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We present results of experiments on stratified shear flow in an inclined duct. The duct connects
two reservoirs of fluid with different densities, and contains a counterflow with a dense layer
flowing beneath a less-dense layer moving in the opposite direction. We identify four flow states
in this experiment, depending on the fractional density differences, characterised by the dimen-
sionless Atwood number, and the angle of inclination θ, which is defined to be positive (negative)
when the along-duct component of gravity reinforces (opposes) the buoyancy-induced pressure
differences across the ends of the duct. For sufficiently negative angles and small fractional den-
sity differences the flow is observed to be laminar (L state) with an undisturbed density interface
separating the two layers. For positive angles and/or high fractional density differences three
other states are observed. For small angles of inclination the flow is wave-dominated and ex-
hibits Holmboe modes (H state) on the interface with characteristic cusp-like wave breaking. At
the highest positive angles and density differences there is a turbulent (T state) high-dissipation
interfacial region typically containing Kelvin-Helmholtz (KH)-like structures sheared in the di-
rection of the mean shear and connecting both layers. For intermediate angles and density differ-
ences an intermittent state (I state) is found, which exhibits a rich range of spatio-temporal be-
haviour and an interfacial region that contains features of KH-like structures and of the other two
lower-dissipation states: thin interfaces and Holmboe-like structures. We map the state diagram
of these flows in the Atwood number – θ plane and examine the force balances that determine
each of these states. We find that the L and H states are hydraulically controlled at the ends of the
duct and the flow is determined by the pressure difference associated with the density difference
between the reservoirs. As the inclination increases, the along-slope component of the buoyancy
force becomes more significant and the I and T states are associated with increasing dissipation
within the duct. We replot the state-space in the Grashof number – θ phase plane and find the
transition to the T-state is governed by a critical Grashof number. We find that the corresponding
buoyancy Reynolds number of the transition to the T-state is of order 100, and that this state
is also found to be hydraulically controlled at the ends of the duct. In this state the dissipation
balances the force associated with the along-slope component of buoyancy and the counterflow
has a critical composite Froude number.
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1. Introduction
Stratified turbulence is a fundamental problem in fluid mechanics with important implications

across a wide diversity of applications from mixing in the oceans and atmosphere down to scales
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associated with industrial processes. The interplay of buoyancy forces and turbulence is fasci-
nating, and has been the subject of experimental, computational and theoretical studies for over
a century. Nevertheless, our understanding of the dynamical processes involved is far from com-
plete, and this lack of understanding is reflected, for example, in our inability to predict mixing
rates from the mean velocity and density fields.

Stratified shear flow is a canonical flow that can range from laminar to turbulent, and this
paper describes novel experiments on stratified counterflow in an inclined square duct. The duct
is connected to large reservoirs at each end, containing fluids with different densities. In the case
of a horizontal duct the pressure differences at the two ends of the duct drives a counterflow with
the dense fluid moving along the bottom of the duct and the light fluid moving along the top.
This configuration has been studied by Lawrence and his group (Lawrence et al. 1991; Gu &
Lawrence 2005; Tedford et al. 2009), particularly in the context of the generation of Holmboe
instabilities.

Stratified shear flow generated in a closed tilted channel has been studied in a series of in-
fluential papers by Thorpe (1968, 1971, 1973). Thorpe’s original experiment was inspired by a
study of two immiscible fluids, water and carbon-bisulphide, in a tilted tube by Reynolds (1883).
In Thorpe’s experiments a miscible two-layer (or continuously stratified) fluid initially at rest
in a horizontal channel is set into motion by tilting the channel. The component of gravity
acting along the length of the channel produces a constant acceleration of the dense fluid to-
wards the lower end of the channel and the light fluid towards the upper end. These beautiful
experiments showed that once a critical velocity difference between the accelerating layers was
reached, Kelvin-Helmholtz instabilities appeared and transferred mass and momentum between
the counter-flowing layers.

The present experiment can be considered as a continuous version of the transient tilted chan-
nel experiment. Fluid entering from the dense reservoir is accelerated (or decelerated) by the
component of gravity along the length of the duct, while the light fluid entering from the other
reservoir is accelerated (or decelerated) in the other direction. Similar buoyancy-driven coun-
terflow experiments in a sloping duct joining two reservoirs were studied by Kiel (1991). He
considered ducts of square cross section but with a maximum length to height aspect ratio of 8,
significantly smaller than the ducts used in this present study. Most of the measurements were at
angles considerably larger than those discussed in this paper although he presents shadowgraph
and dye images for inclination angles θ = 0 and 2.5◦. These images are consistent with those we
discuss below. Tedford et al. (2011) carried out experiments where they temporarily tilted a duct
containing a two-layer exchange flow, and measured the acceleration of the flow and the subse-
quent structure of the interface when the duct was returned to the horizontal. They also observed
some features consistent with the experiments reported here.

We observe a wide range of flow phenomena depending on the angle of inclination and the
density difference between the two reservoirs. The goal of this paper is to document the state
diagram of these flows, and to determine the dynamical balances in each of the observed states.
The paper is organised as follows. In § 2, we describe the experiments and present examples
of the flow states. In § 3 we present the regime diagram for the flows and some quantitative
measurements. In § 4 we discuss the dynamical balances associated with the flow states, and the
conclusions are given in § 5.

2. Experiments
The experiments were conducted in a L = 3m long duct with a square cross section H =

0.1m in height. The duct passed through a vertical barrier, which divided a large tank measuring
9.6m long by 0.25m wide by 0.5m deep into two halves. These two halves were filled with salt
solutions of different densities ρ and ρ + ∆ρ. The barrier had a central portion made of flexible
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FIGURE 1. A schematic of the experimental set-up (not to scale), shown in the configuration with
∆ρ > 0, θ > 0 so that the flow in each layer is accelerated by the along-slope component of gravity.

rubber sheet which allowed the duct to be inclined at an angle θ to the horizontal. We denote
θ > 0 when the upper end of the duct is in the denser reservoir (∆ρ > 0): in that case the
dense fluid is accelerated down the duct and the lighter fluid is accelerated up the duct, by the
component of gravity along the length of the duct. When θ < 0 the counterflow is decelerated
by this component of gravity (figure 1).

Initially, the duct was open to the denser side and capped on the other end, and the fluid was at
rest. The depths of the water in the two reservoirs were adjusted so that the hydrostatic pressures
at the depth of the mid plane of the duct were equal. This ensured that the net barotropic flow
through the duct was minimised. In practice there was some initial net barotopic flow but the
subsequent change in reservoir levels led to a flow with no net volume flux over the majority of
the experiment. As discussed in § 3.2, experiments in which measurements of the mass flux of
salt indicated a significant barotopic flow were not used to estimate the net exchange between
the two reservoirs.

Each experiment was started by removing the cap from the end of the duct and was terminated
before the inflow into the duct was affected by the fluid that had previously entered the reservoirs
through the duct. Typically, it was possible to run an experiment for several minutes before any
observed change in the inflow conditions occurred, which was much longer than the typical
transit time (30s) through the duct. With each run the density difference between the reservoirs
decreased due to the transfer of salt through the duct. After an experiment the end cap was
replaced to seal the duct and both sides of the tank were completely mixed using submersible
pumps, and the densities measured to obtain an estimate of the time-averaged mass flux through
the duct. The density was measured by withdrawing samples and measuring them in an Anton
Paar density meter, which gave values accurate to 10−2 kg m−3.

A total of 255 experiments were run, including 85 with half the duct (L = 1.5m), with density
differences from 2 6 ∆ρ 6 200 kg m−3, i.e. 1000 . ρ . 1200 kg m−3. Over this range of
densities the average kinematic viscosity ν of the salt solutions varied between 1.01–1.19.10−6

m2 s−1 and the molecular diffusivity κ of salt in water varied between 1.26–1.55.10−9 m2

s−1. The Schmidt number Sc = ν/κ ∼ 103 is large and so the effects of molecular diffusion
of salt are negligible. The geometry of the experiment constrained the inclination to |θ| 6 4◦

and experiments were run over the range −1◦ 6 θ 6 4◦. Qualitative observations of the flow
were made with shadowgraph. A section of the duct, measuring 0.3m in length and located
approximately 1m from one end of the duct, was illuminated by parallel light and the image
projected onto a translucent screen. The flow as also observed at other locations and this section
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FIGURE 2. Shadowgraph images over 1m of the duct including the lower end. The effect of the entry
diminishes rapidly and a consistent dynamic interface is established. The flow states are (a) T state with
A = 3.9×10−3, θ = 3.5◦; (b) I state withA = 8.3×10−3, θ = 1.5◦; and (c) I state withA = 6.7×10−3,
θ = 1.5◦.

was found to be representative of the flow away from the entry regions which extended about
0.2m into the duct from each end.

3. Results
3.1. Qualitative Results

On removing the end cap a gravity current of light fluid developed. After the nose of the gravity
current exited the duct, the flow accelerated and established a counterflow with the dense fluid
moving towards the light reservoir underneath the light fluid moving in the opposite direction.
Figure 2 shows three shadowgraph images of the flow over a length 1m of the duct including
one end. In one case the end is abrupt, while in the other two cases smooth entry and exit shapes
are added to the upper and lower boundaries. We see no effects of adding these smooth entry
and exit regions compared with the abrupt end shown in figure 2a. Furthermore, we observe that
the flow is rapidly established and the effects of the entry and exits of the two layers extends
less than two duct heights. Consequently, the observation window referred to in § 2 provides
images representative of the flow along the majority of the duct. These images also show that the
exiting lower layer accelerates and decreases in depth near the end of the duct before flowing into
the reservoir. Although we do not have velocity measurements to confirm this, the exiting layer
appears to become supercritical as it leaves the duct. We discuss further aspects of the hydraulic
nature of the flow in § 4.

We observed the four different flow states (L, H, I and T) shown in figure 3. For θ < 0 and low
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FIGURE 3. Shadowgraph images of the four primary flow states. Each panel image is taken approxi-
mately 1m from the right hand end of the duct, and shows the entire depth (10cm) and has horizon-
tal extent 22cm. The angle and Atwood number for each case are L : θ = −1◦, A = 6.7 × 10−2,
H : θ = 0◦, A = 2.0 × 10−2, I : θ = 1.5◦, A = 4.6 × 10−3, and T : θ = 1.5◦, A = 4.6 × 10−3.
The camera is aligned with the duct. The structures visible near the lower boundary are a combination
of optical reflections of the interfacial structures which do not affect the flow dynamics and interactions
between eddies originating at the interface and the wall.

values of ∆ρ the flow is in the laminar L state (figure 3L) in which the interface is undisturbed,
with no vertical motion greater than the thickness of the interface (2 mm) and with no apparent
mixing between the two layers. It is possible for sufficiently high Reynolds numbers that the
flow in the individual layers is turbulent, although at the velocities achieved in these experiments
there is little evidence of this. However, we define the state in terms of the deformations of the
interface as described above. As θ and/or ∆ρ increases the flow exhibits the other three flow
states shown in figure 3: H, I or T. We will now describe each flow state in turn.

The H state, figure 3H, shows the characteristic cusped structure observed in previous experi-
ments in horizontal channels (Lawrence et al. 1991; Tedford et al. 2009). This state was observed
for small angles (θ 6 1◦) and for smaller values of ∆ρ, and exhibited cusped waves travelling
in opposite directions on the two sides of the interface, with, in most cases, intermittent breaking
at the cusps. This structure is characteristic of the Holmboe mode of interfacial instability when
the thickness of the interfacial shear is larger than the extent of the density gradient (Holmboe
1962; Lawrence et al. 1991; Caulfield 1994). At the largest values of θ and ∆ρ, the T state flow
was characterised by an interfacial region in which large amplitude KH-like structures were seen
(figure 3T). These structures were tilted in the direction of the mean shear and appeared to stretch
from one layer to the other, like KH billows that have undergone a secondary three-dimensional
instability, providing a direct connection between the two layers and provide the possibility of
significant mass and momentum fluxes between the two layers in this state. In each of the L, H
and T states the flow remains statistically steady.

The fourth I state, however, was not steady but instead exhibited strong spatio-temporal inter-
mittency (figures 3I and 4). This state occurred as an intermediate state between the H and T, and
contained a range of different flows with characteristics of both. The interfacial region contained
a mixture of thin interfaces, cusp-like modes, sheared KH-like modes and small scale structures
all in varying amounts which changed with position along the duct and with time during an ex-
periment. Transitions were observed from an L-like or H-like state to a more T-like state and
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FIGURE 4. Different flows observed at different times t in I state
(
θ = 1.5◦, A = 4.6× 10−3

)
: (a)

quasi-laminar flow with breaking internal waves and other layered structures (t = 70 s), (b) KH-like turbu-
lence (t = 90 s), (c) multi-layer quasi-laminar flow (t = 120 s), and (d) multi-layer turbulence (t = 150
s). Each panel is 10cm high by 22cm long.

back again, and different states were observed along the duct at the same time. This rich zoo of
flow structures can be seen in the movie in the supplementary material.

3.2. Quantitative Results

The flow states for the full-length duct are plotted in the A – θ phase plane in figure 5, where
A ≡ ∆ρ/(2ρ + ∆ρ) is the Atwood number, a nondimensional measure of the initial density
difference between the reservoirs (Charru 2011). These states were determined from visualisa-
tions and are somewhat subjective. Consequently, there is imprecision in the exact locations of
the transitions from one state to another. As described above there are transitions from the L,
through the H, I and T states as A and θ increase. The L state is restricted to θ < 0, which corre-
sponds to the along-duct component of gravity retarding the flow driven by the buoyancy-induced
pressure differences across the ends of the duct. For θ = −1◦, this retarding force is sufficient to
laminarise the flow even for quite significant density differences A ∼ 0.1. As θ increases the H
state sets in for decreasing A and was present even for the smallest A ∼ 10−3 for θ > −0.25◦.

In many, but not all experiments, the net mass flux averaged over an experiment was deter-
mined by measuring, as described in § 2, the change in the mean densities of the two reservoirs
between the start and the end of an experiment. Assuming that there are constant, equal (and
opposite) volume fluxes Q along the duct over the duration τ of an experiment, conservation of
mass for each reservoir implies that

Qτ = V
∆AL

A
= −V ∆AR

A
, (3.1)

where ∆A is the change in the reservoir Atwood number over the time τ and the subscript
L (R) implies the left (right) reservoir both of which have (equal) volume V . Thus from the
independent reservoir density measurements we can estimate the volume flux Q and from this,
in turn, determine whether there has been any significant barotropic flow during the initial phase
of the experiment. On average the two measures of Q differed by less than 10%, showing that
barotropic effects were small. Experiments, where the difference in the two values of Q differed
by more than 10%, were rejected from the analysis of the mass exchange throughout the duct.
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FIGURE 5. State space of the observed flows as a function of the duct inclination angle θ and the Atwood
number A. These data are for the full 3m duct.

From these measurements we can determine time-averaged ‘mass flux’ layer velocities U =
2Q/S, where S is the cross sectional area of the duct. In the absence of mixing between the lay-
ers this velocity is a measure of the layer-average velocity. In the presence of significant mixing
between the two layers the salt flux will be reduced while the volume flux will not. Hence the
layer-average velocity will be larger, and the mass-flux velocity provides a lower bound to the
actual layer-average velocities. This average ‘mass-flux’ velocity U is plotted against

√
gAH

in figure 6. The data for each individual duct inclination θ fall on straight lines indicating that
the speeds scale with

√
gAH . Note that these results scale over the full range of Atwood num-

bers, including the highest values A ∼ 0.1, (
√
gAH ∼ 0.30 m s−2) which correspond to the

largest density differences (∆ρ ∼ 200 kg m−3), at which non-Boussinesq effects are largest.
This suggests, as our visual observations of the phase states (figure 5) also show, that there are
no significant qualitative or quantitative non-Boussinesq effects.

The dependence of velocity on the duct inclination is more clearly shown by plotting the layer
Froude numbers F ≡ U/

√
gAH as a function of θ (figure 7). These data include measurements

from both the full duct and the half duct and cover the full range of flow states. At each angle
the spread of values reflects the differences between flow states and the errors associated with
the mass balances in the two reservoirs. There is, however, no apparent correlation with Atwood
number and the average values (indicated by the white stars and diamonds for the full and half
ducts, respectively) are consistent with one another, indicating little dependence on the duct as-
pect ratio. Further, these average values increase with increasing θ and then appear to asymptote
to a value F = 0.61± 0.05 for θ > 1◦.
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FIGURE 6. The averaged mass-flux velocity U calculated from the change in densities of the two reservoirs
over the duration of an experiment plotted against

√
gAH . The lines join experiments with the same incli-

nation, indicated by the grey scale. Closed circles are for the full duct and open squares indicate the half
duct. The error bar is an average over all experiments and is a result of the discrepancies between the mass
balances for the two reservoirs.

4. Force balances
The flow states are determined by the density difference between the ends of the duct, the duct

aspect ratioH/L and the angle of inclination θ. Assuming that the flow is steady and Boussinesq
(an assumption supported by our measurements and observations described above), the along-
duct momentum equation is

u
∂u

∂x
= − 1

ρ0

∂p

∂x
+ 2gA sin θ + ε (4.1)

where u is the along-duct velocity, p is the pressure, g is the gravitational acceleration and ε rep-
resents dissipative terms. Here we consider the dissipation term ε to represent different physical
processes in the different states. In the L state it represents viscous friction on the duct walls and
across the interface, while in the other states it is associated with the different flow structures e.g.
Holmboe modes and turbulence.

As noted above the L state is only observed when θ < 0 and the term gA sin θ provides a
deceleration to the flow. As shown in figure 2, the flow appears to be hydraulically controlled at
both ends of the duct and there is no evidence of hydraulic jumps within the duct itself. If the
connection between the reservoirs had been a slowly varying contraction there would be a single
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FIGURE 7. Froude numbers for each layer calculated from the mass flux velocities plotted against θ. The
white stars and diamonds are the average for each value of θ for the full and half ducts respectively. The
dotted line is F = 1/

√
2. Closed circles are for the full duct and open squares indicate the half duct.

control point at which the composite Froude number G satisfies

G ≡
√
F 2
1 + F 2

2 = 1, (4.2)

where Fi = Ui/
√

2gAHi, i = 1, 2 are the Froude numbers for the two layers (Armi 1986;
Dalziel 1991). Thus for equal and opposite flows this implies that the Froude number for each
layer is F = 1/

√
2. In the case of the duct with its abrupt entrances and exits, the control splits

into two, one at each end of the duct, and there is a transition from critical to supercritical flow in
the exiting layer (figure 2). Between these two controls the flow in the duct remains critical and,
in the absence of dissipation, is governed by equation (4.2) (Tedford et al. 2009). However, as
shown by figures 3 and 5 the flow is in either the H or I states with non-zero dissipation associated
with Holmboe wave breaking or other turbulent mechanics. Consequently, the measured values
at θ = 0◦ of F = 0.48 ± 0.05 are less than the dissipationless limit (0.71) but consistent with
hydraulic theory including dissipation, and also consistent with horizontal duct measurements of
Gu & Lawrence (2005) who found in a shorter duct, with a larger cross-section and an upper free
surface, a value of F = 0.55.

In the horizontal case the flow is driven by the pressure gradient associated with the density
difference at the ends of the duct. When the pressure is the same at each end at the height of
the mid plane of the duct and is hydrostatic in the reservoirs, the average pressure difference
between the ends of the duct for both the upper and the lower layer is ρ0gA/2. Hence the along-
slope component of gravity becomes comparable with this horizontal pressure gradient when
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FIGURE 8. The scaled state-space for θ > 0: Grashof number gAL sin θH2/ν2 vs θ. Data include both
the full length (3m) duct (closed circles) and the half-length (1.5m) duct (open squares). The transition to
the T state scales independent of the duct length L.

gAH

2L
∼ 2gA sin θ (4.3)

Thus the along-slope acceleration becomes a significant driving factor when sin θ ∼ H/4L =
1/120(1/60) or θ > 0.5◦(1◦) for the full (half) duct. This is consistent with the observed increase
in F over the range to about θ = 1◦ (figure 7). For larger values of θ the pressure difference
associated with the difference in height of the two ends of the duct is larger than that associated
with the density difference in the reservoirs.

At these larger values of θ the predominant force balance is now between the along-slope
component of buoyancy and dissipation. In the absence of dissipation this gravitational force
produces a constant acceleration on each layer (Thorpe 1968) implying that U ∼ 2gAt sin θ.
Over the time it takes for fluid to transit the duct t ∼ L/U this acceleration would produce a
layer kinetic energy (per unit mass) U2 ∼ gAL sin θ. The observations (figure 7) show on the
other hand thatU2 ∼ gAH and so the excess kinetic energyU2 = gA sin θ(L−H) ≈ gAL sin θ,
since H � L.

Consequently, for θ & 1◦, in order to maintain the observed velocities, the flow must dissipate
this excess kinetic energy and we may postulate this occurs through a transition to a highly
dissipative turbulent state. Thus we expect the transition to scale on a critical value of gAL sin θ,
and we can express this transition non-dimensionally in terms of a critical Grashof number

Gr ≡ gAL sin θH2

ν2
. (4.4)
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Figure 8 shows data for the full-length (3m) duct and experiments with a half-length (1.5m)
duct for 0.125◦ 6 θ 6 4◦. In the evaluation of Gr we have taken the value of the kinematic
viscosity ν to be the average of that of the two reservoir salt solutions. We observe that the
transition to the T state occurs around Gr ∼ 4 × 107, for both the full-length and the half-
length ducts. There is some uncertainty about the exact numerical value since the transition to
the T state was made from qualitative observations. The hatched region in figure 8 is intended to
reflect this uncertainty. The intermittent I states are characterized by spatio-temporal fluctuations
in the turbulent intensity and regions with little dissipation. Image snapshots over time, such as
figure 4, show such temporal fluctuations. For the T state, highly dissipative regions consistently
develop and persist with no significant change of form throughout an experiment (figure 3(d)).
Furthermore, the T states show structures spanning the interface from one side to the other and
are characterised by a predominance of small scales, consistent with high levels of dissipation.

5. Conclusions
We present new experimental observations of the flow in an inclined duct separating two reser-

voirs at different densities. We observe four different flow states transitioning from a laminar L
state at negative angles when the along-slope component of gravity decelerates the flow, through
a wave-dominated H state, an intermittent I state, and finally a turbulent T state as the angle and
the density difference increase. We show that the transitions between these states are a result of
changing dynamics from a hydraulically controlled low dissipation state for a horizontal duct, to
a high-dissipation state at large positive angles and density differences.

As mentioned in § 1, where our range of angles overlap, Kiel (1991) observed similar flows
to those reported here. However, he did not provide the values of the density differences so
it is not possible to make direct comparisons with our state diagram (figure 5), and he writes
that the ‘shape of the density profiles was independent of g′(= 2gA in our notation)’. Kiel
(1991) identified four flow regimes, one labeled ‘stable counterflow’ which corresponds to the
L-state, and three other regimes that we would identify as T-states, and apart from observations
at θ = 0◦, correspond to larger inclination angles. These latter three regimes are characterised
by the increasing magnitude of the thickness of the interface region compared to the duct height.
Tedford et al. (2011) note that Holmboe modes are observed when their duct is horizontal, and
when it is tilted (θ > 0), the ‘shear increases and Kelvin-Helmholtz instabilities are generated.
The instabilities break down the sharp interface between the two-layers resulting in a broad
region of mixing. Subsequent leveling of the tube results in a three-layer exchange flow.’ Again
these observations are consistent with ours.

The velocities, estimated by mass-flux balances, at a given angle scale on the driving pressure
difference

√
gAH and the resulting layer Froude numbers F are functions only of θ, with F

increasing with increasing angle up to θ ≈ 1◦ and then remaining approximately constant with
further increase in θ. We note that the asymptotic value of F ∼ 0.6 at large θ is consistent with
the flow remaining hydraulically controlled at the ends of the duct. The along-slope gravitational
acceleration is balanced by increased dissipation in the T state and the resulting layer velocities
are then given approximately by the two-layer hydraulic theory, in which the acceleration and
the dissipation balance.

We found that the transition from the I state to the T state occurred around a critical value of
the Grashof number Gr ∼ 4× 107. In terms of the Reynolds number Re =

√
Gr, this implies a

critical value Re ∼ 6, 000, which is consistent with the ‘mixing transition’ value of ∼104 iden-
tified by Dimotakis (2005). Additionally, we note that recent scaling (Brethouwer et al. 2007;
Bartello & Tobias 2013) has suggested that the buoyancy Reynolds number, based on local hor-
izontal scales l and vertical scales h, and given by R ≡ Re h2/l2, is a more relevant parameter
when the flow is stratified since vertical scales are suppressed compared with horizontal scales.
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It is difficult ascertain these scales from our current measurements, but from the shadowgraph
images of the T state (figure 3(d)) it appears that the structures in the interface have aspect ra-
tios h/l ∼ 0.1 (as an order of magnitude estimate) in which case the critical value of R ∼
100. Bartello & Tobias (2013) show from numerical calculations that R > O(10) is required
for viscous effects to be unimportant in strongly stratified flows. In contrast to many previous
experiments on stratified turbulence such as those examining decaying turbulence, the present
experiment allows these high values of the buoyancy Reynolds number to be achieved and main-
tained.
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