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Development of human functional and structural brain
networks in adolescence and its relevance to psychiatric

disorders

Anna-Lena Dorfschmidt

The human brain undergoes various phases of active development during the lifes-
pan. While these neurodevelopmental processes are fundamental to the emergence of new
cognitive and social capacities, they also coincide with a period of increased risk of neu-
ropsychiatric disorders, which generally have their highest rates of clinical incidence in the
first two decades. Since many neuropsychiatric disorders display sex differences in both
prevalence or clinical presentation, this raises the question of whether there are underlying
sex differences in processes of adolescent brain development. In this thesis, functional and
structural magnetic resonance imaging (MRI) is used to map normative brain development, in
adolescence and later life, which might differentially predispose men and women to different
levels of risk for adolescent and adult mental illness.

First, Chapter 1 reviews relevant research on understanding developmental changes in
the brain during adolescence, focusing on prior studies of normative sexual differentiation of
neurodevelopmental trajectories, and vulnerabilities associated with developmental changes.

Chapter 2 investigates whether there are sex differences in normative adolescent develop-
ment of functional connectivity networks, using an accelerated longitudinal cohort of healthy
adolescents aged 14-25 years (N=298), comprising 2 or 3 repeated scans on most participants.
Sexually divergent development of functional connectivity was identified in the default mode
network, limbic cortex, and subcortical structures. In these regions, females were shown
to have a more “disruptive” pattern of development, whereby weak functional connectivity
at age 14 became stronger during adolescence, specifically in a cortico-subcortical system
including many areas of the default mode network. Using open data on whole genome tran-
scription at multiple sites in adult post mortem brains (provided by the Allen Brain Institute),
this fMRI-derived map of sexually divergent brain network development was found to be
spatially co-located with brain regions where transcription was enriched for genes on the X
chromosome and neurodevelopmentally relevant genes.

Chapter 3 starts from the hypothesis that the known sex difference in the prevalence of
major depressive disorder (MDD), with increased rates of diagnosis in adolescent females
compared to males, could be the psychological or clinical representation of underlying sex
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differences in adolescent brain network development. To test this hypothesis, the sexually
differentiated fMRI network identified in the previous chapter was further contextualized.
The fMRI-derived map of sexually divergent brain network development was found to be co-
located with prior loci of reward-related brain activation; a map of functional dysconnectivity
in major depressive disorder derived from a prior, independent case-control study of adult
MDD; and an adult brain gene transcriptional profile enriched for MDD risk genes, as defined
by prior genome-wide association studies of MDD. These results collectively suggested
that normative sexual divergence in adolescent development of a cortico-subcortical brain
functional network was psychologically, anatomically and genetically relevant to depression.

Chapter 4 reviews literature on similarity-based structural brain networks. Subsequently,
Chapter 5 investigates adolescent changes in structural brain network development using
morphometric similarity networks derived from the same accelerated longitudinal cohort of
healthy adolescents previously used for analysis of functional network development. Mor-
phometric similarity was found to increase during adolescence in insula and limbic regions
and to decrease elsewhere in the brain. This profile of decreasing morphometric similarity, or
increasing dissimilarity, was associated with the well-known adolescent process of cortical
shrinkage, i.e., reduced macro-structural measures of cortical thickness, and with increased
magnetization transfer, a micro-structural measure of intra-cortical myelination. Regional
nodes of the morphometric similarity networks that became more dissimilar, putatively
more differentiated in terms of their cyto- and myelo-architectonics during adolescence,
were also found to de-couple from brain functional connectivity, suggesting that increasing
morphometric dissimilarity may reflect adolescent development of functional independence.

In an effort to move from group level to subject-specific analyses, and acknowledging
that brain development is not restricted to adolescence but is a continuous process throughout
life, in Chapter 6 a total of 41 prior studies, including a total of 90,000 structural MRI scans,
were aggregated to estimate lifespan trajectories of normative subcortical development from
180 days post conception to 100 years of age. This analysis identified novel milestones
of subcortical volume development; in particular a set of subcortical regions was defined
that reached peak grey matter volume during adolescence. Furthermore, subject-specific
deviations from normative, non-linear neurodevelopmental trajectories? were derived and
used to estimate case-control differences in subcortical volume across the lifespan in mul-
tiple neuropsychiatric disorders, demonstrating the potential clinical applications of these
normative subcortical growth charts.

In Chapter 7, these new experimental results on adolescent and life-span development
of functional and structural brain networks, and subcortical grey matter volume were sum-
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marised and drawn together, highlighting how these insights are aligned with each other and
with the existing scientific literature on brain development, sexual differentiation and risk of
psychiatric disorders.
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Chapter 1

Introduction

1.1 Brain networks in the context of maturation and disease

Over the course of the lifespan, the human brain undergoes various periods of increased
plasticity, during which it changes in both structure and function. These maturational periods
are often also a time of elevated incidence of a variety of neuropsychiatric disorders, which
are increasingly understood to arise in the context of atypical brain development (Paus
et al., 2008). One such period of neurodevelopmental activity is adolescence, a time of vast
social and cognitive development, during which many psychiatric disorders are first diag-
nosed (Kessler et al., 2005; Paus et al., 2008). Many such disorders display sex differences,
both in prevalence, as well as clinical expression. This thesis assesses maturational changes
in brain structure and function during adolescence in particular, and during the lifespan more
broadly, in relation to atypical development associated with mental health disorders. It further
explores whether observed sex differences in psychiatric disorders may be the expression
of underlying sex differences in brain maturation. A promising avenue for exploring brain
changes in structure and function comes from the field of graph theory and network science,
which has allowed researchers to derive “brain networks” from neuroimaging data and
analyse changes in their topology during development and in disease.

1.1.1 The brain as a complex network

The brain can be thought of as a network, organized across multiple spatio-temporal scales,
from genes and molecules, through microscopic neuronal and other cellular circuits, to
macroscopic brain regions and whole-brain systems or connectomes (Betzel and Bassett,
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2017; Bullmore and Sporns, 2009; Fornito et al., 2016). Networks have been used to represent
complex interactions between relative features of a system in a multitude of fields, including
psychology (Epskamp et al., 2018; Schueler et al., 2021), molecular biology (Szklarczyk
et al., 2015), and genetics (Zhang and Horvath, 2005). In general, networks consist of
multiple nodes that are connected via edges (Fig. 1.1B). Every network can be represented
as a matrix A, the adjacency matrix, which in the context of brain networks is often called
a “connectivity matrix” (Fig. 1.1A). Each of the entries, Ai, j, in the matrix describes a link
or edge between two nodes i and j (Fig. 1.1B). A network can be unweighted, or binary, in
which case each edge indicates the presence of a connection between two nodes (Fig. 1.1B);
or weighted, in which case each edge has a continuous variable that describes the strength
of connection between two nodes. As an example, in spatially embedded networks like the
brain, edges can be weighted by the physical distance between nodes, which may act as a
proxy measure of the “wiring cost” of the connnection between them (Fig. 1.1C); equally,
edges may be weighted by the strength of the co-fluctuation between two nodes’ functional
activation, providing a measure of co-activation (see below for details). Lastly, networks can
also be directed (Fig. 1.1D), meaning that edges (and their weights) have a direction, such
that Ai, j is not necessarily equal to A j,i.

Fig. 1.1 Complex networks: Introduction to networks. (A) An adjacency matrix A describes
the edge weights between a set of nodes, such that Ai, j is the edge weight between node i
and node j. (B) Networks consist of nodes which are connected to each other by edges. In
an unweighted network, the edges indicate the presence of a connection between two nodes.
(C) A network can be weighted, in which case edge weights indicate the strength of the
connection betwen two nodes. (D) In directed networks, edges are directional, such that the
edge weight Ai, j is not necessarily the same as A j,i.

1.1.2 Magnetic Resonance Imaging

So far, there is only one organism for which a brain network has been fully mapped on the
neuronal level - the nematode worm C. elegans with its 302 neurons (White et al., 1986).



1.1 Brain networks in the context of maturation and disease 3

Fully mapping the vast complexity of the human brain, consisting of about 80 billion neurons,
is currently not possible at equivalent microscopic scale, thus motivating research into
mapping whole brain networks or connectomes, resolved at the macroscopic scale of cortical
areas and subcortical nuclei, which can be resolved by non-invasive imaging techniques in
humans (and other species). Magnetic resonance imaging (MRI) is a non-invasive approach
to mapping brain structure and function that allows researchers to study complex network
organization in the brain.

Multiple imaging modalities, so-called sequences, exist to capture different aspects of
brain anatomy and function (Bernstein et al., 2004). In general, MRI images exploit the
differing magnetic properties of different tissue types and states in the brain. Put simply, the
scanner generates a large magnetic field which leads protons in the body to align with the
magnetic field . During scanning, a radio frequency pulse is applied which throws protons
out of alignment with the main magnetic field. It is possible to measure the time is takes
them to re-align with the magnetic field.

Structural MRI images are typically derived using a T1-weighted or T2-weighted se-
quence, which measure the longitudinal relaxation time of tissue following a radio frequency
pulse that aligns protons to the transverse plane (Bernstein et al., 2004). The time it takes
protons to re-align is effected by the density of fat and water in the tissue, thus the signal
strength can be exploited to differentiate between grey and white matter in the brain. Image
processing pipelines rely on this difference in contrast to segment grey from white matter,
and generate cortical surface meshes. Subsequently, pipelines derive cortical morphometric
features, including for example cortical thickness (CT) (estimated as the distance between
two corresponding points on the pial and grey/white surfaces), surface area (SA) (estimated
as the local area of a triangle, or vertex, on the surface mesh), and grey matter volume (GM)
(a combined estimate of thickness and area).

In recent years, functional MRI networks have evolved as a powerful tool to investigate
intrinsic brain activity, that is spontaneous fluctuations in brain activity independent of a
cognitive or sensory stimulus (van den Heuvel and Hulshoff Pol, 2010), in health and disease.
The blood-oxygen-level-dependent (BOLD) contrast measured by resting state functional
magnetic resonance imaging (rsfMRI) is reflective of local blood oxygenation changes
coupled to neuronal activity (Logothetis and Wandell, 2004). Commonly, the BOLD signal
is bandpass filtered and only low-frequency oscillations at between 0.01 Hz and 0.1 Hz are
retained (Achard et al., 2006; Biswal et al., 1995), since (i) network fluctuation are thought
to be maximally observed at low frequencies, thus filtering should increase statistical power;
(ii) filtering may help to reduce the influence of noise on the retained signal, which is thought
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to occur in higher-frequency oscillations; and lastly (iii) low-frequency drifts due to scanner
noise are removed through the high-pass component of the filtering process. It is worth
mentioning that a growing body of literature is investigating high-frequency contributions
to functional connectivity measures, in particular providing evidence for relevant signal in
higher frequencies during tasks (Craig et al., 2018). For the time being, in this thesis, which
uses resting state fMRI, not task data, the traditional approach is employed.

1.1.3 MRI-derived subject-specific brain network construction

The nodes of MRI-derived brain networks are typically locations in the brain, and the edges
are measures of connectivity between two distant locations. Different methods exist for
defining nodes and edges. While diffusion weighted imaging (DWI) (Hagmann et al., 2006)
and structural magnetic resonance imaging (sMRI) (Lerch et al., 2006) data can be used to
derive networks of anatomically connected areas and nuclei, functional magnetic resonance
imaging (fMRI) (Salvador et al., 2005) images can be used to estimate functional connectivity
between nodes and thus the resulting adjacency matrix is often described as a functional
connectivity matrix.

Here, I provide a brief overview of structural brain networks in the context of brain
network analysis. Chapter 4 will return to this topic again and introduce similarity-based
structural brain networks, and in particular morphometric similarity networks, in more depth.

In general, the process of constructing a brain network involves (i) the acquisition of
MRI data, (ii) the definition of network nodes, or region of interest (ROI) using a parcel-
lation scheme, and (iii) the estimation of the strength and sign of anatomical or functional
connectivity between those nodes, thus defining the values of the edges in the adjacency
matrix.

First, the nodes of a brain network are typically defined by a parcellation template
or atlas which is used to demarcate multiple macroscopic cortical areas and subcortical
nuclei of the brain, as previously defined by cytoarchitecture (von Economo and Koskinas,
1925), anatomical boundaries (Desikan et al., 2006), functional activation (Yeo et al., 2011),
or a combination thereof (Glasser et al., 2016b). Parcellation allows us to statistically
compare anatomical or functional connectivity measures between individuals using a common
reference atlas, but in doing so it trades off the ability to fully capture the individual variability
in brain organization. A critical consideration in choosing a parcellation template is the
number of nodes, often between 100 and 1000, to balance anatomical specificity with
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computational feasibility and statistical power. The edges of the network are defined based
on the imaging modality chosen, as follow below.

Fig. 1.2 Brain network estimation: Brain networks can be constructed using sMRI, or
fMRI data, or DWI data. Typically, the nodes in these networks are regions of grey matter
defined a priori by a parcellation template. (A) Structural brain networks can be constructed
by estimating the pair-wise correlations between regional morphometric feature vectors to
constitute a morphometric similarity matrix . (B) Computational tractography methods can
be used to derive DTI networks, where the edges are weighted by the streamline count,
indicative of the strength of white matter tracts connecting spatially distributed brain regions.
(C) fMRI networks are typically derived by estimating the pairwise correlations between
resting state fMRI time series averaged over all voxels in each of all possible pairs of two
regions defined by the parcellation template.

Historically, diffusion tensor imaging (DTI) have been used to measure anatomical
connectivity. These networks can be constructed from DWI data which generate contrast by
exploiting the diffusion of water molecules through brain tissue. Computational tractography
is used to identify large-scale white matter tracts mediating connections between pre-defined
grey matter brain regions. This technique estimates the trajectories of white matter axonal
pathways using estimates of diffusivity orientation. Brain networks are computed from
these data by weighting the inter-regional connections by their streamline count (Fig. 1.2B,
bottom).

Structural covariance network (SCN) were later proposed as an alternative to DTI net-
works (Alexander-Bloch et al., 2013). These networks are constructed on the basis of a group
of scans from multiple subjects. SCN are estimated by correlating a single regional mor-
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phometric feature, e.g., cortical thickness, over multiple subjects, resulting in a group-level
network, where each edge describes the inter-regional correlation of a single morphometric
feature across subjects. These networks suffer from a number of limitations: group level
networks lack the ability to easily map changes over time, even though sliding-window ap-
proaches have been suggested as a mitigating measure (Váša et al., 2018); and they only make
use of a single morphometric feature at a time, thus failing to leverage the growing capacity
of multi-modal MRI to extract multiple morphometric features from different modalities of
MRI data (Lerch et al., 2017). In response to these concerns, recent work has focused on
the construction of subject-specific structural brain networks (Seidlitz et al., 2018), such as
morphometric similarity networks (MSNs), which consist of regions defined by a parcellation,
and edges, estimated as the correlation between each possible regional pair of standardized
MRI feature vectors (Fig. 1.2A, bottom). Morphometric similarity networks are based on
the idea that similarity of regional MRI feature vectors is a proxy measure of the similarity
of two regions in terms of their cytoarchitectonic and myeloarchitectonic organization; and
axo-synaptic connectivity is known to be stronger between architectonically similar brain
regions compared to cytoarchitectonically distinct or differentiated areas (Goulas et al., 2016,
2017).

MSNs can be estimated using vectors of morphometric feature values estimated at each
region. Thus T1-weighted MRI scans can be used to extract multiple macro-structural
features (Fig. 1.2A, top): for example, GM, the regional volume of each parcel; SA, the
surface area of the “inflated” cortical sheet; CT, the depth of the cortical sheet; and several
curvature measures can all be measured for each region and compiled in a feature vector
used to estimate the morphometric similarity, a proxy for anatomical connectivity, between
regions. Further, regional mean values of DWI-derived micro-structural MRI features can
also be included as features in analysis of morphometric similarity, i.e. the degree of
anisotropy, termed fractional anisotropy (FA), or the average diffusivity along the axonal
tracts connecting two regions, termed mean diffusivity (MD), can be estimated at each voxel
and averaged over voxels within each regional node. The estimation of MSNs is therefore
possible for a single subject, either based only on a T1-weighted image or also including
DWI data collected from the same subject.

Functional brain networks, are constructed from rsfMRI data. The nodes of these
networks are anatomical brain regions, i.e. regions of interest defined by a parcellation
template, whereas the edge weights are estimates of the functional connectivity (FC) between
each pair of regional nodes, typically measured in terms of the correlation between each pair
of regionally averaged rsfMRI time series (Biswal et al. (1995); Fig. 1.2C, bottom).
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It is worth noting that while this thesis focuses on the analysis of MRI-derived brain
networks, other imaging methods can be used to construct whole-brain networks, including
electro-encephalography and magneto-encephalography (Van Diessen et al., 2015).

1.1.4 Brain network topology and analysis

Once a brain network has been constructed, its topology can be analysed using graph-
theoretical methods (Bullmore and Sporns, 2009; Fornito et al., 2016). A wide range of
network measures are available to characterise brain networks.

Possibly the simplest graph theoretical measure applied in brain network analysis is the
nodal degree (Fig. 1.3A). In an unweighted network, or binary graph, for each node i the
degree ki is calculated simply as the sum of the non-zero edges ei, j connecting it to the rest
of the brain:

ki =
N

Â
j=1; j 6=i

ei, j (1.1)

where ki is the degree of node i, N is the number of nodes in the network, and ei, j indicates
the presence of an edge between node i and an arbitrary node j. The sum is taken over all
edges ei, j ( j 6= 1,2,3, . . .N).

In a weighted graph, it is likewise possible to estimate the mean weighted degree (Fig.
1.3B), or node strength, as the average of the weights of all edges connecting the index node
to the rest of the brain network:

si =
N

Â
j=1; j 6=i

wi, j (1.2)

where si is the mean weighted degree of node i, N is the number of nodes in the network,
and wi, j is the weight of the edge between node i and an arbitrary node j. The sum is taken
over all edges wi, j ( j 6= 1,2,3, . . .N).

Both the binary degree, as well as the weighted degree, are measures of how well
connected a given node is to the rest of the network, providing one important measure of its
topological centrality and likely its functional importance in the context of the connectome
as a whole. To illustrate the concept with a real life example: even an observer that has
never seen a map of the UK, would likely be able to pin point the largest cities in the
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country by looking at a map of train lines. The observer will notice that a number of train
stations appear to have large numbers of train lines connecting them to the rest of the train
network. If we think of train stations as as network nodes and train lines as edges, then train
stations like London and Manchester have a large node degree, compared to the small train
station at Iverness in northern Scotland. In fact, many real life networks have highly skewed
distributions of node degree, such that a small number of nodes are highly connected to the
rest of the network and function as a relay between different parts of the network while most
other nodes are only directly connected to a small number of other nodes. These nodes highly
connected nodes are often termed “hubs” and they serve the role of integrating information
across the network, i.e. one may take a train to from Southampton to London in order to
travel on to Glasgow, illustrating the integrative role of the London station in transporting
passengers from the south to the north of the country.

An array of other graph-theoretical properties can be used to characterise a network’s
structure, for example: the shortest path length, a graph measure that describes the number
of steps that have to be taken to connect any given node in a network to another (Fig. 1.3C);
the clustering coefficient, a measure of the degree to which nodes in a graph tend to cluster
together (Fig. 1.3D); the participation coefficient, which is a measure of the degree to
which a node integrates between modules, measured as a nodes ratio of inter-modular to
intra-modular connections (Fig. 1.3E); modules, which are subsets of regions that are more
strongly connected to one another than to regions in other modules (Fig. 1.3F); and hubs
which are particularly highly connected nodes (Fig. 1.3F).

Brain networks are thought to be constrained by two major driving forces which promote
different network attributes: the minimization of cost (e.g. wiring volume, energy use), and
the maximization of efficiency (e.g. speed of communication, information flow) (Bullmore
and Sporns, 2012). It is believed that these constraints are balanced through a modular
network organization: sets of nodes within the same module are densely intra-connected,
but only sparsely inter-connected to nodes in other modules (Oldham and Fornito (2018);
Fig. 1.3F,G). The segregation achieved by modularity is balanced by so-called connector hubs,
which mediate integrative connections between regional nodes in different modules (Oldham
and Fornito, 2018). The human brain network’s balance of topological segregation and
integration is also evidenced by its core-periphery organization where a set of strongly
inter-connected nodes, or hubs, act as intermediaries between modules, forming a so-called
“rich club”. This topological organization allows for great robustness and adaptivity since in
case of failure of individual nodes, distributive property of the core network is still retained.
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Fig. 1.3 Basic graph metrics: (A) In a binary graph, the node degree indicates the number of
edges connecting a given node with all other nodes in the network. The red node has a lower
degree than the red one. (B) In a weighted network, the mean weighted degree is estimated
as the average weight over all edges connecting the index node to the rest of the brain. The
blue node here may have higher node strength compared to the red node. (C) The shortest
path between two nodes is the minimum number of steps, or edges, it takes to connect them.
(D) The clustering coefficient is estimated as the the number of edges between a node’s
neighbours divided by the number of edges that could possibly exist between them. The red
node’s clustering coefficient is high, the blue one’s is low. (E) Brain networks are typically
modular, meaning that subsets of regions, comprising each of several modules, are more
densely interconnected with each other than with nodes that are affiliated to different modules.
So-called hubs are nodes with high degree that often mediate information between modules.
(F) The participation coefficient is measured as the ration between a node’s intra-modular
degree (edges connecting to other nodes in the same module) and its inter-modular degree
(edges connecting to other nodes in other modules). (G) Brain networks tend to segregate by
strengthening within-module connections and forming a smaller number of long-distance
connections between mediating hubs that integrate information between the modules.

1.2 Brain development throughout the lifespan

Throughout the course of life, from conception to old age, the human brain undergoes
extraordinary changes in structure (Mills et al., 2014; Sowell et al., 2003; Váša et al., 2018;
Whitaker et al., 2016b) and function (Stevens, 2016; Váša et al., 2020). During the prenatal
period, the brain initially undergoes a phase of neurogenesis, which is largely completed
by 20 weeks post-conception, at which time axons start growing and synapses are formed.
Indeed, magnetic resonance imaging of prematurely born infants, born after 24 weeks post-
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conception, has demonstrated increases in grey and white matter volume in mid to late fetal
periods (Bethlehem et al., 2022). At birth, the brain has reached around 30% of its total
grey matter volume (Bethlehem et al., 2022; Gilmore et al., 2012). Recent work on the
largest existing MRI dataset (N ⇠ 120,000 brain scans) has confirmed that trajectories of
grey and white matter development in the cortex and subcortex can be mapped over the
lifespan (Bethlehem et al., 2022). From mid gestation onwards, cortical GM volume increases
rapidly, peaking in childhood at 5.9 years of age, then declining over the rest of the lifespan;
white matter volume (WM) volume also rapidly increases until early adulthood, at 28.7 years
old (yo), before declining gradually throughout adult life, with subsequently accelerated
decline in old age; and subcortical grey matter volume follows an intermediate growth
trajectory, peaking in adolescence at 14.4 years (Bethlehem et al., 2022). These normative
trajectories of cortical development suggest an early post-natal period of differentiation
between grey and white matter, which sees a switch from grey matter volume to white
matter volume being the proportionally dominant tissue type in the brain after around 3 years.
These and other MRI phenotypes of developmental changes in brain macro-structure are
thought to represent underlying microscopic neurodevelopmental processes, e.g., synaptic
proliferation and axonal myelination, that continue throughout adolescence and into early
adult life (Bethlehem et al., 2022; Miller et al., 2012; Petanjek et al., 2011). It is worth
noting that all these results were based on univariate models of structural development and
no network estimates have been investigated in a comparable sample.

To date, there is less certainty about lifespan changes in fMRI. A widely reported finding
is increasing within-network FC until early adulthood, and decreases thereafter (Betzel et al.,
2014; Váša et al., 2020). However, no single study has mapped functional connectivity
changes over the course of the lifespan in sufficiently large samples (Betzel et al., 2014; Fjell
et al., 2017; Ma et al., 2021; Wang et al., 2012) to provide a level of certainty anywhere
near that reached using univariate models of structural brain development as described
above (Bethlehem et al., 2022).

1.3 Adolescent brain development

Understanding structural (Raznahan et al., 2011; Sowell et al., 2004; Váša et al., 2018;
Whitaker et al., 2016a) and functional (Kundu et al., 2018; Váša et al., 2020) development
of brain networks during adolescence has been of particular interest to the neuroscientific
community. This is because adolescence is well-known to be a time of fundamental changes
in cognition and behaviour, and it is also a time of increasing incidence of a variety of
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psychiatric illnesses (Costello et al., 2003), including in particular mood disorders. The
pathophysiology of these disorders is increasingly understood in connection with atypical
maturational changes that occur in the adolescent brain (Paus et al., 2008). Thus, under-
standing normative adolescent brain development is expected to further our understanding
of atypical developmental trajectories on the pathway to mental health disorders, including
depression, in young people.

1.3.1 Structural brain development

A large body of work on structural brain development during childhood and adolescence
has focused on estimating maturational trajectories of individual (global or regional) mor-
phometric features, e.g., prototypically, cortical thickness. A prominent pattern that has
emerged from this work is that from the age of about 3 years, grey matter volume in the
brain steadily decreases (Bethlehem et al., 2022). Adolescent structural brain development
is shaped by a pattern of continued cortical grey matter volume decreases, largely driven
by cortical thinning, with relatively smaller decreases in surface area (Tamnes et al., 2017;
Whitaker et al., 2016b), while white matter volume and intra-cortical myelination both show
continued increase, albeit at a slower rate than during the first decade (Mills et al., 2016).
Further, it has been suggested that there is a difference in timing between subcortical and
association cortical adolescent maturation (Mills et al., 2014), with subcortical areas maturing
first, followed by later prefrontal maturation.

Studies of structural brain network development during this period have so far largely
focused on structural covariance networks and DWI-derived connectomes. Cross-species
work has highlighted that structural network hubs are established early in life, i.e., studies in
C. elegans showed that hub neurons are born early in development (Towlson et al., 2013).
Work on human subjects demonstrated that the integrative function of hubs as connectors
between modules is only fully established during adolescence (Oldham and Fornito, 2018).
Further, the above described process of cortical thinning and increasing myelination has been
shown to be topologically focused on association cortical hubs in adolescence, consolidating
topologically central components of the adult brain network that are less myelinated at
the beginning of adolescence (14 yo) and then see faster rates of myelination and cortical
shrinkage over the course of adolescence (Whitaker et al., 2016b). Association cortical areas
have been shown to support higher cognitive functions and play a topologically important role
in the network, such that these findings have been hypothesized to represent an adolescent
re-organization of the structural connectome relevant both to normal cognitive and behavioral
changes (Whitaker et al., 2016b). Further research has highlighted a process of consolidating
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anatomical connectivity between frontal cortex and the rest of the connectome (Váša et al.,
2018) during adolescence, possibly representative of an increasing relevance of prefrontal
cortex and its central role in cognitive control functions that emerge during adolescence.
In summary, these findings suggest that well-known processes of cortical thinning and
myelination support the reorganization of structural brain networks during adolescence, in
particular shaping the topological importance of association cortical and prefrontal areas, to
support adult behavior and cognition

1.3.2 Functional brain development

Two findings in particular have been widely reported by initial studies of developmen-
tal changes in functional connectivity during adolescence: (i) an increase in strength of
long-range connections; and (ii) an decrease in the strength of short-range connections,
hypothesized to represent a shift from localized to distributed networks during adoles-
cence (Dosenbach et al., 2010; Fair et al., 2007). Since most long-range axonal projections
start or finish in association cortical areas, the later emergence of long-range functional
connections has previously been associated with the idea that primary sensory and motor
areas mature during childhood, while association areas undergo changes during late adoles-
cence (Mills et al., 2014; Váša et al., 2020; Whitaker et al., 2016a). Recent work, however,
has reported that a large number of developmental results may have been confounded by
within-scanner head motion (Power et al., 2012; Satterthwaite et al., 2013). It has been found
that head motion both inflates age effects in general, as well as having a heterogeneous effect
on distance-dependent fMRI connectivity, such that head motion has a greater effect on long-
distance, compared to short-distance connections (Power et al., 2012; Satterthwaite et al.,
2013). This may be due to regionally specific effects of motion that inflate the BOLD signal
in one region, and decrease it in distant regions on the same axis, leading to anti-correlations
between distant regions and increased correlations between locally adjacent regions. These
findings are highly relevant for developmental studies since younger subjects tend to move
more. Consequently, the effect of head motion in younger subjects may decrease the strength
of long distance connectivity in younger subjects leading to a relatively higher long distance
connectivity in older subjects who move less (Power et al., 2012; Satterthwaite et al., 2013)
putting into question the distance-dependent changes in functional connectivity reported
in early developmental studies. This idea is supported by a more recent study that found
no distance-dependent effects of age on functional connectivity when applying advanced
motion-correction methods (Marek et al., 2015).
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Several other aspects of functional connectivity development beyond the controversial
question of distance-dependent functional connectivity development have been investigated.
It has been suggested that cross-network integration increases with age (Marek et al., 2015).
Further, hub regions have been reported to refine their connectivity during adolescence, in
particular frontal hubs appear to increase their connectivity with the subcortex early during
adolescence, followed by strengthening of connectivity between cerebellar hubs and the
cortex (Hwang et al., 2013). Given the above-mentioned finding of timing-differences in
subcortical compared to prefrontal structural brain maturation, a last point of focus has
been functional connectivity development between subcortical and cortical regions during
adolescence (Van Duijvenvoorde et al., 2019; Váša et al., 2020). It has been suggested
that subcortico-cortical connectivity develops more heterogenously during adolescence
than cortico-cortical connectivity (Váša et al., 2020). Subcortical programms of selectively
strengthening some connections and weakening others may be representative of a a functional
reorganization of subcortico-cortical systems, in particular involving reward-related circuits
(Van Duijvenvoorde et al., 2019; Váša et al., 2020).

1.4 Sex differences in brain development

Microscopic sex differences, both in terms of gonadal sex steroids, as well as sex chromo-
somes, are known to shape physiological differences between males and females and have
been linked to sexual differentiation of the animal brain (McCarthy et al., 2012), suggesting
the existence of similar effects in humans (Raznahan and Disteche, 2021).

Experimental manipulation of gonadal hormones in animal models has been shown
to directly affect brain structure and function (Corre et al., 2016). In humans, more in-
direct methods of linking gonadal hormones to sexual differences in brain structure and
function have been employed: by studying subjects displaying longitudinal variation in
hormonal levels, either long-term variation, due to developmental phases like adolescence
or menopause (Mosconi et al., 2021), or short-term variation, due to the menstrual cy-
cle (Pritschet et al., 2020), or natural variation in testosterone levels over the course of
the day (Grotzinger et al., 2022); or by comparing healthy controls to cases of endocrine
disorders affecting sex hormone production (Tauber and Hoybye, 2021); or by studying
variation due to gender-affirming hormone treatment (Kranz et al., 2020). These studies have
demonstrated that sex hormones do indeed affect brain structure and function, both in the
short term, i.e. functional brain networks reorganize during the menstrual cycle (Pritschet
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et al., 2020), as well as long-term, i.e. menopause appears to effect both grey and white
matter volumes (Mosconi et al., 2021).

In the late 1950s, sex chromosomes were first shown to affect sex differences in mam-
malian brain organization (Phoenix et al., 1959b). Since then, a growing body of literature
has suggested that sex chromosomes affect brain organization and may also contribute to
phenotypic diversity of the human brain (Arnold, 2012; Raznahan and Disteche, 2021). There
are a number of reasons why sex chromosomes are likely to contribute to sex differences in
the brain. First, sex chromosomes play a special role in the rapid fixation of mutations and
evolution of genes, due to the fact that the X and Y chromosomes are haploid in males. In
males recessive mutations on one sex chromosome cannot be masked by the dominant allele
from the other chromosome copy. Thus, the recessive allele will be expressed and, when
advantageous, it has a higher chance of being passed on to offspring (Fig. 1.4A). This process
may have contributed to the importance of sex chromosomes for traits advantageous to males,
for example, as evidenced by an accumulation of genes relevant for male fertility on both the
X and Y-chromosomes. Second, in females, one of the X chromosomes is randomly inacti-
vated, balancing out the fact that males only have one X chromosome. However, about 15%
of genes escape X chromosome inactivation (Fig. 1.4B). These genes are thus upregulated in
females compared to males and may provide a likely source of sexually differentiated pheno-
typic expression (Disteche, 2016; Oliva et al., 2020). Third, not only is the X chromosome
enriched for genes expressed in the brain, X chromosome genes are also heterogeneously
expressed across the brain, thus suggesting effects on anatomically patterned and functionally
specialised brain systems (Fig. 1.4C). And finally, in both sexes, X chromosome expression
is upregulated, to ensure that its expression is relatively balanced compared to autosomal
gene expression (Fig. 1.4D), a process that happens prior to X-inactivation and thereby leads
to higher expression of X-linked genes versus autosomal genes in females compared to males
cells during embyronic development (DeCasien et al., 2022).

Together, these microscopic sex differences in gonadal hormones and sex chromosomes
suggest possible mechanisms for sex differences on the macroscopic level in the form of
sexually differentiated brain anatomy and function as measured using MRI.

1.4.1 Sex differences in structural MRI

A range of previous work has investigated sex differences in brain phenotypes, largely
focusing on structural MRI and task-activated MRI. The most obvious sex difference observed
is that, on average, male brains tend to be larger than female brains, a differences which
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Fig. 1.4 Microscopic sex differences: (A) Sex chromosomes are diploid in females and
haploid in males. Recessive mutations in females can be masked by dominant alleles on
the second copy of the X chromosome. In males, however, such masking cannot occur
due to the chromosomes being haploid. When traits are male advantageous, they are more
likely to be passed on to offspring, thus leading to an accumulation of male-advantageous
genes on sex chromosomes. (B) In females, one X chromosome is randomly inactivated,
however, a number of genes escape this inactivation. (C) The inactivation being random
leads to a spatially diverse pattern of cells in which the maternal or paternal X chromosome
is deactivated. (D) In both males and females, X chromosomes are upregulated such as to
avoid a dosage equilibrium between sex chromosomes and autosomes.

is likely due at least partially to a difference in body size (Ruigrok et al., 2014). This sex
difference in brain size has been shown to be present at birth, with male brains estimated to
be approximately 8% larger than females (Gilmore et al., 2007; Knickmeyer et al., 2017),
and persistent throughout life.

Recent work has demonstrated effects of brain size on regional grey matter volume (Eikenes
et al., 2022; Warling et al., 2021), white matter tracts (Reardon et al., 2018; Sanchis-Segura
et al., 2020), and brain-behavior relationships (Dhamala et al., 2022). The effect sizes of
regional sex differences across different structural imaging phenotypes are attenuated when
correcting for total brain volume. There has been a long-standing interest in whether there are
sex differences in regional brain anatomy above and beyond sex differences in total brain size.
A number of MRI studies have reported sex differences in grey matter volume in multiple
regions, with effect sizes ranging from small to medium (Liu et al., 2020). Conversely,
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a meta-synthesis (i.e. a meta-analysis of meta-analyses) of a large number of studies has
reported a lack of coherence in prior findings, and suggested sex differences in grey matter
volume may after all be very small (Eliot et al., 2021). This idea stands in contrast to results
from recent large-scale studies that find consistent sex differences in grey matter volume
across most brain regions (Lotze et al., 2019; Williams et al., 2021). It has since been
suggested that a number of factors, including inconsistent approaches to correcting for brain
size, and variable sample sizes, may have contributed to the (perceived) lack of consistency
in studies of sex differences in grey matter volume (DeCasien et al., 2022), particularly since
meta-analyses do not correct for methodological discrepancies between studies. Thus while
studies of sex differences in grey matter volume need to be evaluated carefully with respect
to sample size and brain size correction methods (Sanchis-Segura et al., 2020), large-scale
neuroimaging studies appear to converge on a consistent picture of small to medium-sized
sex differences in volume across most brain regions (DeCasien et al., 2022; Williams et al.,
2021). However, it is worth noting that within-sex variability in imaging phenotypes is
large and also scales with head size (Eliot et al., 2021), and sex differences are statistical
differences in the mean of two overlapping distributions.

1.4.2 Sex differences in rsfMRI

In the past, research on sex differences in fMRI have largely focused on task-activated
fMRI, often investigating the “brain basis” for assumed sex differences in behavior and
cognition. Many such studies have suffered from small sizes and meta analyses have
found little overlap between findings (Eliot et al., 2021). It is not yet clear how resting
state functional connectivity differs between males and females, either during adolescence
or adulthood. One widely reported sex difference is increased functional connectivity
of the default mode network (DMN) in females (Allen et al., 2011; Biswal et al., 2010;
Bluhm et al., 2008; Filippi et al., 2013; Tomasi and Volkow, 2012). Female-increased
connectivity has also been reported in subcortical nuclei and limbic areas (cingulate gyrus,
amygdala, hippocampus) (Scheinost et al., 2015); whereas male-increased connectivity has
been reported for sensorimotor areas (Biswal et al., 2010; Filippi et al., 2013; Scheinost et al.,
2015). However, these effects are not consistently found across studies (Allen et al., 2011;
Tomasi and Volkow, 2012; Weissman-Fogel et al., 2010). Importantly, most research on
sex differences has focused on pre-selected regions, often including the amygdala (Alarcón
et al., 2015; Kilpatrick et al., 2006), with few studies having investigated sex differences
comprehensively over all brain regions (Biswal et al., 2010; Casanova et al., 2012; Filippi
et al., 2013; Zhang et al., 2016, 2018). While these regionally focused approaches increase
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statistical power, they fail to map global patterns. Finally, at least one study failed to observe
any sex effects at all (Weissman-Fogel et al., 2010).

It is important to note that almost all studies mentioned here were cross-sectional studies,
using either age-balanced, usually adult, samples of males and females, or covering a
very limited age range. Most prior rsfMRI studies of brain development have focused on
estimating "average" effects of age across both sexes, e.g., by including sex as a covariate in
the statistical model for estimation of developmental parameters. Few studies have reported
age-by-sex interactions or the conditioning of developmental parameters by sex (Scheinost
et al., 2015; Zhang et al., 2018). The lack of longitudinal data may have contributed to the fact
that few studies found convincing effects of age-by-sex interaction on functional connectivity.
Some interaction effects have been reported in several networks, including the default mode
network, the fronto-parietal, visual and auditory networks (Scheinost et al., 2015; Zhang et al.,
2016); but often these findings did not survive correction for multiple comparisons. While
cross sectional studies can make claims about male-female group differences, no within-
subject age-related changes in functional connectivity can be inferred. Thus cross-sectional
studies do not allow to determine whether observed differences in functional connectivity
are a result of sex, (atypical) maturational trajectories, or a combination of both (Mills
et al., 2014). Therefore modelling subject-specific trajectories over time is crucial for our
understanding of how sex might intersect with brain development.

Taken together, the current heterogeneity of results concerning the spatial locations and
sign of sex differences in brain structure and function suggests a need for further investigation,
in particular using large, longitudinal samples, with appropriate correction for motion-related
artifacts.

1.5 Vulnerabilities during development

Topological analysis of MRI-derived brain networks has furthered our understanding of
structural and functional brain development in health. Additionally, contrasting normative
results with patient data from multiple neuropsychiatric disorders has provided insight into
atypical deviations of network organization associated with disease. It has been found
that even very basic graph theoretical measures, such as degree, can highlight case-control
differences in network structure (Morgan et al., 2019; Váša et al., 2018). Contrasting
brain networks between healthy controls and cases of neuropsychiatric disorders has also
demonstrated how central several topological features are for the healthy functioning of the
brain. For example, it has been found that many disorders appear to disrupt the modular
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community structure of brain networks, leading to more segregated organization of the
connectome (Crossley et al., 2014).

It is notable, that many developmental disorders, e.g., autism spectrum disorder (ASD),
are first diagnosed during early to late childhood, whereas psychiatric disorders, in particular
mood disorders, e.g., major depressive disorder (MDD) or anxiety disorders, are typically
incident during adolescence (Fig. 1.5A; (Kessler et al., 2005; Paus et al., 2008)). Both these
periods are well-known for being neurodevelopmental phases of major reconfiguration or
rewiring of brain networks (Morgan et al., 2018). In line with this coincident timing, it can
be argued that atypical trajectories of developmental rewiring may lead to vulnerabilities
to disease, i.e. “moving parts get broken” (Paus et al., 2008). For example, it has been
suggested that in patients with schizophrenia an “exaggeration of typical adolescent changes”
may have occurred (Keshavan et al., 1994).

As mentioned above, many disorders display sex differences in their prevalence or clinical
expression profile, including ASD, which is four times as likely to be diagnosed in males
than in females, and MDD, which is twice as likely to be diagnosed in females (Fig. 1.5B). It
is worth acknowledging that socio-cultural as well as structural factors may contribute to this
sex difference in diagnosis (Sharma et al., 2021). There is undeniably a gendered influence
on health, diagnostic criteria may be sex-biased, and cultural expectations may contribute to a
discrepancy in seeking medical help (Phillips, 2005). For example, males often exhibit lower
help-seeking behavior, potentially contributing to the sex difference in incidence rates for
mood disorders (Galdas et al., 2005). On the other hand, current diagnostic criteria for ASD
may lead to under-diagnoses in females, who exhibit more camouflaging behavior (Fusar-Poli
et al., 2022), i.e. they show a greater tendency to mask disease-associated behavior either by
avoiding some types of behaviors, or conversely by explicitly performing behavior considered
to be more neurotypical. However, the concentrated emergence of multiple neuropsychiatric
disorders during neurodevelopmentally active periods of the lifespan suggests that sex
differences in brain development contribute at least in part to the pathogenesis of these
conditions. This is underlined by gene expression studies, i.e. research on postmortem brain
tissue suggests that gene expression in ASD is correlated with normative sex differences in
gene expression (Kissel and Werling, 2022).

Neuropsychiatric disorders may be associated with alterations in both the timing and/or
the shape of developmental trajectories (Di Martino et al., 2014a). For example, attention
deficit hyperactivity disorder (ADHD) has been associated with delayed brain maturation,
whereas ASD has been associated with an early acceleration of brain development (Shaw
et al., 2010). However, to date, neuroimaging studies of atypical brain development have
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Fig. 1.5 Diagnosis of neuropsychiatric disorders: (A) Many neuropsychiatric disorder
show a sex difference in prevalence. (B) Age at first diagnosis of psychiatric disorders
according to the literature (Solmi et al., 2022).

largely been cross-sectional. While this allows for estimating case-control group differences,
usually corrected for age, it also leads to several fundamental shortcomings (Di Martino
et al., 2014a). First, the lack of availability of longitudinal patient data contributes to a lack
of understanding of atypical developmental trajectories. Second, when only a single time
point is available for an individual, it is impossible to know anything about the shape of this
individual’s developmental trajectory. Fig. 1.6 illustrates this issue: while a single timepoint
for each subject can reveal their deviation from the norm, it is unclear which trajectory of
development they are on. Only a second measure could bring clarity. While the increasing
number of longitudinal neuroimaging studies focusing on normative brain development is
encouraging, future studies should also attempt to collect longitudinal patient data to allow
for mapping atypical trajectories.

A key factor motivating research into brain network changes in disease is that it is likely
that symptoms of neuropsychiatric disorder appear after the onset of atypical development,
raising the hope that, with advances in normative modelling, neuroimaging may be used
to track changes in brain development before symptom onset thus expediting diagnosis or
creating opportunities for prevention. It should be pointed out that currently the limited
regional availability (i.e. MRI scanners being concentrated in better hospitals, cities, and
high-income countries) and the high cost of neuroimaging limit its usefullness in harder-to-
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reach populations. A recent development, however, provides hope for the future: portable,
low-cost MRI scanners may facilitate reaching more remote populations in the future (Cho,
2023).

One in five adolescents have a mental illness that will persist into adulthood (Kessler et al.,
2005), and depression, schizophrenia and addiction are among the top ten leading causes of
medical disability worldwide, with no evidence of global reduction in disease burden (Col-
laborators et al., 2022). Research into the neurodevelopmental basis of neuropsychiatric
disorder should thus be of the utmost importance.

Fig. 1.6 The value of longitudinal data: Atypical development can alter both the timing of
development (delayed or precocious development) or alter its shape (failure to mature, halted
development, ectopic development). A single (cross-sectional) measure for each individual
cannot determine the shape of the individual’s atypical trajectory.

1.6 Thesis structure

Overall, the findings described above demonstrate that the human brain undergoes various
phases of active development during the lifespan. While brain network development is
fundamental to the emergence of new cognitive and social capacities, periods of rewiring
also expose individuals to an increased risk of neuropsychiatric disorders, highlighting the
relevance of understanding normative brain development. Further, many neuropsychiatric
disorders are known to display sex differences both in prevalence and clinical presentation,
which may be linked to sex differences in brain structure and function. However, while we
know that there are sex difference in brain physiology on the microscopic level (Arnold,
2012; Raznahan and Disteche, 2021), less is known about sex differences in macroscopic
brain development.
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This thesis maps normative functional and structural brain development in adolescence
and later life using magnetic resonance imaging. Chapters 2-3 and Chapters 5 estimate
adolescent changes in functional and structural brain network development in an accelerated
longitudinal cohort of healthy adolescents aged 14-25 years (N=298), each scanned between
one and three times, with a total of 520 scans. Chapter 2 asks the question: “Does adolescent
functional brain development differ between males and females?”. Chapter 3 builds on the
fMRI-derived map of sex differences in adolescent brain development from the previous
chapter to ask: “Are sex differences in adolescent functional connectivity maturation related
to major depression?”. Chapter 5 moves from functional to structural data, asking: “Are
there adolescent changes in morphometric similarity networks?”.

Finally, in an effort to move from group level to subject-specific analyses, and acknowl-
edging that brain development is not restricted to adolescence but is a continuous process
throughout life, Chapter 6 aggregates 90,000 scans from 41 prior studies ranging from mid
gestation to old age. This allows me to address the question: “How do subcortical regions
develop over the course of the lifespan in health, and how do individuals deviate from these
normative trajectories in association with disease?”.

Finally, Chapter 7 summarizes the experimental results on adolescent and lifespan
development of functional and structural brain networks, and subcortical grey matter volume.
It identifies convergent themes and aligns them with the existing scientific literature on brain
development, sexual differentiation and risk of psychiatric disorders.





Chapter 2

Sex differences in adolescent development
of functional connectivity

2.1 Introduction

As outlined in Chapter 1, adolescence is a period of large-scale functional reorganization
of the brain (Marek et al., 2015; Sowell et al., 2004; Váša et al., 2020) that coincides with
changes in cognition and behaviour. Adolescence is also a period of increased risk to
psychiatric disorders many of which show sex differences in prevalence and expression
profile (Kessler et al., 2005), raising as the question whether there may be underlying sex
differences in brain development. Sex differences on the microscopic scale, in the form of
gonadal hormones and sex chromosomes, are known to impact macroscopic measures of
brain structure and function (Arnold, 2012; Raznahan and Disteche, 2021). However, to date,
little is known about whether, and how, adolescent changes in functional connectivity may
differ between males and females. Here, we start from the position that there may indeed be
sex differences in adolescent processes of brain maturation.

Recent advances in developmental neurogimaging have produced a number of longitudi-
nal datasets covering the period from late childhood to early adulthood (Kiddle et al., 2017;
Satterthwaite et al., 2016), allowing the field estimate age-related changes longitudinally,
rather than cross-sectionally. Further, with the newly-gained awareness that head motion
differentially affects long-distance connections, previously reported findings suggesting
distance-dependent changes in functional connectivity during adolescence were put into
question. Thus recent work has endeavored to shed further light on adolescent functional con-
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nectivity development, using rigorous motion-controlling strategies and explicitly modelling
longitudinal changes during this period.

One such study estimated adolescent changes in regional functional connectivity weighted
degree, i.e. the average connectivity across all of a nodes edges to the rest of the brain (Váša
et al., 2020). They estimated the baseline connectivity at the beginning of adolescence, and the
rate of change in connectivity over the course of adolescence (Váša et al., 2020) for each node
(Fig. 2.1A) and found that regional functional connectivity weighted degree, was particularly
strong in primary motor and sensory cortical areas at the beginning of adolescence, and
cortico-cortical connectivity generally increased over the course of adolescence. However,
subcortico-cortical connectivity had a varied anatomical distribution, with particularly strong
functional connectivity increases between subcortical regions and association cortical areas,
and some decreases in connectivity between a number of subcortical regions and primary
motor and sensory cortical areas. These findings highlight a special role of subcortico-cortical
connectivity changes during adolescence.

Fig. 2.1 Two modes of adolescent FC development: From a linear model of age effects
on FC, two parameters of adolescent development are extracted. (A) First, regionally, the
weighted degree of FC of cortical regions and subcortical nuclei is estimated at baseline (14
years), FC14, and the rate of change in connectivity over the course of adolescence, FC14�26.
(B) The same parameters can be estimated for each edge. (C) The maturational index is
estimated as the correlation between edgewise baseline FC14 and the rate of change FC14�26.
(D) Visualization of two examplary regions, displaying (left) conservative development
(MI > 0), where edges that are strong at baseline, become stronger over the course of
adolescence, and (right) disruptive development (MI < 0), where edges that are strong at
baseline decrease in strength over the course of adolescence, and edges that are weak increase.
Adapted from Váša et al. (2020) under a CC BY 4.0 licence.

Moving from regional weighted degree to edge-wise connectivity (Fig. 2.1B), the au-
thors further developed a new network metric describing edge-wise adolescent functional
connectivity maturation. This metric suggested that adolescent development of functional
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connectivity can be described as occurring in two modes: a conservative mode of consol-
idating previous phases of development, and a disruptive mode of establishing functional
connectivity in brain systems that were not previously strongly connected. These develop-
mental modes are measured and differentiated using the maturational index (MI), which
describes a system level change in a node’s connectivity to the rest of the brain, reflecting
maturational changes across all of a node’s edges (Váša et al., 2020). Briefly, MI describes
how each of a node’s connections change during adolescence. It does so by examining the re-
lationship between edgewise functional connectivity strength at the beginning of adolescence,
e.g., 14 years old, denoted baseline connectivity or FC14; and the rate of change in functional
connectivity over the course of adolescence, e.g., 14-26 years old, denoted rate of change
or FC14�26 (Fig. 2.1B). More specifically, MI is estimated for each node by correlating the
baseline connectivity and rate of change for all edges connecting the index node to all other
nodes in the network (Fig. 2.1C). MI defines two distinct modes of adolescent development
of brain functional connectivity (Fig. 2.1D): (i) conservative development, indicated by a
positive MI, which is the result of a node’s strong (high FC) edges increasing in functional
connectivity over the course of adolescence, and its weak edges decreasing in strength; and
(ii) disruptive development, indicated by a negative MI, is the result of a nodes’ weak edges
gaining strength and its strong edges weakening, leading to a shuffling of a node’s ranked
edges. Thus, MI describes a “system level” change in a node’s wiring, reflecting maturational
changes across all of a node’s edges (Fig. 2.2).

Previous work demonstrated that conservative development was characteristic of primary
sensory and motor cortical areas, whereas disruptive development was mainly located in
association cortical and subcortical regions. Disruptive development has been suggested to
represent metabolically costly remodeling of cortical and subcortical systems to facilitate
emergence of adult cognitive and social behaviors (Váša et al., 2020).

Here, using fMRI data from a previously published (Váša et al., 2020) accelerated
longitudinal study (N=298; age range 14-26 years; 51% female; Table 2.1), stratified by age
and balanced for sex per age stratum (Kiddle et al., 2017), we estimated the effects of sex
on three parameters of adolescent development of resting-state functional connectivity: (i)
baseline connectivity at age 14, FC14; (ii) the adolescent rate of change, FC14�26, estimated
at nodal and edge-wise levels of analysis; and (iii) the maturational index for each node,
MI, which is the signed correlation coefficient between FC14 and FC14�26 across all edges
connecting a given node to the rest of the network. We hypothesized that (i) there may be sex
differences in parameters of adolescent brain development; and (ii) that these sex differences
may be co-located with expression of a weighted function of the whole genome enriched for
X chromosome and (iii) developmentally relevant genes.
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Fig. 2.2 Modes of adolescent development: In conservative development, a node’s strong
edges get stronger between 14 and 26 years (A; top). Thus, the MI, estimated by Spearman’s
correlation between baseline connectivity at age 14 (FC14) and adolescent rate of change of
connectivity (FC14�26), is positive (B, top). Conversely, in disruptive development, a node’s
weak edges get stronger over the course of adolescence, while its strong edges weaken (A,
bottom). Thus the MI, estimated by the correlation between FC14 and FC14�26), is negative.
(C) Cortical surface map of MI estimated at each regional node in the brain.

We found that there was a sex-related difference in adolescent brain network development:
females had significantly more disruptive development of functional connectivity in a default
mode cortical, limbic and subcortical network. Further, we found that this developmentally
divergent brain system was co-located with expression of a weighted function of the whole
genome enriched for X chromosome genes, and genes expressed during various phases of
brain development.

2.2 Methods

2.2.1 Sample

Data Collection

The data analysed in this chapter were collected as part of the Neuroscience in Psychiatry
Network (NSPN) consortium, a collaboration between the University of Cambridge and
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University College London, with the aim of measuring cognitive and brain developmental
changes during adolescence in a healthy adolescent cohort representatively sampled from
the population of Greater London and Cambridgeshire (Kiddle et al., 2017). The analyzable
sample consisted of 2,402 participants, aged 14 to 26 years, that completed repeated self-
assessments of mental health status, with a subset also completing repeated functional and
structural magnetic resonance imaging assessments, as detailed below. Participants were
recruited in five agebins (14-15 years, 16-17 years, 18-19 years, 20-21 years, older than 22
years), with equal numbers of males and females in each agebin.

All participants aged 16 and older provided informed written consent for each aspect
of the study, and parental consent was obtained for those aged 14–15 years. The study was
ethically approved by the National Research Ethics Service and was conducted in accordance
with NHS research governance standards.

MRI sample

A sub-sample of 306 adolescents drawn from the NSPN cohort consented to complete
functional and structural MRI assessments. The age and sex stratification from the larger
cohort was maintained, such that each of the five agebins included about 30 males and females.
The exclusion criteria for this sample included: a current or past history of neurological
disorder or learning disability, and current treatment for psychiatric disorder or drug or
alcohol dependence. Each participant in the scanning sample was invited to provide magnetic
resonance imaging (MRI) data on at least two occasions: at baseline and at follow-up 12-
18 months later, with 29 participants additionally invited to attend follow-up scanning six
months after baseline. The fMRI scan was the first in a series of scans collected in each
scanning session which also included structural MRI using the multi-parametric mapping
(MPM) sequence (Weiskopf et al., 2013), and diffusion weighted imaging. Here, we present
results using the functional magnetic resonance imaging (fMRI) scans, whereas Chapter 5
will focus on complementary analysis of the structural MRI data. A total of 556 resting state
functional magnetic resonance imaging (rsfMRI) scans were available for analysis after after
completion of quality control procedures.

MRI data acquisition

Functional MRI data were acquired at three scanning centres (Wolfson Brain Imaging Centre,
University of Cambridge; University College London; and King’s College London), on
three identical 3T Siemens MRI scanners (Magnetom TIM Trio, VB17 software version)
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Sex # Scans # Scanned At Baseline # Subj./Agebin

1 2 3 µ Age s Age µ FD s FD 1 2 3 4 5

female 259 54 86 11 19.8 2.9 0.11 0.05 34 39 24 32 22
male 261 41 98 8 19.2 3.8 0.13 0.05 32 33 24 35 23

Table 2.1 Sample of healthy adolescent participants with fMRI data from the NSPN
cohort: The final sample after QC included data from N = 298 healthy young people who
participated in an accelerated longitudinal fMRI study. The recruitment was balanced for sex
in each of five age-defined strata. Subjects were scanned between 1 and 3 times with scans
taking place at baseline, 6 and/or 18 months later. The number of subjects who were scanned
1, 2 or 3 times respectively is listed under # Scans. Framewise displacement (FD), a measure
of head movement in mm, was significantly greater in males compared to females on average
over all ages, and in the youngest two age strata specifically (P < 0.05,uncorrected).

with standard 32-channel radio frequency (RF) receive head coils and RF body coils for
transmission, using a multi-echo echo-planar imaging (EPI) sequence (Barth et al., 1999) with
the following scanning parameters: repitition time (TR), 2.42s; GRAPPA with acceleration
factor 2; flip angle, 90o; matrix size, 64⇥ 64⇥ 34; field of view (FOV), 240⇥ 240 mm;
in-plane resolution, 3.75⇥3.75 mm; slice thickness, 3.75 mm with 10% gap, with sequential
slice acquisition of 34 oblique slices; bandwidth, 2368 Hz per voxel; echo time (TE), 13,
30.55 and 48.1 ms; and total scan time, 11 minutes.

MRI data pre-processing

The data employed here were originally pre-processed in (Váša et al., 2020). We used
Freesurfer v5.3.0 to process individual structural scans with a pipeline comprising skull-
stripping, segmentation of cortical grey and white matter, and reconstruction of the cortical
surface and grey-white matter boundary (Fischl et al., 1999). Subsequently, all scans were
visually inspected and manually edited by members of the Neuroscience in Psychiatry
Network (NSPN) Consortium. The reconstruction algorithm was re-run adter this manual
quality control step. Up to 10 iterations of edits were performed (Váša et al., 2018; Whitaker
et al., 2016a). For scans to pass final quality control, a complete cortical reconstruction was
required.

Analysis of Functional NeuroImages (AFNI) (Cox, 1996b) was used for basic pre-
processing of functional MRI scans. All volumes acquired during steady-state equilibra-
tion (15 s) were discarded. Motion correction parameters and parameters for anatomical-
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functional coregistration were calculated from the images acquired with TE = 30.55 ms. The
first volume after equilibration was used as the base EPI image. Matrices for de-obliquing
and six-parameter rigid body motion correction were computed. Then, 12-parameter affine
anatomical-functional coregistration was computed using the LPC cost functional (Saad et al.,
2009), with the EPI base image as the LPC weight mask. Matrices for de-obliquing, motion
correction, and anatomical-functional coregistration were combined into a single alignment
matrix using the concatenation approach from the AFNI tool align_epi_anat.py. The images
for each TE were then slice-time corrected and spatially aligned through application of the
alignment matrix. Coregistration of structural and functional scans was visually assessed.

The functional MRI data were preprocessed using multi echo independent component
analysis (ME-ICA) (Kundu et al., 2012a, 2013a) which identifies and removes sources of vari-
ance in the times series that do not scale linearly with TE and are therefore not representative
of blood-oxygen-level-dependent (BOLD) contrast. The retained independent components,
representing BOLD contrast, were optimally recomposed to generate a broadband denoised
fMRI time series at each voxel. Regional time series were averaged over all voxels within
each parcel and bandpass filtered by the discrete wavelet transform, corresponding to a
frequency range of 0.025-0.111 Hz (Bullmore et al., 2004).

An overall estimate of head motion by each participant, mean FD, was calculated from the
six motion parameter time series (three rotation and three translation parameters) estimated
during scan re-alignment. More specifically, framewise displacement was calculated as:

FDt = Â
d
|dt�1 ⇤dt |+50⇤ p

180
⇤Â

d
|rt�1 ⇤ rt | (2.1)

Scans were parcellated into 360 bilateral cortical regions using the Human Connectome
Project (HCP; Glasser et al. (2016a)) template and 16 bilateral sub-cortical regions (amygdala,
caudate, diencephalon, hippocampus, nucleus accumbens, pallidum, putamen, and thalamus)
were defined by Freesurfer’s aseg parcellation (Filipek et al., 1994). The Human Connectome
Project (HCP) template was chosen for a number of reasons: it is a high-resolution atlas,
allowing for suitable regional precision. Further, it was constructed using multi-modal
imaging data allowing for robustness of the suggested regional bounderies. Lastly, the HCP
parcellation atlas has enjoyed great popularity in the neuroimaging community, allowing
for easy comparisons between results from a large number of studies. After within-subject
pre-processing and quality control, we retained regional time series for 330 cortical and
16 subcortical nodes. 30 cortical regions were excluded due to low regional mean signal
(Z <�1.96); see Fig. 2.3 for a map of retained regions. Individual functional connectivity
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Fig. 2.3 Brain regions included after preprocessing and quality control: The fMRI scans
were parcellated into 376 brain regions, comprising 360 cortical regions defined by the
Human Connectome Project Atlas, and 16 subcortical regions defined by Freesurfer software.
30 cortical regions were excluded due to low regional mean signal (Z<-1.96) in at least one
scan. These regions were: L 10pp, L 13l, L OFC, L EC, L H, L PeEc, L PHA1, L TGd, L
TE1a, L TE2a, L TF, L TE2p, L pOFC, L TGv, L TE1m, R 10pp, R 13l, R OFC, R EC, R H,
R PeEc, R PHA1, R PHA3, R TGd, R TE2a, R TF, R TE2p, R pOFC, R TGv, R TE1m. See
Glasser et al. (2016b) for a detailed description of these regions, and Supplmentary table
A.2 for a list of full regions names.

matrices {346⇥ 346} were estimated by Pearson’s correlation for each possible pair of
regional nodes. Finally, these Pearson correlation values were r-to-Z-transformed (Fisher,
1915).

Exclusion criteria

A total of 36 scans were excluded. Of those, 17 scans were excluded due to high in-scanner
motion (defined as mean FD > 0.3 mm or maximum FD > 1.3 mm), 9 due to coregistration
errors, 7 due to failed convergence of the ME-ICA algorithm, 2 due to parcellation errors,
and 1 due to extensive signal dropout (as defined above).
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2.2.2 Residual motion correction

We found that males tended to display more head movement, particularly in younger age
strata (Fig. 2.4). This effect did not survive correction for multiple comparisons (PFDR >

0.05).

Fig. 2.4 Sex differences in framewise displacement: (A) Across all age strata, males
showed higher framewise displacement (FD) than females (PSex < 0.05, t(296) = 3.25). (B)
Males showed especially increased FD in the first two age strata (PSex < 0.05), however these
differences did not survive correction for multiple comparisons.

Despite the motion correction procedures implemented in the fMRI pre-processing
pipeline, there were residual effects of motion on functional connectivity in quality-controlled
data. Specifically, we found: (i) that there was a weak relationship between the correlation of
FC and head motion (across participants) and the Euclidean distance spanned by edges, i.e.,
head motion and functional connectivity were more strongly coupled for shorter distance
connections; and (ii) that the average edge-wise correlation between FC and motion was
non-zero (as evidenced by a non-zero (y-axis) intercept of the fitted linear regression model;
Fig. 2.5A). In order to remove these residual effects of motion on functional connectivity, we
regressed each pairwise correlation or edge on the time-averaged head motion of each partici-
pant (mean FD). The residuals of this regression were the estimates of functional connectivity
used for further analysis. After this correction, the average head motion, quantified as mean
FD, did not change with age (Page = 0.2, t(220) = 125) in the full sample (Fig. 2.5B). By
construction, there was no longer an effect of distance on the correlation between FC and
motion, and the average edge-wise correlation between FC and motion was zero (Fig. 2.5A).
This pre-processed, quality controlled and motion-corrected dataset is identical to the one
previous used in Váša et al. (2020) and we will henceforth refer to it as the “analyzable
sample” throughout this chapter.
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Fig. 2.5 Effect of head motion (FD) on functional connectivity (FC): (A) After ME-ICA
pre-processing, there was a weak relationship between the correlation of FC and head motion
(across participants) and the Euclidean distance spanned by edges. Further, the average
edge-wise correlation between FC and motion was non-zero. (B) To remove the depen-
dence of FC on motion in this sample, mean FD was regressed on each edge; the residuals
constituted participant-specific, FD-corrected FC, with intercepts retained to maintain the
relative importance of edges across the group as well as the interpretability of FC values.
Thus, in the motion-corrected sample, average head motion, quantified as mean framewise
displacement (FD), did not change with age (Page = 0.2, t(220) = 125). However, there was
a weak, but significant effect of sex on FD (bsex = 0.02,Psex < 0.01, t(296) = 3.3). (C) The
effect of head motion (across participants) on global FC was not significant (PFD = 0.27).
(D) By construction, there was no effect of distance on the correlation between head motion
and motion-corrected FC, and the average edge-wise correlation between FC and motion
was non-zero (as evidenced by a non-zero (y-axis) intercept of the fitted linear regression
model). (E) However, since motion correction was performed across all subjects, we still
observed weak, but significant effects of distance on the correlation of FC and FD for females
(r = 0.04,P < 0.001) (F) and males (r =�0.08,P < 0.001) (G) when the two sexes were
analysed separately.

2.2.3 Sex stratified analysis of developmental parameters

Previous work on this dataset did not find evidence for non-linear trajectories of development
of functional connectivity between the majority of all possible pairs of regional nodes (Váša
et al., 2020). Therefore we used a linear function to model the fixed effect of age on
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regional and edge-wise metrics of cortico-cortico, subcortico-cortical and cortico-subcortical
functional connectivity, also including the fixed effect of site and a subject-specific intercept
as a random effect, in linear mixed effects models fit separately for males and females. For
each region i we calculated the mean weighted degree as per Equation 1.2.

Briefly, we estimated nodal and edge-wise baseline connectivity (FC14) as the predicted
FC at age 14, and the adolescent rate of change (FC14�26) as a linear function of age in the
model. We calculated MI for each node as Spearman’s correlation of edge-wise FC14 and
FC14�26 (Fig. 2.2).

Specifically, we used a sex-stratified approach to analyse developmental parameters over
the course of adolescence. This means that we estimated the developmental parameters,
FC14 and FC14�26, separately for each sex, as detailed below.

First, we estimated FC14 and FC14�26 locally, i.e. for each node. We used linear mixed
effects models to estimate the linear effect of age on functional connectivity. These models
included age as the main fixed effect of interest and scanner site as a fixed effect covariate, as
well as a subject-specific intercept as a random effect, as follows:

FCnode ⇠ 1+bage ⇤age+bsite ⇤ site+ gsub ject ⇤ (1|sub ject)+ e (2.2)

where FC refers to the functional connectivity at nodal level, b refers to coefficients for
the fixed effects, gsub ject refers to the coefficients for random effects, and e represents the
residual error.

We then derived baseline connectivity at age 14, FC14, from Equation 2.2 as:

FC14 = 1+bage ⇤14+bsite2 ⇤ (1/3)+bsite3 ⇤ (1/3) (2.3)

Whereas the adolescent rate of change was simply estimated the b coefficient of age
from Equation 2.2 as:

FC14�26 = bage (2.4)

Finally, nodal between-sex differences in FC14 and FC14�26 were estimated by subtract-
ing each male-specific parameter from the corresponding female-specific parameter:

DFC14 = FC14 f emale �FC14male (2.5)

DFC14�26 = FC14�26 f emale �FC14�26male (2.6)
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We then estimated the same measures at the level of individual edges. Thus, for each sex,
we predicted functional connectivity using linear mixed effects models as above:

FCedge ⇠ 1+bage ⇤age+bsite ⇤ site+ gsub ject ⇤ (1|sub ject)+ e, (2.7)

where FCedge refers to the functional connectivity at edge level, b refers to coefficients
for the fixed effects, gsub ject refers to the coefficients for random effects, and e represents the
residual error.

We then estimated baseline connectivity at age 14, FC14, from Equation 2.7 as:

FC14 = 1+bage ⇤14+bsite2 ⇤ (1/3)+bsite3 ⇤ (1/3). (2.8)

Whereas the adolescent rate of change was simply estimated by the b coefficient of age
from Equation 2.7 as:

FC14�26 = bage. (2.9)

We then combined the sex specific estimates of these two developmental parameters
to estimate a sex-specific estimate of MI. Thus in each sex we evaluated at each node the
linear relationship (using Spearman’s r) between the ranked edge-wise parameters FC14 and
FC14�26 for each sex, e.g.:

MInode =
cov(FC14,FC14�26)

sFC14 ,sFC14�26

(2.10)

where sFC14 and sFC14�26 are the standard deviations of the ranked variables.

Finally, we estimated the between-sex difference in maturational index by subtracting the
male-specific MI from the corresponding female-specific MI:

DMI = MIf emale �MImale (2.11)

We parametrically tested for the significance of the sex difference in all developmental
parameters using a Z-test (Paternoster et al., 1998). In short, the Z-statistic was estimated as
the difference in developmental parameters divided by the standard error of the difference in
the parameters. More specifically, the Z-score for sex difference in maturational index (DMI)
was estimated by:
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z =
MIf emale �MImale

SEMIf emale�MImale

=
MIf emale �MImaleq

SE2
f emale �SE2

male

(2.12)

where MIf emale and MImale are the maturational indices for each sex, and SE f emale and
SEmale are the standard errors of MI for each sex.

For FC14 and FC14�26, the standard error of the sex difference in parameters was defined
differently. For example, the Z-score for the sex difference in FC14 (DFC14) was estimated
by:

z =
FC14 f emale �FC14male

SEFC14 f emale�FC14male

=
FC14 f emale �FC14maleq
(

SE f emale
Nf emale

� SEmale
Nmale

)2
(2.13)

where FC14 f emale and FC14male are the baseline connectivity at age 14 for females and
males, respectively; SE f emale and SEmale are the standard errors of FC14 for each sex;
and Nf emale and Nmale are the numbers of females and males. The same estimator of Z
scores (Equation 2.13) was also specified for analysis of between-sex differences in FC14�26.
The difference between estimators (Equations 2.12 and 2.13) of the sex differences in these
developmental parameters results from the fact that the standard error of MI is the standard
error of the correlation between FC14 and FC14�26, whereas the standard errors of FC14 and
FC14�26 are the standard errors of the regression coefficients which include the number of
observations in the denominators. Thus, the Z-score for sex difference in three developmental
fMRI parameters was estimated at each of 346 cortical and subcortical regions. We tested
for statistical significance using P-values from the standard normal distribution controlled
for multiple comparisons by the false discovery rate (FDR). For each whole brain map,
comprising 346 regional P-values, we used FDR = 5% as the threshold for significant sex
difference in developmental fMRI parameters.

Our principal reason for choosing a sex-stratified approach was that it allowed the
variance of the random effects estimated in Equation 2.7, Var(gsub ject), to differ between
sexes. As shown in Fig. 2.6, the distributions of random effects were indeed not identical
in males and females – males were more variable. Higher variance of random effects
was negatively correlated with lower residual variance (denoted e in Equation 2.7) in
both sexes; but the strength of correlation was greater in females than males, as shown in
Fig 2.6B. Thus, although the between-sex difference in random effects variance was not
statistically significant by a permutation test (Fig 2.6C) there was a degree of difference
which would influence the residual variance and therefore the significance of the standardised
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developmental parameters. It is for this reason that we principally used the sex-stratified
approach to linear mixed effects modeling of these longitudinal data. Above, we outlined how
we modelled adolescent parameters of functional connectivity development in our principal,
sex stratified approach. In the next section, we will introduce the alternative approach,
modelling age-by-sex interaction effects. While this work focuses on the former approach,
we will show in the results section, that the latter produces highly similar result.

Fig. 2.6 Random effect variance: We estimated the random effects of individual participants
on global functional connectivity in a sex stratified approach. We used bootstrapping to
resampling participants with replacement 10,000 times within each age stratum, thus sampling
the distributions of random effects variance and residual variance. (A) Distribution of random
effects estimated in a sex stratified approach. (B) Correlation of random effect variance
and residual variance for males and females. The true male and female variance, as well
as the random effect variance of an interaction model are marked. This plot shows a clear
separation of male and female random effect variance. (C) Using a permutation procedure,
we found that there was no statistically significant (at P < 0.05) difference in random effect
variance between males and females (P = 0.14).

2.2.4 Age ⇥ sex interaction model

To demonstrate robustness of our results to an alternative modeling strategy, we also analysed
all the data (male and female combined) using a linear mixed effects model to estimate the
main effects of age and sex, and the age-by-sex interaction effect, on FC at each edge:

FCedge ⇠ 1+bage⇤age+bsex⇤sex+bage⇤sex⇤age⇤sex+bsite⇤site+gsub ject ⇤(1|sub ject)+e
(2.14)
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where FC refers to the functional connectivity at edge level, b refers to coefficients for
the fixed effects, g refers to coefficients for random effects and e represents the residual error.

On this basis, we can then estimate FC14 for males and females as follows:

FC14 f emale = bage ⇤14+bsex ⇤0+bage⇤sex ⇤0⇤14+bsite2 ⇤ (1/3)+bsite3 ⇤ (1/3) (2.15)

FC14male = bage ⇤14+bsex ⇤1+bage⇤sex ⇤1⇤14+bsite2 ⇤ (1/3)+bsite3 ⇤ (1/3) (2.16)

And likewise we can estimate FC14�26 for males and females:

FC14�26 f emale = bage +bage⇤sex ⇤0 (2.17)

FC14�26male = bage +bage⇤sex ⇤1 (2.18)

Finally these sex-specific estimates of FC14 and FC14�26 can be combined to estimate
sex-specific estimates of MI and the between-sex difference in MI, DMI, as:

DMI = MIf emale �MImale (2.19)

As in our principal analysis, we tested the significance of the sex difference in MI by a
parametric approach, comparing the slopes of the regression of FC14 and FC14�26 Paternoster
et al. (1998).

2.2.5 Spatial auto-correlation (spin-tests)

In this work, we are interested in identifying the correspondences between the topographies
of different brain maps, i.e., the extent of their spatial correlation or co-location. It has
been found that standard statistical methods fail to account for the spatial smoothness of
brain maps (Alexander-Bloch et al., 2013; Markello and Misic, 2021; Váša et al., 2018).
More specifically, brain maps are spatially autocorrelated datasets, such that neighboring
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data points on a map cannot be considered as statistically independent and thus violate the
assumptions of many statistical frameworks (Markello and Misic, 2021).

To control for the spatial auto-correlation between neighboring brain regions, each
analysis of the spatial co-location of two brain maps is reported with both the parametric
P-value corresponding to the Pearson correlation (r), as well as a P-value derived from
the more conservative spin-test permutation test (Alexander-Bloch et al., 2013; Váša et al.,
2018) which conserves the spatial auto-correlation of both maps and is denoted Pspin. In
brief, Pspin-values for the spatial correlation between two maps were estimated by comparing
the magnitude of the empirical correlation between the two maps to a null distribution of
correlations based on a set of 10,000 random spatial rotations or spins of the observed maps
that preserved their internal, spatially autocorrelated structure.

Alexander-Bloch et al. (2013) first suggested a vertex-wise approach to correct for
spatial auto-correlation. Our results are estimated at regional level, thus we corrected all
tests for spatial co-locations between two autocorrelated cortical maps using a regional
adaptation of the spherical permutation test implemented and published by Váša et al. (2018):
https://github.com/frantisekvasa/rotate_parcellation. Since the publication by Váša et al.
(2018), the effect of regional centroid definition on spatial permutation procedures has been
further researched (Markello and Misic, 2021). It has been suggested that the previously used
method of estimating the regional centroid by averaging across all vertex coordinates leads
to the centroids lying under the surface of the cortical mesh (Markello and Misic, 2021). We
therefore defined the centroids by computing the geodesic distance between all vertices in
each region and assigning the vertex with the smallest average geodesic distance to all other
vertices as the centroid of each region (Markello and Misic, 2021).

More specifically, this implementation of the spatial permutation test generated random
permutation matrices by (i) generating three {3 ⇥ 3 } matrices with coefficients following
independent standard normal distributions, (ii) applying a QR decomposition, and (iii) retain-
ing the orthogonal matrices Q which have uniformly distributed parameters. Subsequently
the regions of the randomly rotated brain map are matched to the coordinates of the regions
in the observed map using Euclidean distance. Starting at the rotated region with the highest
average Euclidean distance to all unrotated regions, the algorithm proceeds in descending
order to match each rotated region to the unrotated centroid it is closest to.

Spin permutations were applied to both maps, before comparing each permuted map to
the observed version of the other map, and then calculating the average Pspin-value (Váša
et al., 2018).

https://github.com/frantisekvasa/rotate_parcellation
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2.2.6 Sensitivity analyses

Sensitivity of results to alternative motion-correction strategies

In the original sample, we corrected for motion across all subjects by regressing FD at each
edge. While this removed the effect of motion on FC across subjects, we still observed a
weak, but significant effect of sex on FD (bsex = 0.02,Psex < 0.01, t(296) = 3.3; Fig. 2.5C).
We therefore opted to construct three replication samples to test the sensitivity of our results
to the specific motion-correction procedures outlined above. (1) A sample where FD was
regressed by sex: We constructed a sample where FD was regressed on FC at each edge, as in
the main sample, but separately by sex. Thus by construction, for each sex separately, there
was no longer an effect of distance on the correlation between FC and motion (Fig. 2.7B),
and the average edge-wise correlation between FC and motion was zero (Fig. 2.7D,E). (2)
Motion-matched sample: We constructed a motion-matched subsample of the NSPN dataset
by removing participants with particularly high and low FD values from each agebin in the
original sample, until no significant difference in head motion was observed between males
and females, while the age and sex stratification of the original sample was maintained. If a
participant was included in the sample, all of their follow-up scans were also included. The
final sample consisted of 314 subjects (156 females), 124 of which were scanned once, 89
twice and 4 three times (Table 2.2). (3) global signal regression (GSR) regression sample:
We re-processed all data using an alternative pipeline for motion correction. The first pre-
processing steps were the same as in the original sample. After ME-ICA pre-processing,
however, we performed GSR. The global signal was estimated as the average time series of
all cortical voxels. We regressed this time series from each region. From here, we proceeded
with wavelet filtering using brainwaver v. 1.6 and all following steps as in the original
pre-processing pipeline.

Sex # Scans # Scanned At Baseline

1 2 3 µ Age s Age µ FD s FD

female 156 67 43 1 18.9 3.0 0.12 0.02
male 158 57 46 3 18.9 2.8 0.12 0.03

Table 2.2 NSPN fMRI motion-matched sample overview: We identified a subset of
participants such that there was no significant sex difference in framewise displacement (FD)
(P > 0.05). We resampled subjects within age strata and kept all scans from each single
participant together, such that the original structure of the dataset was preserved.
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Fig. 2.7 Effect of head motion (FD) on functional connectivity (FC) in the FD regression
by sex sample : To remove the sex difference in the dependence of FC on motion, mean
FD was regressed from each edge for males and females separately; the residuals constitute
participant-specific FD-corrected FC, with intercepts retained to maintain the relative impor-
tance of edges across the group as well as the interpretability of FC values. (A) Following
this correction, subjects’ average head motion, quantified as mean frame-wise displacement
(FD), did not change with age (Page = 0.21, t(220) = 1.25). However, there was a weak, but
significant effect of sex on FD (Psex < 0.01, t(296) = 3.266). (B) Mean participant motion
was not related to mean FC across participants (PFD = 0.93, t(221) = 0.09) and there is no
effect of sex on the relationship (PSex = 0.93, t(296) =�0.05). (C) The correlation between
FC at each edge and participant motion shows a weak but significant relationship with the
Euclidean distance spanned by edges (r = 0.05,P < 0.001). The average edge-wise corre-
lation between FC and motion is very close to zero (intercept = -0.002). By definition, the
correlation between FC and motion almost completely vanished at the level of individual
edges for males and females separately (D) and (E).

Sensitivity of results to intra-cranial volume (ICV)

On average, men tend to have larger ICV than females, hypothetically due to sex differences
in body size (Ruigrok et al., 2014). Previous work has demonstrated effects of intracranial
volume on grey matter (Eikenes et al., 2022) and white matter volume (Sanchis-Segura et al.,
2020), and brain-behavior relationships (Dhamala et al., 2022), which may mediate some of
the previously reported sex differences on these measures. Little is known about the effect of
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ICV on functional connectivity, so to test for the sensitivity of our results to ICV, we ran an
additional sensitivity analysis in which we controlled for ICV.

Specifically, to estimate the effects of total ICV on our main results, we included ICV in
both the analysis of global functional connectivity, as well as in the calculation of maturational
index. To estimate the effect of ICV on global functional connectivity, we added ICV to our
model as a covariate:

FCglobal ⇠ 1+age⇤bage + sex⇤bsex + site⇤bsite + ICV ⇤bICV + gsub ject ⇤ (1|sub ject)+ e
(2.20)

where FCglobal refers to the global functional connectivity, b refers to coefficients for
the fixed effects, gsub ject refers to the coefficients for random effects, and e represents the
residual error.

Likewise, we also included ICV in our analysis of edge-wise functional connectivity.

FCedge ⇠ 1+age⇤bage + site⇤bsite + ICV ⇤bICV + gsub ject ⇤ (1|sub ject)+ e (2.21)

We predicted the mean ICV at age 14 from the model:

ICVsex ⇠ 1+age⇤bage + site⇤bsite + gsub ject ⇤ (1|sub ject)+ e (2.22)

as:
µICV14sex

= 1+14⇤bage +1/3⇤bsite1 +1/3⇤bsite2 (2.23)

We then included the effect of ICV in the calculation of baseline connectivity (FC14)
by adding bICV (from Equation 2.21) multiplied by the mean ICV at age 14 for males and
females, respectively (µICV14sex

from Equation 2.23), as an extra term in the regression model
used to estimate FC14. Thus for each edge, we estimated baseline connectivity at age 14 as:

FC14 = 1+14⇤bage +1/3⇤bsite2 +1/3⇤bsite3 +µICV14 ⇤bICV + gsub ject ⇤ (1|sub ject)+ e
(2.24)

As before, the rate of change is calculated as:
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FC14�26 = bage, (2.25)

and the MI is the coefficient of the linear relationship between the ICV-corrected FC14

and ICV-corrected FC14�26.

Sensitivity of results to global FC

We noted that there was a sex difference in global functional connectivity (FCglobal) between
males and females in our sample (details are described in the results section; Fig. 2.9A).
In this work, we are interested in analysing sex differences in adolescent edgewise re-
organization of functional connectivity. To ensure our results were not confounded by the
observed sex difference in FCglobal , we ran a sensitivity analysis, correcting for the effects of
FCglobal .

Specifically, to estimate the effects of FCglobal , on our main results, we included FCglobal

in the calculation of maturational index. First, we included FCglobal in our analysis of
edge-wise functional connectivity.

FCedge ⇠ 1+age⇤bage+ site⇤bsite+FCglobal ⇤bFCglobal + gsub ject ⇤ (1|sub ject)+e (2.26)

We predicted the mean FCglobal at age 14 from the model:

FCglobalsex ⇠ 1+age⇤bage + site⇤bsite + gsub ject ⇤ (1|sub ject)+ e (2.27)

as:

µFCglobal14sex
= 1+14⇤bage +1/3⇤bsite1 +1/3⇤bsite2 (2.28)

We then included the effect of FCglobal in the calculation of baseline connectivity (FC14)
by adding bFCglobal (from Equation 2.26) multiplied by the mean FCglobal at age 14 for males
and females, respectively (µFCglobal14sex

from Equation 2.28), as an extra term in the regression
model used to estimate FC14. Thus for each edge, we estimated baseline connectivity at age
14 as:
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FC14 = 1+14⇤bage+1/3⇤bsite2 +1/3⇤bsite3 +µFCglobal14
⇤bFCglobal +gsub ject ⇤(1|sub ject)+e

(2.29)

As before, the rate of change is calculated as:

FC14�26 = bage, (2.30)

and the MI is the coefficient of the linear relationship between the FCglobal-corrected
FC14 and FCglobal-corrected FC14�26.

2.2.7 Gene enrichment analyses

Partial least squares regression

Partial least squares regression (PLS) has been used as a powerful tool to describe the
relationship between two sets of variables (represented as two matrices) which uses latent
variables to model the covariance them (Abdi, 2003). Its ability to handle situations with
a large number of potentially multicollinear predictors has made it useful for analysis of
neuroimaging data (Morgan et al., 2019; Vértes et al., 2016; Whitaker et al., 2016a). Briefly,
PLS finds mutually orthogonal components that are ranked in order of their importance in
explaining the covariance between the dependent and independent variables, so that the first
PLS component, denoted first partial least squares regression component (PLS1), defines the
weighted functions of both dependent and independent variables with maximal covariance
(Fig. 2.8). Here, we used PLS to define the weighted gene expression pattern that was most
strongly correlated with the anatomical pattern of sex differences in adolescent functional
connectivity maturation, DMI. Thus we related the 180-length vector of bilaterally averaged
sex differences in adolescent FC development, DMI, to the 180 by 15,746 matrix of post
mortem brain regional gene expression data provided by the Allen Human Brain Atlas
(AHBA) from 6 adult brains (5 males) (Arnatkeviciute et al., 2019; Hawrylycz et al., 2015).
We analysed whether the first PLS component explained more variance than expected by
chance by randomly permuting the rows of the gene expression matrix and comparing the
variance explained by PLS regression of DMI on the observed transcriptional data with
the distribution of variance in DMI explained by 1000 random permutations of the brain
gene expression matrix. Additionally, we used spherical permutation testing to assess
the significance of the PLS analysis. In this case the null distribution was generated by
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permuting the order of regions in the dependent variable (Y ) according to a spherical rotation
of regions the regions, as described in Section 2.2.5. For PLS1, which accounted for the
greatest proportion of covariance, we estimated the variability of each transcript’s weighting
coefficient by bootstrap resampling (10,000 times) of the brain regional transcription matrix.
The effect size and statistical significance of individual transcript weights on PLS1 were
defined by Z-scores (observed weights divided by their bootstrapped standard errors).

Fig. 2.8 Simplified model of partial least squares analysis: Here, we use PLS to find
the weighted pattern of gene expression weights that is maximally co-located with the
map of sex differences in adolescent functional connectivity development. We designate
the {180 ⇥ 15,746 } matrix of post mortem gene expression data in 180 brain regions
provided by the Allen Human Brain Atlas from 6 adult brains (5 males) (Arnatkeviciute
et al., 2019; Hawrylycz et al., 2015) the dependent variable, X ; and the {180 ⇥ 1 } vector
of sex differences in maturational index, DMI, the response variable, Y . PLS maximises the
covariance between the projections into latent space of X and Y , termed U and T respectively.
The PLS components, or weights, wx, describe the projection of X onto T , i.e. X = Twx +E,
where E is an error term. Since T is estimated by maximizing the covariance with U , wx
defines the weighted functions of both dependent and independent variables with maximal
covariance.

Median rank-based gene enrichment

We used a median rank-based approach to assess the enrichment of the PLS1-weighted gene
list for previously curated lists of genes with specialised functional roles or associations with
psychiatric disorder (Seidlitz et al., 2020). This allowed us to assess whether functionally or
pathophysiologically relevant genes were non-randomly represented among the most strongly
weighted PLS1 genes that have brain expression anatomically co-located with the spatial
pattern of sex differences in maturational index. To do this, each gene on the prior gene list
of interest was ranked in terms of its Z-score weighting on PLS1 and the observed median
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rank was estimated; then an equivalent number of genes, were randomly selected and their
median rank on the PLS1 component was estimated.

Gene length can introduce bias in microarray data analysis. Longer genes produce more
RNA molecules, thus they tend to generate stronger signals on the microarray compared to
shorter genes, even if their actual expression levels are the same (Oshlack and Wakefield,
2009). This bias can impact data analysis and lead to incorrect conclusions. While routine
expression-data quality control aims to adjust for this bias, here we opted to match the
randomly selected genes for gene length to control for any residual effects of gene length.

More specifically, in order to ensure that no residual effects of gene length could confound
the results of the gene enrichment analysis, we matched the genes in the empirical list with a
set of genes in the list of AHBA genes which were similar in length based on the Mahalanobis
distance of their gene length to all other genes. We then proceeded to resample from that
length-matched subset of AHBA genes to find a set of genes matched for gene length with
the empirical gene lists (P < 0.05).

This second step of randomly selecting and ranking genes was repeated 10,000 times
to sample the permutation distribution of median rank. Finally, the null hypothesis that the
observed median rank (for the gene list of interest) was not significantly different from the
median rank of a random list of genes (matched for gene length and number of genes) was
tested by comparing the observed median rank to the centiles of the permutation distribution.
For example, for a two-tailed test of significant enrichment with P < 0.05, if the observed
median rank was lower than the 2.5th percentile of the permutation distribution, then the
gene list of interest was significantly enriched among the most negatively weighted PLS1
genes; whereas if the observed median rank was greater than the 97.5th percentile of the
permutation distribution then the gene list of interest was significantly enriched among the
most positively weighted PLS1 genes.

Developmental enrichment

We used the Cell Specific Expression Analysis tool (CSEA; http://genetics.wustl.edu/jdlab/csea-
tool-2/) to test for enrichment of genes co-located with the map of sex differences in functional
connectivity development, DMI, for developmentally relevant genes across the cortex and
subcortical structures (Dougherty et al., 2010; Xu et al., 2014). The CSEA tool uses human
data from BrainSpan, an atlas of the developing human brain (Miller et al., 2014), with
postmortem human brain specimens collected across 13 developmental stages (4 weeks post
conception to 60 years of age) in 8-16 brain structures. We uploaded a ranked list of genes
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with significantly negative or positive PLS1 weights (PFDR < 0.05) to the CSEA tool under
the category SEA across brain regions and development.

2.3 Results

2.3.1 Sex differences in parameters of adolescent development of global
mean degree

We modeled age and sex effects on global functional connectivity of each participant, esti-
mated as the mean weighted degree over all nodes in the connectome, using linear mixed
effects models (LMEs). Global mean degree increased with age (t(219)=2.3, P<0.05)
and males had higher global mean weighted degree than females (t(296)=5.5, P<0.0001;
Fig. 2.9A).

Fig. 2.9 Sex differences in functional connectivity at age 14 (FC14) and adolescent rate
of change of connectivity (FC14�26) per year: (A) Global FC strength increased with
age (t(219) = 2.3,P < 0.05) and was higher in males (t(296) = 5.5,P < 0.0001). (B) To
estimate two parameters of development at each regional node, we fit a linear model to the
relationship between age and weighted degree (nodal strength of connectivity to the rest of
the network) for males and females separately. The two model parameters are the intercept, or
“baseline” connectivity at age 14 (FC14), and the linear rate of change in connectivity during
adolescence (FC14�26). (C) We found 321/330 regions had significantly increased cortico-
cortical connectivity, and 230/330 regions had increased cortico-subcortical connectivity, in
males compared to females at baseline (PFDR < 0.05). (D) FC14�26 was only significantly
different between sexes (decreased in females) in 27/330 subcortico-cortical connections of
the nucleus accumbens.

Regional functional connectivity was estimated between and within cortical and subcor-
tical subsets of nodes by averaging the relevant parts of the connectivity matrix. To model
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development of functional connectivity during adolescence, we focused on three parameters:
regional baseline connectivity at age 14, FC14 (Fig. 2.10); regional linear change in con-
nectivity between 14-26 years, FC14�26 (Fig. 2.11); and the signed Spearman’s correlation
of these two parameters (Fig. 2.12A), or maturational index (�1 < MI <+1) (Fig. 2.12B;
Váša et al. (2020)). Previous work on this sample has reported developmental change (on
average over both sexes) in terms of these parameters estimated at each regional node of a
whole brain fMRI network (Váša et al., 2020). Here we estimated each of these parameters
for males and females separately, and the between-sex difference for each parameter, e.g.,
DMI = MIf emale-MImale. We tested the significance of the between-sex difference of each
regional parameter using parametric tests.

Fig. 2.10 All baseline connectivity FC14 plots: Separate linear mixed effects models were
fitted for both sexes to model regional functional connectivity development as predicted
by age and site for cortico-cortical, cortico-subcortical and subcortico-cortical connections.
Baseline connectivity, FC14, was separately estimated using these models for females (top
row) and males (second row) and a difference map was constructed (third row). Lastly, this
map of sex differences in FC14 was thresholded for significance after correction for multiple
comparisons at PFDR < 0.05 (last row).

The pattern of adolescent rate of change in connectivity was strongly positive in sensori-
motor cortex, and less positive or slightly negative in association cortical and limbic areas,
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for both sexes (Fig. 2.11). There were no significant sex differences, i.e., DFC14�26 = 0, for
cortico-cortical or cortico-subcortical connectivity; but a subset of 27 subcortico-cortical
connections, involving the nucleus accumbens, had significantly more negative rates of
change in females compared to males (PFDR > 0.05; Fig. 2.11).

Qualitatively, baseline connectivity at age 14 was greater in primary sensorimotor cortex
than in association cortex for both sexes (Fig. 2.10). As predicted by the sex difference
in global functional connectivity at all ages (Fig. 2.10A), males had significantly stronger
baseline connectivity than females at 14 years, i.e., DFC14 = FC14, f emale �FC14,male > 0, in
cortico-cortical and cortico-subcortical connections (Fig. 2.10).

Fig. 2.11 Significance of sex difference in adolescent rate of change FC14�26: The
adolescent rate of change, FC14�26, was estimated for females (top row) and males (second
row) separately, and a difference map was constructed (third row). This map of sex differences
in FC14�26 was thresholded for significance after correction for multiple comparisons at
PFDR < 0.05 (last row). DFC14�26 was significantly non-zero, indicating a difference between
males and females, in a subset of 27 subcortico-cortical connections involving the nucleus
accumbens
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2.3.2 Sex differences in maturational index

Maturational index was positive in sensorimotor cortices, and negative in association cortex
and subcortical areas, in both sexes separately (Fig. 2.12), as previously reported for both
sexes on average (Váša et al., 2020).

Fig. 2.12 Sex-specific maturational index: (A) maturational index (MI) was estimated as
the correlation between edgewise baseline connectivity at age 14 (FC14), and the linear rate
of change in connectivity per year (FC14�26), at each regional node. (B) Maturational index
for males and females separately, all sides of the brain displayed.

As described above, the sign of MI relates to two modes of maturational development:
“disruptive”, i.e. MI < 0, and “conservative”, i.e. MI > 0. Disruptive development means
that edges that are strong at baseline become weaker over the course of adolescence (“strong
getting weaker”) and those edges that are weak at baseline become stronger (“weak getting
stronger”). Conservative development, in contrast, means that edges that are strong at baseline
gain strength over the course of adolescence (“strong getting stronger”) (Fig. 2.2), and edges
that are weak at baseline become weaker (’weak getting weaker’). We quantified which
of these trends was predominant in either developmental mode respectively, by estimating
the ratio of edges with positive FC14�26 to negative FC14�26 (Fig. 2.13A). If a region has
disruptive development (MI < 0), and the ratio of its edges with negative versus positive
values of FC14�26 is greater than 0.5, we defined the mode of maturational development of
that region to be predominantly weak getting stronger; if the same ratio was less than 0.5 we
defined it as predominantly strong getting weaker. Conversely, if a region has conservative
development (MI > 0),and the ratio of its edges with negative versus positive values of
FC14�26 is greater than 0.5, we mode of maturational development of that region to be
predominantly strong getting stronger; and if the same ratio was less than 0.5 we defined it
as predominantly weak strong weaker. We find that in both males and females respectively,
more than 75% of regions with disruptive development (MI < 0) are classified as “weak
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getting stronger” (Fig. 2.13B), while all conservative regions (MI > 0) in both sexes were
classified as “strong getting stronger” (Fig. 2.13C).

Fig. 2.13 Trends in disruptive and conservative development of connectivity: (A) We
estimated trends for regions of disruptive and conservative change in each sex by calculating
for each node i the proportion of edges with a positive rate of change connected to it. We
then thresholded this ratio map for disruptive and conservative nodes in each sex. (B) In
disruptive regions, if this ratioi > 0.5, a region is predominantly strong getting weaker, if
ratioi < 0.5, it is predominantly weak getting stronger. We found that disruptive regions
were predominantly characterized by weak getting stronger changes (78.5% of regions in
females and 81.3% in males). (C) In conservative regions, if this ratioi > 0.5, a region was
designated as strong getting stronger, if ratioi < 0.5, it was classified as weak getting weaker.
We found that all conservatively maturing regions in both sexes were strong getting stronger.

There were many areas of significant sex difference in MI (PFDR < 0.05; Fig. 2.14D).
Females had more negative MI than males in 107 regions (Fig. 2.14A,C; for a full list see
Supplementary Table A.3). In 84 of these regions, exemplified by the right putamen (Fig.
2.14B), there was more disruptive development in females, i.e., weak connections at 14
years became stronger during adolescence, or strong connections became weaker, in females
compared to males. In 23 regions, exemplified by right visual area V6 (Fig. 2.14C), there
was less conservative development in females, i.e., strong connections at 14 years became
stronger during adolescence in males compared to females. Thus the brain system defined by
regions with a negative DMI was predominantly characterized by a weak-getting-stronger
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profile of developmental change in functional connectivity that was greater in females than
males.

Fig. 2.14 Significance of sex difference in MI: (A) The sex difference in MI was estimated
by DMI = MIf emale �MImale. DMI was negative in the ventral and medial prefrontal gyrus,
ventrolateral prefrontal cortex, anterior and posterior cingulate gyrus, medial temporal gyrus,
and subcortical nuclei, indicating sex differences in adolescent development of connectivity
of these regions. More specifically, negative DMI defined a set of brain regions where
adolescent development was either more disruptive (weak connections at 14 years became
stronger during adolescence, or strong connections became weaker) or less conservative
(strong connections at 14 years became stronger or weak connections became weaker)
in females compared to males. (B) Map of brain regions where development was more
disruptive in females. As exemplified by data from the right putamen, functional connections
of disruptively developing nodes that were strong at 14 years (high FC14, x-axis) became
weaker over the period 14-26 years (FC14�26 < 0, y-axis), and edges that were weakly
connected at 14 years became stronger over the course of adolescence, especially in females.
(C) Map of brain regions where development was less conservative in females. As exemplified
by right visual area V6, connections that were strong at baseline become stronger over the
period 14-26 years, especially in males. Due to limited space only these two regions were
chosen as examples of the trends described. (C) DMI was significant in 230/346 regional
nodes (PFDR = 0.05).DMI thresholded by significance (P(DMI = 0)< 0.05).

To further decode the anatomical and functional profile of the observed sex differences
in adolescent functional connectivity maturation, the unthresholded map of DMI was co-
registered with a prior map of cortical cytoarchitectonic classes (Fig. 2.15A) and a prior map
of resting state networks (Yeo et al., 2011) from an independent component analysis of adult
fMRI data (Fig. 2.15B). Regions of negative DMI were concentrated in secondary sensory,
limbic, and insular classes of cortex, and in subcortical structures, defined anatomically (Fig.
2.15A); and in default mode, limbic, ventral attentional and subcortical systems defined
functionally (Fig. 2.15B).
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Fig. 2.15 Cell type and task fMRI enrichment: (A) DMI was most negative in cytoarchi-
tectonically defined secondary sensory, limbic, and insula cortex, and subcortical structures
(B) as well as functionally defined (fMRI) default mode network (DMN), ventral attention
network, and limbic systems, and subcortical structures. (C) Wordcloud of Neurosynth
meta-analytical cognitive terms scaled according to their strength of association with the
disruptively developing brain regions (cortical map of DMI < 0).

2.3.3 X-chromosome and developmental gene enrichment

To investigate the relationships between gene expression profiles and sexually divergent
adolescent brain development, we used partial least squares regression (PLS) regression to
find the weighted gene expression pattern that was most closely co-located with the DMI
map. Whole-genome transcripts were estimated for the average of each of 180 bilaterally
homologous cortical regions using adult postmortem data (N = 6) provided by the Allen
Human Brain Atlas (Arnatkeviciute et al., 2019; Hawrylycz et al., 2015).

The first PLS component (PLS1; Fig. 2.16A) explained 34.6% of the variance in DMI,
significantly more than expected by chance (Pperm < 0.05,Pspin < 0.05). The PLS1 gene
expression weights were positively correlated with DMI (Fig. 2.16B). This means that
negatively weighted genes, at the bottom of the ranked PLS1 list, were overexpressed in
regions with negative DMI, or more disruptive maturational change in females. Conversely,
positively weighted genes, at the top of the ranked PLS1 list, were underexpressed in regions
with negative DMI (Fig. 2.16B).
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Fig. 2.16 Relationships between gene expression profiles and sexually divergent adoles-
cent brain development: (A) We used PLS regression to map gene expression data (Hawry-
lycz et al., 2015; Kaczkurkin et al., 2019) onto DMI. (B) PLS1 was positively correlated
with DMI; thus, low PLS1 scores were co-located with low DMI or predominantly female
more disruptive regions. (C) Relationship of DMI to expression of exemplary genes: sodium
voltage-gated channel beta subunit 1 (SCN1B), a positively weighted gene near the top of
the ranked PLS1 weights list; cortistatin (CORT), a near-zero weighted gene in the middle
of the list; and somatostatin (SST), a negatively weighted gene near the bottom. Negatively
weighted genes were more strongly expressed in regions of negative DMI, that is, predomi-
nantly female DMI male disruptive regions, whereas positively weighted genes were more
strongly expressed in regions with female > male conservative development indicated by
positive DMI.

We hypothesised that gene expression patterns related to sex differences in adolescent
brain development might be enriched for X chromosomal genes. This hypothesis was based
on the following considerations. Firstly, genes on the X chromosome are enriched for sex-
differential gene expression in multiple tissues, including the prenatal (Lake et al., 2018) and
postnatal brain (Polioudakis et al., 2019). Second, the X chromosome is diploid in females
(XX) and haploid in males (XY) and while X chromosome inactivation silences transcription
of one of the two X chromosomes in females, incomplete inactivation has been shown to
affect at least 23% of X-chromosomal genes, which results in sex biases in gene expression
and is likely to introduce phenotypic diversity (Oliva et al., 2020). To test this hypothesis, we
assessed chromosomal enrichment of the genes weighted on PLS1. We found that the most
negatively weighted genes, which were highly expressed in brain regions that demonstrated
more disruptive development in females, i.e., regions with negative DMI or more negative
MI in females, were most strongly enriched for X chromosome genes compared to all other
chromosomes (Pperm < 0.001; Fig. 2.17).
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Fig. 2.17 Enrichment for X-chromosome and developmental genes: (A) Enrichment
analysis for chromosomal genes. Plot of the median rank of genes from each chromosome
on PLS1, with standard deviations. (B) Enrichment analysis for neurodevelopmental genes.
Negatively weighted genes (blue) were enriched for genes typically expressed in cortex
during late fetal and early post-natal development and for genes expressed in the amygdala,
hippocampus and striatum during late childhood and adolescence. Positively weighted
genes (red) were enriched for genes typically expressed in cortex and cerebellum during
adolescence and early adult life.

2.3.4 Non-linear effects of age

It is conceivable that there could be non-linear effects of age on functional connectivity.
However, previous work on the same data set Váša et al. (2020) investigated potential
non-linear effects of age and found no substantial evidence for non-linearity in these data.
Specifically, Váša et al. (2020) fitted smoothing splines (generalized additive mixed models)
to edge-wise trajectories of functional connectivity development, using the “gam” function in
R, with the effect of age modelled as the weighted sum of 10 cubic b-splines with knots placed
at quantiles of the data and smoothing optimized using restricted maximum likelihood (Reiss
et al., 2014). This modeling strategy is adaptive to the non-linearity of age effects, such
that non-linear trajectories will be best fitted by spline functions with degrees of freedom
(DF) greater than 2, whereas linear trajectories will be best fitted by spline functions with 2
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DF, analogous to the intercept and gradient parameters of a simple linear model. Váša et al.
(2020) found that approximately 70% of all edges had linear trajectories that were best fit by
spline functions with 2 DF (Fig. 2.18; Váša et al. (2020)). Moreover, there was no evidence
from this analysis that the minority of edges with non-linear trajectories were concentrated
on anatomically specific brain regions or systems. For these reasons, we adopted a linear
function for age-related effects on functional connectivity in our modeling of these data
(Equation 2.7). However, to mitigate any residual concerns that non-linearity of age-related
changes in functional connectivity might confound sex differences in MI, we examined the
relationship between DMI and the nodal mean DF for spline functions of age. As shown in
Figure 2.18 there was no significant correlation (r = 0.006,P= 0.9). This indicates that there
is no evidence for a relationship between non-linear trajectories of functional connectivity
development and sex differences in maturational index.

Fig. 2.18 Non-linear effects of age on FC: In previous work on this sample, Váša et al.
(2020) fitted locally adaptive mixed effect smoothing splines to edgewise trajectories of
functional connectivity development to inspect potential non-linear effects of age on FC. In
these models, non-linear trajectories will be best fitted by spline functions with DF greater
than 2, whereas linear trajectories will be best fitted by spline functions with 2 DF, analogous
to the intercept and gradient parameters of a simple linear model. (A) Distribution of effective
DF of smoothing splines across edges: 71.7% trajectories had DF < 2.1, suggesting that most
trajectories are linear. (B) Cortical distribution of average nodal DF (averaged across all of a
node’s edges). (C) Lastly, we correlated the cortical map of sex differences in maturational
index, DMI, with the cortical map of average nodal DF. We show that there is no association
between evidence for non-linearities in functional connectivity development with age, as
indicated by an effective DF > 2 (r = 0.006, p = 0.9). Panels A and B are reproduced, with
permission, from the Supplementary Information for Váša et al. (2020).
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2.3.5 Sensitivity to alternative modelling strategies

We found that the correlation between our principal sex—stratified results and the results
of this alternative analysis, based on a fixed term for the sex-by-age interaction were nearly
identical, with parameters estimated by sex-stratified and sex-by-age interaction models
demonstrating a high degree of correlation, (r > 0.9; Fig. 2.19). Thus we conclude that our
principal results from sex-stratified modelling are robust to an alternative modelling strategy
that explicitly includes a fixed term for sex-by-age interaction. However, we continue to
prefer the sex-stratified approach because of its greater adaptivity to the evident between-sex
differences in random effects variance (Fig 2.6).

Fig. 2.19 Age ⇥ sex interaction model: We modelled functional connectivity maturational
in a joint model for males and females and included an interaction term for the interaction
of age and sex. (A)-(D) From this model, we derived updated FC14 and FC14�26 for males
and females. We found that those updated measures are highly correlated with our original
measures from the sex stratified approach. (E)-(H) We further found that the sex difference in
maturational index (MI), as well as the map of the effect size of this sex difference (Z-values),
are highly correlated with our main analysis.
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2.3.6 Sensitivity to alternative motion-correction strategies

To assess the robustness of key results to the two-step process for head motion correction,
we conducted three sensitivity analyses: (i) sex-specific motion correction - FC matrices
were regressed on FD separately for males and females; (ii) GSR correction - the fMRI
time series at each node were regressed on the global fMRI signal per participant; and (iii)
motion-matched sub-sample analysis - we used a subset of data (N=314), comprising equal
numbers of males and females, for which there was no statistical difference in FD. We aimed
to replicate our key findings of sexually divergent adolescent development of functional
connectivity between DMN, limbic and subcortical regions, as well as an enrichment for
X-chromosome genes.

We compared the results from these sensitivity analyses quantitatively to the correspond-
ing results at all stages of the principal analysis. There was a significant correlation between
the developmental fMRI metrics (FC14, FC14�26, and MI) estimated by each of these sen-
sitivity analyses, and the same parameters estimated by our principal analysis. Further, we
found that the map of sexually divergent adolescent development of functional connectivity
of our principal analysis was highly correlated with all replication analysis maps (mean
correlation Pearson’s r = 0.8 between principal and sensitivity analyses of DMI).
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Fig. 2.20 Sensitivity of key findings to motion: Correlation of maps estimated using the
principal dataset and analysis pipeline and the three sensitivity analyses designed to test
the robustness of these principal results to different strategies for motion correction. (A)
Correlation of individual male and female maturational index (MI) maps. (B) Correlation of
sex difference in maturational index (DMI) maps across all regions calculated from principal
and sensitivity analyses.

More specifically, the male and female FC14 were highly correlated with the parameters
estimated in the original sample, in (i) the sample where FD was regressed by sex (rmale =

0.94,Pmale < 0.001;r f emale = 0.95,Pf emale < 0.001; Fig. 2.21A, first column); (ii) in the
motion-matched sub-sample (rmale = 0.89,Pmale < 0.001;r f emale = 0.98,Pf emale < 0.001;
Fig. 2.21A, second column); and moderately correlated with (iii) the same parameters derived
in the GSR corrected sample (rmale = 0.45,Pmale < 0.001;r f emale = 0.48,Pf emale < 0.001;
Fig. 2.21A, third column). Next, the male and female FC14�26 were highly correlated with
the parameters estimated in the original sample, in (i) the sample where FD was regressed by
sex (rmale = 0.99,Pmale < 0.001;r f emale = 0.98,Pf emale < 0.001; Fig. 2.21B, first column);
(ii) in the motion-matched sub-sample (rmale = 0.94,Pmale < 0.001;r f emale = 0.92,Pf emale <

0.001; Fig. 2.21B, second column); and moderately correlated with (iii) the same parameters
derived in the GSR corrected sample (rmale = 0.23,Pmale < 0.001;r f emale = 0.52,Pf emale <

0.001; Fig. 2.21B, third column).

Further, the original sex difference in maturational index, DMI, was highly correlated
with the same parameters estimated in (i) the sample where FD was regressed by sex
(r = 0.92,P < 0.001; Fig. 2.21C, first column); (ii) in the motion-matched sub-sample
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(r = 0.8,P < 0.001; Fig. 2.21C, second column); and moderately correlated with (iii) the
same parameters derived in the GSR corrected sample (r = 0.72,P < 0.001; Fig. 2.21C,
third column).

With respect to the gene enrichment results observed in our main analysis, we found
that in the sensitivity analyses X-chromosome genes ranked towards the bottom of PLS1;
however, this enrichment was not always significant at P < 0.05 (Fig. 2.21E). Specifically,
in the GSR-pre-processed data, we found that enrichment for X-chromosome genes was the
second-strongest, compared to all other chromosomes. We did observe a negative median
rank, thus the effect observed in this sensitivity analysis was in the same direction as in the
principal analysis, however the enrichment was not statistically significant.

2.3.7 Sensitivity of results to ICV and global FC

Given the male > female sex difference in intra-cranial volume (Mills et al., 2016; Sanchis-
Segura et al., 2020), and the observed sex difference in global functional connectivity reported
above, we ran two further sensitivity analyses: (i) intra-cranial volume (ICV) correction - we
regressed global and edge-wise fMRI metrics on ICV estimated from structural MRI data on
the same sample, and (ii) global functional connectivity correction - we regressed edge-wise
fMRI metrics on global FC on the same sample.

We found that our key results replicate well in the sensitivity analysis including ICV
(Fig. 2.21, fourth column). Specifically, original and ICV-corrected baseline connectivity
were moderately correlated (r f emale = 0.89,Pf emale < 0.001;rmale = 0.98,Pf emale < 0.001),
whereas the adolescent rate of change was highly correlated (r f emale = 0.94,Pf emale <

0.001;rmale = 0.92,Pf emale < 0.001). The ICV-corrected sex difference in maturational
index (DMI) is qualitatively and quantitatively similar to the original result from our main
analysis (r = 0.98,P < 0.01). We further ran the gene enrichment analysis in the replica-
tion sample. The original and replication PLS1 components are significantly correlated
(r = 0.92,P < 0.001). Negatively weighted genes were more strongly expressed in regions
of negative DMI, that is predominantly female > male disruptive regions; whereas positively
weighted genes were more strongly expressed in regions with female > male conservative de-
velopment indicated by positive DMI. We showed that we can replicate the gene enrichment
for X-Chromosome genes.

We also found that our key results replicate well in the sensitivity analysis including
global functional connectivity (Fig. 2.21, fifth column). Specifically, original and global-FC-
corrected baseline connectivity are highly correlated (r f emale = 0.89,Pf emale < 0.001;rmale =
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0.98,Pmale < 0.0011), and so is the adolescent rate of change (r f emale = 0.94,Pf emale <

0.001;rmale = 0.92,Pmale < 0.001). The global-FC-corrected controlled sex difference in
maturational index (DMI) is qualitatively and quantitatively similar to the original result from
our main analysis (r = 0.99,P < 0.01). Further, we confirmed that we can replicate the gene
enrichment for genes on the X-Chromosome.

Fig. 2.21 Sensitivity of key results to alternative modeling strategies: We conducted five
sensitivity analyses to test the robusteness of our results alternative modeling strategies and
alternative pre-processing strategies. We found that in all cases, (A) the baseline connectivity
(FC14); (B) the adolescent rate of change (FC14�26); (C) the sex difference in maturational
index (DMI); and (D) the effect size of the sex difference in MI, derived in the replication
samples, were significantly correlated with the original parameters at P < 0.05.
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2.4 Discussion

This study was motivated by the hypothesis that there are sex-divergent differences in brain
functional network development of healthy adolescents.

In this accelerated longitudinal fMRI study of healthy young people, we first identified
human brain systems that demonstrated a significantly different pattern of adolescent de-
velopment in females compared to males. We found sex differences in several aspects of
functional connectivity (FC): females had lower global mean FC across all ages, and reduced
nodal strength of connectivity in most regional nodes at 14 years, FC14. However, there were
more anatomically specific sex differences in two developmentally sensitive parameters: the
rate of change in FC during adolescence, FC14�26, was significantly reduced in females for
connections between one subcortical nucleus (nucleus accumbens) and 27 cortical structures;
and the maturational index (MI), a coefficient of the linear relationship between edgewise
FC14 and FC14�26 at each node, was significantly more negative in females for 107 cortical
areas concentrated in the DMN, ventral attentional and limbic networks, as well as subcortical
nuclei.

The maturational index can be used to define two modes of adolescent brain functional
network development (Váša et al., 2020). A conservative node is defined by a positive MI
– indicating that it is highly connected or “hub-like” at baseline (14 years) and becomes
even more strongly connected over the course of adolescence (14-26 years). Theoretically,
conservative nodes could also be weakly connected at baseline and become even more
weakly connected during adolescence; however, empirically, we found that this was not the
case. A disruptive node is defined by a negative MI – indicating either that it is weakly
connected at age 14 but becomes more strongly connected or hub-like during adolescence; or
that is a strongly connected node at 14 years but becomes more weakly connected or less
hub-like during adolescence. The disruptive developmental profile of weak-getting-stronger
during adolescence hypothetically represents a “re-wiring” of the functional connectome,
which could be relevant to the acquisition of social, cognitive, and other skills during
adolescence (Váša et al., 2020). Similar selective strengthening of connections has also
been observed at the cellular level in the developing C. elegans connectome (Witvliet et al.,
2021). It has also been argued that brain networks that are most developmentally active
during adolescence are most likely to contribute to the coincidentally increased risk of mental
health symptoms, i.e., “moving parts get broken” (Paus et al., 2008). For these reasons, our
analysis focused particularly on sexual differences in weak-getting-stronger disruption in
cortico-subcortical networks.
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The first explanation we considered for this sex difference in developmental fMRI pa-
rameters was that it was attributable to sex differences in potentially confounding variables,
including head motion during scanning. Head movement is known to be a potentially prob-
lematic confound in developmental fMRI (Power et al., 2012; Satterthwaite et al., 2013, 2012)
and males, especially younger males, had more head movement than females in this sample
as is consistent with previous studies (Satterthwaite et al., 2013). We initially addressed
this issue by a two-stage pre-processing pipeline which statistically corrected each partici-
pant’s functional connectome for between-subject differences in head motion, indexed by
FD. These pre-processed data passed standard quality control criteria for movement-related
effects on functional connectivity. Additionally, we conducted three sensitivity analyses of
head movement - repeating the entire analysis for a sample where FD was regressed for male
and female data separately, for a "motion-matched" subset of the data in which there was no
significant sex difference in FD, and for all data after global signal regression (Schölvinck
et al., 2010). In parallel, we conducted two additional sensitivity analyses to assess whether
the male>female differences in ICV, or global FC, might have confounded our principal
results. In all five sensitivity analyses, our key results were qualitatively and quantitatively
conserved, e.g., DMI maps estimated by the principal analysis were strongly correlated
(mean r ⇠ 0.8) with corresponding maps estimated by each sensitivity analysis. We therefore
consider that sex differences in head movement, ICV and global FC can be discounted as
sufficient explanations for sex differences in these parameters of brain network development.

An alternative explanation is that sex differences in FC14�26 and MI reflect divergent
development of specific cortico-subcortical circuits. In particular, females have a significantly
more disruptive pattern of adolescent development, indexed by negative DMI, because
functional connections that were weak at 14 years became stronger, and connections that
were strong became weaker, over the course of adolescence. This sex difference in terms
of functional connectivity could be related to sex differences in an underlying process of
reconfiguration or remodelling of cortico-subcortical connectivity at a synaptic or neuronal
scale. To assess the plausibility of this biological interpretation, we used pre-existing
data on human brain gene expression, and the dimension-reducing multivariate method of
PLS, to identify the set of genes that were most over- or under-expressed in brain regions
corresponding to the divergent system defined by developmental fMRI. Enrichment analysis
demonstrated that the genes that were most strongly expressed in brain regions with more
disruptive (or less conservative) development in females included significantly more X
chromosome genes than expected by chance. The same set of genes was also significantly
enriched for genes that are known a priori to be expressed in cortical areas during early
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(perinatal) development and in subcortical structures, such as amygdala, during adolescent
development.

Sexual differentiation of the brain has been proposed to occur in two stages: an initial
“organizational” stage before and immediately after birth, and a later “activational” stage
during adolescence (Phoenix et al., 1959a). It has long been argued that these events are
driven by gonadal hormones. However, more recent work suggests a complex interplay of
sex chromosomes and their downstream products leading to sexual differentiation of brain
cells (Arnold et al., 2004; Carruth et al., 2002; McCarthy and Arnold, 2011). The results
of our enrichment analysis, indicating co-location of the sexually divergent fMRI-derived
map with brain regions enriched for expression of X chromosomal and neurodevelopmental
genes, are compatible with interpretation of adolescent change in fMRI connectivity as a
marker of an underlying program of transcriptional changes in genes previously linked to
post-natal sexual differentiation at a neuronal level.

It is a strength of the study that our analysis of sexually divergent brain network de-
velopment is based on a large, accelerated longitudinal fMRI dataset with approximately
equal numbers of males and females in each stratum of the adolescent age range. However,
previous work has found substantial overlap in male and female distributions of multiple
brain measures (Cahill, 2006; Kaczkurkin et al., 2019), and the metrics analysed here (FC14,
FC14�26 and DMI) are group-level parameters. Thus all reported sex differences are reflec-
tive of a group mean difference, estimated from functional connectivity distributions that
substantially overlap between the sexes. On this basis, we are not arguing that female and
male brains are distinctly dimorphic (Eliot et al., 2021).

It is also worth acknowledging that males and females are often exposed to fundamentally
different environmental conditions spanning almost all domains of life (Shankar Mishra and
Joe, 2021), including professional work environments (Quinn and Smith, 2018), medical
treatment (Phillips, 2005) and education (United Nations Educational and UNESCO, 2022).
Many of these differences differences in environmental conditions start at birth and as such
likely have effects throughout the lifespan. It is conceivable that these widespread sex
differences across disciplines of life shape brain organization at the group level. In humans,
however, it is fundamentally difficult to systematically study these different environmental
responses to being perceived as male or female, due to our at best limited ability to manipulate
environmental factors in an experimentally controlled way.

Limitations of the study include our reliance on gene expression maps from post-mortem
examination of six adult, mostly male, brains. Previous work has suggested that gene expres-
sion is sexually differentiated (Dewing et al., 2003), and varies throughout the lifespan (Li
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et al., 2018b). In particular, there is evidence for pronounced changes in gene expression
during adolescence (Snoek et al., 2014). Biological validation of this divergent fMRI system
would be more directly informed by human brain maps of whole genome transcription that
are (i) sex-specific and (ii) are derived from adolescent donor brains; but to the best of our
knowledge such data are not currently available. It will also be important in the future to test
the hypothesis that an anatomically homologous cortico-subcortical system has divergent
adolescent development in animal models that allow more precise but invasive analysis of
the cellular and molecular substrates of fMRI phenotypes than is possible in humans.

We conclude that there are sex differences in normative adolescent development of a
cortico-subcortical brain functional networks, with females showing more disruptive func-
tional connectivity development in the default mode network, limbic cortex, and subcortical
nuclei.



Chapter 3

Anatomical, psychological and genetic
characteristics of sex-differences in
adolescent development of functional
connectivity that are relevant to
depression

3.1 Introduction

Multiple psychiatric disorders are known to display sex differences both in their prevalence
and clinical expression profile. Further, psychiatric disorders are increasingly understood
in the context of atypical developmental changes, which may be the reason that phases of
neurodevelopmental change coincide in timing with periods of increased risk for psychiatric
disorders (Paus et al., 2008). Major depressive disorder (MDD) is a mood disorder, which
occurs more frequently in women than men (Faravelli et al., 2013). One explanation for
this sex difference in the risk for mood disorders is that it may be related to underlying sex
differences in brain development (Paus et al., 2008).

3.1.1 Adolescent depression

Before puberty, the prevalence of depressive symptoms is generally low. However, advancing
pubertal stages carry a substantially higher risk of depressive symptoms for girls as opposed
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to boys (Patton et al., 2008). Small sex differences have been reported to start occurring from
the age of 11, and by the age of 15 females are about twice as likely to be depressed as boys
(Cyranowski et al., 2000; Faravelli et al., 2013; Hankin et al., 1998).

Magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate alter-
ations in brain function in patients with MDD. Possibly the most widely reported finding
is increased functional connectivity (FC) in the default mode network (DMN) (Greicius
et al., 2007; Korgaonkar et al., 2020; Yang et al., 2021), which has been suggested to relate
to rumination and self-referential processing (Broyd et al., 2009). Other areas found to be
included in depression include cognitive control networks and limbic regions (Mulders et al.,
2015).

Most studies have focused on adult depression and it remains uncertain whether adoles-
cent depressive patients show the same changes. Adolescent depression has been associated
with areas that mediate emotion processing. One of the most replicated findings is altered
connectivity in the anterior cingulate (ACC) (Connolly et al., 2013; Cullen et al., 2009),
which has also been found to play a role in adult depression (Davey et al., 2012; Drevets
et al., 1997). Further, reduced connectivity between amygdala and the dorsolateral prefrontal
cortex (DLPFC) as well as ventromedial prefrontal cortex (VMPFC) has been reported in
case-control studies of adolescent depression (Connolly et al., 2017). Considering that
the DLPFC is a key region in the volitional regulation of emotions (Phillips et al., 2008),
and the VMPFC has been implicated in affect processing and regulation (Mitchell, 2011),
these findings suggest that adolescent depression is driven by dysfunction in volitional and
automatic regulation of emotion.

Despite the well known sex difference in prevalance of depression, few studies have
investigated sex differences in structural (Carlson et al., 2015; Kong et al., 2010) or func-
tional (Talishinsky et al., 2022) MRI in patients with depression. Yao et al. (2014) found
sex differences in the amplitude of low frequency fluctuations (ALF) in frontoparietal and
attention networks, but not in limbic regions. Further, Talishinsky et al. (2022) studied sex
differences in functional connectivity between the DMN and the rest of the brain and found
hyperconnectivity within the default mode network, as reported by multiple prior studies, was
largely driven by males, not females. Further, the authors reported that regional differences
in the expression of depression-related genes modulated the neuroanatomical distribution of
connectivity effects in men and women with depression (Talishinsky et al., 2022).



3.1 Introduction 67

3.1.2 Summary and hypotheses

Taken together, these findings suggest that the occurrence of mood disorders differs by age
and sex, with a higher risk for females to develop mood disorders overall, and generally an
increasing occurrence of depressive symptoms with age during puberty. When investigating
adolescent brain maturation in relation to mood disorders it is therefore of crucial importance
to understand the sex differences in healthy development.

In Chapter 2 we noted that little was known about sex difference in normative develop-
ment of functional connectivity. We hypothesized that there may indeed be sex differences in
adolescent functional connectivity development. Using data from an accelerated longitudinal
study of adolescents, ages 14 to 25 years, stratified by age and balanced for sex per age
stratum (Kiddle et al., 2017), we estimated the effects of sex on three parameters of adolescent
development of resting state FC: (i) baseline connectivity at age 14, FC14, i.e. the predicted
functional connectivity at age 14; (ii) the adolescent rate of change in connectivity, FC14�26,
estimated as the the regression of a linear function of age on functional connectivity at nodal
and edgewise levels of analysis; and (iii) the maturational index (MI) for each node, which
is the signed correlation coefficient between FC14 and FC14�26 over all edges connecting a
given node to the rest of the network (Dorfschmidt et al., 2022; Váša et al., 2020).

In this chapter, we started from the position that the sexually divergent risk trajec-
tory for depression, with higher depressive symptom scores for adolescent females than
males (Cyranowski et al., 2000; Faravelli et al., 2013), could be the psychological or clinical
representation of underlying sex differences in adolescent brain network development (Allen
et al., 2011; Biswal et al., 2010; Zhang et al., 2016). To investigate this overarching hypoth-
esis experimentally, we made use of the unthresholded map of sex differences in healthy
adolescent brain development identified in the previous chapter (see Fig. 2.14) and tested the
anatomical co-location of sexually divergent functional magnetic resonance imaging (fMRI)
systems with prior maps of task-related brain activation, human brain gene expression, and
depression-related abnormalities of functional dysconnectivity.

We found that this developmentally divergent brain system was co-located with loci
of brain activation by reward-related tasks; with an anatomical map of depression-related
differences in functional connectivity from an independent case-control fMRI study of
MDD (Kitzbichler et al., 2020); and with expression of a weighted function of the whole
genome enriched for genes identified by genome-wide association studies (GWAS) of MDD.
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3.2 Methods

3.2.1 Adolescent functional connectivity sex difference

We derived a map of sex differences in functional connectivity development during adoles-
cence using data from an accelerated longitudinal study (N = 298; age range 14 to 26 years;
51% female; Table 2.1). Methods are described in detail in Chapter 2. Briefly, in a sex-
stratified approach, we estimated the linear effect of age on edgewise functional connectivity
using linear mixed effects models with a fixed effect of age, sex, and imaging site, as well
as a random effect of subject. From this model, we derived the baseline connectivity at age
14, FC14 and the adolescent rate of change, FC14�26. From these parameters, we estimated
the maturational index (MI), at each node, as the signed Spearman correlation coefficient
between FC14 and FC14�26 of all edges that connect the node with the rest of the brain. We
then estimated the sex difference in MI, DMI, by subtracting the male from the female MI,
and tested the significance of this sex difference using parametric testing (Z-scores).

3.2.2 Psychological co-location with depression

First, we assessed the psychological relevance of sex differences in adolescent functional
connectivity development by estimating the co-location of the brain system defined by
sex differences in MI with prior data on the cordinates of task-related fMRI activation.
Specifically, we performed automated meta-analytic referencing of the unthresholded map of
DMI using the NeuroSynth database Yarkoni et al. (2011). First, we generated a volumetric
version of the sex difference map by assigning the DMI value of each region to its respective
parcel in the volumetric nifti file of the parcellation. Next, we uploaded this map to the
database. The Neurosynth decoder registered our map with its set of cognitive terms and
their coordinates in standard space generated through automatic parsing of the literature as
follows:

1. The decoder extracts activation coordinates from published manuscripts.

2. The full text of each manuscript is parsed and the article is tagged with the set of terms
that are mentioned frequently.

3. The database of activation coordinates of all studies parsed is divided into two sets for
each term: articles that do contain the term and articles that do not.
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4. A meta-analysis compares the coordinates reported for studies with and without the
term of interest, resulting in statistical inference maps (Z and P� value maps), as well
as posterior probability maps, which indicate the likelihood of a given term being
mentioned in an article if activation is observed at a particular coordinate.

Using the generated maps of task activation, the neurosynth decoder returned a ranked
list of cognitive terms with their correlation values describing the strength of association to
our map of sex differences in MI. The correlation values generated indicate whether a given
term was positively or negatively associated with our map, i.e. a positive correlation between
a Neurosynth term and our map indicates that this term is more often mentioned in studies
that show activation in regions where we observe a positive DMI. Conversely, a negative
correlation value indicates that a given term is more frequently mentioned in studies that
see activation in regions where we observe a negative DMI. It is worth mentioning that this
automated process of generating meta-analytical maps is not perfect, i.e. each individual
coordinate extraction may not be faultless, however, the number of articles parsed results in
highly accurate meta-analytical maps.

3.2.3 Anatomical co-location with depression

Major depression sample

To assess the anatomical co-location of the sexually divergent system derived in Chapter 2
with network dysconnectivity patterns in major depressive disorder (MDD), we included an
independent dataset from the Biomarkers in Depression study (BioDep) study (Aruldass et al.,
2021; Kitzbichler et al., 2020), which is a case-control study of adult subjects, aged 25-50
years, with and without a diagnosis of MDD. More specifically, data was collected from a
total of 129 subjects: 46 healthy controls, and 83 MDD cases. Subjects were assessed for
depressed using a structured clinical interview for DSM-V (SCID) (First, 2014), as defined by
the Diagnostic and Statistical Manual of Mental Disorders fifth edition (DSM-5) (American
Psychiatric Association et al., 2013), and all depressed cases had a global score greater than 13
on the Hamilton Rating Scale for Depression (HAM-D). This study was originally designed
to assess inflammation in depression, using C-reactive protein (CRP) as a peripheral marker
of inflammation to stratify the cases. Thus the MDD group contained cases with low CRP <
of 3 mg/L (N=53), and MDD cases with high CRP > 3 mg/L (N=34). Inflammation-linked
depression only affects a sub-group of MDD cases and is thought to manifest differently in
brain structural and functional alterations (Aruldass et al., 2021; Kitzbichler et al., 2020). In
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this work, we focused on the low CRP cases only, excluding the high CRP cases, to avoid
any confounding effects of inflammation-linked depression on our results. Consequently
it is worth noting that our results may not generalize to subjects with inflammation-linked
depression. The final sample after quality control (see below) contained 46 healthy controls
and 50 MDD cases (Tab. 3.1).

MRI processing of the MDD sample

A multi-echo echo-planar imaging (EPI) sequence (Poser et al., 2006) was used to collect
fMRI data under resting state conditions with the following parameters: repitition time (TR)
= 2.57 s; echo time (TE) (TE1,2,3) = 15, 34 and 54 ms; acquisition time = 10 mins 42.5 s =
250 time points in each fMRI time series. Multi-echo EPI data were collected as 32 slices at
-30 degrees to the AC-PC line, field of view: 240 mm, matrix size: 64 ×64, voxel resolution:
3.75 ×3.75 ×4 mm.

The first 6 volumes were discarded to ensure scanner equilibrium and the remaining data
were pre-processed using multi echo independent component analysis (ME-ICA) (Kundu
et al., 2012a, 2013a) to identify sources of variance in the fMRI time series that scaled linearly
with TE and could be confidently regarded as representing blood-oxygen-level-dependent
(BOLD) signal. Other non-BOLD sources of variance, such as head movement, that do not
scale with TE, were identified by ME-ICA and discarded. The retained independent com-
ponents, representing BOLD contrast, were optimally recomposed to generate a broadband
denoised fMRI time series at each voxel. This was bandpass filtered, using the Maximal
Overlap Discrete Wavelet Transform using Daubechies’ orthonormal compactly supported
wavelets, resulting in a BOLD signal oscillating in the frequency range 0.02-0.1 Hz (wavelet
scales 2 and 3) (Patel et al., 2014).

Geometric re-alignment was used to estimate 6 motion parameters for each participant (3
translation and 3 rotation parameters) which were used to calculate an overall estimate of
motion - framewise displacement (FD), defined as the Euclidean norm of motion and rotation
derivatives in mm: FD2 = |~Dx|2 + | ~Dq |2). For each participant, mean FD was calculated by
averaging the FD time series. A total of 3 scans were excluded due to high in-scanner motion
hFDiRMS > 0.3 mm or max(FD) > 1.3 mm and one subject was dropped due to excessively
high mean correlation > 0.7.

Each pre-processed fMRI image was regionally parcellated into the set of 360 cortical
regions defined by the Human Connectome Project (HCP) template (Glasser et al., 2016b)
and 8 bilateral subcortical regions provided by freesurfer and the regional mean fMRI time
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series were estimated for each cortical and sub-cortical region using the non-zero mean
variant of the Analysis of Functional NeuroImages (AFNI) 3dROIstats command (Cox,
1996a). Thus we estimated a 376×244 regional time series matrix for each participant.

The functional connectivity between each regional pair of fMRI time series was estimated
by Pearson’s correlation coefficient r for each possible pair of regions, resulting in a 376×376
symmetric association or functional connectivity matrix. The row (or column) means of this
matrix comprise the vector of regional or nodal weighted degree as defined in Equation 1.2.

Group Sex
female µ Age s Age µ FD s FD Centre

Cambridge Kings Oxford

Control 27 35.5 7.5 0.08 0.05 36 6 4
MDD 29 36.8 7.1 0.01 0.05 37 8 5

Table 3.1 MDD case-control sample charateristics: A total of N=96 subjects, comprising
50 MDD cases and 46 healthy controls, balanced for group mean age and sex were scanned
at three MRI imaging centres.

Major depression case-control map

We constructed an MDD case-control difference map by estimating the effect (t-value) of
group (case vs. control) differences on regional FC strength or weighted degree, controlling
for age, sex and imaging site by the following linear model:

FCi ⇠ 1+bgroup ⇤group+bage ⇤age+bsex ⇤ sex+bsite ⇤ site+ e (3.1)

where FCi refers to the weighted degree of the ith node, b refers to coefficients for
the fixed effects, and e represents the residual error. The case-control map was derived
as the t � value of the group effect in Equation 3.1 and tested for statistical significance
using the false discovery rate to correct for multiple comparisons across regions (P < 0.05,
FDR-corrected).

3.2.4 Gene enrichment analysis

To assess whether the map of sex differences in adolescent functional connectivity develop-
ment was enriched for depression-related genes, we estimated the cortical map of weighted
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gene expression that was most strongly co-located with the neuroimaging phenotype repre-
sented by the map of sex differences in adolescent brain maturation (DMI) and tested the
enrichment of this weighted gene list for cell-type specific genes, as well as genes previously
associated with MDD by a genome wide association study (GWAS). The gene-enrichment
analysis methods were described in depth in Chapter 2. Briefly, we used data from the Allen
Human Brain Atlas (AHBA) which includes post mortem transcriptomic gene expression
data collected from 6 donor brains (5 males). Using partial least squares regression (PLS)
regression, we found the weighted gene expression pattern that was most strongly correlated
with the cortical map of DMI. The first partial least squares regression component (PLS1),
explained significantly more variance than expected by chance. Using a median rank-based
approach, we assessed whether a given reference gene list, e.g., from MDD GWAS, was
non-randomly represented among the most strongly weighted PLS1 genes.

Prenatal cell type enrichment

We tested PLS1 for prenatal cell type-specific enrichment using single-cell transcriptomic
gene expression data from mid gestation (gestation week 17 to 18; (Polioudakis et al., 2019)).
These data included 16 unique clusters: endothelial cells (End), excitatory deep layer 1
(ExDp1), excitatory deep layer 2 (ExDp2), maturing excitatory (ExM), newborn excitatory
neurons (ExN), intermediate progenitor cells (IP), microglia (Mic), oligodendrocyte precur-
sor cells (OPC), outer radial glia (oRG), pericytes (Per), cycling progenitor G2/M phase
(PgG2M), cycling progenitor S phase (PgS), and ventricular radial glia (vRG). Using these
gene lists allowed us to estimate the early developmental relevance of the gene expression
profile associated with the sexually divergent system of functional connectivity development.

Adult cell type enrichment

We also tested PLS1 for postnatal cell type specific enrichment using gene expression
data on 33 distinct adult brain cell types (Lake et al., 2018), including exitatory neurons
(Ex) and inhibitory neurons (In), cerebellar granule cells (Gran), and purkinje cells (Purk),
as well as non-neuronal cells, including endothelial cells (End), smooth muscle cells or
pericytes (Per), astrocytes (Ast), oligodendrocytes (Oli), oligodendrocyte precursor cells
(OPC), andmicroglia (Mic). We excluded cell types expressed in the cerebellum only, since
the cerebellum was not included in our fMRI analyses.
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MDD risk gene enrichment

Finally, we tested whether PLS1 was enriched for genes associated with increased risk for
MDD (Li et al., 2018a). For this analysis, risk genes for MDD were defined by a prior
study, in which single nucleotid polymorphisms (SNIPs) significantly associated with MDD
in one of the largest available genome wide association study (GWAS) (Edwards et al.,
2013; Sey et al., 2020; Wray et al., 2018) were mapped to functionally relevant genes using
epigenetic (Hi-C) data to guide the interpretation of GWAS-significant SNIPs in non-coding
loci (Li et al., 2018a). We chose this particular gene list, in preference to other GWAS study
results, because over 80% of risk variants identified by GWAS are found in the non-coding
genome, which makes the interpretation of underlying genetic mechanisms challenging
without the additional information provided by Hi-C data analysis. The genome’s three
dimensional structure allows for distal enhancers to be brought into contact with sequentially
distant promoters, which allows non-coding SNIPs to regulate distal genes via long-range
regulatory interactions. Hi-C data analysis is informed by the 3D structure of the genome
and is therefore able to link variants in non-coding regions to the protein-coding genes they
regulate, even if regulatory and coding sequences are separated by long linear distances on
the genome.

3.2.5 Diagnostic specificity

To assess the diagnostic specificity of the co-location of the map of sex differences in
adolescent functional connectivity maturation with major depression, we also included a
further independent case-control dataset, the COBRE study (Çetin et al., 2014), which
includes fMRI data from adult cases of schizophrenia and healthy controls.

Schizophrenia sample overview

The Center for Biomedical Research Excellence (COBRE) (Çetin et al., 2014) study is
an open schizophrenia case-control fMRI study of adults, aged 18 to 65 years, in which
individuals are identified as either healthy controls or cases of schizophrenia, bipolar or
schizoaffective disorder, diagnosed using the structured clinical interview for DSM-V (SCID).
Exclusion criteria included confirmed or suspected pregnancy, any history of neurological
disorders, or a history of mental disabilities. We downloaded the data from the SchizConnect
database (http:/schizconnect.org), where it had been obtained using the Collaborative Infor-
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matics and Neuroimaging Suite Data Exchange tool (COINS; http://coins.mrn.org/dx). We
excluded 6 cases with a diagnosis of bipolar disorder.

MRI preprocessing

These data were originally pre-processed for a prior study (Morgan et al., 2021). Single echo
fMRI was collected using an echo-planar imaging sequence with the following parameters:
150 volumes; acquisition time = 5 minutes; 32 slices; TE = 29 ms; TR = 2000 ms; voxel
size = 3 × 3 × 4 mm3. A prior pipeline (Patel et al., 2014) was used to pre-process the fMRI
data. This pipeline included: slice acquisition correction, rigid-body head motion correction,
co-registration to the T1-weighted image, a standard space transform to the MNI152 template
in Talairach space, spatial smoothing, and intensity normalization. We excluded 19 subjects
due to excess motion using previously defined criteria. We bandpass filtered the timeseries
using wavelet scale 2 (Patel et al., 2014), corresponding to the frequency ranges 0.0625–0.125
Hz.

Each pre-processed fMRI image was regionally parcellated into 360 bilateral cortical
regions using the HCP (Glasser et al., 2016b) template and 16 bilateral sub-cortical regions
(amygdala, caudate, diencephalon, hippocampus, nucleus accumbens, pallidum, putamen,
and thalamus) defined by Freesurfer’s “aseg” parcellation template (Filipek et al., 1994;
Fischl et al., 2002). Nine regions were excluded due to signal dropout in one or more subjects
(missing data or low regional mean signal of Z <�1.96), leaving 367 regions.

The functional connectivity between each regional pair of Z-scored fMRI time series was
estimated by Pearson’s correlation coefficient r for each possible pair of regions, resulting in a
{ 367 ⇥ 367 } symmetric association or functional connectivity matrix. The functional connec-
tivity r values were subsequently transformed to Z-scores by Fisher’s transformation (Fisher,
1915). The mean across rows (or columns) of this motion-corrected, Z-transformed connec-
tivity matrix yields the vector of regional or nodal weighted degrees (Fornito et al., 2016).
Thus, for each region i we calculated the mean weighted degree k as per Equation 1.2.

Schizophrenia case-control map

After pre-processing and quality control, the analysable fMRI sample included 148 subjects,
81 healthy controls and 67 cases (58 with a diagnosis of schizophrenia and 9 with a diagnosis
of schizoaffective disorder).
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We constructed a case-control difference map by estimating the effect (t-value) of group
(case vs. control) on region-wise functional connectivity strength (or weighted degree),
controlling for sex, age and mean framewise displacement (FD), as in Equation 3.1. This
schizophrenia case-control dysconnectivity map was finally tested for significant co-location
with the DMI map using the spin test procedure to control for spatial auto-correlation in
calculation of the P-value.

3.2.6 Robustness of results to alternative pre-processing strategies

Since previous research has demonstrated the sensitivity of fMRI studies to motion, in
particular in younger samples, we repeated our main analyses in three replication samples
that used different pre-processing strategies. Details of the constitution of these samples have
been outlined in Chapter 2. Briefly, we constructed (i) a sample where FD was regressed
for male and female data separately, (ii) a “motion-matched” sub-sample of the data in
which there was no significant sex difference in FD, and (iii) a sample after global signal
regression (Schölvinck et al., 2010). Further, given the well-established sex difference in
total intracranial volume and the observed sex difference in global functional connectivity
reported in Chapter 2, we also repeated our analyses correcting for total intracranial volume
and global functional connectivity.

3.3 Results

3.3.1 Anatomical and psychological co-location with depression

Having derived a map of sex differences in adolescent functional connectivity maturation,
termed DMI, in Chapter 2, we first assessed the psychological co-location of this sexually
divergent system with depression. Sex differences indexed by negative DMI were located
primarily in the default mode network, limbic cortical and subcortical regions, which showed
more disruptive development in females. This means that in females these regions showed
a greater tendency to change the rank ordering of their connections to other regions of the
brain network, such that connections that were weak at baseline became stronger over the
course of adolescence, and connections that were strong at baseline became weaker.
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Fig. 3.1 Anatomical and psychological co-location with depression: (A) Wordcloud of
Neurosynth meta-analytical cognitive terms scaled according to their strength of association
with the disruptively developing brain regions (cortical map of DMI < 0). (B) Scatterplot
of MDD case-control t-statistics (y-axis) versus DMI (x-axis). Each point represents one of
346 cortical or subcortical regions; regional nodes that show a significant MDD case-control
difference, t 6= 0, and a significant sex difference in MI, t 6= 0, are highlighted. The fitted line
and 95% confidence interval indicate the positive correlation (r = 0.4,P < 0.001) between
the spatial maps of MDD case-control differences, t, and DMI, shown alongside the y and x
axes, respectively. Regions with sexually divergent disruptive development in adolescence
(negative DMI) had reduced degree of connectivity (negative t) in adult MDD cases.

To investigate the psychological relevance of this sexually divergent development of
functional connectivity in cortico-subcortical circuits, comprising the unthresholded set of
regions with negative DMI, we conducted an automated meta-analytic referencing analysis
using the Neurosynth database of task-related fMRI activation coordinates (Yarkoni et al.,
2011). This analysis indicated that regions with more disruptive (or less conservative)
development in females were typically activated by tasks related to reward processing,
emotion, motivation, incentive delay, and dopamine (Fig. 3.1A).

In contrast, when registering the map of positive DMI regions to the Neurosynth database,
we find that these regions were more typically activated by tasks related to primary sensory
regions, i.e. visual and spatial perception, movements and attention (Fig. 3.2).
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Fig. 3.2 Neurosynth analysis of positive DMI regions: (A) Wordcloud of Neurosynth
meta-analytical cognitive terms scaled according to their strength of association with the
cortical map of DMI > 0.

To assess the anatomical correspondence between the sexually divergent disruptive brain
system, and mood disorder-related changes in fMRI connectivity, we used resting state fMRI
data from a prior case-control study of adult MDD cases (N=50) and healthy controls (N=46)
to derive a map of case-control differences in functional connectivity in major depression. We
correlated the parcellated, unthresholded map of MDD case-control differences in weighted
degree (comprising 346 regional t statistics) with the map of sex differences in MI, DMI.
We found that the two maps were significantly co-located (P = 0.4, P<0.001, Pspin<0.001;
Fig. 3.1B). Thus, brain regions with sexually divergent development in adolescence (negative
DMI) had reduced degree of functional connectivity in MDD cases compared to controls.
Considering the focus on subcortical structures later in this thesis, we note that while there are
widespread sex differences in MI in subcortical regions, as well as apparent MDD-associated
decreases in functional connectivity in the same regions, the latter are not always statistically
significant (Fig. 3.1B).

3.3.2 Celltype-specific and MDD risk gene enrichment

We explored developmental aspects of the sexually divergent system by testing for enrichment
by genes specific to pre-natal and post-natal cell types (Lake et al., 2018; Polioudakis
et al., 2019). We found that genes which were over-expressed in disruptively developing
brain regions were enriched for prenatal cell types (Polioudakis et al., 2019), including
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oligodendroglial precursor cells (OPC), microglia, astrocyte progenitor radial cells, inhibitory
and excitatory cortical neurons (Fig. 3.3A), as well as for multiple adult glial and neuronal
cell classes (Fig. 3.3B).

Extending the enrichment analysis to consider depression-related genes, we found that
the list of genes strongly co-expressed with sexually divergent disruptive brain systems
was significantly enriched for risk genes for MDD from an epigenetically-informed, large
prior GWAS study (Li et al., 2018a). Over 80% of risk variants identified by genome wide
association studies (GWAS) are found in the non-coding genome, which makes the inter-
pretation of underlying biological mechanisms challenging. Non-coding single nucleotide
polymorphisms (SNPs) can regulate distal genes via long-range regulatory interactions, since
the 3D structure of the genome allows for distal enhancers to be brought into contact with
promoters far downstream. Therefore, we used a gene list which mapped SNIP hits from one
of the largest available MDD GWAS studies (Wray et al., 2018) to functionally relevant genes
using epigenetic (Hi-C) data, to guide the interpretation of hits in non-coding loci (Edwards
et al., 2013; Sey et al., 2020). Our enrichment results showed that the MDD risk genes were
negatively weighted and ranked towards the bottom of the PLS1 list, indicating that they were
more highly expressed in brain regions with disruptive development, indexed by negative
DMI (Fig. 3.3C). In other words, regions in which females tended to show more disruptive
adolescent FC development during healthy adolescence appear to show greater expression of
genes associated with risk to MDD.
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Fig. 3.3 Sexually divergent, disruptive brain systems are co-located with brain tissue
transcripts enriched for cell type-specific and MDD risk-related genes: (A) Enrichment
analysis for prenatal cell type-specific genes. Negatively weighted genes (blue) were signif-
icantly enriched for genes expressed by prenatal radial glia (vRG, oRG), microglia (Mic),
oligodendrocyte precursor cells (OPC), and excitatory neurons. (B) Enrichment analysis for
adult cell type-specific genes. Negatively weighted genes were significantly enriched for
genes expressed by adult astrocytes, OPC, and excitatory neurons. (C) Enrichment analysis
for MDD risk-related genes. Negatively weighted genes were significantly enriched for
genes associated with major depressive disorder by an independent genome wide association
study (Li et al., 2018a)

Anecdotally contextualizing the genes that were found to be significantly over-expressed
in regions displaying more disruptive development in females, we noticed that this list
included two (somatostatin (SST) and neuropeptide Y (NPY)) out of three genes previously
reported (Anderson et al., 2020) as specifically expressed by adult neuronal and glial cells
and linked to neuroimaging phenotypes of depression. This illustrates a partial convergence
of significant results for SST and NPY between a prior study (Anderson et al., 2020) and
the current study (Fig. 3.4). Specifically, regions with more disruptive development in
females (DMI < 0; dark blue points) have increased expression of SST (ZFDR =�10.05) and
NPY (ZFDR =�4.63), compared to regions with more conservative development in females
(DMI > 0; dark red points). Whereas expression of cortistatin (CORT) is not correlated with
regional variation in DMI (ZFDR =�0.25; Fig. 3.4). This finding is largely anecdotal, but
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does spark interest due to the role of inter-neurons in coordinating information flow across,
and their relation to depression as evidenced using in-vivo MRI, GWAS and ex vivo cortical
gene dysregulation (Anderson et al., 2020).

Fig. 3.4 Illustrative correlations between DMI and three genes (SST, NPY and CORT):
SST, NPY and CORT are three genes that were previously highlighted by an independent
study of gene expression and MRI phenotypes of MDD (Anderson et al., 2020). We noted
that two of these genes (SST and NPY) were also included in the list of genes with significantly
non-zero weights on PLS1 (|Z|> 2.58). The Z-scored PLS1 weights for each gene were as
follows: SST (ZFDR =�10.05), NPY (ZFDR =�4.63), and CORT (ZFDR =�0.25). These
three scatterplots show expression of each gene at each region of the Allen Human Brain
Atlas (AHBA; y-axis) versus DMI of each region (x-axis) with each region colour-coded
according to its sexually divergent developmental profile. The small brain maps above each
scatterplot represent the anatomical expression of each gene in the AHBA dataset.

3.3.3 Diagnostic specificity

To assess the specificity of the relationships between sexually divergent brain development
(indexed by the DMI map) and (i) MDD case-control differences in functional connectivity
and (ii) brain expression profiles of MDD risk genes, we repeated our key analyses of
anatomical co-location with a case-control map, and a genetic enrichment for disorder risk-
related genes using comparable independent data on schizophrenia. First, we tested the co-
location of the DMI map with a map of functional connectivity differences in schizophrenia
cases compared to healthy controls, reported in a prior case-control resting state functional
magnetic resonance imaging (rsfMRI) study (Morgan et al., 2021; Çetin et al., 2014) (Fig.
3.5A). We found that schizophrenia case-control differences in weighted degree were not
significantly co-located with the unthresholded map of DMI (r = 0.05,P = 0.35,Pspin = 0.47;
Fig. 3.5B). Second, we tested the list of genes transcriptionally co-located with DMI for
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enrichment by schizophrenia-related risk genes. We used the largest currently available
GWAS study of schizophrenia, which identified 270 schizophrenia-associated SNIPs and
mapped these SNIPs to genes using epigenetic information (Trubetskoy et al., 2022). We
found that genes transcriptionally co-located with DMI were not significantly enriched for
genes associated with schizophrenia (P = 0.25; Fig. 3.5C).

Fig. 3.5 Diagnostic specificity: We tested the diagnostic specificity of the relationship
between sexually divergent brain functional development and major depression by repeating
the key analyses using comparable data from independent studies of schizophrenia. (A) We
constructed a map of case-control differences in functional connectivity, using rsfMRI data
from healthy controls (N=81) and schizophrenia cases (N=67) from a prior study (Çetin et al.,
2014). We estimated the case-control effect on regional functional connectivity strength using
linear mixed effects models, with a random effect for subject ID and fixed effects of group,
age, sex, and mean framewise displacement. The t-statistics for case-control difference
in regional weighted degree are mapped on the cortical surface; t < 0 indicates areas of
reduced degree in schizophrenia. (B) Scatterplot of schizophrenia case-control t-statistics
(y-axis) versus DMI (x-axis). Each point represents one of 346 cortical or subcortical regions.
There was no significant correlation (r = 0.05,P = 0.35,Pspin = 0.47) between the spatial
map of schizophrenia case-control differences in weighted degree, t, and the spatial map
of DMI. (C) Analysis for enrichment of 130 schizophrenia-related genes in the list of
genes transcriptionally co-located with the DMI map and strongly weighted on the first PLS
component (PLS1). The density plot shows the distribution of the median rank of 183 genes
randomly sampled under the null hypothesis and the observed median rank of the 183 genes
signficantly associated with schizophrenia (Trubetskoy et al., 2022) is indicated by an open
circle on the x-axis. There was no evidence that genes transcriptionally co-located with DMI
were significantly enriched for these schizophrenia-related genes.
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3.3.4 Robustness of results to alternative processing strategies

To assess the sensitivity of our main results, i.e. the anatomical co-location with an MDD
case-control map and a gene enrichment for MDD risk genes, we conducted five sensitivity
analyses: (i) using a sample where FD was regressed by sex; (ii) using a sample that was
pre-processed by a pipeline including global signal regression (GSR) regression; (iii) using a
sample where a motion-matched subset of data was chosen, such that there was no significant
difference in motion between males and females; and (iv) using an alternative analysis
pipeline which included intra-cranial volume (ICV) as a covariate in the statistical models to
control for potentially confounding effects of head size; and similarly (v) using an alternative
analysis pipeline which included global functional connectivity as a covariate.

We found that all the main findings replicated well across the different sensitivity analyses.
First, we found that across all sensitivity analyses there was a significant correlation of DMI
with the MDD case-control map (FD regression by sex sample: r = 0.39,P < 0.0001,Pspin <

0.001; GSR sample: r = 0.12,P < 0.05,Pspin = 0.06; motion-matched sample: r = 0.5,P <

0.0001,Pspin < 0.001; ICV-corrected processing: r = 0.41,P< 0.0001,Pspin < 0.001; global
FC-corrected processing: r = 0.41,P < 0.0001,Pspin < 0.001; Fig. 3.6A-D, top row). No-
tably, the spatial correlation between the two maps using GSR-processed data for estimation
of DMI was small but significant at P < 0.05, with a spin-test P-value of 0.06 (Fig. 3.6B,
top row). Second, we found that the sexually divergent system derived from each of the
sensitivity analyses was significantly enriched for MDD risk genes (Fig. 3.6, middle row).
Third, the cell-specific enrichment was largely conserved across all sensitivity analyses, with
PLS1 consistently enriched for excitatory neurons (Fig. 3.6, third, fourth row).
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Fig. 3.6 Robustness of MDD co-location results to alternative processing strategies:
We evaluated the robustness of our key findings to alternative processing strategies. Top
row: Each point represents one of 346 cortical or subcortical regions. Regions that show
a significant MDD case-control difference, t 6= 0, and a significant sex difference in DMI,
t 6= 0, are highlighted. Second row: MDD risk gene enrichment. Third row: Prenatal cell
type enrichment. Fourth row: Postnatal cell type enrichment.

3.4 Discussion

We assessed the psychological, anatomical and genomic relevance to depression of a sexually
divergent profile of adolescent brain network development. Anatomically, the DMN and
subcortical structures that had more disruptive development in females (e.g., the ventral
medial prefrontal cortex, medial temporal gyrus, anterior and posterior cingulate cortex)
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have previously been implicated as substrates of depressive disorder (Connolly et al., 2013;
Cullen et al., 2009). This anatomical convergence was quantified by the significant spatial
correlation between the whole brain map of sex differences in MI and an independent map
of MDD case-control differences in nodal degree of functional connectivity. Cortical and
subcortical areas with reduced degree of connectivity or “hubness” in MDD cases had more
disruptive development in adolescent females.

Genomically, the list of genes transcriptionally co-located with this divergently devel-
oping network was enriched for risk genes from a prior genome-wide association study of
MDD. In the context of gene enrichment results for genes on the X chromosome in Chapter
2, it is also notable that major depressive disorder has been previously associated with up-
regulation of X-linked escapee genes and genes that control X-inactivation (Ji et al., 2015).
Psychologically, by meta-analysis of a large prior database of task-related fMRI studies,
we found that brain regions comprising the sexually divergent system were psychologically
specialised for reward- and emotion-related processes that are fundamental to core depressive
symptoms, e.g., anhedonia.

Collectively, these results do not prove there is a causal relationship between sexually
divergent brain development and risk of depression. However, they demonstrate that there
is indeed a sexually divergent process of adolescent development of a cortico-subcortical
system that is anatomically, genomically and psychologically relevant to depression. These
insights motivate and focus future studies purposively designed to test the hypothesis that
sexual divergence of adolescent brain development causes contemporaneous or subsequent
sex differences in the risk for mood disorders. While the Neuroscience in Psychiatry Network
(NSPN) cohort used in this study included a cohort of exceptionally healthy adolescents,
it is conceivable that large enough longitudinal studies may include subjects that change
diagnostic labels over the course of the study, allowing for the direct assessment of sex
differences in relationship to the onset of psychiatric disorders.

It is increasingly recognised that clinical phenotypes, as well as genetic and environmental
risk factors, may be shared in common between depression and other mental health disorders
arising in adolescence (Elliott et al., 2018; Gandal et al., 2018). In particular, abnormalities
in fMRI connectivity have been reported as trans-diagnostic phenotypes, characteristic of
multiple, diagnostically distinct disorders (Elliott et al., 2018); and risk genes associated with
individual mental health and neurodevelopmental disorders have been found to overlap across
disorders, implying that some genes confer trans-diagnostic risk for multiple neuropsychiatric
disorders (Gandal et al., 2018). In this context, it is reasonable to ask if the significant
associations we have demonstrated between DMI and both fMRI and genetic data on MDD
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are specific to depression, or if they are representative of a trans-diagnostic association
between DMI and functional dysconnectivity and/or risk genes for mental health disorders
more generally. As a first step in addressing this question, we tested for spatial co-location
of the DMI map and a map of functional dysconnectivity derived from a prior case-control
fMRI study of schizophrenia. We found no significant association, indicating that the
abnormalities of functional connectivity associated with adult schizophrenia do not coincide
anatomically with the cortico-subcortical network that demonstrated sex differences in
adolescent development. In a second step, we tested for enrichment by schizophrenia-
associated genes of the list of genes that were identified by PLS analysis as transcriptionally
co-located with the DMI map. We found no evidence for significant enrichment of this gene
list by risk genes for schizophrenia. In summary, these two specificity analyses indicated
that the brain systems demonstrating sexually divergent development in adolescence were
not anatomically or genetically linked to schizophrenia, suggesting that this normative
neurodevelopmental process may be specifically relevant to depression. However, we note
that we have only tested for a relationship between DMI and two mental health disorders
(MDD and schizophrenia). It will be important in future to explore this relationship across a
wider range of disorders to characterise its diagnostic specificity more comprehensively and
conclusively. It is conceivable that sex differences in development of this system could be
relevant to sex differences in risk for other mental health disorders.

3.4.1 Limitations

Social and environmental factors are relevant modulators of psychiatric disorders (Crossley
et al., 2019) and have not been assessed in this study. These factors can be (i) neurode-
velopmentally relevant, i.e. childhood socioeconomic status influences the pace of brain
development (Tooley et al., 2021) and (ii) can help explain sex and gender differences in
mental health outcomes, i.e. previous studies have demonstrated a relationship between
social inequality and gender disparities in mental health (Yu, 2018). This naturally leads to
the question of how sexually divergent functional network development might be modulated
by socio-economic deprivation, or other environmental risk factors for mental health disor-
der. Lastly, this dataset did not include information on pubertal timing, which we consider
may affect subject-specific development of adolescent brain maturation, i.e. prior work has
found that pubertal stage is better predictor of mood disorder prevalance than chronological
age (Paus et al., 2008). We suggest that deeper understanding of such potential interactions
between biological programmes of sexually divergent brain development on one hand, and
gendered or generic social stressors in childhood and adolescence on the other hand, over the
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course of an individual’s pubertal development, will be an important strategic goal for the
future of mental health science.

In summary, we found that normative sexual divergence in adolescent development of
a cortico-subcortical brain functional network that is psychologically, anatomically and
genetically relevant to depression.



Chapter 4

A review of cortical similarity and
connectivity networks

4.1 From histological stains to whole-brain connectomics

A longstanding interest in brain structure led to the development of histological stains (e.g.
the Golgi stain, Nissl stain) in the late 19th and early 20th centuries. These advances first
allowed researchers to visualize (i) the cellular composition of cortical layers, i.e. the size,
shape and arrangement of the neuronal cell bodies in the cortex, which developed into the
field of cytoarchitectonics, as well as (ii) the myelin composition of cortical layers, which
developed into the field of myeloarchitectonics (Kaes, 1907; Vogt, 1910). These early studies
provided a valuable window into the histological complexity of individual brain regions.
However, it was only with the invention of tract tracing methods in the mid-20th century that
researchers were able to map axonal pathways between individual brain regions, providing
early insights into the organization of large-scale brain networks and moving from studying
regional characteristics to inter-regional connectivity. To date, tract tracing is seen as the
“gold standard” for measuring axonal pathways between brain regions, but the invasive nature
of the method limits it to use in animals only. The invention of magnetic resonance imaging
(MRI) enabled measurement of brain anatomy in vivo in humans, and univariate methods
were first developed (Bethlehem et al., 2022; Sowell et al., 2003) to analyze structural features
at each of multiple discrete locations in the brain. However, the brain has been shown to be
organised as a complex network, thus a univariate focus on regionally localised structural
features misses the opportunity to observe the coordinated brain architecture that gives rise
to cognition and behavior (Bullmore and Sporns, 2009). In recognising the need to estimate
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the anatomical connectivity between brain regions, several methods have been developed to
represent the human brain as a network.

4.2 Approaches to structural brain network construction

4.2.1 Diffusion weighted imaging

From the mid-1990s onwards, computational tractography methods using diffusion tensor
imaging (DTI) data have been employed to reconstruct or “dissect” white matter fiber tracts
between pre-defined grey matter regions. DTI contrasts are generated by measuring the
diffusion of water molecules and inferring the direction of axonal tracts from the direction of
maximal diffusion, i.e., water is expected to diffuse more rapidly in parallel to the orientation
of axonal tracts than perpendicular to them. This method first provided researchers with the
ability to map axonal connectivity between brain regions in humans in vivo. DTI has been
particularly useful in measuring axonal tracts between regions of interest when the number
of regions are limited and within a short geodesic or Euclidean distance from one another;
but the limitations of the method were encountered when the field moved from region-
of-interest analyses to whole-brain connectomics. Concerns were raised that whole-brain
connectivity networks generated from DTI suffered from a systematic under-representation of
long-distance connections (Dauguet et al., 2007; Donahue et al., 2016), likely due to greater
difficulties in accurately measuring intersecting, branching or touching white matter paths
over the course of longer distances, since DTI lacks the ability to definitively determine which
fiber tract the measured signal originates from. Additionally, DTI networks include a large
number of false-positive connections (Maier-Hein et al., 2017; Thomas et al., 2014). Lastly,
due to long acquisition times of DTI data, head movement has been shown to significantly
affect the derived networks (Walker et al., 2012), a finding that is particularly relevant in the
context of developmental studies, knowing that younger participants tend to move more in
the scanner than older ones.

4.2.2 Inter-subject structural covariation

In searching for an alternative to DTI tractography, between-subject similarity has been
proposed as a proxy measure of axonal connectivity between spatially distant brain regions.
It was noted that brain structure varies between individuals in a spatially organized pattern,
i.e., it has been noted that inter-individual differences in a regional imaging phenotype often
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co-vary with inter-individual differences in the structure of other spatially distant regions.
Based on this observation, structural covariance networks (SCNs), have been proposed as
a means to estimate anatomical connectivity in terms of inter-individual variation between
spatially distant regions, also known as structural covariation (Alexander-Bloch et al., 2013).
Structural covariation networks are constructed by correlating a single regional morphometric
feature, e.g., cortical thickness or volume, across multiple subjects, resulting in a group-level
network, where each edge describes the inter-regional correlation of a single macro-structural
(or micro-structural) MRI phenotype across subjects (Fig. 4.1D,F). However, these networks
also suffer from a number of limitations: group level networks lack the ability to map
developmental changes in network configuration (even though sliding-window approaches
have been suggested as a mitigating measure (Váša et al., 2018)); they only make use of a
single morphometric feature at a time, thus failing to leverage the growing capacity of multi-
modal MRI to measure multiple different structural MRI phenotypes near-simultaneously in
the same scanning sequence or session (Lerch et al., 2017); and, perhaps most importantly,
the biological and mechanistic interpretation of these networks is debatable.
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Fig. 4.1 Cortical similarity and connectivity network estimation: (A) Structural brain
networks can be derived from multi-modal magnetic resonance imaging (MRI) data. These
images are parcellated into pre-defined brain regions. (B) Regional features, like CT, GM,
and SA can be estimated at each region. (C) Additionally, depth-dependent profiling can
be used to construct multiple cortical surfaces between the white matter surface and the
pial surface, at each of which an MRI phenotype can be measured. (D) Similarity-based
structural connectivity networks can subsequently be estimated from regional feature vectors,
to estimate either (top) (i) between-subject covaration, based on a single structural feature es-
timated across subjects at each region, resulting in a single group-level {Regions⇥Sub jects}
unimodal MRI data matrix; or (ii) between-regional similarity using (middle) multiple fea-
tures estimated at each region for each individual subject, resulting in a subject-specific
{Regions⇥Features} multi-modal MRI data matrix; or (bottom) a single feature estimated
at multiple cortical depths for each subject, resulting in a subject-specific {Regions⇥Depth}
depth-dependent unimodal MRI data matrix. (E) Structural MRI association matrices are
generally estimated as the pairwise correlation between all possible combinations of regional
feature vectors. Specifically, (F) structural covariance networks (SCNs) are estimated as the
inter-subject structural covariance (or in practice often correlation) between the regional val-
ues of a single feature estimated for each subject, resulting in a single group-level structural
covariance network; (G) morphometric similarity networks (MSNs) are estimated on the
single subject level, as the pairwise correlations between regional feature vectors comprising
multiple features estimated at each region, resulting in a subject-specific morphometric
similarity network; and (H) microstructure profile covariance networks (MPCs) are estimated
at the single-subject level as the pairwise correlation between regional feature vectors com-
prising a single feature estimated at multiple cortical depths, resulting in a subject specific
microstructure profile covariance network (MPC) matrix.
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4.2.3 Intra-subject structural similarity

It has long been understood that variations in cytoarchitectonic differentiation follow a non-
random and graded spatial pattern in both humans and other species (Barbas and Hilgetag,
2023; von Economo and Koskinas, 1925). More specifically, cortical tissue is non-uniformly
differentiated, with the granular cortex exhibiting a clearly eulaminar (6-layer) structure
and high neuronal density; conversely, the agranular cortex largely lacks clearly identifiable
layers, and has a low neuronal density. Between these two extremes, the dysgranular cortex
displays an intermediate profile of less clearly distinguishable layers and moderate neuronal
density. Recent work in primates has further demonstrated that similarity in laminar structure
and cellular composition, rather than other measures like distance or cortical thickness,
is decisive in determining the strength of axonal connections between brain regions (Fig.
4.2; (Hilgetag et al., 2016a)). The strongest connections are formed between regions with
highly similar (i) lamination and/or (ii) myelination of cortical tissue, whereas the weakest
connections are between highly dissimilar regions (Hilgetag et al., 2016a). For example, Beul
et al. (2017) stereologically quantified the neuron density, a well-established proxy measure
of cytoarchitectonic differentiation (Dombrowski et al., 2001), in the macaque cortex and
estimated the similarity in neuron density between all pairs of cortical regions. They find
that the projection density, measured using systematic anatomical tract tracing, between to
regions was higher for regions with highly similar neuron density architecture (Fig. 4.2). One
mechanistic explanation for these findings is that regions with similar laminar organization
are likely involved in similar functions, since their structure is capable of processing similar
types of information, and are thus are more likely to be connected.
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Fig. 4.2 Cytoarchitectonic similarity predicts projection density: (left) Neuron densities,
a measure of cytoarchitectonic differentiation, in the macaque cortex. Gray areas mean no
density data is available. (right) Comparison of neuron density similarity and projection
frequency. The number of projections is plotted against the ratio of neuron density (|log�
ratiodensity|= ln(densitysource�region/densitytarget�region)), i.e. the log-ratio of neuron density
values for each pair of connected areas, between two distant regions. Adapted from Beul
et al. (2017) under a CC BY 4.0 licence.

High-resolution MRI has emerged as a powerful tool for approximating laminar organi-
zation in human brain in vivo (Trampel et al., 2019), (i) through the increasing availability of
multi-modal imaging sequences capturing a variety of anatomical properties hypothetically
related to cytoarchitecture at each brain region (Fig. 4.1B), and (ii) due to the ability to
measure individual MRI imaging features at multiple cortical depths, gaining insight into
changes in microstucture across multiple cortical depths at each region (Fig. 4.1C) (Paquola
and Hong, 2022; Paquola et al., 2019). The latter approach has so far largely been employed
using magnetization transfer (MT) contrasts as an estimate of intra-cortical myelination (Fig.
4.3), but can be extended to a number of volumetrically estimated MRI measures including
T1 images (Ferguson et al., 2018), as well as fractional anisotropy (FA), mean diffusivity
(MD), neurite orientation dispersion and density imaging (NODDI).

Building on the idea that axo-synaptic connectivity is stronger between brain regions with
similar cytoarchitecture and laminar organization (Goulas et al., 2016, 2017), two approaches
to estimate similarity-based structural brain connectivity using MRI have been suggested:
(i) Microstructure profile covariance networks (MPCs) are constructed, for each subject, by
estimating for each possible pairwise combination of regions, the correlation (or covariance)
between the cortical depth profiles of an MRI metric measured separately for each region
(Fig. 4.1C,D,H; (Paquola and Hong, 2022)); (ii) Morphometric similarity networks (MSNs)
are constructed, for each subject, by estimating the correlation between each possible regional
pair of standardized MRI feature vectors (Fig. 4.1B,D,G; (Seidlitz et al., 2018)).
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Fig. 4.3 Cortical depth profiles for MT: Gradients in magnetization transfer (MT) measured
at multiple cortical depths can approximate microscopoc myelin-staining. (A) Examplary
microscopic myelin-stained sections of the primary (V1) and secondary (V2) visual cortex,
the superior parietal lobule (SPL) and the anterior cingulate cortex (ACC) (Vogt, 1910)
with the inverted image showing myelin in lighter tones; and the corresponding in vivo MT
profiles from the same regions averaged over N=300 subjects from the HPC cohort. Adapted
from Paquola et al. (2019) under a CC BY 4.0 licence.

In summary, the validity of MRI inter-regional similarity as a measure of anatomical
connectivity rests on two assumptions: Firstly, that similarity at cellular scale leads to axonal
connectivity, and secondly, that similarity of their MRI feature vectors is a meaningful
reflection of the similarity of two cortical areas at a cellular scale. In relation to the second
assumption, micro-structural MRI markers of tissue composition, e.g., myelination, neurite
density, are expected to be informative elements of the MRI feature vectors used to estimate
similarity.

Below, we review relevant literature to understand the impact MSNs have had in recent
years (Table 4.10).

4.3 Mapping to cytoarchitechtonics and tractography

MSNs are thought to link macro-scale MRI phenotypes with their neurobiological sub-
strates. They have been shown to improve our ability to represent cortical cytoarchitectonic
classes (von Economo and Koskinas, 1925) and brain organizational principles (Seidlitz
et al., 2018). However, MRI is an indirect or proxy measure of structural connectivity; thus
any networks derived from MRI metrics must be evaluated for their ability to accurately
approximate the “gold standard” of (anterograde) tract-tracing methods in animal models,
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which map monosynaptic connectivity, from cells of origin, through axonal projections, to
synaptic terminals. Indeed, cross-species work has demonstrated that MSNs are able to
approximate axonal connectivity measured by tract-tracing (Seidlitz et al., 2018). While this
mapping is not perfect, and it is only possible to estimate the correspondence in animal mod-
els, it appears safe to assume that reasonable levels of correspondence can also be reached in
humans. This anatomical validation of MSNs suggests that these similarity-based networks
are able to further our understanding of structural brain connectivity and connectomes in
health and disease.

4.4 Predicting cognitive and behavioral outcomes

A fundamental objective of structural brain network analysis is to help us better understand
how brain anatomy gives rise to cognition and behavior. As such, it is noteworthy that MSNs
have been shown to be associated with intelligence quotient (IQ) in two independent samples
thus demonstrating their relevance to fundamental cognitive abilities (Seidlitz et al., 2018;
Wu et al., 2022). Increased modular differentiation in MSNs between cortex and subcortex
has also been linked to better scores on multiple cognitive questionnaires in a pedriatic
sample (Wu et al., 2022). This finding is of particular relevance in the developmental context,
suggesting a developmental differentiation of segregated cytoarchitectonic areas. Further, it
goes in line with prior literature on pediatric and adolescent development of DTI networks
that also display a process of modular segregation (Baum et al., 2017).

4.5 Bridging from micro to macro scales

Brain networks are organized on multiple spatial scales from the micro-scale of gene expres-
sion measured using transcriptomics in post mortem brains (Kaczkurkin et al., 2019) to the
macro-scale of MRI-defined grey matter brain regions. In order to further our understanding
of the brain as a complex system influenced by genetics, gene expression, cell types, and spa-
tial constraints, bridging scales of analysis is of fundamental importance. MSNs have been
proven to be a promising avenue for linking cortical transcriptomic data from the Allen Hu-
man Brain Atlas averaged across six donor brains (Hawrylycz et al., 2015) with single-subject
structural MRI-derived networks. These advances have demonstrated two key properties of
MSNs: First, changes in morphometric similarity as a result of chromosomal copy number
variation (CNV) disorders have been shown to closely relate to spatial expression patterning
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of genes from the affected chromosomes (Seidlitz et al., 2018), suggesting that MSNs are
able to map changes in brain anatomy due to genetic changes. Second, MSNs have been
used widely to map phenotypic associations with risk genes for multiple psychiatric (Morgan
et al., 2019; Xue et al., 2023; Zong et al., 2023), and neurodegenerative disorders (Zhang
et al., 2021a). These findings promise to support our understanding of gene-brain-structure
relationships in health and disease.

4.6 Identifying neuroanatomical differences in health and
disease

A key motivation for mapping structural brain networks is the identification of deviations
in brain anatomy due to disorders. Morphometric similarity networks have been used to
identify such differences for a wide variety of neuropsychiatric disorders (Lei et al., 2022; Li
et al., 2022, 2018b; Morgan et al., 2019; Xue et al., 2023; Zhang et al., 2021a; Zong et al.,
2023). For example, patients with psychosis across three independent datasets have been
shown to have globally decreased morphometric similarity, and a regionally specific profile of
decreases in MSNs nodal strength in the hubs of the “normative” MSN connectome, located
in frontal and temporal cortical areas, as well as increased regional strength of the non-hubs
of the normative connectome, in parietal cortex (Morgan et al., 2019). Epilepsy has been
associated with decreased regional morphometric similarity in primary motor, prefrontal
and temporal regions and increased nodal strength of inter-regional similarity, i.e. weighted
degree, in occipital, insular and posterior cingulate cortices (Li et al., 2022). It has been
argued that neuropsychiatric disorders often affect the most highly connected nodes of the
network, i.e. the hubs. Case-control studies of differences in morphometric similarity in
Alzheimer’s disease have provided further evidence to support this theory (Li et al., 2018b),
integrating recent work on MSNs into a long-standing history of research on disease. Notably,
MSNs have also been used to distinguish different groups of healthy subjects. It has long been
reported that skill acquisition can lead to changes in brain structure and function (Maguire
et al., 2006). RaviPrakash et al. (2021) estimated individual differences in morphometric
similarity in healthy controls with different skill sets, namely chess players, suggesting
that skill acquisition, or some pre-determined aptitude to learn skills, may directly shape
morphometric similarity. However, these analyses were conducted in a small sample (N=40)
and future work should provide further evidence for these findings.
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4.7 Clinical applications

Much neuroscientific reasearch is conducted with the ultimate intention of advancing our
understanding of diseases, such that findings will translate into clinical practice. While
morphometric similarity networks were designed with the goal of exploiting multi-modal
magnetic resonance imaging data which is increasingly acquired in research settings, it has
been noted that the core structure of these networks is stable across various combinations of
imaging phenotypes, including when features are derived only from commonly clinically
acquired T1-weighted images (King and Wood, 2020; Li et al., 2017). Indeed, several of the
case-control differences reported above were measured in MSNs derived exclusively from
features measured in T1-weighted images. (Li et al., 2018b; Morgan et al., 2019).

Further work has explored the use of MSNs in clinical practice by estimating structural
brain network changes in response to anti-psychotic treatment (Zong et al., 2023). This
work found an association between whole-brain MSN architecture and treatment response,
potentially related to MSN’s ability to capture multi-dimensional brain organization archi-
tectures related to cognitive function changes (Zong et al., 2023). It appears the reported
changes in morphometric similarity in response to treatment may be in the opposite direc-
tion of case-control differences from a prior study (Morgan et al., 2019). However, prior
work on univariate models of cortical thickness have suggested a similar trend of apparent
intensification of cortical thickness differences despite an improvement of symptoms after
treatment (Voineskos et al., 2020). Further work is needed to relate morphometric similarity
changes in response to treatment with prior case-control studies.

It is worth noting that a large number of studies using morphometric similarity networks
are currently adopting relatively coarse-grained parcellations, e.g., the Desikan-Killiany
anatomical atlas (DK) which includes 34 bilateral cortical regions (Table 4.10). While a low
number of regions will increase the statistical power to detect case-control differences at a
nodal level by limiting the number of statistical tests that need to be corrected for multiple
comparisons in the context of whole-brain analyses, they do not provide neuroanatomical
specificity on par with more fine-grained parcellations now available such as the Human
Connectome Project (HCP) parcellation (Glasser et al., 2016b).

4.8 Leveraging multimodal imaging

The theoretical basis of MSNs rest in the idea that brain regions that are cytoarchitectonically
more similar to one another are more likely to be connected. This raises the question of how
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cytoarchitecture can best be represented using MRI. No consensus has been reached on which
combination of MRI features best approximate underlying anatomical connectivity. While
many microstructural MRI measures, in particular when measured at different cortical depths,
have been shown to approximate cytoarchitectonic organization well (Paquola et al., 2019),
the link with macrostructural MRI measures relate is less intuitive. Recent work in animal
models has suggested that cortical thickness is is not a good predictor of cytoarchitectonic
similarity (Hilgetag et al., 2016b). However, cortical thickness measurements using MRI
are based on computationally finding the boundary between the cortical sheet grey matter
sheet and the underlying white matter, a measurement that can be confounded by greater
intra-cortical myelination in deeper cortical layers, leading to a systematic under-estimation
of cortical thickness in such regions. Thus while cortical thickness measures in MRI differs
from histological studies, this confound my actually provide relevant information on cytoar-
chitecture. More work is needed to address the question of how individual MRI features
relate to cytoarchitec similarity.

A key motivation in developing morphometric similarity networks was the exploitation of
multi-modal imaging data, yet many studies have so far only used T1-image derived features.
One explanation for this may be that T1 imaging data are more readily available. Indeed a
number of studies used legacy datasets to study morphometric similarity networks (Zong
et al., 2023). Both the age of these datasets and the fact they were not specifically acquired
to derive multi-modal structural networks may have contributed to the small feature vectors
used. Conversely, it can be seen as a strength that MSNs provide the ability to derive
single-subject networks from T1 data only, since, as several studies reviewed here have
demonstrated (Fenchel et al., 2020; Galdi et al., 2018; He et al., 2020; King and Wood, 2020;
Vuksanović, 2022; Wu et al., 2022; Zhang et al., 2021a; Zhukovsky et al., 2022), this opens
up the possibility to use any of the large number of openly available neuroimaging datasets
that routinely include T1 images, but not necessarily other imaging modalities.

However, it is key to note that inter-regional correlations estimated on the basis of short
feature vectors comprising five features derived from T1 data only, inevitably have larger
errors than correlations estimated on the basis of longer feature vectors comprising 10 or more
features derived from T1 in addition to other modalities of MRI data (Seidlitz et al., 2018).
Thus, while T1-only MSNs are pragmatically convenient, they are less robust statistically and
may be less sensitive to detect individual differences between subjects due to the relatively
high error in estimation of each MSN.

On a related note, exploiting multi-modal data also allows expansion of the anatomi-
cal range of MSNs from focusing only on cortico-cortical structural connectivity to also
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include subcortical connections. Specifically, the output from common T1-image processing
pipelines, e.g., FreeSurfer, typically includes a number of regional cortical features, but
often only grey matter volume is measured for subcortical structures. Recent work has
demonstrated the value of examining subcortical structural connections by deriving a de-
velopmental signature of decreasing morphometric similarity, or hypothetically increasing
cytoarchitectonic segregation, between cortex and subcortex during childhood (Wu et al.,
2022). Future studies should further explore subcortico-cortical morphometric similarity, for
example integrating FA and MD measured subcortically.

4.9 Tracking developmental changes in brain anatomy

A core focus of neuroscientific research is understanding brain development over the lifespan.
Studying network changes in development can inform our understanding of neuropsychiatric
disorders by highlighting key maturational processes which may be vulnerable to atypical
development (Paus et al., 2008). Previous work on structural brain network development,
in particular in youth, has been limited by the difficulty of obtaining high quality diffusion
weighted imaging (DWI) connectomes, and the fact that SCNs are only estimated at the
group level. While discrete group comparisons (Khundrakpam et al., 2013) and sliding-
window approaches (Váša et al., 2018) have been employed to approximate developmental
network changes using SCNs, no continuous process of development can be modeled. A
key advantage for using single-subject MSNs is the ability to model continuous trajectories
of brain network development, but to date, this potential advantage of MSNs has not been
exploited widely. Out of the 25 studies reviewed here, 17 were conducted on adult subjects
without a developmental perspective (Table 4.10). However, the limited number of devel-
opmental studies already in the literature does support the idea that MSNs could be used to
map maturational network changes. For example, Fenchel et al. (2020) reported detectable
network modules in MSNs derived from infant MRI data. These modules were comparable
to known adult network modules and within-module morphometric similarity was shown
to increase with age, suggesting that infancy is a period of consolidating intra-modular
connectivity (Fenchel et al., 2020). Further, using a sample of infants aged 38 to 45 weeks
post menstrual age (PMA), showed that morphometric similarity networks were predictive
of chronological brain age in the perinatal period Galdi et al. (2018). Together, these findings
suggest that MSNs are indeed able to model developmental changes in network structure.
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4.10 Future directions

To date, the potential of morphometric similarity networks to study developmental changes
in brain structure have not been entirely fulfilled.

A number of studies reported here had small sample sizes, speculatively at least par-
tially due to the fact that morphometric similarity approaches allow for construction of
structural brain networks from older, smaller sample size legacy datasets. Recent work
has suggested that sample sizes of around 20,000 are required to establish brain-behavior
relationships (Marek et al., 2022). This finding suggests that a number of brain-behavioral
relationships evaluated using MSNs may have been under-powered. While comparatively
simpler case-control difference studies may be better-powered, larger sample sizes, with at
least two longitudinal measurements of each subject, will still be needed to improve our
ability to detect small-scale developmental changes in brain network structure.

A key limitation of structural brain network construction using morphometric similarity
networks is that they collapse the diverse information included in vertex-level data on each
metric into a single number, e.g., cortical thickness, for each regional node. Previous work
has explored single-subject structural similarity matrices estimated at the vertex-level, but
to date vertex-level similarity was usually estimated from a single morphometric feature
only (Homan et al., 2019; Kong et al., 2015; Leming et al., 2021). There is a notable exception
to this trend: Sebenius et al. (2022) proposed a method to estimate morphometric similarity
that makes use of the rich, multidimensional vertex-level data derived from multiple MRI
phenotypes by estimating the divergence between between the multivariate distributions of
their structural features.

Future research should also focus on making use of the increasing number of features
that can be derived from multi-modal imaging data. Further, the value of integrating features
measured at multiple depths, i.e. in line with MPCs, could be considered. So far, cortical
depth profiles have largely been measured in MT (Paquola and Hong, 2022; Paquola et al.,
2019) and T1-weighted images (Eickhoff et al., 2005), but theoretically they could be derived
in multiple other modalities, opening up opportunities to further characterize the multi-layer
structure of the cortex using MRI.

A key motivation in generating similarity-based structural brain networks is to study
connectivity between brain regions. To date, work on MSNs has largely focused on analyses
of node degree, i.e., the sum over a node’s edge-wise similarities with all the other nodes in
the network. Relatively little attention has been paid to the rich information available in the
edge-wise connections themselves.
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One challenge in the future will be to link the detailed knowledge derived from monosy-
naptic connectivity studies in animals with structural connectivity models from in vivo MRI.
One avenue for further research may be the acquisition of datasets that combine multimodal
MRI with tract-tracing data, and possible also transcriptomics, or histology to create an
in-depth view into brain structure in animals.
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Paper Age Dx Features T1 N Atlas
Galdi et al. (2020) Infancy Ctrl GM, T1/T2, NODDI, DKI No 105 Makrop.
Galdi et al. (2018) Infancy Ctrl GM, T1/T2, FA, MD, AD,

RD, ICVF, VISO, ODI
No 95 Makrop.

Fenchel et al. (2020) Infancy Ctrl CT, MC, MI, SA, FA, MD,
NDI, ODI

No 241 In-house

Wang et al. (2022) Childhood Ctrl CT, SA, MC, GC, FI, CI, GM Yes 130 DK
Wu et al. (2022) Childhood Ctrl CT, CA, SD, CV, T1w inten-

sity, T2w intensity, +12
No 8,908 DK

Lei et al. (2022) Childhood BP GM, SA, CT, MC, IC, FA,
MD

No 102 HCP

Morgan et al. (2019) Adulthood SCZ GM, SA, CT, IC, MC, FA,
MD

No 412 308

Yang et al. (2021) Adulthood Ctrl GM, SA, CT, CI, MC Yes 119 Gradient
King and Wood (2020) Adulthood Ctrl T1 derived only Yes 1,113 DK
Wei et al. (2021) Adulthood IG CT, SA, IC, MC, CI,FI, GM,

GA, MD, RD, AD,
No 101 308

Xue et al. (2023) Adulthood MDD GM, CT, SA, CI, IC, MC, Yes 142 DK
Martins et al. (2022) Adulthood Pain GM, CT, SA, IC, CI, MC Yes 158 DK
Zong et al. (2023) Adulthood SCZ CT, GM, SA, IC, MC, FI, CI,

FA, MD
No 80 DK

Zhukovsky et al. (2022) Adulthood SUD GM, SA, CT, MC, IC, CI, MC,
FI

Yes 331

Li et al. (2021) Adulthood MDD FA, MD, GM, SA, CT, IC,
MC

No 473 308

Li et al. (2022) Adulthood Epilep. GM, CT, SA, MC, IC, CI, FI Yes 251 308
RaviPrakash et al. (2021) Adulthood Ctrl GM, SA, CT, CI, FI Yes 47 Yeo-17
Tian et al. (2021) Adulthood Ctrl GM, CT, SA, MC, CI, IC, FI Yes 216 DK
He et al. (2020) Adulthood Ctrl Nvertex, SA, GM, CT, sdCT,

MC, IC, CI, FI,
Yes 361 DK

Tian et al. (2020) Adulthood CT GM, CT, SA, MC, CI, IC, FI Yes 216 DK
Li et al. (2017) Adulthood Ctrl GM, CT, SA, MC, CI, IC, FI Yes 55 DK
Zhang et al. (2021a) Old Age AD All? GM, Curvature, FA, MD No 212 308
Li et al. (2018b) Old Age AD CT, GM, SA, MC, FI Yes 40 DK
Vuksanović (2022) Lifespan Ctrl T1 derived only Yes 198 DK
Seidlitz et al. (2020) Lifespan CNV CT, SA, GM, MC, IC Yes 462 308
Table 4.1 Previously published studies using morphometric similarity networks. The studies
were identified by a pubmed search in January 2022 using the search terms morphometric
similarity network or MSN.





Chapter 5

Adolescent morphometric similarity
development

5.1 Introduction

5.1.1 Adolescent brain development

Chapter 2 and Chapter 3 have illustrated that the human brain undergoes extensive func-
tional reorganization during adolescence. Functional reorganization is thought to be based,
at least partially, on changes in brain structure during the same period (Gu et al., 2021). Pre-
vious work on adolescent structural brain development has established two major processes
that dominate this period: (i) after peaking in early childhood, cortical grey matter volume
decreases during adolescence through synaptic pruning; while (ii) protracted myelination
of the cortex sees peak white matter volumes reached in early adulthood (Bethlehem et al.,
2022). These neurodevelopmental programs are thought to be fundamental to the emergence
of adult cognitive functions and social behaviours (Mills et al., 2016; Sowell et al., 2004;
Váša et al., 2018), but to date, they have largely been studied in isolation using univariate
models (Mills et al., 2016; Whitaker et al., 2016b). This chapter will focus on adolescent
changes in structural magnetic resonance imaging (MRI) markers of brain network devel-
opment during adolescence and will test the hypothesis that these changes are linked to
functional connectivity.
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5.1.2 Structural network studies of adolescent development using MRI

Magnetic resonance imaging can be used to map developmental changes in brain structure
at various anatomical scales. The adolescent changes in brain structure outlined above
likely represent a process of network reorganization. However, research on adolescent
structural brain development so far has largely focused on univariate phenotypes (Mills
et al., 2014; Whitaker et al., 2016a), and research into network changes has often been
limited by the lack of access to good quality individual connectomes measured longitudinally.
Previous work has largely focused on structural covariance networks, which are estimated
at the group level, or connectomes generated from diffusion weighted imaging (DWI) data.
However, the biological interpretation of structural covariance networks, that are based on the
between-subject covariance in a single phenotype, is difficult, and in addition to the limited
availability of good-quality longitudinal DWI connectomes in young subjects, DWI-based
networks generally also suffer from underestimation of long-range connections, e.g., between
bilaterally symmetric cortical areas (refer to Chapter 4 for details).

Building on the idea that cytoarchitectonically similar regions are more likely to be
axonally connected, morphometric similarity networks (MSNs) quantify the similarity be-
tween distant cortical areas in terms of multiple MRI parameters measured at each area, thus
constructing whole-brain anatomical networks for individual subjects. MSN can be build
from any combination of structural MRI metrics, including (i) macro-structural metrics, like
cortical thickness (CT), grey matter volume (GM) and surface area (SA), which aggregate
data from multiple voxels representing an anatomical region to estimate its geometric proper-
ties on centimetre scale; and (ii) micro-structural metrics, like magnetization transfer (MT),
which are representative of some aspect of brain tissue composition on millimetre scale,
e.g., MT is a proxy for cortical myelination. MSN-construction and validation is described
in-depth in Chapter 4 but, briefly, MSNs have been shown to correlate with the “gold
standard” of anatomical connectivity, white-matter tract tracing data, in the macaque monkey,
thus validating the status of morphometric similarity as a proxy for axonal connectivity; they
have been used to predict individual differences in intelligence quotient (IQ) (Seidlitz et al.,
2018) and case-control differences in schizophrenia (Morgan et al., 2019), demonstrating
their ability to map to relevant cognitive and psychiatric outcomes; and they have been linked
to genetic variation in studies of sex chromosome aneuploidies and other neurodevelopmental
disorders (Seidlitz et al., 2020). However, to date, little is known about how MSNs change
over the course of normal development. Here, we will leverage MSN’s ability to incorporate
multi-modal imaging data, including features previously found to represent relevant pro-
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cesses of adolescent structural maturation like CT and MT, to explore changes in adolescent
structural brain networks longitudinally.

5.1.3 Functional and metabolic correlates of structural network devel-
opment

Structure is thought to underlie the functional realization of spontaneous activity across
the cortex. While the mapping between the two is imperfect - at best, structural connec-
tivity is thought to explain 50% of the variance in functional connectivity (Suárez et al.,
2020) - at least some of the known adolescent changes in functional connectivity (Marek
et al., 2015; Váša et al., 2020) may be driven by structural changes. Adolescence is a
time of increasing social and cognitive individualization, which is likely underpinned by
development of increasing functional flexibility during this time (Baum et al., 2017, 2020).
One may expect that such changes in functional organization could result from changes in
how underlying structure supports coordinated fluctuations in neural activity underlying
cognition (Baum et al., 2017). Prior work has suggested that tightly coupled structural
and functional connectivity, often reported in highly myelinated sensory-motor regions,
may represent strong structural constraints on function, where activity is directly supported
by local white matter pathways, potentially reflecting highly conserved programming that
ensures the early development of specialized sensory hierarchies (Buckner and Krienen,
2013). Conversely, it has been suggested that less tightly coupled structural and functional
connectivity may support functional flexibility and dynamic recruitment during diverse task
demands (Baum et al., 2020). Indeed, Baum et al. (2020) found that longitudinal changes
in structure-function coupling were associated with longitudinal changes in the diversity of
inter-regional functional connectivity.

To date there is no consensus on how best to estimate the coupling between structural
and functional connectivity, and various methods have been used to define both structural
and functional networks (Baum et al., 2020; Liu et al., 2022; Zamani Esfahlani et al., 2022),
which may contribute to the lack of consistency in the overall pattern of previously reported
results. Notably, structure has so far been defined from DWI networks (Baum et al., 2020) or
downstream graph theoretical properties of such networks (Zamani Esfahlani et al., 2022).
It is conceivable that new insights can be gained into how structure constrains function
by employing different structural network modeling approaches, including more directly
modelling relevant maturational processes of increasing myelination paired with cortical
thinning as is possible using MSNs.
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5.1.4 Summary and Hypotheses

Here, we analysed 469 structural MRI and 448 functional MRI scans in an accelerated
longitudinal design, with one to three scans per participant. First, we estimated age related
changes in six macro- and micro-structural MRI metrics individually. Then, we estimated
the morphometric similarity between 358 cortical areas on a feature vector comprising those
six structural metrics. For each scan, this resulted in a morphometric similarity network,
with edge weights and nodal weighted degrees, for modeling of anatomical connectome
development and for comparison with functional MRI connectivity. We hypothesized that
(i) MRI macrostructural features would decrease over the course of adolescence, while
MRI microstructural measures of myelination would increase, respectively reflecting known
processes of synaptic pruning and increases in myelination; (ii) we could map these diverging
processes to a profile of changes in morphometric similarity over the course of adolescence;
and (iii) that this structural re-wiring would be linked to changes in structure-function
coupling over the course of adolescence.

5.2 Methods

5.2.1 Sample

The work in this chapter makes use of the same dataset presented in Chapters 2-3, which
was collected as part of the Neuroscience in Psychiatry Network (NSPN), a joint initiative
by the University of Cambridge and University College London, with the aim of using an
accelerated longitudinal design to measure developmental brain changes in a sample drawn
from the population of Greater London and Cambridgeshire that was broadly representative
of the populations of England and Wales. A total of 306 adolescents were invited to undergo
functional and structural neuroimaging assessments. The exclusion criteria for this subsample
included a current or past history of neurological disorders, current treatment for psychiatric
disorder or drug or alcohol dependence, as well as learning disabilities. Each participant was
invited to provide data on at least two occasions; at baseline and at a one year follow-up
assessment, with a subset of the sample invited to come in six months after baseline for
an additional scan. The cohort was scanned a total of 556 times. The study was ethically
approved by the National Research Ethics Service and conducted in accordance with U.K.
National Health Service research governance standards. While the previous chapter focused
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on the functional MRI data acquired for each participant, here we will focus on the structural
MRI data.

5.2.2 Structural MRI acquisition and pre-processing

The anatomical MRI data were acquired using a multi-parametric mapping (MPM) se-
quence (Weiskopf et al., 2013) at three sites, on three identical 3T Siemens MRI scanners
(Magnetom TIM Trio, VB17 software version) with a standard 32-channel radio-frequency
(RF) receive head coil and RF body coil for transmission. The diffusion weighted data were
collected during the same session. A single-shot echo planar imaging sequence (63 gradient
directions with b-value = 1000 mm/s2 and 5 unweighted B0 images) was used to acquire
a high-angular resolution diffusion-weighted image (HARDI) with the following scanning
parameters: slice number = 70 consecutive; slice thickness = 2 mm; field of view = 192 × 192
mm; echo time (TE) = 90 ms; repitition time (TR) = 8700 ms; voxel size = 2.0 mm isotropic.

We pre-processed the anatomical data using the recon-all command in Freesurfer
v5.3.0 (Fischl, 2012). In short, the pipeline included the following steps: non-uniformity
correction, projection to Talairach space, intensity normalisation, skull stripping, automatic
tissue and subcortical segmentation, and construction of smooth representations of the
gray/white interface and the pial surface. Subsequently, the DWI volumes were aligned to
the T1 image for each subject.

We parcellated the anatomical and DWI scans into 360 bilateral parcels, using the Human
Connectome Project (HCP) parcellation atlas (Glasser et al., 2016b).

5.2.3 Functional magnetic resonance imaging (FMRI) acquisiton and
pre-processing

The functional MRI data were acquired using a multi-echo (ME) echo-planar imaging
sequence with the following scanning parameters: TR = 2.42 s; GRAPPA with acceleration
factor = 2; flip angle = 90°; matrix size = 64 × 64 × 34; field of view = 240 mm by 240 mm;
in-plane resolution = 3.75 mm by 3.75 mm; slice thickness = 3.75 mm with 10% gap, with
sequential acquisition of 34 oblique slices; bandwidth = 2368 Hz/pixel; and echo times (TE)
= 13, 30.55, and 48.1 ms.

The full pre-processing pipeline has been described in depth in 2. Briefly, this in-
cluded: multi-echo independent component analysis (ME-ICA) to remove non-BOLD
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components (Kundu et al., 2012b, 2013b); CSF-regression using Analysis of Functional
NeuroImages software (AFNI; (Cox, 1996b)); parcellation into 360 bilateral cortical regions
using the HCP template (Glasser et al., 2016b); band-pass filtering (frequency range 0.025 to
0.111 Hz); removal of 30 dropout regions, defined by a low Z score of mean signal intensity
in at least one participant (Z <�1.96); functional connectivity estimation using Pearson’s
correlation between all possible combinations of regional timeseries; and Fisher’s r�Z trans-
formation. Finally, to remove any residual effects of head motion on functional connectivity,
we regressed each pairwise correlation between regions on the time-averaged head motion
of each participant (mean framewise displacement (FD)). We retained the residuals of this
regression, i.e., motion-corrected Z scores, as the estimates of functional connectivity (FC)
for this analysis.

5.2.4 Morphometric feature estimation and quality control

We used FreeSurfer’s standard morphometric features: cortical thickness (CT),grey matter
volume (GM), surface area (SA), intrinsic curvature (IC), mean curvature (MC), intrinsic
curvature (IC), and folding index (FI). Previous work on this sample had indicated that MT
adolescent changes with age were most pronounced at 70% cortical depth from the pial
surface (Whitaker et al., 2016b); thus regional MT values were estimated at that depth. Lastly,
regional volumes for fractional anisotropy (FA) and mean diffusivity (MD) were derived
from the DWI scans.

In order to identify potential outliers, first we standardized each (global) morphometric
feature using the non-parametric metric median absolute deviation (MAD). We normalized
each features across nodes within each scan, i.e.:

MAD f ,s =
Xf ,s �median(Xf ,s)

k ⇤median(|Xf ,s �median(Xf ,s)|)
(5.1)

where Xf ,s is the vector of regional feature values for a single feature f across regions
for a single scan s, and k ⇡ 1.4826 is a constant, which ensures that for large N the median
absolute deviation is approximately equal to the standard deviation. Thus MAD f ,s is a vector
of standardized feature values for a single feature f across regions for a single scan s.

We excluded 11 subjects due to outliers, with MAD � 5 set as the threshold based on
visual interpretation of the distributions of data, in at least one global morphometric measure
(Fig. 5.1).
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Fig. 5.1 Global morphometric outliers: We estimated MAD scores across subjects for
each of 10 morphometric features: CT, GM, SA, FA, MT, MD, CI, FI, IC, and MC. We
defined outliers as subjects withMAD � 5 in at least one morphometric feature. Here, global
(raw) feature values, colored by their respective MAD scores, are shown to highlight which
datapoints were removed.

We then estimated MAD locally, as in Equation 5.1, for each morphometric feature
across subjects. First, we excluded regions with signal dropout, defined asMAD = 0, which
led to the exclusion of two regions (L_H, R_H; see Supplmentary table A.2 for a list of
full regions names), such that the total number of regions analysed henceforth was 358.
Next, within each subject, we excluded all regions with MAD � 5 (Fig. 5.2). At this step
of the quality control pipeline, we found that the curvature features, MC, IC, CI, and FI,
demonstrated much larger numbers of outliers across all regions. We thus chose to exclude
them from further analyses and proceeded with the six previously mentioned micro- and
macro-structural MRI features only (CT, GM, SA, MT, FA, MD).
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Fig. 5.2 Local morphometric outliers: We estimated the local MAD score for each subject
at each region within each morphometric feature. Here, we show the percentage of subjects
withMAD � 5 in each region.

5.2.5 Modeling of developmental change in morphometric features

We estimated linear age-related changes or development in six morphometric features at
global scale, i.e., on average for each feature over all regions, and locally, for each feature at
each region, using linear mixed effects models, with a fixed effect of age, sex and site, and a
random effect for the repeated measures on each participant, as follows:

Fi ⇠ 1+bage ⇤age+bsex ⇤ sex+bsite ⇤ site+ gsub ject ⇤ (1|sub ject)+ e (5.2)

where Fi refers to the morphometric feature at region i, b refers to the coefficients for
the fixed effects, gsub ject refers to the coefficients for the random effect, and e represents the
residual error.

5.2.6 Adolescent changes in morphometric similarity

We derived subject-specific structural connectomes using morphometric similarity networks.
To this end, we standardized each morphometric feature within each subject using MAD. We
then estimated morphometric similarity networks for each subject by calculating the Pearson
correlation between their standardized feature vectors for each possible pair of regions. This
resulted in a 358⇥358 symmetric matrix, indicative of morphometric similarity between
cortical regions.
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Fig. 5.3 Estimation of age effects on morphometric similarity: First, for each subject,
we estimated weighted degree as the mean over all of a node’s edges. Then, we estimated
the linear effect of age on weighted degree using linear mixed effect models with a fixed
effect of age, sex and site, and a random effect of subject. From this model, we estimated
two parameters: the baseline connectivity at age 14, as the predicted nodal degree at age 14;
and the adolescent rate of change, as the slope of the regression line fitted to the effect of age
on nodal degree.

We first estimated regional morphometric similarity, or weighted degree as the mean
across a region’s edges (Equation 1.2). Then we estimated the linear effect of age on MSN
weighted degree, using linear mixed effects models (Fig. 5.3A) with a fixed effect of age,
sex, and site and random effect of subject, as follows:

si ⇠ 1+bage ⇤age+bsex ⇤ sex+bsite ⇤ site+ gsub ject ⇤ (1|sub ject)+ e (5.3)

where si refers to the morphometric similarity strength, or weighted degree, of regional
node i, b refers to coefficients for the fixed effects, gsub ject refers to the coefficients for
random effects, and e represents the residual error.

From this model, we estimated the adolescent rate of change in morphometric similarity,
or the age effect on weighted degree at each node of MSN, as the b -coefficient of age.

In order to decode the regional changes in morphometric similarity by cell type, we
averaged weighted degree over all regions within each cytoarchitectonic class of cortical
areas defined a priori by a reference brain atlas (Whitaker et al., 2016b).

We then estimated the correlation between age-related changes (t-values) in individual
morphometric features, estimated by Equation 5.3, and age-related changes (t-values) in
morphometric similarity, estimated by Equation 5.3. Each analysis of spatial co-location
or correlation between two cortical maps was reported with both the parametric P-value
corresponding to the Pearson correlation (r), as well as a P-value derived from the more
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conservative "spin-test" permutation. Spin tests based on spatial permutation have been
introduced in detail in Chapter 2. Briefly, spatial autocorrelation of statistical brain maps can
cause inflated estimates of the probability of spatial co-location or correlation between two
maps (Alexander-Bloch et al., 2013; Váša et al., 2018). The spin test procedure addresses
this issue by conserving the spatial autocorrelation of the maps by randomly “spinning”
or spherically rotating each map over the surface of the brain and calculating the spatial
co-location statistic after each spin permutation.

We estimated the anatomical co-location of the map of age-related changes in morpho-
metric similarity with various gradients of cortical organization, including metabolic rates,
blood volume, and functional hierarchy (Sydnor et al., 2021). To do this, we correlated the
ranked map of age-related changes in morphometric similarity with each prior map, and then
estimated the significance of the correlation while controlling for spatial auto-correlation
using a spin-test (Váša et al., 2018).

We further assessed the psychological relevance of the map of age-related changes in
morphometric similarity using Neurosynth, an automated meta-analytical tool (Yarkoni et al.,
2011). Details of this analysis have been described in Chapter 3. Briefly, we generated a
volumetric version of the regional map of adolescent changes in morphometric similarity
(code available at https://github.com/LenaDorfschmidt/neurosynth_analysis) and uploaded it
for automated comparison to the Neurosynth database (https://neurosynth.org) of task-related
fMRI activation coordinates, which returned the correlation values of the map with a wide
set of terms related to fMRI task activation experiments.

5.2.7 Co-location with adolescent changes in functional diversity

We were interested in assessing whether changes in morphometric similarity during adoles-
cence were associated with changes in functional diversity, which might represent adolescent
changes in cognition and behavior. To this end, we used subjects’ functional connectivity
matrices to estimate the regional participation coefficient, a measure of inter-modular con-
nectivity mediated by each node, such that nodes with high participation coefficient have
been designated “connector hubs” because of their important role in communication between
functionally specialised modules (Chapter 1, Fig. 1.3). We then used linear mixed effects
models to estimate the linear effect of age on the participation coefficient in each region i as
follows:

PCi ⇠ 1+bage ⇤age+bsex ⇤ sex+bsite ⇤ site+ gsub ject ⇤ (1|sub ject)+ e (5.4)

https://github.com/LenaDorfschmidt/neurosynth_analysis
https://neurosynth.org
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where PCi refers to the participation coefficient at region i, b refers to the coefficients for
the fixed effects, gsub ject refers to the coefficients for random effects, and e represents the
residual error.

5.2.8 Adolescent changes in structure-function coupling

We estimated global structure-function coupling as the Spearman correlation between the
upper triangle of each subjects’s structural (MSN) and functional (FC) networks at each
timepoint (Fig. 5.4A,B). We opted to use Spearman’s rank correlation due to its robustness
to possible outliers. Local structure-function coupling was estimated at each node as the
Spearman correlation between the node’s edges in the structural and functional networks
(Fig. 5.4A,C).

Fig. 5.4 Structure-function coupling estimation: (A) For each subject, we estimated the
coupling between their structural (MSN) and functional (FC) connectomes. (B) Global
coupling was estimated as the Spearman correlation between the upper triangle of both
matrices. (C) Regional coupling was estimated as the Spearman correlation between all
edges of each region.

Then, we estimated parameters of adolescent change in structure-function coupling.
Specifically, we estimated the linear effect of age on regional structure-function coupling
strength using linear mixed effects models, with a fixed effect of age, sex and site, and a
random effect of subject, as follows:

CSi ⇠ 1+bage ⇤age+bsex ⇤ sex+bsite ⇤ site+ gsub ject ⇤ (1|sub ject)+ e (5.5)

where CSi refers to the strength of structure-function coupling at region i, b refers to the
coefficients for the fixed effects, gsub ject refers to the coefficients for random effects, and e
represents the residual error.
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We proceeded to derive the local structure-function coupling at baseline (age 14) as the
predicted coupling value from Equation 5.5, i.e.,

CS14i = 1+14⇤bage +0.5⇤bsex +1/3⇤bsite; (5.6)

and the rate of change in coupling over the course of adolescence, as the t �values of the
effect of age, bage, estimated by Equation 5.5.

Finally, we estimated intra-individual changes between baseline and follow-up assess-
ments in participation coefficient, DPC: :

DPC = PCf ollow�up �PCbaseline; (5.7)

and comparable changes in structure-function coupling, DCoupling:

DCoupling =Coupling f ollow�up �Couplingbaseline; (5.8)

and then estimated the correlation between DPC and DCoupling for each regional node.

5.3 Results

5.3.1 Analyzable sample

The final sample of morphometric feature data after quality control consisted of 469 scans
from 291 subjects in 358 regions. The fMRI sample included 448 scans from 283 subjects at
330 regions (Table 5.1). We conducted each analysis on the largest possible dataset, thus
analyses of brain structure were conducted on 291 subjects across 358 regions, whereas
analyses of structure-function relationships were conducted on an extensively overlapping
sample of 283 subjects across 330 regions.
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Baseline 6 Months Follow Up
agebin female male female male female male
1 29 28 3 2 19 25
2 34 28 2 2 24 22
3 23 24 3 2 14 13
4 30 32 5 5 15 21
5 20 18 1 2 8 15

Table 5.1 NSPN structural MRI data sample overview: The NSPN sample was a sex-
balanced, age-stratified longitudinal cohort, with subjects recruited in five age bins: 14-15
years, 16-17 years, 18-19 years, 20-21 years and older than 22 years at baseline. Approxi-
mately 30 subjects per sex were recruited in each age bin. Subjects were invited for scanning
at a baseline and follow-up visit approximately one year later, with a small subset of subjects
also invited for an intermediate scan about six months after baseline. Here, we list the number
of structural scans available in the final sample (after quality control) per age-bin, for each of
the visits, stratified by sex.

5.3.2 Adolescent changes in global and regional MRI metrics

We first estimated adolescent changes at global and regional scales for six morphometric
features: (i) three macro-structural MRI metrics, cortical thickness (CT), grey matter volume
(GM), and surface area (SA); (ii) and three micro-structural metrics, magnetization transfer
(MT), magnetization transfer (MT) and mean diffusivity (MD).
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Fig. 5.5 Adolescent changes in global macro-structural and micro-structural MRI
metrics: (A) We modeled the linear effect of age on six morphometric features: 3 macro-
structural MRI metrics (GM, CT, SA) all decreased over the course of adolescence (PFDR <
0.05 for each), while 1 of the 3 micro-structural MRI metrics was significantly increased
during adolescence (MT, PFDR < 0.05) but not MD or FA.

Globally, we found that all macro-structural metrics significantly decreased during
adolescence: SA, tage = �2.33,PFDR < 0.05; GM, tage = �5.23,PFDR < 0.01); and CT,
tage = �7.29,PFDR < 0.01. Of the micro-structural metrics, MT significantly increased
(tage = 3.19;PFDR < 0.01) while FA (tage = 1.78) and MD (tage =�0.42) showed no signifi-
cant changes after correction for multiple comparisons (Fig. 5.5A, Table 5.2). We also found
that there were significant sex differences in one feature, GM, tsex = 2.85,PFDR < 0.05.
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tage Page tsex Psex PageFDR PsexFDR

Fractional Anisotropy 1.78 0.08 1.13 0.26 0.09 0.31
Mean Diffusivity -0.42 0.67 -2.01 0.05 0.67 0.07

Magnetization Transfer 3.19 0.00 -2.10 0.04 0.00 0.07
Surface Area -2.33 0.02 2.20 0.03 0.03 0.07

Grey Matter Volume -5.23 0.00 2.85 0.00 0.00 0.03
Cortical Thickness -7.29 0.00 -0.11 0.91 0.00 0.91

Table 5.2 Age and sex effects on individual morphometric features: We estimated the
linear effect of age on individual morphometric featurea (FA, MD, MT, SA, GM, CT) using
linear mixed effects models with a fixed effect of age, sex and site, and a random effect of
subject. Above, we list the t and P-values from this model.

Regionally, we found that macro-structural MRI metrics tended to decrease, in particular
in association and motor cortical areas, and micro-structural metrics tended to increase, in
particular in association and sensory cortical areas (Fig. 5.6A,B); We found that this effect
was strongest for MT, where 289 regions significantly (PFDR < 0.05) increased in weighted
degree over the course of adolescence, and in CT and GM, where 336 and 296 regions,
respectively, significantly decreased (for full results see Appendix Table A.4).
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Fig. 5.6 Adolescent changes in regional macro-structural and micro-structural MRI
metrics: (A) We modeled the linear effect of age on six morphometric features at each
of 179 bilateral cortical areas to resolve the anatomical patterning of decreased macro-
and increased micro-structural metrics during adolescence. We largely observed increases
(t > 0) in micro-structural features, and decreases (t < 0) in macro-structural features. (B)
We thresholded the results from panel (A) for significance after correction for multiple
comparisons, PFDR < 0.05. The results were highly symmetric across hemispheres, so here
only the left hemisphere is shown.

We were interested in the extent to which the age related changes in regional morpho-
metric features followed the respective global trends. To this end, we estimated the rates of
change in each morphometric feature regionally while correcting for its global values. We
thus derived a map of change relative to a feature’s global development, where negative values
indicated that the region increased in strength less than the respective global phenotype, and
a positive value indicated that the region increased in strength more than the respective global
phenotype. We found that the rate of change after global effect correction was regionally
varied (Fig. 5.7A). Overall, the micro-structural features tended to increase more strongly in
temporal regions, whereas they increased less strongly in medial frontal regions.
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Fig. 5.7 Adolescent changes in macro-structural and micro-structural MRI metrics
corrected for global effects of age: We estimated age-related changes in regional features
correcting for their respective global values, i.e., regional rates of change relative to each fea-
ture’s global rate of change. (A) We modeled the linear effect of age on 6 micro-structural and
macro-structural MRI features in each of 180 bilateral cortical areas to resolve the anatomical
patterning of decreased macro- and increased micro-structural metrics during adolescence.
(B) We thresholded the results from panel (A) for significance after correction for multiple
comparisons PFDR < 0.05. The results were highly symmetric across hemispheres, so here
only the left hemisphere is shown.

5.3.3 Adolescent change in morphometric similarity

We constructed MSNs for each participant’s set of T1 and DWI MRI scans, at each time-
point, by estimating the Pearson correlation between all pairwise regional feature vectors
comprising the six MRI metrics, resulting in a {358 ⇥ 358 } symmetric morphometric
similarity matrix or weighted, undirected morphometric similarity network (MSN) (for
details, see Chapter 4.1). The weighted degree of each regional node in each MSN is a
measure of its morphometric similarity with all other regions, and high degree nodes or hubs
are morphometrically similar to many other nodes in the brain.

Because we constructed a MSN model of the connectome for each scanning session
completed by each participant, we could estimate developmental changes in MSN parameters
using the same linear mixed effects model (LME) model as previously used for analysis
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of age-related change in global and and regional MRI metrics. We found that weighted
degree decreased with age in frontal and occipital cortical nodes, meaning that these areas
became more morphometrically dissimilar from the rest of the brain, and increased with age
in temporal and limbic cortical nodes, meaning they became more morphometrically similar
to the rest of the brain (Fig. 5.8A). 33 regional MSN nodes, primarily located in association
(N=13), limbic (N=6) and insular (N=8) cortical regions, had significant changes in weighted
degree after correction for multiple comparisons (PFDR < 0.05; see SI Table A.4).

To assess potential cytoarchitectonic drivers of the observed adolescent change in mor-
phometric similarity, we estimated the mean effect of age on weighted degree of all regions
in each of seven cytoarchitectonic classes of cortex (Fig. 5.8B). Limbic and insular cytoar-
chitectonic classes of cortex had increased MSN degree during adolescence, whereas motor,
association and sensory cytoarchitectonic classes had decreased MSN degree. Next, we aver-
aged the morphometric similarity over all edges within and between each cytoarchitectonic
class to estimate the age effect on the within- and between-class morphometric similarity
strength.
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Fig. 5.8 Adolescent changes in morphometric similarity: We estimated morphometric
similarity networks for each subject by correlating their standardized morphometric feature
vectors for each possible combination of regions. (A) We estimated linear changes in
morphometric similarity with age at each region. We found that that morphometric similarity
decreased in frontal and occipital cortical regions, and decreased in medial and temporal
cortical regions. These changes were significant after correction for multiple comparisons
in 33 regions. (B) We estimated the mean effect of age on all regions within each of the
von Economo cytoarchitectonic classes and found that morphometric similarity increased
in insular and limbic cytoarchitectonic classes and decreased in all other classes. (C) We
estimated the effects of age on the average similarity across edges within and between each of
the von Economo classes. We found that adolescent change in morphometric similarity was
more pronounced between than within cytoarchitectonic classes, however these changes were
only nominally significant P < 0.05 and did not survive correction for multiple comparisons.

In order to further dissect adolescent morphometric similarity changes between cytoar-
chitectonic classes, we estimated the age-related change in connectivity of all nodes in each
cytoarchitectonic class to the rest of the brain (Fig. 5.9A). Qualitatively, we found that each
cytoarchitectonic class changed its connectivity to the rest of the brain in a distinctive way,
e.g. secondary association cortical areas decreased in strength, or became more dissimilar to
the rest of the network, whereas connections between limbic areas and the rest of the brain
tended to increase in strength, becoming more similar to the rest of the brain over the course
of adolescence (Fig. 5.9B).
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Fig. 5.9 Cytoarchitectonic class-specific changes in morphometric similarity: (A) For
each cytoarchitectonic class, we estimated the strength of similarity of all other cortical
regions to the nodes in the class by summing the relevant sections of the connectivity matrix,
and then estimated age-related change of each class-specific measure of similarity. (B) We
found that the patterns of adolescent rate of change in morphometric similarity differed
qualitatively between cytoarchitectonic classes. For example, secondary association cortical
areas (green) became more dissimilar to the rest of the network, whereas limbic areas became
more similar to the rest of the brain over the course of adolescence.

In the context of Chapter 2 and Chapter 3 it is relevant to emphasize that we did not
find evidence for widespread sex differences in morphometric similarity during adolescence
(Fig. 5.10). After correction for multiple comparisons, we found only seven regions (L_5mv,
L_OP4, L_PFop, L_VMV3, R_RI, R_PHT, R_PF; see Supplmentary table A.2 for a list of
full regions names) with significant sex differences in morphometric similarity (PFDR < 0.05).
Overall, the pattern of observed (non-significant) sex effects included increased morphometric
similarity in females in limbic and default mode network regions, and increased morphometric
similarity in males elsewhere in the cortex.
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Fig. 5.10 Sex effects on adolescent changes in morphometric similarity: We estimated sex
effects on adolescent changes in morphometric similarity at each region (bottom). Positive
t-values indicate that morphometric similarity increased with age more strongly in males
compared to females. After correction for multiple comparisons, we found that seven regions
(L_5mv, L_OP4, L_IP0, L_VMV1, R_52, R_TF, R_IP0; ; see Supplmentary table A.2 for
a list of full regions names) displayed significant sex differences in age-related changes in
morphometric similarity (PFDR < 0.05).

In an effort to understand the contribution of each of the six individual morphometric
features to the adolescent change in morphometric similarity, we correlated the age effect
on the individual features (Fig. 5.6B) with the age effect on regional weighted degree (Fig.
5.8A). We observed a divergent pattern (Fig. 5.11A), whereby the age effect on micro-
structural features was negatively correlated with adolescent changes in MSN nodal strength
or weighted degree (MD: r = �0.4,Pspin < 0.05; MT: r = �0.15,PFDR < 0.05; FA: r =
�0.1), whereas macro-structural feature changes were positively correlated with adolescent
changes in MSN nodal degree (GM: r = 0.32,Pspin < 0.05; CT: r = 0.31,Pspin < 0.05; SA:
r = 0.26,Pspin < 0.05). This result indicates that regions which showed strongest increases
in myelination, as measured by MD, MT, and FA, became cytoarchitectonically less similar,
or more differentiated, compared to the rest of the brain over the course of adolescence
(Fig. 5.11B). Furthermore, these same regions were associated with the strongest age-
related decreases in cortical thickness, grey matter volume and (to a lesser extent) surface
area. In summary, the well-known adolescent processes of cortical thinning and increased
myelination appeared to drive increasing morphometric dissimilarity or differentiation of
the corresponding nodes in the morphometric similarity network. Conversely, regions that
increased in morphometric similarity over the course of adolescence were associated with
comparatively smaller adolescent changes over all MRI features as indicated by t-values
closer to zero (Fig. 5.11B).
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Fig. 5.11 Divergent profile of morphometric similarity: (A) We estimated the correlation
between the age effects on individual morphometric features at each region (cf. Fig. 5.6B)
and the age effect on morphometric similarity of each node in the network. (B) We found that
micro-structural MRI features were negatively correlated with adolescent change in morpho-
metric similarity, i.e., they increased with age in regions that become more morphometrically
dissimilar during adolescence. Conversely, macro-structural MRI features were positively
correlated with adolescent change in morphometric similarity, thus they tended to decrease
in regions that decreased in morphometric similarity during adolescence.

5.3.4 Neurobiological and psychological context of adolescent changes
in anatomical connectomes

We were interested in contextualizing age-related changes in MSNs in relation to prior
maps of transcriptional and functional gradients, evolutionary change, and metabolic require-
ments (Sydnor et al., 2021). We found that the whole brain map of adolescent change in
weighted degree of each regional node MSN node was significantly negatively correlated
with commensurate maps of aerobic glycosis (r = �0.32;Pspin < 0.05) and the rates of
oxygen (r =�0.44;Pspin < 0.001) and glucose metabolism (r =�0.48;Pspin < 0.001). Thus
association and other cortical nodes that had decreased MSN degree during adolescence
tended to have increased metabolic demands in adulthood (Fig. 5.12A). Conversely, we
found a positive correlation with a map of cerebral blood volume (r = 0.19;Pspin < 0.05),
meaning that regions that saw decreases in morphometric similarity tended to have decreased
cerebral blood volume (Fig. 5.12B).
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Fig. 5.12 Neurobiological relevance of adolescent changes in MSN: (A) We estimated
the correlation between the age effect on morphometric similarity and several prior maps of
brain organization. (B) We found a negative correlation between the effects of age on MSN
nodal degree and several brain maps of metabolic rates, meaning that regions that showed
decreases in degree of morphometric similarity tended to have increased metabolic rates.
Conversely, the positive correlation between the age effect on MSN nodal deegree and a map
of cerebral blood volume means that regions that had decreased morphometric similarity
over the course of adolescence had lower cerebral blood volume.

Next, we explored the psychological relevance of the map of age-related changes in
morphometric similarity. We conducted automated meta-analytic referencing using the
NeuroSynth database of task-related fMRI activation coordinates. This analysis revealed that
regions that showed decreases in morphometric similarity (t  0) were typically activated
by tasks related to visual processing and imagery, motor control, and working memory.
Conversely, regions that showed increases (t � 0) in similarity were associated with self-
evaluation of emotional content, nociception, and pain (Fig. 5.13A).
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Fig. 5.13 Psychological relevance of adolescent changes in MSN: (A) Word cloud of
cognitive terms scaled according to their strength of association with the map of age effects
on morphometric similarity.

5.3.5 Adolescent development of structure-function coupling

We assessed whether changes in structural brain networks were linked to changes in functional
connectivity during adolescence, in particular whether increasing morphometric dissimilarity
was associated with increases in diversity of functional connectivity. To this end, we first
estimated age-related changes in the participation coefficient, a measure of the topological
diversity of functional connectivity across functionally specialized modules. Regions with a
high participation coefficient have a relatively high proportion of inter-modular connections
to nodes in other modules, thus they may have the capacity to integrate information across
multiple sub-graphs or modules of the whole brain connectome. Conversely, regions with a
low participation coefficient have more locally segregated connectivity within their respective
modules. We found that adolescent increases in regional participation coefficient were largely
located in association cortical regions and decreases were concentrated in primary motor
and sensory regions, as well as medial prefrontal regions (Fig. 5.14A). We then assessed
whether changes in regional participation coefficient, estimated from each participant’s
functional connectivity matrix, were associated with changes in morphometric similarity
estimated from the same participant’s MSN. Indeed we found that age-related changes in
MSN weighted degree were correlated with age-related changes in participation coefficient
of functional connectivity networks (r =�0.24,Pspin < 0.01), such that regions that became
more morphometrically dissimilar over the course of adolescence had increased participation
coefficient over the same period (Fig. 5.14B). Thus increases in morphometric dissimilarity,
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or structural differentiation from the rest of the brain, were associated with increasing
diversity of functional connectivity, measured as a relative strengthening of inter-modular
connectivity, potentially representing an increased ability to integrate information across
multiple, structurally differentiated and functionally specialised modules.

Fig. 5.14 Morphometric dissimilarity was associated with functional participation:
(A) We estimated age-related changes in the participation coefficient of regional nodes in
fMRI connectomes over the course of adolescence. Functional participation increased in
association cortical regions and decreased in primary motor and sensory regions, as well as
medial prefrontal regions. (B) We estimated Spearman’s correlation between age-related
changes in morphometric similarity and age-related changes in functional participation
coefficient. We found that regions that became more morphometricially dissimilar over the
course of adolescence tended to increase in their functional participation.

Next, we hypothesized that these increases in functional participation coefficient, sup-
ported by increased morphometric dissimilarity, may be driven by changes in structure-
function coupling. To test this hypothesis, we first estimated global structure-function
coupling as the correlation between the ranked elements of the functional connectivity matrix
and the morphometric similarity matrix for each subject, at each time-point. We modeled
the linear effect of age on structure-function coupling using the same linear mixed effects
model as previously used for global, local and MSN metrics. We found that global structure-
function coupling decreased over the course of adolescence (t = �5.04,P < 0.001; Fig.
5.15A), indicating a decoupling of functional connectivity from morphometric similarity.

Then, we tested the same hypothesis regionally. We thus estimated the linear effect of
age on structure-function using a linear mixed effects model, with a fixed effect of age, sex
and site, and a random effect of subject. From this model of age-related change in regional
structure-functional coupling, we derived a map of baseline coupling, or the predicted
coupling at age 14 years (Fig. 5.15B), as well as a map of adolescent changes in regional



128 Adolescent morphometric similarity development

coupling (Fig. 5.15C). Baseline coupling was high in secondary sensory and association
cortical areas, and to a lesser degree in motor cortex (Fig. 5.15). Coupling decreased most
strongly in sensorimotor and association cortical regions, and increased in limbic and insular
cortical regions (Fig. 5.15C). It is notable that the majority of regions decreased in coupling
over the course of adolescence (blue in Fig. 5.15C).

Fig. 5.15 Adolescent development of structure-function coupling: (A) We modeled
the linear effect of age on global structure-function coupling by correlating the ranked
edgewise connectivity vectors derived from a subject’s FC matrix and MSN, respectively.
We found that there was a significant decline in global structure-function coupling over
the course of adolescence. (B-C) We estimated regional structure-function coupling as the
correlation between the ranked vector of a region’s edges derived from the FC matrix and
the MSN, respectively. We estimated the linear effect of age on regional structure-function
coupling using linear mixed effects models. From this model, we derived a map of baseline
structure-function coupling as the predicted coupling at age 14, and a map of the rate of
change in coupling, or the t-value of the effect of age. We found that 10 regions showed
significant changes in structure-function coupling after correction for multiple comparisons
(PFDR < 0.05).

We further investigated how adolescent changes in morphometric similarity were re-
lated to this signature of adolescent structure-function decoupling. We found that baseline
morphometric similarity, i.e., weighted nodal degree at age 14 years, and baseline structure-
function coupling were weakly correlated (r = 0.15,Pspin < 0.05), such that regions that
had high MSN degree also had strong structure-function coupling at baseline. We also
found that structure-function coupling at baseline and the rate of change in coupling were
negatively correlated (r =�0.35;Pspin < .001), thus regions that were more strongly coupled
at baseline tended to have greater decreases in coupling over the course of adolescence (Fig.
5.16B). Lastly, regions that most strongly de-coupled also tended to show the strongest
decreases in weighted degree of MSN regional nodes during the same developmental period
(r = 0.36,Pspin < 0.01; Fig. 5.16C).
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Fig. 5.16 Structure-function coupling in relation to adolescent changes in MSN: (A)
We found that weighted degree of MSN regional nodes at 14 years was significantly corre-
lated with baseline structure-function coupling, thus regions with high degree had stronger
structure-function coupling at baseline. (B) There was a significant negative correlation
between the age effect on MSN weighted degree and structure-function coupling at 14
years, meaning that regions that decreased in MSN degree during adolescence had increased
structure-function coupling at baseline. (C) The age effect on MSN weighted degree was sig-
nificantly positively correlated with the rate of change in structure-function coupling. Thus,
regions that became more morphometrically dissimilar tended to have decreased coupling, or
become more functionally independent, over the course of adolescence.

Thus having established that: (i) decreases in structure-function coupling during adoles-
cence were associated with increases in morphometric dissimilarity (Fig. 5.16C); and (ii)
increasing morphometric dissimilarity was associated with increased functional diversity
over the course of adolescence (Fig. 5.14C, we aimed to assess whether age-related de-
creases in structure-function coupling during adolescence were also associated with changes
in functional participation. We found that the inter-individual rate of change in coupling
was not significantly associated with the inter-individual rate of change in participation
coefficient (t =�0.05,P = 0.3). However, we did observe a significant relationship between
the intra-individual development of structure–function coupling (DCoupl; Equation 5.8) and
the intra-individual changes in the participation coefficent (DPC; Equation 5.7), estimated on
the subset of participants that had both a baseline scan and a follow-up scan. This relationship
suggested that intra-individual increases in functional participation coefficient were associ-
ated with intra-individual increases in coupling of frontal and temporal regions and decreases
of primary sensory regions. Finally, we found that this association between intra-individual
changes in structure-function coupling and functional participation (DCoupl ⇠ DPC) was
significantly correlated with the age-related changes in weighted degree of MSN nodal degree
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(r = �0.16,Pspin < 0.05), such that regions in which increases in functional participation
were associated with decreases in structure-function coupling tended to have increased
morphometric dissimilarity over the course of adolescence.

Fig. 5.17 Morphometric dissimilarity partially explains adolescent age-related changes
in functional participation: We estimated the effect of the intra-subject difference (between
baseline and follow-up scans) in participation coefficient (DPC) on the intra-subject difference
in structure-function coupling (DCoupling). (A) We found that DPC was positively associated
with DCoupling in prefrontal and medial frontal cortex, as well as temporal cortical regions;
but negatively associated with DCoupling in primary sensory cortical regions and medial
parietal cortex. (B) The association between intra-individual changes in coupling and
participation coefficient (DCoupling ⇠ DCoupling) was positively correlated with adolescent
changes in weighted degree of MSN weighted degree (r = �0.16,Pspin < 0.05), meaning
that regions that became morphometrically dissimilar (indexed by age-related decrease in
weighted degree) over the course of adolescence tended to show decreases in participation
coefficient in fMRI networks that were associated with decreases in structure-function
coupling between MSN and fMRI networks.

5.3.6 Exploratory analysis of lifespan changes in morphometric simi-
larity

It is of note that the adolescent changes in morphometric similarity reported in this chapter are
less pronounced than the changes in functional connectivity identified in the same sample and
reported in previous chapters. Considering the evidence for early development of global or
regional measures of grey matter volume (Bethlehem et al., 2022), it is likely that structural
brain networks, in absolute terms, change more strongly during the first decade of life
compared to adolescence.
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To situate adolescent changes in MSN more securely in the context of brain development
over the course of the entire life-cycle, we conducted an exploratory analysis to investigate
the timing of changes in MSNs. To this end, we combined datasets from all five available
HCP Lifespan Projects, each of which includes multimodal MRI data acquired using highly
similar scanning protocols, and which collectively cover the lifespan from preterm birth
to old age: Developing Human Connectome Project (dHCP; N=1500; 20-44 weeks post-
conception; Makropoulos et al. (2018)), Baby Connectome Project (BCP; N=500; 0-5
years; Howell et al. (2019)), Human Connectome Project Development (HCP-D; N=1350;
5-21 years; Somerville et al. (2018b)), Human Connectome Project (HCP; N=1200; 22-35
years; Glasser et al. (2013); Van Essen et al. (2013)), and Human Connectome Project Ageing
(HCP-A; N=1200; 36-100 years; Bookheimer et al. (2019)). We adjusted these MRI data for
between-site differences using ComBat (Fortin et al., 2018). We then binned the data, into
one week age bins for preterm to term birth, into half year age bins before two years of age,
and into one year age bins thereafter. Subsequently, we constructed group average MSNs for
each age bin and estimated the pairwise correlation between average MSNs for all possible
pairs of age bins. This preliminary analysis allowed us to highlight timepoints at which MSN
change more rapidly in that the correlation between two adjacent age bins is lower compared
to the correlation between age-adjacent MSN during other periods of life. These data confirm
the prediction from whole life-cycle modeling of univariate global or regional metrics that
MSN changes markedly in the first 5-6 years of development, and then undergo more gradual
changes over the course of later life (Fig. 5.18). Despite between-study harmonization
by ComBat, between-study differences remained visible in this analysis, as indicated by
relatively abrupt changes in correlation between adjacent age bins when the MSN had been
derived from data acquired in the different component studies. However, the changes in
network organization associated with age were generally larger than the differences between
MSN derived from different datatset, with largely gradual trends from one age bin to another.
Thus this preliminary analysis of MSN development over the course of the entire life-cycle
does provide some support for the hypothesis that structural networks are more extensively
reconfigured in the first decade compared to the second decade of life.
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Fig. 5.18 Morphometric similarity network development over the life-cycle: Five HCP
datasets were combined to cover the lifespan from preterm birth to old age, and harmonized
using ComBat. The data were binned by age and group-level MSNs were estimated for each
age bin before estimating the correlation between all pairwise combinations of age-binned
MSNs over the course of the lifespan. Darker colours in the plot indicate a lower correlation
of MSNs between age-related bins. On the right is shown the number of subjects per age bin,
as well as the primary study in which they recruited.

5.4 Discussion

Here, we assessed adolescent changes in micro-structural and macro-structural features
using structural MRI data on N=298 healthy adolescents, each scanned one to three times
within a timespan of approximately one year, in a sex-balanced, age-stratified, accelerated
longitudinal design. We found that (i) during adolescence, association and sensory cortical
areas became more morphometrically dissimilar to the rest of the brain; (ii) increasing
morphometric dissimilarity was a metabolically expensive process associated with increasing
micro-structural metrics of myelination and decreasing macro-structural metrics such as
cortical thickness and volume; (iii) regions that became more morphometrically dissimilar
over the course of adolescence were co-located with regions that had increased diversity
of functional connections as measured using the participation coefficient; and (iv) regions
that become most morphometrically dissimilar during adolescence also showed the greatest
decoupling between structural and functional connectivity over the same period.

Increases in myelination and decreases in cortical thickness are well-established devel-
opmental trends over the course of adolescence (Mills et al., 2016; Whitaker et al., 2016b).
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Here, we assessed the related adolescent changes in micro-structural and macro-structural
MRI features. As expected, we found increases in micro-structural metrics of myelination
and decreases in macro-structural features, both globally and locally.

We used morphometric similarity networks to quantify adolescent changes in structural
network configuration. This allowed us to quantify the complex interplay between micro-
and macro-structural changes, or network reorganization, during adolescence. We found
that association cortical regions tended to become more morphometrically dissimilar. We
hypothesize that this increasing morphometric dissimilarity is an expression of the increasing
cytoarchitectonic or myleoarchitectonic differentiation of these late-maturing cortical areas
from the rest of the brain during adolescence. We found that this signature of age-related
changes in morphometric similarity was related to a divergent profile of increases in uni-
variate micro-structural metrics and decreases in univariate macro-structural metrics. Prior
work using DWI has supported the idea that adolescence is a time of increasing network
segregation, a process that sees targeted strengthening of network edges to support the devel-
opment of executive function (Baum et al., 2017). We argue that the evidence of increasing
morphometric dissimilarity shown here represents a similar process of cellular differentiation
of association cortex to support emergence of “higher order" cognitive functions during
adolescence.

In an exploratory analysis over the whole life-cycle, we contextualised these principal
results on adolescent brain network development by demonstrating that age-binned average
morphometric similarity networks change more markedly during early childhood, compared
to the more incremental age-related changes witnessed thereafter. This finding helps us
to explain the relatively less-extensive changes in structural connectivity observed in this
chapter, compared to adolescent changes in functional connectivity reported in the same
dataset in Chapters 2-3. On a related note, while we did observe sex differences in FC in
Chapters 2-3, structurally, we only found widespread sex differences in GM in this chapter.
Speculatively, sex differences in structural features may be less extensive, or, the timing
of sexually different development in structure may not fall into adolescence, the period
observed in this chapter. Future work is required to fully reconcile the two findings from
these chapters.

We found that adolescent changes in MSN weighted degree were co-located with maps
of metabolic rates for oxygen and glucose measured in adults. Regions that became more
morphometrically dissimilar over the course of adolescence tended to have increased rates of
glucose metabolism, aerobic glycosis and oxidative metabolism. We hypothesize that the
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protracted development of these regions throughout adolescence is associated with relatively
increased metabolic demands.

We had hypothesized that changes in structural brain network development during ado-
lescence might be associated with increasing diversity of functional connectivity. Indeed we
found that adolescent increases in morphometric dissimilarity, hypothetically representing
regional differentiation, were associated with increases in the participation coefficient of the
same nodes in fMRI networks. We interpret this association to mean that regions that become
structurally more differentiated during adolescence also diversify the topological profile
of their functional interactions by becoming more connected to other nodes in different
modules of the fMRI connectome (Yeo et al., 2015). It is assumed that regions that are
morphometrically similar are more likely to be connected by white matter tracts (Seidlitz
et al., 2018). On this assumption, increases in morphometric dissimilarity during adolescence
would indicate a weakening of direct axonal connectivity between these regions and the rest
of the brain, such that functional connectivity of these regions may rely more on polysynaptic
(indirect) axonal connections or circuit-level modulation of neuronal activity (Baum et al.,
2020).

Pursuing this hypothesis, we assessed whether the association between changes in mor-
phometric similarity and functional participation was related to changes in structure-function
coupling. Indeed, we found that during adolescence structural MRI-derived morphometric
similarity networks became increasingly decoupled from fMRI derived functional con-
nectivity networks. Locally, we found that regions that showed increased morphometric
dissimilarity tended to have decreased structure-function coupling over the course of ado-
lescence. Prior work has found decreases in global structure-function coupling over the
course of adult life (Zamani Esfahlani et al., 2022). Our findings indicate that this process of
structure-function decoupling may start earlier in life than previously reported and could be
linked to local processes of cortical differentiation indexed by morphometric dissimilarity.

While we observed no significant correlation between adolescent changes in functional
participation coefficient and changes in structure-function coupling, we did find that intra-
individual changes in functional participation coefficient had a regionally varied association
with intra-individual changes in coupling. We further observed that the regions in which
decreased structure-coupling was associated with increased functional participation also had
increased inter-individual age-related changes in morphometric similarity. We thus conclude
that there is some evidence that developmental changes in cytoarchitectonic organization of
late-maturing cortical areas, operationalized as increased morphometric dissimilarity, may
contribute to adolescent changes in diversity of functional connections between different
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modules of the functional connectome. However, further work is required to test this novel
hypothesis and to assess its importance in explaining the emergence of “higher order", more
individualised cognitive functions during adolescence.

We estimated structure-function coupling between morphometric similarity networks
and static resting state functional connectivity networks, because we were interested in how
changes in the interplay between brain micro- and macro-structure were related to brain
function. This stands in contrast to previous work on structure-function coupling, which has
been focused on estimating how white matter architecture develops to support coordinated
functional activity. Previous work has largely found strong structure–function coupling in
primary sensory cortex and relatively weak structure-function coupling of transmodal or
association cortical regions (Baum et al., 2020; Gu et al., 2021; Liu et al., 2022). When
focusing on structural networks defined by inter-regional morphometric similarity, rather
than white matter tracts, we see only partially overlapping results.

However, it is worth noting that a number of approaches to estimation of structure-
function coupling have been suggested (Baum et al., 2020; Liu et al., 2022; Suárez et al.,
2020; Zamani Esfahlani et al., 2022). Most published work has used diffusion-weighted
MRI data to derive structural networks, either directly using tractography, or through graph
theoretical analysis of the resulting connectomes (Baum et al., 2020; Zamani Esfahlani et al.,
2022). Functional networks have been defined using resting state fMRI (Gu et al., 2021;
Zamani Esfahlani et al., 2022), task-based fMRI (Baum et al., 2020), as well as dynamic
fMRI data (Liu et al., 2022). These methodologically different approaches inevitably lead to
only partially overlapping results across the literature. This methodological heterogeneity in
analysis of structure-function coupling should be surveyed more systematically in further
work so that future studies of developmental changes in structure-function coupling can
proceed on a more secure methodological basis.

We conclude overall that during adolescence the complex anatomical network of the
brain is reorganized in a metabolically expensive process that is consistent with increased
cytoarchitectonic or myeloarchitectonic differentiation which is associated with age-related
increases in the topological diversity of functional connections to these late-maturing cortical
areas, and with increased independence (uncoupling) of functional and structural connectivity.
This complex interplay between developmental changes in structural and functional network
configuration is presumably relevant to the greater individualisation of higher-order cognitive
functions that occurs over the same phase of development, and this important hypothesis
emerging from these results will merit further, purposive investigation in future.





Chapter 6

Beyond human adolescence: lifespan
trajectories

6.1 Introduction

The previous chapters have highlighted functional (Chapter 2 and Chapter 3) and structural
(Chapter 5) changes in human brain development during adolescence, demonstrating the
extensive functional and structural reconfiguration the brain undergoes during this period
of maturational development. However, adolescence is neither the only, nor the most
fundamental, brain developmental period. Further, those chapters focused on group effects
and no analysis was performed on subject-specific variability in development, largely due
to the sample size of the datasets involved. This chapter aims to look beyond adolescence,
focusing on normative lifespan structural development of the brain and subject-specific
deviations from the norm.

Routine pediatric health assessments involve measuring a child’s height and weight to
reference them against normative “growth charts", allowing for early detection and inter-
vention in cases of atypical development. Recent work (Bethlehem et al., 2022; Rutherford
et al., 2022) has highlighted the potential of normative reference standards to quantify indi-
vidual differences in neuroimaging metrics over the course of life. This work has produced
interactive open resources to benchmark brain morphology derived from any current or
future sample of magnetic resonance imaging (MRI) data, e.g., http://www.brainchart.io/.
However, so far these resources only focus on global brain volumetric phenotypes (total grey
matter volume, total white matter volume, total subcortical volume, and ventricular volume),
and selected cortical regional phenotypes (grey matter volume, cortical thickness, surface

http://www.brainchart.io/
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area) derived from structural magnetic resonance imaging (MRI). In this work, we extended
the normative modeling approach to estimate non-linear trajectories of regional subcortical
structural development for the first time over the entire life-cycle.

6.1.1 Normative modelling

Normative modelling aims to benchmark an individual against a reference model by charting
(per)centiles of variation in the population and estimating an individual’s deviation from these
norms. Possibly the most well-known applications of normative models are the World Health
Organization’s (WHO’s)’s growth charts for childrens’ height and weight (Borghi et al.,
2006). There is a general understanding that child growth is a health and nutrition marker,
thus estimating a child’s individual trajectory of development compared to a population mean
is internationally recognized as a highly informative measure of quality of early life.

The WHO’s charts are constructed by pooling together data from various datasets. They
typically show the development with age of a phenotype (i.e. height, weight, body-mass-
index) for males and females separately in terms of (per)centiles, where a centile indicates
the value below which a given percentage of observations in the population falls.

A successful normative model needs to overcome a number of challenges, including (i)
pooling sufficient amounts of data over a number of primary studies, (ii) ensuring that the
sample used is sufficiently diverse to represent the “norm”, and (iii) harmonising across
measurement instruments and data processing strategies. In the case of the WHO’s height
measurements, at least the latter issue is likely less of a concern, since height is comparatively
simple to measure. In the field of neuroimaging, however, primary studies are conducted
on a variety of scanners, and with different imaging protocols, as well as processed using a
number of preprocessing tools, introducing significant “study-specific” or “batch effects”.

6.1.2 Lifespan development of subcortical regions

Normative models have long attracted interest in the neuroimaging community (Sowell et al.,
2003). More recently, the availability of several large-scale neuroimaging cohorts (Garavan
et al., 2018; Somerville et al., 2018a; Sudlow et al., 2015; Van Essen et al., 2012), as well as an
increasing number of openly shared datasets, has made made it possible to aggregate multiple
primary studies, thereby extending the age-range and sample size significantly (Bethlehem
et al., 2022; Rutherford et al., 2022). However, while some studies have focused on normative
subcortical development, “lifespan” models covering the subcortex have so far been limited
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in the age range covered (Dima et al., 2022; Pomponio et al., 2020; Romero et al., 2021;
Rutherford et al., 2022), likely due to the small number studies covering the prenatal and
early infancy age range, and the lack of accessible, automated subcortical parcellation tools
for infant brains that are comparable to adult processing pipeline outputs. Prior work has
established early cortical development as a critical period (Gilmore et al., 2020) in which
“developmental milestones” are reached (Bethlehem et al., 2022), thus emphasising the need
for full lifespan models of subcortex.

6.1.3 Subcortical volume differences in atypical development

A key motivator in constructing normative reference models is to further our understanding
of individual trajectories in health and disease across the lifespan. Traditionally, neuroimag-
ing work has largely focused on group differences between patients and healthy controls.
However, it is becoming increasingly clear that clinical diagnoses do not translate into easily
detectable, clear group differences in neuroimaging measures. Rather, there appears to be
normative variation in neuroimaging phenotypes that overlaps with disease-related variation.
Further, when group mean differences are indeed detected, these may be driven by “extreme”
examples in the patient group (Bethlehem et al., 2020).

Several psychiatric disorders have been associated with decreases in subcortical volume.
Major depression, for example, has been associated with decreases in volume of the amygdala
and hippocampus, compared to non-depressed controls (Stratmann et al., 2014). Similarly,
schizophrenia has been associated with reduced grey matter volume in several subcortical
regions, including the amygdala, thalamus, putamen and pallidum (Velakoulis et al., 2006).
Further, the same regions have been shown to respond to treatment, i.e., there is evidence
that treatment with antidepressants can lead to increased volume of the hippocampus and
amygdala in depression (Frodl et al., 2008; Zhou et al., 2020), and treatment with antipsy-
chotics has been associated with volume increases in the amygdala in schizophrenia (Ho
et al., 2011). Also, there is some evidence that the length and severity of disease effects
the magnitude of sucortical volumetric reductions, i.e., in major depressive disorder (MDD)
amygdala and hippocampal volume has been shown to be more markedly reduced in patients
with recurrent depressive episodes than in first-episode patients (Stratmann et al., 2014).
Neurodegenerative diseases like Alzheimer’s disease (AD) have also been associated with
decreases in hippocampal volume, with late mild cognitive impairment seen as a prodromal
stage of AD, mirroring these results (Whitwell et al., 2007).
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Taken together, this evidence for deviations in subcortical volume in disease highlights
the potential value of benchmarking individuals against a normative trajectory of subcortical
development, maturation and senescence.

6.2 Methods

6.2.1 Aggregated dataset

We aggregated data across 41 primary cross-sectional and longitudinal MRI imaging studies,
covering an age range from mid gestation (180 days post conception), to 100 years (Fig. 6.1).
Details of each individual study are compiled in Appendix A.5.

Fig. 6.1 Aggregated lifespan MRI dataset: We collected T1- and T2-weighted MRI data
from 41 primary studies to form an aggregated dataset of 90,763 scans from 78,832 subjects
that collectively spanned the age range from mid-gestation to 99 postnatal years. The box-
plots show the age distribution for each study, with individual points colored by sex.

Previous work has defined major epochs of lifespan brain development, ranging from
conception to old age (Kang et al., 2011). No neuroimaging data is available prior to
about 16 post conception week (PCW), but our aggregated dataset includes scans from all
developmental stages from 24 PCW (Fig. 6.2B): it includes 206 scans from the late fetal
(24-38 PCW) stage, 1124 scans from early infancy (0-6 months), 1103 scans from late
infancy (6 months - 1 year), 2784 scans from early childhood (1-6 years), 15073 scans from
mid to late childhood (6-12 years), 8435 scans from 2784 adolescence (12-20 years), 10068
scans from young adulthood (20-40 years), 16575 scans from mid adulthood (40-60 years),
and 35394 scans from late adulthood (older than 60 years). Notably, the ages <2 years,
as well as the mid-life range from 25 to 50 years, spanning two developmental stages, are
represented by comparatively few scans.
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An ideal sample to estimate generalisable brain “growth charts” should be as representa-
tive of the world’s population as possible, and cover the entire lifespan. However, in general,
the availability of neuroimaging studies is strongly biased for datasets from Western Europe
and North America. This is reflected in our aggregated dataset, too (Fig. 6.2A). While we
were able to aggregate data from 41 primary studies, these data were largely collected in the
aforementioned regions. Only a subset of data were acquired outside these regions, in Japan
and China, for example.

Fig. 6.2 Dataset demographics: (A) World map showing the number of subjects per country
included in the aggregated dataset. (B) Histogram and density plot indicating the number
of subjects by age. Further, the coloring indicates which developmental stage the subject
falls into. Notably, the dataset includes fewer scans early in life, in the prenatal window until
early childhood, as well as between 25 and 50 years of age.

6.2.2 MRI pre-processing

The primary studies included in this dataset ranged from openly available data, to data
only shareable in derived format, i.e. regional volume values rather than raw imaging
files. Whenever possible, the data were processed locally on the same server located at
Cambridge, UK, with the most recent FreeSurfer version at the time. For this study, we
were able to include a large number of studies originally pre-processed for a previous
publication (Bethlehem et al., 2022) using FreeSurfer 6.0.142. However, Bethlehem et al.
(2022) only aggregated the phenotypes used in their study, such that here, we went back to the
original freesurfer output files where available to extract subcortical data from the aseg.stats
files. We further added a number of new studies not included in the prior publication. For
these newly added data, we used the most recent FreeSurfer version available, version 7.0.1.
For Infant FreeSurfer we used version v1108.

Wherever T1- and T2/FLAIR-weighted raw images were available, these data were
processed with FreeSurfer’s combined T1-T2 recon-all pipeline. If only raw T1-weighted
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data were available, and subjects were aged over 2 years, the data were processed with a
FreeSurfer standard recon-all pipeline. Lastly, if subjects were aged 0–2 years, data were
processed with Infant FreeSurfer. An overview of FreeSurfer versions used for each dataset
(and site) is provided in Supplementary Table A.5.

Briefly, the recon-all processing function includes the following steps: non-uniformity
correction, projection to Talairach space, intensity normalisation, skull-stripping, automatic
tissue and subcortical segmentation, surface interpolation, tessellation and registration.

Regional subcortical volume was estimated for each of 8 bilaterally averaged subcortical
regions (thalamus, caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens
and ventral diencephalon), as well as the main sections of the corpus callosum (anterior, mid
anterior, medial, mid posterior, posterior), and the cerebellum grey and white matter volume,
defined by the aseg parcellation template following the final stages of the recon-all pipeline
and using the “aseg.stats” files generated by FreeSurfer.

6.2.3 Lifespan trajectories

We used generalized additive models for location scale and shape (GAMLSS), a robust
and flexible framework for modelling non-linear growth trajectories recommended by the
World Health Organization (Borghi et al., 2006; Stasinopoulos and Rigby, 2008), to derive
developmental curves from the aggregated life-spanning neuroimaging dataset (Fig. 6.3).
This modelling strategy allowed us to estimate non-linear age-related trends (in median and
variance) stratified by sex over the entire lifespan, and to account for site- or study-specific
effects on MRI phenotypes in terms of multiple random effect parameters. To estimate these
models, we used the code published by Bethlehem et al. (2022), which is available on github:
https://github.com/brainchart/Lifespan.
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Fig. 6.3 Normative modelling: (left) We estimated normative trajectories of various imaging
phenotypes as a non-linear function of age, stratified by sex, using GAMLSS models on an
aggregated dataset of cross-sectional primary studies. This resulted in sex-specific lifespan
trajectories of development of the median of each phenotype. (right) We controlled for study-
specific offsets, or random effects, in the first two parameters of the underlying statistical
distributions, µ , s . After correction for these study-specific offsets, we can derive subject-
specific centile scores, which measure an individual’s deviation from the benchmark of the
normative age- and sex-matched growth chart.

6.2.4 GAMLSS models

GAMLSS is a class of regression models where all the parameters of the outcome distribution
can be modelled as additive functions of the explanatory variables. A strong asset of
GAMLSS models is that they allow modeling not only of the central tendency of the outcome
distribution (Y ), but also other parameters of the distribution of Y , as linear, nonlinear,
parametric, or additive non-parametric functions of explanatory variables and random effects.
Prior evidence suggests that brain phenotypes do not only vary in mean, but also in variance
across the lifespan. With GAMLSS we chose a modelling framework that could account
for variation with age in the first (mean) and second (variance) moment of the outcome
distributions. Further, GAMLSS models allow for the distribution of the response variable to
be drawn from a general family of distributions which includes, among others, skewed and
kurtotic continuous and discrete distributions.

In the GAMLSS framework, the outcome vector Y , consisting of independent observa-
tions y1,y2,y3, ...yN , follows the probability distribution F , with:

F ⇠ F(µ,s ,n ,t) (6.1)
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where F is parameterised by typically up to four distribution parameters (µ,s ,n ,t).
These parameters can correspond to the mean, variance, skewness, and kurtosis of the
outcome distribution, i.e. the first four moments. However, for many distributions there is no
direct mapping between the parameters and the moments of the distribution.

More specifically, each of these components, k, is defined in terms of a link-function
gk, i.e. a regression on potential covariates. Importantly, the covariates do not have to be
the same between the parameters and in fact parameters can reduce to constants, a fact
that becomes relevant further below. The link function, gk, thus includes includes Nk fixed
effects, parametrised by their coefficients bk = (bk,1,bk,2, ...,bk,Jk), and their design matrix,
Xk; random effects, gk, with design matrix Zk,; and non-parametric smoothing functions sk,i

applied to the ith covariate for each parameter, with i = 1,2, ...Nk:

gµ(µ) = Xµbµ +Zµgµ +
Nµ

Â
i=1

sµ,i(xi) (6.2)

gs (s) = Xs bs +Zs gs +
Ns

Â
i=1

ss ,i(xi) (6.3)

gn(n) = Xnbn +Zngn +
Nn

Â
i=1

sn ,i(xi) (6.4)

gt(t) = Xtbt +Ztgt +
Nt

Â
i=1

st,i(xi) (6.5)

The outcome distribution determines the appropiate link function and which parame-
ters (i.e. how many) are modelled. Bethlehem et al. (2022) optimised GAMLSS model
specification and parameterization to estimate non-linear normative growth trajectories of
lifespan brain structural development and determined that the generalized gamma distribu-
tion appropriately models their data using a model comparison approach. Here, we use a
largely overlapping sample on similar phenotypes, thus we also model a generalized gamma
distribution.

We used fractional polynomials to model age-related changes in MRI phentoypes. Using
the alternative, non-parametric smoothers (i.e. smoothing splines), would have been more
flexible, but also more unstable. Within the GAMLSS framework the appropriate power of
the fractional polynomials is chosen in an iterative fitting process across the “standard” set of
powers, p 2 {�2,�1,�0.5,0,0.5,1,2,3}.
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We estimated GAMLSS models to derive trajectories of subcortical volume development.
Briefly, in a sex-stratified approach, we estimated lifespan development in the first order (µ)
and second order (s ) distributional parameters of brain phenotypes using GAMLSS with
fixed effects of age and pre-processing pipeline, and a random effect of study, using fractional
polynomials to model non-linear age-related trends.

We modeled the effect of study as a random effect, as opposed to a fixed effect. These
random effects are assumed to follow a normal distribution with mean zero and a variance
term. We chose to use the simple case of random intercept, i.e. a group-level intercept. The
advantage of this procedure is that we can estimate the (random) effect of a new study, i.e., a
study that is not included in the original dataset used to fit the normative growth chart, from
the random-effect covariance structure.

The third distributional parameter, n , was only modeled as a constant, since previous
work using GAMLSS models to estimate lifespan trajectories (Bethlehem et al., 2022), found
that including age, sex and study parameters for this term lead to numerical instability. Since
we have no a priori reason to assume age-dependent or random effects on skewness in
subcortical volume, we chose not to model lifespan changes in this parameter. This means
that Equation 6.4 reduces to:

n = an (6.6)

All trajectories fitted here are represented in terms of centile scores rather than the
outcome measures directly, or Z-scores. The reasoning behind this is that GAMLSS models
allow for the outcome distribution to be highly skewed, in which case Z-scoring is invalid.
For clarity, it is worth emphasizing that while the GAMLSS parameters can map to the
moments of the outcome distribution, this depends on the specific distribution that is used.
In the case of the generalized gamma distribution used here, the distributional parameters
(µ,s ,n) do not directly map to the mean, variance and skewness of the distribution. Thus,
while as specified in Equation 6.4 n does not change with age, the skewness of the outcome
distribution can. All trajectories shown are the median (50th percentile) of the distribution of
normative trajectories.

6.2.5 Developmental milestones

We defined key developmental milestones by estimating the peaks of the modelled trajec-
tories, as well as the peak rates-of-change for each subcortical structure. The peak grey or
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white matter volume was determined as the peak of the median trajectory of each regional
subcortical phenotype. The peak rate-of-change, or velocity, was estimated as the peak of
the first derivative of each normative median trajectory. We further estimated bootstrap
confidence intervals around these measures by estimating the derivatives of the bootstrapped
curves, as described below.

6.2.6 Centile score estimation

We obtained the relative distance of each individual’s observation from the normative trajec-
tory of each brain phenotype, as the relative distance from the median of the age-normed
distributions of the reference model, stratified by sex. This distance is termed “centile” and
describes the percentage rank of the individual’s brain phenotype measurement benchmarked
by the normative distribution of the corresponding phenotype. More specifically, we derived
the study-specific centile qi for an individual’s observation, i, as:

qi = F 0(y,x|b ,z) (6.7)

where F 0 is the inverse cumulative density function of (Equation 6.1) of a brain phe-
notype, b are the coefficients of the fixed effects, z is the random effect of study, x are the
individual’s covariates, and y is the outcome measure, i.e., the brain MRI phenotype.

6.2.7 Case-control differences in centile scores

Using the centile scores derived above, we estimated deviations from normative development
in healthy controls (CNs) in multiple psychiatric and developmental disorders.

To this end, the aggregated dataset included a total of 17,406 subjects with diagnoses
of mental health or developmental disorders (Table 6.1). In order to ensure an increased
level of certainty in our results, we chose to only focus on “large” patient groups, which
we defined as including 400 or more cases. These were: Alzheimer’s disease (AD; 1200
subjects, 49-94 years), attention deficit hyperactivity disorder (ADHD; 879 subjects, 5-57
years), anxiety/phobia (ANX; 1741 subjects, 7-64 years), autism spectrum disorder (ASD;
2376 subjects, 0-79 years), mild cognitive impairment (MCI; 565 subjects, 54-91 years),
major depressive disorder (MDD; 4965 subjects, 10-81 years), schizophrenia and other
developmental disorders (SCZ; 449 subjects, 9-70 years). A total of 4089 (0-93 years)
subjects had been diagnosed with a range of other disorders, none of which included more
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than 400 subjects. These diagnoses have been grouped together as “other” and were not
included in further analyses.

Diagnosis Sex #Subjects Agemin Agemax µ Age
AD Female 514 49.27 94.30 74.13
AD Male 506 55.17 89.59 74.72

ADHD Female 228 5.06 50.03 12.67
ADHD Male 651 5.41 57.04 12.10

ANX Female 1127 7.11 80.05 63.00
ANX Male 614 6.81 80.05 63.56
ASD Female 469 0.47 79.05 12.03
ASD Male 1907 0.47 76.05 14.10

CN Female 30863 -0.21 99.24 43.07
CN Male 30554 -0.21 99.24 43.11

MCI Female 220 54.27 87.69 72.10
MCI Male 345 53.67 90.69 74.07

MDD Female 3219 10.37 81.05 59.41
MDD Male 1746 15.54 81.05 60.24
Other Female 2202 0.47 92.30 50.47
Other Male 1887 0.47 93.30 44.73

Other Developmental Female 434 9.01 10.93 9.95
Other Developmental Male 888 9.01 10.93 10.01

SCZ Female 166 10.59 70.05 39.03
SCZ Male 283 9.43 77.05 34.86

Table 6.1 Subject numbers for diagnostic groups of cases and controls: Here, stratified
by sex, we list the number of subjects, the group minimum (Agemin), maximum (Agemax) and
mean (µAge) age in years for each diagnostic group that includes more than 400 cases in the
sample. Diagnostic groups including less than 400 subjects were deemed too small for stable
centile-score group difference estimations and are summarized as “Other”.

We estimated differences in centile scores between healthy controls and patients using a
bootstrapped (500 bootstraps) non-parametric generalization of Welch’s one-way analysis of
variance (ANOVA). We then conducted post-hoc comparisons for all case-control combina-
tions using a non-parametric Monte Carlo permutation test with 10,000 permutations. The
results were corrected for multiple comparisons using FDR correction. Lastly, we estimated
effect sizes of the case-control differences using Cohen’s d.
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6.2.8 Quality control

Given the very large number of scans in this aggregated dataset, we did not perform manual
quality control of each individual scan. Rather, we estimated the Euler index (EI) for
each scan as a measure of image quality. The EI is an automated, quantitative measure of
data quality in scans processed by FreeSurfer and as such is only available for FreeSurfer
processed data. It measures the number of “surface holes”, or topological defects, in the
cortical surface reconstruction, across hemispheres prior to correction. More specifically,
surface holes are regions on the surface mesh where there are missing or disconnected
vertices, resulting in gaps in the surface for example as a result of image artifacts, or partial
volume effects. This work focuses on volumetric measures which are likely less affected by
surface holes, however the EI has previously been used as a general measure of raw scan
quality, which is how we have used it here. Previous work has provided evidence that there
likely is no single EI threshold that is generalizable as a valid criterion of image quality
across studies (Rosen et al., 2018).

First, we assessed the potential relationship between age and image quality. Specifically,
in a sex-stratified approach, we estimated the linear effect of age on EI using linear mixed
effects models with a random effect of study:

EI ⇠ 1+bage ⇤age+bsex ⇤ sex+ gstudy ⇤ (1|study)+ e (6.8)

where EI is the Euler index for a given subject, b refers to the coefficients for the fixed
effects, gsub ject refers to the coefficients for random effects, and e represents the residual
error.

Secondly, we estimated the effects of image quality on model-derived centile scores. In a
sex-stratified approach, for each study, we estimated the Spearman correlation between the
subject-specific centile scores and the EI.

6.2.9 Leave-one-study-out

Despite the size of the aggregated dataset used in this study - to the best of our knowledge,
its size is second only to the dataset used by (Bethlehem et al., 2022) - concerns could be
raised about the fact that a large proportion of the data is derived from two cohorts: the UK
Biobank (UKB) (Sudlow et al., 2015), and the adolescent brain cognitive development study
(ABCD) (Garavan et al., 2018). Thus in an effort to demonstrate the reliability of the derived
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normative development curves, i.e. to estimate their dependence on individual datasets, we
performed a leave-one-study-out (LOSO) jackknife analysis. Specifically, we re-estimated all
trajectories while leaving out each study in turn. A direct comparison of the individual LOSO
models to another is impeded by the fact that each of the models, by definition, is derived
from different data. Thus model comparison techniques like Bayesian information criterion
(BIC) are not of use in this case. Therefore, we estimated the consistency of the model fit
across leave-one-out-iterations by estimating the standard deviation across all iterations to
derive confidence intervals. From the bootstrap distribution for each parameter, we can derive
its confidence interval as the + 1.96 the standard deviation of the distribution.

6.2.10 Bootstrap analyses

In an effort to evaluate the reliability and stability of the derived lifespan trajectories, we
estimated confidence intervals around all parameters by a bootstrap procedure. More specifi-
cally, we randomly resampled with replacement 1,000 times and re-estimated the lifespan
trajectories for each regional phenotype. Each of these bootstrap iterations was restrained
to ensure a random dataset that was comparable to our original dataset in terms of the sex
distribution, the age distribution, and the relative size of the original primary studies. Re-
taining the relative proportions of males and females in the resampled dataset is relevant,
since we stratified our original models by sex, i.e. we included sex as a fixed effect. Our
original models included a random effect of study. In order to derive bootstrap confidence
intervals around this study parameter, we constrained the resampling to retain the original
age distribution and study size. Failing to constrain the resampling to consider study size
could lead to individual studies being omitted in some iterations, and otherwise skew the
bootstrap value, leading to inappropriate comparisons between original and bootstrap values.

6.3 Results

6.3.1 Lifespan development of subcortical structures

First, we used GAMLSS models to estimate lifespan development trajectories of bilateral vol-
ume of eight subcortical structures: the thalamus, caudate, putamen, pallidum, hippocampus,
amygdala, accumbens and ventral diencephalon. The full models are listed in Appendix C.2.
We found that, in general, volume of all subcortical structures increases from mid gestation
and peaks during adolescence in most regions (Fig. 6.4B), with the thalamus peaking at
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17.9 years (CIbootstrap 17.4-18.3 years), the caudate at 9 years (CIbootstrap 8.8-9.0 years),
the putamen at 12 years (CIbootstrap 11.8-12.1 years), the pallidum at 18.4 years (CIbootstrap

17.9-18.4 years), the hippocampus at 19.2 years (CIbootstrap 19.0-19.4 years), the amygdala at
18.3 years (CIbootstrap 17.7-18.6 years), and the ventral diencephalon at 27.1 years (CIbootstrap

26.9-28.3 years). The nucleus accumbens forms an exception to these trends described above,
peaking at 0.1 years (CIbootstrap 0.2-0.3 years). Visual inspection of the models compared to
the raw data suggested a poor model fit in the nucleus accumbens and ventral DC below one
year of age. We suggest this is due to the fact that these two regions were not included in
one of the early-life datasets, leading to great model uncertainty at those ages. However, the
trajectories appear to fit well after one year of age, and the age at peak volume for the ventral
DC appears unaffected. Thus here, we continue to report on down-stream analyses in these
models.

Next, we estimated the peak rate-of-change in volume for those same structures. We
found that the developmental rate-of-change tended to peak in early infancy (Fig. 6.4D).
Specifically, the thalamus peaked at 0.9 years (CIbootstrap -0.2-1.0 years), the caudate peaked
at 0.9 years (CIbootstrap 0.9-0.9 years), the putamen at 0.6 years (CIbootstrap 0.6-0.7 years), the
pallidum at 1.3 years (CIbootstrap 1.2-1.3 years), the hippocampus at 1.7 years (CIbootstrap 1.6-
1.7 years), the amygdala at 1.8 years (CIbootstrap 1.7-1.9 years), and the nucleus accumbens
at 0.1 years (CIbootstrap 0.1-14.2 years). Notably, the caudate displayed a second inflection
point, with the rate of change increasing in late life (Fig. 6.4D).

We explicitly modeled lifespan development of normative variance, or between-subject
variability, in subcortical phenotypes using GAMLSS models. In general, the normative
variance tended to increase from mid gestation. Notably, in the hippocampus, pallidum,
caudate and putamen, the variance increased into late life, with caudate and putamen having
a second period of strong increases in variance in late adulthood, after a peak in adolescence.
Further, we found that males consistently demonstrated higher variance than females across
all subcortical regions.
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Fig. 6.4 Lifespan development of subcortical structures: (A) First, we show the non-
centiled, “raw” bilateral subcortical volumes for each structure (thalamus, caudate, putamen,
pallidum, hippocampus, amygdala, nucleus accumbens, ventral diencephalon) plotted for
each cross-sectional control scan as a function of age (log-scaled). Sex is shown by the colour
of the points. (B) We estimated normative trajectories of subcortical volume using GAMLSS,
stratified by sex, with site- and study-specific batch effects. Non-linear trajectories of the
median volume of all the structures (with 2.5% and 97.5% centiles denoted as dotted lines)
are shown as a function of age. (C) We estimated trajectories of median between-subject
variability, with the 95% confidence intervals estimated by sex-stratified bootstrapping.
(D) We estimated rates of change in subcortical tissue volume across the lifespan, stratified
by sex, as the first derivatives of the median volumetric trajectories. The points at which this
derivative cross the horizontal line (y = 0), indicate the age at which the subcortical structure
stops growing and starts shrinking, i.e., its peak volume, whereas the age of maximum growth
is indicated as a vertical line (x = 0) for each tissue.
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6.3.2 Lifespan cerebellar and corpus callosum development

We estimated lifespan trajectories of white matter volume in the sections of the corpus
callosum, the grey matter volume in the cerebellar cortex, as well as the volume of the
cerebellar white matter (Fig. 6.5B).

From these lifespan trajectories, we estimated the peak volume of each structure (Fig.
6.5C). We found that the volume of the corpus callosum generally peaked in early to mid
adulthood. Specifically, the volume peaked at 42.7 years (CIbootstrap 41.4-43.5 y) in the
posterior section, at 31.6 years (CIbootstrap 31.3 - 31.7 y) in the mid posterior section, at 24.1
years (CIbootstrap 24.2-24.6 y) in the central section, at 26.2 years (CIbootstrap 26.1-26.4 y)
in the mid anterior section, and at 33.2 years (CIbootstrap 32.4-33.4 y) in the anterior section.
The cerebellum cortical volume peaked at 12.9 years (CIbootstrap 12.6-13.5 y), whereas the
cerebellum white matter volume peaked at 28.3 years (CIbootstrap 27.4-28.2 y).

We further estimated the peak rate-of-growth in volume for each structure. We found that
the rate-of-growth in the posterior corpus callosum peaked at 8.2 years (CIbootstrap 6.8-8.8
y), in the mid posterior corpus callosum it peaked at 12.4 years (CIbootstrap 12.4-12.9 y),
at 8.6 years in the central corpus callosum (CIbootstrap 7.3-9.5 y), at 10.3 years in the mid
anterior corpus callosum (CIbootstrap 9.1-11.1 y), at 13.5 years in the anterior corpus callosum
(CIbootstrap 13.5-13.6 y), at 0.4 years in the cerebellar cortex (CIbootstrap 0.3-0.5 y) and at 8.7
years in the cerebellar white matter (CIbootstrap 7.7-9.8 y).

As was the case in the prior analysis of subcortical grey matter volume, we found that
between-subject variance of white matter volumes was higher in males compared to females
in most regions.
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Fig. 6.5 Lifespan development of cerebellum and corpus callosum: (A) First, we show the
non-centiled, “raw” grey and white matter volumes of unilateral white matter tracts (corpus
callosum) and bilateral (cerebellum) subcortical structures, plotted for each cross-sectional
control scan as a function of age (log-scaled). Sex is shown by the colour of the points.
(B) We estimated normative trajectories of median GM or WM volume using GAMLSS,
stratified by sex, with site- and study-specific batch effects. Non-linear trajectories of the
median volume for each structure are shown as a function of age (with 2.5% and 97.5%
centiles denoted as dotted lines). (C) We estimated trajectories of median between-subject
variability, with the 95% confidence intervals estimated by sex-stratified bootstrapping. (D)
We estimated rates of change in subcortical tissue volume across the lifespan, stratified by
sex, as the first derivatives of the median volumetric trajectories. The point at which each
derivative crosses the horizontal line (y = 0), indicates the age at which the corresponding
subcortical structure stops growing and starts shrinking, i.e., the age of its peak volume,
whereas the age of maximum growth is indicated as a vertical line (x = 0) for each subcortical
structure.
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Fig. 6.6 Developmental milestones: Maps of developmental milestones for bilaterally
averaged subcortical structures. (A) Map of subcortical regional peak volumes in grey matter
and white matter, respectively. Apart from one outlier due to poor model fit (nucleaus
accumbens), these values ranged from 12 (putamen) to 42 years (cerebellar white matter).
(B) Subcortical map of the difference in years between the regional peak volume and the
respective peak of the global measure: total subcortical grey matter volume (tsGMV) and
total white matter volume (tWMV). This map highlights regions that peak earlier (blue) or
later (red) than the respective global volume phenotype. (C) Subcortical map of regional
peaks in the rate-of-change in volume, i.e. the inflection points of the first derivative of the
normative trajectory in volumetric growth for each region. (D) Difference in years between
the peak regional rate-of-change and the respective peak global rate-of-change.

We compared the developmental milestones derived above, i.e., the ages at which the peak
volume (Fig. 6.6A) and the peak rate-of-change (Fig. 6.6C) were reached, to the equivalent
milestones derived from the respective global phenotypes: total white matter volume (tWM)
for the cerebellar white matter, and total subcortical volume for all others (Fig. 6.6B,D;
Bethlehem et al. (2022)). We found that there was an inner-outer gradient of age of peak
volume in subcortex, whereby the putamen peaks early on, with the pallidum peaking at
an intermediate age, and the thalamus peaking last (Fig. 6.6B). Further, we observed a
near-perfect antero-posterior gradient across the corpus callosum, with the posterior section
forming an exception. The peak rate-of-change followed the same antero-posterior trend as
the peak age (Fig. 6.6D).

6.3.3 Sensitivity of results to image quality

This aggregated dataset included data from across the entire lifespan, it was acquired on a
variety of scanners in many locations, and included data from multiple disorders. All of
these factors contribute to the image quality varying between subjects. We therefore carefully
assessed the effect of image quality, as estimated by the Euler index, on our results.
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First, we examined the relationship between age and image quality (Fig. 6.7) using linear
mixed effects models. We found that, in general, younger cohorts tended to have worse
image quality (P < 0.01; t = 18 ;Fig. 6.7).

Fig. 6.7 Age-related variation in image quality: We measured image quality as the EI for
each scan. Here, we show the relationship between median age and and median Euler Index
by study. Crosshairs indicate the standard deviations of both measures. We highlight the 10
studies with the highest ranking median Euler Index. We found cohorts with younger median
age at scanning tended to have worse image quality (P < 0.01; t = 18).

Next, we estimated the effect of data quality on an individual’s deviation from the norm,
i.e. the relationship between centile scores and EI. Here, we show an illustrative example of
the relationship between centile scores and EI in the thalamus (Fig. 6.8A). We found that
the Spearman correlation between subjects’ centile scores (stratified by sex) and their EI
scores was statistically significant (P < 0.05), but negligible, i.e. for all regions |r|<0.08
(Fig. 6.8B).
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Fig. 6.8 Associations between centile scores and MRI scan quality defined by EI: (A)
We estimated the Spearman correlation between centile scores (stratified by sex) and Euler
index, illustrated here by the thalamus. (B) These relationships between subcortical centile
scores and EI were statistically significant (P < 0.05), but materially negligible, i.e., for all
regions |r| 0.06.

6.3.4 Sensitivity of trajectories to specific studies

We tested for the sensitivity of the normative trajectories of subcortical brain development
to inclusion/exclusion of specific studies using a permutation approach. We systematically
re-estimated the normative developmental curves while leaving one study out. This procedure
resulted in the models being estimated from different datasets in each iteration, thus direct
quantitative comparison between the models using for example Akaike information criterion
(AIC) or BIC is not possible. Instead, we derived confidence intervals around the original
model by estimating the standard deviation across leave-one-study-out iterations. We found
that these confidence intervals were so small that they were difficult to discern when overlaid
on the original model (Fig. 6.9A). Magnifying the confidence intervals 50-fold demonstrated
that they followed the original model very closely, with a tendency for stronger deviations
in early age (Fig. 6.9B). In particular, we found the confidence intervals were larger for
the age range below 1 postnatal year in the nucleus accumbens and ventral diencephalon.
The increased confidence intervals around these two regions are likely related to the issue
mentioned above, where one study does not have estimates for these two features, thus when
removing further studies, the amount of data in the younger age range may not be enough to
reliably estimate models.
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Fig. 6.9 Leave-one-study-out sensitivity analysis: (A) We estimated 95% confidence
intervals around the normative trajectories estimated by the original model after leaving out
(excluding from analysis) each primary study in turn. Confidence intervals were estimated
from the mean and the standard deviation of the resulting distribution of leave-one-out
trajectories. (B) Here, we show the same data as above, however we have magnified the
confidence intervals 50-fold in order to enhance their visibility.
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6.3.5 Bootstrapping studies of reliability and stability

In order to assess the reliability and stability of the fitted normative trajectories, and to
obtain confidence intervals on all parameter estimates obtained from the GAMLSS fitting
procedure, we ran 1,000 bootstrap iterations, resampling our data with replacement. These
bootstrap iterations were stratified by sex and study size, thus retaining approximately the
same distribution of study size and age range in each of the bootstrapped resamples as in the
original sample from the aggregated dataset.

Further, we derived bootstrap confidence intervals around the study-specific random
effects, i.e., the first (µ) and second (s ) parameters of the gamma distribution. This analysis
addressed the question of whether empirically derived parameters were more extreme than
expected by chance, given the size and sex-balance of each study. Visual inspection of point-
range plots of the bootstrapped study-specific random effects on regional subcortical volumes
indicated that all study-specific offsets were well within their bootstrapped confidence
intervals. In general, the confidence intervals around the s -parameters were larger than
around the µ-parameters Fig. 6.10.
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Fig. 6.10 Study-specific random effects on the first (µ) and second (s ) parameters of
the generalised gamma distribution: We estimated bootstrap confidence intervals around
the study-specific µ and s -parameters by resampling with replacement, stratified by sex and
study size. Here, we show the bootstrapped 95% confidence intervals around the median
offset across bootstraps (dot). The colour indicates the range of the confidence interval. The
best fitting model for the anterior segment of the corpus callosum, CC Anterior, did not
include a study-specific random effect for the s -parameter, thus no bootstrap values are
shown.
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6.3.6 Case-control differences in subcortical volumes

We estimated changes in centiled subcortical volume in psychiatric disorders, benchmarked
appropriately against normative trends in subcortical volume development. We found that
each disorder showed significant case-control differences (Cohen’s d, d) in centile scores for
at least a few subcortical regions (Fig. 6.11). Notably, AD was associated with decreased
subcortical volume (blue) across all subcortical structures, with a particularly strong effect
in the hippocampus (d f emale =�1.2;dmale =�1.2 ) and amygdala (d f emale =�1.2;dmale =

�1.1). We observed a very similar, but less strong, pattern of case-control deficit of centiled
subcortical volumes in MCI, and these results were extensively overlapping with the case-
control differences identified in SCZ. More specifically, the pattern of schizophrenia case-
control diffferences also saw strong disease-related decreases in subcortical volume in the
hippocampus and amygdala, but conversely, saw increases in volume in patients compared to
controls in the pallidum and putamen in males, and to a lesser extent also in females (Fig.
6.11).
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Fig. 6.11 Case-control differences in centile scores of subcortical volumes for multiple
neuropsychiatric disorders: Case-control differences between the normative sample (CN)
and each diagnostic category of clinical cases, using Cohen’s d, for males and females
separately, to demonstrate the standardised effect size for case-control differences for each
disorder in both (A) subcortical regions, and (B) cerebellum and corpus callosum.

We observed that for several disorders, and in a number of different regions, the sign of
the case-control differences in grey or white matter volume differed between the sexes. Most
notably, we observed divergent patterns of case-control increases of subcortical volumes in
female ADHD cases, compared to case-control volumetric decreases in male ADHD cases,
in almost all subcortical regions, with most of these effects being significant (Fig. 6.12A).
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Fig. 6.12 Neuropsychiatric case-control differences in subcortical volumetric centile
scores by subcortical structure: Case-control differences between the normative sample
(CN) and each diagnostic category of clinical cases. We compared each diagnostic group to
controls using Cohen’s d, both in (A) subcortical regions, and (B) cerebellum and corpus
callosum. For each region, we show the magnitude of standardised effect size d, and it’s
confidence interval, for males and females separately.

6.4 Discussion

Using a large aggregated neuroimaging dataset, we derived growth charts of normative
subcortical human brain development, estimated developmental milestones in subcortical
volume development, and demonstrated that individual centile scores benchmarked against
the appropriate norms showed significant differences in most regions tested in multiple
neuropsychiatric disorders.

First, we aggregated one of the largest neuroimaging samples to date. We derived
normative trajectories of subcortical phenotypes, with the aim of making them available
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to the neuroimaging community. Such normative referencing standards are very useful for
benchmarking individual brain scans that were not included in the dataset used to model
normative brain charts. In this work, we included a random effect of study, which theoretically
allows us to estimate centile scores for individual scans from new studies (cf. Fig. 6.3). We
aim to include the subcortical phenotypes normatively modelled here for the first time into
the published “BrainChart” toolbox https://brainchart.shinyapps.io/brainchart/.

We found that subcortical structures, including the thalamus, caudate, putamen, pallidum,
hippocampus, amygdala, nucleus accumbens and ventral DC, as well as the cerebellar
grey matter, peaked during adolescence and early adulthood, and showed their peak rate-of-
growth during early infancy. Conversely, the different corpus callosum sections, as well as the
cerebellar white matter, peaked later in life, during mid adulthood, and reached their peak rate-
of-growth during childhood or early adolescence. The age of peak volume reported here is
later then previously suggested for many subcortical regions (Dima et al., 2022). We speculate
that this may be due to prior samples using smaller datasets and not fully mapping the entire
lifespan, which may have led to boundary-problems in prior models (Rutherford et al., 2022).
Lastly, the age-differences at which developmental milestones are reached between different
structures may indicate that the subcortex develops in at least two developmental windows:
the earlier maturation of grey matter volume is followed by later peaks in white matter tracts.

In line with previous work on variance of subcortical structures, we observed greater
between-subject variability in males compared to females in most regions (Wierenga et al.,
2022). This finding is of particular relevance, because recent work has suggested a poten-
tial link between variance in brain phenotypes and the development of psychiatric disor-
der (Wierenga et al., 2022). Differences in variance across the sexes highlights the need to
consider individual differences within the sexes and how they may underpin the sex-specific
vulnerability to disorders (Wierenga et al., 2022).

Individual centile scores benchmarked against these normative trajectories were asso-
ciated with multiple neuropsychiatric disorders, demonstrating the possible clinical value
of charting subcortical brain development. In particular, we find the strongest associations
between deviations from normative subcortical development and Alzheimer’s disease, with
mild cognitive impairment showing a very similar pattern. With MCI seen as an intermediary
state between healthy aging and Alzheimer’s disease the similarity in the pattern of case
control differences, but differences in effect size strength provides support for the sensitivity
of centile scores to individual disorders. We believe that this work is likely showing the
most extensive effects of disorders on subcortical volumes reported to date, largely owing to
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the large sample size of the aggregated sample and the power of GAMLSS modeling to fit
non-linear trajectories to datasets collected from different scanners.

We would like to point out that the strongest effect sizes were observed for the neu-
rodegenerative Alzheimer’s disease, with smaller effect sizes found across most psychiatric
disorders. It may not be surprising that using structural MRI effect sizes are particularly
strong in neurodegenerative diseases which have well-characterized patterns of atrophy and
pathology, such as for example the presence of abnormal protein agrgegates. In contrast,
to date no clear structural brain biomarkers of psychiatric disorders are known. Futher,
neurodegenerative diseases are typically more clearly defined, compared greater hetero-
geneity of symptoms in psychiatric disorders. While these factors combined may lead to
greater difficulty in observing case-control differences in normative trajectories of subcortical
development, this study has provided reasonable evidence for for such differences across
multiple psychiatric disorders.

It is worth noting that due to the nature of the aggregated nature of this dataset, each
disease group contained subjects from several studies. Inevitably, the criteria for these
diagnoses varied by study. Here, we carried forward the diagnostic labels as they were
designated by the primary studies. It may be that the variation in diagnostic labels contributes
to relatively small effect sizes in some disorders. For example, MDD is the largest patient
group in this sample, but case-control effect sizes for this group were generally small.
However, 86% MDD cases stem from the UKB sample, such that this analysis may be biased
towards the diagnostic criteria used by this one large population study which labeled all
subjects with a lifetime history of depression as MDD cases (rather than recruiting specifically
for symptomatic MDD patients as would usually be done in a traditional case-control study).

We note that for two subcortical structures, the nucleus accumbens and the ventral
diencephalon, the normative trajectories did not appear to fit the underlying raw data well for
the period before 1 year of age. We believe that this effect was likely caused by the fact that
the youngest dataset available (dHCP) did not include estimates of grey matter volume in the
nucleus accumbens and ventral DC. Consequently, this effect will likely be mitigated in the
future by adding further datasets providing more complete coverage of the age range below 2
years.

In this work, based on known differences in structural brain development and in line
with the WHO growth chart methodology, we stratified by sex. Thus, age-by-sex interaction
effects are not specifically modelled; however, this is theoretically possible and while not
practically needed for centile score estimation, it may be interesting for scientific purposes.
Modelling age-by-sex interactions in the future would be particularly interesting in the
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context of psychiatric disorders. Using our sex-stratified centile scores, we found a variation
in the direction and effect size of case-control differences in multiple disorders, most notably
in ADHD, where prevalence and behavioral symptoms are known to differ between males
and females (Arnett et al., 2015; Murray et al., 2019). It has been difficult in the past to study
sex differences in disorders like ADHD and ASD which are more commonly diagnosed in
males, since datasets often do not include many females. Aggregating data across multiple
studies and benchmarking them against a robust normative framework, may thus provide
a promising avvenue for studying sex differences in these disorders. In the context of
our findings in Chapter 3 it is also worth noting that we do observe different patterns of
MDD case-control differences in this study, and it will also be interesting in the future to
more directly explore potential sex differences in MDD. Most neuroimaging studies only
collect information on sex, not gender. It would be interesting, in the future, to move away
from models stratified by a binary sex variable. Indeed prior work has suggested that brain
phenotypes are best described as a continuum (Zhang et al., 2021b). Further, there is evidence
that androgyny on a brain-gender continuum may be associated with better mental health
in line with psychological androgyny (Zhang et al., 2021b), highlighting the relevance of
assessing gender compared to biological sex only.

It is worth noting that the sample sizes for the different patient groups varied widely
(Table 6.1), such that inevitably, the statistical power to detect an effect will have been larger
for some patient group, compared to others. For some disorders (i.e. ASD, ADHD) there
was a sex imbalance, as is common in studies of these conditions. Since the case-control
differences are estimated for each sex separately, statistical power would have been larger
one sex compared to the other. Future work should attempt to increase the sample sizes of
smaller patient groups.

Multiple regions included in this work are only defined in FreeSurfer output files. How-
ever, a number of studies included in this aggregated dataset were processed with other
pipelines. In particular subjects aged younger than two years were usually processed with
InfantFreeSurfer or custom processing pipelines that did not include all subcortical regions
analysed here. Further work is required to increase the number of studies that do include all
regions, or to re-preprocess existing datasets with pipelines that include them. Processing
scans from subjects aged younger than one year poses difficulties due to proncounced inten-
sity and contrast changes taking place during early postnatal development. However, recent
advances on automated segmentation pipelines has seen the development of promising new
tools based on deep-learning models that may facilitate this process (Billot et al., 2023a,b;
Shang et al., 2022)
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It is worth noting that any difficulties with pre-processing pipelines are limited to subjects
aged 2 years and younger. These younger subjects do not directly inform the modelling at
later ages when all subcortical volumes reported here peak, thus the key results reported here
are likely unaffected at large.

Adding additional data covering early-life period may likely address a number of limi-
tations in the findings reported here. First of all, we note that we did observe a significant
relationship between age and image quality across studies. Some of those effects may be
inevitable. For example, it is widely reported in the functional magnetic resonance imaging
(fMRI) literature that younger subjects tend to move more in the scanner, contributing to
decreased image quality (Satterthwaite et al., 2013), and work on structural MRI has similar
effects on scan quality in those data (Alexander-Bloch et al., 2016). However, increasing
the number of studies may help to mitigate concerns about data quality of individual studies.
Reassuringly, our results indicated that at large there was no meaningful effect of image
quality on individual centile scores, and no individual study appeared disproportionately to
bias the estimated normative trajectories.

The landscape of openly available neuroimaging datasets is strongly biased in favour of
(mostly affluent) participants from white Western European and North American popula-
tions (Kopal et al., 2023). This increasingly well-recognised demographic bias in the field at
large was inevitably also reflected in our aggregated dataset. While we were able to gather
data from three continents, further work is needed to increase the geographical, and thereby
ethnic, diversity of the studies included in this work to enable more population-representative
normative trajectories. A further point of concern in relation to diversity of neuroimaging
datasets is the effect of socio-economic status (SES) on brain structure. There is a growing
body of evidence suggesting that SES significantly impacts brain structure throughout the
lifespan (Rakesh and Whittle, 2021). It is notable that recent work has shown that SES
may impact brain development as early as in-utero, with low parental SES associated with
decreased fetal grey and white matter volume (Lu et al., 2021; Spann et al., 2020). Further,
there is ample evidence that SES is associated with worse cognitive outcomes during multiple
stages of development (Zhou et al., 2015), and a number of studies have provided evidence
that discrepancies in cognitive outcomes as a result of SES may be mediated to by changes
in brain structure (Whittle et al., 2017). The relationship between SES and brain morphology
is thought to be complex, and proposed contributing factors include SES being associated
with increased levels of stress (Hackman et al., 2012), and differences in nutrition, health,
cognitive stimulation, and parenting behaviour (Whittle et al., 2017). Taken together, these
results highlight a great need for the neuroimaging community to address the lack of diverse
datasets (Benkarim et al., 2021; Kopal et al., 2023).
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Of further note is that the data used in this study were processed using multiple pre-
processing pipelines. It is conceivable that pipelines are differentely good at reconstructing
the cortical surface, resulting in differing numbers of surface holes. The authors note,
however, that there is advantages of including multiple processing pipelines into their models:
in order for these models to remain up to date, upgrading to the respectively most recent
version appears essential, while re-preprocessing all legacy data is infeasable given the size
of the dataset. Future work should address concerns regarding multiple processing pipelines
and in particular will have to disentangle potential interaction effects between FreeSurfer
version, participant age, year of data acquisition, MRI scanner and surface holes.

The most well-known example of normative reference charts, the World Health Orga-
nization’s pediatric growth charts (Group and de Onis, 2006; Organization et al., 2006),
were primarily estimated from data acquired by a multi-center longitudinal study of chil-
dren under two years of age, with cross-sectional data included subsequently (Group and
de Onis, 2006; Organization et al., 2006). In our work, we aggregated both cross-sectional
and longitudinal studies initially. However longitudinal scans comprised only 13% of the
total number of scans, thus we decided not to explicitly model longitudinal changes, i.e., by
adding a term to the model for subject-specific random effects. Further work is needed to
validate these models by estimating whether analysis of multiple repeated measures from a
single individual result in similar centile scores to the scores obtained for the same individual
when their data are analysed cross-sectionally. Previous work using the same normative
modelling framework on cortical data has shown that the GAMLSS modeling framework is
capable of generating centile scores that remain within the same centile boundaries across
multiple measures (Bethlehem et al., 2022), thus it is reasonable to expect that this should
also be the case for subcortical structures. Of particular interest are cases of subjects that
changed diagnostic labels between their longitudinal scans. We would expect changes in
neurodegenerative and psychiatric diagnoses to be accompanied by longitudinal step-changes
in an individual’s centile scores for subcortical volume. For example, it would be interesting
to include subjects that shift from being considered healthy controls or having MCI to re-
ceiving an AD diagnosis. Such changes in diagnosis are results of known neurodegenerative
process underlying diagnostic transitions (Risacher et al., 2009), and we would expect to
see them reflected in individuals’ centile score (Bethlehem et al., 2022). Other examples of
diagnostic or treatment transitions with known underlying changes in brain structure that
may trigger a “jump” in individuals’ centile scores include subjects transitioning from first
episode psychosis to chronic schizophrenia, or from untreated first episode psychosis to
treated first episode psychosis.
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It is worth pointing out that the “growth charts” developed here, although analogous to
pediatric growth charts, merely demonstrate the feasibility of deriving lifespan trajectories of
subcortical development, and thus are not immediately suitable for clinical use. However,
there is reason to believe that centile scores derived from trajectories of structural brain
phenotypes may in the future support clinical practice (Bedford et al., 2022). First, there
is evidence for neuroanatomical alterations in neurodevelopmental disorders in early devel-
opment, i.e. it has been shown that increased surface area at 6 months of age can precede
a diagnosis of autism in children at 24 months (Hazlett et al., 2017). Given our lack of
understanding of underlying biology or causal mechanisms for many neurodevelopmental
disorders, it is unlikely that brain growth charts would lead to a diagnosis, but rather they
could farm part of a broader individual screening and help support early diagnosis. The
neurobiology of neurodenerative diseases like AD, however, are comparatively better under-
stood (Coupé et al., 2019), with deviations in brain anatomy seen up to 10-15 years prior to
diagnosis (Coupé et al., 2019), suggesting that longitudinal changes in centile score may be
indicative of risk or a prodromal phase for neurodegeneration (Bedford et al., 2022).

In a promising recent development, Schabdach et al. (2023) demonstrated the feasibility
of using clinically acquired scans, rather than research data, to derive normative trajectories of
brain development. While this first sample is rather small (N=372, 0-22 years), the prospect
of being able to use "real-world" clinical data is an exciting development, which may be able
to solve a number of concerns addressed above, including availability of scans from younger
subjects and population diversity, since tens of thousands of additional scans are routinely
acquired in medical settings around the world (Schabdach et al., 2023). Including such data
into lifespan models for research would present a major expansion of data availability and
diversity.

We conclude that the GAMLSS framework is well-suited for estimating normative
lifespan trajectories of subcortical volume. In one of the biggest neuroimaging samples
to date, we have mapped for the first time lifespan trajectories of subcortical volume from
preterm birth to old age, demonstrated the feasibility of benchmarking individual subjects to
normative trajectories, and using centile scores as a standardized measure of atypical brain
structure, revealed patterns of neuroanatomical variation across multiple neuropsychiatric
disorders.



Chapter 7

Summary and concluding remarks

7.1 Summary of findings

This thesis has examined changes in adolescent functional and structural brain development
and their relationships to psychiatric disorders.

In Chapter 2, a sexually divergent system of adolescent functional connectivity de-
velopment, primarily located in the association cortex and subcortex, was identified. In
these regions functional connectivity developed more disruptively in women, meaning that
females demonstrated a greater tendency for weak functional connections (at age 14 years)
to become more strongly connected over the course of adolescence, resulting in greater
changes to the rank ordering of each node’s edge-wise connections to the rest of the network
in females compared to males. We further showed that these sex differences in adolescent
brain development were spatially co-located with brain regions that were enriched for ex-
pression of genes located on the X-chromosome and developmentally relevant genes. In
Chapter 3 the anatomical, psychological and genetic relevance of this sexually divergent
development of functional connectivity to the well-known sex differences in incidence of
depressive and other mood disorders during adolescence was investigated. More specifically,
the map of sex differences in development of functional connectivity during adolescence
was spatially co-located with (i) a map of case-control differences in major depression, such
that regions that developed more disruptively in healthy females tended to show stronger
decreases in functional connectivity in patients with major depressive disorder compared to
healthy controls; (ii) with prior loci of reward-related brain activation; and (iii) an adult brain
gene transcriptional profile enriched for major depressive disorder (MDD) risk genes.
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Chapter 4 reviewed the literature on similarity-based structural connectivity networks
and made suggestions for future work, including studying developmental changes in mor-
phometric similarity networks (MSNs). Chapter 5 used the same dataset as in Chapter 2
and Chapter 3, to focus on adolescent changes in brain structure. It identified a pattern of
increasing morphometric dissimilarity, hypothetically representing increasing cytoarchitec-
tonic differentiation of structural brain networks over the course of adolescence. Increasing
morphometric dissimilarity was found to be driven by increases in myelination and decreases
in cortical thickness. This process of structural segregation was further co-located with a
map of age related changes in functional participation coefficient, suggesting that cytoarchi-
tectonic differention during adolescence may allow for more varied functional realizations to
meet adult cognitive and social demands.

Finally, in Chapter 6 sex-specific lifespan trajectories of subcortical development were
estimated using a normative modelling approach. This chapter defined milestones of sub-
cortical grey matter volume development, which tended to peak during adolescence and
decrease thereafter in putamen, pallidum, hippocampus, amygdala, ventral diencephalon,
accumbens, thalamus and caudate, while the corpus callosum and cerebellar white matter
volume peaked in early adulthood. Further, this chapter showed that individual centile
scores benchmarked against normative trajectories of brain development show significant
differences across multiple neuropsychiatric disorders.

7.2 Convergent themes

7.2.1 Brain development during adolescence - and beyond

Prior work on the NSPN sample (Váša et al., 2020), and further analyses in Chapter 2 -
3, are consistent with literature indicating wide-spread functional re-organization during
adolescence (Dosenbach et al., 2010; Fair et al., 2007; Váša et al., 2020). The adolescent
changes in brain structure observed in Chapter 5 are comparatively less extensive. Research
on univariate phenotype development has shown that grey matter volume, both globally
and locally, undergoes a rapid period of development from mid-gestation until about six
years of age. Although white matter volume also increases rapidly from mid-gestation until
early childhood, there is a more gradual and prolonged period of white matter development
subsequently, which peaks during early adulthood (Bethlehem et al., 2022). An exploratory
analysis in Chapter 5, estimating lifespan changes in morphometric similarity networks,
provided evidence that the strongest changes in morphometric similarity may indeed be seen



7.2 Convergent themes 171

in early life, until the age of six years. However, little is known about lifespan changes in
functional network measures, such that no direct comparison of the magnitude of changes in
structure and function during different periods of life can be made.

Further, while Chapter 6 found that many subcortical regions peak in volume during
adolescence, subcortex was not considered in Chapter 5, since not all morphometric features
used for the network construction could be derived for subcortical regions. Future work
should address adolescent changes in morphometric similarity between the subcortex and
cortex.

7.2.2 Sex differences

Historically, animal studies have focused on studying male animals, based on the assumption
that the male can serve as representative of the species (Simon, 2005). Females have been
argued to be more variable, due to their menstrual cycle. However, empirical research in
mice demonstrates there is no evidence for greater in variability in females in behavioral,
morphological, physiological, or molecular traits (Prendergast et al., 2014), or even suggest
greater variability in males (Smarr and Kriegsfeld, 2022).

Further, there has been a distinct lack of focus on sex differences in both clinical trials as
well as basic science animal studies. This is of particular concern, because (i) there is ample
evidence that sex can effect the expression profile of a number of (psychiatric) disorders,
which cannot be fully understood without studying sex; (ii) treatment may affect men and
women differently. In the United States of America, it was not until 1994 that the U.S.
National Institute of Health (NIH) published guidelines to include women in federally funded
clinical research (of Health et al., 1994). As an illustrative example, an analysis by the U.S.
Food and Drug Administration (FDA) of drugs removed from the market between 1997 and
2000 showed that eight out of 10 of them had greater side effects in women than in men
(Carey et al., 2017; Heinrich et al., 2001), further supporting the urgency with which sex
differences in treatment response must be investigated in the course of drug development.

Modern science inherits a history of studies dedicated to finding the “neural basis” of
sex differences in behavior, which it has been argued have suffered from mysogynistic
assumptions that women and men were “hard-wired” to be different (Fine, 2005, 2014).
The early 2010s saw a rise in criticism of studies using small sample sizes to investigate
stereotypically gendered behavior, and the term “neurosexism” was coined (Fine, 2008).

However, this work has also provided evidence for the relevance of considering sex
differences in neuroscientific research. Chapter 2 and Chapter 3 of this thesis have demon-
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strated the anatomical, psychological and genetic relevance of sex differences in adolescent
functional brain development to MDD, while Chapter 6 provided tentative evidence for sex
differences in grey matter volume deviations in a number of psychiatric disorders. Taken
together, these findings highlight the importance of estimating sex differences during devel-
opment and in the neuropsychiatric context.

Media attention and popular interpretation of scientific findings can - and should - be of
concern to researchers studying sex differences in the brain. However, avoiding reporting
sex differences may contribute to gender disparities in health. Thus instead of avoiding the
study of sex differences altogether, we should focus instead on responsible communication
of research findings.

7.2.3 Cortex vs subcortex

Prior work has highlighted the importance of subcortico-cortical connectivity during devel-
opment and in neuropsychiatric disorders. Multiple neuropsychiatric disorders have been
associated with case-control differences in both structural and functional subcortical phe-
notypes, i.e. decreased grey matter volume in the hippocampus, amygdala, thalamus, and
accumbens has been reported in patients with schizophrenia (Van Erp et al., 2016); MDD
has been associated with amygdala hyper-connectivity, hypothetically representing increased
emotional evaluation and rumination (MacMaster et al., 2008).

It has been suggested that there may be a “mismatch”, i.e., a difference in developmental
timing, between subcortical regions and prefrontal regions (Mills et al., 2014). More specif-
ically, it has been argued that prefrontal regions, which are involved in cognitive control,
may undergo a more prolonged development compared to subcortex, which is involved in
reward processing, hypothetically leading to increases in risk-taking and sensation-seeking
behaviours (Miller et al., 2014).

Early neuroimaging work has reported both increases (Marek et al., 2015; van Duijven-
voorde et al., 2016) and decreases (Supekar et al., 2009) in subcortico-cortical functional
connectivity between childhood and adolescence. However, many of these studies were
seed-based analyses and did not investigate whole-brain connectivity. Recent work on the
NSPN sample has suggested that individual subcortical regions show distinct maturational
profiles of functional connectivity (Váša et al., 2020).

Chapter 2 and Chapter 3 highlighted sex differences in adolescent functional connectiv-
ity development. Of the eight bilateral subcortical regions examined, almost all were found
to display significant differences between males and females, with females displaying more
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disruptive development than males, meaning that in females, there was a greater tendency for
change in the rank ordering of functional connections between subcortical regions and the
rest of the brain.

Chapter 5 explored adolescent structural brain development from a network perspective.
Many of the metrics we used to construct the morphometric similarity networks in this chapter
are commonly measured only in cortex, thus no subcortical regions were included in this
analysis. Previous studies have demonstrated that subcortico-cortical morphometric similarity
is predictive of cognitive outcomes during childhood (Wu et al., 2022). It is conceivable that
there may be adolescent changes in subcortico-cortical morphometric similarity not detected
in our current work. Future work could thus explore how subcortico-cortical morphometric
similarity changes during adolescence. Chapter 6 provided further evidence that indeed
subcortical structures may contribute to structural brain network changes during adolesence.
The univariate models of structural brain development used to derive lifespan trajectories of
subcortical grey matter volume for multiple regions suggested that many of them peak in
volume during adolescence. Further analysis is required to understand how the maturational
dynamics of a single phenotype relate to brain network changes during the same period of
life and whether the peak in subcortical grey matter volume relates to changes in maturational
functional connectivity development.

7.2.4 Vulnerabilities during development

There is an intricate relationship between developmental changes in the brain and vulnera-
bilities to psychiatric disorders (Paus et al., 2008; Silbereis et al., 2016). Chapter 3 found
that the regions that demonstrate more fundamental re-organization in their connectivity to
the rest of the brain are also implicated in MDD in various ways. This finding aligns with
the suggestion that “moving things get broken” (Paus et al., 2008), i.e. re-organization of
the brain network architecture results in increased vulnerabilities to disorders. Chapter 3
has highlighted vulnerabilities to one disorder, MDD, during a single period of development,
adolescence. However, there is evidence that, despite the fact that many psychiatric disorders
are first diagnosed during adolescence, vulnerabilities may be conferred during much earlier
development, including prenatally, and may contribute to the later occurrence of disorders
(Markham and Koenig, 2011; Selemon and Zecevic, 2015). Thus future work should in-
vestigate other developmental periods outside adolescence to further our understanding of
vulnerabilities to mental health disorders during development. While further analyses are
required to disentangle how centile score differences in disease emerge over the course of
the lifespan, the univariate models of structural brain development in Chapter 6 nevertheless
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have laid the groundwork for examining case-control differences in subcortical volume by
the innovative approach of normative modeling.

7.3 A note on open science

Openly sharing data is essential to ensure reproducibility and to maximize the impact of
public investments in scientific research. Further, despite the long-standing interest of the
field in understanding lifespan changes in the brain, to date no single dataset has fully covered
the lifespan with a sufficient sample size to estimate lifespan trajectories of subcortical and
cortical brain development. A number of factors can contribute to neuroimaging data not
being shared publicly (Bethlehem et al., 2022; White et al., 2022), including (i) privacy
concerns, often originating from a lack of informed consent for open data sharing being
obtained from participants at the time of data collection; (ii) requirements by funding bodies
to include senior authors in secondary work on the acquired data; and (iii) national or
institutional data protection regulations preventing sharing of raw data.

Only recent increases in publicly available datasets have made it possible to aggregate a
sufficient number of studies covering extended periods of the lifespan with sufficient sample
size. Such efforts have furthered our understanding of lifespan trajectories of cortical and
subcortical brain development (Bethlehem et al., 2022; Rutherford et al., 2022), and Chapter
6 of this thesis aims to contribute to these advances. In collecting the studies aggregated into
a larger dataset in Chapter 6, a number of factors crystallised that may hamper progress in
future large-scale neuroimaging work.

1. Data format: The organization of shared datasets differed vastly between datasets.
Recent efforts by the neuroscientific open science community have attempted to
standardize magnetic resonance imaging (MRI) data organization in the Brain Imaging
Data Format (BIDS) format, and the NIH common data elements (CDE) proposed a
standardized framework for data collection, organization, and sharing in biomedical
research in general which would, for example, also cover neuroimaging-associated
behavioral data (Kuplicki et al., 2021; Kush et al., 2020), but to date these standards
are not universally applied. Data-sharing in non-standardized formats makes data
aggregation more difficult not least because scripts need to be adapted on a single-case
basis, an effort that becomes less manageable with increasing numbers of studies
aggregated. There is no doubt that larger sample sizes have improved our ability to
estimate brain development in health and disease (Bethlehem et al., 2022; Rutherford
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et al., 2022), and indeed specific suggestions have been made for minimal sample sizes
needed to investigate brain-behavior relationships (Marek et al., 2022).

2. Ease of access: There are large differences in the “openness”, i.e. the accessibility
of primary datasets, without further negotiation, to secondary data users. Some
neuroimaging studies were shared only via personal communication, some studies
were accessible by well-managed but lengthy formal application processes, and some
were accessible by a one-click download. Of particular note in the latter category
are the OpenNeuro platform (Markiewicz et al., 2021), which facilitates the sharing
of neuroscientific data on a single website in the standardized BIDS format; and the
SRPBS1600 study (Tanaka et al., 2021b), a single large study available through a
one-click download. While the work in Chapter 6 benefitted immensely from data
shared through personal communication, such efforts should not be necessary and
indeed may bias data sharing with specific author groups.

3. Authorship: Usage requirements differed even between “openly shared” datasets.
While it was generally sufficient to cite the datasets used, other data owners requested
the inclusion of authors in the author list, sometimes specifying specific positions in
the list. This clearly stretches the definition of open science. Further, including authors
due to data-sharing for some datasets, but not others that are fully openly shared may
disincentivize open data sharing.

On a related note, please refer to C.3 for data and code availability. All methods and
overview figures created for Chapter 1 have been made available to download and reuse
under a CC BY 4.0 licence at 10.5281/zenodo.7782905.

7.4 Future directions

Beyond the specific suggestions made in each of the previous chapters, two key themes
covered in this thesis may provide avenues for future research (i) network approaches to
lifespan development, and (ii) brain-gene-interactions (over the course of the lifespan).

Structurally, this thesis started from a network position, examining changes first in
functional, then in structural brain networks during adolescence. It then proceeded to
expand the scope of analysis to examine lifespan change in univariate structural brain
phenotypes. One future direction will be to move from univariate to network models
of lifespan development. As a first step, morphometric similarity networks may provide

https://openneuro.org
https://bicr-resource.atr.jp/srpbs1600/
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a suitable avenue for exploring lifespan development of structural brain networks given
the ease with which they can be estimated from T1 scans only which have already been
aggregated for Chapter 6. While it would be difficult to aggregate enough multi-modal
datasets to fully leverage the potential of MSNs, it may therefore be worth considering
measuring phenotypes at multiple depths, both to increase the number of features, as well as
to improve microstructural information.

Lastly, a growing body of work is exploring the interaction between genes and brain
structure and function. Chapter 2-3, in line with multiple prior studies (Morgan et al.,
2019; Whitaker et al., 2016b) have explored transcriptomic data from a high-resolution
transcriptomic atlas generated from a set of six post-mortem brains (Arnatkeviciute et al.,
2019; Hawrylycz et al., 2015) to better understand patterns of gene expression associated
with changes in brain function. While the use of this dataset has furthered our understanding
of gene expression patterns associated with (changes in) brain structure and function (Dorf-
schmidt et al., 2022; Seidlitz et al., 2020; Whitaker et al., 2016b), a number of limitations to
this approach have been outlined, including the limited age-range, as well as sex imbalance
of this dataset. Alternative datasets which expand the sample size and age range covered
do exist, they are sofar limited in their spatial resolution (i.e. the number of brain regions
sampled) (Miller et al., 2014). Thus, to deepen our understanding of gene-expression linked
to neuroimaging phenotypes new methods will be needed to fully leverage the potential of
more diverse, but lower-resolution alternatives to the Allen Human Brain Atlas (AHBA).

Additionally, a recent move towards larger samples and thorough phenotyping, including
whole genome sequencing for individuals enrolled in neuroimaging studies (Alfaro-Almagro
et al., 2018; Casey et al., 2018), has opened up a further avenue for exploring gene-brain-
interactions. For example, prior work has examined individual risk of disorders, via the
means of polygenic risk scores, and could thereby examine the association between normal
variation in polygenic risk score (PRS) and MRI phenotypes of brain morphometry and tissue
composition (Stauffer et al., 2021). It has also become increasingly clear that brain structural
and functional phenotypes are substantially heritable and influenced by common genetic
variation (Warrier et al., 2022). Specifically, genome-wide association studies (GWASs)
have been used to identify common genetic variants linked to human cortical development
and organisation (Warrier et al., 2022) and to examine shared genetic effects on psychiatric
disorders and brain structure (Stauffer et al., 2023). Remarkably, such studies offer the
opportunity to explore causal links between brain and cognitive phenotypes (Shen et al.,
2020) promising to further our understanding of the emergence of psychiatric disorders.
Future work could expand these research directions to examine (changes in) gene-brain-
interactions over the course of lifespan for example by examining the relationship between
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PRS and centile scores. To this end, the neuroimaging community will have to make efforts
to acquire large-scale datasets covering multiple periods of life.

7.5 Conclusion

Collectively, the work in this thesis has highlighted maturational changes in brain structure
and function during adolescence, and the lifespan more generally, and strengthened evidence
for the intimate relationship between development and vulnerabilities to disorders. In
particular, it has highlighted the relevance of considering sex differences when exploring
normative development and risk of psychiatric disorders.
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ROI DMI Z-Value P-Value Trend Yeo-Network
R FOP5 -0.79 10.57 0.00 female more disruptive Ventral Attention
R s32 -0.71 11.70 0.00 female more disruptive Default Mode
L s32 -0.71 12.05 0.00 female more disruptive Default Mode
L VMV2 -0.71 11.59 0.00 female more disruptive Visual
L 47s -0.67 12.00 0.00 female more disruptive Default Mode
R PGi -0.64 9.04 0.00 female more disruptive Default Mode
L MI -0.63 9.42 0.00 female more disruptive Ventral Attention
L VMV3 -0.63 13.16 0.00 female more disruptive Visual
R IFSa -0.60 9.39 0.00 female more disruptive Frontoparietal
R Pir -0.59 6.98 0.00 female more disruptive Subcortex
L accumbens -0.57 6.79 0.00 female more disruptive Subcortex
L p32 -0.56 10.30 0.00 female more disruptive Default Mode
L a24 -0.50 9.44 0.00 female more disruptive Default Mode
R STSvp -0.50 7.07 0.00 female more disruptive Default Mode
R STSda -0.49 7.62 0.00 female more disruptive Default Mode
R accumbens -0.49 5.13 0.00 female more disruptive Subcortex
R A5 -0.48 5.98 0.00 female more disruptive Somatomotor
L A5 -0.47 6.47 0.00 female more disruptive Somatomotor
R 47l -0.47 5.54 0.00 female more disruptive Default Mode
L p24 -0.46 8.45 0.00 female more disruptive Default Mode
L 10r -0.46 6.29 0.00 female more disruptive Default Mode
R 47s -0.45 7.63 0.00 female more disruptive Default Mode
R FOP4 -0.45 6.86 0.00 female more disruptive Ventral Attention
R a32pr -0.44 5.85 0.00 female more disruptive Frontoparietal
L PoI1 -0.44 6.61 0.00 female less conservative Ventral Attention
R AAIC -0.44 5.37 0.00 female more disruptive Default Mode
L 45 -0.43 7.17 0.00 female more disruptive Default Mode
L 31pd -0.43 4.97 0.00 female more disruptive Default Mode
R STSdp -0.43 5.61 0.00 female more disruptive Default Mode
R p24 -0.42 7.54 0.00 female more disruptive Default Mode
L FOP4 -0.41 6.32 0.00 female more disruptive Ventral Attention
L FOP5 -0.41 5.78 0.00 female more disruptive Ventral Attention
L d32 -0.40 6.34 0.00 female more disruptive Default Mode
R a24 -0.40 7.02 0.00 female more disruptive Default Mode
Continued on next page
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ROI DMI Z-Value P-Value Trend Yeo-Network
L SFL -0.40 5.93 0.00 female more disruptive Frontoparietal
L IFSa -0.40 5.10 0.00 female more disruptive Frontoparietal
L STSda -0.40 5.90 0.00 female more disruptive Default Mode
L AAIC -0.39 6.20 0.00 female more disruptive Default Mode
R p32pr -0.38 5.08 0.00 female more disruptive Ventral Attention
L 8BL -0.38 5.32 0.00 female more disruptive Default Mode
R p32 -0.38 6.19 0.00 female more disruptive Default Mode
L Pir -0.38 3.81 0.00 female more disruptive Subcortex
L 25 -0.38 5.11 0.00 female more disruptive Limbic
L pallidum -0.37 5.35 0.00 female more disruptive Subcortex
R 9m -0.36 6.81 0.00 female more disruptive Default Mode
L 9p -0.36 5.32 0.00 female more disruptive Default Mode
L STGa -0.36 4.59 0.00 female more disruptive Default Mode
R 8BL -0.36 3.76 0.00 female more disruptive Default Mode
R POS1 -0.35 4.39 0.00 female more disruptive Default Mode
L IFSp -0.35 5.05 0.00 female more disruptive Frontoparietal
L 47l -0.35 6.28 0.00 female more disruptive Default Mode
L AVI -0.34 4.25 0.00 female more disruptive Frontoparietal
L STSdp -0.34 5.28 0.00 female more disruptive Default Mode
R 10r -0.34 4.50 0.00 female more disruptive Default Mode
L STSvp -0.34 5.94 0.00 female more disruptive Default Mode
L putamen -0.34 6.28 0.00 female more disruptive Subcortex
L POS1 -0.33 3.94 0.00 female more disruptive Default Mode
L PoI2 -0.33 4.84 0.00 female less conservative Ventral Attention
R VMV2 -0.33 6.42 0.00 female less conservative Visual
L 31pv -0.33 3.30 0.00 female more disruptive Default Mode
L 7m -0.32 3.98 0.00 female more disruptive Default Mode
L 10v -0.32 5.02 0.00 female more disruptive Limbic
R 46 -0.32 4.93 0.00 female more disruptive Frontoparietal
L v23ab -0.31 4.14 0.00 female more disruptive Default Mode
L VMV1 -0.31 5.16 0.00 female less conservative Visual
R 25 -0.31 4.42 0.00 female more disruptive Limbic
R 9p -0.31 3.09 0.00 female more disruptive Default Mode
R STV -0.31 4.27 0.00 female less conservative Default Mode
Continued on next page
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ROI DMI Z-Value P-Value Trend Yeo-Network
L 43 -0.30 4.87 0.00 female less conservative Somatomotor
R TE1a -0.30 5.33 0.00 female more disruptive Default Mode
R PoI1 -0.30 4.72 0.00 female less conservative Ventral Attention
L OP4 -0.30 4.45 0.00 female less conservative Somatomotor
R p47r -0.29 4.87 0.00 female more disruptive Frontoparietal
L VVC -0.29 5.25 0.00 female more disruptive Visual
R 23d -0.29 4.01 0.00 female more disruptive Default Mode
R MI -0.29 4.74 0.00 female more disruptive Ventral Attention
R PHA2 -0.29 2.47 0.02 female more disruptive Visual
L 52 -0.29 3.54 0.00 female less conservative Somatomotor
R IFSp -0.29 4.16 0.00 female more disruptive Frontoparietal
R 31pd -0.29 3.57 0.00 female more disruptive Default Mode
R pallidum -0.28 4.42 0.00 female more disruptive Subcortex
L 9-46d -0.28 4.79 0.00 female more disruptive Frontoparietal
R 10d -0.28 4.24 0.00 female more disruptive Default Mode
L TPOJ1 -0.27 3.99 0.00 female less conservative Ventral Attention
L PF -0.26 3.52 0.00 female more disruptive Ventral Attention
R AVI -0.25 2.90 0.01 female more disruptive Frontoparietal
L STSva -0.25 4.51 0.00 female more disruptive Default Mode
L p24pr -0.25 4.04 0.00 female less conservative Ventral Attention
R RSC -0.25 2.60 0.02 female more disruptive Default Mode
R 10v -0.25 3.24 0.00 female more disruptive Limbic
R VMV3 -0.24 7.13 0.00 female more disruptive Visual
R STGa -0.24 3.65 0.00 female more disruptive Default Mode
L 23d -0.24 3.65 0.00 female more disruptive Default Mode
L a32pr -0.24 3.25 0.00 female more disruptive Frontoparietal
L RSC -0.24 2.87 0.01 female more disruptive Default Mode
L 24dd -0.23 2.57 0.02 female less conservative Somatomotor
R 33pr -0.23 3.22 0.00 female more disruptive Ventral Attention
R STSva -0.23 3.33 0.00 female more disruptive Default Mode
R VVC -0.23 4.14 0.00 female more disruptive Visual
L STV -0.23 3.54 0.00 female more disruptive Default Mode
R OP2-3 -0.23 4.41 0.00 female less conservative Somatomotor
L a47r -0.23 3.93 0.00 female more disruptive Frontoparietal
Continued on next page
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ROI DMI Z-Value P-Value Trend Yeo-Network
L a10p -0.22 4.17 0.00 female more disruptive Frontoparietal
L 10d -0.22 3.86 0.00 female more disruptive Default Mode
L MBelt -0.22 3.54 0.00 female less conservative Somatomotor
L A4 -0.22 4.45 0.00 female less conservative Somatomotor
R putamen -0.22 4.63 0.00 female more disruptive Subcortex
L thalamus -0.22 3.16 0.00 female more disruptive Subcortex
R 47m -0.21 2.78 0.01 female more disruptive Default Mode
R a47r -0.21 4.18 0.00 female more disruptive Frontoparietal
L PGi -0.21 2.17 0.05 female more disruptive Default Mode
R v23ab -0.21 2.79 0.01 female more disruptive Default Mode
R FOP2 -0.19 3.39 0.00 female less conservative Somatomotor
L 44 -0.19 3.25 0.00 female more disruptive Frontoparietal
L p10p -0.18 3.87 0.00 female more disruptive Frontoparietal
R 44 -0.18 2.82 0.01 female more disruptive Frontoparietal
R p24pr -0.18 3.27 0.00 female less conservative Ventral Attention
L OP2-3 -0.17 2.90 0.01 female less conservative Somatomotor
L 9m -0.17 4.29 0.00 female more disruptive Default Mode
L a24pr -0.17 2.66 0.01 female less conservative Ventral Attention
R V8 -0.16 4.44 0.00 female less conservative Visual
R SCEF -0.16 2.42 0.02 female less conservative Ventral Attention
R IFJa -0.16 2.34 0.03 female more disruptive Frontoparietal
L caudate -0.15 2.31 0.03 female more disruptive Subcortex
L 23c -0.15 2.29 0.03 female less conservative Ventral Attention
R IFJp -0.15 2.54 0.02 female more disruptive Dorsal Attention
L LO2 -0.14 2.30 0.03 female less conservative Visual
L FOP3 -0.14 2.38 0.03 female less conservative Ventral Attention
R A1 -0.13 2.43 0.02 female less conservative Somatomotor
R 9-46d -0.12 2.15 0.05 female more disruptive Frontoparietal
R 7m -0.12 2.24 0.04 female more disruptive Default Mode
R V6 -0.11 2.73 0.01 female less conservative Visual
R LO2 -0.10 3.42 0.00 female less conservative Visual
L PBelt -0.09 2.21 0.04 female less conservative Somatomotor
R 11l -0.09 2.70 0.01 female more disruptive Frontoparietal
R V4 -0.08 3.56 0.00 female less conservative Visual
Continued on next page
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ROI DMI Z-Value P-Value Trend Yeo-Network
R VMV1 -0.06 3.41 0.00 female less conservative Visual
L V4 -0.01 2.50 0.02 female less conservative Visual
R V3CD 0.02 3.42 0.00 female more conservative Visual
L hippocampus 0.09 -2.20 0.04 female less disruptive Subcortex
R a9-46v 0.10 -2.46 0.02 female less disruptive Frontoparietal
L FEF 0.15 -2.14 0.05 female more conservative Dorsal Attention
L PreS 0.15 -3.29 0.00 female less disruptive Visual
R 2 0.15 -2.35 0.03 female more conservative Somatomotor
L 6v 0.16 -3.16 0.00 female more conservative Somatomotor
L 1 0.16 -3.09 0.00 female more conservative Somatomotor
R 1 0.16 -3.04 0.00 female more conservative Somatomotor
R PFt 0.16 -2.30 0.03 female more conservative Dorsal Attention
L 6d 0.17 -2.54 0.02 female more conservative Somatomotor
R 52 0.17 -2.84 0.01 female more conservative Somatomotor
L 31a 0.18 -3.39 0.00 female less disruptive Frontoparietal
L PGs 0.18 -3.36 0.00 female less disruptive Default Mode
R 8Ad 0.18 -3.62 0.00 female less disruptive Default Mode
R TPOJ3 0.19 -2.21 0.04 female more conservative Dorsal Attention
R 8BM 0.19 -2.23 0.04 female less disruptive Frontoparietal
R PSL 0.19 -3.14 0.00 female more conservative Default Mode
L a9-46v 0.19 -3.58 0.00 female less disruptive Frontoparietal
L V6A 0.20 -2.60 0.02 female more conservative Visual
R PGs 0.21 -3.24 0.00 female less disruptive Default Mode
L s6-8 0.21 -3.06 0.00 female less disruptive Frontoparietal
R FFC 0.21 -2.95 0.01 female more conservative Visual
R FST 0.22 -3.82 0.00 female more conservative Dorsal Attention
L 8BM 0.22 -2.66 0.01 female less disruptive Frontoparietal
R PreS 0.23 -5.01 0.00 female less disruptive Visual
R MT 0.23 -2.60 0.02 female more conservative Visual
L 2 0.23 -2.48 0.02 female more conservative Somatomotor
R 6d 0.24 -3.44 0.00 female more conservative Somatomotor
L 8C 0.27 -4.09 0.00 female less disruptive Frontoparietal
R PFm 0.27 -3.22 0.00 female less disruptive Frontoparietal
L 5L 0.28 -3.46 0.00 female more conservative Somatomotor
Continued on next page
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ROI DMI Z-Value P-Value Trend Yeo-Network
R d23ab 0.28 -4.89 0.00 female less disruptive Default Mode
R p9-46v 0.29 -2.83 0.01 female less disruptive Frontoparietal
L 6r 0.29 -4.24 0.00 female more conservative Ventral Attention
L 8Av 0.29 -4.25 0.00 female less disruptive Frontoparietal
L 7PC 0.29 -3.00 0.00 female more conservative Dorsal Attention
R 6r 0.30 -4.07 0.00 female more conservative Ventral Attention
L PH 0.31 -3.70 0.00 female more conservative Dorsal Attention
L 7AL 0.31 -2.80 0.01 female more conservative Dorsal Attention
L IP1 0.32 -3.47 0.00 female less disruptive Frontoparietal
R PCV 0.32 -4.11 0.00 female less disruptive Default Mode
L MT 0.32 -2.67 0.01 female more conservative Visual
L V4t 0.32 -3.46 0.00 female more conservative Visual
R 6ma 0.34 -4.23 0.00 female more conservative Ventral Attention
L MST 0.34 -4.28 0.00 female more conservative Visual
R IP0 0.34 -4.71 0.00 female more conservative Dorsal Attention
L 8Ad 0.34 -5.79 0.00 female less disruptive Default Mode
R VIP 0.36 -4.71 0.00 female more conservative Dorsal Attention
R V7 0.36 -3.02 0.00 female more conservative Visual
L PFt 0.36 -4.11 0.00 female more conservative Dorsal Attention
R 6a 0.37 -3.96 0.00 female more conservative Dorsal Attention
L PHT 0.38 -4.75 0.00 female more conservative Dorsal Attention
R LIPv 0.38 -5.10 0.00 female more conservative Dorsal Attention
L LIPv 0.38 -4.90 0.00 female more conservative Dorsal Attention
R 7PC 0.38 -3.75 0.00 female more conservative Dorsal Attention
R s6-8 0.39 -4.74 0.00 female less disruptive Frontoparietal
L 7Pm 0.39 -5.65 0.00 female less disruptive Frontoparietal
L TPOJ2 0.39 -4.71 0.00 female more conservative Dorsal Attention
R PH 0.39 -5.95 0.00 female more conservative Dorsal Attention
R i6-8 0.40 -5.28 0.00 female less disruptive Frontoparietal
L FFC 0.40 -6.81 0.00 female more conservative Visual
R PGp 0.41 -6.37 0.00 female less disruptive Dorsal Attention
R 8Av 0.41 -5.67 0.00 female less disruptive Frontoparietal
L 6a 0.42 -4.92 0.00 female more conservative Dorsal Attention
L V7 0.42 -3.74 0.00 female more conservative Visual
Continued on next page
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ROI DMI Z-Value P-Value Trend Yeo-Network
R MST 0.43 -4.44 0.00 female more conservative Visual
L PGp 0.43 -5.79 0.00 female less disruptive Dorsal Attention
L 7Am 0.44 -6.34 0.00 female less disruptive Dorsal Attention
L 6ma 0.44 -5.45 0.00 female more conservative Ventral Attention
L PFm 0.46 -7.15 0.00 female less disruptive Frontoparietal
R 7Am 0.47 -6.02 0.00 female more conservative Dorsal Attention
R 8C 0.48 -6.24 0.00 female less disruptive Frontoparietal
L AIP 0.48 -4.87 0.00 female more conservative Dorsal Attention
L 7PL 0.49 -6.72 0.00 female more conservative Dorsal Attention
L VIP 0.49 -6.28 0.00 female more conservative Dorsal Attention
R 7Pm 0.50 -7.75 0.00 female less disruptive Frontoparietal
L i6-8 0.52 -7.12 0.00 female less disruptive Frontoparietal
R IPS1 0.52 -7.42 0.00 female more conservative Dorsal Attention
L p9-46v 0.54 -5.07 0.00 female more conservative Frontoparietal
R 7PL 0.54 -7.60 0.00 female more conservative Dorsal Attention
R AIP 0.57 -6.30 0.00 female more conservative Dorsal Attention
R MIP 0.58 -8.11 0.00 female more conservative Dorsal Attention
R IP1 0.59 -7.40 0.00 female less disruptive Frontoparietal
R V1 0.60 -8.27 0.00 female more conservative Visual
L V1 0.62 -7.60 0.00 female more conservative Visual
L MIP 0.63 -8.23 0.00 female more conservative Dorsal Attention
L IPS1 0.63 -8.53 0.00 female more conservative Dorsal Attention
R TPOJ2 0.68 -9.32 0.00 female more conservative Dorsal Attention
R PEF 0.76 -10.03 0.00 female more conservative Dorsal Attention
L IP0 0.77 -10.83 0.00 female more conservative Dorsal Attention
L FST 0.80 -11.75 0.00 female more conservative Dorsal Attention

Table A.3 ROIs with significantly different DMI: We tested for sex differences in matura-
tional index (MI). Here we show all 230 regions displaying a significant sex difference in MI
(P(DMI = 0)< 0.05). We show the regions name in the HCP parcellation; it’s DMI value,
the p-value and Z-value from the parametric test of the sex difference in MI; the functional
network they are located in (’Yeo-Network’) Yeo et al. (2011); as well as which one of four
trends they display: (1) ’female more conservative’, (2) ’female more disruptive’, (3) ’female
less conservative’, (4) ’female less disruptive’.
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region t PFDR network
1 L POS2 -3.02 0.04 2
2 L p24pr 3.02 0.04 6
3 L a24pr 3.10 0.03 6
4 L a24 3.20 0.03 6
5 L 6r -3.27 0.03 1
6 L 47s 2.96 0.04 4
7 L PoI2 4.34 0.00 7
8 L MI 3.49 0.02 7
9 L PeEc 2.90 0.05 3

10 L STGa -3.07 0.04 3
11 L IP2 -3.38 0.02 3
12 L VVC 3.94 0.00 4
13 L pOFC 3.09 0.03 7
14 L a32pr 4.57 0.00 6
15 R V8 -2.93 0.04 1
16 R RSC -4.02 0.00 2
17 R 7PC -4.09 0.00 2
18 R 1 -3.02 0.04 5
19 R 33pr 3.74 0.01 6
20 R p32pr 3.69 0.01 6
21 R IFJp -2.93 0.04 2
22 R 46 -2.94 0.04 3
23 R 10v -3.13 0.03 3
24 R PFcm 4.29 0.00 7
25 R FOP4 5.04 0.00 7
26 R PFt -4.00 0.00 2
27 R H 3.27 0.03 6
28 R TPOJ2 -3.15 0.03 2
29 R DVT -3.15 0.03 3
30 R 31a 3.93 0.00 4
31 R s32 3.45 0.02 7
32 R TE1m 4.52 0.00 2
33 R PI 3.17 0.03 6

Table A.4 Significant regional effects of age on morphometric similarity: We estimated
the linear effect of age on morphometric similarity using linear mixed effects models with a
fixed effect of age, sex and site, and a random effect of subject. We find that 33 regions show
significant effects of age after FDR-correction. Above, we list the t and P-values for these
regions, together with their von Economo class assignment.
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study pipeline sites country N Agemin Agemax

ABCD FS6_T1 22 USA 377 (156) 9 11
ABCD FS6_T1T2 23 USA 10206 (4925) 9 11
ABIDE FS6_T1 35 USA 2085 (393) 5 64
ADHD200 FS6_T1 10 USA 951 (368) 7 26
ADHD200 FS6_T1 10 China 951 (368) 7 26
ADNI FS6_T1 62 USA 1733 (776) 54 93
BCP-old FS6_T1 1 USA 28 (NA) 3 5
BCP-young FSInfant 1 USA 212 (NA) 0 3
BGSP FS6_T1 1 USA 1570 (905) 18 34
Calgary FS6_T1 1 Canada 84 (39) 3 7
CALM FS6_T1 1 UK 37 (17) 6 13
CALM FS6_T1T2 1 UK 367 (122) 6 16
Cam-CAN FS53 1 UK 650 (329) 18 88
dHCP Custom 1 UK 487 (213) -0 0
DLBS FS6_T1 1 USA 314 (197) 21 89
FinnBrain Custom 1 Finnland 248 (120) 0 6
HBN Custom 3 USA 1085 (428) 5 22
HCP FS53 1 USA 1113 (606) 22 37
HCP-A FS6_T1T2 1 USA 689 (395) 35 99
HCP-D FS6_T1T2 1 USA 655 (332) 7 21
IMAGEN FS6_T1 8 UK 1770 (904) 12 25
IMAGEN FS6_T1 8 Germany 1770 (904) 12 25
IMAGEN FS6_T1 8 France 1770 (904) 12 25
IMAGEN FS6_T1 8 Ireland 1770 (904) 12 25
IMAGEN FS6_T1T2 7 UK 355 (180) 13 25
IMAGEN FS6_T1T2 7 Germany 355 (180) 13 25
IMAGEN FS6_T1T2 7 Ireland 355 (180) 13 25
IMAGEN FS6_T1T2 7 France 355 (180) 13 25
IXI FS6_T1 1 UK 4 (0) 23 62
IXI FS6_T1T2 1 UK 557 (313) 19 86
LIFE FS53 1 Germany 2633 (1231) 18 81
NDAR_BSNIP FS6_T1 6 USA 1077 (613) 9 65
NDAR_EMBARC FS6_T1 4 USA 323 (214) 17 65
NDAR_FemaleASD FS6_T1 3 USA 666 (337) 6 17
Continued on next page
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study pipeline sites country N Agemin Agemax

NDAR_IBIS FSInfant 4 USA 605 (192) 0 3
NDAR_UCSD FS6_T1 1 USA 93 (38) 3 18
NDAR_UCSD FSInfant 1 USA 299 (164) 1 3
NIHPD-old FS6_T1 1 USA 846 (436) 4 22
NIHPD-young FSInfant 1 USA 192 (84) 0 3
NKI FS6_T1 1 USA 731 (444) 6 85
NSPN FS53 3 UK 304 (151) 14 26
OASIS FS6_T1 1 USA 82 (46) 42 91
OASIS FS6_T1T2 1 USA 2548 (1453) 41 94
OpenNeuro_ID1000 FS6_T1 1 Netherlands 2755 (1439) 19 26
OpenNeuro_LA5c FS6_T1 2 USA 265 (112) 21 50
OpenNeuro_PIOP1 FS6_T1T2 1 Netherlands 73 (44) 18 26
OpenNeuro_PIOP2 FS6_T1 1 Netherlands 224 (128) 17 25
OpenNeuro_Pixar FS6_T1 1 USA 155 (84) 4 39
Oulu FS6_T1 1 Finland 102 (65) 20 23
POND FS6_T1 1 Canada 635 (177) 2 24
RDB Custom 1 492 (126) 1 55
SRPBS1600 FS7_T1 13 Japan 1562 (644) 16 83
UKB FS6_T1 3 UK 975 (500) 44 80
UKB FS6_T1T2 3 UK 35419 (18754) 45 81
WAYNE FS6_T1 1 USA 199 (133) 18 79

Table A.5 Processing pipelines by dataset: Overview of processing pipelines and sites by
dataset. We further show the number of unique subjects (N) and the number of females in
brackets, as well as the age range (Agemin and Agemin)
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Area.Name Area.Description
1 V1 Primary Visual Cortex
2 MST Medial Superior Temporal Area
3 V6 Sixth Visual Area
4 V2 Second Visual Area
5 V3 Third Visual Area
6 V4 Fourth Visual Area
7 V8 Eighth Visual Area
8 4 Primary Motor Cortex
9 3b Primary Sensory Cortex

10 FEF Frontal Eye Fields
11 PEF Premotor Eye Field
12 55b Area 55b
13 V3A Area V3A
14 RSC RetroSplenial Complex
15 POS2 Parieto-Occipital Sulcus Area 2
16 V7 Seventh Visual Area
17 IPS1 IntraParietal Sulcus Area 1
18 FFC Fusiform Face Complex
19 V3B Area V3B
20 LO1 Area Lateral Occipital 1
21 LO2 Area Lateral Occipital 2
22 PIT Posterior InferoTemporal complex
23 MT Middle Temporal Area
24 A1 Primary Auditory Cortex
25 PSL PeriSylvian Language Area
26 SFL Superior Frontal Language Area
27 PCV PreCuneus Visual Area
28 STV Superior Temporal Visual Area
29 7Pm Medial Area 7P
30 7m Area 7m
31 POS1 Parieto-Occipital Sulcus Area 1
32 23d Area 23d
33 v23ab Area ventral 23 a+b
34 d23ab Area dorsal 23 a+b
35 31pv Area 31p ventral
36 5m Area 5m
37 5mv Area 5m ventral
38 23c Area 23c
39 5L Area 5L
40 24dd Dorsal Area 24d
41 24dv Ventral Area 24d
42 7AL Lateral Area 7A
43 SCEF Supplementary and Cingulate Eye Field
44 6ma Area 6m anterior
45 7Am Medial Area 7A
46 7Pl Lateral Area 7P
47 7PC Area 7PC
48 LIPv Area Lateral IntraParietal ventral
49 VIP Ventral IntraParietal Complex
50 MIP Medial IntraParietal Area
51 1 Area 1
52 2 Area 2
53 3a Area 3a
54 6d Dorsal area 6
55 6mp Area 6mp
56 6v Ventral Area 6
57 p24pr Area Posterior 24 prime
58 33pr Area 33 prime
59 a24pr Anterior 24 prime
60 p32pr Area p32 prime
61 a24 Area a24
62 d32 Area dorsal 32
63 8BM Area 8BM
64 p32 Area p32
65 10r Area 10r
66 47m Area 47m
67 8Av Area 8Av
68 8Ad Area 8Ad
69 9m Area 9 Middle
70 8BL Area 8B Lateral
71 9p Area 9 Posterior
72 10d Area 10d
73 8C Area 8C
74 44 Area 44
75 45 Area 45
76 47l Area 47l (47 lateral)
77 a47r Area anterior 47r
78 6r Rostral Area 6
79 IFJa Area IFJa
80 IFJp Area IFJp
81 IFSp Area IFSp
82 IFSa Area IFSa
83 p9- 46v Area posterior 9-46v
84 46 Area 46
85 a9- 46v Area anterior 9-46v
86 9-46d Area 9-46d
87 9a Area 9 anterior
88 10v Area 10v
89 a10p Area anterior 10p
90 10pp Polar 10p
91 11l Area 11l
92 13l Area 13l
93 OFC Orbital Frontal Complex
94 47s Area 47s
95 LIPd Area Lateral IntraParietal dorsal
96 6a Area 6 anterior
97 i6-8 Inferior 6-8 Transitional Area
98 s6-8 Superior 6-8 Transitional Area
99 43 Area 43

100 OP4 Area OP4/PV
101 OP1 Area OP1/SII
102 OP2-3 Area OP2-3/VS
103 52 Area 52
104 RI RetroInsular Cortex
105 PFcm Area PFcm
106 PoI2 Posterior Insular Area 2
107 TA2 Area TA2
108 FOP4 Frontal OPercular Area 4
109 MI Middle Insular Area
110 Pir Pirform Cortex
111 AVI Anterior Ventral Insular Area
112 AAIC Anterior Agranular Insula Complex
113 FOP1 Frontal OPercular Area 1
114 FOP3 Frontal OPercular Area 3
115 FOP2 Frontal OPercular Area 2
116 PFt Area PFt
117 AIP Anterior IntraParietal Area
118 EC Entorhinal Cortex
119 PreS PreSubiculum
120 H Hippocampus
121 ProS ProStriate Area
122 PeEc Perirhinal Ectorhinal Cortex
123 STGa Area STGa
124 PBelt ParaBelt Complex
125 A5 Auditory 5 Complex
126 PHA1 ParaHippocampal Area 1
127 PHA3 ParaHippocampal Area 3
128 STSda Area STSd anterior
129 STSdp Area STSd posterior
130 STSvp Area STSv posterior
131 TGd Area TG dorsal
132 TE1a Area TE1 anterior
133 TE1p Area TE1 posterior
134 TE2a Area TE2 anterior
135 TF Area TF
136 TE2p Area TE2 posterior
137 PHT Area PHT
138 PH Area PH
139 TPOJ1 Area TemporoParietoOcci pital Junction 1
140 TPOJ2 Area TemporoParietoOcci pital Junction 2
141 TPOJ3 Area TemporoParietoOcci pital Junction 3
142 DVT Dorsal Transitional Visual Area
143 PGp Area PGp
144 IP2 Area IntraParietal 2
145 IP1 Area IntraParietal 1
146 IP0 Area IntraParietal 0
147 PFop Area PF opercular
148 PF Area PF Complex
149 PFm Area PFm Complex
150 PGi Area PGi
151 PGs Area PGs
152 V6A Area V6A
153 VMV1 VentroMedial Visual Area 1
154 VMV3 VentroMedial Visual Area 3
155 PHA2 ParaHippocampal Area 2
156 V4t Area V4t
157 FST Area FST
158 V3CD Area V3CD
159 LO3 Area Lateral Occipital 3
160 VMV2 VentroMedial Visual Area 2
161 31pd Area 31pd
162 31a Area 31a
163 VVC Ventral Visual Complex
164 25 Area 25
165 s32 Area s32
166 pOFC posterior OFC Complex
167 PoI1 Area Posterior Insular 1
168 Ig Insular Granular Complex
169 FOP5 Area Frontal Opercular 5
170 p10p Area posterior 10p
171 p47r Area posterior 47r
172 TGv Area TG Ventral
173 MBelt Medial Belt Complex
174 LBelt Lateral Belt Complex
175 A4 Auditory 4 Complex
176 STSva Area STSv anterior
177 TE1m Area TE1 Middle
178 PI Para-Insular Area
179 a32pr Area anterior 32 prime
180 p24 Area posterior 24

Table A.2 HCP parcellation regions: List of full names of HCP parcellation regions as
provided in Glasser et al. (2016b)
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Appendix B

Supplementary Figures

Fig. B.1 Effect of head motion (FD) on functional connectivity (FC) in the motion-
matched sample: The motion-matched sample is a subsample of the full data set, in which
we removed the dependence of FC on motion in our sample by regressing FD from each
edge; the residuals constitute participant-specific FD-corrected FC, with intercepts retained
to maintain the relative importance of edges across the group as well as the interpretability
of FC values. (A) In this subsample, average head motion, quantified as mean frame-wise
displacement (FD), did not change with age (Page = 0.49). And there was no effect of sex on
FD (Psex = 0.23). (B) The effect of participants’ motion (across participants) on global FC was
not significant (PFD = 0.94). (C) There was no effect of distance on the correlation between
FC and motion (r = 0.001,P = 0.76), and the average edge-wise correlation between FC
and motion was almost zero (intercept = 0.01). (D) However, since our motion correction
was performed across all subjects in the full sample, we still observed weak, but significant
effects of distance on the correlation of FC and FD for females (r = �0.03,P < 0.001)
(D) and males (r = 0.02,P < 0.001) (E) separately, and the average edge-wise correlation
between FC and motion was non-zero (intercept f emales =�0.050.02, interceptmales = 0.05).
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Supplementary Text

C.1 Primary datasets

ABCD - Adolescent Brain and Cognitive Development

The ABCD study (Casey et al., 2018) the largest longitudinal study of pediatric brain
development in the USA. It includes data from children aged 9-12 years, scanned be-
tween one and three times at 21 sites. It further includes a range of questionnaire data
on social, emotional and cognitive development, as well as a variety of health and envi-
ronmental outcomes. We downloaded minimally processed T1 and T2 weighted imag-
ing for 10,588 individuals through the NIMH Data Archive (NDAR) and processed using
FreeSurfer 6.0.1 using the combined T1-T2 processing pipeline whenever both T1 and T2
scans were available. When only T1 scans were available, we processed the data using
the ’standard’ pipeline. Individuals were included in the reference model as healthy con-
trols (CN) based on the parental response to the ABCD screening and risk questionnaire
(https://nda.nih.gov/data_structure.html?short_name=abcd_screen01) indicating the individ-
ual had never been diagnosed with a mental health disorder. Data access information can be
found here: https://abcdstudy.org/scientists/data-sharing/.

ABIDE - Autism Brain Imaging Data Exchange

The Autism Brain Imaging Data Exchange (ABIDE) (Di Martino et al., 2014b, 2017) is an
aggregated dataset of functional and structural neuroimaging data collected from various
international sites. It aims to investigate the neural bases of ASD. T1-weighted structural

https://nda.nih.gov/data_structure.html?short_name=abcd_screen01
https://abcdstudy.org/scientists/data-sharing/
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data was processed using recon-all as implemented in FreeSurfer 6.0.1. The data can be
accessed here: https://fcon_1000.projects.nitrc.org/indi/abide/.

ADNI - Alzheimer’s Disease Neuroaimging Initiative

The Alzheimer’s Disease Neuroaimging Initiative (ADNI) (Petersen et al., 2010) includes
MRI data from healthy controls and patients with Alzheimer’s disease and mild cognitive
impairment (MCI). The study aim was to investigate whether MRI, PET and biological
markers could explain the progression from MCI to Alzheimer’s disease. Further information
is available at: www.adni-info.org.

ADHD200

The ADHD-200 Sample (consortium, 2012) is a grassroots initiative. With the unrestricted
public release of 776 anatomical datasets of children and young adults aged seven to 21
years, acquired at 8 independent imaging sites (491 healthy controls and 285 children and
adolescents with ADHD), it aims to accelarate the scientific community’s understanding of
the neural basis of ADHD through the implementation of open data- sharing and discovery-
based science. T1-weighted structural data was processed using recon-all as implemented
in FreeSurfer 6.0.1. The data can be accessed here: http://fcon_1000.projects.nitrc.org/indi/
adhd200/.

Baby Connectome Project

The Lifespan Baby Connectome Project (BCP) data (Howell et al., 2019) forms part the
“Human Connectome Projects”, a series of public research data which aims to map the human
structural and functional connectome. BCP is part of the HCP Lifespan Projects which
includes multimodal imaging data acquired across the lifespan, in four age groups (prenatal,
0-5, 6-21, and 36-100+), all of which have scanning protocols similar to the first “HCP”
dataset, expect they are shorter in duration. This dataset includes 500 subjects, aged 0-4
years. Data access can be requested here: https://www.humanconnectome.org

https://fcon_1000.projects.nitrc.org/indi/abide/
www.adni-info.org
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
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BGSP - Brain Genomics Superstruct Project

The Brain Genomics Superstruct Project Open Access Data Release (Holmes et al., 2015)
includes behaviour, cognitive, and personality data for over 1,500 subjects, as well as
structural and functional MRI data.

BSNIP - Bipolar & Schizophrenia Consortium for Parsing Intermediate Phenotypes

Bipolar & Schizophrenia Consortium for Parsing Intermediate Phenotypes (BSNIP) data
(Tamminga et al., 2017) is available on NDAR and includes neurogimaging data for healthy
controls, subjects with psychosis, bipolar disorder and first degree relatives of patients.

Calgary

The Calgary Preschool MRI Dataset (Reynolds et al., 2020) was provided by the Devel-
opmental Neuroimaging Lab at the University of Calgary and consists of MRI data from
healthy children, aged two to eight years.

CALM – Centre for Attention Learning and Memory

The children with problems of attention, learning and memory (CALM) cohort (Holmes
et al., 2019) includes data from typically developing children and children with difficulties in
attention, learning and memory that were recruited from the same schools. A subset of the
cohort completed MRI scanning at the MRC CBU www.mrc- cbu.cam.ac.uk in Cambridge,
UK. The children were introduced to the scanning environment with the help of a mock MRI
scanner. The study was approved by the Cambridgeshire Research Ethics Committee and
participants or their legal guardians provided informed consent. The data was collected on a
3T Siemens Prisma with a 32-channel quadrature head coil.

Cam-CAN – Cambridge Centre for Aging and Neuroscience

The Cambridge Centre for Aging and Neuroscience (Cam-CAN; www.cam-can.org) study
(Shafto et al., 2014; Taylor et al., 2017) includes data from healthy adults ages 18-88 years,
recruited locally. Ethical approval was obtained from the Cambridgeshire Research Ethics
Committee and participants gave written informed consent. The data was collected on a 3T
Siemens Prisma with a 32-channel quadrature head coil.

www.mrc-%20cbu.cam.ac.uk
www.cam-can.org
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dHCP

The developing Human Connectome Project (dHCP) data forms part the “Human Connec-
tome Projects”, a series of public research data which aims to map the human structural and
functional connectome (Makropoulos et al., 2018). dHCP is part of the HCP Lifespan Projects
which includes multimodal imaging data acquired across the lifespan, in four age groups
(prenatal, 0-5, 6-21, and 36-100+), all of which have scanning protocols similar to the first
“HCP” dataset, expect they are shorter in duration. This dataset includes 1500 subjects, aged
20-44 weeks post partum, acquired at King’s College London, Imperial College London, and
Oxford University. Data access can be requested here: https://www.humanconnectome.org

DLBS - Dallas Lifespan Brain Study

The Dallas Lifespan Brain Study (DLBS) includes data from healthy adults, agesd 20-89
years. It was acquired to study the decline of cognitive function at different stages of the
adult lifespan, in particular with respect to healthy subjects approaching the development
of Alzheimer’s disease. Structural MRI, DTI, three task-based functional MRI scans, and a
resting state scan were acquired on a Philips 3T Philips Achieva scanner equipped with an
8-channel head coil. Here, raw structural T1-weighted scans were processed with FreeSurfer
6.0.1.

EMBARC – Establishing Moderators and Biosignatures Of Antidepressant Response
for Clinical Care

The Establishing Moderators and Biosignatures Of Antidepressant Response for Clinical
Care (EMBARC) study (Trivedi et al., 2016) was established to compare the effectiveness of
three mechanistically distinct treatments for major depressive disorder (MDD) (citalopram,
bupropion, and cognitive behavioural therapy). The study collected neuroimaging data,
together with clinical (i.e., anxious depression, early life trauma) and biological (i.e., genetic,
neuroimaging, serum, epigenetic) outcome moderators. Here, raw structural T1-weighted
scans were processed with FreeSurfer 6.0.1.

Female ASD

The NDAR dataset ’Multimodal Developmental Neurogenetics of Females with ASD’
(NDAR ID 2021; here referred to as “Female ASD”) includes participants with and with-
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out attention deficit hyperactivity disorder (ADHD), in a sex-balanced cohort acquired at
George Washington University. Here, raw structural T1-weighted scans were processed with
FreeSurfer 6.0.1.

FinnBrain

The FinnBrain Birth Cohort Study (Karlsson et al., 2018) is a population-based cohort from
Southwestern Finland (Turku region and Åland islands). The study includes data from infants
and their mothers. The study was approved by the Ethics Committee of the Hospital District
of Southwest Finland (ETMK:31/180/2011).

HBN - Healthy Brain Network

The Healthy Brain Network (HBN) is an ongoing study by the Child Mind Institute that aims
to create a biobank of data from 10,000 New York area participants between the ages of five
and 21 (Alexander et al., 2017). It collects psychiatric, behavioural, cognitive, and lifestyle
phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI,
diffusion MRI, morphometric MRI), electroencephalography, eye-tracking, voice and video
recordings, genetics and actigraphy. Here, we use data from release 7.

HCP-A

The Human Connectome Project Ageing (HCP-A) data (Bookheimer et al., 2019) forms part
the “Human Connectome Projects”, a series of public research data which aims to map the
human structural and functional connectome. HCP-A is part of the HCP Lifespan Projects
which includes multimodal imaging data acquired across the lifespan, in four age groups
(prenatal, 0-5, 6-21, and 36-100+), all of which have scanning protocols similar to the first
“HCP” dataset, expect they are shorter in duration. This dataset includes 1200 subjects, aged
36-100+, acquired at Washington University, University of Minnesota, Massachusetts General
Hospital, Harvard University, University of California Los Angeles, Oxford University. Data
access can be requested here: https://www.humanconnectome.org.

Human Connectome Project

The Human Connectome Project (HCP) forms part the “Human Connectome Projects”
(Glasser et al., 2013; Van Essen et al., 2013), a series of public research data which aims
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to map the human structural and functional connectome. The HCP data is the young
adult healthy cohort. It includes 1200 Subjects, aged 22-35, acquired at Washington U.
in Saint Louis, University of Minnesota, University of Oxford, Saint Louis University,
Indiana University, University d’Annunzio, Ernst Strungmann Institute, Warwick University,
Radboud U. Nijmegen, and University of California at Berkeley. Data access can be requested
here: https://www.humanconnectome.org.

HCP-D

The Human Connectome Project Development (HCP-D) study (Somerville et al., 2018b)
forms part the “Human Connectome Projects”, a series of public research data which aims to
map the human structural and functional connectome. HCP-D is part of the HCP Lifespan
Projects which includes multimodal imaging data acquired across the lifespan, in four age
groups (prenatal, 0-5, 6-21, and 36-100+), all of which have scanning protocols similar
to the first “HCP” dataset, expect they are shorter in duration. This dataset includes 1350
subjects, aged 5-21, acquired at Washington University, University of Minnesota, University
of California at Los Angeles, Harvard University, and Oxford University. Data access can be
requested here: https://www.humanconnectome.org.

IBIS

The IBIS dataset is an aggregated dataset including data from several NDAR projects:
Longitudinal MRI Study of Infants at Risk for Autism (19), Biomarkers of Developmental
Trajectories and Treatment in autism spectrum disorder (ASD) (2026). We used Infant
FreeSurfer to process data for individuals younger than 36 months, while individuals older
than 36 months were processed with FreeSurfer 6.0.1.

IMAGEN

IMAGEN (Schumann et al., 2010) is a European research project that was established to
study biological, psychological, and environmental factors that influence brain development
and mental health during adolescence. It includes longitudinal neuroimaging data. Here, raw
structural T1-weighted scans were processed with FreeSurfer 6.0.1.
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IXI

The IXI dataset (Kuklisova-Murgasova et al., 2011) includes scans from healthy subjects.
MRI data were acquired on three different scanners: A 3T Philips Intera scanner and
two 1.5T Philips Gyroscan Intera scanners. Futher information is available at: https://
brain-development.org/ixi-dataset/. All scans were processed with FreeSurfer 6.0.1.

LIFE – Leipzig Research Centre for Civilization Diseases Study

The Leipzig Research Centre for Civilization Diseases Study (LIFE) study (Loeffler et al.,
2015) is a population-based cohort from Leipzig, Germany, that aimed to investigate the
development of major modern diseases. The study included 10,000 participants who ran-
domly drawn from the local population, 2,667 of whom underwent MRI scanning. The MRI
cohort was selected to include mostly participants older than 60 years to allow studying
age-associated diseases such as mild and major neurocognitive disorder.

NIHPD

The NIH study of pediatric development (NIHPD) is a multi-site, combined cross-sectional
and longitudinal study of normal, healthy developing children from early childhood through
young adulthood (Evans et al., 2006). The data were acquired to be representative of the US
Census 2000 statistics for gender, family income, race/ethnicity. Detailed information on
sites and scanning procedures can be found here: https://www.nitrc.org/docman/view.php/
98/288/MRI_Manual_Nov06.pdf.

NKI

The Nathan Kline Institute (NKI) Rockland Sample (Nooner et al., 2012) is an ongoing study
that aims to generate a deeply phenotyped and community based lifespan sample, including
neuroimaging and genetic data. Here, we downloaded multi-modal imaging data from the
1000-functional connectomes project for 532 quality controlled T1 images. The data were
processed uing FreeSurfer 5.3.

https://brain-%20development.org/ixi-dataset/
https://brain-%20development.org/ixi-dataset/
https://www.nitrc.org/docman/view.php/98/288/MRI_Manual_Nov06.pdf
https://www.nitrc.org/docman/view.php/98/288/MRI_Manual_Nov06.pdf
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NSPN

The Neuroscience in Psychiatry Network (NSPN) sample (Kiddle et al., 2017) is a longi-
tudinal study of healthy adolescents, using a population-representative sample from Cam-
bridgeshire and Peterborough, UK. It includes neurogimaging data from roughly 300 adoles-
cents, scanned between 1 and 3 times. The sample has ben described in depth in Chapter
2-4. The raw data can be accessed here: https://nspn.org.uk.

OASIS – Open Access Series of Imaging Studies

The Open Access Series of Imaging Studies (OASIS) is a freely available, multimodal
aggregated dataset (LaMontagne et al., 2019) containig three individual studies acquired at
the Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) at
Washington University in St. Louis. The individual studies were acquired over the time of
15 years and are: Memory and Aging Project, Adult Children Study, and Healthy Aging
and Senile Dementia. OASIS-3 aims to study healthy aging and Alzheimer’s disease (AD).
The study includes 1,098 participants healthy controls and individuals with early-stage AD
aged 42 to 95. Exclusion criteria included medical conditions that precluded longitudinal
participation or conditions that would not allow participants to be scanned safely (e.g., end-
stage renal disease requiring dialysis, pacemakers, anticoagulant use for lumbar puncture).

OpenNeuro ID1000

The ID1000 dataset (Snoek et al., 2020a) is available on OpenNeuro (ds003097) at: https:
//openneuro.org/datasets/ds003097/versions/1.2.1. It is one of three datasets that jointly form
the Amsterdam Open MRI Collection (AOMIC) collection of multimodal (3T) MRI datasets
(https://nilab-uva.github.io/AOMIC.github.io/; Snoek et al. (2021)). The dataset includes
healthy participants that underwent structureal and task-based fMRI.

OpenNeuro LA5c - UCLA Consortium for Neuropsychiatric Phenomics LA5c Study

The UCLA Consortium for Neuropsychiatric Phenomics LA5c (LA5c) study (Bilder et al.,
2018; Poldrack et al., 2016) is available on OpenNeuro (ds000030) at: https://openneuro.
org/datasets/ds000030/versions/00016. The study includes 272 subjects with and without
psychaitric diagnoses. We processed the T1-weighted scans using FreeSurfer 6.0.1.

https://openneuro.org/datasets/ds003097/versions/1.2.1
https://openneuro.org/datasets/ds003097/versions/1.2.1
https://nilab-uva.github.io/AOMIC.github.io/
https://openneuro.org/datasets/ds000030/versions/00016
https://openneuro.org/datasets/ds000030/versions/00016
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OpenNeuro PIOP1

The PIOP1 dataset (Snoek et al., 2020b) is available on OpenNeuro (ds002785) at: https:
//openneuro.org/datasets/ds002785/versions/2.0.0. It is one of three datasets that jointly form
the Amsterdam Open MRI Collection (AOMIC) collection of multimodal (3T) MRI datasets
(https://nilab-uva.github.io/AOMIC.github.io/; Snoek et al. (2021)). The dataset includes
healthy participants that underwent structureal and task-based fMRI during a number of
paradigms (emotion matching, gender-stroop, resting state, working memory, face perception,
anticipation).

OpenNeuro PIOP2

The PIOP2 dataset (Snoek et al., 2020c) is available on OpenNeuro (ds002790) at: https:
//openneuro.org/datasets/ds003097/versions/1.2.1. It is one of three datasets that jointly form
the Amsterdam Open MRI Collection (AOMIC) collection of multimodal (3T) MRI datasets
(https://nilab-uva.github.io/AOMIC.github.io/; Snoek et al. (2021)). The dataset includes
healthy participants that underwent structureal and task-based fMRI during a number of
paradigms (emotion matching, resting state, working memory, stop signal).

OpenNeuro Pixar

Pixar is an OpenNeuro dataset (ds000228) of 155 children who watched Disney Pixar’s
“Partly Cloudy” during scanning without a specific task (Richardson et al., 2018, 2019).
The movie began after 10s of rest (black screen; TRs 1-5). The first 10s of the movie are
the opening credits (disney castle, pixar logo; TRs 6-10). The data can be accessed here:
https://openneuro.org/datasets/ds000228/versions/1.1.0. Here, we processed the T1-weighted
scans using FreeSurfer 6.0.1.

Oulu

The Oulu dataset is part of the International Neuroimaging Datasharing Initiative (INDI;
Mennes et al. (2013)). It includes data from healthy subjects aged 20 to 23. Here, raw
structural T1-weighted scans were processed with FreeSurfer 6.0.1.

https://openneuro.org/datasets/ds002785/versions/2.0.0
https://openneuro.org/datasets/ds002785/versions/2.0.0
https://nilab-uva.github.io/AOMIC.github.io/
https://openneuro.org/datasets/ds003097/versions/1.2.1
https://openneuro.org/datasets/ds003097/versions/1.2.1
https://nilab-uva.github.io/AOMIC.github.io/
https://openneuro.org/datasets/ds000228/versions/1.1.0
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POND – Province of Ontario Neurodevelopmental Disorders

The Province of Ontario Neurodevelopmental Disorders (POND) study is a multi-site study
that includes healthy participants and participants with a diagnosis of ADHD, obsessive
compulsive disorder (OCD) or ASD. Subjects were aged under 18 years. The data collected
at Centers in Ontario, Canada (Holland Bloorview Kids Rehabilitation Hospital, Toronto;
The Hospital for Sick Children, Toronto; McMaster Children’s Hospital, Hamilton; Queen’s
University, and Lawson Health Research Institute, London). We processed the T1-weighted
scans using FreeSurfer 6.0.1.

SRPBS1600 – SRPBS Multidisorder MRI Dataset

The SRPBS Multidisorder MRI Dataset (Tanaka et al., 2021a) is a multi-site study that
collected neuroimaging data from 1600 subjects, both healthy controls and of patients
with psychiatric disorders, colected in Japan. Futher information is available at: https:
//bicr-resource.atr.jp/srpbs1600/.

UKB

The UK BioBank (UKB) (Alfaro-Almagro et al., 2018) aims to collect phenotypic infor-
mation (demographic, genetic) from 100,000 subjects. A subset of about 40,000 subjects
have undergone neuroimaging. We downloaded minimally processed T1- and T2-FLAIR
weighted data (application 20904) and further preprocessed with FreeSurfer 6.0.1 using
the T2-FLAIR weighted image to improve pial surface reconstruction. We determined con-
trols to be subjects who never had mental health problems as diagnosed by a mental health
professional (data-field 20544).

WAYNE

The Wayne State longitudinal data set for the Brain Aging in Detroit Longitudinal Study
(Daugherty and Raz, 2016) collected longitudinal neuroimaging data from 114 healthy
participants. The study aimed to study changes in the brain during adulthood, and to
understand the relationships between changes in brain properties and cognitive performance.
More information is available here: http://fcon_1000.projects.nitrc.org/indi/retro/wayne_10.
html.

https://bicr-resource.atr.jp/srpbs1600/
https://bicr-resource.atr.jp/srpbs1600/
http://fcon_1000.projects.nitrc.org/indi/retro/wayne_10.html
http://fcon_1000.projects.nitrc.org/indi/retro/wayne_10.html
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C.2 GAMLSS models

Thalamus:
GMVT halamus ⇠ GeneralisedGamma(µ,s ,n) with

log(µ) = aµ + aµ,sex + aµ,ver + bµ,1(age)�2 + bµ,2(age)�3 + bµ,3(age)�2log(age) +
eµ,study

log(s)=aµ +aµ,sex+aµ,ver+bµ,1(age)�2+bµ,2(age)�2log(age)+bµ,3(age)�2log(age)2+

eµ,study

n = an

Caudate:
GMVCaudate ⇠ GeneralisedGamma(µ,s ,n) with

log(µ)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

log(s)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

n = an

Putamen:
GMVPutamen ⇠ GeneralisedGamma(µ,s ,n) with

log(µ)=aµ +aµ,sex+aµ,ver+bµ,1(age)�2+bµ,2(age)�2log(age)+bµ,3(age)3+eµ,study

log(s)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

n = an

Pallidum:
GMVPallidum ⇠ GeneralisedGamma(µ,s ,n) with

log(µ)=aµ +aµ,sex+aµ,ver+bµ,1(age)�2+bµ,2(age)�2log(age)+bµ,3(age)3+eµ,study
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log(s) = aµ +aµ,sex +aµ,ver +bµ,1(age)3 +bµ,2(age)3log(age)+ eµ,study

n = an

Hippocampus:
GMVHippocampus ⇠ GeneralisedGamma(µ,s ,n) with

log(µ) = aµ +aµ,sex +aµ,ver +bµ,1(age)�2 +bµ,2(age)3 + eµ,study

log(s) = aµ +aµ,sex +aµ,ver +bµ,1(age)3 +bµ,2(age)2 + eµ,study

n = an

Amygdala:
GMVAmygdala ⇠ GeneralisedGamma(µ,s ,n) with

log(µ) = aµ +aµ,sex +aµ,ver +bµ,1(age)�2 +bµ,2(age)3 + eµ,study

log(s) = aµ +aµ,sex +aµ,ver +bµ,1(age)�2 +bµ,2(age)�2log(age)+ eµ,study

n = an

Accumbens:
GMVAccumbens ⇠ GeneralisedGamma(µ,s ,n) with

log(µ)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

log(s) = aµ +aµ,sex +aµ,ver +bµ,1(age)�2 +bµ,2(age)�2log(age)+ eµ,study

n = an

Ventral DC:
GMVVentralDC ⇠ GeneralisedGamma(µ,s ,n) with

log(µ)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study
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log(s)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

n = an

Corpus Callosum Posterior:
WMPosteriorCC ⇠ GeneralisedGamma(µ,s ,n) with

log(µ) = aµ +aµ,sex +aµ,ver +bµ,1(age)�1 +bµ,2(age)1 +bµ,3(age)3 + eµ,study

log(s)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

n = an

Corpus Callosum Mid Posterior:
WMMidPosteriorCC ⇠ GeneralisedGamma(µ,s ,n) with

log(µ) = aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(3)2+

eµ,study

log(s) = aµ +aµ,sex +aµ,ver +bµ,1(age)�2 +bµ,2(age)3 + eµ,study

n = an

Corpus Callosum Central:
WMCentralCC ⇠ GeneralisedGamma(µ,s ,n) with

log(µ)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

log(s)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

n = an

Corpus Callosum Mid Anterior:
WMMidAnteriorCC ⇠ GeneralisedGamma(µ,s ,n) with
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log(µ)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

log(s) = aµ +aµ,sex +aµ,ver +bµ,1(age)3 +bµ,2(age)3log(age)+ eµ,study

n = an

Corpus Callosum Anterior:
WMAnteriorCC ⇠ GeneralisedGamma(µ,s ,n) with

log(µ)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

log(s) = aµ +aµ,sex +aµ,ver +bµ,1(age)3 + eµ,study

n = an

Cerebellum White Matter:
WMCerebellum ⇠ GeneralisedGamma(µ,s ,n) with

log(µ)=aµ +aµ,sex+aµ,ver+bµ,1(age)3+bµ,2(age)3log(age)+bµ,3(age)3log(age)2+

eµ,study

log(s) = aµ +aµ,sex +aµ,ver +bµ,1(age)3 +bµ,2(age)3log(age)+ eµ,study

n = an

Cerebellum Grey Matter:
GMCerebellum ⇠ GeneralisedGamma(µ,s ,n) with

log(µ) = aµ +aµ,sex +aµ,ver +bµ,1(age)�2 +bµ,2(age)0 + eµ,study

log(s) = aµ +aµ,sex +aµ,ver +bµ,1(age)3 + eµ,study

n = an
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C.3 Data, code, and image availability

Access to the raw scans for the Neuroscience in Psychiatry Network (NSPN) sample used in
Chapter 2-3 and Chapter 5 can be applied for at https://nspn.org.uk.

The pre-processed functional magnetic resonance imaging (fMRI) data, as well as all repli-
cation datasets, and the MDD and schizophrenia case-control maps, used in Chapter 2 and 3,
are archived at 10.5281/zenodo.6390851. The external gene lists used for the gene enrichment
analyses are available in the cited manuscripts. The code required to replicate the analyses
can be found on GitHub (https://github.com/LenaDorfschmidt/sex_differences_adolescence),
with a version also archived at 10.5281/zenodo.6390752.

The code used in Chapter 5 and the processed structural imaging data will be made
available on publication of these results in a peer-reviewed journal.

I used the code published with Bethlehem et al. (2022) to estimate the normative trajecto-
ries derived in Chapter 6, which is available on GitHub https://github.com/brainchart/Lifespan.
The fitted models will be made available on publication of these results in a peer-reviewed
journal.

Vector files of figures created for Chapter 1 are free to use under a CC BY 4.0 licence
and available at 10.5281/zenodo.7782905.

https://github.com/brainchart/Lifespan
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