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Integrative transcriptomic, evolutionary, and causal inference
framework for region-level analysis: Application to COVID-19
Dan Zhou 1,2,3 and Eric R. Gamazon 1,3,4,5,6✉

We developed an integrative transcriptomic, evolutionary, and causal inference framework for a deep region-level analysis, which
integrates several published approaches and a new summary-statistics-based methodology. To illustrate the framework, we applied
it to understanding the host genetics of COVID-19 severity. We identified putative causal genes, including SLC6A20, CXCR6, CCR9,
and CCR5 in the locus on 3p21.31, quantifying their effect on mediating expression and on severe COVID-19. We confirmed that
individuals who carry the introgressed archaic segment in the locus have a substantially higher risk of developing the severe
disease phenotype, estimating its contribution to expression-mediated heritability using a new summary-statistics-based approach
we developed here. Through a large-scale phenome-wide scan for the genes in the locus, several potential complications, including
inflammatory, immunity, olfactory, and gustatory traits, were identified. Notably, the introgressed segment showed a much higher
concentration of expression-mediated causal effect on severity (0.9–11.5 times) than the entire locus, explaining, on average, 15.7%
of the causal effect. The region-level framework (implemented in publicly available software, SEGMENT-SCAN) has important
implications for the elucidation of molecular mechanisms of disease and the rational design of potentially novel therapeutics.
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INTRODUCTION
A novel coronavirus, Severe Acute Respiratory Syndrome Corona-
virus 2 (SARS-CoV-2), has caused a global pandemic1, with millions
of individuals infected and over one million lives claimed
worldwide. The severity of coronavirus disease 2019 (COVID-19)
shows substantial interindividual variability2, highlighting the
pressing question of the major molecular and epidemiological
determinants of disease presentation. The features of the host
genome that increase the risk of severe COVID-19 constitute a
critical public health question3, with important implications for our
molecular understanding of a lethal disease and for the
development of effective therapeutic strategies. Several recent
sufficiently-powered studies reproduced the genome-wide asso-
ciation study (GWAS) signal on 3p21.314–6, which had been linked
to the risk of respiratory failure and critical illness in COVID-19
cases3,7. A subsequent study found that a 49.4 Kb segment (chr3:
45,859,651–45,909,024, hg19) within the locus, which harbors the
sentinel GWAS variant, is inherited from Neanderthals8. Despite
these striking results, the causal gene or genes in the locus and
the phenotypic consequences of the introgressed segment are
largely unknown.
The discovery of a locus associated with severe COVID-19

underscores certain fundamental and interrelated methodological
issues. Key aspects of broad methodological interest for a region-
or locus- level analysis of a putatively complex disease include
elucidation of (a) genome function, which may be investigated
through causal inference on intermediate molecular traits; (b)
evolutionary history, which may stratify the genomic data
according to modeled (e.g., introgression status or archaic alleles)
and unmodelled sequences; and (c) phenome-scale consequence,
which may underlie the adverse outcomes of the disease or
indicate comorbidities. Integrating several widely-used approaches

and a newly developed summary-statistics-based method, we
provide a framework that integrates these key elements into a
region-level analysis, leveraging the largest collection of human
transcriptomes9–11, to gain insights into the disease’s etiology and
expressivity.
This work has other broad methodological implications for

studies of the genetic and molecular basis of complex traits. It
presents an unbiased approach to estimating the heritability of
gene expression attributable to a genomic segment (e.g., a
regulatory element, a region undergoing selection, or a trait-
associated locus) within a region, highlighting sources of bias for
existing approaches. A segment-anchored analysis enables high-
resolution quantification of its effect on genes within the region
under study. This work also develops a summary-statistics-based
approach to investigating, with improved causal resolution, the
phenotypic consequences of a genomic region, proposing a new
metric of the proportion of expression-mediated causal effect
explained. For illustration, we apply our framework to the specific
case of the COVID-19 severity associated locus (3p21.31) with the
inherited archaic segment, but we emphasize the framework’s
generalizability and cross-study relevance (Fig. 1).

RESULTS
An overview of the framework
In this work, we developed a framework for a region-level analysis
of a complex trait that performs causal inference on an
intermediate molecular trait, incorporates the evolutionary history
of modeled DNA sequence segment to clarify the trait’s
expressivity, and evaluates a region’s broad phenotypic conse-
quences on the human phenome (Fig. 1). We provide a software
implementation, SEGMENT-SCAN, of the framework. Here, a

1Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. 2Department of Big Data in Health Science, School of Public
Health, Zhejiang University School of Medicine, Zhejiang, China. 3Vanderbit Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA. 4Data Science Institute,
Vanderbilt University Medical Center, Nashville, TN, USA. 5Clare Hall, University of Cambridge, Cambridge, UK. 6MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
✉email: ericgamazon@gmail.com

www.nature.com/npjgenmed

Published in partnership with CEGMR, King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-022-00296-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-022-00296-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-022-00296-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-022-00296-y&domain=pdf
http://orcid.org/0000-0002-5313-8164
http://orcid.org/0000-0002-5313-8164
http://orcid.org/0000-0002-5313-8164
http://orcid.org/0000-0002-5313-8164
http://orcid.org/0000-0002-5313-8164
http://orcid.org/0000-0003-4204-8734
http://orcid.org/0000-0003-4204-8734
http://orcid.org/0000-0003-4204-8734
http://orcid.org/0000-0003-4204-8734
http://orcid.org/0000-0003-4204-8734
https://doi.org/10.1038/s41525-022-00296-y
mailto:ericgamazon@gmail.com
www.nature.com/npjgenmed


“segment” may be a regulatory element, a stretch of DNA under
positive selection, or an archaic introgressed haplotype, within a
possibly larger region of interest. Leveraging the joint-tissue
imputation (JTI) methodology9, the segment-based gene expres-
sion heritability is estimated using the “reduced model”, which
includes as features the variants in the segment. A region-level
gene prioritization is then performed by applying the “full model”,
that is, the model trained on all local genetic variants, to GWAS
summary statistics for a trait for maximal statistical power.
Mendelian randomization approaches, for example, MR-JTI (an
approach that estimates the gene effect size on the trait by also
modeling the heterogeneity due to horizontal pleiotropy and
unobserved confounding9), are used to increase causal support for
the prioritized genes. For the putatively causal genes, since a
segment (here, an introgression) may reflect the presence of an
admixture (here, an ancient one) determining the local ancestry,
with molecular or phenotypic consequences12, genetically deter-
mined expression scores (GDE-scores)11 are generated and
compared for an ‘archaic’ genetic profile and the corresponding
profile in modern human populations. In addition, the proportion

of expression-mediated causal effect explained by the segment is
quantified using a newly developed summary-statistics-based
approach (“Methods”). To comprehensively identify the pheno-
typic consequences of the segment, phenome-wide scans using
large-scale biobanks are conducted for the genes for which the
segment shows significant evidence of a regulatory effect.
Identification of potential complications or comorbidities is the
goal of the phenome-wide scan. Here, we applied the framework
to a COVID-19 severity related region on 3p21.31 to demonstrate
the framework.

Impact of segment on gene expression
We sought to quantify the impact of the introgressed segment
(chr3: 45,859,651-45,909,024, hg19) on gene expression. For genes
in the locus, we implemented JTI, a more powerful gene
expression prediction approach than PrediXcan9,10, leveraging
variants in the segment as features (“Methods”), using the 49 GTEx
tissues13. The cross-validation performance provides an estimator
of the segment-based heritability of expression that is more

Fig. 1 The framework. We developed an integrative transcriptomic, evolutionary, and causal inference framework for a deep region-level
analysis. A segment (shown here in orange) may be a regulatory element, a stretch of DNA under positive selection, or an archaic introgressed
haplotype within a potentially larger ‘region of interest’ (denoted by a broken line), which may span multiple genes and genetic variants. A
segment-based analysis facilitates high-resolution quantification of the segment’s impact on (genes within) the region. The framework
provides an approach to segment-specific gene expression heritability estimation using the ‘reduced model’, that is, one trained on genetic
variation in the segment using the joint-tissue imputation (JTI) methodology. Region-wide gene prioritization is performed by applying the
‘full model’, that is, a model trained on all local genetic variants, to GWAS summary statistics for maximal statistical power. MR-JTI, a Mendelian
randomization approach that extends JTI, estimates causal gene effects by modeling the heterogeneity due to horizontal pleiotropy and
unobserved confounding. The genomic sequences are stratified according to evolutionary history (in this case, introgression status). For
putative causal genes, genetically determined expression scores (GDE-scores) are compared among ‘archaic’ and ‘modern human’ genomic
sequences to further quantify the evolutionary consequence of the (introgressed) segment. In addition, the proportion of expression-
mediated causal effect explained by the segment ð bπcÞ is quantified using a newly developed summary-statistics-based approach. Notably, we

optimized the estimation of local heritability dr2local� �
by projecting the true (unobserved) LD matrix C to the “observable field” of covariance

matrices (“Methods”) at the matrix πðCÞ, whose distance (mean squared error) from the true LD matrix C, denoted by dðC; πðCÞÞ, is minimal
among the elements of the observable field. If πðCÞ is the projection of the true LD matrix, Ĉ is the observed (finite-sample) LD matrix (such as
from the in-sample set or an external reference panel) and Ĉ

0
is some optimized version of Ĉ (such as from adjustment for population

heterogeneity), then dðC; πðCÞÞ � dðC; Ĉ0Þ � dðC; ĈÞ. That is, we improve on the estimate of heritability by determining the unique optimal
LD matrix estimator πðCÞ (with minimal distance to the true LD matrix) that can be expressed as a linear combination of the identity matrix I
and the observed matrix Ĉ with the appropriate weights (“Methods”). To comprehensively identify the phenotypic consequences of the
segment, phenome-wide scans in large-scale biobanks are conducted for genes for which the segment shows evidence of a regulatory effect.
We implemented the framework in publicly available software, SEGMENT-SCAN.
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robust to model misspecification than the standard genome-
based restricted maximum likelihood (GREML) approach (“Meth-
ods”), which assumes a polygenic architecture. In this study, for
heritability, we consider only the proportion of gene expression
variance explained by cis regulation (Fig. 1).

Based on the estimate from JTI, the segment explained up to
24.6%, i.e., for FYCO1, of the variance in gene expression in the
locus (Fig. 2a). Interestingly, the protein FYCO1 was recently
shown to physically interact with SARS-CoV-2’s NSP13, a helicase-
triphosphatase, in a study14 of protein interaction map between
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Fig. 2 Segment-based gene expression heritability. We generated JTI gene expression prediction models in each of the 49 tissues (GTEx v8),
using SNPs in the 49.4 Kb introgressed segment (whose position is marked by a red segment under a triangle in panel (a)) and estimated the
prediction performance (r2) using five-fold cross-validation. Imputable genes (r > 0.1 and P < 0.05 in cross-validation; “Methods”) are shown in
panel (a), where the y-axis presents the prediction performance. Panels b and c show the performance comparison between ‘full’ model and
‘reduced’ model. The ‘full’ model was trained using SNPs within 1 Mb of both sides of the gene body. The ‘reduced’model used only SNPs in
the introgressed segment (same as panel (a)). Panels (b) and (c) are colored according to the tissue and the distance to the segment,
respectively. Highly imputable genes (r2 > 0.15) based on the reduced model are labeled in panels (b) and (c).
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SARS-CoV-2 and human proteins. Notably, the JTI prediction
quality of the segment-based reduced model was significantly
higher than the corresponding PrediXcan (which does not
leverage borrowing of information across tissues) quality (P <
2.2e−16, Wilcoxon signed-rank test, Supplementary Table 1), with
JTI improving the estimate of heritability by leveraging tissue
similarity of gene expression and of its genetic regulation.
We asked whether the introgressed segment was more

informative for gene expression regulation than a randomly-
chosen segment of the same length (i.e., a segment with length
equal to that of the introgressed one but with start position at a
random position on the same chromosome). We, therefore, built a
prediction model for each gene using variants in each of 100
randomly-selected segments for comparison (“Methods”). We
found that the prediction performance (the square of the
Pearson’s correlation r between the predicted expression and
the observed expression) of the introgressed segment was
significantly higher than the median of the prediction perfor-
mance from the randomly-chosen segments (P= 0.038, Wilcoxon
matched-pairs signed-rank test, two-sided, Supplementary Fig. 1).

Gene expression heritability due to full model and reduced
model
We sought to characterize the regulatory impact of the segment
on local gene expression relative to the full cis-region (i.e., within
1 Mb on either side of the gene). We compared the estimate of
gene expression heritability (derived from cross-validation predic-
tion performance) from the reduced model and the full model.
Two clusters of genes could be identified with the reduced model
—one with a substantial reduction in performance (to near zero)
and a second that lies “along the diagonal” with little performance
loss (Fig. 2b). The latter set includes genes with a substantial
fraction of the expression variance explained by the segment
while the former includes genes that may derive much of its
expression variance from outside the segment (Supplementary
Table 2). Notably, the genes with heritability “concentrated” in the
segment tended to be physically closer to the segment (Fig. 2c).
We investigated the impact of the segment length on the

ability to maintain good prediction accuracy with the reduced

model compared to the full model. This analysis also allowed us
to determine the extent to which the quality of the segment
calling (i.e., the accuracy of the boundary of the segment) may
influence the robustness of the conclusions that can be drawn.
We tested segments that include variants within 100 and
500 kb of the actual introgressed segment. As expected, the
prediction performance decreased as the segment narrowed
from the full cis-region to the actual introgressed segment. (See
results in lung and whole blood in Supplementary Fig. 2a and
2b, respectively. The distributions of the prediction perfor-
mance (r2) across all the available tissues are shown in
Supplementary Fig. 2c.) The genetic variants in the segment
account for only a small fraction (up to 0.035, Supplementary
Fig. 2d) of the SNPs in the entire cis-region; nevertheless,
performance degradation was observed for only a limited
number of the genes in the region (consistent with Fig. 2b, c),
indicating a disproportionately stronger regulatory role for the
introgressed segment on local gene expression relative to the
non-introgressed region.

Region-level association test using GWAS summary statistics
Leveraging the COVID-19 Host Genetics Initiative (COVID-19 HGI)
round 6 GWAS meta-analyses6 for COVID-19 hospitalization
(phenotype code: B2) and severity (phenotype code: A2), we
performed summary-statistic-based JTI association analyses to
identify hospitalization and severity associated genes in the
3p21.31 region. The sub-study information can be found in
Supplementary Table 3. To maximize the power, we utilized the
full model to perform the association analyses. Among the
imputable genes (genes with good prediction quality; “Methods”)
near the introgressed segment, we found 27 genes significantly
(Benjamini–Hochberg PFDR < 0.05) associated with the risk of
hospitalization either in lung or in whole blood. SLC6A20, CXCR6,
and CCR9 were top-ranked associations (Fig. 3a). The same genes
were found to be associated with COVID-19 severity (Fig. 3b). The
full set of JTI association results is summarized in Supplementary
Tables 4 and 5.
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Fig. 3 Region-level association test. Region-level association analysis of COVID-19 hospitalization (a) and severity (b) was performed on the
GWAS summary statistics from COVID-19 HGI round 6. To maximize the power of the association test, we used the full model (i.e., analyzed all
local variants around each gene; “Methods”) trained using JTI. The association results for the genes within 1Mb of the introgressed segment
are included in the region-level plot. Significant (PFDR < 0.05) results observed in lung (LUNG) or in whole blood (WHLBLD) are labeled with
tissue abbreviations. The positions of the genes on the x-axis do not represent their physical locations in the genome. (See Fig. 2a for their
relative chromosomal positions.) The association results are summarized in Supplementary Table 3.
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Causal inference via summary statistics based Mendelian
randomization
To further prioritize causal gene effects on COVID-19 severity, we
applied our MR-JTI methodology9. MR-JTI is a two-sample
Mendelian randomization approach for causal inference. Here
the “exposure” is gene expression, and the “outcome” is COVID-19
severity or COVID-19 hospitalization. Summary association results
for the exposure and outcome were obtained from GTEx v8 and
COVID-19 HGI, respectively. Given the strong possibility of the
presence of invalid instrumental variables (IVs) in the region, MR-
JTI models the heterogeneity of IVs and provides a more accurate
estimate of causality (see Supplementary Fig. 3 and “Methods” for
comparison with the conventional inverse-variance weighted
[IVW] method). In this context, the heterogeneity of IVs may be
due to horizontal pleiotropic effects and unobserved confounding
factors. MR-JTI was performed on genes (in lung and whole blood)
with significant signals (PFDR < 0.05) from the JTI association
analysis of the COVID-19 HGI GWAS summary statistics. Six genes
(namely, SLC20A6, CCR9, CXCR6, CCR2, CCR5, and CCR5AS) were
significant from the MR-JTI analysis after Bonferroni correction
(Fig. 4a), indicating causal support for these genes on COVID-19
hospitalization. Similarly, MR-JTI showed causal support for FYCO1
in lung on COVID-19 severity (Fig. 4b). Mendelian randomization
results from MR-Egger and weighted-median estimator were also
generated using the same source data as MR-JTI (see Fig. 4,
Supplementary Tables 6 and 7).

Quantifying proportion of expression-mediated causal effect
For the MR-JTI significant genes, we further asked to what extent
the gene causal effect (on the trait) was driven by the introgressed
segment, quantifying the proportion of expression-mediated causal
effect explained, πc. The statistic πc is a ratio of estimated
expression-mediated causal effects, which is calculated using a
new summary-statistics-based approach (“Methods”).
We evaluated the methodological implications of our approach.

Local heritability (dr2local) estimation is dependent on the LD matrix

(“Methods”), which is typically estimated from the sample dataset
(either in-sample or a reference panel) with finite sample size.
Minimizing the distance (mean squared error) of the sample LD
matrix (bC) to the true LD matrix (C) is one way of optimizing the
estimate of heritability. Use of a non-optimal LD matrix can
substantially inflate the estimate of heritability. Towards this end,
we obtained the unique optimal LD matrix estimator π(C) from
projecting the true matrix to the “observable field” (Fig. 1 and
“Methods”). Using simulations at various assumed levels of local
heritability and informed by empirical genomic data (“Methods”), we
confirmed that the local heritability estimated from the projected LD
matrix π(C) is less biased than that estimated from the sample (e.g.,
external-panel-based) LD matrix Ĉ (Supplementary Fig. 4).
The inflation in the heritability estimate may also result from a

genome-wide (global) approach such as LD Score regression15

(under a polygenic architecture). Comparison of the LD scores
(calculated for a variant as the respective row sum of the LD
matrix) between the original (unadjusted) LD matrix and the
projected (optimal) LD matrix revealed overestimation of herit-
ability (range: 0.4–17.1%, mean: 4.9%, Supplementary Fig. 5) with
the use of the original LD matrix. Taken together, these results
show that the projection matrix approach is broadly applicable,
including for unbiased genome-wide heritability estimation.
We applied the optimized local heritability estimation to the

seven potentially causal genes (in lung or whole blood; see Fig. 4)
for either COVID-19 hospitalization or severity. On average, the
segment explained 15.7% of the expression-mediated causal
effect among the seven genes (Supplementary Tables 8 and 9).
Notably, the concentration of expression-mediated heritability
(“Methods”) was much higher (0.9–11.5 times) for the segment
than the entire cis-region (Supplementary Tables 8 and 9).

Regulatory divergence due to the segment
Paabo et al. showed that individuals with the introgressed segment
are more likely to develop severe COVID-198. However, the
mechanism and the effector genes are unknown. To identify
potentially mediating genes, we generated GDE-scores in five
modern human populations (1000 Genomes project phase 3) and
an approximately 122,000-year-old Altai Neanderthal sample
(“Methods”), using the JTI-trained models. We emphasize that the
GDE-score for a gene is not a substitute for an extinct hominin’s
level of gene expression (which cannot be directly accessed), but
the score allows us to stratify the genetically determined effect of a
DNA sequence according to the sequence’s evolutionary history
similar to local ancestry based stratification of gene expression12.
The GDE-score for the “archaic” genetic profile provides a way to
evaluate the gene expression determined by the introgressed
segment in modern human populations as a function of the
distance to the archaic profile. For a given gene, its JTI model was
trained on genetic variants that fall naturally into categories based
on their evolutionary histories, but with the effects of archaic-
ancestry-specific variants remaining unmodeled16 (Supplementary
Fig. 6). We emphasize that differences in the GDE-score reflect
differences in genetic regulatory effects rather than a difference in
overall expression11. The analysis of the difference in the GDE-
scores between the archaic profile and modern human popula-
tions was performed for the Mendelian randomization-significant
genes that had passed Bonferroni correction (from MR-JTI, MR-
Egger, or weighted median estimator). To generate the distribution
of GDE-score in modern humans for comparison with the archaic
profile, we included only genes with at least two JTI model
predictor SNPs available in the archaic genome.
Among the putative causal genes for either COVID-19

hospitalization or severity, the archaic sequence-based GDE-scores
for CCR5 in lung was extreme relative to modern human
populations (Fig. 5a). The cross-population similarity of the GDE-
score distributions for the gene in these tissues in modern humans
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Fig. 4 Mendelian randomization identifies candidate causal
genes. MR-JTI was performed for the JTI significant (PFDR < 0.05)
genes for COVID-19 hospitalization (a) and severity (b) using the
GWAS summary statistics from COVID-19 HGI round 6. Here, we
provide visualization for the results derived from lung (LUNG) or
whole blood (WHLBLD). Mendelian randomization results from MR-
Egger, Weighed Median estimate, and MR-JTI are shown. The plot
illustrates convergence of causal inference and concordance of
direction of effect from the various Mendelian randomization
approaches. For example, CCR9 in whole blood showed significant
causal effect and concordant direction from all three Mendelian
randomization methods (panel a). Hollow circle, hollow triangle, and
solid triangle denote non-significant, only nominally significant, and
significant (i.e., after Bonferroni correction) results. Up (positive) and
down (negative) triangles indicate the direction of the estimated
effect sizes.
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makes the significant regulatory divergence for the archaic
genomic sequence striking. Since lower expression of CCR5
increased the risk of severe COVID-19, as estimated from the
Mendelian randomization analyses, the significant difference in
GDE-score indicates that carriers of the introgressed segment
would have increased predisposition to severe COVID-19. A similar
pattern was observed for CXCR6 in lung, indicating that carriers of
the introgressed segment have increased risk of severe COVID-19.
However, in lung, CCR9 and CCR5AS showed similar GDE-score
profiles across modern human populations and in a carrier of the
archaic genomic sequence (Fig. 5c, d).

Phenomic scan to identify complication etiologies and
comorbidities
To evaluate the broad phenotypic consequences of the intro-
gressed segment, we performed region-level analyses of the list of

genes that are well imputed by the segment (Supplementary
Table 1).
Blood cell traits are used to diagnose or monitor an infection.

Considering the enrichment of immune response and chemokine-
related genes in this region, we computed the gene-level JTI
associations of the genes in the locus with 27 blood cell traits
(Supplementary Table 10), using the GWAS summary statistics
from the UK Biobank samples (see “Methods”). The severity-
related genes showed significant associations with multiple blood
cell traits (Fig. 6a). Notably, both CXCR6 (P= 6.5e−41, lung) and
SLC6A20 (P= 1.4e−13, spleen; P= 7.1e−11, lung) were found to
be significantly associated with monocyte percentage. Strong
associations between the genes of the CCR family (CCR1, CCR2,
CCR3, CCR5, and CCR9) within this locus and monocyte
percentage, monocyte count, and basophil percentage were
detected in multiple tissues, including whole blood and lung (Fig. 6a
and Supplementary Table 11). Moreover, CCR1, CCR3, and CCR5

Fig. 5 The distribution of GDE-scores in modern human populations and a carrier of an archaic genomic sequence. We applied the gene
expression prediction models in the region to 2504 subjects from the 1000 Genomes project phase 3 to generate tissue-level GDE-scores for
these subjects. The distributions of the GDE-scores for the five modern human populations (AFR, AMR, EAS, EUR, and SAS) are displayed for
genes with significant causal effect on either COVID-19 hospitalization or severity (from the Mendelian randomization analyses), including
CCR5 (a), CXCR6 (b), CCR9 (c), and CCR5AS (d). We also generated a gene’s GDE-score in each tissue for the Altai Neanderthal genomic sequence,
which is represented here by the red dash line. As illustrated in the top of the figure, the direction of effect, as estimated from MR-JTI, for the
gene on COVID-19 severity is labeled by color. A yellow or green border denotes that greater genetically determined expression increases or
decreases risk of severe COVID-19, respectively. Taking panel (a) as an example, compared with modern human genomes, the archaic
sequence had a lower GDE-score for CCR5 in lung. Given the Mendelian randomization-based finding that decreased expression of the gene
increased risk of severe COVID-19, we can infer that the carriers of the archaic genomic segment would be predisposed to developing severe
COVID-19.
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were found to be associated with platelet distribution width in
multiple tissues, including fibroblasts, subcutaneous adipose, tibial
artery, and esophagus mucosa with P-values ranging from 4.8e
−06 to 1.0e−02 (all passing the FDR correction, Supplementary
Table 11). Taken together, the substantial associations between
the genetically determined expression and inflammation, immune
response, and coagulation-related blood cell biomarkers lend
further support to the role of this locus in predisposition to COVID-
19 severity.
We then asked to what extent genetically determined gene

expression in the locus predisposes individuals to develop certain
complications and adverse outcomes. Leveraging the medical

phenome in the UKB, we performed a region-level phenome-scale
scan across neurological, respiratory, circulatory, and endocrine/
metabolic disorders (253 binary traits in total, Supplementary
Table 12), limiting the analysis to the genes imputable by the
segment. However, given the limited effective sample size (range:
204–251,681, Supplementary Table 12) and the large number of
association tests, we emphasize that these promising results on
potential complications (Fig. 6b and Supplementary Table 13) will
require systematic replication in much larger datasets. Transient
cerebral ischemia, myocardial infarction, and essential hyperten-
sion were found to be nominally associated with the genes in this
region. Decreased genetically determined XCR1 in esophagus
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Fig. 6 Region-level Manhattan plot of phenome-wide gene-level associations in the locus. JTI signals for phenome-wide traits, including
a blood cell traits and b neurological, respiratory, circulatory, and endocrine/metabolic disorders, were observed in the region near the
introgressed segment (within 1Mb). Only genes imputable by the segment were included in this analysis. The genes are ordered by their
physical positions. The minus log P value from the association between the genetically determined expression and the traits is shown. For
each gene, only the most significant tissue is labeled. a For blood cell traits, highly significant results (P < 1.0e−20) are labeled by the trait
names. b For potential adverse outcomes, nominally significant results (P < 1.0e−4) are labeled by the trait names. Additional details on the
association results can be found in Supplementary Table 11 and Supplementary Table 13.
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mucosa was found to be nominally associated with increased risk
for disturbances of sensation of smell and taste (P= 5.1e–05),
although the significance did not survive multiple testing
correction. Notably, decreased genetically determined XCR1 in
esophagus mucosa was also associated with a higher risk for
severe COVID-19, indicating a potential pleiotropic effect of the
gene. Taken together, these associations, which are examples
among others with the same level of significance, suggest that
dysregulation of genes in this locus may result in adverse
outcomes and potential complications of severe COVID-19
(Supplementary Table 13).

DISCUSSION
Here we develop an integrative framework for the locus-specific
analysis of genome function, evolutionary history, and phenome-
scale impact. We build on our JTI (with its improved performance
over conventional transcriptome-wide association studies) and
causal inference (to account for the presence of horizontal
pleiotropy or unmeasured confounding effect) methodology9.
The framework inherently comes with a segment-based gene
expression heritability estimation approach where a segment may
be a regulatory element, a region under positive selection, or a
trait-associated locus. Furthermore, the framework develops a new
summary-statistics-based approach to estimate a metric, namely,
the proportion of expression-mediated causal effect explained, that
can be used to quantify causal mechanisms in a genomic region
for a general complex disease or trait. Focusing on the
introgressed segment as an application, we estimated the
segment-based heritability of gene expression in the larger locus,
performing a comparison of the full model and the reduced
model. We prioritized genes associated with COVID-19 severity
using the region-wide association test followed by several
Mendelian randomization approaches (including MR-JTI). Potential
complications, which implicate key biological processes under-
lying the infection phenotype, were identified by a phenome-wide
scan for the genes regulated by the introgressed segment.
The genetic architecture of gene expression is characterized as

sparse, with a small number of variants with disproportionately
large effect (relative to expected from a polygenic model). We
used the prediction performance (cr2g;s) (for the gene g, of the test
segment s, Eq. 7), which is derived from a cross-validated (additive
and sparse) model of gene expression, as an estimate of the
segment-specific heritability. In our application to the introgressed
segment within the 3p21.31 locus associated with severe COVID-
19, although the segment spans only 49.4 Kb, the genetic variants
in the segment were found to explain a substantial proportion of
gene expression for the neighboring genes, indicating a strong
regulatory role for the segment.
An extension of PrediXcan, JTI borrows information across

tissues and substantially improves gene expression prediction
performance9. The increased power of JTI may enhance drug
target discovery and improve drug repurposing efforts. By
estimating the heterogeneity due to horizontal pleiotropy and
unobserved confounding, MR-JTI further prioritized several genes
near the introgressed segment in the associated locus as
potentially causal. Importantly, we provide strong support for
the regulatory role of the introgressed segment for the putatively
causal genes.
We previously trained prediction models using only the (GTEx)

individuals with no Neanderthal ancestry in a gene’s regulatory
region and applied the models to (GTEx) individuals with
Neanderthal ancestry11. Only a small reduction in prediction
accuracy for the individuals with Neanderthal ancestry was
observed relative to the models built without filtering by archaic
ancestry11. Comparing the GDE-score of an archaic profile with the
distribution in modern human populations, we found supportive
evidence that the Neanderthal alleles conferred a greater

predisposition to severe COVID-19. For carriers of the archaic
segment, the higher risk of severe COVID-19 was driven mainly by
the genetic regulation of the expression of CCR5 and CXCR6
in lung.
The region-level analysis prioritized SLC6A20, CXCR6, and the

CCR family (CCR5 and CCR9). Functional interaction between SIT1
(the protein encoded by SLC6A20) and ACE2 has been reported by
Vuille-dit-Bille and colleagues17. Exploited by SARS-CoV-2 (and a
SARS-CoV-2-like virus), ACE2 is a co-receptor important for viral
intracellular entry into the lung and brain18–20. The chemokine
receptor coding gene, CXCR6, plays a key role in NK cell-mediated
memory of haptens and viruses21. The CCR5 encodes the protein
which belongs to the beta chemokine receptor family of integral
membrane proteins22. A recent study showed that anti-CCR5
humanized monoclonal antibody restored CD8 counts in COVID
patients, indicating CCR5 as a therapeutic target for COVID-1923.
The chemokine receptor CCR9 plays an important role in
regulating the development and migration of T lymphocytes24.
By utilizing CRISPR/Cas9 mediated genomic deletion, Yao et al.
identified CCR9 as a potential target gene of the 3p21.31 locus for
COVID-19 severity25.
The region-level analysis of blood cell traits further supports the

connection between these genes and inflammatory traits. In
addition, biomarkers for coagulation-related traits were found to
be associated with the genetically determined expression of
several genes in the CCR family, which show substantial genetic
control by the segment. Notably, the relevance of fibroblasts26

and subcutaneous adipose tissue27, where the association signals
were observed, for coagulation-related traits finds support in
previous studies. Leveraging disease phenotypes in the UK
Biobank, we identified potential comorbidities and complications
for the region. Notably, decreased genetically determined XCR1 in
esophagus mucosa was found to be associated with increased risk
for both severe COVID-19 and “disturbances of sensation of smell
and taste”, which had been reported as comorbidities in 41.0 and
38.2% cases, respectively, in a previous study28. The protein
encoded by XCR1 is a chemokine receptor for XCL1 and XCL2
(lymphotactin-1 and -2). XCR1 has been studied mostly in dendritic
cell-based cancer immunotherapy29, while its role in olfactory and
gustatory dysfunction is unknown. Clearly, a larger sample size
and more comprehensive replication (in additional external
datasets) will be required for more definitive conclusions due to
the multiple comparison burden. Nevertheless, these gene-level
associations can be the basis for interrogating the downstream
consequences of severe COVID-19 on the broader human disease
phenome and, potentially, for designing effective therapeutic
strategies.
Here, we treated the gene as the basic unit for causal inference

(treating its expression as the “exposure” within a Mendelian
randomization framework), which is to be contrasted with fine-
mapping of causal variants. To date, only limited fine-mapping of
causal variants has been performed for COVID-19 severity3,30,31.
Compared with variant-level fine-mapping, the gene-level causal
inference has some desirable features, including (1) the relevance
of the gene (and ease of use) as a target for drug development
and repurposing; (2) increased statistical power for causal
inference from leveraging multiple instrumental variables; and
(3) greater portability across ethnic groups32. Our approach also
differs from colocalization, which tests for shared causal variants
for expression and the phenotype. In the Mendelian randomiza-
tion framework (MR-JTI), for a gene to be causal for a phenotype,
having shared causal variant effects is not enough. Clearly, the
gene-level analysis does not capture coding mechanisms and
other non-expression-mediated causal effects. However, we
provide a framework for estimating the expression-mediated
causal effect using summary statistics for downstream functional
studies.
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This study has several caveats and limitations. Firstly, without
modeling low-frequency genetic variants, the regulatory effect of
the introgressed segment may be underestimated. Low MAF
variants are not very informative given the current sample sizes of
available reference datasets. Secondly, although the latest GTEx
dataset is a broad collection of tissues and cell types, the causal
cell type(s) may be missing, or only partially represented, in the
available tissues and cell types. Thus, the “tissues” in this study
denote a proxy for the causal tissue(s) or cell type(s). Finally, we
are unable to model archaic-ancestry-specific regulatory effects,
i.e., both the non-introgressed, archaic-ancestry-derived alleles
and the ancestral alleles now fixed on the modern human lineage.
However, our interest here is not in predicting the transcriptome
of an archaic genome (which is not available), but the effect of an
introgressed segment in modern human populations.
In summary, we developed an integrative, genetics-anchored

framework for a deep region-level analysis of a complex trait,
which performs causal inference on an intermediate molecular
trait, incorporates the evolutionary history of modeled DNA
variation, and evaluates the phenome-scale impact of the
implicated locus. Applying the framework to the COVID-19
severity associated locus with an archaic introgressed segment,
we provided causal support for multiple genes and identified
several genetically-supported adverse outcomes.

METHODS
Estimating the segment-based heritability of gene expression
We estimated the heritability of gene expression due to a genomic
segment, using a sparsity-regularization and cross-validation-based
methodology. This approach, as we show below, is more robust to model
misspecification than the widely used mixed model33 and is suitable for
gene expression.

Gene expression model building
Suppose g1, g2, …, gn are n tissue-gene pairs of expression measurements
for a given gene. We aim to find a near-optimal set of variants in the
segment with effect size vector β̂, the ‘JTI model’9, assuming additivity of
effect:

β̂ ¼ argmin
β

ð1=2Þ
Xn
i¼1

wi gi � xTi β
� �2þλ

1� α

2

� �
kβk22 þ αkβk1

� �
(1)

The n × p matrix ½x1; x2; ¼ ; xn�T is the feature matrix (of genetic variants).
The wi is the weight, generated from hyper-parameter tuning, on the ith
observation from the tissue similarity matrix. The JTI model thus leverages
the similarity in transcriptional regulation profile. JTI can be extended to
leverage a d-dimensional similarity vector (d ≥ 1) by incorporating several
layers of epigenomic datasets, as we previously described9. The L1 penalty
in the objective function enforces sparsity (consistent with the genetic
architecture of gene expression) while the L2 penalty promotes grouping
effect. Here α encodes the relative weight of the two penalties; we
assumed α = 0.50. Given a test tissue, when tissue sample pairs from a
different tissue are assigned weight 0 while those in the test tissue are
assigned weight 1 in the loss function in Eq. 1, then the resulting special
instance of the optimization problem generates the single-tissue
‘PrediXcan model’.

Cross-validation
The vector g of gene expression (say of dimension n) in each tissue can be
decomposed as:

g ¼ gtrain
gtest

� 	
¼ strain

stest

� 	
þ εtrain

εtest

� 	
(2)

where g*, s*, and ε* are the gene expression level, the genetic component,
and the residual, respectively, in the training or test set (denoted here as *).
For simplicity of presentation and without loss of generality, we left out the
fixed effects (covariates). Assuming ε � Nð0; ΓÞ has a Gaussian distribu-
tion, the variance-covariance matrix var(g) can be written as34:

var gð Þ ¼ XcovðβÞXT þ Γ (3)

where cov(β) is the symmetric covariance matrix of the effect size vector
and X is the n × p genotype (feature) matrix. By independence of the

training and test sets, Γ ¼ Γtrain; train 0
0 Γtest;test

� 	
, where each submatrix Γ�;�

is symmetric.

Sampling dependence
Here we seek a theoretical formulation of the sampling dependence of the
cross-validation framework. In K-fold cross-validation, the dataset is
partitioned into K non-overlapping subsets (say, of the same size n/K).
Let Testk and Traink (that is, the dataset with the elements of Testk
removed) be the kth test set and training set, respectively. For each
i 2 Testk , we consider the “error” or residual εi , defined as the difference
between the gene expression level and the estimated genetic component
trained in Traink for i. The average residual ε ¼ 1

n

Pn
i¼1

εi has variance given by
the following expression:

var εð Þ ¼ 1
n2 var

Pn
i¼1

εi

� �
¼ 1

n2
P
i;j
cov εi ; εj
� �

¼ 1
n σ

2 þ 1
K � 1

n

� �
δ2within þ 1� 1

K

� �
δ2between

(4)

where σ2 is the average variance of the residuals for test samples (where
the average is calculated over the training sets on which the residuals
depend), δ2within is the within-fold covariance for these test samples (which
may be nonzero because of the shared training set), and δ2between is the
between-fold covariance (which may be nonzero due to the fact that each
Testk is a subset of Trainl when l ≠ k). We note that

lim
n!1 var εð Þ ¼ 1

K
δ2within þ 1� 1

K

� �
δ2between (5)

Unbiased estimator of heritability of gene expression
The expression for the variance-covariance matrix (Eq. 3) recalls the usual
decomposition of variance in the standard mixed model for heritability
estimation33. One key difference is that the mixed model fits the genetic
effects u 2 Rp as random effects:

g ¼ a 1
!þ Zuþ ε (6)

u � Nð0; σ2uIÞ

ε � Nð0; Iσ2Þ
Here ~1 2 Rn is a vector of ones. The variance components σ2u and σ2 are
estimated using an algorithm (e.g., restricted maximum likelihood), and the

heritability estimate dh2MM is then given by the ratio pbσ2u
pbσ2uþbσ2. Now the so-called

Best Linear Unbiased Predictions (BLUP) derived from the mixed model is
related to ridge regression35,36, a common regularization approach.
Maximizing the posterior P(u|g) under a Gaussian prior is equivalent to
the minimization of the ridge objective function with ridge hyperpara-
meter λ ¼ σ2=σ2u . Thus, mixed model parameter estimation (and thus
heritability estimation under the mixed model approach) can be viewed as
a type of regularization, but in contrast to regular ridge hyperparameter
estimation which requires a training and validation dataset, mixed model
parameter estimation is done in a single dataset.
For gene expression, we take a different approach, which relies first on

regularization (Eq. 1) and then cross-validation, both of which should
reduce overfitting. Let gtest;0 be the gene expression level for one random
observation from the test set. The performance of the model is given by:

cr2g;s ¼ covðgtest;0; dstest;0Þ2
var gtest;0
� �

varðdstest;0Þ (7)

Here, the estimated genetic component dstest;0 comes from applying the
solution to the optimization problem given by Eq. 1 to the test subject.
This coefficient of determination is an unbiased estimate of the proportion
of explained variation. The regularization and cross-validation approach is
the core of the JTI prediction methodology, from which, therefore, an
estimator of heritability of gene expression can be defined.
We also estimated the concentration of heritability, using the statistic:

ψ ¼ h2g; reducedpfull
h2g;fullpreduced

(8)
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where p* is the number of variants in the model (reduced or full; see
section “Training the full model and reduced model of gene expression”
below), which measures the per-SNP heritability from the reduced model
as a fraction of the per-SNP heritability from the full model.

Estimation of region-level (local) trait heritability using
summary statistics
Using the theory of quadratic forms, we previously derived a summary-
statistics-based estimator of region-level trait heritability (while accounting
for linkage disequilibrium [LD]; see Equations A6 and A7 in the appendix of
Gamazon et al.37). The estimator and its variance are given by:

br2L ¼ β̂TC�1β̂� p
n

n� p

 !
n (9)

var br2L� �
¼ 1� p2

n2

� ��1
 !

1� br2L� �
n

4br2L þ 2p
1� br2L� �
n

0@ 1A (10)

This estimator is defined for a locus or region L, is approximately
unbiased when in-sample LD is close to the true LD, and can be extended,
via independent LD blocks, to estimate the genome-wide SNP heritability.
Here p is the number of SNPs, β̂ is the p × 1 vector of estimated effect sizes
(on the GWAS trait or on gene expression, depending on context), and C is
the p × p SNP correlation matrix. The condition n � p is a necessary
condition for C being invertible or having a full rank. This approach was
extended by Shi et al.38 in Heritability Estimator from Summary Statistics
(HESS) (and then by Hou et al.39 to biobank-scale data) with a model of
genotypes in a locus as random variables and a technique to account for
rank deficiency in the LD matrix (e.g., as may arise from SNPs in perfect LD).
HESS replaces, in Eq. 9, C�1 by the Moore-Penrose pseudoinverse and
replaces p by q ¼ rankðCÞ, that is, the maximal number of linearly
independent columns or the “effective number” of SNPs. Shi et al.
“regularized” the external reference LD matrix to account for noise in the
matrix, using principal components. Here, we extend our earlier work and
Shi et al. with a theoretical and empirical investigation into a major source
of bias for the estimate of heritability.
First, for illustration, we consider two SNPs that are in LD (r2 ¼ ρ), so that

the assumed LD matrix is
1 ρ
ρ 1

� 	
. The inverse of the matrix is, therefore,

1
ð1�ρ2Þ

1 �ρ
�ρ 1

� 	
. Let β̂T ¼[ bβ1 bβ2] be the vector of estimated variant effect

sizes (from GWAS). Then the estimate of heritability (Eq. 9) can be written
as:br2L ¼ ½nð bβ12 þ bβ22 � 2ρ bβ1 bβ2Þ � 2�=ðn� 2Þ (11)

Here, we note that:

∂br2L
∂ρ

¼ �2 bβ1 bβ2n=ðn� 2Þ (12)

which shows the change in the estimate caused by a perturbation in LD. A
special instance is that of the SNPs being independent (ρ ¼ 0), so that the
LD matrix is the identity matrix. In this case, as n ! 1, the heritability
estimate approaches bβ12 þ bβ22. Another special case is that of the SNPs
that are in perfect LD (ρ ¼ 1) so that the LD matrix is non-invertible (that is,
has determinant 1� ρ2ð Þ ¼ 0). In this case, the Moore-Penrose pseudoin-

verse is
1
4

1
4

1
4

1
4

� 	
and the estimate of heritability reduces to:

br2L ¼ n
1
4
bβ12 þ 1

4
bβ22 þ 1

2
bβ1 bβ2� �

� 1

� 	
=ðn� 1Þ (13)

As n ! 1, this estimate approaches 1
4
bβ12 þ 1

4
bβ22 þ 1

2
bβ1 bβ2, which is the

square of the weighted sum of the variant effect sizes (each of weight 1/2).
Since the SNPs are in perfect LD, then the estimated effects sizes should be
equal: bβ1 ¼ bβ2 ¼ β̂, and any difference in the estimates may be due to
genotyping error.
Now, let us consider the general case of p variants in the region. The use

of an external LD panel (which is typically smaller in sample size than a
GWAS) usually leads to a lower rank of the LD matrix and thus produces an
underestimation of the variance (Eq. 10 with lower p). However, a larger
GWAS sample size leads to improved (i.e., lower) standard error (Eq. 10
with higher n). The ground-truth heritability r2L ¼ βTCβ (where C ¼ ½Cij� is

the LD matrix) is a quadratic form with (scalar-by-matrix) derivative with
respect to C given by the following p × p matrix (assuming a genetic
architecture where the effect size β is not a function of the LD matrix C):

∇Cr
2
L Cð Þ ¼ ββT (14)

We emphasize that the genetic architecture in which β is independent of C
is assumed and necessary in Eq. 14. Thus, the change in the heritability due
to a perturbation in LD is a function (a monomial of degree 2 for each entry
in the p × p matrix) of the effect sizes in the region. A similar conclusion
holds true on the relationship between the estimator and the estimated
effect sizes assuming the LD estimate Ĉ from an external reference panel.
The ijth term of the derivative matrix ∇Ĉr

2
L Ĉ
� �

with respect to Ĉ equalsbβi bβj n
n�rank Ĉð Þ
� �

, which quantifies the change in heritability relative to a

change in (external panel based) LD between the ith and jth variants. Thus,
the change in the estimate of heritability (viewed as a function of the
external panel LD estimate Ĉ, which in turn can be viewed as a
perturbation of the in-sample LD Cij ) relative to the change in the in-
sample LD Cij is:

∂r2L Ĉð Þ
∂Cij

¼ tr ∇Ĉr
2
L Ĉ
� �

∂Ĉ
∂Cij

h i
¼ tr bβi bβj ∂Ĉ

∂Cij
n

n�rankðĈÞ

� �h i
¼ bβi bβj n

n�rankðĈÞ

� �
tr ∂Ĉ

∂Cij

� � (15)

where tr is the trace operator. This observation argues for the importance
of making available not just the GWAS summary statistics, i.e., the bβi , but
also the in-sample LD data, i.e., Cij . We calculated the empirical distribution

of bβi bβj and performed simulations on the impact of the external panel (i.e.,

using the statistic n
n�rank Ĉð Þ
� �

tr ∂Ĉ
∂Cij

� �
) on the heritability estimate. For an

LD-matched reference panel, the product monomials bβi bβj have a major
influence on the behavior of the estimate.
Note that in Eq. 9, the inverse of the true (unobserved) LD matrix C or

the inverse of the external panel LD estimate Ĉ is required. Thus,
assuming the inverses exist, we obtain an expression for the difference
between Ĉ

�1
and C�1 in terms of the difference (noise) matrix Δ ¼ Ĉ� C:

Ĉ
�1 � C�1 ¼ � Iþ C�1Δ

� ��1
C�1ðΔÞC�1 (16)

Therefore, the term on the right determines the difference in the estimate
of heritability from the use of the external LD panel and the true LD
information. We note that this term is a general expression that includes
the special case, such as treated in Shi et al. in which the noise Δ is
addressed through use of the truncated singular value decomposition
(SVD) to obtain an improved estimator dCSVD . In particular, the difference
ΔSVD ¼ dCSVD � Cmay still bias the estimate of heritability, with the residual

bias given by n

n�rank cCSVD

� �0@ 1Aβ̂T ð� Iþ C�1ΔSVD
� ��1

C�1ðΔSVDÞC�1Þβ̂

Here we describe how to obtain the projected matrix πðCÞ, which has
the property that the difference matrix ΔProjected ¼ π Cð Þ � C is “minimal” in
the sense of minimizing the expected quadratic loss:

π Cð Þ ¼ argmin
C�

E½ C� � Ck k2� (17)

where C� is a linear combination of the identity matrix I and Ĉ, the
observed (in-sample or reference) LD matrix (Fig. 1). Define π Cð Þ as the
Ledoit-Wolf estimator, expressed as a linear combination of Ĉ and I as
follows:

π Cð Þ ¼ b2m
d2

Iþ a2

d2
Ĉ (18)

where

m ¼ <Ĉ; I> (19)

d ¼ Ĉ�mI


 

2 (20)

b2 ¼ min d2;
1
n2
Xn
k¼1

XkX
T
k � Ĉ



 

2 !
(21)

a2 ¼ d2 � b2 (22)
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Here, <�; �> and jj�jj refer to the Frobenius inner product and norm,
respectively, and Xk is the p ´ 1 genotype vector for the kth subject. Equations
17 and 18 have a Bayesian-geometric interpretation. π Cð Þ reflects the
combination of prior information and sample information. The prior information
states that the unobserved (true) covariance C is on the sphere with center at
mI and radius a. The sample information states that C is on a second sphere
with center at Ĉ and radius b. The combination of the two indicates that C is in
the intersection of the two spheres, i.e., a circle with center at π Cð Þ.

Comparison of local heritability estimated from the observed
LD matrix and from the projected LD matrix
We performed simulations (n = 500) to investigate the impact of using an
external reference panel on the estimate of local heritability. We leveraged
the 1000 Genomes EUR dataset for realistic simulations. For each
simulation, we generated 50,000 individual-level genotype40 data of
50 kb segments, with LD structure informed by empirically-derived
segments, which were randomly drawn from chromosome 22. We
assumed various levels of local heritability (h2local ¼ 0.01, 0.02, and 0.03).
For each value of heritability, we generated the phenotype: Y ¼ βGþ ε.
Here, G denotes the genotype in dosage (scaled to standard normal

distribution) of a randomly sampled causal variant; β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2local ´ varðYÞ

varðGÞ

q
is the

effect size of the causal variant; ε denotes the residual term randomly
drawn from a normal distribution ε � Nð0; σ2Þ where σ2 ¼ var Yð Þ �
varðβGÞ and Y � Nð0; 1Þ. The marginal effect size for each of the variants
on the segment was estimated. We randomly sampled 500 subjects to be
used as an “external reference panel” and, in addition, calculated the
observed LD matrix Ĉ and projected LD matrix πðCÞ. The local heritability
was then estimated (Eq. 9) using each LD matrix for comparison.

Summary-statistics-based estimation of the proportion of
expression-mediated causal effect explained
To estimate the extent to which the gene causal effect is driven by the
segment of interest, we developed a summary-statistics-based approach
using the projected LD matrix. We define a new metric πc to estimate the
proportion of expression-mediated causal effect explained by a genomic
segment using summary statistics. (To illustrate the approach, we
evaluated the causal role of the introgressed segment in severe COVID-
19. However, the approach can be applied more generally to GWAS
summary statistics data.) Let α̂ be the MR-JTI estimate of the gene causal
effect on the trait, which is obtained by solving an optimization problem
(of predicting a variant’s GWAS effect size by its regulatory effect on the
gene and its contribution to heterogeneity) (see below; Eq. 29). We
consider the GWAS marginal effect size vectors, dθfull and dθreduced, and
corresponding eQTL effect size vectors,dβfull and dβreduced, for the full model
and reduced model, respectively, and the projected matrices C�

full and
C�
reduced of the SNP correlation matrices Cfull and Creduced for the full model

and reduced model, respectively. We have the following decomposition of
the GWAS marginal effect size into an expression-mediated causal effect
and an “indirect” component (Fig. 1):bθ� ¼ dθmediated þ dθunmediated ¼ α̂ bβ� þ bh� (23)

where * denotes the full or reduced model. Then we define πc as follows:

πc ¼
α̂2 dβreducedTC�

reduced
dβreduced � rank Creducedð Þ

n

α̂2dβfullTC�
full
dβfull � rank Cfullð Þ

n

 !
n� rank Cfullð Þ

n� rank Creducedð Þ
� �

(24)

The metric πc , a ratio of estimated expression-mediated causal effects, is
obtained by replacing the GWAS effect size vector bθ� by the effect size
vector α̂ bβ� which quantifies the effect on the trait mediated by the gene
expression. Correspondingly, one can estimate the concentration of
expression-mediated heritability, ψe (see above for definition of ψ). The
difference vector:bh� ¼ bθ� � α̂ bβ� (25)

is an overall estimate of ‘indirect’ effect, including heterogeneity,
confounding, and other non-expression-mediated effect.

Training the full model and reduced model of gene expression
We generated a “reduced model” (trained using only the subset of variants
in the segment of interest) and the “full model” (trained using all variants

in the cis-region, 1 Mb on both sides from the gene body). As an
application, for the reduced model, we included only the introgressed
variants in the Neanderthal-inherited 49.4 Kb segment, and then estimated
the expression variance h2g;reduced explained by the model:dh2g;reduced ¼ ½cor gtest; dgreduced;test

� ��2 (26)

as the square of the correlation between the predicted expressiondgreduced;test and observed expression gtest in a test set. This reduced model
facilitates comparison with the original full model.
For the actual implementation, we leveraged whole-genome sequence

data and gene expression data from the GTEx v8 data release13. The
sample size ranges from 70 to 706 across 49 tissues from a total of 838
donors. We used the residual of the normalized expression level13 after
adjusting for covariates: gender, platform, first five principal components
(PCs), and PEER factors for each tissue. The reduced model and the full
model were trained using JTI9 to improve the prediction performance (the
square of the Pearson’s correlation r between the predicted expression and
the observed expression) by borrowing information across tissues. The
training of the full model was as previously described9. Briefly, JTI
estimates the gene expression profile similarity and the regulatory profile
similarity (here, generated from the DNase I hypersensitivity [DHS] sites in
the promoter region) for each tissue-tissue pair. The two similarity
measures were combined using hyperparameters, which were tuned
using five-fold cross validation. For the reduced model, the similarity of the
regulatory profile was estimated using the DHS peaks in the introgressed
segment41,42. Genes with a good prediction quality from 5-fold cross-
validation (r > 0.1 and P < 0.05 for the correlation between the observed
and the predicted expression) are called imputable genes (iGenes).
Common genetic variants (minor allele frequency ≥ 0.05) were used for
training the full and reduced models. Models trained by PrediXcan and by
JTI, and similarly the reduced model and the full model, were system-
atically compared for prediction quality.
We also compared the prediction performance (r2) of a randomly-chosen

segment with that of the actual introgressed segment. For each gene
located within 1 Mb of the introgressed segment (in both directions), we
built a prediction model for each of 100 randomly-selected segments (of
the same length as the introgressed segment) within the cis-region (i.e.,
within 1 Mb of the gene), using the genetic variants in the segment. The
median of the prediction performance (r2) across the 100 models was
calculated for each gene as the random-segment-based prediction
performance.
We investigated the extent to which maintenance of good prediction

accuracy with the reduced model (relative to the full model) depended on
the segment length. We tested two segment lengths (i.e., 100 and 500 kb
extensions on both sides of the actual segment), to compare the
performance of the reduced model from the dilated segment and that
of the full model from the complete cis-region.

GWAS summary-statistics-based JTI of COVID-19
hospitalization and severity
To identify the genes associated with COVID-19 severity, we applied JTI to
the summary statistics from COVID-19 HGI GWAS meta-analyses round 66.
For the GWAS meta-analysis of COVID-19 hospitalization, 24,274 hospita-
lized cases and 2,061,529 population controls were included. The GWAS
meta-analysis of severity included 8,779 very severe respiratory confirmed
cases and 1,001,875 population controls. Details of each sub-study can be
found in Supplementary Table 3.

Causal gene mapping using Mendelian randomization
Based on the JTI results, we further performed Mendelian randomization to
map causal genes around the introgressed segment. Here we applied our
MR-JTI9 approach, which, through modeling the heterogeneity (from
horizontal pleiotropy and unobserved confounding factor) of instrumental
variables (IVs), provides a nearly unbiased estimate of the gene causal
effect ɑ on the trait. To confirm this, we performed simulations (n = 500),
comparing MR-JTI’s estimate of the causal effect with the conventional
inverse-variance weighted (IVW) method’s estimate. We randomly sampled
100 genes with at least one eQTL (estimated from 670 whole blood GTEx
v8 samples). The gene expression level (X) was simulated using empirical
eQTL effect sizes (β). The variance of the residual component (σ2X ) was also
informed by empirical data. The trait (Y) was simulated by assuming that
the gene expression level was causal for the trait at various levels of effect
size α (ranging from 0 to 0.5). To investigate the impact of heterogeneity
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on the causal effect estimate from MR-JTI (cαJTI) and IVW (dαIVW), we assumed
that 20% of the instrumental variables were not valid, with the horizontal-
pleiotropy effect (Z) twice as large as the mediation effect. For each
simulation, the genotype data (G) was generated for 50,000 samples based
on empirical genotype data (GTEx v8)13,40.

X ¼ βGþ εX ;where εX � Nð0; σ2XÞ (27)

Y ¼ αX þ Z þ εY ;where εY � N 0; 1ð Þ (28)

MR-JTI solves the following optimization problem:

α̂; δ̂; ω̂ ¼ argmin
u;vj ;w

XJ
j¼1

bθj � ubβj � vj � wlj
� �2

þλ k vj
� 
k1 þ uj j þ wj j� �

(29)

to estimate the gene causal effect (α̂), the contribution (bδj) of the jth
instrument to the heterogeneity, and the effect (ω̂) of the LD score lj. Here,
θ̂ is the GWAS effect size vector. MR-JTI is a two-sample Mendelian
randomization approach. For implementation, the GTEx v8 eQTL dataset13

(bβj ) and the GWAS summary statistics (bθj) were used as input. The LD score
was estimated from GTEx v8 (the same dataset as used for eQTL
estimation). For additional support, we also applied MR-Egger and
weighted median estimator to estimate the causal effect for each gene
using the R package ‘MendelianRandomization’. Following the Mendelian
randomization guidelines43, we removed palindromic IVs and clumped IVs
using PLINK1.9 (--clump-p1 0.05 --clump-r2 0.1) based on the p-value of
the association test between an IV and gene expression level. Additional
correlation among the IVs was removed by incorporating the IV-IV
correlation matrix in the ‘MendelianRandomization’ implementation.

Genetically determined expression score in modern human
populations and an archaic genome
We define the GDE-score of a subject for a gene using the gene’s JTI
model9. The GDE-score provides a metric to quantify “regulatory
divergence” between modern human genomes and an archaic genome,
which can be used to investigate phenotypic divergence among hominin
lineages11 or among individuals according to introgression status. We note
that the GDE-score should not be viewed as an extinct hominin’s level of
gene expression, which is not directly accessible. The GDE-score does not
reflect fixed differences or substitutions, but models only polymorphisms
that arose in the common ancestors of modern humans and the archaic
genome as well as modern-human specific polymorphisms at which the
archaic genome is homozygous for the ancestral alleles16. Differences in a
gene’s GDE-score quantify differences in genetic regulatory effects for
these modeled variants. As an application, we estimated the phenotypic
consequence of the introgressed segment for putatively causal genes from
the Mendelian randomization analyses.
As a reference panel of modern human populations, individual-level

genotype data were downloaded from the 1000 Genomes project (phase
3)44. The distributions of estimated genetically determined expression in
five populations, including African Ancestry (AFR), American Ancestry
(AMR), East Asian Ancestry (EAS), European Ancestry (EUR), and South
Asian Ancestry (SAS), were generated. The high-quality archaic genome
from a Neanderthal individual found in the Altai Mountains was used to
estimate the archaic genome GDE-score11,45.

Identifying the phenomic consequences of a genomic
segment
To determine the health consequences of the target genes of the segment,
we conducted phenome-wide association studies (PheWAS)46–48. We
selected genes based on the prediction performance of the reduced
model, as these genes show substantial genetic control by the segment in
at least one tissue, but we used the full model to evaluate their phenotypic
consequences in PheWAS, as the full model should have improved power
for the association test.
We performed JTI association analyses on blood cell traits, using the

GWAS summary statistics from the UK Biobank samples. The GWAS
summary statistics were downloaded from the Neale Lab (www.nealelab.is/
uk-biobank). The sample size for the 27 blood cell traits ranges from
344,728 to 350,470. The links for the resource, including the summary
statistics and the original distributions of all blood cell traits, can be found
in Supplementary Table 10. The covariates age, age2, sex, age*sex,
sex*age2, and the first 20 PCs were considered as covariates in the GWAS.

To identify potential complications of severe COVID-19, we performed a
JTI-based phenome scan across four trait categories, specifically neurolo-
gical, respiratory, circulatory, and endocrine/metabolic disorders, based on
the UKB GWAS results. The GWAS summary statistics had been generated
by the Lee lab49, using SAIGE (Scalable and Accurate Implementation of
GEneralized mixed model), which provides accurate P values even when
case-control ratios are extremely unbalanced50. In total, 253 binary traits
(belonging to the four categories) with at least 50 cases were included. The
first four genotype-based principal components, gender, and birth year
were included as non-genetic covariates. The Phecode hierarchical system
(https://phewascatalog.org/)51,52 comes with case groups (typically dis-
eases and complications), each with a corresponding control group. The
sample size for each trait can be found in Supplementary Table 12.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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