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Humans spend a lifetime learning, storing and refining a repertoire of motor memories. For ex
ample, through experience, we become proficient at manipulating a large range of objects with
distinct dynamical properties. However, it is unknown what principle underlies how our continu
ous stream of sensorimotor experience is segmented into separate memories and how we adapt
and use this growing repertoire. Here we develop a theory ofmotor learning based on the key prin
ciple that memory creation, updating and expression are all controlled by a single computation –
contextual inference. Our theory reveals that adaptation can arise both by creating and updating
memories (proper learning) and by changing how existing memories are differentially expressed
(apparent learning). This insight allows us to account for key features of motor learning that had
no unified explanation: spontaneous recovery1, savings2, anterograde interference3, how envi
ronmental consistency affects learning rate4,5 and the distinction between explicit and implicit
learning6. Critically, our theory also predicts novel phenomena – evoked recovery and context
dependent singletrial learning – which we confirm experimentally. These results suggest that
contextual inference, rather than classical singlecontext mechanisms1,4,7–9, is the key principle
underlying how a diverse set of experiences is reflected in our motor behaviour.

Throughout our lives, we experience different contexts, in which the environment exhibits distinct dynam
ical properties, such as when manipulating different objects or walking on different surfaces. Although it
has been recognised that the brainmaintainsmultiplemotor memories appropriate for these contexts10,11,
classical theories of motor learning have focused on how the brain adapts to a single type of environmen
tal dynamics1,7,8. However, with multiple memories come new computational challenges: the brain must
decide when to create new memories12 and how much to express and update them for each movement
we make. These operations, their governing principles and consequences on motor learning, remain
poorly understood. Here, we propose a unifying principle – contextual inference – that specifies how
sensory cues and state feedback affect memory creation, expression and updating. We show that con
textual inference is the core feature that underlies a range of fundamental aspects of motor learning that
were previously explained by a number of distinct and often heuristic processes.

COIN: a model of contextual inference

In order to formalise the role of contextual inference in motor learning, we developed the COIN (COn
textual INference) model, a principled nonparametric Bayesian model of motor learning (see Methods).
The COIN model is based on an internal model that specifies the learner’s assumptions about how the
environment generates their sensory observations (Fig. 1a, Extended Data Fig. 1a). Motor learning cor
responds to online Bayesian inference under this generative model (Fig. 1b, Extended Data Fig. 1b). For
this, the COIN model jointly infers contexts, their transitions, their dynamical and sensory properties, and
the current state of each context, such that each motor memory stores the learner’s inferences about a
different context (for validation, see Extended Data Fig. 2ab). The major challenge in motor learning is
that neither contexts nor their transitions come labelled, and thus the learner needs to continually infer
which context they are in based on a continuous stream of experience.
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The result of contextual inference is a posterior distribution expressing the probability with which each
known context, or a yetunknown novel context, is currently active (Fig. 1b, top row). In turn, contextual
inference determines memory creation, expression and updating (Fig. 1b, numbered arrows). Fig. 1cf
(and Extended Data Fig. 1ce) illustrates this in a simulation of the COIN model (parameters in Extended
Data Fig. 3) when handling objects of varying weights. For determining the current motor command
(Fig. 1e), rather than selecting a single memory to be expressed11,12, the state associated with each
memory (Fig. 1d) is expressed commensurate with the probability of the corresponding context under
the posterior, computed after observing the sensory cue but before movement (‘predicted probability’;
Fig. 1b, arrow 1; Fig. 1f1). After movement, the ‘responsibility’ of each known context as well as of a novel,
yetunknown context is computed as their posterior probability given both the cue and the resultant state
feedback. A new memory is created flexibly, whenever the responsibility of a novel context becomes high
(Fig. 1b, arrow 2; Fig. 1f2). Critically, context responsibilities also scale the updating of the previously
existing memories and any newly created memory (Fig. 1b, arrows 3; Fig. 1f3, red and pink arrows
respectively showing how high and low responsibility for the red context speeds up and slows down the
updating of its state, Fig. 1d). Finally, these responsibilities are used to compute the predicted context
probabilities on the next time step (Fig. 1f1).

In summary, the COIN model proposes that contextual inference is core to motor learning. In particular,
unlike in traditional models of learning, adaptation to a change in the environment (e.g. Fig. 1e, blue and
cyan arrows) can arise from two distinct and interacting mechanisms. First, in line with classical notions of
learning, proper learning constitutes the creation and updating of memories (the inferred states of known
contexts; Fig. 1d, blue arrow). Second, apparent learning occurs due to the updating of the predicted
context probabilities (Fig. 1f1, cyan arrow), thereby altering the extent to which existing memories are
ultimately expressed in behaviour.

Apparent learning underlies memory recovery

As an ideal litmus test of the contributions of contextual inference to memory creation and expression
(Fig. 1b, arrows 12), we revisited a widelyused motor learning paradigm. In this paradigm (Fig. 2a and
b, top left), participants learn a perturbation P+ applied by a robotic interface while reaching to a target.
Adaptation is assessed using occasional channel trials, Pc, which remove movement errors and measure
the forces participants use to counteract the perturbation (Fig. 2a, see Methods for details). Exposure
to P+ is followed by brief exposure to the opposite perturbation, P−, bringing adaptation back, near to
baseline. Finally, a series of channel trials is administered. As in previous studies1, our participants
showed the intriguing feature of spontaneous recovery in this phase (Fig. 2c): a transient reexpression
of P+ adaptation, rather than a simple decay towards baseline.

Although this paradigm has no explicit sensory cues, according to our theory, contextual inference plays
an important role. When simulated for this paradigm (Fig. 2b), the COIN model starts with a memory
appropriate for moving in the absence of a perturbation (P0, blue Fig. 2b, bottom left) and creates new
memories for the P+ (red) and P− (orange) perturbations. Spontaneous recovery arises due to the dy
namics of contextual inference. As P+ has been experienced in most trials, it is quickly inferred to be
active with a high probability during the channeltrial phase (Fig. 2b, top right). Therefore, as its state
has not yet decayed (Fig. 2b bottom left), the memory of P+ is transiently expressed in the participant’s
motor output (Fig. 2b bottom right). This mechanism is fundamentally different from that of a classical,
singlecontext model of motor learning, the dualrate model1. There, motor output is determined by a
combination of individual memories that update at different rates (fast and slow) but whose expression
does not change over time. Thus the dynamics of adaptation is solely determined by the dynamics of
memory updating, i.e. proper learning. In contrast, in the COIN model, changes in motor output can
occur without updating any individual memory, simply due to changes in the extent to which existing
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memories are expressed due to contextual inference, i.e. apparent learning. This mechanism allows the
COIN model to account robustly for spontaneous recovery (Extended Data Fig. 4a), including elevated
or reduced levels when the P+ phase is extended13 (Extended Data Fig. 5aj) or when P− is experienced
prior to the P+ phase14 (Extended Data Fig. 5ko), respectively.

In order to distinguish between proper and apparent learning as the main mechanism underlying sponta
neous recovery, we designed a novel ‘evoked recovery’ paradigm (similar to the reinstatement paradigm
in classical conditioning15) in which sensorimotor evidence clearly indicates that a change in context has
occurred. For this, two early trials in the channeltrial phase of the spontaneous recovery paradigm were
replaced with P+ (‘evoker’) trials (Fig. 2d, top left, akin to trigger trials in visuomotor learning11). In this
case, the COIN model predicts a strong and longlasting recovery of P+adapted behaviour (Fig. 2d,
bottom right; Extended Data Fig. 4b), primarily due to the inference that the P+ context is now active
(Fig. 2d, top right, red) and the gradual decay of the P+ state over subsequent channel trials (Fig. 2d,
bottom left, red). In addition, our mathematical analysis suggested that evoked as well as spontaneous
recovery are inherent features of the COIN model (Suppl. Inf. and Extended Data Fig. 6ac). In contrast,
the dualrate model only predicts a transient recovery that rapidly decays due to the same underlying
adaptation process with fast dynamics governing both recovery and decay (Extended Data Fig. 6d).

In line with COIN model predictions, participants showed a strong evoked recovery in response to the
P+ trials (Fig. 2e). This recovery lasted for the duration of the experiment, defying models that predict
a simple exponential decay to baseline4,11,16 (Extended Data Fig. 6e and Extended Data Table 1). We
fit the COIN and dualrate models to individual participants’ data in both experiments (Fig. 2c & e). The
COIN model fit the data accurately, but the dualrate model (and its multirate extensions, Extended Data
Fig. 6d) showed a qualitative mismatch in the time course of decay of evoked recovery (insets in Fig. 2c &
e). Formal model comparison provided strong support for the COIN model overall (∆ grouplevel BIC of
302.6 and 394.1 nats for the spontaneous and evoked recovery groups, respectively) and for the majority
of participants (6 out of 8 for each experiment; individual fits shown in Extended Data Fig. 6f, Extended
Data Fig. 2ce).

The COIN model explains memory recovery by creating a new memory only when existing memories
cannot account for a perturbation, such as on the abrupt introduction of P+ and P−, but not when a new
perturbation is introduced gradually. This explains why deadaptation is slower following the removal of a
gradually (vs. abruptly) introduced perturbation17 (Extended Data Fig. 5ps).

Memory updating depends on contextual inference

In the COIN model, contextual inference also controls how each existing memory is updated, that is
proper learning (Fig. 1b, arrows 3). In the COIN model all memories are updated, with the updates
scaled by their respective inferred responsibilities (Fig. 1f3). This contrasts with models which only update
a single memory11,12 or update multiple memories independent of context1,18. To test this prediction,
we examined the extent to which memories for two contexts were updated when we modulated their
responsibilities by controlling the sensory cue and state feedback – the two observations that determine
context responsibilities (Fig. 1b).

In many natural scenarios, sensory cues and state feedback provide consistent evidence about context
(e.g. larger cups are heavier), and thus context responsibilities are approximately allornone (Fig. 1f3).
Thus to test for gradedmemory updating, we created conflicts between cues and state feedback (akin to a
light, large cup). Specifically, participants experienced an extensive training phase designed to form sep
arate memories for two contexts associated with a distinct cue (target location) and perturbation (Fig. 3a;
context 1 = P+

1 and context 2 = P−
2 , with sub and superscript specifying sensory cue and perturbation

sign, respectively). These contexts switched randomly (with probability 0.5; Fig. 3b). As expected19,
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participants formed separate memories for each context and expressed them appropriately based on the
sensory cues (Extended Data Fig. 7a). In a subsequent test phase, we studied the updating of one of the
memories, that associated with context 1, in response to exposure to a single trial of a potentially conflict
ing cuefeedback combination. To quantify singletrial learning for the memory associated with context 1,
we assessed the adaptation of this memory using channel trials with the appropriate cue (cue 1) both
before and after an exposure trial (Fig. 3c). The change in adaptation from the first to last channel trial of
this ‘triplet’ (channelexposurechannel) reflects singletrial learning in response to the exposure trial4,5.
To bring adaptation back close to baseline before each triplet, we used sequences of washout trials,
pairing P0 with the sensory cues (P0

1 and P0
2).

The COIN model predicted that the responsibility of context 1, and hence the updating of the correspond
ing memory (as reflected in singletrial learning; Fig. 3d, column 2, Extended Data Fig. 4c), should exhibit
a graded pattern that arises over training (Extended Data Fig. 7b): it should be greatest when the cue
and state feedback on the exposure trial both provide evidence of context 1 (P+

1 exposure trial), least
when both provide evidence for context 2 (P−

2 exposure trial) and intermediate when the two sources of
evidence are in conflict (P+

2 and P−
1 exposure trials; see also Suppl. Inf. and Extended Data Fig. 7cd for

an analytical approximation). Comparing the two conditions with intermediate updating, due to the cues
being paired with P0 in the washout trials, we also expected the cue to have a weaker effect than the
perturbation and therefore less updating of the memory for context 1 following exposure with P−

1 than
with P+

2 .

The pattern of singletrial learning in pre and posttraining confirmed the COINmodel’s qualitative predic
tions (Fig. 3d, column 1). Prior to training, there was no significant difference in singletrial learning across
exposure conditions (twoway repeatedmeasures ANOVA, F1,23 = 2.40, p = 0.135 for cue, F1,23 = 0.97,
p = 0.335 for perturbation). After learning, singletrial learning showed a gradation across conditions
with a significant modulatory effect for both the cue and the perturbation (F1,23 = 10.35, p = 3.82× 10−3

for cue, F1,23 = 21.16, p = 1.26 × 10−4 for perturbation, with no significant interaction, F1,23 = 0.64,
p = 0.432; Extended Data Fig. 7e). The modulatory effects of the cue and the perturbation were not
confined to separate subsets of participants (Fisher’s exact test, odds ratio = 1.0, p = 1.00, see Methods
and Extended Data Fig. 7f). After fitting to the data, the COIN model also accounted quantitatively for
how singletrial learning changed during the training phase (Extended Data Fig. 7b). Taken together, the
pattern of singletrial learning shows the gradation in memory updating (at an individual participantlevel)
predicted by the COIN model, with multiple memories updated in proportion to their responsibilities.

Apparent changes in learning rate

The COIN model also suggested an alternative account of classical results about apparent changes in
learning rate under a variety of conditions. Fig. 4 shows three paradigms (column 1) with experimental
data (column 2). What is common in all these cases is that the empirical finding of trialtotrial changes
in adaptation has been interpreted as proper learning, i.e. changes to existing memories (states). Thus
differences between the magnitudes of these changes have been interpreted as differences in learning
rate. For example, savings (Fig. 4a) refers to the phenomenon that learning the same perturbation a
second time (even after washout) is faster than the first time1,2,20,21. In anterograde interference (Fig. 4b)
learning a perturbation (P−) is slower if an opposite perturbation (P+) has been learned previously3,
with the amount of interference increasing with the length of experience of the first perturbation. The
persistence of the environment has also been shown to affect singletrial learning (Fig. 4c)4,5: more
consistent environments lead to increased levels of singletrial learning.

The COIN model suggests that changes in adaptation can occur without proper learning, simply through
apparent learning, that is by changing the way existing memories are expressed (Fig. 1df, blue vs. cyan
arrows). Therefore, apparent changes in learning rate in these paradigms may be due to changes in
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memory expression rather than changes in memory updating. To test this hypothesis, we simulated the
COIN model using the parameters obtained by fitting each of the 40 participants in our experiments (Ex
tended Data Fig. 3), thus providing parameterfree predictions. The COIN model reproduced the pattern
of adaptation and singletrial learning seen in these paradigms (Fig. 4 and Extended Data Fig. 8, col
umn 3; Extended Data Fig. 4df). Crucially, differences in the apparent learning rate were not driven
by differences in either the proper learning rate (Kalman gain, see Methods) or the underlying state (col
umn 4). Instead, they were driven by changes in contextual inference (column 5). For example, according
to the COIN model, in savings P+ is expected with higher probability during the second exposure after
having experienced it during the first exposure. Similarly, anterograde interference arises as more ex
tended experience with P+ makes it less probable that a transition to other contexts (i.e. P−) will occur.
Finally, more (less) consistent environments lead to higher (lower) probabilities with which contexts are
predicted to persist to the next trial, leading to more (less) memory expression, as reflected in single
trial learning. More generally, our analysis of the COIN model indicated that singletrial learning can
be expressed mathematically as a mixture of two processes that both depend on contextual inference
(see Suppl. Inf. and Extended Data Fig. 7cd) and each of which can be dissected by the appropriate
experimental manipulation: proper learning (as studied in Fig. 3) and apparent learning (as studied in
Fig. 4c).

Cognitive mechanisms in contextual inference

In addition to providing a comprehensive account of the phenomenology of motor learning, the COIN
model also suggests how specific cognitive mechanisms contribute to the underlying computations. For
example, associating working memory with the maintenance of the currently estimated context probabil
ities explains how a working memory task can effectively lead to evoked recovery in a modified version
of the spontaneous recovery paradigm22 (see Suppl. Inf. and Extended Data Fig. 9ad). Furthermore,
identifying explicit and implicit forms of visuomotor learning with inferences in the model about state (i.e.
estimate of visuomotor rotation) versus a bias parameter (i.e. sensory recalibration between the pro
prioceptive and visual locations of the hand), respectively, explains the complex time courses of these
components of learning23–25 (see Suppl. Inf. and Extended Data Fig. 9el).

Discussion

The COIN model puts the problem of learning a repertoire of memories — rather than a single motor
memory — centre stage. Once this more general problem is considered, contextual inference becomes
a key computation that unifies seemingly disparate data sets. By partitioning motor learning into two
fundamentally different processes, contextual inference (Fig. 1b, top row) and state inference (Fig. 1b,
bottom rows), the COIN model provides a principled framework for studying the neural bases of learning
motor repertoires (see Suppl. Inf.).

In contrast to the COIN model, previous theories of motor learning typically did not have a notion of
context1,4,18. In the few cases in which contextual motor learning was considered within a principled
probabilistic framework11,16,26, the generative models underlying learning did not incorporate fundamen
tal properties of the environment (e.g. context transitions, cues or state dynamics) that are critical for
explaining a number of learning phenomena. Consequently, previous models can only account for a
subset of the data sets we model (Extended Data Table 1), which they were often handtailored to ad
dress.

There are deep analogies between the contextdependence of learning in the motor system and other
learning systems, both in terms of their phenomenologies and the computational problems they are trying
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to solve12,27–30. However, there is one important conceptual issue that has been absent from work on
contextual learning in other domains that our work has brought to the fore – the distinction between
proper learning and apparent learning. We have shown that many features of motor learning arise not
from the updating of existing memories (proper learning) but from changes in the extent to which existing
memories are expressed (apparent learning). This distinction, and the role of contextual inference in both
proper and apparent learning, is likely to be relevant to all forms of learning in which experience can be
usefully broken down into discrete contexts – in the motor system and beyond.
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Fig. 1 | Contributions of contextual inference to motor learning in the COIN model. a, Generative model. A (potentially) infinite number
of discrete contexts ct (colours) exist that transition as a Markov process. Each context j is associated with a timevarying state x

(j)
t . The

active context can generate a sensory cue qt independent of movement (e.g. the visual appearance of an object) and also determines which
state is observed (with noise) as state feedback yt as a consequence of movement (e.g. object weight, black vs. grey arrows). b, Inference
process. The learner infers contexts and states (and parameters, not shown) based on observed sensory cues and state feedback. Before
movement, predicted context probabilities p(ct | qt,...) are computed by fusing prior expectations from the previous time point (where ... refers
to all observations before time t) with the likelihood of the current sensory cue qt. For each known context, a predicted distribution over its
current state p(x

(j)
t | ...) is represented. A potential novel context is always represented, with a stationary state distribution p(x∅

t ). Motor
output ut is the average of the states of the known and novel contexts, weighted by their predicted probabilities (arrow 1). Movement results in
state feedback yt, which updates the predicted context probabilities to context responsibilities p(ct | qt, yt,...). A new memory is instantiated
with a probability that is the responsibility of the novel context (arrow 2, showing the creation of a red context, initialised as a copy of the state
distribution of the novel context). Responsibilities also determine the degree to which state feedback is used to update the predicted state
distribution p(x

(j)
t+1 | qt, yt,...) of each context (arrows 3). c, Simulated time series of sensory cues (background colour for object appearance)

and state feedback observations (noisy weight, purple) when handling visuallyidentical cups and a sugar bowl of varying weights (black line,
arbitrary scale). The weight of cup 3 decreases as liquid is poured from it, other objects have constant weights. (df) The COIN model applied
to the observations in c. d, Predicted state distributions for the three contexts inferred by the model and a novel context. e, The predicted state
distribution (purple) is a mixture of the individual contexts’ predicted state distributions (d) weighted by their predicted probabilities (f1). The
motor output (adaptation, cyan line) is the mean of the predicted state distribution. Intensity of colours in d and purple in e indicates probability
density, linearly scaled between 0 and the maximum of the corresponding density. f, Contextual inferences (colours as in d). 1. Predicted
probability (before state feedback) of each known context and a novel context. 2. Responsibility (context probability after state feedback) of a
novel context. Coloured circles show memory creation events. The novel context responsibility is insufficient to generate a new memory when
transitioning to and from cup 2 (green arrows). 3. Responsibility of each known context. See text for arrow explanations in df.
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a straight channel (grey lines) to the target and measuring the forces generated by the participant into the virtual channel walls. b, Simulation of
the spontaneous recovery paradigm with the COIN model (parameters fit to average data in c & e simultaneously). Top left: perturbation (black)
and channeltrial phase (grey). Bottom left: predicted state distributions of inferred contexts as in Fig. 1d (for clarity we omit the novel context
here and in subsequent figures). Top right: predicted probability of contexts as in Fig. 1d. Bottom right: predicted state distribution (purple)
and its mean (cyan) as in Fig. 1e. Note that full state distributions are inferred in bottom left and right but they appear narrow due to fitting to
the average of all participants’ data (see Methods). c, Mean adaptation (black, ± SEM across n = 8 participants) on the channel trials of the
spontaneous recovery paradigm. The cyan and green lines show model fits (mean of individual participant fits) of the COIN (7 parameters) and
dualrate models (5 parameters), respectively. Inset shows ∆BIC (nats) for individual participants, positive favours the COIN model. de, As in
bc for the evoked recovery paradigm (n = 8) in which the 3rd and 4th trials in the channeltrial phase were replaced by P+ trials (black arrow).
For COIN model parameters see Extended Data Fig. 3.
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Methods

Here, we provide an overview of the methods. For full details see Suppl. Inf.

Participants

Forty righthanded, neurologicallyhealthy participants (18 males and 22 females; age 27.7 ± 5.6 yr,
mean ± s.d.) participated in two experiments, which had been approved by the Cambridge Psychol
ogy Research Ethics Committee and the Columbia University IRB (AAAR9148). All participants provided
written informed consent.

Experimental apparatus

Experiments were performed using a vBOT planar robotic manipulandum with virtualreality system and
air table31. Participants grasped the handle of the manipulandum with their right hand while their forearm
was supported on an air sled and moved their hand in the horizontal plane.

The manipulandum controlled a virtual “object” that was displayed centred on the hand and translated
with handmovements as participants made repeated movements from a home position to a target located
12 cm distally in the sagittal direction.

On each trial, the vBOT could either generate no forces (P0, null field), a velocitydependent curl force
field (P+ or P− perturbation depending on the direction of the field) or a force channel (Pc, channel trials).
For the curl force field, the force generated on the hand was given by[

Fx

Fy

]
= g

[
0 −1
1 0

] [
ẋ
ẏ

]
(1)

where Fx, Fy, ẋ and ẏ are the forces and velocities at the handle in the x (transverse) and y (sagittal)
directions respectively. The gain was set to ±15 N·s·m−1, with the sign specifying the direction of the
curl field (counterclockwise or clockwise, which were assigned to P+ and P−, counterbalanced across
participants). On channel trials, the hand was constrained to move along a straight line to the target by
simulating channel walls on each side of the straight line as stiff springs (3,000 N·m−1) with damping
(140 N·s·m−1)32,33.

Experiment 1: spontaneous and evoked recovery

Sixteen participants were assigned to either a spontaneous (n = 8) or evoked (n = 8) recovery group. The
virtual object controlled by participants was simply a cursor.

Participants in the spontaneous recovery group performed a version of the standard spontaneous re
covery paradigm1. A preexposure phase (50 trials) with a null field (P0) was followed by an exposure
phase (125 trials) with P+. Participants then underwent a counterexposure phase of 15 trials with the
opposite perturbation (P−). This was followed by a channeltrial phase (150 channel trials, Pc). In the
preexposure and exposure phases, to assess adaptation, each block of 10 trials had one channel trial
(Pc) in a random location (not the first). A 45 s rest break was given after trial 60 of the exposure phase,
followed by an additional 5 P+ trials prepended to the next block.
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The evoked recovery group experienced the identical paradigm to the spontaneous recovery group except
that the 3rd and 4th trials of the channeltrial phase were replaced with P+ trials (Fig. 2d).

Experiment 2: memory updating

Twentyfour participants performed the memory updating experiment. The paradigm is based on the
control point experiment described in Ref. 19 in which perturbations P0

1, P0
2, P

+
1 , P

+
2 , P

−
1 and P−

2 are
presented with one of two possible sensory cues (different control points on a rectangular virtual object,
denoted by subscripts). The experiment consisted of a pretraining, training and posttraining phase. In
the pretraining and posttraining phases, participants performed blocks of trials consisting of a variable
number (8, 10 or 12 in the pretraining phase and 2, 4 or 6 in the posttraining phase) of washout trials (an
equal number of P0

1 and P0
2 in a pseudorandom order) followed by 1 of 4 possible ‘triplets’. Each triplet

consisted of 2 channel trials (both with cue 1, Pc
1) bracketing a cueperturbation ‘exposure’ trial (P

+
1 , P

+
2 ,

P−
1 or P−

2 , see main text and Fig. 3c). Each of the 4 triplet types was experienced once every 4 blocks,
using pseudorandom permutations, with a total of 16 blocks in the pretraining phase and 32 blocks in
the posttraining phase.

In the training phase (Fig. 3b), participants performed 24 blocks each consisting of 62–70 trials. The key
feature of each block was that 32 forcefield trials (equal number of P+

1 and P−
2 in a pseudorandom order)

was followed by 2 triplets (with exposure trials of P+
1 and P−

2 ). Each triplet was preceded by a variable
number of washout trials (equal number of P0

1 and P0
2 in a pseudorandom order) to bring adaptation back

close to baseline. For full details of the block structure see Suppl. Inf.

The control point assigned to sensory cue 1 (used on all triplet channel trials) and sensory cue 2 was
counterbalanced across participants as was the direction of force field assigned to P+ and P−.

Data analysis

On each channel trial, we linearly regressed the time series of actual forces generated by participants
into the channel wall against the ideal forces that would fully compensate for the forces on a forcefield
trial1. The offset of the regression was constrained to zero, and we used the slope as our (dimensionless)
measure of adaptation.

To identify changes in singletrial learning between triplets in the memory updating experiment, twoway
repeatedmeasures ANOVAs were performed with factors of cue (2 levels: cue 1 and cue 2) and perturba
tion (2 levels: P+ and P−). To test whether the modulatory effects of cue and perturbation were confined
to separate subsets of participants, we quantified the effect of each by computing, on an individual
participant basis, the following contrasts in singletrial learning: P+

1 + P−
1 − P+

2 − P−
2 (cue effect) and P+

1

+ P+
2 − P−

1 − P−
2 (perturbation effect). We then split participants into 2×2 groups based on whether each

effect was below or above the median of each effect and performed a Fisher’s exact test on the resulting
2×2 histogram (see Suppl. Inf. for details).

All statistical tests were twosided with significance set to p < 0.05. Data analysis was performed using
MATLAB R2020a.
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COIN generative model

Fig. 1a shows the graphical model for the generative model. At each time step t = 1, . . . , T there is a
discrete latent variable (the context) ct ∈ {1, . . . ,∞} that evolves as a Markov process:

ct | ct−1,Π ∼ Discrete
(
πct−1

)
, (2)

where Π = (πj)
∞
j=1 is the transition probability matrix and πj = (πjk)

∞
k=1 is its jth row containing the

transition probabilities from context j to each context k (including itself). In principle, there are an infinite
number of rows and columns in this matrix. However, in practice, generation and inference can both be
accomplished using finitesized matrices by placing a nonparametric prior on the matrix (see below).

Each context j is associated with a continuous (scalar) latent variable x(j)t (the state, e.g. the strength
of a force field) that evolves according to its own linearGaussian dynamics independently of all other
states:

x
(j)
t = a(j) x

(j)
t−1 + d(j) + w

(j)
t w

(j)
t ∼ N

(
0, σ2q

)
, (3)

where a(j) and d(j) are the contextspecific state retention factor and drift, respectively, and σ2q is the
variance of the process noise (shared across contexts). Each state is assumed to have existed for long
enough that its prior for the first time it is observed is its stationary distribution:

lim
t→∞

x
(j)
t ∼ N (d(j)/(1− a(j)), σ2q/(1− [a(j)]2)). (4)

At each time step, a continuous (scalar) observation yt (the state feedback) is emitted from the state
associated with the current context:

yt = x
(ct)
t + vt vt ∼ N

(
0, σ2r

)
, (5)

where σ2r is the variance of the observation noise (also shared across contexts).

In addition to the state feedback, a discrete observation (the sensory cue) qt ∈ {1, . . . ,∞} is also emitted.
The distribution of sensory cues depends on the current context:

qt | ct,Φ ∼ Discrete
(
ϕct

)
, (6)

where Φ =
(
ϕj

)∞
j=1

is the cue probability matrix (which, in principle, is also doubly infinite in size but can
be treated as finite in practice) and ϕj = (ϕjk)

∞
k=1 is its jth row containing the probability of each cue k in

context j.

In order to make this infinitedimensional switching statespace model welldefined, we place hierarchical
Dirichlet process priors34 on the transition and cue probability matrices. The transition probability matrix is
generated in two steps (Extended Data Fig. 1a). First, an infinite set of global probabilities for transitioning
into each context β = (βj)

∞
j=1 (‘global transition probabilities’) is generated by sampling from a GEM

(Griffiths, Engen and McCloskey) distribution:

β | γ ∼ GEM(γ) , (7)

where 0 ≤ βj ≤ 1 and
∑∞

j=1 βj = 1, as required for a set of probabilities. The global transition probabilities
decay exponentially as a function of j in expectation, with the hyperparameter γ controlling the rate of
decay and thus the effective number of contexts: large γ implies a large number of smallprobability
contexts (slow decay from a relatively small initial probability), whereas small γ implies a smaller number
of relatively largeprobability contexts (fast decay from a relatively large initial probability).
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Second, for each context (row of the transition probability matrix), an infinite set of local (contextspecific)
probabilities for transitioning into each context πj = (πjk)

∞
k=1 (‘local transition probabilities’) are generated

via a ‘sticky’ variant35 of the Dirichlet process (DP):

πj | α,β, κ ∼ DP

(
α+ κ,

αβ + κ δj
α+ κ

)
, (8)

where 0 ≤ πjk ≤ 1 and
∑∞

k=1 πjk = 1, as required for a set of probabilities, and δj is an infinitedimensional
onehot vector with the jth element set to 1 and all other elements set to 0. The mean (base) distribution
of the Dirichlet process is (αβ + κ δj)/(α + κ), with large α + κ reducing variability around this mean
(for a tutorial on the Dirichlet process see Ref. 36). Thus the concentration parameter α controls the
resemblance of local transition probabilities to the global transition probabilities β. The selftransition
bias parameter κ > 0 controls the resemblance of local transition probabilities to δj (i.e. a certain self
transition, ct = ct−1 = j). This selftransition bias expresses the fact that a context often persists for
several time steps before switching (i.e. that contexts are ‘sticky’), such as when an object is manipulated
for an extended period of time.

Note that the rows of the transition probability matrix are dependent as their expected values (the base
distributions of the corresponding Dirichlet processes) contain a shared term, the global transition distri
bution β. This dependency, controlled by α, captures the intuitive notion that contexts that are common in
general (i.e. have a large global transition probability) will be transitioned to frequently from all contexts.

The cue probability matrix Φ =
(
ϕj

)∞
j=1

is generated using an analogous (nonsticky) hierarchical con
struction:

βe | γe ∼ GEM(γe) ϕj | αe,βe ∼ DP(αe,βe), (9)

where γe determines the distribution of the global cue probabilities βe, and αe determines the across
context variability of local cue probabilities around the global cue probabilities.

In order to allow full Bayesian inference over the parameters governing the state dynamics ω(j) =[
a(j) d(j)

]T, we also place a prior on these parameters. For this, we use a bivariate normal distribution
(truncated for a(j) between 0 and 1):

ω(j) | µ,Σ ∼ T N (µ,Σ) , (10)

where µ =
[
µa 0

]T and Σ = diag(σ2a, σ
2
d) is a diagonal covariance matrix. Here we have set the prior

mean of d(j) to zero under the assumption that positive and negative drifts are equally probable.

Inference in the COIN model

At each time step t = 1, . . . , T , the goal of inference is to compute the joint posterior distribution
p(Θt | y1:τ , q1:τ ′) of all quantities Θt = {ct, {x(j)t ,ω(j)}∞j=1,β,Π,β

e,Φ} that are not directly observed
by the learner: the current context ct, the current state of each context x(j)t , the parameters governing the
state dynamics in each context ω(j), the context transition parameters (global β and local Π transition
probabilities) and the cue emission parameters (global βe and local Φ cue probabilities) based on the
sequence of state feedback y1:τ and sensory cue observations q1:τ ′ made until time τ and τ ′, respectively
(with τ and τ ′ each being either t or t − 1, see below). In principle, this posterior is fully determined
by the generative model defined in the previous section and can be obtained in a sequential manner
by recursively propagating (‘filtering’) the joint posterior from one time point to the next after each new
set of observations is made. As exact inference is infeasible, we use a sequential Monte Carlo method
known as particle learning that computes an approximation to this filtered posterior37,38. We extensively
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validated the accuracy of this method (Extended Data Fig. 2ab). The details of the inference method
are given in Suppl. Inf. Here we only describe how the approximate posterior is used to obtain the main
modelderived quantities plotted in the paper.

The predicted probability of context j ∈ {1, . . . , J,∅}, where J is the number of known contexts and ∅ is
the novel context, on trial t (computed after observing the cue but before observing the state feedback;
Fig. 1f1 and corresponding panels in later figures) is

p(ct = j | qt,...) =
∫
p(ct = j,Θt\ct | qt,...)dΘt\ct, (11)

whereΘt\ct denotes the setΘt excluding ct and ... represents all observations before time t (as in Fig. 1).
The responsibility of context j on trial t (computed after observing both the cue and the state feedback;
Fig. 1f2−3 and corresponding panels in later figures) is

p(ct = j | qt, yt,...) =
∫
p(ct = j,Θt\ct | qt, yt,...)dΘt\ct. (12)

The predicted state distribution for context j on trial t (computed before observing the state feedback;
Fig. 1d and corresponding panels in later figures) is

p(x
(j)
t | ...) =

∫
p(x

(j)
t ,Θt\x(j)t | ...)dΘt\x(j)t , (13)

where Θt\x(j)t denotes the set Θt excluding x(j)t . The mean of this distribution x̂(j)t can be shown to
evolve across trials (see Suppl. Inf.) as

x̂
(j)
t+1 = Ep(a(j) | ct,qt,yt,...)[a

(j)]
(
x̂
(j)
t + p(ct = j | qt, yt,...) k(j)t e

(j)
t

)
+ Ep(d(j) | ct,qt,yt,...)[d

(j)], (14)

where Ep(a(j) | ct,qt,yt,...)[a
(j)] denotes the expected value of a(j) with respect to the distribution

p(a(j) | ct, qt, yt,...), e(j)t = yt− x̂(j)t is the prediction error for context j and k(j)t corresponds to the ‘Kalman
gain’ for context j, which we plot in Fig. 4. Note that this update is scaled by the context’s responsibility
p(ct = j | qt, yt,...), which underlies the effect of contextual inference on memory updating (arrows 3 in
Fig. 1b).

The ‘overall’ predicted state distribution on trial t (i.e. the predicted state distribution of the context that
is currently active, and of which the identity the learner cannot know with certainty; purple distribution in
Fig. 1e and corresponding panels in later figures) is computed by integrating out the context from Eq. 13
using the predicted probabilities from Eq. 11 (arrow 1 in Fig. 1b):

Ep(ct | qt,...)[p(x
(ct)
t | ...)] =

∑
j={1,...,J,∅}

p(x
(j)
t | ...) p(ct = j | qt,...). (15)

The motor output ut of the learner (cyan line in Fig. 1e and corresponding panels in later figures) is the
mean of this predicted state distribution:

ut =
∑

j={1,...,J,∅}

x̂
(j)
t p(ct = j | qt,...). (16)

Applying the COIN model to experimental data

Applying the COIN model to experimental data required solving two additional challenges. First, partici
pants’ state feedback observations are hidden from the perspective of the experimenter, as they are noisy
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realisations of the ‘true’ underlying states (Eq. 5). To appropriately account for our uncertainty about the
state feedback participants actually observed, we computed the distribution of COIN model inferences by
integrating over the possible sequences of state feedback observations y1:T given the sequence of true
states (experimentallyapplied perturbations) x∗1:T 39. Specifically, on each trial, x∗t was assigned a value
of 0 (nullfield trials), +1 (P+ perturbation trials) or −1 (P− perturbation trials) and yt was assumed to be
distributed around x∗t with i.i.d. zeromean Gaussian observation noise of variance σ2r (Eq. 5), except on
channel trials (Pc) where we treated yt as unobserved, as the state (the magnitude of a force field) was
not observed by the participants on those trials. Note that the distribution of state feedback given the
true state p(yt|x∗t ) shares the same parameters as those underlying the COIN model inferences as it is
selfconsistently defined by the generative model. All figures showing COIN model inferences applied
to experimental data (i.e. all but Fig. 1) show the quantities described in the previous section after the
state feedback has been integrated out (Fig. 1df shows COIN model inferences conditioned on the state
feedback sequence shown in Fig. 1c).

Second, real participants’ behaviour can always be subject to influences not explicitly included in the
COIN model. In order to account for these uncontrolled and unmodelled factors, we introduced a phe
nomenological ‘motor noise’ component that related the motor output ut of the COIN model (Eq. 16) to
the experimentally measured adaptation at via i.i.d. zeromean Gaussian noise:

at ∼ N
(
ut, σ

2
m

)
, (17)

where σm is the standard deviation of the motor noise.

Model fitting and model comparison

In Experiments 1 and 2, we fit the parameters of the COIN model ϑ to participants’ data by max
imising the data log likelihood using Bayesian adaptive direct search (BADS)40. In Experiment 1,
ϑ = {σq, µa, σa, σd, α, ρ, σm}, where

ρ = κ/(α+ κ) (18)

is the normalised selftransition bias parameter. In Experiment 2, which included sensory cues, an addi
tional parameter αe was also fit. In Experiment 1, we also fit a twostate (dualrate) and threestate state
space model to the data of individual participants by minimising the mean squared error using MATLAB’s
fmincon and BADS. In all cases, optimisation was performed from 30 random initial parameter settings
(see Suppl. Inf.).

To perform model comparison for individual participants, we calculated the Bayesian information criterion
(BIC). A BIC difference of greater than 4.6 nats (a Bayes factor of greater than 10) is considered to provide
strong evidence in favour of the model with the lower BIC value41. To perform model comparison at the
group level, we calculated the grouplevel BIC, which is the sum of BICs over individuals42.

Parameter and model recovery

We used the parameters from the fits of the COIN and dualrate models to the data of each participant in
the spontaneous and evoked recovery experiments to generate 10 synthetic data sets per model class
(COIN and dualrate) for each participant from the corresponding experiment. In the dualrate model, the
only source of variability across the different synthetic data sets for a given participant was motor noise.
In contrast, for the COIN model, sensory noise provided another source of variability in addition to motor
noise. We fit both model classes to each synthetic data set as we did with real data (see above).
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For parameter recovery (Extended Data Fig. 2c), we compared the COIN model parameters that were
used to generate the synthetic data (‘true’ parameters) with the COIN model parameters fit to these
synthetic data sets (‘recovered’ parameters).

For model recovery (Extended Data Fig. 2de), we examined the proportion of times the difference in BIC
between the COIN and dualrate fits favoured the true model class that generated the data.

Simulating existing data sets

We performed COIN model simulations on a diverse set of extant data in Fig. 4 (similarly Extended
Data Figs. 5, 8 and 9) in a purely crossvalidated manner, such that we used model parameters fitted to
participants in our own experiments to make predictions for experiments conducted in other laboratories
using other paradigms.

The paradigms in Fig. 4 and Extended Data Fig. 8 were simulated using the 40 sets of parameters fit to
our individual participants’ data from both experiments. One hundred simulations (each conditioned on
a different noisy state feedback sequence) were performed for each parameter set. The results shown
are based on the average of all of these simulations.

The paradigms in Extended Data Fig. 5ao and Extended Data Fig. 9 were variations of the standard
spontaneous recovery paradigm. Therefore, we simulated these paradigms (as well as the paradigm in
Extended Data Fig. 5ps) using the parameters fit to the average spontaneous and evoked recovery data
sets. One hundred simulations (each conditioned on a different noisy state feedback sequence) were
performed. The results shown are based on the average of these simulations.

Modelling working memory

A working memory task performed after the last P− trial of a spontaneous recovery paradigm has been
shown to interfere with spontaneous recovery, producing an effect that is reminiscent of evoked recovery
on the first Pc trial (Extended Data Fig. 9a, Ref. 22). We modelled the effect of the working memory task
as selectively abolishing the (working) memory of the responsibilities on the last P− trial (Extended Data
Fig. 9bd). This means that on the first Pc trial, the predicted probabilities are based on the expected
context frequencies (the stationary probabilities).

Modelling visuomotor learning and its explicit and implicit components

In visuomotor rotation experiments, the cursor moves in a different direction to the hand (which is occluded
from vision). Hence, visuomotor rotations introduce a discrepancy between the location of the hand
as sensed by vision and proprioception. To model this discrepancy, we include a contextspecific bias
parameter b(ct) in the state feedback (Eq. 5):

yt = x
(ct)
t + b(ct) + vt vt ∼ N (0, σ2r ). (19)

To support Bayesian inference, we place a normal distribution prior over this parameter:

b(j) | µb, σb ∼ N (µb, σ
2
b). (20)

We set µb to zero based on the assumption that positive and negative biases are equally probable and
σb to 70−1 by hand to match the empirical data in Extended Data Fig. 9e. We extend and modify the
inference algorithm accordingly (see Suppl. Inf.).
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On each trial, the state feedback was assigned a value of 0 (no rotation trials), +1 (P+ rotation trials) or
−1 (P− rotation trials) plus i.i.d. zeromean Gaussian observation noise with variance σ2r . Visual error
clamp trials (Pc) were modelled in the same way as channel trials (i.e. with state feedback unobserved).
Adaptation was modelled as the mean of the predicted state feedback distribution (Extended Data Fig. 5q
and Extended Data Fig. 9f, dashed pink) plus Gaussian motor noise.

We also modelled an experiment in which an explicit judgement of the perturbation is obtained on every
trial, and the implicit component is taken as the difference between adaption and the explicit judgement23.
We hypothesised that participants have explicit access to the state representing their belief about the
visuomotor rotation but do not have access to the bias in the state feedback, which is therefore implicit.
Hence, we mapped the state of the context with the highest responsibility on the previous trial (Extended
Data Fig. 9h, black line) onto the explicit component and the average bias across contexts weighted by
the predicted probabilities (Extended Data Fig. 9j, cyan line) onto the implicit component. Adaptation is
then, by definition, the sum of these two components (Extended Data Fig. 9e, solid pink) plus Gaussian
motor noise. See Suppl. Inf. for full details.

Data availability

All experimental data are publically available at the Dryad repository
(https://doi.org/10.5061/dryad.m63xsj42r). The data include the raw kinematics and force profiles
of individual participants on all trials as well as the adaptation measures used to generate the
experimental data shown in Fig. 2c,e and Fig. 3d.

Code availability

Code for the COIN model is available at GitHub (https://github.com/jamesheald/COIN).
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ExtendedData Fig. 1 | Additional details of the COINmodel (related to Fig. 1). ab, Hierarchy and generalisation in contextual inference.
a, Local transition probabilities are generated in two steps via a hierarchical Dirichlet process. In the first step (top), an infinite set of global
transition probabilities β are generated via a stochastic stickbreaking process (see Suppl. Inf.). Probabilities are represented by the width of
bar segments with different colours indicating different contexts. In the second step (bottom), for each context (‘from context’), local transition
probabilities to each other context (‘to context’) are generated (a row of Π) via a stochastic Dirichlet process and are equal to the global
probabilities in expectation (bar a selftransition bias, which we set to zero here for clarity). (An analogous hierarchical Dirichlet process,
not shown, is used to generate the global and local cue probabilities.) b, Contextual inference updates both the global and local transition
probabilities. Context transition counts are maintained for all fromto pairs of known contexts and get updated based on the contexts inferred
on two consecutive time points (responsibilities at time points t and t + 1). These updated context transition counts are used to update the
inferred global transition probabilities β̂. The updated global transition probabilities and context transition counts produce new inferences about
the inferred local transition probabilities Π̂. Note that although the model infers full (Dirichlet) posterior distributions over both the global and
local transition probabilities, for clarity here we only show the means of these posterior distributions (indicated by the hat notation). In the
example shown, only row 3 of the context transition counts is updated (as context 3 has an overwhelming responsibility at time t), but all rows
of the local transition probabilities are updated due to the updating of the global transition probabilities (if the model were nonhierarchical,
there would be no global transition probabilities, and so the local transition probabilities would only be updated for context 3 via the updated
context transition contexts). Thus inferences about transition probabilities generalise from one context (here context 3) to all other contexts
(here contexts 1 and 2) due to the hierarchical nature of the generative model. Note that when a novel context is encountered for the first time,
its local transition probabilities are initialised based on β̂, thus allowing wellinformed inferences about transitions to be drawn immediately. ce,
Parameter inference in the COIN model for the simulation shown in Fig. 1cf. In addition to inferring states and contexts, the COIN model
also infers transition (c) and cue (d) probabilities, as well as the parameters of contextspecific state dynamics (e). c, Transition probabilities.
Top: Estimated global transition probabilities (solid lines) to each known context (line colours) and the novel context (grey). Pale lines show
estimated stationary probabilities of the same contexts representing the expected proportion of time spent in each context given the current
estimate of the local transition probabilities (below). Bottom three panels: estimated local transition probabilities from each context (colours
as in top panel). d, Estimated global (top panel) and local cue probabilities for the three known contexts (bottom three panels) and cues (line
colours). Although the model infers full (Dirichlet) posterior distributions over both transition (c) and cue probabilities (d), for clarity here we
only show the means of these posterior distributions. e, Posterior distribution of drift (left) and retention parameters (right) for the three known
contexts (colours as in c, novel context not shown for clarity). Although the model infers the joint distribution of the drift and retention parameters
for each context, for clarity here we show the marginal distribution of each parameter separately. Note that drift and retention are estimated to
be larger for the red context that is associated with the largest perturbation.
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Extended Data Fig. 2 | Validation of the COIN model. a, Validation of the inference algorithm of the COIN model with a single context.
We computed inferences in the COIN model with a single context based on synthetic observations (state feedback) generated by its generative
model (Fig. 1a). Plots show the cumulative distributions of posterior predictive pvalues of the state variable (left), and the parameters governing
its dynamics (retention, middle; drift, right). The posterior predictive pvalue is computed by evaluating the cumulative distribution function of
the model’s posterior over the given quantity at the true value of that quantity (as defined by the generative model). Empirical distributions
of posterior predictive pvalue were collected across 4000 simulations (with different true state dynamics parameters), with 500 time steps
in each simulation (during which the true state changes, but the state dynamics parameters are constant). Note that although true state
dynamics parameters do not change during a simulation, inferences in the model about them will still generally evolve, and so a new posterior
pvalue is generated in each time step even for these quantities. If the model implements wellcalibrated probabilistic inference under the correct
generative model, all these empirical distributions should be uniform. This is confirmed by all cumulative distributions (orange and purple curves)
approximating the identity line (black diagonal). Orange curves show posterior predictive pvalues under the corresponding marginals of the
model’s posterior. To give additional information about the model’s joint posterior over state dynamics parameters, we also show the posterior
predictive pvalue (cumulative) distribution of each parameter conditioned on the true value of the other one (purple curves). b, Validation of the
inference algorithm of the COIN model with multiple contexts. Simulations as in a but with additional synthetic observations (sensory cues)
and multiple contexts allowed both during data generation and inference. Empirical distributions of posterior predictive pvalue were collected
across 2000 simulations (with different true retention and drift parameters), with 500 time steps in each simulation (during which not only states
evolve but also contexts transition, and sometimes novel contexts are created). Left column shows the true distributions of sensory cues,
contexts and parameters. Inset shows the growth of the number of contexts over time both during generation (blue) and inference (orange).
Middle and right columns show the cumulative probabilities of the posterior predictive pvalues (pooled across data sets and time steps) for
the observations (top row), contexts and state (middle row) and parameters (bottom row). To calculate the posterior predictive pvalues for the
context, inferred contexts were relabelled by minimising the Hamming distance between the relabelled context sequence and the true context
sequence (see Suppl. Inf.). For the parameters, the posterior predictive pvalues were calculated with respect to both the marginal distributions
(retention and drift) and the conditional distributions (retention | drift, and drift | retention) as in a. The cumulative probability curves approximate
the identity line (thin black line) showing that the inferred posterior probability distributions are well calibrated. c, Parameter recovery in
the COIN model related to Fig. 2. Plots show the COIN model parameters that were recovered (yaxes) from fits to 10 synthetic data sets
generated with the COIN model parameters (true, xaxes) obtained from the fits to each participant in the spontaneous (n = 8) and evoked (n
= 8) recovery experiments (Extended Data Fig. 3). Vertical bars show the interquartile range of the recovered parameters for each participant.
While several parameters are recovered with good accuracy (σq, µa, σd, σm), others are not (α, and in particular σa and ρ). We expect that with
richer paradigms and larger data sets, all parameters would be recovered accurately. Most importantly, despite partial success with recovering
individual parameters, model recovery shows that recovered parameter sets taken as a whole can be used to accurately identify whether data
was generated by the dualrate or COIN model (d). Note that we make no claims about individual parameters in this study as our focus is on
model class recovery. de, Model recovery for spontaneous (d) and evoked recovery experiments (e) related to Fig. 2. Synthetic data sets
were generated using one of two models (COIN model, red; dualrate model, blue). Parameters used for each model were those obtained from
the fits to each participant in the spontaneous (n = 8) and evoked (n = 8) recovery experiments (Extended Data Fig. 3) – i.e. for the COIN model,
these were the same synthetic data sets as those used in c. Then, the same model comparison method that we used on real data (Fig. 2c, e,
insets) was used to recover the model that generated each synthetic data set (see Methods). Arrows connect true models (used to generate
synthetic data, disks on top) to models that were recovered from their synthetic data (piechart disks at bottom). Arrow colour indicates identity
of recovered model, arrow thickness and percentages indicate probability of recovered model given true model. Bottom disk sizes and piechart
proportions show total probability of recovered model and posterior probability of true model given recovered model (assuming a uniform prior
over true models), respectively, with percentages specifically indicating posterior probability of the correct model. These results show that the
model recovery process is generally very accurate and actually biased against the COIN model in favour of the dualrate model.
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Extended Data Fig. 3 | COIN model parameters. Left column: Parameters for illustrating the COIN model (I: purple), model validation (V:
brown) and fits to individuals in the spontaneous (S: blue) and evoked (E: green) recovery experiments, to the average of both groups (A: cyan),
and individuals in the memoryupdating experiment (M: red). Right: scatter plots for all pairs of parameters for the six groups. The overlap of
data points suggest parameters are similar across experiments. σq: process noise s.d. (Eq. 3); µa, σa: prior mean and s.d. for contextspecific
state retention factors (Eq. 10); σd: prior s.d. for contextspecific state drifts (Eq. 10); α: concentration of local transition probabilities (Eq. 8); ρ:
selftransition bias parameter (Eq. 18); σm: motor noise s.d. (Eq. 17); αe: concentration of local cue probabilities (Eq. 9). Parameters used in
the figures is as follows. I: Fig. 1 and Extended Data Fig. 1ce. V: Extended Data Fig. 2ab. S: Fig. 2c, Extended Data Fig. 6f (column 1) and
Extended Data Fig. 2d. E: Fig. 2e, Extended Data Fig. 6f (column 3) and Extended Data Fig. 2e. S & E: Extended Data Fig. 2c. A: Fig. 2b &
d, Extended Data Fig. 5 and Extended Data Fig. 9 (bias added for visuomotor rotation experiments: Extended Data Fig. 5aj,ps and Extended
Data Fig. 9el). M: Fig. 3 and Extended Data Fig. 7ad. S, E & M: (all parameters, but αe): Fig. 4 and Extended Data Fig. 8. The robustness
analyses (Extended Data Fig. 4) used perturbed versions of the same parameters as the corresponding unperturbed simulations. To reduce
the number of free parameters in the model, we set the parameters of the hierarchical Dirichlet process that determine the expected effective
number of contexts or cues, γ (Eq. 7) and γe (Eq. 9), respectively, both to 0.1, the prior mean for contextspecific state drifts, µd, to zero (Eq. 10),
and the standard deviation of the sensory noise, σs, to 0.03 when fitting or simulating the model, with the variance of the observation noise
(Eqs. 5 and 19) being set to σ2

r = σ2
s + σ2

m. For visuomotor rotation experiments (Extended Data Fig. 5aj,ps and Extended Data Fig. 9el),
we set the mean of the prior of the bias µb to zero (Eq. 20), and its s.d. σb to 70−1.
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Extended Data Fig. 4 | Robustness analysis of the main COIN model results. To test how robust the behaviour of the COIN model is, we
added noise to the parameters fit to the individual participants in the spontaneous and evoked recovery, and memory updating experiments
and resimulated the paradigms in Figs. 2 to 4: spontaneous recovery (a), evoked recovery (b), memory updating (c), savings (d), anterograde
interference (e), and environmental consistency (f). For each experiment, we simulated the COIN model for the same participants as in Figs. 2
to 4 but perturbed each participant’s parameter values. That is, for each parameter (suitably transformed to be unbounded) we calculated the
standard deviation across participants (relevant for the given paradigm or set of paradigms) and then perturbed each participant’s (transformed)
parameter by zeromean Gaussian noise whose standard deviation was a fraction (λ = 0, 0.05, 0.5, or 1.0) of this empirical standard deviation,
after which we used the inverse transform to obtain the actual parameter used in these perturbed simulations. For parameters that are con
strained to be nonnegative (σq, σa, σd, α, αe, σm), we used a logarithmic transformation, whereas for parameters constrained to be on the
unit interval (µa, ρ), we used a logit transformation. Column 1: experimental data (plotted as in Figs. 2 to 4). Columns 25: output of the COIN
model for different amounts of noise added to the parameters. Note that the simulations were not conditioned on the actual adaptation data of
individual participants (in contrast to the original simulations of Figs. 2 and 3) because these data are not available for the experiments shown
in Fig. 4 (for which the original simulations were already performed using this ‘openloop’ simulation approach). The robustness analysis shows
that most predictions of the COIN model are robust to changes in the parameters, and only start to deviate for large parameter changes (λ = 1)
in some of their quantitative details (such as the magnitude of spontaneous recovery). Note that λ = 1 leads to changes in parameters that are
of the same magnitude as randomly shuffling the parameters across participants.
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Extended Data Fig. 5 | History dependence of contextual inference. aj, Contextual inference underlies the elevated level of sponta
neous recovery after ‘overlearning’. a, Spontaneous recovery paradigm for visuomotor learning in which the length of the exposure (P+)
phase is tripled from 200 trials (‘standard’ paradigm, pink) to 600 trials (‘overlearning’ paradigm, green). For comparison, paradigms are aligned
to the end of the exposure phase. b, Adaptation in the COIN model for the standard and overlearning paradigms (same parameters as in
Fig. 2b & d but with the addition of a bias parameter; see Suppl. Inf. and also Extended Data Fig. 3, parameter set A). Adaptation corresponds
to reach angle normalised by the size of the experimentallyimposed visuomotor rotation. Note elevated level of spontaneous recovery after
overlearning compared to the standard paradigm, qualitatively matching visuomotor learning data in Fig. 4A of Ref. 13. cf, Internal repre
sentations of the COIN model for the standard paradigm. Inferred bias (c) and predicted state (d) distributions for each context (colours). e,
Predicted probabilities of each context (with zoomed view starting from near the end of P+ exposure), colours as in cd, grey is novel context
as in Fig. 1f. f, Predicted state feedback (predicted state plus bias) distribution (purple), which is a mixture of the individual contexts’ predicted
state feedback distributions (not shown) weighted by their predicted probabilities (e). Total adaptation (cyan line) is the mean of the predicted
state feedback distribution. gj, same as cf for the overlearning paradigm. For comparison, the dashed horizontal lines in both paradigms show
the final level of each variable for the red context in the standard paradigm. Note that overlearning leaves inferences about biases and states
largely unchanged (compare 1 in c & g and 2 in d & h) but leads to higher predicted probabilities of the P+ context (red) in the channeltrial
phase (compare 3 in e & i) reflecting the true statistics of the experiment in which P+ occurred more frequently. In turn, this makes the P+

bias and state contribute more to total adaptation in the channeltrial phase, thus explaining higher levels of spontaneous recovery. Therefore,
differences between conditions are explained by contextual inference rather than by differences in bias or state inferences. The results are
qualitatively similar when simulated as a forcefield paradigm (i.e. without bias, not shown). ko, Contextual inference underlies reduced
spontaneous recovery following pretraining with P−. k, Adaptation in the channeltrial phase of a typical spontaneous recovery paradigm
(standard, pink, as in Fig. 2b) and two modified versions of the paradigm in which the P+ phase is preceded by a P− (pretraining) phase in
which P− is either introduced and removed abruptly (P−

abrupt, dark green) or gradually (P
−
gradual, light green). Data reproduced from Ref. 14. lo,

Simulation of the COIN model for the same paradigms (same parameters as in Fig. 2b and d; Extended Data Fig. 3, parameter set A), plotted
as in Fig. 2bc. In each paradigm, contexts are coloured according to their order of instantiation during inference (blue→red→orange). Note
that pretraining with P− (either abrupt or gradual) leaves inferences about states within each context largely unchanged at the beginning of
the channeltrial phase (compare corresponding numbers 12 in column 2 across mo). However, the pretraining leads to higher predicted
probabilities of the P− context initially (compare number 3 inm to 3 in n & o) and throughout the channeltrial phase (compare number 4 across
mo) reflecting the true statistics of the experiment in which P− occurred more frequently (compare column 1 across mo). In turn, this makes
the P− state contribute more to total adaptation, thus explaining the reduction in both the initial and final levels of adaptation during the channel
trial phase in the P−

abrupt and P−
gradual groups. Therefore, as in Fig. 4, differences between conditions are explained by contextual inference

rather than state inference. ps, Contextual inference underlies slower deadaptation following a graduallyintroduced perturbation. p,
Adaptation (normalised reach angle, as in b) in a paradigm in which a visuomotor rotation is introduced abruptly (pink) or gradually (green)
and then removed abruptly. Data reproduced from Ref. 17. qs, Simulation of the COIN model on the abrupt (q, pink, and r) and gradual (q,
green, and s) paradigms (same parameters as in Fig. 2b and d but with the addition of a bias parameter; Extended Data Fig. 3, parameter set
A) plotted as in bj. Note that contexts are coloured according to their order of appearance during inference (blue→red). In response to the
abrupt introduction of the P+ perturbation, a new memory is created (1). In contrast, the gradual introduction of the P+ perturbation prevents
the creation of a new memory, thus requiring changes in the inferred bias and state of the original memory associated with P0 (2, blue context)
to account for the slowly increasing perturbation. Therefore, the ‘blue’ context is inferred to be active throughout the exposure phase (3) and
becomes associated with a P+like state. However, at the beginning of the abruptly introduced postexposure (P0) phase, a new memory is
created (4) which has a low initial probability that can only be increased by repeated experience with P0 (5). This leads to slower deadaptation
in the postexposure phase compared to the abrupt paradigm (6), in which the original context associated with P0 (blue) is protected (7) and
can be reinstated quickly (8) as the P0 selftransition probability has been learned to be higher during the preexposure phase. Note that the
smaller errors caused by the gradual perturbation relative to the abrupt condition are better accounted for by an error in the state rather than
an error in the bias, and therefore the state is updated more than the bias. The results are qualitatively similar when simulated as a force field
paradigm (without bias, not shown).
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Extended Data Fig. 6 | Additional analyses of spontaneous and evoked recovery related to Fig. 2. ac, Mathematical analysis of
spontaneous and evoked recovery. The channeltrial phase of spontaneous and evoked (after the two P+ trials) recovery simulated in
a simplified setting (Suppl. Inf.) with two contexts that are initialised to have equal but opposite state estimates (a) and equal (spontaneous
recovery, solid) or highly unequal (evoked recovery, dashed) predicted probabilities (b). For the two contexts, the retention parameters are
assumed to be constant and equal, and the drift parameters are assumed to be constant, of the same magnitude but opposite sign. Mean
adaptation (c), which in the COIN model is the average of the state estimates (a) weighted by the corresponding context probabilities (b),
shows the classic pattern of spontaneous recovery (solid, cf. Fig. 2bc) and the characteristic abrupt rise of evoked recovery (dashed, cf.
Fig. 2de). Note that although in the full model, state estimates are different between evoked and spontaneous recovery following the two P+

trials, here we assumed they are the same (no separate solid and dashed lines in a) for simplicity and to demonstrate that the difference in mean
adaptation between the two paradigms (c) can be accounted for by differences in contextual inference alone (b, cf. Fig. 2b and d, top right insets).
Circles on the right show steadystate values of inferences and the adaptation. Note that in both paradigms, adaptation is predicted to decay
to a nonzero asymptote (see also e). d, Statespace model fits to adaptation data from the spontaneous and evoked recovery groups.
Solid lines show the mean fits across participants of the twostate model (5 parameters, top row) and the threestate model (7 parameters,
bottom row) to the spontaneous recovery (left column) and evoked recovery (right column) data sets. Mean ± SEM adaptation on channel
trials shown in black (same as in Fig. 2c and e). Insets show differences in BIC (nats) between the twostate model and the threestate model
for individual participants (positive values in green indicate evidence in favour of the twostate model, and negative values in purple indicate
evidence in favour of the threestate model). At the group level, the twostate model was far superior to the threestate model (∆ grouplevel BIC
of 64.2 and 78.4 nats favour of the twostate model for the spontaneous and evoked recovery groups, respectively). Individual states are shown
for the twostate model (top, blue and red). Both the fast and slow processes adapt to P+ during the extended initial learning period. The P−

phase reverses the state of the fast process, but not of the slow process, so that they cancel when summed resulting in baseline performance.
Spontaneous recovery during the Pc phase is then explained by the fast process rapidly decaying, revealing the state of the slow process that
has remained partially adapted to P+. Note that this explanation is because in multirate models all processes contribute equally to the motor
output at all times. This is fundamentally different from the expression and updating of multiple contextspecific memories in the COIN model,
which are dynamically modulated over time according to ongoing contextual inference. e, Evoked recovery does not decay exponentially
to zero. According to the COIN model, adaptation in the channeltrial phase of evoked recovery can be approximated by exponential decay to
a nonzero (i.e. positive) asymptote (ac, Fig. 2e, Suppl. Inf.). To test this prediction, we fit an exponential function that either decays to zero
(light and dark green) or decays to a nonzero (constrained to be positive) asymptote (cyan) to the adaptation data of individual participants in
the evoked recovery group after the two P+ trials (black arrow). The two zeroasymptote models differ in terms of whether they are constrained
to pass through the datum on the first (channel) trial (light green) or not (dark green). The mean fits across participants for the models that
decay to zero (green) fail to track the mean adaptation (black, ± SEM across participants), which shows an initial period of decay followed
by a period of little or no decay. The mean fit for the model that decays to a nonzero asymptote (cyan) tracks the mean adaptation well and
was strongly favoured in model comparison (∆ grouplevel BIC of 944.3 and 437.7 nats compared to the zeroasymptote fits with constrained
and unconstrained initial values, respectively). Note that fitting to individual participants excludes the confound of finding a more complex time
course (e.g. one with nonzero asymptote) only due to averaging across participants that each show a different simple time course (e.g. all
with zero asymptote but different time constants). f, COIN and dualrate model fits for individual participants in the spontaneous and
evoked recovery groups. Data and model predictions are shown for individual participants as in Fig. 2c and e for acrossparticipant averages.
Participants in the S and E groups are ordered by decreasing BIC difference between the dualrate and COIN model (i.e. S1’s and E1’s data
most favour the COIN model), as in insets of Fig. 2c and e. Note that the COIN model can account for much of the heterogeneity of spontaneous
(e.g. from large in S1 to minimal in S6) and evoked recovery (e.g. from large in E1 to minimal in E7).
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Extended Data Fig. 7 | Additional analyses of memory updating experiment (related to Fig. 3). ab, Memory updating experiment:
timecourse of learning. a, Adaptation on channel trials at the end of each block of forcefield trials in the training phase (purple), which
occur before P0 washout trials, and on the first channel trial of triplets within each block (orange), which occurs after P0 washout trials. Data
is mean ± SEM across participants and lines show mean of COIN model fits (8 parameters, Extended Data Fig. 3). b, Singletrial learning
on triplets that were consistent with the training contingencies. Data (mean ± SEM across participants) with mean of COIN model fits across
participants. Positive learning reflects changes in the direction expected based on the force field of the exposure trial (an increase following
P+ and a decrease following P−). cd, Mathematical analysis of singletrial learning. Singletrial learning in the COIN model (column 1) for
the four cueperturbation triplets in the pretraining phase (c) and the posttraining phase (d) in the memory updating experiment. The COIN
model was fit to each participant and model fits are shown as mean ± SEM (singletrial learning) or mean (dot product, posterior, prior and
likelihood) across n = 24 participants. Singletrial learning (column 1) is approximately proportional to a dot product (column 2) between the
vector of posterior context probabilities (responsibilities) on the exposure trial of the triplet and the vector of predicted context probabilities on
the subsequent channel trial (see Suppl. Inf. for derivation). This dot product can be further approximated by collapsing the vector of predicted
probabilities to a onehot vector, i.e. by the responsibility p(ct = c∗|qt, yt,...) (column 3) of the context that is predominantly expressed on the
subsequent channel trial (c∗, the context with the highest predicted probability), where ... denotes all observations before time t (as in Fig. 1).
This responsibility is proportional to a product of two terms. The first term is the prior context probability p(ct = c∗|qt,...) (column 4), i.e. the
predicted context probability before experiencing the perturbation (as in Fig. 1f1), which is already conditioned on the sensory cue visible from
the outset of the trial. The second term expresses the likelihood of the state feedback in that context p(yt|ct = c∗,...) (column 5). As prior to
learning neither cues nor feedback are yet consistently associated with a particular context, the COINmodel predicts that the prior and likelihood,
and thus total singletrial learning should all be largely uniform across contexts before training. ef, The effects of cue and perturbation on
singletrial learning in individual participants. e, Singletrial learning (posttraining) shown as a function of perturbation separated by cue
(left) or as a function of cue separated by perturbation (right) for each participant (lines). Note a significant effect for both the perturbation and
the cue. f, Scatter plot of cue effect (P+

1 + P−
1 − P+

2 − P−
2 ) against perturbation effect (P+

1 + P+
2 − P−

1 − P−
2 ) for each participant (dots).

Solid lines show medians of corresponding effects. Note the lack of anticorrelation between two effects.
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Extended Data Fig. 3, parameter set S, E & M). The COIN model qualitatively reproduced the pattern of changes in singletrial learning seen
over repeated cycles in this paradigm. As in Fig. 4, differences in the apparent learning rate were not driven by differences in either the proper
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Extended Data Fig. 9 | Cognitive processes and the COIN model. ad, Maintenance of context probabilities may require working
memory. a, Adaptation in a spontaneous recovery paradigm in which a nonmemory (pink) or working memory task (green) is performed at
the end of the P− phase before starting the channeltrial phase (data reproduced from Ref. 22). Initial adaptation in the channeltrial phase
(inset) shows the working memory task abolishes spontaneous recovery and leads to adaptation akin to evoked recovery (cf. Extended Data
Fig. 6ac). bd, COIN model simulation in which the working memory task abolishes the (working) memory of the context responsibilities on
the last trial of the P− phase but not the context transition (and thus stationary) probabilities (same parameters as in Fig. 2b and d; Extended
Data Fig. 3, parameter set A), plotted as in Fig. 2bc. The circles on the predicted probability (zoomed view) show the values on the first trial in
the channeltrial phase. d, as (c) but for the working memory task. The predicted probabilities on the first trial in the channeltrial phase are the
values under the stationary distribution (shown on every trial in the simulation of Extended Data Fig. 1c). We calculate the stationary context
distribution by solving ψ = ψΠ̂ for ψ (a row vector) subject to the constraint that ψ is a valid probability distribution (i.e. all elements of ψ are
nonnegative and sum to 1), where Π̂ is the expected local transition probability matrix. el, Explicit versus implicit learning in the COIN
model. e, Results of a spontaneous recovery paradigm (as in Fig. 2b) for visuomotor learning. Adaptation is computed as participants’ reach
angle normalised by the size of the experimentally imposed visuomotor rotation. Explicit learning (dark green) is measured by participants
indicating their intended reach direction. Implicit learning (light green) is obtained as the difference between total adaptation (solid pink) and
explicit learning. In the visual errorclamp phase (Pc), participants were told to stop using any aiming strategy so that the direction they moved
was taken as the implicit component of learning. A control experiment (dashed pink) was also performed in which there was no reporting of
intended reach direction. Data reproduced from Ref. 24. fl, Simulation of the COIN model on the same paradigm (same parameters as in
Fig. 2b and d but with the addition of a bias parameter; Extended Data Fig. 3, parameter set A). b, Predictions for experimentally observable
quantities. Light green line: implicit learning is the average bias across contexts weighted by the predicted probabilities (cyan line in j). Dark
green line: explicit learning is the state of the most responsible context on the previous trial (black line in h). Solid pink line: total adaptation for
the reporting condition is the sum of explicit and implicit learning (as in experiments). Dashed pink line: total adaptation for the nonreporting
condition is the average predicted state feedback across contexts weighted by the predicted probabilities (cyan line in l, as in all experiments
that had no reporting element). gh, Inferred bias (g) and predicted state (h) distributions for each context (colours), with black line showing the
mean state of the most responsible context (coloured line below axis) for trials on which an explicit report was solicited. i, Predicted probability
of each context. Colours as in gh, grey is novel context as in Fig. 1f. jk, Inferred bias (j) and predicted state (k) distributions (purple), obtained
as mixtures of the respective distributions of individual contexts (gh) weighted by their predicted probabilities (i), and their means (cyan lines).
l, Predicted state feedback distribution (purple, computed as the the sum of bias, j, and predicted state, k) and its mean (cyan).
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Extended Data Table 1 | Comparison of the COINmodel to other models. Table shows which experimental phenomena (rows)
can be explained by different single and multiplecontext models (columns). Alphabetical superscripts index the key feature(s)
missing from each model which are primarily responsible for their inability to explain a particular phenomenon. Note that we
consider each model as described and implemented by its authors (although it might be possible to modify or extend these
models to explain more features). Orange crossticks are for models that can partially explain a phenomenon.
Spontaneous recovery, the gradual reexpression of P+ in the channeltrial phase (Fig. 2c), requires a singlecontext model to
have multiple states that decay on different time scales or a multiplecontext model that can change the expression of memories
in a gradual manner based on the amount of experience with each context. Therefore, singlecontext models that have a single
statea, or multiplecontext models that do not learn context transition probabilitiesb or do not have state dynamicsd do not show
spontaneous recovery. Models that learn transition probabilities but that do not represent uncertainty about the previous contextc
(the ‘local’ approximation in DPKF) can either include a selftransition bias or not. With a selftransition bias, the expression of
memories changes in an abrupt manner (akin to evoked recovery) when, in the channeltrial phase, the belief about the previous
context changes (e.g. from P− to P+), and thus such models fail to explain the gradual nature of spontaneous recovery. Without
a selftransition bias, the change in expression of memories is gradual based on updated context counts, but this occurs too
slowly relative to the time scale on which the rise of spontaneous recovery occurs.
Evoked recovery, the rapid reexpression of the memory of P+ in the channeltrial phase (Fig. 2e) that does not simply decay
exponentially to baseline (Extended Data Fig. 6e), requires a model to be able to switch between different memories based
on state feedback. Therefore, singlecontext modelse that cannot switch between memories are unable to show the evoked
recovery pattern seen in the data. Multiplecontext models with memories that decay exponentially to zero in the absence of
observationsf (as during channel trials) can only partially explain evoked recovery, showing the initial evocation but not the
subsequent change in adaptation over the channeltrial phase. Models with no state decayd cannot explain evoked recovery.
Memory updating requires a model to update memories in a graded fashion and to use sensory cues to compute these graded
updates. Therefore, models that either have no concept of sensory cuesg or multiplecontext models that only update the state
of the most probable context in an allornone mannerh do not show graded memory updating.
Savings, faster learning during reexposure compared to initial exposure, after full washout requires a singlecontext model
to increase its learning rate or a multiplecontext model to protect its memories from washout and/or learn context transition
probabilities. Therefore, singlecontext models with fixed learning ratesi do not show savings.
Anterograde interference, increasing exposure to P+ leads to slower subsequent adaptation to P−, requires a singlecontext
model to learn on multiple time scales or a multiplecontext model to learn transition probabilities that generalise across contexts.
Therefore, singlecontext models with a single statea, or multiplecontext models that either do not learn transition probabilitiesb
or that learn local transition probabilities independently for each row of the transition probability matrixj do not show anterograde
interference.
Environmental consistency, the increase/decrease in singletrial learning for slowly/rapidly switching environments, requires
a model to either adapt its learning rate or learn local transition probabilities based on context transition counts. Therefore,
singlecontext models with fixed learning ratesi or multiplecontext models that either do not learn transition probabilitiesb or
that learn nonlocal transition probabilities based only on context countsk do not show the effects of environmental consistency
on singletrial learning.
Explicit and implicit learning, the decomposition of visuomotor learning into explicit and implicit components, requires a model
to have elements that can be mapped onto these components. For most models, there is no clear way to map model elements
onto these componentsl. It has been suggested that the fast and slow processes of the dualrate model correspond to the
explicit and implicit components of learning, respectively. However, in a spontaneous recovery paradigm, this mapping only
holds during initial exposure and fails to account for the time course of the implicit component during the counterexposure and
channeltrial phasesm (see Suppl. Inf.).
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Supplementary Information

1 Experimental methods

1.1 Participants

A total of 40 neurologicallyhealthy participants (18 males and 22 females; age 27.7± 5.6 yr, mean± s.d.)
were recruited to participate in two experiments, which had been approved by the Cambridge Psychol
ogy Research Ethics Committee and the Columbia University IRB (AAAR9148). All participants provided
written informed consent and were righthanded according to the Edinburgh handedness inventory1. To
provide sufficient power, sample sizes were chosen on the basis of the typical betweenparticipant vari
ability observed in similar motor adaptation studies2–5.

1.2 Experimental apparatus and approach

All experiments were performed using a vBOT planar robotic manipulandum with virtualreality system
and air table6. The vBOT is a modular, generalpurpose, twodimensional planar manipulandum opti
mised for dynamic learning paradigms. The vBOT’s handle position wasmeasured using optical encoders
sampled at 1 kHz while torque motors allowed forces to be generated at the handle and updated at the
same rate. Participants grasped the handle of the manipulandum with their right hand while their forearm
was supported on an air sled, which constrained arm movements to the horizontal plane and reduced
friction.

A monitor mounted horizontally facedown above the vBOT projected images via a horizontal mirror so
that visual feedback was overlaid in the plane of movement. In the spontaneous/evoked recovery exper
iment, the mirror prevented direct vision of the hand and forearm. In the memory updating experiment, a
semisilvered mirror was used and a lamp illuminated the hand from below the mirror with the illumination
adjusted so that both the vBOT, hand, arm and virtual images were clearly visible. This was done to
ensure that participants had an accurate estimate of the state of their hand and arm (as in Ref. 4).

The manipulandum controlled a virtual “object” (cursor or rectangular tool, depending on the experiment)
that was displayed centred on the hand and translated with hand movements (Fig. 2a & Fig. 3a). On each
trial, participants first aligned the centre of the object with the home position (0.5 cm radius circle) situated
in the midline approximately 30 cm in front of the participant’s chest. The trial started after the centre of
the object was within 0.5 cm of the home position and had remained below a speed of 0.5 cm·s−1 for 0.1 s.
After a 0.3 s delay, a target (a circle with a radius of 0.5 cm) appeared 12 cm away (distally within the
sagittal plane), with the transverse position depending on the experiment (see below). A tone indicated
that the participants should initiate a reaching movement to the target. Participants were instructed to
move the object (or a specific control point on it, depending on the experiment, see below) to the target.
In all cases, the shortest hand movement path connected the centre of the object to the target in a straight
line within the sagittal plane. The trial ended when the control point had remained within 0.5 cm of the
target for 0.1 s below a speed of 0.5 cm·s−1. If the peak speed of the movement was less than 50 cm·s−1

or more than 70 cm·s−1, a lowpitch tone sounded and a ‘too slow’ or ‘too fast’ message was displayed,
respectively. At the end of each trial, the vBOT actively returned the hand to the home position.

On each trial, the vBOT could either generate no forces (P0, null field), a velocitydependent curl force
field (P+ or P− perturbation depending on the direction of the field) or a force channel (Pc, channel trials).
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For the curl force field, the force generated on the hand was given by[
Fx

Fy

]
= g

[
0 −1
1 0

] [
ẋ
ẏ

]
(S1)

where Fx, Fy, ẋ and ẏ are the forces and velocities at the handle in the x (transverse) and y (sagittal)
directions, respectively. The gain g was set to ±15 N·s·m−1, where the sign of g specified the direction of
the curl field (counterclockwise or clockwise which were assigned to P+ and P−, counterbalanced across
participants). On channel trials, the hand was constrained to move along a straight line from the home
position to the target. This was achieved by simulating forces associated with a stiff spring and damper,
with the forces acting perpendicular to the long axis of the channel. A spring constant of 3,000 N·m−1

and a damping coefficient of 140 N·s·m−1 were used. Channel trials clamped the kinematic error close
to zero and were used to measure the participant’s level of adaptation to the P+ and P− perturbations
based on the forces they generated into the channel walls7,8.

1.3 Experiment 1: spontaneous and evoked recovery

Participants either performed a spontaneous (n=8) or evoked (n=8) recovery condition. In both conditions,
the virtual object controlled by participants was simply a cursor (blue 0.4 cm radius disc), which was
always aligned with the centre of the handle. The control point was the centre of the cursor (unmarked).

1.3.1 Spontaneous recovery condition

In the spontaneous recovery condition, participants (5 males and 3 females; age 32.1 ± 7.1 yr, mean
± s.d.) performed a version of the standard spontaneous recovery paradigm3. The paradigm consisted
of a preexposure phase (5 blocks, with 10 trials each) with a null field (P0). This was followed by an
exposure phase (12 blocks, with 10 trials each, and an additional 5 exposure trials after the 45 s rest
break given after block 6) with P+ (the direction of the force field assigned to P+ was counterbalanced
across participants). In the preexposure and exposure phases, to assess adaptation, each block of 10
trials had one channel trial (Pc) in a random location (not the first). After the exposure phase, participants
were rapidly deadapted in a counterexposure phase by applying 15 trials with the opposite perturbation
(P−). This was followed by a long series of 150 channel trials (Pc).

1.3.2 Evoked recovery condition

In the evoked recovery condition, participants (3 males and 5 females; age 27.2 ± 5.9 yr, mean ± s.d.)
performed a modified version of the spontaneous recovery paradigm which differed in that the 3rd and
4th trials of the channeltrial phase were replaced with P+ trials (Fig. 2d).

1.4 Experiment 2: memory updating

This experiment was based on a paradigm in which sensory cues allow multiple memories to be learned
simultaneously4 and involved n=24 participants (10 males and 14 females; age 26.4 ± 4.2 yr, mean ±
s.d.). The virtual object controlled by participants was a solid green rectangle (16×3 cm, width×depth,
with a yellow cross indicating its centre) was displayed centred on the hand (Fig. 3a). The object also had
two control points (blue 0.4 cm radius discs) ± 7 cm lateral to the centre of the object. Targets were in
front of either the left or right control point. If the target was aligned with the left control point, participants
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were instructed to move the left control point to the target, and conversely for the target aligned with the
right control point. Crucially, because each target was aligned with its respective control point, the hand
had to move to the same location to attain either target. The different targets required participants to
attend to either of the two control points and thus provided distinctive sensory cues for the trial4. We
indicate the sensory cue used on a trial by a subscript (e.g. P+

1 and P+
2 for the P+ perturbation with the

left and right sensory cue, respectively). The experiment consisted of three phases: pretraining, training
and posttraining. The training phase (see details below) consisted of exposure to two cueperturbation
pairs (P+

1 and P−
2 ) that differed in both the perturbation and the sensory cue so that participants could be

expected to associate each cue with its corresponding perturbation.

In the pretraining and posttraining phases (Fig. 3c) participants performed blocks of trials which con
sisted of a variable number of P0 washout trials (8, 10 or 12 in the pretraining phase and 2, 4 or 6 in the
posttraining phase) with an equal number of each sensory cue in a pseudorandom order, followed by
a triplet of trials to assess singletrial learning (see below). The P0 trials were used to bring adaptation
close to baseline before the triplet of trials. The first and third trial in the triplet were always channel
trials with sensory cue 1 (Pc

1) and the middle trial of the triplet (‘exposure’ trial) was one of four possi
ble combinations of perturbation sign (forcefield direction) and sensory cue (control point): P+

1 , P
−
2 , P

+
2

and P−
1 (Fig. 3c). Therefore, the first two exposure trial types (P+

1 and P−
2 ) were the same as those ex

perienced in the training phase and thus in the posttraining phase provided consistent evidence about
the contexts experienced during the training phase, whereas the latter two (P+

2 and P−
1 ) were different

from those experienced in the training phase and thus provided conflicting evidence about the contexts
experienced during the training phase. Within each sequence of 4 blocks, each of these combinations
was experienced once and the four blocks were repeated 4 times in pretraining and 8 times in post
training. Importantly, the relationship between sensory cues and perturbations was balanced, such that
each triplet type was presented an equal number of times and each cue was presented an equal number
of times in the P0 trials.

In the training phase (Fig. 3b), each sensory cue was consistently and repeatedly associated with one
perturbation (P+

1 and P−
2 ) during forcefield trials, with additional channel trials before and after these trials

to assess how learning progressed, as well as occasional channel triplets (using consistent exposure
trials only) to assess singletrial learning (preceded by washout trials, as explained above). To do this,
participants performed 24 blocks, each consisting of 6270 trials presented in the following order:

• 2 channel trials (one Pc
1 and Pc

2, order counterbalanced across consecutive blocks);

• 32 forcefield trials (equal number of P+
1 and P−

2 within each 8 trials in a pseudorandom order);

• 2 channel trials (one Pc
1 and Pc

2 order counterbalanced across consecutive blocks);

• 14, 16 or 18 washout trials (equal number of P0
1 and P0

2 in a pseudorandom order);

• 1 triplet (exposure trial of P+
1 or P−

2 counterbalanced across consecutive blocks);

• 6, 8 or 10 washout trials (equal number of P0
1 and P0

2 in a pseudorandom order);

• 1 triplet (exposure trial of P+
1 or P−

2 , whichever was not used on the previous triplet).

We sampled without replacement the number of nullfield trials from the options above and replenished
these options whenever they emptied.

A 60 s rest break was given after every 3 blocks during the training phase. After each rest break, 8
nullfield trials were performed in which the sensory cues were presented in a pseudorandom order.
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The control point assigned to sensory cue 1 (used on all triplet channel trials) and sensory cue 2 was
counterbalanced across participants as was the direction of the force field assigned to P+ and P−.

Prior to the experiment, participants performed a familiarisation phase of 80 trials consisting of nullfield
trials and channel trials for each sensory cue in a pseudorandom order.

1.5 Data analysis

On channel trials, we calculated adaptation as the proportion of the force field that was compensated
for by the participant. This was taken as the slope of the regression (with zero offset) of the time series
of actual (signed) force generated into the channel walls against the time series of forces (based on the
hand velocity in the channel) that would fully compensate for the perturbation had it been present3. For
this analysis, we used the portion of the movement where the hand velocity was greater than 1 cm·s−1.
Singletrial learning was calculated as the change in adaptation between the first and second channel
trial of a triplet (Fig. 3c).

To identify changes in singletrial learning between triplets in the memory updating experiment, twoway
repeatedmeasures ANOVAs were performed with factors of cue (2 levels: cue 1 and cue 2) and perturba
tion (2 levels: P+ and P−). To test whether the modulatory effects of cue and perturbation were confined
to separate subsets of participants, we quantified the effect of each by computing, on an individual
participant basis, the following contrasts in singletrial learning: P+

1 + P−
1 − P+

2 − P−
2 (cue effect) and P+

1

+ P+
2 − P−

1 − P−
2 (perturbation effect). These are the same contrasts that underlie the ANOVAbased

analysis we conducted to test whether each manipulation had an overall effect across participants. We
then split participants into 2×2 groups based on whether each effect was below or above a threshold
level. If separate subsets of participants showed each effect, a Fisher’s exact test should indicate a
significant difference between the resulting 2×2 histogram and its surrogate that assumes that the two
binarised effects are distributed independently across participants. The nonsignificant results reported
in the main text used a median split for both effects (0.08 for cue, and 0.27 for perturbation; Extended
Data Fig. 7f). We obtained essentially identical results when we instead used a split at 0 for both effects
(odds ratio = 1.3, p = 1.00). All statistical tests were twosided. Data analysis was performed using
MATLAB R2020a.

2 COIN model

2.1 Generative model

The generative model that underlies the COIN model is described in the Methods. Here we first give
details of a stickbreaking representation of the distributions of the infinite global and local transition (or
cue) probability vectors under the hierarchical Dirichlet process (HDP, a key component of the generative
model). We then present an alternative representation of the HDP known as the Chinese restaurant
franchise, which allows a sequence of contexts (or cues) to be sampled directly from the prior of the
HDP by marginalising out the infinite global and local transition (or cue) probabilities, such that they
never need to be explicitly represented. In turn, this representation allows efficient posterior inference
algorithms, which we describe in Section 2.3.
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2.1.1 The stickbreaking construction

The infinite global transition probability vector β = (βj)
∞
j=1 obeys a GEM(γ) distribution, which can be

sampled from via a ‘stickbreaking’ construction that is analogous to recursively breaking a stick of length
1 into infinitely many pieces:

βj = β′j

j−1∏
i=1

(
1− β′i

)
β′j | γ ∼ Beta(1, γ) . (S2)

In each step j = 1, . . . ,∞, a portion β′j ∈ [0, 1] of the remaining stick, which has length
∏j−1

i=1 (1− β′i), is
broken off and assigned to βj . This guarantees that 0 ≤ βj ≤ 1 and

∑∞
j=1 βj = 1, as required for a set

of probabilities. The probabilities generated by this stickbreaking construction decay exponentially as a
function of j in expectation, with the hyperparameter γ controlling the rate of decay:

E[βj ] =
1

1 + γ

(
γ

1 + γ

)j−1

. (S3)

For context j, the infinite local transition probability vector πj = (πjk)
∞
k=1 obeys a Dirichlet process dis

tribution DP
(
α+ κ,

αβ+κ δj
α+κ

)
, which can be sampled from by drawing an infinite set of stickbreaking

weights π̃j = (π̃jk)
∞
k=1 via a stickbreaking construction, associating each weight with a ‘to context’

by drawing a corresponding infinite set of variables (χ̃jk)
∞
k=1 from a discrete distribution (each χ̃jk ∈

{1, . . . ,∞} represents the identity of the ‘to context’ associated with weight π̃jk) and summing weights
that are associated with the same ‘to context’:

πj =

∞∑
k=1

π̃jk δχ̃jk
χ̃jk | α,β, κ ∼ Discrete

(
αβ + κ δj
α+ κ

)
π̃j | α, κ ∼ GEM(α+ κ) . (S4)

Here δχ̃jk
is an infinitedimensional onehot vector with the χ̃thjk element set to 1 and all other elements

set to 0. Note that this is a twolevel hierarchical process; global transition probabilities generated at the
top level (Eq. S2) are used to generate local transition probabilities at the bottom level (Eq. S4).

Analogous constructions can be used to sample the infinite global and local cue probability vectors but
with γ replaced with γe, α replaced with αe and κ (the selftransition bias parameter) set to zero.

2.1.2 The Chinese restaurant franchise with loyal customers

Here we present an alternative representation of the hierarchical Dirichlet process that provides a mech
anism for sampling sequences of contexts and cues from the prior of the COIN model as well as a frame
work for posterior inference. In addition, this representation provides intuitions for how the generative
process works as trials are experienced.

In the Chinese restaurant franchise (CRF)9, there are an infinite number of restaurants each with an
infinite number of tables. Each table serves only one dish from an infinite global menu shared by all the
restaurants (hence the franchise). The same dish can be served on multiple tables in the same restaurant
as well as in multiple restaurants. Each customer enters a restaurant and is seated at a table where a
dish is served.

In the COIN model, customers correspond to trials and will arrive in the same temporal order as the trials.
For both context transitions and cue emissions, the restaurant that the customer enters corresponds to
the current context (i.e. if context t is ct = j, customer t enters restaurant j). For context transitions, the
dish served at the table at which the customer sits corresponds to the next context (i.e. if dish k is served,
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a transition to context ct+1 = k occurs). For cue emissions, the dish served at the table corresponds to
the sensory cue emitted on that trial (i.e. if dish k is served, cue qt = k is emitted). Note that separate
CRFs are used for context transitions and cue emissions.

Although there an infinite number of restaurants, tables and dishes in the franchise, to generate a finite
amount of data, we only need to consider the finite number of occupied tables and the finite number of
dishes served at those tables (i.e. the contexts and sensory cues already experienced), as well as one
empty table in each occupied restaurant and one novel dish (so that a novel context or sensory cue can
be experienced). See also note in Section 2.2.

Table assignment and dish selection

Let c1:t−1, τ1:t−1, k1:t−1 be the sequence of restaurants, tables and dishes associated with the first t − 1
customers. Let us define the following summary statistics of these past customers: J is the number of
restaurants with at least one customer, K is the number of unique dishes across the franchise served
to at least one customer (for the contextCRF K = J , as we will see below), the elements of the J ×K
matrix M, mjk, store the number of tables in restaurant j already serving dish k, with sums across
columns, mt = M1, and rows, md = MT 1, respectively counting the number of occupied tables in
each restaurant and the number of tables serving each dish across the franchise, and {ñj}Jj=1 is a set of
vectors with elements ñjτ counting the number of customers in restaurant j sitting at table τ = 1 . . .mt

j

so far.

Let us assume that customer t was allocated to restaurant ct = j (the way this allocation is made will be
described below). Then the table chosen by customer t in that restaurant, τt, is randomly sampled as

τt | τ1:t−1, c1:t−1, ct = j, α ∼ Discrete

( [
ñT
j , α

]
ñT
j 1+ α

)
. (S5)

Thus the customer either sits at an occupied table, 1 ≤ τt ≤ mt
j , with probability proportional to the

number of people already sitting at that table (and ñjτt ← ñjτt + 1), or sits at a new table, τt = mt
j + 1,

with probability proportional to α (and in this case ñj ←
[
ñT
j , 1

]T). The hyperparameter α controls how
the number of occupied tables grows as a function of the number of customers in the restaurant. With
small α, most customers will sit at the same table, and so the number of occupied tables will grow slowly
over trials. This table assignment process has the effect that tables with many customers attract even
more customers.

The dish served to customer t, kt, is the same as that served to all previous customers sitting at the same
table. Otherwise, if this customer is the first to sit at this table, the dish for the table is randomly sampled
as

kt | τ1:t−1, k1:t−1, c1:t−1, ct = j, γ ∼ Discrete


[
mdT, γ

]
mdT 1+ γ

 . (S6)

Thus when the customer sits at a new table, they are either served an existing dish, 1 ≤ kt ≤ K, with
probability proportional to the number of tables already serving that dish in the franchise (and mjkt ←
mjkt + 1), or they are served a new dish, kt = K + 1, with probability proportional to γ (and in this case
M←

[
M, δj

]
andK ← K+1). The hyperparameter γ is analogous to that of α for table assignments: it

controls how the number of dishes grows as a function of the number of tables. With small γ, most tables
will have the same dish, and so the number of dishes (i.e. contexts and cues) will grow slowly over trials.
With large γ, most tables will have different dishes, and so the number of dishes (i.e. contexts and cues)
will grow rapidly over trials. As a result, this dish assignment process is similar to that for tables: it has
the effect that dishes already served at many tables in the franchise will be served at even more tables,
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and since the dish served to the customer ultimately determines the next context (or current cue), this
makes commonly experienced transitions (or cues) increasingly likely in the future.

Note that although separate CRFs are used for context transitions and cue emissions with respect to
table assignment and dish selection, the CRFs are not independent, as the restaurant to which customer
t is allocated, ct, is decided by the dish served to the previous customer in the CRF for context transitions:

ct = kcontextt−1 , (S7)

(and if this is the first customer to enter this restaurant, ct > J , then M←
[
MT, 0

]T and J ← J + 1).

This completes the descriptions of these two CRFs as we have fully defined how c1:t−1, τ1:t−1, k1:t−1

determines ct (Eq. S7), τt (Eq. S5) and kt (Eq. S6).

Loyal customers

For the context transitions, the process we have described so far has no selftransition bias. To include
such a bias (as in the COIN model), the CRF can be extended to include loyal customers10.

Each restaurant now has a specialty dish whose index is the same as that of the restaurant (e.g. dish j is
the specialty dish of restaurant j). The specialty dish is available in all restaurants, but is more popular in
the dish’s namesake restaurant. This leads to family loyalty to a restaurant, as the increased popularity
of the specialty dish means that children are more likely to eat at the same restaurant as their parent.
Hence, multiple consecutive generations often eat at the same restaurant.

To simplify inference in the CRF with loyal customers, a distinction is made between a considered dish, k̄t,
and a served dish, kt. This also requires us to introduce analogous additional summary statistics of past
customers: K̄ is the number of unique dishes across the franchise considered by at least one customer,
the elements of the J × K̄ matrix M̄, m̄jk, store the number of tables in restaurant j at which dish k was
considered, with sums across columns, m̄t, and rows, m̄d, as before. In addition, a new parameter κ
controls the strength of the loyalty effect.

We again assume that customer t was allocated to restaurant ct = j (the way this allocation is done is un
changed from Eq. S7). Then the table chosen by customer t in that restaurant is determined analogously
to the previous setup (Eq. S5) with α replaced by α+ κ:

τt | τ1:t−1, c1:t−1, ct = j, α, κ ∼ Discrete

( [
ñT
j , α+ κ

]
ñT
j 1+ α+ κ

)
. (S8)

As before, a customer choosing an already occupied table eats the dish that is already served there.
Otherwise, the first customer to sit at a table considers a dish for that table without acknowledging the
increased popularity of the specialty dish of the restaurant, i.e. analogously to how dishes were served in
the previous setup (Eq. S6, but depending on the popularity of previously considered dishes, rather than
previously served dishes):

k̄t | τ1:t−1, k̄1:t−1, c1:t−1, ct = j, γ ∼ Discrete


[
m̄dT, γ

]
m̄dT 1+ γ

 . (S9)

However, with some probability ρ = κ/(α + κ) (which acts as a normalised selftransition bias), this
considered dish is overridden (perhaps by a waiter’s suggestion) and the specialty dish is served instead:

kt | k̄t, ct = j, α, κ ∼ Discrete
(
(1− ρ) δk̄t + ρ δj

)
. (S10)
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The distribution of served dishes in the CRF with loyal customers can be related to the global transition
probabilities β of the stickbreaking representation (Section 2.1.1). This relationship allows the CRF to be
used to infer the global transition (and cue) probabilities at inference (Sections 2.3.7 and 2.3.8). Each dish
on the infinite global menu of dishes has an overall popularity or rating that determines the distribution
of dishes in each restaurant. In the special case when ρ = 0, the served dishes are distributed as β,
regardless of the restaurant. In contrast, when ρ > 0, the increased popularity of the specialty dish leads
to modified dish ratings, with the served dishes in restaurant j being distributed as (αβ + κ δj)/(α+ κ).
These modified dish ratings correspond to the expected local transition probabilities under the Dirichlet
process prior (Eq. 8).

2.2 A note on the hypothesis space of contextual inference

To perform exact contextual inference, all possible context sequences should be considered, with each
sequence assigned a posterior probability. However, in practice, this is infeasible, as the number of
possible context sequences grows rapidly over time. For example, in an environment with C contexts,
the number of possible context sequences over t time steps is Ct. This is a vast hypothesis space
even at a moderate number of time points (consider just two contexts and 50 time steps). Furthermore,
if the number of contexts in the environment is unknown and unbounded (as in the COIN model), the
number of contexts that need to be considered in a sequence grows with the length of the sequence,
as a novel context could have become active at each point in time. To deal with this complexity, rather
than considering all possible context sequences, a smaller, tractable subset of context sequences can be
considered instead. This is the strategy employed by the inference algorithm of the COIN model, which
uses particles to sample context sequences according to their posterior probability. If the probability
of a particular context sequence is small under the exact posterior, a proportionately small fraction of
particles (or perhaps even none given that a finite number of particles are used in practice) will sample
this sequence.

2.3 Inference with particle learning

The goal of inference is to estimate a joint posterior distribution over the number of contexts, the current
context (e.g. in Fig. 1c, the identity of the currently manipulated object, such as a cup or a sugar bowl),
the current state of each context (e.g. the current weight of the cup) and the parameters governing the
state dynamics (e.g. how quickly liquid empties when the cup is tilted), the context transitions (e.g. that
we tend to handle the sugar bowl once we have filled our cup) and the cue emissions (e.g. that cups
tend to have a similar visual appearance) at each point in time based on the state feedback (e.g. the
noisy weight of the currently manipulated object, purple dots) and sensory cue (e.g. visual appearance
of the currently manipulated object, green and yellow background colour) observations made so far.
To perform posterior inference in an online (i.e. recursive) manner, we use a sequential Monte Carlo
(simulationbased) method known as particle learning11,12.

Particle learning extends standard particle filtering methods by incorporating the estimation of time
invariant parameters via a fullyadapted filter that utilises conditional sufficient statistics for the parame
ters. To sequentially compute a particle approximation to the joint posterior distribution of contexts, states
and conditional sufficient statistics for the parameters, an essential state vector is constructed and is used
together with a predictive distribution and propagation rule to build a resamplingsampling framework.

Central to particle learning is the essential state vector zt that contains samples and/or sufficient statistics
of the contexts, states and parameters. Online context and state filtering and parameter learning is
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equivalent to sequential filtering of the essential state vector:

p(zt|D1:t) ∝
∫
p(zt|zt−1,Dt)p(Dt|zt−1)p(zt−1|D1:t−1)dzt−1, (S11)

where D1:t = {D1, . . . ,Dt} is the sequence of observations.

Particle learning uses an ensemble of particles Zt = {z(i)t }Pi=1 that are equally weighted to form a discrete
approximation to the filtering distribution p(zt|D1:t) via

p̂(zt|D1:t) =
1

P

P∑
i=1

δ(zt − z(i)t ), (S12)

where δ(·) is the Dirac delta function. A recursive formula for obtaining p̂(zt|D1:t) from p̂(zt−1|D1:t−1)
is suggested by the decomposition shown in Eq. S11. First, in a resample step, particles are sampled
with replacement from a multinomial distribution with weights proportional to the predictive distribution
p(Dt|zt−1). This produces a particle approximation to the smoothed distribution p(zt−1|D1:t) by replicat
ing/discarding particles based on how well they predicted the observations at time t. Then, in a propagate
step, the resampled particles are propagated via the evolution equation p(zt|zt−1,Dt). A final sample step
can also be performed in which new parameters are sampled from their updated posterior distributions
conditioned on the propagated essential state vectors. Although this last step is optional, without it the
diversity of parameters would reduce with each resampling step until all particles shared the same pa
rameters, a problem known as degeneracy. A single time step of particle learning is summarised in
Algorithm 1.

resample {z(i)t−1}Pi=1 with weights w
(i)
t ∝ p(Dt|z(i)t−1) to obtain {z̃

(i)
t−1}Pi=1 and reset particle weights to

1/P
for i = 1, . . . , P do
propagate z̃(i)t−1 to z

(i)
t via p(zt|z̃(i)t−1,Dt)

sample θ(i) from p(θ|z(i)t )
end for

Algorithm 1: The general particle learning algorithm.

In the COIN model, the essential state vector zt = {ct, sxt , sθt , θ} contains the context ct, the sufficient
statistics (mean and variance) for the states sxt , the sufficient statistics for the parameters sθt and the
parameters θ. Following the direct assignment algorithm of Ref. 9, we do not sample the local transition
and cue distributions. Instead, we sample the global transition and cue distributions and integrate out the
local distributions by computing their expected values (Eqs. S15 and S16). Hence, in the COIN model
θ = {β,βe, {ω(j)}j}. The propagate step in Algorithm 1 can be decomposed into three separate steps:

p(zt|zt−1, yt, qt) = p(sθt |sxt , ct, zt−1, yt, qt)︸ ︷︷ ︸
propagate sθt−1

p(sxt |ct, zt−1, yt)︸ ︷︷ ︸
propagate sxt−1

p(ct|zt−1, yt, qt)︸ ︷︷ ︸
propagate ct−1

.
(S13)

First, the context is propagated conditioned on the state feedback and the sensory cue. Then, the suffi
cient statistics for the states are propagated conditioned on the context and the state feedback. Finally,
the sufficient statistics for the parameters are sampled conditioned on the context, the sufficient statistics
for the states, the state feedback and the sensory cue.

We now describe the resample, propagate and sample steps in detail for the COIN model. Note that for
simplicity, we suppress the superscript notation that indexes particles except where it is necessary (e.g.
when summing over particles, as in Eqs. S29 and S37).
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2.3.1 Resample

Given the particle approximation p̂(zt−1|y1:t−1, q1:t−1), the updated smoothed approximation
p̂(zt−1|y1:t, q1:t) is obtained by resampling particles with weights wt proportional to the predictive
distribution:

wt ∝ p(yt, qt|zt−1)

=

C+1∑
j=1

p(ct = j, yt, qt|zt−1)

=

C+1∑
j=1

p(ct = j|zt−1)p(qt|ct = j, zt−1)p(yt|ct = j, zt−1),

(S14)

where C is the number of contexts known up to trial t− 1. The sum over contexts is to C + 1 to include
the possibility that the latest observations were generated by a novel context, the (C + 1)th context.

The first term of the predictive distribution is the expected local transition probability, which can be written
as

p(ct|zt−1) =
αβct + κδct−1ct + nct−1ct

α+ κ+ nct−1.
, (S15)

where δct−1ct is the Kronecker delta that is equal to 1 if ct−1 = ct and 0 otherwise and nct−1ct denotes the
number of transitions from context ct−1 to context ct up to trial t−1. Dots represents marginal counts. For
example, nct−1. =

∑C
j=1 nct−1j is the number of transitions out of context ct−1 up to trial t − 1. Note that

the probability of transitioning to context ct depends on the global transition probability βct , regardless
of the identity of the previous context ct−1. Thus when the global transition distribution is updated (see
Section 2.3.8), the local transition probabilities from all contexts are also updated (Extended Data Fig. 1b).
Importantly, this means that transition probabilities learned in one context generalise to all contexts.

The second term of the predictive distribution is the expected local cue probability, which can be written
as

p(qt|ct, zt−1) =
αeβeqt + nectqt
αe + nect.

, (S16)

where nectqt denotes the number of emissions of cue qt in context ct up to trial t− 1, nect. =
∑Q

qt=1 n
e
ctqt is

the number of cues emitted in context ct up to trial t − 1 and Q is the number of cues emitted up to trial
t− 1.

The third term of the predictive distribution depends on the predicted state feedback in each context and
is given by

p(yt|ct, zt−1) = N (ŷ
(ct)
t , p

(ct)
t ), (S17)

where ŷ(ct)t and p(ct)t are the mean and variance of the predicted state feedback distribution for context ct
provided by the time update equations of the Kalman filter (Algorithm 2).

The particles of the smoothed approximation p̂(zt−1|y1:t, q1:t) are propagated via the three steps outlined
in Eq. S13, which we now describe in Sections 2.3.2 to 2.3.5 in detail.
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for j = 1, . . . , C + 1 do
if j ≤ C then
x̂
(j)
t|t−1 = a(j)x̂

(j)
t−1|t−1 + d(j)

v
(j)
t|t−1 = a(j)v

(j)
t−1|t−1a

(j) + σ2q
else if j = C + 1 then
x̂
(j)
t|t−1 = d(j)/(1− a(j))

v
(j)
t|t−1 = σ2q/(1−

[
a(j)
]2
)

end if
ŷ
(j)
t = x̂

(j)
t|t−1

p
(j)
t = v

(j)
t|t−1 + σ2r

end for
Algorithm 2: State and state feedback prediction. Mean and variance of the predicted state distribu
tion and the predicted state feedback distribution for each known context (j ≤ C) and a novel context
(j = C + 1). For a novel context, the mean and variance of the predicted state distribution are equal
to the mean and variance of the stationary distribution (Eq. 4) conditioned on state retention and drift
parameters sampled from the prior.

2.3.2 Propagate the context

The context is propagated by sampling ct ∈ {1, . . . , C + 1} from the ‘responsibilities’

p(ct|zt−1, yt, qt) ∝ p(ct, yt, qt|zt−1), (S18)

where p(ct, yt, qt|zt−1) is given in Eq. S14. As can be appreciated from Eq. S14, contextual inference
fuses information from multiple sources (Fig. 1b, open arrows). First, it uses prior expectations p(ct =
j|zt−1) about which context the learner is in based on the history of contexts inferred so far (the global
transition probability of each context as well as the context transition counts). Second, it evaluates the
likelihoods that the current sensory cue and state feedback observations are generated by each context,
p(qt|ct = j, zt−1) and p(yt|ct = j, zt−1), respectively. Note that the inclusion of C + 1 in the sample space
of ct supports a flexible, openended creation of new memories—a hallmark of nonparametric models.

If ct = C + 1 (i.e. the context is new), C is incremented and β is transformed by sampling b ∼ Beta(1, γ)
and assigning βC+1 ← (1− b)βC and βC ← bβC . Similarly, if qt = Q+ 1 (i.e. the sensory cue is new), Q
is incremented and βe is transformed by sampling be ∼ Beta(1, γe) and assigning βeQ+1 ← (1− be)βeQ and
βeQ ← beβeQ.

2.3.3 Propagate the sufficient statistics for the states

Conditioned on the sampled context variable, the sufficient statistics (mean and variance) for the state of
each known context are propagated via themeasurement update equations of the Kalman filter (Algorithm
3).
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for j = 1, . . . , C do
if ct = j then
e
(j)
t = yt − ŷ(j)t

k
(j)
t = v

(j)
t|t−1p

(j)
t

x̂
(j)
t|t = x̂

(j)
t|t−1 + k

(j)
t e

(j)
t

v
(j)
t|t = (1− k(j)t )v

(j)
t|t−1

else
x̂
(j)
t|t = x̂

(j)
t|t−1

v
(j)
t|t = v

(j)
t|t−1

end if
end for

Algorithm 3: State filtering. The difference between the actual state feedback yt and the predicted
state feedback ŷ(j)t (i.e. the prediction error e(j)t ) for context j is used to update the mean of the
predicted state distribution x̂(j)t|t−1 of that context if it is inferred to be responsible for generating the

state feedback (i.e. if ct = j). The prediction error is scaled by the Kalman gain k(j)t , which is close to
0 when σ2r ≫ v

(j)
t|t−1 and close to 1 when σ

2
r ≪ v

(j)
t|t−1. Note that although a single particle updates the

state of only one context in an allornone manner (the state of the context sampled by that particle),
different particles may update the states of different contexts, thus leading to graded updates on
average across the ensemble of particles.

2.3.4 Propagate the sufficient statistics for the state retention and drift parameters

For each j ∈ {1, . . . , C}, a pair of states (x
(j)
t−1, x

(j)
t ) are sampled from

p(x
(j)
t−1, x

(j)
t |ct, zt−1, yt) = p(x

(j)
t−1|ct, zt−1, yt)p(x

(j)
t |x

(j)
t−1, ct, zt−1, yt)

= N (x̂
(j)
t−1|t, v

(j)
t−1|t)N (x̃

(j)
t|t , ṽ

(j)
t|t ),

(S19)

where x̂(j)t−1|t = x̂
(j)
t−1|t−1 + g(x̂

(j)
t|t − x̂

(j)
t|t−1), g = a(j)v

(j)
t−1|t−1/v

(j)
t|t−1, v

(j)
t−1|t = v

(j)
t−1|t−1 + g2(v

(j)
t|t − v

(j)
t|t−1),

x̃
(j)
t|t = ṽ

(j)
t|t [(a

(j)x
(j)
t−1 + d(j))/σ2q + δctjyt/σ

2
r ] and ṽ

(j)
t|t = 1/(1/σ2q + δctj/σ

2
r ). The sufficient statistics for the

state retention and drift parameters are then propagated as follows:

s
(j)
1 ← s

(j)
1 + x

(j)
t x̄

(j)
t−1

s
(j)
2 ← s

(j)
2 + x̄

(j)
t−1x̄

(j)T
t−1 ,

(S20)

where x̄(j)
t−1 =

[
x
(j)
t−1 1

]T
.

2.3.5 Propagate the sufficient statistics for the parameters governing the global transition and
cue probabilities

The context transition counts and the contextspecific cue counts are propagated by incrementing nct−1ct

and nectqt , respectively.
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2.3.6 Sample the state retention and drift parameters

For each j ∈ {1, . . . , C}, the hyperparameters of the posterior distribution of the state retention and drift
parameters are computed:

µ(j) = Σ(j)(Σ−1µ+ s
(j)
1 /σ2q)

Σ(j) = (Σ−1 + s
(j)
2 /σ2q)

−1,
(S21)

and a new set of state retention and drift parameters are sampled from

ω(j) | µ(j),Σ(j) ∼ T N (µ(j),Σ(j)). (S22)

2.3.7 Sample the global cue probabilities

To sample βe, a Chinese restaurant process is first simulated to sample each mjk (the number of tables
in restaurant j serving dish k). For each j ∈ {1, . . . , C} and k ∈ {1, . . . , Q},mjk and n are initialised to 0.
Then, for i = 1, . . . , nejk (i.e. for each customer in restaurant j eating dish k), a sample is drawn from

x ∼ Bernoulli

(
αeβek

n+ αeβek

)
, (S23)

n is incremented, and if x = 1, mjk is incremented.

Conditioned on eachmd
k =

∑
j mjk (the total number of tables in all restaurants serving dish k), the global

cue distribution is sampled from

(βe1, . . . , β
e
Q, β

e
Q+1) ∼ Dirichlet(md

1 , . . . ,m
d
Q, γ

e). (S24)

2.3.8 Sample the global transition probabilities

To sample β, a Chinese restaurant process is first simulated to sample each mjk (the number of tables
in restaurant j serving dish k). For each (j, k) ∈ {1, . . . , C}2, mjk and n are initialised to 0. Then, for
i = 1, . . . , njk (i.e. for each customer in restaurant j eating dish k), a sample is drawn from

x ∼ Bernoulli

(
αβk + κδjk

n+ αβk + κδjk

)
, (S25)

n is incremented, and if x = 1, mjk is incremented.

Then, for each j ∈ {1, . . . , C}, wj (the number of times a dish considered at a new table in restaurant j
is overridden by the specialty dish) is sampled from

wj ∼ Binomial

(
mjj ,

ρ

ρ+ βj(1− ρ)

)
. (S26)

Finally, each m̄jk (the number of tables in restaurant j considering dish k) is obtained as

m̄jk =

{
mjj − wj if j = k

mjk otherwise.
(S27)

Conditioned on each m̄d
k =

∑
j m̄jk (the total number of tables in all restaurants considering dish k), the

global transition distribution is sampled from

(β1, . . . , βC , βC+1) ∼ Dirichlet(m̄d
1 , . . . , m̄

d
C , γ). (S28)
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2.4 Stationary context distribution

In Extended Data Fig. 1c and Extended Data Fig. 9cd, we plot the probability of each context under
the stationary distribution, which represents the expected frequency of each context in the long run.
We calculate the stationary context distribution by solving ψ = ψΠ̂ for ψ (a row vector) subject to the
constraint that ψ is a valid probability distribution (i.e. all elements of ψ are nonnegative and sum to 1).
Here Π̂ is the expected local transition probability matrix with elements given by

π̂jk =
1

P

P∑
i=1

αβ
(i)
k + κδjk + n

(i)
jk

α+ κ+ n
(i)
j.

, (S29)

where i indexes each particle.

2.5 Validation of inference

We validated our approximate inference algorithm on synthetic data generated under the generative
model. Data were generated in two settings that differed in terms of the upper bound on the number of
possible contexts (determined by the truncation level of the stickbreaking process). In the singlecontext
setting, only one context was possible. In the multiplecontext setting, up to 10 contexts were possible.
For the singlecontext and multiplecontext settings, we generated 4000 and 2000 synthetic data sets,
respectively, of 500 time steps each. The parameters and hyperparameters used to generate these data
sets were chosen so that the distributions of the numbers of contexts and cues (Extended Data Fig. 2b)
were typical for motor learning experiments.

Each data set consisted of a sequence of timevarying latent variables (contexts and states) and ob
servations (state feedback and sensory cues) as well as a set of timeinvariant parameters for the state
dynamics of each context (state retention factor and state drift). We applied our inference algorithm
with 100 particles to the sequence of observations and at each time step calculated a posterior predic
tive pvalue for each of the timevarying latent variables, observations and parameters. For continuous
variables (state feedback, states and parameters), the posterior predictive pvalue was calculated by
evaluating the cumulative distribution function (CDF) of the predictive distribution at the true value of the
variable. For discrete variables with integervalued support (contexts and sensory cues), the posterior
predictive pvalue was calculated as

posterior predictive pvalue = F (x− 1) + uf(x), (S30)

where f() is the predicted probability mass function, F () is the cumulative mass function, x is the true
value of the variable and u ∼ U(0, 1) is a uniform random variable on [0, 1]. Crucially, if the predictive
distributions/functions are well calibrated, the distributions of posterior predictive pvalues will be uniformly
distributed between 0 and 1, and hence the cumulative probability of posterior predictive pvalues will lie
on the identity line (Extended Data Fig. 2ab).

The labelswitching problem (see Section 2.9.2) complicates model validation with respect to variables
that are associated with a specific context (the state of each context, the parameters for the state of
each context and the context itself). We addressed this issue in several ways. In the singlecontext
setting (Extended Data Fig. 2a), we circumvented the labelswitching problem by limiting the number of
contexts to 1. In the multiplecontext setting (Extended Data Fig. 2b), we either integrated out the context
or optimally permuted the context labels. Specifically, to calculate the posterior predictive pvalue for the
state, we evaluated the CDF of the marginal predictive distribution (the sum over contexts of the predictive
distributions of the state of each context weighted by the predicted context probabilities) at the true value
of the state of the current context. An analogous approach was taken to calculate the posterior predictive
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pvalue for the parameters of the state. To calculate the posterior predictive pvalue for the context, we
first found the optimal permutation of labels that minimised the Hamming distance between the context
sequence of each particle and the true context sequence. This relabelling procedure was repeated at
each time step based on the sequence of contexts up to and including the current time step.

2.6 Extension to visuomotor rotation paradigms

In visuomotor rotation experiments, the cursor moves in a different direction to the hand (which is occluded
from vision). This introduces a discrepancy between the location of the hand as perceived by vision and
proprioception. To model this discrepancy, we include a contextdependent bias parameter b(ct) in the
state feedback (Eq. 5):

yt = x
(ct)
t + b(ct) + vt, vt ∼ N (0, σ2r ). (S31)

To support Bayesian inference, we place a normal distribution prior over this parameter:

b(j) | µb, σb ∼ N (µb, σ
2
b). (S32)

We set µb to zero based on the assumption that positive and negative biases are equally probable and
σb to 70−1 by hand to match the empirical data in Extended Data Fig. 9el.

The inference algorithm is extended in the following ways:

1. For each j ∈ {1, . . . , C}, the sufficient statistics for the bias parameter are propagated as follows:

s
(j)
3 ← s

(j)
3 + δctj(yt − x

(j)
t )

s
(j)
4 ← s

(j)
4 + δctj ,

(S33)

where x
(j)
t is sampled from p(x

(j)
t |ct, zt−1, yt) = N (x̂

(j)
t|t , v

(j)
t|t ). Note that this step is omitted on

channel trials, as there is no state feedback.

2. For each j ∈ {1, . . . , C}, the hyperparameters of the posterior distribution of the bias parameter are
computed:

µ
(j)
b = σ

(j)2
b (µb/σ

2
b + s

(j)
3 /σ2r )

σ
(j)2
b = (1/σ2b + s

(j)
4 /σ2r )

−1.
(S34)

and a new bias parameter is sampled from:

b(j) | µ(j)b , σ
(j)
b ∼ N (µ

(j)
b , σ

(j)2
b ). (S35)

The inference algorithm is also modified in the following ways:

1. The predicted state feedback (Algorithm 2) is changed to ŷ(j)t = x̂
(j)
t|t−1 + b(j).

2. The mean of the state distribution used to propagate the sufficient statistics for the state (Eq. S19)
is changed to x̃(j)t|t = ṽ

(j)
t|t [(a

(j)x
(j)
t−1 + d(j))/σ2q + δctj(yt − b(j))/σ2r ].
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2.7 Model implementation

We applied the inference algorithm described in Section 2.3 to a sequence of noisy state feedback ob
servations and, where applicable, sensory cues (numbered by the order they were presented in the
experiment). On each trial, the state feedback was assigned a value of 0 (nullfield trials), +1 (P+ pertur
bation trials) or−1 (P− perturbation trials) plus i.i.d. zeromean Gaussian observation noise with variance
σ2r . Because both motor noise and sensory noise influence observed movement kinematics (the state
feedback), we set σ2r to σ2m + σ2s under the assumption that motor and sensory noise are i.i.d. Gaussian
variables (with variances σ2m and σ2s , respectively) that sum to produce the final observation noise. To
reduce the number of free parameters in the model, we set σs to 0.03 under the assumption that sensory
noise is typically no more than around one tenth (∼ 3 s.d.) of the perturbation magnitude.

Adaptation at on trial t was modelled as the motor output ut plus i.i.d. zeromean Gaussian noise:

at ∼ N (ut, σ
2
m). (S36)

The motor output was obtained by summing, for each particle, the means of the predicted state feedback
distributions for each known context and a novel context weighted by their predicted probabilities and
then averaging across all P particles:

ut =
1

P

P∑
i=1

C+1∑
j=1

[ ∫
ytp(yt|ct = j, z

(i)
t−1)dyt

]
p(ct = j|qt, z(i)t−1), (S37)

where the predicted state feedback distribution p(yt|ct, zt−1) is given in Eq. S17, and the predicted prob
abilities p(ct|qt, zt−1) are

p(ct|qt, zt−1) ∝ p(qt, ct|zt−1)

= p(qt|ct, zt−1)p(ct|zt−1),
(S38)

where p(qt|ct, zt−1) and p(ct|zt−1) are defined in Eqs. S15 and S16. Note that in the absence of a bias
parameter (or when the bias parameter is zero), the mean of the predicted state feedback distribution for
each context is equal to the mean of the predicted state distribution for each context. Hence, Eq. S37 is
applicable to force field experiments, where there is no bias and the motor output can be defined in terms
of the predicted state distribution for each context, as well as visuomotor rotation experiments, where
there is a bias and the motor output is defined in terms of the predicted state feedback distribution for
each context.

On channel trials (Pc), we omitted state feedback as the state (e.g. the magnitude of a force field or
visuomotor rotation) is not observed. This was achieved by modifying the inference algorithm in the
following ways:

1. The state feedback likelihood term (Eq. S17) did not contribute to the weights used to resample
particles (Eq. S14) or the probabilities used to propagate the context (Eq. S18). If there were no
sensory cues, resampling was omitted altogether as the particle weights are uniform in this case.

2. The measurement update steps were omitted when updating the state estimate (Algorithm 3), that
is x̂(j)t|t = x̂

(j)
t|t−1 and v

(j)
t|t = v

(j)
t|t−1. Hence, on channel trials, each state estimate is updated based

only on the inferred dynamics (state retention and drift parameters) ascribed to that context, and
there is no errorbased learning.

3. To propagate the sufficient statistics for the retention and drift parameters, a pair of states (x(j)t−1, x
(j)
t )

are sampled from a distribution that is equivalent to Eq. S19 but that does not condition on yt (and
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hence does not need to condition on ct either):

p(x
(j)
t−1, x

(j)
t |zt−1) = p(x

(j)
t−1|zt−1)p(x

(j)
t |x

(j)
t−1, zt−1)

= N (x̂
(j)
t−1|t−1, v

(j)
t−1|t−1)N (x̃

(j)
t|t−1, ṽ

(j)
t|t−1),

(S39)

where x̃(j)t|t−1 = a(j)x
(j)
t−1 + d(j) and ṽ(j)t|t−1 = σ2q.

The number of possible contexts in the COIN model—although infinite in principle—was limited to be
finite in practice. This was achieved by truncating the stickbreaking process of the GEM to a finite level.
In most instances, we limited the number of possible contexts to 10, as this number was greater than
the true number of contexts in the experiments we modelled (typically 23). In the singlecontext setting
of model validation, we limited the number of possible contexts to 1 (see Validation of the COIN model).
Note that when the number of possible contexts is limited to 1, the nonparametric switching statespace
model reduces to a single context (i.e. nonswitching) statespace model. Moreover, if the parameters of
the state dynamics are also known (i.e. not learned online), the Kalman filter is recovered as a special
case of the inference algorithm of the COIN model.

To reduce the number of free parameters in the model, we set γ = γe = 0.1, except during model
validation, where we set γ = γe = 0.3 to generate distributions of contexts and cues that are typical of
motor learning experiments.

The algorithm was initialised with C = 0, Q = 0, β1 = 1, βe1 = 1 and the sufficient statistics for the
parameters set to 0.

2.8 Model fitting

2.8.1 Objectives and optimiser

In both experiments, we fit the COIN model to the data of individual participants by fitting the set of
parameters ϑ so as to maximise the data log likelihood. In the spontaneous/evoked recovery experiment,
ϑ = {σq, µa, σa, σd, α, ρ, σm}, and in the memory updating experiment, which included sensory cues, an
additional parameter was fit so that ϑ = {σq, µa, σa, σd, α, ρ, σm, αe}. The likelihood is

p({at′}t′∈T |x⋆1:T , q1:T , ϑ) =
∫∫

p({at′}t′∈T |Z1:T , ϑ)p(Z1:T |y1:T , q1:T , ϑ)p(y1:T |x⋆1:T , ϑ) dZ1:T dy1:T . (S40)

Here {at′}t′∈T is the adaptation data (noisy motor output) of the participant on the set of trials T that were
channel trials, Z1:T (where ZT = {z(i)T }Pi=1, see Section 2.3) is the sequence of inferences made by the
COIN model, x⋆1:T and q1:T are the experimental perturbations and sensory cues (if applicable) presented
to the participant, respectively, and y1:T is the sequence of state feedback observations (perturbations
plus observation noise) experienced by the participant. Note that the state feedback is integrated out,
as the actual observation noise that the participant experienced is hidden from the perspective of the
experimenter. We approximate the likelihood using Monte Carlo integration:

p({at′}t′∈T |x⋆1:T , q1:T , ϑ) ≈
1

R

R∑
r=1

p({at′}t′∈T |Z
(r)
1:T , ϑ) Z(r)

1:T ∼ p(Z1:T |x⋆1:T , q1:T , ϑ)

=
1

R

R∑
r=1

∏
t′∈T

p(at′ |Z
(r)
t′ , ϑ),

(S41)
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where each Z(r)
1:T ∼ p(Z1:T |x⋆1:T , q1:T , ϑ) is obtained by running the COIN model conditioned on a state

feedback sequence y(r)1:T sampled from p(y1:T |x⋆1:T , ϑ) =
∏T

t=1N (x⋆t , σ
2
r ) and p(at′ |Z

(r)
t′ , ϑ) = N (u

(r)
t′ , σ

2
m).

Note that this objective is stochastic because we sample observation noise to generate the state feed
back. Consequently, to fit the COIN model, we used Bayesian adaptive direct search (BADS)13, a
Bayesian optimisation algorithm that alternates between a series of fast, local Bayesian optimisation
steps and a systematic, slower exploration of a mesh grid. Optimisation was performed from 30 ran
dom initial parameter settings with P = 100 particles and R = 100 ‘runs’. Once each optimisation was
complete, we recalculated the log likelihood using P = 1000 particles and R = 1000 runs to obtain a
lowervariance estimate of the log likelihood. This estimate was used to choose the best fit out of 30 for
each participant.

To fit the COIN model to group average data (spontaneous/evoked recovery experiment), we defined the
likelihood as

p({āi}Ni=1|x⋆1:T , ϑ) ≈
1

R

R∑
r=1

N∏
i=1

N (āi|ū(r)i , σ2m/S), (S42)

where āi and ūi are the average adaptation data and motor output of the COIN model across participants
on channel trial i (channel trials are numbered according to the order of their presentation), respectively,
and S is the number of participants in the group. The motor output of the COIN model for each participant
was obtained by running the COIN model conditioned on a participantspecific state feedback sequence
sampled from p(y1:T |x⋆1:T , ϑ). Note that the variance of the motor noise is scaled by 1/S, as the variance
of the mean of S independent random variables each with variance σ2m is σ2m/S. To fit the model to
the average spontaneous recovery group data and the average evoked recovery group data using the
same set of parameters, we calculated the log likelihood separately for each group (using Eq. S42) and
optimised the sum of the log likelihoods.

2.8.2 Validation of fitting: parameter recovery

We used the parameters from the fits of the COIN model to the data for each participant in the sponta
neous recovery and evoked recovery experiments to generate 10 synthetic data sets for each participant
from the corresponding experiment. For a given set of parameters in a given experiment, there were two
sources of variability across different synthetic data sets: sensory noise and motor noise. We then fit
each synthetic data set with the COIN model as we did with real data.

For parameter recovery (Extended Data Fig. 2c), we compared the COIN model parameters that were
used to generate the synthetic data (‘true’ parameters) with the COIN model parameters fit to these
synthetic data sets.

2.9 Inferring internal representations

2.9.1 Integrating out observation noise

The actual observation noise (and thus state feedback) that a participant perceives is hidden from the
perspective of the experimenter. Therefore, to infer the internal representations of a participant (their
sequence of inferences), rather than perform one ‘run’ of a simulation, conditioned on one particular
state feedback sequence, we perform R = 100 runs, each conditioned on a different state feedback
sequence (sampled from the prior). We then integrate out the state feedback by computing a weighted
average of the runs, with each run assigned a weight based on the likelihood of the adaptation data of the
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participant (if available). Formally, this corresponds to approximating the expected value of a function f
of the state feedback (e.g. the internal representations of the COIN model) using importance sampling:

Ep(y1:T |{at′}t′∈T ,x⋆
1:T ,q1:T ,ϑ̂))[f(y1:T )] ≈

R∑
r=1

w
(r)
T∑R

r′=1w
(r′)
T

f(y
(r)
1:T ) y

(r)
1:T ∼ p(y1:T |x

⋆
1:T , ϑ̂), (S43)

where p(y1:T |x⋆1:T , ϑ̂) is the prior distribution of the state feedback, p(y1:T |{at′}t′∈T , x⋆1:T , q1:T , ϑ̂) is the
posterior distribution of the state feedback, {at′}t′∈T is the adaptation data of the participant on the set
of trials T that were channel trials, x⋆1:T and q1:T are the sequences of perturbations and sensory cues
(where applicable) presented to the participant and ϑ̂ are the COIN model parameters fit to the data of the
participant (here and elsewhere in this section we use the hat notation to indicate a maximum likelihood
estimate). The importance weights are equal to the joint likelihood of the adaptation data measured so
far:

w
(r)
T = p({at′}t′∈T |y

(r)
1:T , q1:T , ϑ̂). (S44)

Thus runs that place higher probability on the adaptation data are assigned greater importance weights.
If we assume that the sequence of inferences made by the COIN model Z(r)

1:T (where Z(r)
T = {z(i,r)T }Pi=1,

see Section 2.3) is a deterministic function of the state feedback and sensory cue observations, which is
true if the number of particles in the model is sufficiently large, the importance weights become

w
(r)
T = p({at′}t′∈T |Z

(r)
1:T , ϑ̂) Z(r)

1:T ∼ p(Z1:T |y(r)1:T , q1:T , ϑ). (S45)

These weights can be obtained by running the COIN model (conditioned on the state feedback and
sensory cue observations) to generate the sequence of inferences. Note that these inferences are the
quantities we are actually interested in and which we plot (see below)—the state feedback, in contrast,
is a nuisance variable. Importantly, the importance weights are computed as a product of densities,
p({at′}t′∈T |Z

(r)
1:T , ϑ̂) =

∏
t′∈T p(at′ |Z

(r)
t′ , ϑ̂), which for a large number of factors can result in only a few

runs having significant weight, a problem known as degeneracy. To identify a set of weights that is close
to being degenerate, we calculate the effective sample size:

neffT =

(∑R
r=1w

(r)
T

)2
∑R

r=1w
(r)2
T

. (S46)

The effective sample size is equal to R when all runs have equal weight and 1 when only one run has
nonzero weight. To avoid degeneracy, we calculate the importance weights sequentially for t = 1, . . . , T
and resample runs with probabilities proportional to their weights whenever the effective sample size falls
below a threshold of R/2. Resampling resets the weights to 1/R, thus avoiding degeneracy.

Here we describe the sequential importance sampling with resampling (particle filtering) algorithm for a
single trial. At the end of trial t − 1, each run is associated with a state feedback sequence y(r)1:t−1, a
sequence of inferences Z(r)

1:t−1 obtained by running the COIN model conditioned on the state feedback
sequence and a weight w(r)

t−1. On trial t, the state feedback y(r)t is sampled from p(yt|x⋆t , ϑ̂), and Z
(r)
t−1

is propagated by sampling Z(r)
t from p(Zt|Z(r)

t−1, y
(r)
t , qt, ϑ̂); a sample of Z(r)

t ∼ p(Zt|Z(r)
t−1, y

(r)
t , qt, ϑ̂) is

obtained by performing one update of the COIN model from trial t − 1 to t conditioned on the state
feedback sample. The trajectories y(r)1:t−1 and Z

(r)
1:t−1 are then augmented with y

(r)
t and Z(r)

t , respectively.
Next the importance weights are updated. If an adaptation measurement was made on trial t (e.g. the
trial was a channel trial), the weights are updated according to w(r)

t = p(at|Z(r)
t , ϑ̂)w

(r)
t−1, otherwise they

are left unchanged as w(r)
t = w

(r)
t−1. Finally, nefft is calculated, and if nefft < 1/R, the runs are resampled

with probabilities proportional to their weights, and the weights are reset to w(r)
t = 1/R.
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propagate
for r = 1, . . . , R do
sample y(r)t ∼ p(yt|x⋆t , ϑ̂), where p(yt|x⋆t , ϑ̂) = N (x⋆t , σ̂

2
r ), and then sample

Z(r)
t ∼ p(Zt|Z(r)

t−1, y
(r)
t , qt, ϑ̂) and augment trajectories y(r)1:t−1 and Z

(r)
1:t−1 with y

(r)
t and Z(r)

t

end for
weight
for r = 1, . . . , R do
if an adaptation measurement was made on trial t then
w

(r)
t = p(at|Z(r)

t , ϑ̂)w
(r)
t−1, where p(at|Z

(r)
t , ϑ̂) = N (u

(r)
t , σ̂2m)

else
w

(r)
t = w

(r)
t−1

end if
end for

resample
if nefft < R/2 then
resample runs with probabilities proportional to w(r)

t and reset weights to 1/R
end if

Algorithm 4: The particle filtering algorithm for a single trial, trial t. State feedback is sampled from
the prior and then weighted by the likelihood. The weighted samples of state feedback allow the state
feedback to be integrated out of functions that depend on it (Eq. S43), such as inferences made by
the COIN model.

The particle filtering algorithm is summarised in Algorithm 4 for a single trial. Note that this algorithm
involves a twolevel hierarchy of particle methods, as each particle in the ensemble {Z(r)

t }Rr=1 is itself
an ensemble of particles, that is Z(r)

t = {z(i,r)t }Pi=1. At the bottom level of the hierarchy, particle learning
is used to simulate inference from the perspective of the participant conditioned on the state feedback
and sensory cues (the propagate step of Algorithm 4 for one run is equivalent to Algorithm 1), while at
the top level of the hierarchy, particle filtering is used to simulate inference from the perspective of the
experimenter conditioned on the participant’s adaptation data (Algorithm 4 in its entirety).

The end result of the particle filtering algorithm is a set of R runs, each associated with a state feedback
sequence y(r)1:T , a sequence of inferences Z

(r)
1:T conditioned on the state feedback sequence and a weight

w
(r)
T . In Fig. 2c,e, Fig. 3d, Extended Data Fig. 6f and Extended Data Fig. 7ad, we plot the weighted

average of the inferences associated with these runs, as per Eq. S43. Note that when no adaptation data
is available, this algorithm reduces to performing R independent, equallyweighted simulations, each
conditioned on a different state feedback sequence sampled from the prior. Such ‘openloop’ simulations
were used to generate the model data plotted in Fig. 1, Fig. 2b,d, Fig. 4, Extended Data Fig. 1ce and
Extended Data Figs. 4, 5, 8 and 9, which show the average inferences across runs (equally weighted).

2.9.2 Labelswitching problem

Particle methods present a challenge when it comes to COIN model analysis, as contexts that have the
same label (assigned based on the order in which they were sampled) in different particles do not nec
essarily correspond to the same groundtruth context. For example, in an experiment with two contexts,
P+ and P−, one particle may assign most P+ and P− trials to contexts 1 and 2, respectively, whereas
another particle may assign most P+ and P− trials to contexts 2 and 1, respectively. This socalled ‘label
switching problem’14, which arises because the likelihood is invariant under permutations of the context
labels, renders context labels arbitrary.
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We addressed the labelswitching problem in two ways. In some instances (Fig. 4 and Extended Data
Fig. 7cd and Extended Data Fig. 8), we restricted our analysis to a single context (c∗) with the largest
predicted probability or responsibility and thus disregarded the context labels. In other instances (Figs. 1
and 2, Extended Data Fig. 1ce, Extended Data Fig. 2b for context variable only and Extended Data
Figs. 5 and 9), we found the optimal permutation of labels that minimised the Hamming distance (number
of label mismatches) between the context sequence of each particle in each run and the typical context
sequence across all particles and runs. This was done on each trial based on the sequence of contexts
sampled up to and including the current trial. The typical sequence was defined as the sequence with
the minimum average Hamming distance to all other sequences. To calculate the Hamming distance
between any two sequences, we first found the optimal (minimum Hamming distance) permutation of
labels. For simplicity, we restricted this analysis to particles that had the same number of contexts as the
most common number of contexts across particles and runs (i.e. the posterior mode).

Note that for variables that integrate out the context (adaptation, singletrial learning, the predicted state
distribution, the predicted state feedback distribution, the inferred bias distribution), the labelswitching
problem does not exist. Hence, all particles were used to compute these variables.

2.10 Simulating existing data sets

We performed COIN model simulations on a diverse set of extant data in Fig. 4 (similarly Extended
Data Figs. 5, 8 and 9) in a purely crossvalidated manner, such that we used model parameters fitted to
participants in our own experiments to make predictions for experiments conducted in other laboratories
using other paradigms.

The paradigms in Fig. 4 and Extended Data Fig. 8 were simulated using the 40 sets of parameters fit to
our individual participants’ data from both experiments. One hundred simulations (each conditioned on
a different noisy state feedback sequence) were performed for each parameter set. The results shown
are based on the average of all of these simulations.

The paradigms in Extended Data Fig. 5ao and Extended Data Fig. 9 were variations of the standard
spontaneous recovery paradigm. Therefore, we simulated these paradigms (as well as the paradigm in
Extended Data Fig. 5ps) using the parameters fit to the average spontaneous and evoked recovery data
sets. One hundred simulations (each conditioned on a different noisy state feedback sequence) were
performed. The results shown are based on the average of these simulations.

2.10.1 Savings paradigm

We used the paradigm described in Ref. 20 to simulate savings in the COIN model (Fig. 4a). Participants
completed two forcefield learning sessions that were separated by a 5minute break. Each session
consisted of a preexposure phase (60 trials) with a null field (P0). This was followed by an exposure phase
(125 trials) with a velocitydependent curl field (P+). After the exposure phase, participants performed a
counterexposure phase (15 trials) with the opposite curl field (P−). This was followed by a series of 50
channel trials (Pc). In addition, channel trials were randomly interspersed throughout the exposure phase
(approximately 1 in every 10 trials).
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2.10.2 Anterograde interference paradigm

We used the paradigm described in Ref. 3 to simulate anterograde interference in the COIN model
(Fig. 4b). The paradigm consisted of a preexposure phase (160 trials) with a null field (P0). This was fol
lowed by an exposure phase of variable length (13, 41, 112, 230, or 369 trials) with a velocitydependent
curl field (P+). After the exposure phase, participants performed a counterexposure phase (115 trials)
with the opposite curl field (P−). Channel trials were randomly interspersed throughout the exposure and
counterexposure phases (approximately 1 in every 7 trials).

2.10.3 Environmental consistency paradigms

We used the paradigm described in Experiment 1 in Ref. 2 to simulate the effect of environmental con
sistency on singletrial learning in the COIN model (Fig. 4c). The paradigm consisted of a pretraining
phase (156 trials) with a null field (P0) interspersed with triplets (1 in every 13 trials). This was followed by
a training phase composed of 25 blocks (45 trials each). Each block of the training phase consisted of a
sequence of 30 perturbation trials, 2 channel trials, 10 washout trials, and 1 triplet. During the perturba
tion trials, either P+ or P− was presented. Across trials, the perturbation either switched with probability
p(switch) or remained the same with probability p(stay) = 1 − p(switch). Three groups performed the
experiment with p(stay) set to 0.9, 0.5 and 0.1 for the groups who experienced the slowly, medium and
rapidly switching environment, respectively.

As an additional demonstration of the effect of environmental consistency on singletrial learning in the
COIN model (Extended Data Fig. 8), we simulated the P1N1, P1, P7, and P20 environments of the
forcefield adaptation task described in Ref. 21. The paradigm consisted of a preexposure phase (200
trials) with a null field (P0). In the anticonsistent environment (P1N1), participants experienced 50 cycles
each with a single P+ trial, followed by a single P− trial, followed by 11–13 P0 trials. In the inconsistent
environment (P1), participants experienced 45 cycles with a single P+ trial, followed by 1012 P0 trials.
In the moderately consistent environment (P7), participants experienced 27 cycles with seven P+ trials,
followed by 15–18 P0 trials. In the highly consistent environment (P20), participants experienced 27
cycles with 20 P+ trials, followed by 28–32 P0 trials. To assess singletrial learning during exposure to
the environments, channel trials were randomly interspersed before and after the first P+ trial in a subset
of the forcefield cycles.

2.10.4 Extended exposure phase in a spontaneous recovery paradigm

We modified the spontaneous recovery paradigm (control condition of Experiment 2) described in Ref. 5
(see Section 2.10.8) to simulate the effect of extending the exposure phase on the amount of spontaneous
recovery (Extended Data Fig. 5aj). Following the manipulation of Ref. 13, we tripled the length of the
exposure phase. Thus the number of exposure phase trials was increased from 200 trials (standard
paradigm) to 600 trials (overlearning paradigm).

2.10.5 Pretraining in a spontaneous recovery paradigm

We used the paradigm described in Ref. 14 to simulate the effect of a pretraining phase on the amount of
spontaneous recovery. There were three groups in the experiment, a standard group, a P−

abrupt group and
a P−

gradual group (named Ab, BAb and BgAb, respectively, in the authors’ nomenclature). In the standard
group, the paradigm consisted a preexposure phase (192 trials) with a null field (P0). This was followed
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by an exposure phase (384 trials) with a velocitydependent curl field (P+). After the exposure phase,
participants performed a counterexposure phase (20 trials) with the opposite curl field (P−). This was
followed by a series of 364 channel trials (Pc). The paradigm in the P−

abrupt and P−
gradual groups was the

same as in the standard group but with the following exceptions. In the P−
abrupt group, a pretraining phase

(384 trials) with the same curl field as in the counterexposure phase (P−) was inserted in between the
preexposure and exposure phases. Similarly, in the P−

gradual group, a pretraining phase (384 trials) with
the same curl field as in the counterexposure phase (P−) was inserted in between the preexposure and
exposure phases; however, in this group, the curl field was introduced gradually over 96 trials, maintained
at full strength for 192 trials, and then gradually removed over 96 trials.

2.10.6 Abrupt vs. gradual introduction of a perturbation

The difference in deadaptation after abrupt vs. gradual introduction of a visuomotor rotation was studied
in Ref. 17. The study examined intermanual transfer as well but here we simulate a similar paradigm
without considering the transfer.

We simulated a paradigm that consisted of a preexposure phase (136 trials) in which cursor feedback
was veridical (P0). This was followed by an exposure phase (240 trials) in which the cursor was rotated
either abruptly by 22.5◦ (P+) or gradually in increments of ∼1◦ every 10 trials. Finally, in a postexposure
phase (96 trials), the cursor feedback was again veridical (P0).

2.10.7 Working memory and evoked recovery

We investigated the effect of a workingmemory task on contextual inference in the COINmodel (Extended
Data Fig. 9ad) by simulating a forcefield adaptation task (experiment 1) in Ref. 22. The paradigm con
sisted of a preexposure phase (192 trials) with a null field (P0). This was followed by an exposure phase
(384 trials) with a velocitydependent curl field (P+). After the exposure phase, participants performed a
counterexposure phase (20 trials) with the opposite curl field (P−). Participants then completed either a
memory task (memory group) or a nonmemory task (nonmemory group). This was followed by a series
of 192 channel trials (Pc). Channel trials were randomly interspersed throughout the preexposure and
exposure phases (1 in every 8 trials).

In thememory task, participants were shown 12word pairs (e.g. “COMFORTATOM”, “LEGENDBLANK”).
Immediately after viewing the words, participants were then shown oneword from each pair and instructed
to say the corresponding word aloud. In the nonmemory task, participants were shown strings of letters
(e.g. “kdinedlr”) and were instructed to say aloud the number of vowels in each string.

We hypothesised that context probabilities, which are updated recursively in the COIN model, are main
tained and updated in working memory. The effect of the working memory task is to erase these estimated
probabilities from working memory so that participants instead infer the context based on the stationary
distribution, which represents the expected frequency of each context. Therefore, on the first trial of the
channeltrial phase (i.e. directly after the working memory task), we set the predicted probabilities to their
values under the stationary distribution (calculated using the expected value of the transition probability
matrix under the Dirichlet posterior). For the nonmemory task, the COIN model was simulated as for a
standard spontaneous recovery paradigm.
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2.10.8 Explicit and implicit visuomotor learning

We investigated explicit and implicit learning in the COIN model (Extended Data Fig. 9el) by simulating a
visuomotor rotation task (report and control condition of experiment 2) described in Ref. 5. The paradigm
consisted of a preexposure phase (100 trials) in which cursor feedback was veridical (P0). This was
followed by an exposure phase (200 trials) in which the cursor was rotated by 45◦ in the clockwise direction
(P+, note we use this to represent a positive rotation in this visuomotor paradigm). After the exposure
phase, participants performed a counterexposure phase (20 trials) in which the cursor was rotated by 45◦
in the counterclockwise direction (P−). This was followed by a series of 100 visual error clamp trials (Pc)
in which the cursor moved straight to the target regardless of the participant’s hand trajectory. During the
preexposure, exposure and counterexposure phases, the target was flanked by a 360◦ ring of numbered
visual landmarks spaced 5.625◦ apart. Starting at trial 91 of the preexposure phase, participants were
instructed to report verbally before each reach the landmark that they planned to push the manipulandum
toward to make the cursor hit the target. These reported aiming directions were interpreted as the explicit
component of learning. Implicit learning was quantified by subtracting the explicit component from the
actual movement direction on each trial. After the end of the counterexposure phase, participants were
told to stop using any aiming strategy that they had developed and reach directly for the target during the
remaining visual error clamp phase. A control group performed the identical paradigm but without any
reporting of aim direction.

To simulate learning in a visuomotor rotation experiment in the COIN model, we included an additional
parameter to reflect measurement bias (the difference between hand location perceived by proprioception
and vision), which was inferred online (see Section 2.6).

3 Deterministic statespace models

3.1 Model definition

We also fit a class of nrate deterministic statespace models to the data in the spontaneous/evoked re
covery experiment. These models frame motor adaptation as sequential estimation of a task perturbation
(e.g. the magnitude of a force field) using n separate adaptive states, each of which has its own own
retention factor and learning rate. For the twostate (dualrate) model, n = 2, and for the threestate
model, n = 3. The individual states can be arranged into a state vector:

x̂t =
[
x̂
(1)
t . . . x̂

(n)
t

]T
. (S47)

The motor output on trial t is the sum of the elements in the state vector:

ut =
n∑

i=1

x̂
(i)
t . (S48)

The error on trial t is the difference between the ‘true’ task perturbation x⋆t and the motor output:

et = x⋆t − ut. (S49)

The task perturbation was 0 for nullfield trials, +1 for P+ field trials and −1 for P− field trials. The state
vector is updated across trials as follows:

x̂t+1 = a⊙ x̂t + bet, (S50)
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where a =
[
a(1) . . . a(n)

]T is a retention vector that governs trialbytrial decay, b =
[
b(1) . . . b(n)

]T is a
learningrate vector that governs errordependent adaptation and ⊙ denotes elementwise multiplication.
For a task perturbation of +1, Eq. S50 can be rewritten as

x̂t+1 = Ax̂t + b

= (Ia−B)x̂t + b,
(S51)

where I ∈ Rn×n is the identity matrix and each column ofB ∈ Rn×n is equal to b. We used this reparam
eterisation to ensure that fitted parameters lead to stable learning as assessed through the eigenvalues
of A.

3.2 Model fitting

In both experiments, we fit the deterministic statespace models to the data of individual participants by
fitting the set of parameters ϑ so as to minimise themean squared error between themodel data (Eq. S48)
and the adaptation data measured on channel trials. Under the assumption that the adaptation data is
the model data plus i.i.d. Gaussian noise, p(at|ut, σ2m) = N (ut, σ

2
m), this is equivalent to maximising the

likelihood p({at′}t′∈T |x⋆1:T , ϑ) =
∏

t′∈T p(at′ |ut′ , σ̂2m), where {at′}t′∈T is the adaptation data (noisy motor
output) of the participant on the set of trials T that were channel trials and σ̂2m is the maximum likelihood
estimate of the variance of the motor noise (the mean squared error). To ensure stable solutions, we con
strained the eigenvalues of the matrix A in Eq. S51 to be between 0 and 1. Optimisation was performed
from 30 random initial parameter settings using both MATLAB’s fmincon and BADS. We report the best
solution found by either optimiser.

4 Model comparison

4.1 Criterion

To perform model comparison for individual participants, we calculated the Bayesian information crite
rion15:

BIC = −2 log p({at′}t′∈T |x⋆1:T , ϑ̂) + k log(N), (S52)

where {at′}t′∈T is the adaptation data (noisy motor output) of the participant on the set of trials T that
were channel trials, x⋆1:T is the experimental perturbations presented to the participant, ϑ̂ is the maximum
likelihood estimate of the parameters, k is the number of parameters and N is the number of data points
(channel trials). The first term in the BIC penalises underfitting, whereas the second term penalises
model complexity, as measured by the number of free parameters in the model. Taking the difference in
BIC values for two competing models approximates twice the log of the Bayes factor. A BIC difference
of greater than 4.6 nats (a Bayes factor of greater than 10) is considered to provide strong evidence
in favour of the model with the lower BIC value16. Note that the BIC penalises model complexity more
heavily than the Akaike information criterion (AIC) and corrected AIC (AICc), and hence, relative to AIC
and AICc, BIC handicaps the COIN model as it has more parameters than the dualrate model.

To perform model comparison at the group level, we calculated the grouplevel BIC, which is the sum of
BICs over individuals17.

25



4.2 Validation of model comparison: model recovery

We used the parameters from the fits of the COIN and dualrate models to the data for each participant in
the spontaneous recovery and evoked recovery experiments to generate 10 synthetic data sets for each
participant from the corresponding experiment and model class (COIN and dualrate). For a given set
of parameters in a given experiment, the only source of variability in the dualrate model across different
synthetic data sets was motor noise. In contrast, for the COIN model, in addition to motor noise, sensory
noise also provided a source of variability across data sets. We then fit each synthetic data set with both
the COIN and dualrate model as we did with real data. Note that for the COIN model, we reused the
same synthetic data sets and fits from parameter recovery (Section 2.8.2).

For model recovery (Extended Data Fig. 2d), we examined the proportion of times the difference in BIC
between the COIN and dualrate fits favoured the true (vs. incorrect) model class that was used to gen
erate the data.

5 Mathematical analysis of the COIN model

5.1 Spontaneous and evoked recovery

Here we develop a mathematical analysis of how the main features of spontaneous and evoked recovery
emerge in the COIN model. Specifically, the main features we wish to explain are that spontaneous
recovery is 1. nonmonotonic, with a smooth but transient increase in adaptation, followed by decay, 2.
which asymptotes (at least within the time scale of the experiment) above zero, and evoked recovery
shows 3. very rapid (almost instantaneous) increase to a higher level of adaptation than spontaneous
recovery, followed by monotonic decay, 4. which also asymptotes above zero.

In general, state and contextual inference in a switching statespace model, such as the COIN model, is
analytically intractable. However, inference can be performed analytically under the following assump
tions: (i) there are no state feedback observations (as on channel trials); (ii) the inferred parameters of the
state and context transition dynamics are constant; and (iii) the number of contexts does not change. In
this special case, state estimates are updated according to the state dynamics ascribed to each context:

x̂
(j)
t|t−1 = a(j)x̂

(j)
t−1|t−2 + d(j) (S53)

and predicted context probabilities ψ are updated (independently of the states) according to the context
transition matrix Π:

ψt = ψt−1Π, (S54)

Assumptions (i)(iii) are at least approximately true during the channeltrial phase of the spontaneous
and evoked recovery paradigms, i.e. when our main explicanda occur. Specifically, assumption (i) is
true as there is no state feedback. Assumption (ii) is approximately true as the inferred parameters
governing the state and context transition dynamics are updated relatively little over the timescale relevant
for spontaneous and evoked recovery late in learning. Assumption (iii) is approximately true as novel
contexts tend not to be inferred when state feedback is omitted.

Based on these approximations, we simulated state and contextual inference during the channel phase
of the spontaneous and evoked recovery paradigms (Extended Data Fig. 6ac). We ran the simulations
with 2 contexts using parameters a(1) = a(2) = 0.95, d(1) = −d(2) = 0.0075 and

Π =

[
π11 1− π11

1− π22 π22

]
, (S55)
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where π11 = 0.99 and π22 = 0.9, reflecting the fact that nearly all transitions in the experiment are
selftransitions and the context associated with P+ has been experienced more often than the context
associated with P−.

For spontaneous recovery, on trial 1 (immediately following P−), the state estimates associated with P+

(context 1, red) and P− (context 2, orange) are equal but opposite (Extended Data Fig. 6a), and the con
text probabilities are equal (Extended Data Fig. 6b, solid lines). Hence, adaptation is initially at baseline
(Extended Data Fig. 6c, solid line). Then, based on Eq. S53, the state estimates converge exponentially
(at the same rate) to their steadystate values, x̂(j)∞ = d(j)/(1−a(j)). In particular, for context 1, this means
a monotonically decreasing decay towards a nonzero asymptote (Extended Data Fig. 6a, red) because
experience in P+ is compatible with a positive steadystate (which we incorporated by our choice of a
positive drift rate, d(j), in Eq. S53). At the same time, based on Eq. S54, the predicted probabilities con
verge exponentially to their values under the stationary distribution, limt→∞ψt (Extended Data Fig. 6b,
solid lines). Context 1 is more probable than context 2 under the stationary distribution as P+ was ex
perienced for more trials than P− during the experiment. Hence, the predicted probability of context 1
monotonically increases (Extended Data Fig. 6b, solid red). The net result of these updates is that there
is an initial rise in adaptation due to the increasing contribution of the state associated with context 1, fol
lowed by a fall in adaptation toward a nonzero baseline due to the decay of this state toward a nonzero
steadystate (Extended Data Fig. 6c, solid line). Therefore, the classic nonmonotonic nature of spon
taneous recovery arises because the dynamics of contextual inference (responsible for the initial rise in
adaptation) are faster than the dynamics of state inference (responsible for the subsequent fall in adap
tation). Critically, as long as the inferred state dynamics reflect the statistics of the experiment in which,
by design, the true state of each context never changes (the P+ and P− perturbations are constant), the
dynamics of contextual inference are bound to be faster than the dynamics of state inference, and the
steadystate of adaptation (on the time scale of the experiment) to be above zero. Thus nonmonotonic
spontaneous recovery (feature 1) with a decay that does not reach zero (feature 2), as seen in the ex
perimental data (Fig. 2c), is a robust feature of the COIN model. Indeed, the simulation of the full model
without the approximations we introduced above for analytical tractability also shows such spontaneous
recovery (Fig. 2b, bottom right, and c; also for individual participants whose data shows spontaneous
recovery, Extended Data Fig. 6f) with all three main properties that our analysis here suggests are key
for obtaining this result. Specifically, (a) state estimates associated with P+ and P− approximately cancel
at the beginning of the Pc phase (when weighted with their corresponding context probabilities) and then
monotonically converge to a positive and negative steadystate, respectively (Fig. 2b, bottom left); (b)
the corresponding context probabilities may be similar initially but then diverge, such that the probabil
ity associated with P+ grows toward a nearone steadystate, while that associated with P− shows the
opposite trend, decaying toward a nearzero baseline (Fig. 2b, top right); (c) the dynamics of contextual
inference are markedly faster than those of state estimation (Fig. 2b, cf. top right and bottom left).

For evoked recovery, we assume the learner is certain they are in context 1 at the end of the second
evoker (P+) trial, and from then on, during the Pc trials, their contextual inferences evolve according to
the same dynamics as in spontaneous recovery. For a direct comparison with spontaneous recovery,
we also kept everything else (parameters, state estimates) identical to the simulation of spontaneous re
covery. (This included ignoring more subtle differences in state inferences between the two paradigms;
cf. Fig. 2b and d, bottom left.) Because context 1 is also much more probable than context 2 under the
stationary context probabilities (see above), the context probabilities did not change much with updat
ing from their initial values (Eq. S54), and so the probability of context 1 and context 2 remained high
and low, respectively, throughout the simulation (Extended Data Fig. 6b, dashed; cf. Fig. 2d, top right).
Hence, adaptation largely reflected the dynamics of the state of context 1 (Extended Data Fig. 6a, red; cf.
Fig. 2d, bottom left), decaying exponentially from a level of adaptation that was necessarily higher than
that reached in spontaneous recovery to a nonzero asymptote (Extended Data Fig. 6c, dashed).
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5.2 Responsibilityweighted learning rate

A key prediction of the COIN model is that memory updating should depend on contextual inference
(Figs. 1 and 3). This is because the COIN model assumes that only one perturbation—the perturba
tion associated with the current context—influences the state feedback. Hence, if the current context is
known, only the memory associated with the current context should be updated after observing the state
feedback:

x̂
(j)
t|t (ct) = x̂

(j)
t|t−1 + δctjk

(j)
t e

(j)
t . (S56)

However, in general, the current context is never known with certainty and so should be integrated out.
After integrating out the context, the expected value of each memory update is

E[x̂(j)t|t (ct)] =
∑
ct

γ
(ct)
t x̂

(j)
t|t (ct)

= x̂
(j)
t|t−1 + γ

(j)
t k

(j)
t e

(j)
t ,

(S57)

where γ(j)t denotes the responsibility of context j on trial t. Importantly, the responsibility scales the
Kalman gain, producing an effective learning rate (γ(j)t k

(j)
t ) that lies between k(j)t (when γ(j)t = 1, i.e.

certain that ct = j) and zero (when γ(j)t = 0, i.e. certain that ct ̸= j). Thus contextual inference is key to
Bayesoptimal memory updating (Fig. 1f).

Although the notion that error signals should be scaled by responsibilities is not unique to the COIN
model18–20, we provide experimental evidence of this computation in the memory updating experiment
(Fig. 3 and Extended Data Fig. 7cd), an achievement made possible by the recentlydeveloped triplet
assay of singletrial learning2,21.

Here we also derive the equation shown in the ‘Inference in the COIN model’ subsection of the Methods
for how the mean x̂(j)t of the predicted state distribution p(x(j)t | ...) for context j on trial t is updated to
trial t + 1, as this provides another illustration of the responsibilityweighted nature of the learning rate.
For simplicity, we assume that p(x(j)t | ...) is Gaussian, which may be justified by invoking the central limit
theorem. Under this assumption, the mean is updated across trials by combining a measurement update
that incorporates the state feedback yt (Algorithm 3) followed by a time update that simulates the state
dynamics (Algorithm 2) and then integrating out the hidden context and the hidden parameters governing
the state dynamics:

x̂
(j)
t+1 =

∫∫ [
a(j)

(
x̂
(j)
t + δctj k

(j)
t e

(j)
t

)
+ d(j)

]
p(ct,ω

(j) | qt, yt,...)dctdω(j)

x̂
(j)
t+1 =

∫∫ [
a(j)

(
x̂
(j)
t + δctj k

(j)
t e

(j)
t

)
+ d(j)

]
p(ct | qt, yt,...)p(ω(j) | ct, qt, yt,...)dctdω(j)

x̂
(j)
t+1 =

∫ [
a(j)

(
x̂
(j)
t + p(ct = j | qt, yt,...) k(j)t e

(j)
t

)
+ d(j)

]
p(ω(j)|ct, qt, yt,...)dω(j)

x̂
(j)
t+1 = Ep(a(j) | ct,qt,yt,...)[a

(j)]
(
x̂
(j)
t + p(ct = j | qt, yt,...) k(j)t e

(j)
t

)
+ Ep(d(j) | ct,qt,yt,...)[d

(j)],

(S58)

where p(ct = j | qt, yt,...) is the responsibility of context j on trial t.

5.3 Singletrial learning

Here we derive a simple and intuitive approximation to singletrial learning in the COIN model to provide
insights into the memory updating experiment (Fig. 3). Singletrial learning is defined as

ut+1 − ut−1 =
(∑

j

x̂
(j)
t+1|tψ

(j)
t+1

)
−
(∑

j

x̂
(j)
t−1|t−2ψ

(j)
t−1

)
, (S59)
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where ψ(j)
t+1 is the predicted probability of context j on trial t + 1. To aid the derivation, we make use of

the following set of simplifying assumptions:

(i) There is no decay or drift of state estimates across trials.

(ii) All state estimates are zero on the first channel trial of the triplet, which implies that errors on the
exposure trial are one.

(iii) The Kalman gain is the same for all contexts.

Under these assumptions, singletrial learning can be simplified to

ut+1 − ut−1 =
(∑

j

[x̂
(j)
t−1|t−2 + γ

(j)
t k

(j)
t e

(j)
t ]ψ

(j)
t+1

)
−
(∑

j

x̂
(j)
t−1|t−2ψ

(j)
t−1

)
=
∑
j

γ
(j)
t k

(j)
t e

(j)
t ψ

(j)
t+1

∝
∑
j

γ
(j)
t ψ

(j)
t+1

= γt ·ψt+1.

(S60)

Here γt and ψt+1 are the vectors of responsibilities and predicted probabilities, respectively. Therefore,
singletrial learning is approximately proportional to the dot product of the responsibilities on the expo
sure trial of the triplet (which determine how much each memory is updated, see Responsibilityweighted
learning rate) and the predicted probabilities on the following channel trial (which determine how much
each updated memory is subsequently expressed). Intuitively, this dot product is greater when the mem
ories that are updated more are also the ones that are subsequently expressed more. In the memory
updating experiment, we confirmed that singletrial learning is indeed well approximated by this dot prod
uct (Extended Data Fig. 7cd). Moreover, the presentation of a sensory cue on the second channel trial
of each triplet allowed us to reveal the effects of differential updating of a single memory by encouraging
predicted probabilities to be allornone. In this setting, singletrial learning is proportional to the respon
sibility of the memory on the exposure trial, that is, when ψ(j)

t+1 = 1, ut+1 − ut−1 = γ
(j)
t k

(j)
t . Again, we

confirmed that singletrial learning is indeed proportional to the responsibility on the exposure trial of the
context with the highest predicted probability on the subsequent channel trial (Extended Data Fig. 7cd).

The effects of perturbations, sensory cues and local transition probabilities on singletrial learning can be
explained in a unified manner using this simple dotproduct metric. In the memory updating experiment
(Fig. 3), ψt+1 is constant across the four triplet types, as we present the same sensory cue on the channel
trials of all triplets, but γt varies, as we present different combinations of perturbations and sensory cues
on the exposure trials of the triplets. In contrast, in the environmentalconsistency experiments (Fig. 4c
and Extended Data Fig. 8), γt is constant, as the same perturbation is presented on the exposure trial
of the triplets and there are no sensory cues, but ψt+1 varies, as the local transition probabilities differ
across the environments.
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6 Mapping of COIN model components to cognitive processes

6.1 Working memory in the COIN model

A working memory task performed just before the channeltrial phase has been shown to interfere with
spontaneous recovery, and in fact to create an effect that is reminiscent of evoked recovery, such that
P+ adaptation returns immediately to a high level following P−, already on the first Pc trial (Extended
Data Fig. 9a, Ref. 22). In the dualrate model, this effect has been attributed to a selective diminishing
of the adaptation of the fast learning process22. We simulated the COIN model with the parameters
obtained from the fit to the average spontaneous and evoked recovery data sets (also used in Fig. 2b,d).
The COIN model reproduces the effect by modelling the working memory task (performed after the last
P− trial) as selectively abolishing the (working) memory of the context responsibilities on the last P− trial
(ExtendedData Fig. 9bd), while sparing the (longterm)memory of context transition (and thus stationary)
probabilities. This means that on the first Pc trial, predicted context probabilities are based on general
knowledge of how frequently different contexts are expected to be encountered in the future (i.e. the
learned stationary probabilities), rather than on which contexts are likely to follow the context specifically
encountered on the last trial (compare coloured circles between middle right panels of Extended Data
Fig. 9c and d). Because P+ has been the most frequent trial type, the probability of its associated context
under the stationary distribution is very high, and hence there is a strong reexpression (evoked recovery)
of the memory for this context. This suggests that the belief over contexts may require working memory
for maintenance.

6.2 Explicit vs. implicit learning in the COIN model

Recent studies have shown that motor learning has both explicit and implicit components which exhibit
markedly different time courses23,24. For example, in a paradigmatic example using a visuomotor rotation
task, ameasure of explicit learning was obtained by asking participants to report the direction in which they
planned to move prior to moving, and implicit learning was then measured as the difference between the
actual direction they moved and this explicit judgement5. In a spontaneous recovery paradigm, explicit
learning showed nonmonotonic behaviour during the P+ phase, fast increase followed by slow decay
(Extended Data Fig. 9e). In contrast, implicit learning showed slower and monotonic increase during the
P+ phase. Due to these differences in the form of adaptation, explicit and implicit learning have been
suggested to correspond to the fast and slow processes, respectively, of the dualrate model23. However,
this mapping is unable to account for the rapid drop and recovery of supposedly slow implicit learning
seen during the subsequent P− and Pc phases.

In order to simulate these experiments, we adapted the COIN model to account for a critical difference
between visuomotor and forcefield learning: visuomotor but not forcefield learning (which is the primary
paradigm we use to test the predictions of the COIN model in the main text) introduces a discrepancy
between the hand’s proprioceptive and visual locations. Due to this discrepancy, a fundamental credit
assignment problem arises20 as to whether the observed cursor deviation is due to a perturbation on
the motor system or a bias (miscalibration) in the sensory system. This was naturally captured in the
COIN model by introducing a bias between the state and sensory feedback as another latent parameter
in each context, which was learned together with the parameters that govern the evolution of the state in
that context (Methods).

We hypothesised that participants would have explicit access to the state representing their belief about
the visuomotor rotation, but that they would not have access to their sensory bias, which would reflect the
implicit component of learning. This hypothesis is consistent with previous work showing strong sensory
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recalibration during adaptation to a visuomotor rotation. For example, after learning a visuomotor rotation
with their right hand, a participant can be asked to use their nonadapted left hand to point to where they
sensed their right hand was at the end of a reach25,26. Critically, due to sensory recalibration, participants
incorrectly estimate the location of their right hand location, pointing closer to where the rotated visual
feedback of the hand (cursor) was than to the actual location of their right hand. This indicates that
sensory recalibration remains implicit in these experiments. Our bias parameter formalises this notion of
sensory recalibration, which we thus assume remains implicit.

We simulated the COIN model with the parameters obtained from the fit to the average spontaneous re
covery and evoked data sets (also used in Fig. 2b,d and Extended Data Figs. 5 and 9) plus an additional
parameter representing the standard deviation of the prior on the bias (Methods). Extended Data Fig. 9g,
h & i show the bias, state and predicted probability for each context. The average bias across contexts
weighted by the predicted probabilities (Extended Data Fig. 9j) showed a slow monotonic increase during
the P+ phase with a drop and recovery during the P− and Pc phase. As hypothesised, the profile is very
similar to that of the implicit component of learning (Extended Data Fig. 9ef, light green). However, the
average state across contexts (Extended Data Fig. 9k) did not show the experimentally observed charac
teristic overshoot of the explicit component (Extended Data Fig. 9e, dark green). Instead, examining the
state of the context with the highest responsibility on the previous trial (Extended Data Fig. 9h, coloured
bar in the bottom, and thin black line, also shown as dark green line in (Extended Data Fig. 9f) revealed
that it had a strikingly similar time course to the explicit component of learning (Extended Data Fig. 9e &
f dark green). This is because the state and the bias interact competitively within a context to account
for the total state feedback, and hence as the bias estimate increases, the state estimate decreases,
giving rise to the characteristic nonmonotonicity. As the experimental definition of explicit and implicit
components guarantees that they sum to total adaptation (see above), we also defined motor output in
the model as the sum of the explicit (state of the context with the highest responsibility on the previous
trial) and implicit components (Extended Data Fig. 9f, solid pink). Taken together, this version of the
COIN model reproduced the important qualitative features of explicit, implicit, and total adaptation in the
experiment (compare Extended Data Fig. 9e and f). (Although there were quantitative differences, e.g. in
the overall speed of learning, note that all but one parameter were fit to rather different forcefield learning
experiments and so a quantitatively precise match could not be expected.) In particular, the different time
courses of explicit versus implicit components arose naturally in the model. This is because, in the COIN
model, parameters (including the bias) are assumed to be constant over the lifetime of a context, and
thus their estimates are updated more slowly (Extended Data Fig. 9g, j) than those of states (Extended
Data Fig. 9h, k), which can change dynamically – inherently giving rise to multiple time scales of learning.
Moreover, the average bias across contexts in the COIN model (Extended Data Fig. 9j, cyan, and f, light
green) also tracked the rapid drop and recovery of implicit learning during the P− and Pc phase (Extended
Data Fig. 9e, light green) that the dualrate model cannot explain. This arises from the same contextual
inferencebased mechanism that also underlies other aspects of spontaneous recovery (Fig. 2). Specif
ically, the rapid fall in the implicit component of learning during the P− phase is due to the increased
expression of the associated context (Extended Data Fig. 9i, orange) that has a negative bias (Extended
Data Fig. 9g, orange). On entering the Pc phase, there is a reexpression of the context associated with
P+ (Extended Data Fig. 9i, red) that has a positive bias (Extended Data Fig. 9g, red).

Interestingly, in order for the COIN model to be consistent with experimental data, our definition of total
adaptation in this experiment (average bias plus the state of the most responsible context on the previ
ous trial) needed to be different from what would have been directly consistent with the way it is originally
defined in the model (the overall predicted state feedback, here corresponding to the average bias plus
the average state across contexts weighted by the predicted probabilities). However, this experiment
was also conducted differently from the other experiments we modelled. In particular, in this paradigm,
an explicit judgement was solicited at the beginning of each trial before motor output was required. We
reasoned that the explicit commitment of where they will aim would determine where participants eventu
ally aim in their motor output (measured as total adaptation), thus explaining why only the reported state
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(corresponding to the explicit judgement in the model) and not the average state is reflected in motor
output. This is in line with previous studies showing that an explicit commitment affects subsequent de
cision making27. Moreover, this reasoning made a further prediction: in a (control) variant of the same
visuomotor rotation experiment in which no explicit judgements are solicited, total adaptation should have
a different time course as it now should reflect the average state not just the explicitly reported state. This
did indeed seem to be the case in the data (albeit slightly, not reaching statistical significance5): learning
of P+ was slower and adaptation to P− was not as complete as in the original version of the task. These
differences were qualitatively reproduced by the COIN model when total adaptation was modelled as
usual, using the average state across contexts weighted by the predicted probabilities (Extended Data
Fig. 9ef, dashed pink).

In summary, rather than mapping explicit and implicit learning to fast and slow processes, which only
differ quantitatively, the COIN model suggests that they may map to qualitatively different components of
learning: state variables and bias parameters, respectively.

7 Theories of contextdependent learning

Theories of contextdependent learning have been proposed in multiple domains of cognition, including
episodic memory28 and decision making29–34, as well as in the domain of motor control4,18,20,35,36. Here
we give a brief unifying overview of these models. We organise our overview along the five key design
choices that any model of contextdependent learning must make (even if only implicitly): what contents
to attribute to each contextspecific memory, how to model context dynamics, whether to use a fixed
number of memories or to allow new memories to be created, how to determine the extent to which
different memories are expressed at each point in time, and how to update existing memories. We close
by summarising how different models of contextdependent learning fare at accounting for experimental
data in the motor domain.

7.1 Memory contents

A key design choice for any model of learning (even singlecontext models) is specifying what is in a
memory. In general, memories store information about the environment. Bayesian models of memory
formalise this notion as inference over a latent variable characterising the environment given past experi
ences (the observations). As more experience is gained (more observations are made), these inferences
can be iteratively refined, leading to the updating of memories. A critical design choice is whether the
latent variable being inferred is assumed to be static over time (a ‘parameter’) or timevarying (a ‘state’).
(Importantly, even inferences about static parameters are time varying as more experience is accrued.)
This choice also remains relevant for nonBayesian models of learning. For example, models in which
memories are biased towards the recent past and/or change even in the absence of experience (e.g. due
to adaptive forgetting) implicitly estimate a timevarying state. In contrast, models in which memories de
pend equally on all past experiences (at least within the same context) and do not change in the absence
of experience implicitly estimate a static parameter.

All current models of motor learning (including the COIN model) agree that a timevarying state is crit
ical for capturing the dynamics of motor memories and therefore for understanding motor adaptation.
Hence, a timevarying state forms the basis of deterministic and probabilistic models of motor learning
(regardless of whether they assume the environment consists of one or multiple contexts, see below),
the socalled ‘statespace models’2–4,20,36–46. In contrast, studies of contextdependent learning in eco
nomic decision making (reinforcement learning) have typically not considered the notion of a timevarying
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state19,29–31. In these studies, participants (and models) needed to learn contextspecific reward func
tions that determined the optimal action for each stimulus in each context29–31. Bayesian models of
these tasks assumed that these reward functions were static and thus weighted all observations (within
the same context) equally29,31. In one study, a nonBayesian algorithm was used to estimate expected
rewards30. This algorithm was a simple delta rule with a constant learning rate: it estimated expected
rewards as an exponential recencyweighted average, thus implying a generative model in which the
reward function may change over time, but without making explicit assumptions about how it changes.
However, even this algorithm did not update its estimates in the absence of experience in a given context,
i.e. at least half the time when multiple contexts exist. Therefore, in all these studies, the reward function
associated with each context was mostly static over time, and hence the only truly timevarying quantity
in the environment was the context.

7.2 Context dynamics

Once the notion of multiple contexts is introduced, inferring the current context becomes critical, as mem
ory creation, expression and updating all depend on this inference (Fig. 1, see also below). In turn, this in
ference depends on the context dynamics, i.e. the transition probabilities between contexts. The simplest
class of models assumes uniform transition probabilities (with the potential exception of a selftransition
bias that makes the ‘from’ context themost probable), thus implying some fixed level of contextvolatility30.
A somewhat richer class of models breaks this (near) uniformity by having transition probabilities depend
on the ‘to’ context (thus differentiating the overall occurrence of contexts) but constraining them to be
the same for each ‘from’ context (thus rendering transitions nonMarkovian/nonlocal31,34. (Again, a self
transition bias can be added33, which might itself change over time in varyingvolatility models29.) At the
other extreme are models in which transition probabilities depend on both the ‘from’ and ‘to’ contexts,
without any additional constraints35. While these models are very flexible, they afford no generalisa
tion between contexts, such that learning of transition probabilities needs to start afresh in each newly
encountered context. A compromise between complete uniformity and extreme flexibility is provided by
hierarchical models, such as the COIN model (Extended Data Fig. 1ab), in which transition probabilities
also depend on both the ‘from’ and ‘to’ contexts but are constrained to exhibit a degree of similarity via
some shared global transition probabilities. Importantly, in the limit of infinite data, hierarchical models
are just as flexible as their nonhierarchical counterparts (i.e. they can learn any transition matrix). How
ever, in the finitedata regime (the most extreme case of which is when a context is encountered for the
first time), hierarchical models uniquely support wellinformed inferences via generalisation.

7.3 Memory creation

Broadly speaking, contextdependent models can be split into two categories: parametric and nonpara
metric. There are parametric models that assume that the learner knows the true number of contexts in
the environment (e.g. by fixing the number of contexts/modules in the model)4,19,20,29,35. These models
have no notion of memory creation as the number of memories is fixed from the start. In most realworld
scenarios, it is unrealistic to assume that the learner knows the true number of contexts, as this num
ber is in general only knowable through experience. This is naturally captured by nonparametric models
that allow the number of contexts in the environment (however large) to be learned from experience30–34.
These models create a newmemory whenever a novel context is inferred. However, these nonparametric
models used the (nonhierarchical) Dirichlet process prior. This prior assumes that there is a single distri
bution of contexts in the environment (analogous to the global transition distribution in the COIN model)
that does not change from one time point to the next (i.e. there is no notion of contextspecific/local tran
sition distributions). In contrast, the COIN model used a hierarchical Dirichlet process prior that allows
for transition probabilities to be contextspecific, yet structured (see Section 7.2).
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7.4 Memory expression

To generate actions in models with multiple contexts, two different approaches have been used. In one
approach, the memory of the single most probable context is expressed30,31,36. In a second approach
(also taken by the COIN model), the memories of all contexts are expressed in proportion to their respec
tive probabilities19,29,33,35. The first approach ignores uncertainty about the context and can be expected
to produce suboptimal actions with respect to a taskrelevant loss function47 (e.g. the squared error
between an estimate of a perturbation and its true value). The second approach uses graded context
probabilities to integrate out the context with respect to the loss function, allowing the optimal action to be
computed and executed. In contextdependent models of reinforcement learning, these two approaches
correspond to maximising expected reward for the most probable context30,31 vs. across all possible
contexts29, respectively.

7.5 Memory updating

For models with multiple contexts (e.g. switching statespace models4,33,36 and volatility models29,30),
exact Bayesian inference is often intractable, requiring approximations to be made. One computationally
cheap approximation that is commonly used in models of human learning is to definitively assign trials
to contexts, i.e. ‘hard context assignments’30,31,33,36. This approximation ignores uncertainty about the
context and leads to a single memory being updated on each trial. This nonBayesian heuristic has been
justified on the basis that it does not qualitatively affect model behaviour31,33. However, this is likely to
only be true for paradigms that do not directly test how memories are updated on a singletrial basis,
as we do in our memory updating experiment (Fig. 3). A more accurate, though computationally more
expensive, approximation is to probabilistically assign trials to contexts, i.e. ‘soft context assignments’
(e.g. using Monte Carlo methods, as in the COIN model), such that multiple memories are updated on
each trial29.

While many models of motor learning directly specify parameters that control generalisation both in mem
ory expression and updating, independent of the context41,42,48,49, the COIN model automatically and
dynamically controls generalisation by principled Bayesian inference. In particular, generalisation varies
over time, across contexts, and is in general different for memory expression and updating, as controlled
by the predicted probabilities and responsibilities of contexts, respectively.

7.6 Explaining motor learning phenomena

Extended Data Table 1 summarises the ability of dominant singlecontext and multiplecontext models to
explain the main data sets we have modelled. We only included statespace models in this comparison,
as there is broad agreement that a timevarying state is critical to capture even some of the most basic
phenomena in motor learning (see Section 7.1). Hence, models without a timevarying state (such as
those employed in reinforcement learning19,29–31) do not represent a direct alternative to the COINmodel.
Themodels used in reinforcement learning also suffer frommany of the same shortcomings as themodels
included in Extended Data Table 1 (see Sections 7.1 to 7.5). For historical reasons, wemade an exception
for the MOSAIC model, as it has been a highly influential model of motor learning and is therefore directly
relevant as a basis of comparison for the COIN model.
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8 Neural substrates of contextual and state inference

The prefrontal cortex (PFC) is thought to play a key role in representing contextual information50,51 and
performing hierarchical inference52. Therefore, we expect the PFC to be the main locus of contextual
inference as performed by the COIN model. Our result suggesting that working memory – known to crit
ically rely on PFC53 (but cf. Ref. 54) – shares the same resources with contextual inference (Extended
Data Fig. 9ad) provides further support to this idea. Ultimately, the contextual inference signals derived
from the COIN model (Fig. 1f) should be predictive of neural responses in the PFC. There are several
proposals for how such inferences may be encoded in neural responses55,56 and the COIN model pro
vides a principled tool for adjudicating between these proposals, as the posterior distributions it computes
can serve as purely behaviourbased condition and timeresolved regressors against neural data.

Adaptation in forcefield learning tasks is associated with changes in neural activities in premotor and
primary motor cortices, in particular during preparatory periods57,58. This suggests that the neural under
pinning of state inference in the COIN model may be realised by adaptively tuning the initial conditions
of (pre)motor cortical dynamics59–61. Importantly, the COIN model predicts that these circuits should be
able to simultaneously maintain and adapt multiple such initial conditions (i.e. states) corresponding to
different contexts. This prediction is supported by recent recordings in monkeys learning multiple force
fields, showing that changes in neural activity between contexts are orthogonal to changes that occur
within each context during adaptation57. Finally, of the three ways in which contextual inference mod
ulates and extends purely state inferencebased mechanisms (Fig. 1b, arrows 13, f1−3), gain control
mechanisms may be ideally suited to implement graded memory expression62, while neuromodulatory
mechanisms may underlie the graded updating of memories and the creation of new memories (perhaps
controlled by cholinergic and noradrenergic signals, respectively63).
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