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1 Introduction

The bid-ask spread of a financial asset is the difference between the ask and the bid quotes. The

spread reflects the cost of providing market liquidity, the difference in price paid by an urgent buyer

and received by an urgent seller, which is a major part of the transaction cost facing investors. It has

been studied extensively by financial economists, see, e.g. Glosten and Milgrom (1985), Glosten and

Harris (1988), Harris (1990), Huang and Stoll (1997), Schultz (2001), Harris and Piwowar (2006),

Corwin and Schultz (2012), Bleaney and Li (2015), and the references therein. The estimation

strategy of the bid-ask spread (transaction cost) depends crucially on the market structure and the

data availability.

Measuring the bid-ask spread in practice can be quite time consuming (reconstruction of the

limit order book is required) and may be subject to a number of potential accuracy issues due to

the quoting strategies of High Frequency Traders, for example. For the U.S. municipal bond market

(see, e.g., Harris and Piwowar (2006)) and the U.S. corporate bond market (see, e.g., Edwards et al.

(2007)), the firm bid and ask quotes are absent. As for other over-the-counter (OTC) markets,

market-wide transaction data are generally not available (see, e.g., Jankowitsch et al. (2011)). Data

are also limited for open outcry markets (e.g. the futures trading in CME), where bid and ask

quotes by traders expire (if not filled) without recording (see, e.g., Hasbrouck (2004)). Moreover, in

the U.S. markets transaction data are only available since 1983 and in many countries transaction

data are not available at all.

Using observed transaction prices alone, the seminal paper Roll (1984) proposes a simple model

to estimate the effective bid-ask spread without information on the bid and the ask quotes, or the

trade direction (i.e., whether the trade initiator is a buyer or a seller). The basic Roll estimator

has seen its popularity in analyzing the U.S. historical data sets (prior to 1983), the international

markets without transaction data, the illiquid markets (particularly OTC markets), the cases when

intraday quotes and trades cannot be reliably matched, and the cases when the transaction data

are cumbersome to use or expensive to purchase.
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In the Roll (1984) model, an observed (log) asset price pt evolves according to

pt = p∗t + It
s0

2
, p∗t = p∗t−1 + εt, (1)

∆pt = εt + (It − It−1)
s0

2
= εt + ∆It

s0

2
, (2)

where {p∗t } are the underlying fundamental (log) price with serially uncorrelated innovations {εt}.

The trade direction indicators {It} are i.i.d. and take the values +1 (if the transaction is buyer

initiated), or −1 (if the transaction is seller initiated) with equal probability. {εt} are uncorrelated

with {It}. Essentially, Roll (1984) assumes an informationally efficient market. The parameter

of interest s0 is the effective bid-ask spread, measuring the order processing cost. The transaction

prices {pt} are the only observable variables in Eq.(1). Thus, assuming the one-period returns {∆pt}

have finite second moments, the true unknown s0 is identified using the population auto-covariance

of {∆pt} and can be estimated using its sample analogue

s0 = 2
√
−Cov (∆pt,∆pt−1), ŝRoll := 2

√
− Ĉov (∆pt,∆pt−1). (3)

In practice, this estimator is not satisfactory, since the empirical first-order autocovariance of one-

period returns is often positive, then Eq.(3) is not well-defined. Roll (1984) encounters this phe-

nomenon in about a half of the cases in his data, which consists of annual samples of daily and

weekly prices. The literature contains several proposals to deal with this shortcoming. Harris (1990)

suggests to replace − Ĉov (∆pt,∆pt−1) in (3) by its absolute value
∣∣∣ Ĉov (∆pt,∆pt−1)

∣∣∣. This makes

the estimator always well-defined. Hasbrouck (2009) suggests to set the estimated spread to zero if

the empirical autocovariance is positive, which is motivated by the finding of Harris (1990) that pos-

itive autocovariance estimates are more likely for smaller spreads. However, it is not clear whether

either of these ad hoc modifications work well in finite samples, and they are theoretically not well

motivated.

A well-known alternative by Hasbrouck (2004) proposes to estimate the bid-ask spread based on

Bayesian analysis, using the Gibbs sampler. In doing so, he uses a stronger version of the Roll model,

in which εt ∼ i.i.d. N
(
0, σ2

ε

)
and is independent of {It}. The unknown parameter σε is estimated
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jointly with the spread s0. Unfortunately the Hasbrouck (2004) estimator performs poorly or even

is not well defined when the distribution of εt is far from Gaussian, e.g. fat-tailed or asymmetric.

However, the Gaussian assumption generally fails in financial data. Corwin and Schultz (2012)

develop another spread estimator from consecutive daily high and low transaction prices. They also

assume that the fundamental price process is a geometric Brownian motion, which is even stronger

than the discrete time Gaussian assumption employed in Hasbrouck (2004).

The recent empirical literature emphasizes several issues with the Roll model : (a) Market

orders are assumed not to bring news into prices, so that It has no effect on the underlying true

price p∗t . However, the literature finds the quoted prices increase after a buyer-initiated trade (see,

e.g., Glosten and Milgrom (1985), Glosten and Harris (1988), Huang and Stoll (1997), Muravyev

(2016)). (b) It assumes balanced market order flow, i.e., q = 1/2, which may be accurate on average,

but may be inaccurate for certain episodes of trading (see, e.g., Brunnermeier and Pedersen (2005),

Ito and Yamada (2016)). (c) It assumes always a price change due to transactions, but many

transactions might happen with no price change (see, e.g., Huang and Stoll (1997)). In the presence

of any of these effects, one is not able to identify the spread jointly with parameters describing

adverse selection cost or order flow imbalance, using either Roll (1984)’s or Hasbrouck (2004)’s

methodology, without additional assumptions or observed information. The spread estimators of

Roll (1984) and Hasbrouck (2004) will also be inconsistent. There have been many recent suggestions

for estimating spreads (and liquidity costs more generally), that relax some of these assumptions,

but at the cost of requiring additional observed information (data) such as trade direction indicators.

As we have mentioned, these data may not be readily available or, if available, be not well measured

for the relevant frequency (see, e.g., Andersen and Bondarenko (2014)). Bleaney and Li (2015)

provide a detailed discussion of all the above and additional problems with the basic Roll (1984)

model. Goyenko et al. (2009) review many different liquidity proxies based on lower frequency

data, including the Roll-type transaction-price-based measures, as well as those that use additional

information such as trading volumes.

In this paper, we work with the framework in Eq.(1) and its simple extensions, where only
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transaction prices are available. These prices could be daily or weekly closing prices, but might also

consist of high frequency intraday prices. However, contrary to, e.g., Corwin and Schultz (2012), we

do not require intraday data for our method to work. We assume that {εt} is i.i.d. and independent

of the increments of the unobserved trade direction indicators {∆It}, or independent of {It} when

adverse selection cost is considered. The independence assumption allows us to propose new, simple

estimators of s0 that are based on empirical characteristic functions. However, we do not impose any

parametric restrictions (in contrast to Hasbrouck (2004)), or any location/scale assumptions, and

we do not require the existence of moments of any order (in contrast to Roll (1984), which requires εt

to have finite second moments). This feature seems to be attractive for financial applications where

distributions can be asymmetric and heavy-tailed. In addition to the basic Roll (1984) model, we

also propose solutions to the three problems (a)-(c) with the Roll model listed above. We show how

to estimate parameters that capture an adverse selection component in the spread in Section 3, or

those associated with unbalanced order flow in Section 4, or those that characterize the probability

of no price change in Section 5. The consistency and asymptotic normality of our estimators are

established without requiring finite moments of the observed price data. In simulation studies

that mimic the design of Hasbrouck (2009), our estimators are competitive to Roll (1984)’s and

Hasbrouck (2004)’s when the latent true fundamental return distribution is Gaussian, and perform

much better when the distribution is either asymmetric or heavy-tailed.

We apply our estimators to a high-frequency dataset of transaction prices on the E-mini futures

contract during the Flash Crash of May 6, 2010. We use a rolling-window approach to understand

the development of the spread during the crisis period and more tranquil periods. In the applica-

tion, we also show the evolution of some additional estimated quantities, including the estimated

characteristic function of the fundamental price innovations εt, indicators for an unbalanced order

flow, an adverse selection component in the spread, and the aggregation robustness of our method.

The rest of the paper is organized as follows: Section 2 presents the basic model and provides new

simple spread estimators and their asymptotic properties. In Section 3, we study the estimation

of adverse selection cost. In Section 4, we address order flow imbalance in a simple extended
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model. In Section 5, a simplified model is used to consider the case when the transaction may occur

without price change. Section 6 presents a simulation study and the empirical application. Section

7 concludes. All the proofs, some figures and tables are presented in the online supplement.

2 Basic Model and Large Sample Properties of Estimators

In this section we assume that the observed price dynamics follow a basic Roll (1984) type model.

Assumption 1. (i) Data {pt}Tt=1 is generated from Eq. (1) with s0 > 0, where {εt} is i.i.d. and

independent of {∆It} and has unknown distribution function Fε; (ii) {It} is i.i.d.; and (iii) It takes

the values ±1 with equal probability.

The distribution of εt could be continuous or discrete and could have no finite moments.

Let ϕε(u) := E (exp (iuεt)) denote the characteristic function (c.f.) of εt. Let ϕ∆p,2(u, u′) :=

E (exp (iu∆pt + iu′∆pt−1)) and ϕ∆p,1(u) := E (exp (iu∆pt)) = ϕ∆p,2(u, 0) denote the joint c.f. of

(∆pt,∆pt−1) and the marginal c.f. of ∆pt, respectively. By definition, they are nonparametrically

identified and estimable from data. We shall obtain a useful expression based on these quantities

that will identify the unknown spread parameter s0 > 0. The use of marginal quantities such

as characteristic functions for identification of s0 is reminiscent of the classic GMM approach to

identification and estimation of continuous time models where the transition density is hard to ex-

press analytically, but many moment conditions can be obtained from the marginal distributions.

Precisely, Assumption 1 implies that, for all (u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u
′) cos

(
u
s0

2

)
cos
(

(u′ − u)
s0

2

)
cos
(
u′
s0

2

)
. (4)

If the distribution of εt were parametrically specified, one could work directly with equation

(4) and develop estimation methods that would be a simple alternative to the Hasbrouck (2004)

likelihood-type procedure. In our case, where this distribution is not specified, these relations still

involve the unknown function ϕε, albeit in a convenient multiplicative fashion. We find a relation

that eliminates the unknown function ϕε(·), and then proceed to estimate the parametric model for
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the trade direction effect s0. Denote

V := {u ∈ R : ϕ∆p,1(u) 6= 0} . (5)

Since ϕ∆p,1(·) is uniformly continuous in R (see, e.g., page 3 of Lukacs (1972)) and ϕ∆p,1(0) = 1, V

contains an open interval of 01. Denote

H(u, u′) :=
ϕ∆p,2(u, u′)

ϕ∆p,1(u)ϕ∆p,1(u′)
for any (u, u′) ∈ V2, (6)

which is nonparametrically estimable from the data {∆pt}. Eq. (4) implies that

H(u, u′) =
cos
(
(u− u′) s02

)
cos
(
u s02
)

cos
(
u′ s02

) =: R(u, u′; s0) for all (u, u′) ∈ V2, (7)

and therefore H(u, u′) is real-valued for all (u, u′) ∈ V2. Or equivalently,

ϕ∆p,2(u, u′) = ϕ∆p,1(u)ϕ∆p,1(u′)R(u, u′; s0) for all (u, u′) ∈ V2. (8)

Eq. (7) (or (8)) is free of the nuisance function ϕε(·) and only depends on the parameter of interest

s0. Chen et al. (2017) obtains the identification result for s0 and the c.f. ϕε(·) using either the

diagonal information or the off-diagonal information of Eq. (7) (or (8)).

Eq. (7) (or (8)) for estimation of s0 is similar to the classic GMM approach to estimation. Due

to the continuity of the c.f. ϕ∆p,2(u, u′) in R2 and ϕ∆p,2(0, 0) = 1, V2 contains an open ball of

(0, 0), and hence Eq. (7) (or (8)) contains infinitely many overidentifying restrictions for s0. Let

S := [0, s] denote the parameter space, where s > 0 is chosen from prior experience for the market

(to ensure that s0 ∈ S). Denote

U :=

{
(u, u′) ∈ V2 : min

s∈S

∣∣∣cos
(
u
s

2

)
cos
(
u′
s

2

)∣∣∣ > 0

}
, (9)

which still contains an open ball of (0, 0). Denote

R(u, u′; s) :=
cos
(
(u− u′) s2

)
cos
(
u s2
)

cos
(
u′ s2
) , (10)

1However, V is disconnected and contains disjoint open intervals, due to the periodicity of the cos(·) function.
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which is well defined on U ×S. Let U ⊆ U and |U| denote the number of points in U , which can be

chosen such that |U| ≥ 1. We introduce two simple minimum distance criterion functions on S:2

J (s,U) :=
∑

(u,u′)∈U

|ϕ∆p,2(u, u′)− ϕ∆p,1(u)ϕ∆p,1(u′)R(u, u′; s)|2 ≥ 0, (11)

Q (s,U) :=
∑

(u,u′)∈U

|H(u, u′)−R(u, u′; s)|2 ≥ 0, (12)

where | · | denotes the modulus of a complex number. Since Eq. (7) (or (8)) holds for all (u, u′) ∈ V2

and U ⊆ U ⊆ V2, both criteria are minimized at s = s0, i.e., J (s0,U) = 0 and Q (s0,U) = 0.

Assumption 2. (i) s0 ∈ S, where S is compact; (ii) U ⊆ U , and ∃(ũ, ũ) ∈ U such that ũ ∈ (0, π/s);

and (iii) |U| <∞.

As shown in Theorem 3 of Chen et al. (2017), under Assumption 1 and 2, s0 is identified as

the unique solution to mins∈S J (s,U) and mins∈S Q (s,U). For the identification of s0 it suffices to

choose a grid U satisfying Assumption 2(ii) with |U| = 1. But a grid U with larger |U| > 1 is better

for more accurate estimation of s0. Assumption 2(iii) is assumed for easy implementation of our

simple estimators. Constructing U according to Section 2.1.1 will ensure that Assumption 2(ii) is

satisfied with a grid U consisting of finitely many discrete points in (0, π/s)2 ∩ V2.

Remark 1. Our model covers the case where the underlying true (log) price p∗t has a possible drift.

The observed price pt then evolves according to

pt = p∗t + It
s0

2
, p∗t = c0 + p∗t−1 + et, (13)

∆pt = c0 + et + ∆It
s0

2
. (14)

Note that in this paper the distribution of εt is left completely unspecified, thus we could define

εt = c0 + et (also applicable to the extended models). ϕε(·) (the c.f. of εt) can be identified, see

Chen et al. (2017) for details. Then c0 could be identified as, for example, the mean of εt using

ϕε(·).
2If |U| = ∞, there is a slight abuse of notations in definitions (11) and (12). Summations should be replaced by

integrals with respect to some (positive) sigma-finite measure on U .
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We next introduce several simple spread estimators and then present their large sample proper-

ties.

2.1 New Simple Spread Estimators

Theorem 3 of Chen et al. (2017) suggests to estimate s0 as a minimizer of the empirical version of

the criterion (11) or (12). We first replace the population characteristic functions ϕ∆p,2 and ϕ∆p,1

by the corresponding empirical characteristic functions (e.c.f.), defined as

ϕT,2(u, u′) =
1

T − 1

T∑
t=2

exp
(
iu∆pt + iu′∆pt−1

)
, ϕT,1(u) = ϕT,2(u, 0) =

1

T

T∑
t=1

exp (iu∆pt) , (15)

where {∆pt}Tt=1 denotes a sample of observed returns. Define HT (u, u′) :=
ϕT,2(u,u′)

ϕT,1(u)ϕT,1(u′) as the

empirical counterpart of H(u, u′). Two simple minimum distance estimators are then given by 3

ŝecf := arg min
s∈S

JT (s,U) =
∑

(u,u′)∈U

|ϕT,2(u, u′)− ϕT,1(u)ϕT,1(u′)R(u, u′; s)|2, (16)

ŝecf,2 := arg min
s∈S

QT (s,U) =
∑

(u,u′)∈U

|HT (u, u′)−R(u, u′; s)|2. (17)

Both ŝecf and ŝecf,2 belong to a class of minimum distance estimators. In the following, we provide

a unified framework to analyze their properties. Let a grid U be such that 1 ≤ |U| < ∞. Denote

the vectorized versions of {H(u, u′) : ∀(u, u′) ∈ U}, {HT (u, u′) : ∀(u, u′) ∈ U} and {R(u, u′; s) :

∀(u, u′) ∈ U} as H(U), HT (U) and R(U ; s), respectively. Let D be any positive semi-definite

|U| × |U| matrix, which is conformable with the chosen grid vectorization. We define a general

weighted minimum distance criterion

QD (s,U) := [H(U)−R(U ; s)]ᵀD [H(U)−R(U ; s)] . (18)

Note that Q (s,U) = QI (s,U) and J (s,U) = QD0 (s,U), where I is a |U| × |U| identity matrix and

D0 = diag
{
|ϕ∆p,1(u)|2|ϕ∆p,1(u′)|2 : ∀(u, u′) ∈ U

}
conformable with the chosen grid vectorization.

3∑
(u,u′)∈U |HT (u, u

′) − R(u, u′; s)|2 =
∑

(u,u′)∈U (Re (HT (u, u
′))−R(u, u′; s))2 +

∑
(u,u′)∈U (Im (HT (u, u

′)))
2, in

which the second part does not depend on the parameter of interest.
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A general weighted minimum distance estimator is then defined as follows:

ŝ
ecf,D̂T

:= arg min
s∈S

Q
D̂T ,T

(s,U) = [Re (HT (U))−R(U ; s)]ᵀ D̂T [Re (HT (U))−R(U ; s)] , (19)

where D̂T is a consistent estimator of D. ŝ
ecf,D̂T

defines a class of minimum distance estimators,

including ŝecf and ŝecf,2. We show in Section 2.2 the
√
T consistency and asymptotic normality of

ŝ
ecf,D̂T

. In principle, we can choose D to obtain the optimally weighted estimator ŝ∗ecf , i.e., the

estimator that has the smallest asymptotic variance among the class of estimators (19).

For implementation, instead of using a numerical optimization routine to minimize the criteria

JT (s,U), QT (s,U), Q
D̂T ,T

(s,U) over the parameter space S = [0, s], we apply a simple grid search

over an equally spaced fine grid of S. This is because simulations suggest that these criteria are

only locally convex around s0 and the numerical optimization might not work well (probably due

to the periodicity of the involved cos(·) functions in R(U ; s), see Figure A1 in Section A5 of the

online supplement). And a grid search over S ensures that one picks the global minimum as the

estimators.

2.1.1 Choice of a Grid U

The choice of U plays an important role in the finite sample performance of our simple estimators,

and therefore we discuss it in detail here. Due to the specific expressions of Eq. (7) or (8) and

their empirical counterparts, it is sufficient and desirable to restrict the grid U consisting of points

(u, u′) close to the origin. To see this, suppose that the fundamental price innovations {εt} have

a density with respect to Lebesgue measure (which we do not assume, but also do not want to

rule out). Since {εt} and the increments of the trade direction indicators {∆It} are independent

by assumption, this implies that the observed price innovations {∆pt} have a density as well. The

Riemann-Lebesgue lemma (see also Theorem 1.1.6 in Ushakov (1999)) implies that

lim
‖(u,u′)‖→∞

∣∣ϕ∆p,2(u, u′)
∣∣ = 0. (20)

But the e.c.f. ϕT,2 is the c.f. of a discrete distribution, and as such it is almost periodic (see, e.g.,

Exercise 1.8.6 in Bisgaard and Sasvári (2000)). Hence (see also Theorem 1.1.5 in Ushakov (1999)),
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regardless of the sample size T ,

lim sup
‖(u,u′)‖→∞

∣∣ϕT,2(u, u′)
∣∣ = 1. (21)

This means that, at least for an absolutely continuous distribution of {εt}, the e.c.f. is not a good

approximation of the true c.f. for large u, u′. Indeed, we find in simulations that the relative

approximation error between the true c.f. and the e.c.f. increases exponentially with u, even for a

large sample size (see Figure A2 in Section A5 of the online supplement). Thus, for large values of

u, u′, the moment conditions in (7) and (8) become very noisy, which appears to be problematic.

This suggests to restrict U to points close to the origin to ensure that the e.c.f.’s are bounded away

from zero by a certain magnitude. But the choice of U should depend on how fast the true c.f. ϕ∆p,2

decays to zero, which is governed by the unknown distribution of εt and the unknown true spread

s0. To overcome this problem, we suggest the following data-driven construction of a suitable grid

U .

Algorithm:

(1) Compute the joint and marginal e.c.f.’s ϕT,2(·, ·) and ϕT,1(·) from the data.

(2) Choose a cutoff c ∈ (0, 1) and compute the largest value ū ∈ (0, 0.95π/s] for which

min {|ϕT,2(ū, ū)|, |ϕ2
T,1(ū)|} ≥ c.

We found in simulations that c = 0.1 works well; values of c close to 0 and 1 tend to increase

the variance of the estimator.

(3) Choose a number ng ∈ N and construct the grid U = V×V, where V contains ng equally spaced

points in (0, ū). We found in simulations that the accuracy of our simple estimators ŝecf and

ŝecf,2 turns to increase in the number of grid points; ng ≥ 12 seems to work well.

Remark 2. The above construction of U corresponds to trimming constraints I
{∣∣∣ϕ2

T,1(u)
∣∣∣ ≥ c}

and I {|ϕT,2(u, u)| ≥ c}. We show in the proof of Theorem 1, as long as the cutoff point c is chosen

small enough, the trimming constraints are never binding asymptotically.
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In addition to the proper choice of U , another aspect of our estimation procedure also deserves

attention. According to its definition in (7), the population quantity H satisfies H(u, u′) > 1

for all small positive values u, u′ whenever s0 > 0. In finite samples, however, we often find

that for the empirical counterpart HT , its real part Re (HT (u, u′)) < 1 for a number of points

(u, u′) ∈ U , especially for small values of s0 > 0 (for an illustration, see Figure A3 in Section

A5 of the online supplement). This is simply due to sampling variation, and simulations confirm

that the problem disappears with increasing sample size. This gives rise to the following problem:

our estimation strategy minimizes the distance between R(u, u′; s) and HT (u, u′) over S = [0, s]. If

Re (HT (u, u′)) < 1, then s = 0 provides the "best fit" at (u, u′), in that s = 0 minimizes the distance

between R(u, u′; s) and HT (u, u′), since R(u, u′; s) > 1 for s > 0 and R(u, u′; 0) = 1. If this happens

for a large portion of the grid points, then the global minima of the empirical criterion functions

QT , JT and Q
D̂T ,T

will be shifted towards s = 0. However, such an estimate is not informative,

although we encounter this phenomenon predominately for small samples and when the true s0 is

very close to zero. To avoid this downward bias, we suggest to exclude problematic grid points

with Re (HT (u, u′)) < 1 from the optimization step. This issue resembles the problem of a positive

empirical covariance for the original Roll’s estimator. However, instead of emulating the various

proposals in the literature to deal with this issue (e.g., Hasbrouck (2009)’s suggestion to set the

estimate to be 0 for a positive empirical covariance would correspond to setting Re (HT (u, u′)) = 1),

we simply remove the problematic points from the grid U .

Remark 3. Instead of c.f.’s, we could use moment generating functions (m.g.f.’s). This would avoid

the problem of singularities and periodicity, since all cosine functions would be replaced by the non-

periodic and positive hyperbolic cosine functions. However, this comes at the cost of assuming {εt}

has a finite m.g.f. around the origin, which implies that all of its moments are finite. This is a strong

assumption – in particular for finance applications – and goes against our desire to make minimal

assumptions about the distribution of {εt}. We thus do not pursue this idea any further.
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2.2 Large-Sample Properties of the Estimators

For any positive semi-definite weighting matrix D, and its consistent estimate D̂T , we present the

large sample properties of ŝ
ecf,D̂T

defined in (19). The class of estimators ŝ
ecf,D̂T

include ŝecf

(D = D0) and ŝecf,2 (D = I) as special cases. The conditions are very weak.

Assumption 3. (i) D is a positive semi-definite |U| × |U| matrix; and (ii) D̂T →p D as T →∞.

Theorem 1. Let Assumptions 1, 2 and 3 hold. Then: ŝ
ecf,D̂T

→p s0 as T →∞.

In the following, ∇s denotes the first derivative of a function with respect to s. Each component

of ∇sR(U ; s) is

∇sR(u, u′; s) =
u′

2 sin
(
u s2
)

cos
(
u s2
)

+ u
2 sin

(
u′ s2
)

cos
(
u′ s2
)[

cos
(
u s2
)

cos
(
u′ s2
)]2 . (22)

Assumption 4. (i) The true unknown s0 lies in the interior of S; and (ii) ∇sR(U ; s0)ᵀD∇sR(U ; s0) >

0.

Theorem 2. Suppose that Assumptions 1, 2, 3 and 4 hold. Then:

(i)
√
T
(
ŝ
ecf,D̂T

− s0

)
→d N

(
0, Asyvar

(
ŝ
ecf,D̂T

))
, with

Asyvar
(
ŝ
ecf,D̂T

)
:= (∇sR(U ; s0)ᵀD∇sR(U ; s0))−2 ×∇sR(U ; s0)ᵀDΣ0D∇sR(U ; s0), (23)

where Σ0 is a positive definite |U| × |U| matrix defined in Section A2.1 of the online supplement ;

(ii) Based on (23), the optimally weighed estimator of s0 is given by

ŝ∗ecf := ŝ
ecf,Σ̂−1

0
= arg min

s∈S
Q

Σ̂−1
0 ,T

(s,U) , (24)

with Asyvar
(
ŝ∗ecf

)
=
(
∇sR(U ; s0)ᵀΣ−1

0 ∇sR(U ; s0)
)−1.

The asymptotic variances of all these estimators, Asyvar (ŝecf ), Asyvar (ŝecf,2), Asyvar
(
ŝ
ecf,D̂T

)
and Asyvar

(
ŝ∗ecf

)
, can be consistently estimated by replacing D0, D, ∇sR(U ; s0) and Σ0 by

D̂0 = diag
{
|ϕT,1(u)|2|ϕT,1(u′)|2 : ∀(u, u′) ∈ U

}
, D̂T , ∇sR(U ; ŝ) and Σ̂0 respectively. Here ŝ is

any consistent estimator of s0 such as ŝecf or ŝecf,2, and Σ̂0 is a consistent estimator for Σ0 given

in Section A2.1 of the online supplement.
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Remark 4. When |U| = 1, i.e., the grid U consists of a single point (u, u) with u ∈ (0, π/s) ∩ V,

our estimation procedure has a closed-form solution

ŝdiag(u) :=
2

u
arccos

(√
|HT (u, u)|−1

)
. (25)

However, simulations suggest that the performance of our estimation procedure, in terms of RMSE,

improves with |U| (the number of grid points). Nevertheless, averaging the estimates in (25) over

various values of u could lead to efficiency gain. We leave this open for future research.

Remark 5. One could drop Assumption 2(iii) to allow for infinitely many grid points (i.e., |U| =∞),

and then apply an approach with a continuum of moment conditions similar to Carrasco et al.

(2007). This alternative procedure could provide an asymptotically more efficient estimation of s0

in theory. However, simulations indicate that it is computationally more demanding and no-clear

efficiency gain in finite samples. Perhaps more importantly, the model is not first-order Markov

and the semiparametric efficiency bound for s0 is unknown. We leave it to future research for

semiparametric efficient estimation of s0.

3 Adverse Selection and Large Sample Properties of Estimators

We now relax the basic Roll (1984) type model (1) to allow for adverse selection cost. Suppose that

p∗t = p∗t−1 + δIt + εt, pt = p∗t + It
s0

2
, (26)

where δ measures the contribution of adverse selection (see, e.g., Glosten and Harris (1988), Huang

and Stoll (1997), Neal and Wheatley (1998), Foucault et al. (2013)), i.e., the effect of a market order

on the efficient price. It is believed that δ should be positive, since buyer initiated orders cause the

underlying true prices to rise while seller initiated orders cause them to fall. Eq. (26) implies that

∆pt = εt + α0It − β0It−1, (27)

where β0 = s0/2 and α0 = s0/2 + δ. Rewriting Eq.(27) in the form of our previous price dynamics

in (2), i.e., ∆pt = ε̃t + (It − It−1)s0/2, we have ε̃t = εt + δIt, and thus Cov (ε̃t, It) = δV ar(It) 6= 0,

whenever δ 6= 0. Therefore, the Roll and Hasbrouck estimators would be biased and inconsistent.
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Using only information about the autocovariance of transaction prices, (α0, β0, σ
2
ε) cannot be

jointly identified, even under Hasbrouck (2004)’s assumption of εt ∼ i.i.d. N(0, σ2
ε). Section 5 of

Chen et al. (2017) addresses the identification of the adverse selection model (27) with balanced

order flow, with unbalanced order flow, and when {It} has general discrete support. In this section,

we consider the estimation of (α0, β0) assuming balanced order flow for simplicity, and establish

the large sample properties of the proposed estimators. Theorems 3 and 4 can be extended to

allow for unbalanced order flow and {It} having general discrete support. This extension should be

straightforward, but involves tedious calculation of the asymptotic variances.

Assumption 5. (i) Data {pt}Tt=1 is generated from Eq. (27) with α0, β0 > 0, where {εt} is i.i.d.

and independent of {It}; (ii) Assumption 1 (ii)(iii) holds.

Assumption 5 implies {∆pt}Tt=1 is strictly stationary and 1-dependent. And for all (u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u
′) cos (uα0) cos

(
u′α0 − uβ0

)
cos
(
u′β0

)
. (28)

Denote Uas :=

{
(u, u′) ∈ V2

: min
(α,β)∈S2

| cos (uβ) cos
(
u′α
)
| > 0

}
, (29)

and a function on Uas × S2 as

R(u, u′;α, β) :=
cos (u′α− uβ)

cos (uβ) cos (u′α)
= 1 + tan (uβ) tan

(
u′α
)
.

Eq. (28) now implies that

H(u, u′) = R(u, u′;α0, β0) for (u, u′) ∈ V2
, (30)

and hence H(u, u′) is real-valued for all (u, u′) ∈ V2. Since V2 contains an open ball of (0, 0), ∃ a

small positive ũ ∈ V, such that (ũ, ũ), (ũ, 2ũ), (2ũ, ũ) ∈ Uas ⊂ V
2.

Assumption 6. (i) (α0, β0) ∈ S2, where S = [0, s]; (ii) U ⊆ Uas and ∃(ũ, ũ), (ũ, 2ũ), (2ũ, ũ) ∈ U ,

such that ũ ∈
(
0, π2s

)
; and (iii) |U| <∞.

Theorem 7 of Chen et al. (2017) shows the identification result of (α0, β0). Denote the vectorized

version of {R(u, u′;α, β) : ∀(u, u′) ∈ U} as R(U ;α, β). Similarly, for any positive semi-definite
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|U|×|U| matrix D and its consistent estimator D̂T , we can then define a general weighted minimum

distance estimator as follows:

Q
as,D̂T ,T

(α, β,U) := [Re (HT (U))−R(U ;α, β)]ᵀ D̂T [Re (HT (U))−R(U ;α, β)] ,(
α̂
D̂T
, β̂
D̂T

)
:= arg min

(α,β)∈S2
Q
as,D̂T ,T

(α, β,U) . (31)

We could choose D = D0 or D to be a |U| × |U| identity matrix for easy implementation. We now

present the large sample properties of
(
α̂
D̂T
, β̂
D̂T

)
.

Theorem 3. 4 Suppose that Assumptions 3, 5, and 6 hold. Then:
(
α̂
D̂T
, β̂
D̂T

)
→p (α0, β0) as

T →∞.

In the following, ∇(α,β) denotes the partial derivative of a function with respect to (α, β).

∇(α,β)R(U ;α, β) is a |U| × 2 matrix, each row of which is given by

∇(α,β)R(u, u′;α, β) =
[(

1 + tan2
(
u′α
))
u′ tan (uβ) ;

(
1 + tan2 (uβ)

)
u tan

(
u′α
)]
. (32)

Assumption 7. (i) The true unknown (α0, β0) lies in the interior of S2; and

(ii) ∇(α,β)R(U ;α0, β0)ᵀD∇(α,β)R(U ;α0, β0) is nonsingular.

Theorem 4. 5 Suppose that Assumptions 3, 5, 6, and 7 hold. Then:

√
T

 α̂
D̂T
− α0

β̂
D̂T
− β0

→d N
(

0, Asyvar
(
α̂
D̂T
, β̂
D̂T

))
, with Asyvar

(
α̂
D̂T
, β̂
D̂T

)
:=

(
∇(α,β)R(U ;α0, β0)ᵀD∇(α,β)R(U ;α0, β0)

)−1 ×∇(α,β)R(U ;α0, β0)ᵀDΩ0D∇(α,β)R(U ;α0, β0)

×
(
∇(α,β)R(U ;α0, β0)ᵀD∇(α,β)R(U ;α0, β0)

)−1
,

(33)

where Ω0 is a positive definite |U| × |U| matrix defined in Section A2.2 of the online supplement.

In principle, we can choose D = Ω−1
0 to obtain the optimally weighted estimator of (α0, β0).

4Given the identification results in Chen et al. (2017), Theorem 3 can be readily extended to the adverse selection

model with unbalanced order flow and when {It} has general discrete support.
5Theorem 4 and Section A2.2 of the online supplement provide an explicit formula of Asyvar

(
α̂D̂T

, β̂D̂T

)
and a

plug-in consistent estimator of it. The extension of Theorem 4 allowing for unbalanced order flow and {It} having

general discrete support is easy, but the calculations of the asymptotic variances are tedious. For future research,

one might consider bootstrap methods.
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4 Unbalanced Order Flow and Large Sample Properties of Estima-

tors

Assumption 8. (i) Assumption 1(i)(ii) holds; and (ii) {It} takes values ±1 with unknown proba-

bility q0 := Pr(It = 1) ∈ (0, 1).

This relaxation allows for unbalanced order flow (i.e., q0 6= 1/2). If either q0 = 0 or q0 = 1, then

∆pt = εt and the differenced data give no information about s0, therefore we restrict q0 ∈ (0, 1).

Under Assumption 8, we obtain the following relations (similar to Eq.(4) in Section 2): for all

(u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u
′)
[
cos
(
u
s0

2

)
+ (2q0 − 1)i sin

(
u
s0

2

)] [
cos
(
u′
s0

2

)
− (2q0 − 1)i sin

(
u′
s0

2

)]
×
[
cos
(

(u′ − u)
s0

2

)
+ (2q0 − 1)i sin

(
(u′ − u)

s0

2

)]
. (34)

In addition to the definitions of V, U and H(u, u′) given in Section 2, we introduce a function on

U × S × (0, 1) as

R(u, u′; s, q) :=

[
cos
(
u s

2

)
+ (2q − 1)i sin

(
u s

2

)] [
cos
(
u′ s

2

)
− (2q − 1)i sin

(
u′ s

2

)]
×
[
cos
(
(u′ − u) s

2

)
+ (2q − 1)i sin

(
(u′ − u) s

2

)][
cos2

(
u s2
)

+ (2q − 1)2 sin2
(
u s2
)] [

cos2
(
u′ s2
)

+ (2q − 1)2 sin2
(
u′ s2
)] . (35)

In particular, R(u, u′; s, 1/2) = R(u, u′; s) as defined in Section 2. We have for all (u, u′) ∈ V2

H(u, u′) = R(u, u′; s0, q0)⇐⇒

 Re(H(u, u′)) = Re(R(u, u′; s0, q0))

Im(H(u, u′)) = Im(R(u, u′; s0, q0))
, (36)

and H(u, u′) is complex-valued unless q0(q0 − 1)(2q0 − 1) sin
(
u s02
)

sin
(
u′ s02

)
sin
(
(u′ − u) s02

)
= 0.

Since V2 contains an open ball of (0, 0), ∃ a small positive ũ ∈ V, such that (ũ, ũ), (ũ,−ũ) ∈ U ⊂ V2.

Assumption 9. (i) (s0, q0) ∈ S ×
[
q, q
]
, where S = [0, s] and

[
q, q
]
⊂ (0, 1); (ii) U ⊆ U , and

either (a) ∃(ũ, ũ), (ũ,−ũ) ∈ U or (b)6 ∃(ũ, ũ), (ũ, 2ũ)(2ũ, 2ũ) ∈ U , such that ũ ∈ (0, π/s); and (iii)

|U| <∞.
6Note that H(ũ,2ũ)

H(ũ,ũ)H(2ũ,2ũ)
= H(ũ,−ũ)

[H(ũ,ũ)]2
.
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Assumption 10. (i) D is a positive semi-definite |2U|×|2U| matrix; and (ii) D̂T →p D as T →∞.

Theorem 4 of Chen et al. (2017) establishes the identification result of (s0, q0). Denote the

vectorized version of {R(u, u′; s, q) : ∀(u, u′) ∈ U} as R(U ; s, q). Using Eq. (36), we can define a

general weighted minimum distance estimator as follows:

Q
un,D̂T ,T

(s, q;U) :=

 Re {HT (U)−R(U ; s, q)}

Im {HT (U)−R(U ; s, q)}


ᵀ

D̂T

 Re {HT (U)−R(U ; s, q)}

Im {HT (U)−R(U ; s, q)}

 ,
(
ŝ
D̂T
, q̂
D̂T

)
:= arg min

(s,q)∈S×[q,q]
Q
un,D̂T ,T

(s, q;U) . (37)

We could choose D =

 D0 0

0 D0

 or D to be a |2U| × |2U| identity matrix to simplify the

estimation. The large sample properties of
(
ŝ
D̂T
, q̂
D̂T

)
are presented in Theorems 5 and 6.

Theorem 5. Suppose that Assumptions 8, 9, and 10 hold. Then:
(
ŝ
D̂T
, q̂
D̂T

)
→p (s0, q0) as

T →∞.

Let ∇(s,q) denote the partial derivative of a function with respect to (s, q). Denote the |2U| by

2 matrix

∇(s,q)R (U ; s, q)) =
[
∇(s,q) Re (R(U ; s, q))ᵀ ,∇(s,q) Im (R(U ; s, q))ᵀ

]ᵀ
, (38)

where ∇(s,q) Re (R(U ; s, q)) and ∇(s,q) Im (R(U ; s, q)) are |U| by 2 matrices, defined in Eq. (A11) of

the online supplement.

Assumption 11. (i) The true unknown (s0, q0) lies in the interior of S ×
[
q, q
]
; and

(ii) ∇(s,q)R (U ; s0, q0))ᵀD∇(s,q)R (U ; s0, q0)) is nonsingular.

Theorem 6. Suppose that Assumptions 8, 9, 10 and 11 hold. Then:

√
T

 ŝ
D̂T
− s0

q̂
D̂T
− q0

→d N
(

0, Asyvar
(
ŝ
D̂T
, q̂
D̂T

))
, with Asyvar

(
ŝ
D̂T
, q̂
D̂T

)
:=

(
∇(s,q)R (U ; s0, q0))ᵀD∇(s,q)R (U ; s0, q0))

)−1 ×∇(s,q)R (U ; s0, q0))ᵀDΓ0D∇(s,q)R (U ; s0, q0))

×
(
∇(s,q)R (U ; s0, q0))ᵀD∇(s,q)R (U ; s0, q0))

)−1
,

(39)

18



where Γ0 is a positive definite |2U| × |2U| matrix defined in Section A2.3 of the online supplement.

Theoretically, we can choose D = Γ−1
0 to obtain the optimally weighted estimator of (s0, q0).

Asyvar
(
ŝ
D̂T
, q̂
D̂T

)
can be consistently estimated using a plug-in estimator. In practice, a more

limited objective of detecting when order flow is unbalanced can be addressed by examining the

imaginary part of H(u, u′) for u 6= u′ with small u′ 6= 0, since for such cases, H(u, u′) is complex-

valued when q0 6= 1/2 and is real-valued when q0 = 1/2. This is what we implement in the empirical

application Section 6.2.

5 Possibility of No Price Change and Large Sample Properties of

Estimators

Assumption 12. (i) Assumption 1(i)(ii) holds; and (ii) {It} takes the value 0 with unknown

probability π0 ∈ [0, 1) and takes values ±1 with equal probability 1−π0
2 .

This relaxation reflects the fact that many transactions occur with no price change (see, e.g.,Huang

and Stoll (1997)). The case of π0 = 1 is ruled out, otherwise ∆pt = εt and the differenced data

give no information about s0. Under Assumption 12, we obtain the following relations: for all

(u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u
′)
[
π0 + (1− π0) cos

(
u
s0

2

)]
×[

π0 + (1− π0) cos
(
u′
s0

2

)] [
π0 + (1− π0) cos

(
(u′ − u)

s0

2

)]
. (40)

In addition to V, U and H(u, u′) defined in Section 2, we introduce a function on U × S × [0, 1) as

R(u, u′; s, π) :=
π + (1− π) cos

(
(u′ − u) s2

)[
π + (1− π) cos

(
u s2
)] [

π + (1− π) cos
(
u′ s2
)] , (41)

which is real-valued. In particular, R(u, u′; s, 0) = R(u, u′; s) defined in Section 2. We have :

H(u, u′) = R(u, u′; s0, π0), for all (u, u′) ∈ V2. (42)
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Since V2 contains an open ball of (0, 0), ∃ a small positive ũ ∈ V, such that (ũ, ũ), (ũ, 2ũ) ∈ U ⊂ V2.

Let U ⊆ U which can be chosen to be 2 ≤ |U| <∞. Eq. (42) yields :

π0 =
2H(ũ, ũ)−1 −H(ũ, 2ũ)−1 − 1

4H(ũ, ũ)−1/2 −H(ũ, 2ũ)−1 − 3
, cos

(
ũ
s0

2

)
=
H(ũ, ũ)−1/2 − π0

1− π0
, (43)

which can be used to identify (s0, π0). Section 3.2 of Chen et al. (2017) considers the case when {It}

may take values in {−k1, · · · , 0, · · · ,+k2} and gives more general identification result. Eq. (43)

essentially provides a closed form solution to this basic no-price-change model. Theorems 7 and 8

can be extended to consider more general models. Although the extension is straightforward, the

calculation of the asymptotic variances should be nontrivial.

Assumption 13. (i) (s0, π0) ∈ S × [0, π], where S = [0, s] and [0, π] ⊂ [0, 1); (ii) U ⊆ U and

∃(ũ, ũ), (ũ, 2ũ) ∈ U , such that ũ ∈ (0, π2s); and (iii) |U| <∞.

Denote the vectorized version of {R(u, u′; s, π) : ∀(u, u′) ∈ U} as R(U ; s, π). For any positive

semi-definite |U| × |U| matrix D and its consistent estimator D̂T , we can define a general weighted

minimum distance estimator as follows:

Q
npc,D̂T ,T

(s, π;U) := [Re (HT (U))−R(U ; s, π)]ᵀ D̂T [Re (HT (U))−R(U ; s, π)] ,(
ŝ
D̂T
, π̂
D̂T

)
:= arg min

(s,π)∈S×[0,π]
Q
npc,D̂T ,T

(s, π;U) . (44)

D could be chosen as D0 or a |U| × |U| identity matrix for easy implementation. We now present

the large sample properties of
(
ŝ
D̂T
, π̂
D̂T

)
.

Theorem 7. Suppose that Assumptions 3, 12 and 13 hold. Then :
(
ŝ
D̂T
, π̂
D̂T

)
→p (s0, π0) as

T →∞.

Let ∇(s,π) denote the partial derivative of a function with respect to (s, π). ∇(s,π)R(U ; s, π) is a

|U| by 2 matrix and defined in Eq. (A15) of the online supplement.

Assumption 14. (i) The true unknown (s0, π0) lies in the interior of S × [0, π] ; and

(ii) ∇(s,π)R(U ; s0, π0)ᵀD∇(s,π)R(U ; s0, π0) is nonsingular.
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Theorem 8. Suppose that Assumptions 3, 12, 13 and 14 hold. Then:

√
T

 ŝ
D̂T
− s0

π̂
D̂T
− π0

→d N
(

0, Asyvar
(
ŝ
D̂T
, π̂
D̂T

))
, with Asyvar

(
ŝ
D̂T
, π̂
D̂T

)
:=

(
∇(s,π)R(U ; s0, π0)ᵀD∇(s,π)R(U ; s0, π0)

)−1 ×∇(s,π)R(U ; s0, π0)ᵀDΨ0D∇(s,π)R(U ; s0, π0)

×
(
∇(s,π)R(U ; s0, π0)ᵀD∇(s,π)R(U ; s0, π0)

)−1
,

(45)

where Ψ0 is a positive definite |U| × |U| matrix defined in Section A2.4 of the online supplement.

6 Simulation Studies and Empirical Application

We first present a simulation study that compares the finite sample performance of our estimators

to the Roll (1984) serial covariance estimator and the Hasbrouck (2004) Gibbs sampling procedure.

We then provide an empirical application to data on traded E-Mini S&P futures contracts for the

day of the 2010 Flash Crash.

6.1 A Comparison of our Estimators to the Methods of Roll and Hasbrouck

We compare the finite sample performances of the following estimators : ŝecf and ŝecf,2, which are

based on the criteria JT and QT , respectively; the “optimally” weighted estimator ŝ
ecf,Σ̂0

−1 defined

in Eq.(24); and the estimators of Roll and Hasbrouck, denoted by ŝRoll and ŝHas., respectively. We

use the following simulation designs:

• For the spread and the sample size, we follow Hasbrouck (2009) and use s0 ∈ {0.02, 0.2}7 and

T = 250 (this corresponds to roughly one year of daily closing prices).
7Regarding the spread size, Hasbrouck (2009) notes the following (c = s0/2 denotes the half-spread): “Although

prior to 2000 the minimum price increment on most U.S. equities was $0.125, it has since been $0.01, and currently

this value might well approximate the posted half-spread in a large, actively traded issue. For a share hypothetically

priced at $50, the implied c equals 0.0002. No approach using daily trade data is likely to achieve a precise estimate

of such a magnitude. The posted half-spread for a thinly traded issue might be 25 cents on a $5 stock, implying c

equals 0.05. This is likely to be estimated much more precisely."

21



• For the distribution of εt, we consider five cases: εt ∼ 0.02×N(0, 1), as in Hasbrouck (2009);

εt ∼ 0.02×t(1) and εt ∼ 0.02×t(2); as well as εt ∼ 0.02×LN(0, 1.25) and εt ∼ 0.02×LN(0, 2),

where we center the log-normal (LN) distribution to have zero mean. For log prices, a standard

deviation of 0.02 represents a daily volatility of 2%, and an annual volatility of about 32%

(for 250 trading days).

• The number of simulation runs is n = 5000.

• For our estimators, we use the following parameters: c = 0.1, ng = 12, and s = 0.05 (for

s0 = 0.02) and s = 0.5 (for s0 = 0.2), along with 500 equally spaced points in [0, s] for S.

For ŝ
ecf,Σ̂0

−1 we use the regularized version
(

Σ̂0 + 0.0001× I
)−1

as the estimated weighting

matrix.

• For the Roll’s estimator, we use two versions: ŝRoll,1 denotes the Roll’s estimator with Has-

brouck (2009) correction (i.e., set the estimate to zero for a positive empirical covariance);

and ŝRoll,2 denotes the Roll’s estimator with Harris (1990) correction (i.e., use the absolute

value of the empirical covariance).

• For the Hasbrouck’s estimator, we use the Matlab code accompanying Hasbrouck (2004),

provided on the author’s website (retrieved on Oct 28, 2015), and use 10,000 sweeps of the

Gibbs sampler with a burn-in of 2,000. We report two sets of results: ŝHas.,1 denotes the

Hasbrouck’s estimator where we set the estimates to zero in case the procedure does not

converge; ŝHas.,n∗=· denotes the Hasbrouck’s estimator where we only use the n∗ = · simulation

runs, out of n = 5, 000, where the procedure converges.

The setup with Gaussian innovations represents a regime with thin tails, in which both Roll’s and

Hasbrouck’s method should do well, given their embedded assumptions. The setup with heavy-tailed

student-t innovations, however, should be challenging to those two methods, whereas we expect our

estimators to be the more robust. The setup with (centered) log-normal innovations presents a

regime with asymmetry, in which we expect Hasbrouck’s estimator to be at a disadvantage. Indeed,
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these conjectures are confirmed in the simulation results, as presented in Tables 1 and 2. They can

be summarized as follows:

• Our estimators ŝecf and ŝecf,2 have very similar performance, with ŝecf slightly better (in

terms of RMSE) across all simulation designs. The optimally weighted estimator ŝ
ecf,Σ̂0

−1

does not work well in small samples (T = 250).

• Our estimators ŝecf and ŝecf,2 are competitive in the thin-tailed regime, while both the Roll’s

and the Hasbrouck’s method perform slightly better there. This is not surprising, given that

those two methods are tailored to an environment with finite second moments. Moreover, the

Hasbrouck’s estimator is built on the assumption of normally distributed latent price innova-

tions, which corresponds to the truth in this regime. However, the Hasbrouck’s estimator is

sensitive and may diverge frequently when the true unknown spread s0 is large relative to the

variance of the latent price innovation.8

• In the settings with student-t innovations, ŝecf performs best. In particular, our estimator

yields good results even in the extreme case of εt ∼ 0.02 × t(1), where both Roll’s and

Hasbrouck’s estimators do poorly, and our estimators beat those estimators by at least an

order of magnitude in terms of RMSE. Although this case might be extreme, our empirical

analysis in Section 6.2.2 suggests that it is not an unrealistic assumption for periods of heavy

market turbulence . This makes the robustness of our estimator a relevant feature.

• In the asymmetric cases with εt ∼ 0.02× LN(0, ·), our estimator ŝecf again performs best.

8For example, the Hasbrouck’s estimator only converges in about 60% out of n = 5, 000 simulation runs when

s0 = 0.2 and εt ∼ 0.02×N(0, 1). This is consistent with its behaviour in the empirical E-mini analysis: there, it does

not converge because the price innovations seem to be discrete, up/down a tick; here, in the simulations, it also looks

rather discrete, i.e., big (discrete) jumps of size ±s0/2, and comparably small variance of εt.
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RMSE Bias Stdev q2.5 q25 q75 q97.5

εt ∼ 0.02N(0, 1)

ŝecf 0.0046 -0.0005 0.0046 0.0092 0.0167 0.0227 0.0274
ŝecf,2 0.0051 -0.0007 0.0051 0.0085 0.0162 0.0229 0.0279
ŝ
ecf,Σ̂0

−1 0.0110 0.0001 0.0110 0.0000 0.0150 0.0243 0.0492
ŝRoll,1 0.0042 -0.0003 0.0042 0.0106 0.0173 0.0225 0.0269
ŝRoll,2 0.0041 -0.0002 0.0041 0.0106 0.0173 0.0225 0.0269
ŝHas.,n∗=5000 0.0043 -0.0015 0.0041 0.0097 0.0157 0.0215 0.0253

εt ∼ 0.02t(2)

ŝecf 0.0053 0.0004 0.0053 0.0101 0.0167 0.0242 0.0301
ŝecf,2 0.0059 0.0004 0.0059 0.0097 0.0161 0.0247 0.0315
ŝ
ecf,Σ̂0

−1 0.0187 -0.0087 0.0165 0.0000 0.0000 0.0157 0.0500
ŝRoll,1 0.0146 -0.0007 0.0146 0.0000 0.0048 0.0290 0.0469
ŝRoll,2 0.0123 0.0040 0.0116 0.0049 0.0163 0.0304 0.0499
ŝHas.,1 0.0087 -0.0073 0.0048 0.0086 0.0106 0.0137 0.0209
ŝHas.,n∗=4999 0.0087 -0.0073 0.0048 0.0086 0.0106 0.0137 0.0209

εt ∼ 0.02t(1)

ŝecf 0.0059 0.0035 0.0048 0.0145 0.0201 0.0268 0.0332
ŝecf,2 0.0063 0.0031 0.0055 0.0132 0.0192 0.0270 0.0341
ŝ
ecf,Σ̂0

−1 0.0174 -0.0119 0.0127 0.0000 0.0000 0.0115 0.0500
ŝRoll,1 0.3816 0.1232 0.3612 0.0000 0.0000 0.1311 0.9691
ŝRoll,2 0.4088 0.1618 0.3754 0.0152 0.0527 0.1599 1.0288
ŝHas.,1 0.3493 0.1140 0.3302 0.0203 0.0339 0.1001 0.8295
ŝHas.,n∗=4948 0.3494 0.1141 0.3303 0.0205 0.0339 0.1001 0.8295

εt ∼ 0.02LN(0, 1.25)

ŝecf 0.0040 0.0000 0.0040 0.0122 0.0174 0.0228 0.0275
ŝecf,2 0.0043 -0.0002 0.0043 0.0113 0.0169 0.0228 0.0277
ŝ
ecf,Σ̂0

−1 0.0195 -0.0106 0.0163 0.0000 0.0000 0.0083 0.0500
ŝRoll,1 0.0190 0.0036 0.0187 0.0000 0.0000 0.0377 0.0573
ŝRoll,2 0.0196 0.0123 0.0152 0.0071 0.0217 0.0413 0.0641
ŝHas.,n∗=5000 0.0062 -0.0049 0.0037 0.0097 0.0128 0.0167 0.0223

εt ∼ 0.02LN(0, 2)

ŝecf 0.0039 0.0016 0.0036 0.0146 0.0191 0.0240 0.0286
ŝecf,2 0.0040 0.0010 0.0039 0.0136 0.0183 0.0237 0.0285
ŝ
ecf,Σ̂0

−1 0.0193 -0.0126 0.0147 0.0000 0.0000 0.0079 0.0500
ŝRoll,1 0.1718 0.1055 0.1356 0.0000 0.0000 0.1862 0.4265
ŝRoll,2 0.2163 0.1633 0.1419 0.0327 0.1018 0.2214 0.5458
ŝHas.,n∗=5000 0.1043 0.0685 0.0786 0.0323 0.0537 0.0979 0.2663

Table 1: Simulation results for spread s0 = 0.02, sample size T = 250 and n = 5, 000 simulation
runs. In addition to simulation RMSE, Bias and Stdev, qx is the x% quantile of the estimates across
the simulation runs (an measure of dispersion of the estimators). ŝecf and ŝecf,2 are our estimators
based on criterion JT and QT respectively; ŝ

ecf,Σ̂0
−1 is our “optimally” weighted estimator. ŝRoll,1

and ŝRoll,2 denote Roll’s estimator with Hasbrouck (2009) correction and Harris (1990) correction
respectively. ŝHas.,n∗=· denotes Hasbrouck’s estimator, where we only use the n∗ = · simulation
runs where the procedure converges. When n∗ < 5000 we also report ŝHas.,1, another Hasbrouck’s
estimator, where we set the estimate to zero in case the procedure does not converge.
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RMSE Bias Stdev q2.5 q25 q75 q97.5

εt ∼ 0.02N(0, 1)

ŝecf 0.0154 -0.0002 0.0154 0.1690 0.1900 0.2100 0.2300
ŝecf,2 0.0156 -0.0002 0.0156 0.1680 0.1900 0.2100 0.2300
ŝ
ecf,Σ̂0

−1 0.0528 0.0074 0.0523 0.1730 0.1920 0.2090 0.4345
ŝRoll,1 0.0143 0.0003 0.0143 0.1713 0.1910 0.2100 0.2283
ŝRoll,2 0.0143 0.0003 0.0143 0.1713 0.1910 0.2100 0.2283
ŝHas.,1 0.1292 -0.0836 0.0986 0.0000 0.0000 0.2002 0.2031
ŝHas.,n∗=2913 0.0019 -0.0001 0.0019 0.1961 0.1986 0.2011 0.2036

εt ∼ 0.02t(2)

ŝecf 0.0164 0.0000 0.0164 0.1670 0.1890 0.2110 0.2320
ŝecf,2 0.0166 0.0000 0.0166 0.1670 0.1890 0.2110 0.2320
ŝ
ecf,Σ̂0

−1 0.0498 0.0059 0.0495 0.1630 0.1890 0.2120 0.3515
ŝRoll,1 0.0192 0.0006 0.0192 0.1661 0.1896 0.2115 0.2335
ŝRoll,2 0.0184 0.0008 0.0184 0.1663 0.1897 0.2115 0.2336
ŝHas.,1 0.0773 -0.0297 0.0714 0.0000 0.1967 0.2048 0.2120
ŝHas.,n∗=4343 0.0289 -0.0039 0.0286 0.0693 0.1988 0.2054 0.2123

εt ∼ 0.02t(1)

ŝecf 0.0186 -0.0009 0.0185 0.1610 0.1870 0.2120 0.2340
ŝecf,2 0.0187 -0.0010 0.0186 0.1610 0.1860 0.2120 0.2340
ŝ
ecf,Σ̂0

−1 0.1031 0.0118 0.1025 0.0000 0.1470 0.2560 0.4970
ŝRoll,1 0.2397 0.0514 0.2342 0.0000 0.1700 0.2580 1.1315
ŝRoll,2 0.2410 0.0689 0.2310 0.0676 0.1772 0.2643 1.1652
ŝHas.,1 0.2973 -0.0398 0.2946 0.0523 0.0673 0.1405 0.7770
ŝHas.,n∗=4980 0.2976 -0.0392 0.2951 0.0530 0.0675 0.1408 0.7782

εt ∼ 0.02LN(0, 1.25)

ŝecf 0.0167 -0.0008 0.0167 0.1660 0.1880 0.2110 0.2310
ŝecf,2 0.0168 -0.0008 0.0168 0.1650 0.1880 0.2110 0.2310
ŝ
ecf,Σ̂0

−1 0.0656 0.0115 0.0646 0.1505 0.1880 0.2140 0.4580
ŝRoll,1 0.0190 -0.0003 0.0190 0.1627 0.1881 0.2117 0.2354
ŝRoll,2 0.0188 -0.0003 0.0188 0.1627 0.1881 0.2117 0.2355
ŝHas.,1 0.0471 -0.0114 0.0457 0.0000 0.1987 0.2087 0.2165
ŝHas.,n∗=4870 0.0348 -0.0064 0.0343 0.0719 0.1993 0.2088 0.2165

εt ∼ 0.02LN(0, 2)

ŝecf 0.0214 -0.0017 0.0213 0.1550 0.1840 0.2130 0.2400
ŝecf,2 0.0215 -0.0017 0.0215 0.1550 0.1840 0.2130 0.2400
ŝ
ecf,Σ̂0

−1 0.1383 -0.0023 0.1383 0.0000 0.0890 0.2720 0.5000
ŝRoll,1 0.1591 0.0253 0.1571 0.0000 0.1631 0.2844 0.5210
ŝRoll,2 0.1739 0.0591 0.1635 0.0672 0.1847 0.2961 0.5972
ŝHas.,n∗=5000 0.1380 -0.0916 0.1032 0.0569 0.0747 0.1095 0.2808

Table 2: Simulation results for spread s0 = 0.2, sample size T = 250 and n = 5, 000 simulation
runs. (See the caption of Table 1 for further details.)
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6.2 An Application to E-mini S&P Futures Transaction Data

In this section we apply our estimators to data on traded E-Mini S&P futures contracts. These

contracts are electronically traded futures contracts with the S&P 500 stock market index as the

underlying asset, where the notional value of each contract is 50 times the value of the S&P 500

index. The contracts are traded on the Chicago Mercantile Exchange’s Globex electronic trading

platform, where trading takes place from Sunday-Friday from 6 p.m. to 5 p.m. ET (Eastern Time),

with a 15-minute trading halt period Monday-Friday from 4:15 p.m. to 4:30 p.m., and a maintenance

period Monday-Thursday from 5 p.m. to 6 p.m..9

In our application, we look at the trading data for May 6, 2010.10 During this day, financial

markets in the U.S. experienced one of the most volatile periods on record, with major stock indices

collapsing and rebounding within a short time frame of less than an hour.11 Consequently, this

episode has become known as the Flash Crash (of 2010). For an illustration, Figure 1 displays the

transaction prices for the sample period: the left plot shows the trading price of the last trade in

each second; the right plot shows the sequence of all transaction prices. The difference in the two

plots highlights that the majority of the trades on May 6 happened around the time of the Flash

Crash. For comparison purpose, Figure 2 displays the same data for May 13, 2010, on which no

unusual market turbulence occurred. A joint report by the U.S. SEC and the U.S. CFTC (henceforth

SEC-CFTC report) published in 2010 identifies the market for E-mini S&P futures as one of the

sources of the turbulences: “The combined selling pressure from the sell algorithm, HFTs, and other

traders drove the price of the E-Mini S&P 500 down approximately 3% in just four minutes from the

beginning of 2:41 p.m. through the end of 2:44 p.m. During this same time cross-market arbitrageurs

who did buy the E-Mini S&P 500, simultaneously sold equivalent amounts in the equities markets,

driving the price of SPY (an exchange-Transaction fund which represents the S&P500 index) also

down approximately 3%."
9Before September 21, 2015, E-mini contracts used to trade for 23 hours a day from 6 p.m. to 5:15 p.m. ET.

10Specifically, we look at all trades from 6 p.m., May 5 to 4:15 p.m., May 6 ET.
11For a more detailed description of the events on May 6, along with an in-depth empirical analysis, see, e.g.,

Kirilenko et al. (2014) or U.S. SEC & U.S. CFTC (2010).

26



This makes the E-mini futures market an interesting object to study. In particular, we want

to analyze how the liquidity cost of the E-mini S&P future evolved during the period of the Flash

Crash. We focus on the period from 2:32 p.m. to 3:08 p.m. ET (Kirilenko et al. (2014) date the Flash

Crash to this specific period), and we restrict our analysis to trades in the E-mini contract maturing

in June 2010 (this contract makes up 99.65% of the number of trades on that day). To measure the

liquidity cost, we estimate the implied spread with our estimator ŝecf (with c = 0.1, ng = 12), as

well as with ŝRoll,1, i.e., the Roll’s estimator with Hasbrouck (2009) correction. We do not report

results for ŝHas., since the underlying Gibbs sampling procedure (with the parameter configurations

as in the code of the author) only converged for about 20% of the cases in the (restricted) sample.

The method does not seem to handle high-frequency data well, which often involve consecutive

trades at identical prices and price bounces in discrete (tick-size) steps. This makes the price

innovations a discrete process, whereas the Hasbrouck’s estimator is based on the assumption of

Gaussian (and thus continuous) innovations. This is consistent with two observations: first, the

convergent cases are concentrated around the most volatile subperiod, where the price innovations

appear less discrete; and second, adding a small Gaussian noise to the data makes the algorithm

converge. For estimation, we use a rolling-window approach, where we estimate the spread at each

second, using all trades over the last 30 seconds as input data (alternative window sizes of 15 or

20 seconds do not change the results in a significant way). Figure 3 plots the corresponding prices

and, at each second, the number of trades in the last 30 seconds for our restricted sample period.

We use log prices to give the spread a relative percentage interpretation (given the magnitude, the

results are restated in basis points, BPS; 1 BPS = 1/100%).

The results using log prices are presented in Figures 4 and 512 and can be summarized as follows:

• Both estimators ŝecf and ŝRoll,1 produce almost identical (and roughly constant) results

throughout the sample period, except for the time from 2:45 p.m. to 2:49 p.m. ET, dur-

ing which the spread appears to spike, and then returns to its previous level. However, the

increase is much more pronounced for ŝRoll,1 than for our estimator ŝecf . The turbulence in
12Estimation results using level prices are presented in Figures A4 and A5 of the online supplement.
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market prices during this period, along with the simulation evidence in the previous section

on the robustness of ŝecf in a heavy-tailed and asymmetric environment, suggest that ŝRoll,1

might overstate the (increase in the) underlying liquidity cost, and that ŝecf provides a better

approximation. This is consistent with the fact that both methods produce nearly identical

results outside the window of extreme turbulence.

• The detected spike in the spread is consistent with the following passages in the SEC-CFTC

report: "HFTs, therefore, initially provided liquidity to the market. However, between 2:41

and 2:44 p.m., HFTs aggressively sold about 2,000 E-Mini contracts in order to reduce their

temporary long positions." The estimates seem to pick up this temporary liquidity evaporation,

although with some time lag.

• However, we do not find any detectable early warning signs of a pending crash in the spread

estimates, which we will document below. This is in contrast to, e.g., Easley et al. (2012), who

find that the (appropriately measured) market order flow became increasingly imbalanced in

the hour preceding the crash, and that this imbalance contributed to the withdrawal of many

liquidity providers from the market.
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Figure 1: Transaction prices for E-Mini S&P futures (with maturity in June 2010) from 6 p.m.

May 5, 2010 to 4:15 p.m. May 6, 2010, ET. Left: The last trading price for each second; Right:

The sequence of all transaction prices throughout the day.

Figure 2: Transaction prices for E-Mini S&P futures (with maturity in June 2010) from May 12,

2010, 6 p.m. to May 13, 2010, 4:15 p.m. ET. Left: The last trading price for each second; Right:

The sequence of all transaction prices throughout the day.
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Figure 3: Transaction prices (left) and the number of trades in the last 30 seconds (right) for the

period of the Flash Crash.

Figure 4: Spread estimates in percentage terms, for rolling 30 second windows (i.e., last 30 seconds

of transactions are used for estimation) during the period of the Flash Crash.
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Figure 5: Spread estimates in percentage terms, for rolling 15 second windows (i.e., last 15 seconds

of transactions are used for estimation) during the period of the Flash Crash.

6.2.1 Forecasting the Flash Crash

We estimate a bivariate VAR model for (∆p, log s) using the 107 observations of spreads (computed

from non-overlapping thirty-second prior intervals) and the contemporaneous (log) prices. The

results are presented in Table A1 of the online supplement (with standard errors in parentheses).

There is significant linear predictability in both series, although the spreads appear to be more

predictable than returns according to the in-sample adjusted R-square measure.

The impulse response functions are shown in Figure A6 of the online supplement. They show

that the return series is not significantly affected by shocks to the spread, whereas the spread does

respond negatively to return shocks. The spread series is positively autocorrelated with a significant

response (persistence) to past shocks.

The variance decompositions indicate that return variation is almost exclusively due to past

returns, whereas spread variation is affected by past price especially after four lags. Despite this

evidence of linear predictability in the two series over the whole period, linear models are not able,

apparently, to forecast the largest movements during the peak period of the flash crash, as is shown
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by the residual graphs in Figure A7 of the online supplement.

6.2.2 Estimating the c.f. of the Fundamental Price Innovations εt

We have emphasized the estimation of the bid-ask spread parameter s0, but it may also be of interest

to estimate features of the distribution of the innovation process. We could obtain estimates of the

c.f. of the innovation process directly from the data:

ϕ̂ε(u) :=
ϕT,2(u, u)

ϕT,1(u)
, on V. (46)

For an illustration, we estimate the c.f. ϕε for three different points in time: before, at, and after

the spike in the estimated spread (see Figures 4 and 5). Specifically, we choose the times 2:36 p.m.,

2:46 p.m., and 2:56 p.m. ET, respectively. As in the previous section, we use all transaction prices

for the last 30 seconds in the estimation. We find the following, with the estimates displayed in

Figure 6:

• For 2:36 p.m., we obtain an estimate that resembles the c.f. of a point mass at zero (i.e., the

real part is almost always equal to 1 and the imaginary part is very close to zero), which is

intuitive. The data show that, during the tranquil periods of trading, the executed transaction

price jumps up or down (with roughly equal probability) by at most a tick, which corresponds

to εt ≈ 0, i.e., there are no fundamental news, and the only price movements come from

randomly arriving buy/sell orders.

• However, during the turbulent period, when the spread peaks at around 2:46 p.m., we obtain

a significantly different behaviour of the latent price innovations. The estimate of Re(ϕε(u))

declines in a nearly linear fashion, which corresponds to the c.f. of a heavy-tailed distribution,

while the estimate of Im(ϕε(u)) appears to be nonzero, which corresponds to the c.f. of

an asymmetric distribution. This, again, is in line with economic intuition, since the crash

in prices can be interpreted as reflection of a fundamental shock, represented by large and

asymmetric innovations εt. In addition, this estimate supports our conjecture in Section 6.1

about the higher accuracy of our estimate ŝecf compared to Roll’s estimate ŝRoll,1 during the
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turbulent period. Because based on the simulation evidence, the Roll’s estimator performs

worse under heavy-tailed and asymmetric innovations.

• After the peak turbulence, at 2:56 p.m., the estimate of the c.f. reflects a thin-tailed and

symmetric regime again, close to the estimate that we obtain for 2:36 p.m..

Figure 6: Estimates of the c.f. ϕε of the latent price innovations εt during the Flash Crash of May

6, 2010. The plots/times refer to estimates before, at, and after the spike in the estimated spread,

as displayed in Figures 4 and 5.

6.2.3 Detecting Order Flow Imbalances

Eq.(36) shows the following : under a balanced order flow (i.e., It = ±1 with equal probability),

the population quantity H(u, u′) is real-valued, while under order flow imbalance (i.e., Pr(It = 1) 6=

Pr(It = −1)), the quantity H(u, u′) is complex-valued when u 6= u′. This yields a way to detect

order flow imbalances by measuring the imaginary part of the empirical quantity HT (u, u′). In

Figure 7, we plot the evolution of the two quantities

hmax := max
(u,u′)∈U

(∣∣Im(HT (u, u′))
∣∣) and hmean :=

1

|U|
∑

(u,u′)∈U

(∣∣Im(HT (u, u′))
∣∣) , (47)
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during the period of the Flash Crash. Clearly, the two measures hmax and hmean spike during the

peak turbulence (and are almost perfectly synchronized with the spread increase we detect). This

indicates that not only the liquidity cost (as measured by the bid-ask spread) increases sharply, but

also the order flow becomes highly imbalanced during this period. This is in line with the economic

intuition of a panic sale interpretation of the crash.

Figure 7: Indications of order flow imbalances during the Flash Crash of May 6, 2010. The

definitions of the quantities hmax and hmean are given in Eq.(47).

6.2.4 Aggregation Robustness

In Section A3 of the online supplement, we show that our estimators are aggregation robust. For the

basic Roll (1984) model, we estimate the spread at each second, using the non-overlapping returns

for every 2 (k = 2) and 5 (k = 5) transactions over the last 30 seconds. The results are presented

in Figure A8 - A11 of the online supplement.

6.2.5 Adverse Selection Estimators

In Section 3, we consider the presence of an adverse selection component in the spread :

∆pt = εt + α0It − β0It−1,
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where β0 = s0/2 and α0 = s0/2 + δ. Using all trades over the last 15 and 30 seconds, we estimate

s = 2β and δ = α−β at each second. Estimation results using log prices are presented in Figures 8

and 913. The results show that in the run up to the Flash Crash, the adverse selection component

of the spread was quite small. However, this rose substantially during the peak period.

Figure 8: The adverse selection case : spread estimates in percentage terms, for rolling 30 second

windows during the period of the Flash Crash.

Figure 9: The adverse selection case : spread estimates in percentage terms, for rolling 15 second

windows during the period of the Flash Crash.

13The estimation results using level prices are presented in Figures A12 and A13 of the online supplement.
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7 Conclusions

In this paper we provide simple semiparametric estimators of the spread using transaction price data

alone. We compare our method theoretically and numerically with the Roll (1984) estimator as well

as with the Hasbrouck (2004) estimator. Our estimators perform similarly to theirs when the latent

fundamental return distribution is Gaussian, but much better than theirs when the distribution is

far from Gaussian, such as for heavy-tailed or asymmetric data.

Our c.f. based estimators are applied to the E-mini futures contract on the S&P 500 during

the Flash Crash of 2010. We find that, during relatively tranquil times our estimator ŝecf and

the Roll estimator ŝRoll,1 are very similar, while during the peak period of the Flash Crash, i.e.,

from 2:45 p.m. to 2:49 p.m. ET, the spread appears to spike, and then returns to its previous

level, but the increase is much more pronounced for the Roll estimator than for our estimator. The

estimated c.f. of εt indicates that the fundamental innovation becomes much more heavy-tailed

and asymmetric during the turbulent period. Along with the simulation evidence on the robustness

of our estimator ŝecf in a heavy-tailed and asymmetric environment, it suggests that ŝRoll might

overstate the underlying liquidity cost, and that ŝecf provides a better approximation. This is

consistent with the fact that both methods produce nearly identical results outside the window of

extreme turbulence. We also find that the order flow becomes badly unbalanced and the adverse

selection component of the spread fluctuates substantially during the peak period of the Flash Crash.

Both of these findings corroborate the work presented in the SEC/CFTC report on the days events

and subsequent academic work.
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