N−k∏
j=1

Γe
((pq

t

) 1
2
z±1
i y±1

j

)
Γe (t)N

N∏
i<j

Γe
(
tz±1
i z±1

j

)
=
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=
k∏
i=1

Γe
(
t1−i

u2

)
Γe
(
pq
ti

) Γe

s0

u

(
ti−1v

u
(
pq
t

)1/2

)±1
Γe

s1

u

(
ti−1v

u
(
pq
t

)1/2

)±1
Γe

ac
u

(
ti−1v

u
(
pq
t

)1/2

)±1
×

×Γe

 c

uatN−1

(
ti−1v

u
(
pq
t

)1/2

)±1
 N∏
i=1

Γe
(
t1−ic2)

Γe
(
t1−i c2

u2

)Γe
(
cs0
(
ti−1a

)±1)Γe
(
cs1
(
ti−1a

)±1)×
×
N−k∏
i=1

Γe
(
v
u2 y

±1
i

)
Γe
(
tkv y±1

i

) ∮ d~wN−kIE[USp(2(N−k))]

(
~w;~y; t;

(pq
t

) 1
2
u

)
(C.6)

×Γe
(
tu−2)×N−k∏

i=1
Γe
(ac
u
w±1
i

)
Γe
( c

atN−1u
w±1
i

) Γe
(

tkv

u( pqt )1/2w
±1
i

)
Γe
(

( pqt )1/2
v

u w±1
i

)Γe
(s0

u
w±1
i

)
Γe
(s1

u
w±1
i

)
.

Now we redifine the parameters (a, c, v, u, s0, s1) in the following way:



x1 = a c

x2 = c
a tN−1

x3 = v
u2

(
t
pq

)1/2

x4 = (pq)1/2t1/2−kv−1

x5 = s0

x6 = s1

(C.7)

Notice that the balancing condition (C.2) becomes

tN+k−2
6∏

a=1
xa = pq . (C.8)

The system (C.7) can be inverted to get



a = t
1−N

2
√

x1
x2

c = t
N−1

2
√
x1x2

v = (pq)1/2t1/2−kx−1
4

u = t
1−k

2√
x3x4

s0 = x5

s1 = x6

(C.9)

With this redefinition of the parameters and taking into account (C.8), we can rewrite (C.6)
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as (also redefine k → N − k to compare with section 5)

∮
d~z N

N∏
i=1

6∏
a=1

Γe
(
xaz
±1
i

) k∏
j=1

Γe
(
(pq)1/2 t−1/2z±1

i y±1
j

)
Γe (t)N

N∏
i<j

Γe
(
tz±1
i z±1

j

)
=

=
N−k∏
j=1

Γe
(
tj
) 6∏
a<b

Γe
(
tj−1xaxb

) N∏
j=N−k+1

∏
a<b=1,2,5,6

Γe
(
tj−1xaxb

)
×

×Γe
(
tN−kx3x4

) k∏
j=1

Γe
(
(pq)1/2t−1/2x3y

±1
j

)
Γe
(
(pq)1/2t−1/2x4y

±1
j

)
×

×
∮

d~w kIE[USp(2k)]

(
~w; ~y; t;

(
pq

tN−k

)1/2 1
√
x3x4

)
k∏
i=1

Γe
(
t
N−k−1

2 x1
√
x3x4w

±1
i

)
×

×Γe
(
t
N−k−1

2 x2
√
x3x4w

±1
i

)
Γe
(
t
N−k−1

2 x5
√
x3x4w

±1
i

)
Γe
(
t
N−k−1

2 x6
√
x3x4w

±1
i

)
×

×Γe
(
t
N−k+1

2

(
x3
x4

)±1/2
w±1
i

)
, (C.10)

with balancing condition

t2N−k−2
6∏

a=1
xa = pq . (C.11)

This identity is already the one for the rank stabilization and it is written in a
parametrization of the fugacities wuch that for k = 0 we precisely recover (2.6). Nev-
ertheless, since in the dual theory the SU(6)x symmetry is enhanced in the IR while in the
UV only an SU(4)v × SU(2)b × U(1)s subgroup is visible, it is useful to write the r.h.s. in
terms of different fugacities so to make the UV symmetry explicitly manifest

s = (pq)1/12t−
2N−k−2

12 (x3x4)−1/4

b = (x3/x4)−1/2

va =
(
t2N−k−2

pq

)1/4
(x3x4)1/4 xa a = 1, 2, 5, 6

(C.12)

Notice that the balancing condition (C.11) translates into the SU(4)v condition∏
a=1,2,5,6 va = 1. Moreover, by replacing redefinition on the r.h.s. of (C.10) we can see

that the fugacity b indeed appears as an SU(2)b fugacity

∮
d~zN Γe(t)N

N∏
i<j

Γe(tz±1
i z±1

j )
N∏
i=1

6∏
a=1

Γe
(
xaz
±1
i

) k∏
j=1

Γe
(
(pq)1/2 t−1/2z±1

i y±1
j

)
=

= Γe
(
(pq)

1
3 t

N−2k+2
3 s−4

) N∏
i=1

∏
a<b=1,2,5,6

Γe
(
(pq)1/3t

3i+k−2N−1
3 s2vavb

)
×

×
N−k∏
j=1

Γe
(
tj
) ∏
a=1,2,5,6

Γe
(
(pq)1/3t

3j+k−2N−1
3 s−1b±1va

)
×

×Γe
(
(pq)1/3t

3j+k−2N−1
3 s−4

) k∏
j=1

Γe
(
(pq)2/3t

−1+k−2N
6 s−2b±1y±1

j

)
×
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×
∮

d~wk IE[USp(2k)]
(
~w; ~y; t; (pq)1/3t

2k−N−2
6 s2

)
×

×Γe
(
t
N−k+1

2 b±1w±1
i

) k∏
i=1

∏
a=1,2,5,6

Γe
(
(pq)1/3t

1−N−k
6 s−1vaw

±1
i

)
. (C.13)

Up to the reparametrization: v1,2,5,6 → v1,2,3,4 and xa → (pq) 1
6 t−

2N−k−2
6 xa, this is ex-

actly (5.23).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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