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Abstract: In the standard approach to deriving inflationary predictions, we evolve a
vacuum state in time according to the rules of a given model. Since the only observables
are the future values of correlators and not their time evolution, this brings about a large
degeneracy: a vast number of different models are mapped to the same minute number
of observables. Furthermore, due to the lack of time-translation invariance, even tree-
level calculations require an increasing number of nested integrals that quickly become
intractable. Here we ask how much of the final observables can be “bootstrapped” directly
from locality, unitarity and symmetries.

To this end, we introduce two new “boostless” bootstrap tools to efficiently compute
tree-level cosmological correlators/wavefunctions without any assumption about de Sitter
boosts. The first is a Manifestly Local Test (MLT) that any n-point (wave)function of
massless scalars or gravitons must satisfy if it is to arise from a manifestly local theory.
When combined with a sub-set of the recently proposed Bootstrap Rules, this allows us
to compute explicitly all bispectra to all orders in derivatives for a single scalar. Since
we don’t invoke soft theorems, this can also be extended to multi-field inflation. The
second is a partial energy recursion relation that allows us to compute exchange correlators.
Combining a bespoke complex shift of the partial energies with Cauchy’s integral theorem
and the Cosmological Optical Theorem, we fix exchange correlators up to a boundary
term. The latter can be determined up to contact interactions using unitarity and manifest
locality. As an illustration, we use these tools to bootstrap scalar inflationary trispectra
due to graviton exchange and inflaton self-interactions.
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1 Introduction

The space of all consistent field theories is vast, and even the number of different models
that have been proposed for particle physics and cosmology is enormous and continuously
growing. In contrast, the fundamental principles on which these models are based and
that define what we deem to be consistent are actually very few: quantum mechanics
and its main pillar of unitarity together with locality and symmetries. The journey from
physical theories to predictions can then take one of two paths. On the one hand, we
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can propose theories that obey the above fundamental principles and use well-established
computational methods to derive observables. This is a very convenient approach when we
have few concrete theories that we trust and we want to explore a wide range of diverse
phenomena that they might lead to. In this case, we can compactly define the theories
through an action and use it to compute a multitude of predictions. For example, this is a
very natural approach when deriving precise predictions from General Relativity and the
standard model of particle physics.

On the other hand, there are cases in which, either due to the lack of data or to
the richness of imagination of theorists, we are interested in a large number of possible
theories. Furthermore, it might also be the case that we probe these theories through one
and the same observable. An example is much of particle physics beyond the standard
model: the number of extensions to the standard model for collider phenomenology is
large and ultimately many of them are constrained through the scattering amplitudes they
predict. Another example is the many models of the very early universe that have been
proposed, which are ultimately confronted with observations in the statistics of correlators
of primordial perturbations. In these cases, the previous approach is inefficient because we
have to compute the same observables over and over again for new models. It may instead
be simpler to apply the fundamental principles directly to the observables that we want to
compute and ask which predictions are compatible with those principles. This bypasses
altogether the explicit construction of concrete models. While both approaches have their
merit, it is this second approach, which sometimes goes under the name of the bootstrap
programme, that we advocate in this work in the context of early universe cosmology.

The natural observables of cosmology are the correlation functions of perturbations
of the density and velocity of the constituents of the universe. In models of single-clock
inflation, these observables are fixed by the quantum expectation value of the product of
field fluctuations at the end of inflation. These so-called primordial correlators naturally
live at the future conformal boundary of quasi-de Sitter spacetime. In the past few years,
our understanding of how fundamental principles constrain primordial correlators has dra-
matically improved. Much information has emerged from improvements in perturbative
calculations [1–12]. At the same time, it has become clear that very powerful results can be
bootstrapped directly from fundamental principles taking advantage of the restrictive sym-
metries of de Sitter spacetime [13–26]. For these bootstrap methods to make contact with
the rich world of inflationary phenomenology and eventually observations, it is necessary to
abandon the requirement of full de Sitter isometries since de Sitter boosts are incompatible
with large primordial non-Gaussianities [27]. Fortunately, several lessons from the de Sitter
studies can be exported to the more general “boostless” case, where we allow for interactions
coming from the coupling to the inflationary background, which break boosts and can give
rise to phenomenologically large primordial non-Gaussianity [28]. Indeed, building upon
several results derived in [1, 2, 4, 5, 22], a set of (boostless) Bootstrap Rules (Rules 1-6) was
proposed in [29] to bootstrap a large number of bispectra involving (massless) scalars and
gravitons. The Bootstrap Rules allow one to quickly derive many classical results in the
literature, e.g. those in [30, 31], but also make the role of fundamental principles explicit.
In this paper we will improve the Bootstrap Rules by better understanding the implications
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of locality. In particular, we do not fix the leading total energy pole in terms of a local
amplitude (Rule 3) and we do not use soft theorems (Rule 6).1 Rather, we introduce a
more powerful Manifestly Local Test (MLT), that selects theories where the interactions of
on-shell degrees of freedom are manifestly local. Our primary objects of interest will be the
wavefunction coefficients appearing in the wavefunction of the universe, which are related
to cosmological correlators via simple algebraic relations (see e.g. [32–34]). We choose to
work with the wavefunction as opposed to correlators for several reasons. At the technical
level, the constraints from unitarity and the choice of vacuum derived in [32, 35–37] can be
expressed very straightforwardly in terms of the wavefunction coefficients, but become very
cumbersome in terms of the correlators, since in general one needs to include correlators
of products of both the fields and their conjugate momenta. At a more abstract level, in
a conjectural holographic approach to quantum field theory and quantum gravity in de
Sitter, it is the wavefunction that is naturally computed by a conformal field theory, in
analogy with the AdS/CFT correspondence and along the lines of the proposal in [30] (see
also [38, 39] for a different perspective). When combined with Rules 1, 2, 4 and 5 of [29],
we will show that the Manifestly Local Test enables us to derive all possible shapes of
scalar 3-point functions arising from manifestly local interactions. Our MLT enables us to
capture some important constraints that were missed in [29]. We will construct both real
and imaginary parts in this paper.

Another important recent achievement has been the formulation of the consequences
of unitary time evolution for cosmological correlators. The main insight is that, assuming
a Bunch-Davies initial state, unitarity manifests itself in a relation between wavefunction
coefficients and their analytical continuation to negative energies [32]. For more general
initial states this can be shown to correspond to a set of conserved quantities [35]. This
relation can be thought of as a Cosmological Optical Theorem (COT) providing a non-
linear relation for the discontinuities of correlators. The COT is also remarkably general:
it is valid for fields of any mass and spin on a very general class of FLRW spacetimes,
including de Sitter, inflation and ΛCDM [37], as well as to any loop order in perturbation
theory [36] (where it takes the form of Cosmological Cutting Rules). In this paper we
show how these relations can be used to bootstrap exchange n-point functions arising
from boost-breaking interactions. In particular, we use a set of partial energy shifts which
deform the partial energies of exchange wavefunction coefficients by a complex parameter.
When combined with the COT, these shifts lead to partial energy recursion relations that
combine lower-order diagrams into higher-order exchange diagrams. Similar energy shifts
were first introduced in [2] to fix the residues of simple poles. Our particular choice of
partial energy shifts combined with the COT enables us to go beyond simple poles, which
is crucial for cosmology.2 While this approach is inspired by analogous methods used

1We leave the possibility of imposing soft theorems as additional constraints.
2Indeed, energy shifts and corresponding recursion relations for wavefunction coefficients were recently

introduced in [2] within the context of a toy model for cosmology, namely a conformally coupled field with
non-derivative self-interactions. It was further assumed that no boundary term arises when the shifting
parameter approaches complex infinity. In such cases, the correlators can only possess simple poles with
residues that are encoded in the amplitude limit. As such, these correlators are entirely dictated by the
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in amplitudes [40–42], e.g. BCFW recursion relations [43], the features of cosmological
spacetime, and in particular the lack of time translation and boost invariance, make the
details of the method quite different from the flat spacetime counterpart.

Our results in this paper apply to de Sitter geometries and inflation, at tree-level.
Indeed, our MLT and the ansatz we employ for our partial-energy shifts follow from de
Sitter mode functions. It would be interesting to extend our results to other accelerating
FLRW spacetimes, with help from the recent generalisation of the COT to backgrounds
away from de Sitter space [37]. The ansatz that we work with, for both the three-point and
four-point functions, are also applicable to tree-level only. We expect the MLT constraint
that we derive in section 3 to be valid away from the tree-level approximation, however
technical difficulties in going beyond tree-level lie within writing down the appropriate
ansatz. Indeed, a rational ansatz is very important in section 5 such that we can use
Cauchy’s integral theorem. We leave the interesting generalisation of our results to loop
level for future work.

The bootstrap approach for cosmology is just at its infancy and there is a lot more to
learn. For example, here we primarily study external scalar fields, but from our experience
with amplitudes, one expects even more interesting results and constraints to emerge in
the presence of massless spinning particles. We hope our progress here will eventually
contribute to that larger goal.

1.1 Summary of the results

For the convenience of the reader, we summarize our main results below.

• In section 3, we derive the following simple condition that all wavefunction coefficients
ψn involving massless scalars and gravitons (and any field with the same ∆+ = 3 mode
functions given in (2.6)) must satisfy for the theory to be manifestly local, namely
involve only local interactions of the dynamical fields:3

∂

∂kc
ψn(k1, . . . , kn; {p}; {k})

∣∣∣
kc=0

= 0 , ∀c = 1, . . . , n , (1.1)

where ka with a = 1, . . . , n are the n external momenta with “energies” ka = |ka|,
{p} denotes possible internal energies if ψn arises due to an exchange process and
{k} denotes possible contractions of momenta and polarisation vectors. Here the
derivative is taken with all other variables kept fixed. This condition is satisfied, for

knowledge of the flat space limit of the diagram and its constituent subdiagrams. In this work, we want to
study phenomenologically relevant correlators an so we consider a massless field with arbitrary derivative
interactions. Our method can be used to bootstrap exchange diagrams with poles of any degree, the residues
of which cannot be read off from the corresponding flat space amplitude except for the most singular one.
Also, our energy shifts will generically induce boundary terms that need to be added to the residue sector
in order to have a consistent correlator. We will see that unitarity and locality combine to pinpoint both
the residue and the boundary sectors up to unspecified local contact terms.

3This in particular excludes some gravitational interactions during inflation where, after integrating out
the non-dynamical lapse and the shift, interactions with inverse Laplacians appear, which violate manifest
locality [30].
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example, for interactions to any order in derivatives of any number of (massless) in-
flatons. However, this condition may be violated in the presence of massless spinning
particles, where the solution of the gauge constraints may induce non-manifestly local
interactions involving inverse Laplacians, as is the case for General Relativity [30].
We name this constraint the Manifestly Local Test (MLT). In section 3.3 we discuss
analogous conditions for fields of arbitrary masses. For conformally coupled scalars
the condition is much weaker than for their massless counterparts.

• We show in section 4 that the MLT is a surprisingly powerful computational tool
to derive wavefunction coefficients within the recently proposed boostless bootstrap
approach [29]. As the name suggests, this approach makes no assumption about
invariance under de Sitter boosts and can therefore be applied to most models in
the literature. Using a set of Bootstrap Rules that enforce the correct singularities,
symmetries and the Bunch-Davies vacuum, one can easily derive a simple bootstrap
Ansatz for general bispectra. Without any reference to local amplitudes and soft
theorems (which conversely were invoked in [29]), we show here that the Manifestly
Local Test determines precisely the scalar bispectra generated by the Effective Field of
Inflation to all orders in derivatives and excludes those gravitational interactions that
are not manifestly local (and also slow-roll suppressed). We prove that the number
Ntotal of possible manifestly local scalar bispectra matches the number Namplitudes of
independent cubic scalar amplitudes plus one:

Ntotal(p) = Namplitudes(p) + 1 = 1 +
b p+3

2 c∑
q=0

⌊
p+ 3− 2q

3

⌋
, (1.2)

where b. . . c is the floor function and p is the maximum number of derivatives. The ad-
ditional bispectrum corresponds to the only allowed manifestly local field redefinition.

• In section 5 we derive for the first time partial-energy recursion relations as a tool to
bootstrap exchange diagrams from lower-point vertices and show this explicitly for
exchange 4-point wavefunction coefficients. To this end, we perform complex shifts of
the partial energies of a given diagram, which are the sums of the energies flowing into
any given sub-diagram, and are the only allowed singularities at tree-level together
with the total energy. The residues of all the poles in the complex shift are fully
fixed by the Cosmological Optical Theorem [32] and its perturbative manifestation
in the recently derived Cosmological Cutting Rules [36, 37]. This is in contrast to
the factorization limits discussed for example in [26], which fix only the leading order
singularities. For example, for the exchange scalar 4-point wavefunction coefficient
ψ4 (related to the trispectrum) our bootstrap result comprises of three terms derived
in three subsequent steps,

ψ4 = ψRes +BCOT +BMLT . (1.3)
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The first term ψRes is derived in Step I (section 5.1) via Cauchy’s integral theorem
and is found to be

ψRes =
∑

0<n≤m

An(EL, ER, k1k2, k3k4, s)
EnL

+
∑

0<n≤m

An(ER, EL, k3k4, k1k2, s)
EnR

, (1.4)

An = 1
(m− n)!∂

m−n
z

{
(z + EL)m Ξ(EL + z, ER − z, k1k2, k3k4, s)

}
z=−EL

, (1.5)

where m is the number of derivatives in the cubic interaction (also the order of the
k

(3)
T pole), s = |k1 + k2|, EL = k1 + k2 + s, ER = k3 + k4 + s and Ξ is the right-hand

side of the COT given by [32]

Ξ(EL, ER, k1k2, k3k4, s) = P (s) [ψ3(k1, k2, s)− ψ3(k1, k2,−s)]
× [ψ3(k3, k4, s)− ψ3(k3, k4,−s)] , (1.6)

with P (s) the power spectrum of the exchanged field. The remaining terms are
boundary terms not fixed by Cauchy’s integral theorem. The second term BCOT is
derived in Step II (section 5.2) and ensures that ψ4 obeys the COT. It is given by

BCOT = 1
12

∂3

∂s3 Ξ(EL, ER, k1k2, k3k4, s)
∣∣∣
s=0

s3 , (1.7)

where the derivative is computed keeping fixed {EL, ER, k1k2, k3k4}. The third and
last term BMLT obeys the contact COT and is computed in Step III (section 5.3)
by applying our manifestly local test to ψ4. For external fields with massless mode
functions, it can be found by solving

∂

∂kc
BMLT

∣∣∣
kc=0

= − ∂

∂kc
ψRes

∣∣∣
kc=0

∀c = 1, . . . , n . (1.8)

• In section 6 we show how a combination of the MLT and the partial-energy recursion
relations can be used to explicitly compute the scalar trispectrum in a few examples:
first we demonstrate our techniques in Minkowski spacetime for the polynomial inter-
action φ3, where the algebra is minimal. Then, we derive the scalar trispectrum from
graviton exchange, which, together with a contact diagram, contributes to leading
order to the trispectrum for a minimally coupled canonical inflaton [44]. Finally, we
compute the potentially much larger trispectrum from scalar exchange for the leading
cubic interactions in the Effective Field Theory of inflation, namely φ̇3 and φ̇(∇φ)2.
We also consider φφ̇2 as a simple example. Our derivation is computationally faster
than the bulk in-in computation and in all cases we find agreements with the results
in the literature, where available.

Notation and conventions We work with the mostly positive metric signature (− +
++). The 3d Fourier transformation is defined as

f(x) =
∫

d3k
(2π)3 f(k) exp(ik · x) ≡

∫
k
f(k) exp(ik · x) , (1.9)

f(k) =
∫
d3xf(x) exp(−ik · x) ≡

∫
x
f(x) exp(−ik · x) . (1.10)
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We use bold letters to refer to vectors, e.g. x for spatial co-ordinates and k for spatial
momenta, and we write the magnitude of a vector as k ≡ |k|. We will sometimes refer to
these objects as “energies”. We will use i, j, k, . . . = 1, 2, 3 to label the components of SO(3)
vectors, and a, b, c = 1, . . . , n to label the n external fields. For wavefunction coefficients
and cosmological correlators we use ψn and Bn respectively:

ψn(k1, . . . ,kn) ≡ ψ′n(k1, . . . ,kn)(2π)3δ3
(∑

ka
)
, (1.11)

〈O(k1) . . .O(kn)〉 ≡ 〈O(k1) . . .O(kn)〉′(2π)3δ3
(∑

ka
)

≡ Bn(k1, . . . ,kn) (2π)3δ3
(∑

ka
)
, (1.12)

and we will drop the primes on ψn when no confusion arises. We will also use a prime to
denote a derivative with respect to the conformal time e.g. φ′ = ∂ηφ. When computing
exchange 4-point functions we use the following variables

s ≡ |k1 + k2| , t ≡ |k1 + k3| , u ≡ |k1 + k4| , s2 + t2 + u2 =
4∑

a=1
k2
a . (1.13)

We define the “total energy” kT of an n-point function as

k
(n)
T ≡

n∑
a=1

ka . (1.14)

We will often drop the superscript “(n)” in kT when it is clear from the context. We define
the s-channel “partial energies” in a 4-point exchange diagram as

EL = k1 + k2 + s , ER = k3 + k4 + s . (1.15)

We denote the n external momenta of a tree-level Feynman diagram by ka (a = 1, . . . , n)
while referring to its I internal lines by pb (b = 1, . . . , I), apart from for 4-point exchanges
where we use the more familiar notation in (1.13). We will often use S as the energy
of an internal line that is “cut”. The internal momenta are fixed with the knowledge of
ka’s due to the conservation of spatial momentum at each vertex. The symbols ak and a†k
refer to annihilation and creation operators, respectively. The flat space amplitude will be
written as

S − 1 ≡ i An(pµ1 , . . . pµn) (2π)4 δ4
(∑

pµa

)
, (1.16)

with all the four-momenta defined to be ingoing. We write symmetric polynomials in
terms of elementary symmetric polynomials (ESP). For three variables, k1, k2 and k3, the
elementary symmetric polynomials are

k
(3)
T = e1 = k1 + k2 + k3, e2 = k1k2 + k1k3 + k2k3, e3 = k1k2k3. (1.17)

2 A review of the Cosmological Optical Theorem

We begin by reviewing aspects of a scalar quantum field in de Sitter (dS) space including
the formalism of the wavefunction of the universe and the recently derived Cosmological
Optical Theorem (COT) [32] which will be used throughout this work.
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A quantum scalar field in de Sitter. We take the background geometry to be that
of dS space, which we write using the conformal time co-ordinate η ∈ (−∞, 0] as

ds2 = a2(η)(−dη2 + dx2), a(η) = − 1
ηH

, (2.1)

where H is the constant Hubble parameter which we will often set to unity. Our methods
apply to general quantum field theories, but we will primarily work with a single scalar
σ(η,x) which we assume does not perturb the background dS geometry. We will therefore
refer to this field as a “spectator field”. In some examples we will also include a coupling
to the graviton, and a more general analysis for spinning fields will appear elsewhere [45].
The free action for this scalar is

Sσ,free =
∫
dηd3xa2(η)

[1
2σ
′2 − 1

2c
2
σ∂iσ∂

iσ − 1
2a

2(η)m2
σσ

2
]
, (2.2)

where we have allowed for an arbitrary, constant speed of sound cσ which we will also often
set to unity. Working in momentum space, we write the quantum free field operator as

σ̂(η,k) = σ−(η, k)ak + σ+(η, k)a†−k , (2.3)

where the mode functions σ±(η, k) correspond to solutions of the free classical equation of
motion and are given by

σ+(k, η) = i

√
πH

2 e−i
π
2 (ν+1/2)

(−η
cσ

) 3
2
H(2)
ν (−cσkη), σ−(k, η) = (σ+(k, η))∗, (2.4)

where ν =
√

9
4 −

m2
σ

H2 , and H(2)
ν (z) is the Hankel function of the second kind and order ν.

In analogy with the AdS/CFT literature, this is often expressed in terms of the two scaling
dimensions ∆+ = 3−∆−, defined as

∆± ≡ 3
2 ±

√
9
4 −

m2
σ

H2 = 3
2 ± ν . (2.5)

We will primarily illustrate our methods in the massless (mφ = 0) and conformally coupled
(mϕ =

√
2H) limits where we use φ and ϕ respectively to denote these fields. In these

limits the mode functions take the simpler forms

φ±(η, k) = H√
2c3
φk

3
(1∓ icφkη)e±icφkη (massless, ν = 3/2, ∆+ = 3) , (2.6)

ϕ±(η, k) = ∓ iH√
2c3
ϕk

3
ηe±icϕkη (conformally coupled, ν = 1/2, ∆+ = 2) . (2.7)

Note that the mode functions for a massless graviton are the same as for a massless scalar,
up to the necessary polarisation factor. As explained above, we allow interactions to break
de Sitter boost symmetry but we keep the remaining symmetries of the dS group intact

– 8 –
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(translations, rotations and dilations). A general interaction vertex with n fields therefore
takes the schematic form

Sσ,int =
∫
dηd3x a(η)4−Nderiv∂Nderivσn, (2.8)

where ∂ stands for either temporal derivatives ∂η or spatial derivatives ∂i, and Nderiv is the
total number of derivatives. The powers of the scale factor are fixed by scale invariance
and all spatial derivatives are contracted with the SO(3) invariant objects δij and εijk. Our
system is a very good approximation to inflationary models where any deviations from
exact scale invariance are slow-roll suppressed. Note that, in the context of a conformally
coupled scalar, we do not assume that the interactions respect the conformal symmetry:
it is only the quadratic operators in ϕ that are conformally coupled such that the mode
functions become tractable.

Wavefunction of the universe. Our primary object of interest is the wavefunction of
the universe Ψ evaluated at the late-time boundary of dS space, which we denote as η0.
For simplicity, consider σ as the only field in the theory. The wavefunction then has an
expansion in σ(k) ≡ σ(η0,k) given by

Ψ[η0, σ(k)] = exp
[
−
∞∑
n=2

1
n!

∫
k1,...,kn

ψn(k1 . . .kn)σ(k1) . . . σ(kn)
]
, (2.9)

with the dynamics of the theory encoded in the wavefunction coefficients ψn(k1 . . .kn).
Invariance of the theory under spatial translations ensures that the ψn(k1 . . .kn) always
contain a momentum conserving delta function and so we can write

ψn(k1, . . . ,kn) = ψ′n(k1, . . . ,kn)(2π)3δ3(k1 + . . .+ kn). (2.10)

We will often drop the prime even when we do not explicitly include the delta function. In
the saddle-point approximation, which is exact for the tree-level processes of interest here,
we have

Ψ[η0, σ(k)] ≈ eiScl[σ(k)]. (2.11)

As reviewed in detail in [32, 34], in bulk perturbation theory Scl[σ(k)] is computed in a
diagrammatic fashion using the bulk-to-boundary propagator Kσ(η, k) and bulk-to-bulk
propagator Gσ(η, η′, k). When it’s clear from the context, we’ll often drop the field label
and simply write K and G. Both of these propagators are represented in figure 1 and,
denoting the free equation of motion as O(η, k)σ = 0, they satisfy

O(η, k)K(η, k) = 0, (2.12)
O(η, k)G(η, η′, k) = −δ(η − η′), (2.13)

with boundary conditions

lim
η→η0

K(η, k) = 1, lim
η→−∞(1−iε)

K(η, k) = 0 (2.14)

lim
η,η′→η0

G(η, η′, k) = 0, lim
η,η′→−∞(1−iε)

G(η, η′, k) = 0. (2.15)

– 9 –
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Both propagators can be written in terms of the positive and negative frequency mode
functions and are given by

K(k, η) = σ+
k (η)

σ+
k (η0)

, (2.16)

G(p, η, η′) = i

[
θ(η − η′)

(
σ+
p (η′)σ−p (η)−

σ−p (η0)
σ+
p (η0)

σ+
p (η)σ+

p (η′)
)

+ (η ↔ η′)
]

(2.17)

= iP (p)
[
θ(η − η′)

σ+
p (η′)
σ+
p (η0)

(
σ−p (η)
σ−p (η0)

−
σ+
p (η)

σ+
p (η0)

)
+ (η ↔ η′)

]
(2.18)

with P (p) the power spectrum of σ. When p is real, G can also be written as

G(p, η, η′) = 2P (p)
[
θ(η − η′)K(p, η′)ImK(p, η) +

(
η ↔ η′

)]
(2.19)

= iP (p)
[
θ(η − η′)K∗(p, η)K(p, η′) + θ(η′ − η)K∗(p, η′)K(p, η)

−K(p, η)K(p, η′)
]
. (2.20)

Notice that with the overall i in the definition of G, our Feynman rules require a factor
of −i for every diagram, a factor of G for every internal line and no factor of i for the
vertices (e.g. the vertex corresponding to λφn/n! is simply λ). In perturbation theory,
the real part of the wavefunction coefficients Re(ψn) can be used to compute correlation
functions via simple algebraic relations [32–34], at least for parity-even scalar and graviton
interactions. The bulk computations of these n-point functions, however, requires com-
puting involved time integrals with the integrands products of a(η), K(η, k), G(η, η′, k)
and their derivatives (see appendix A for more details). In this paper we take a different
approach: using the Cosmological Optical Theorem (COT) [32], the singularity structure
of correlators/wavefunction coefficients and our manifestly local test, we will show how to
bootstrap the wavefunction coefficients without the need to perform any time integrals.
Our interests will lie primarily in the real part of these coefficients as this is related to
cosmological correlators. We will also briefly discuss how to bootstrap the imaginary part
of contact diagrams which, for parity even theories, is related to correlators involving (an
odd number of) momentum conjugates of the fields. These imaginary parts are of less phe-
nomenological interest because the corresponding correlators are associated to observables
that decay exponentially with (cosmological) time are practically unobservable.

Kinematics. Before reviewing the Cosmological Optical Theorem, let’s first state the
kinematic variables we will use.4 After imposing rotational and spatial translation symme-
tries, one requires 3n− 6 independent variables5 to fully specify ψn. We will always work
with energy variables where we employ all n external energies {k} = k1, . . . kn, which ap-
pear in the bulk-to-boundary propagators, and all I internal energies {p} = p1, . . . , pI that
appear in the bulk-to-bulk propagators of a given diagram. The remaining independent

4We are closely following the definitions adopted in [37].
5For large n it is possible that one cannot find explicitly a set of independent rotation invariant contrac-

tions. This is not a problem for our approach because one can simply work with the larger set of dependent
variables. We thank James Bonifacio for pointing this out to us.
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k1 k2 ... kn�1 kn kn+1... kn+m�2

S

8

Figure 1. A single exchange diagram with external scalars exchanging a generic field.

variables are chosen from contractions of external momenta with δij , εijk or polarisation
vectors. We refrain from using angles. In compliance with the little group scaling, the
dependence on the polarisation vectors must be in a factorised form. We only encounter
two examples that involve spinning fields, in sections (4.2) and (4.3). Until then we focus
on scalar n-point functions. Our choice of variables therefore depends on the Feynman
diagram of interest.

For contact n-point functions we need 2n−6 independent inner products and we write

contact : ψn({k}; {k}) ≡ ψn(k1, . . . , kn;ka · kb,ka · (kb × kc),ka · ε(kb)) . (2.21)

For our discussion any set of 2n − 6 choices will do the job. Let’s see this in two ex-
amples. For a contact 3-point function we require three independent variables and these
are already provided by the three external energies and so there is no need to introduce
any inner products. Indeed, each inner product can be written as a linear combination of
squared energies due to momentum conservation. For a contact 4-point function we need
six independent variables, namely the four external energies and two inner product such
as k1.k2 and k3.k4, or k1.k2 and k1.k3.

For exchange diagrams, we use all the external {k} and internal {p} energy variables
and add to these the appropriate number of additional contractions. We therefore write

exchange : ψn({k}; {p}; {k}) ≡ ψn({k}; p1, . . . , pI ; {k}) , (2.22)

where {k} stands for external energies and {k} stand for rotation invariant contractions,
as above. For example, for say the s-channel 4-point exchange diagram we actually only
need five variables, which we choose to be (k1, k2, k3, k4, s). The remaining channels, t
and u, also only require five energy variables. The sum of the three channels naively
therefore contains seven variables but due to the relation in (1.13), there is a one-variable
redundancy and so the number of independent variables is six, as expected. It is worth
noting that, as we have seen in this 4-point example, not all the internal energies are
independent. However, in this paper our treatment is channel-by-channel and so we will
not encounter sums of internal energies due to different channels. We can therefore take
each internal energy to be an independent variable. In the rest of this paper we will employ
these variables, and one can easily find expressions in a new set of variables by employing
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the chain rule, where appropriate. Furthermore, we will often employ these variables away
from the physical configuration. Indeed, we will sometimes need to analytically continue
the energy variables in ψn to the lower complex half-plane, namely {k}, {p} ∈ C−. In
the majority of cases, however, we keep all energies real but allow them to be negative.
Throughout we will keep the inner products real.

In summary, our notation for our choice of variables is

ψn = ψn(n external ; I internal ; rotation-invariant contractions ) . (2.23)

The Cosmological Optical Theorem (COT). Under a limited number of assump-
tions, it was shown in [32] that perturbative unitarity implies a set of powerful constraints
on both contact and exchange contributions to the wavefunction coefficients in the form
of a Cosmological Optical Theorem (COT) (see also [35] for a complementary derivation
of the COT and [46–48] for analogous statements in anti-de Sitter (AdS) space). The
derivation assumed de Sitter mode functions and Bunch-Davies initial conditions.6 Two
immediate consequences of these assumptions are (i) the Hermitian analyticity of the bulk-
to-boundary propagator:

K∗(−k∗, η) = K(k, η) , k ∈ C− , (2.24)

and (ii) the factorisation property of the bulk-to-bulk propagator:

ImG(k, η, η′) = P (k) ImK(k, η) ImK(k, η′) , k ∈ R+ . (2.25)

Exploiting these two features in the bulk formalism, one can derive the Cosmological Opti-
cal Theorem for contact n-point functions which must be satisfied by any contact n-point
function arising from unitary evolution in the bulk spacetime:

Disc [iψn(k1, . . . , kn; {k})] = 0 , (2.26)

where we have introduced the discontinuity function Disc, which acts on a general wave-
function coefficient as

Disc
k1...kj

f(k1, . . . , kn; {k}) ≡ f(k1, . . . , kn; {k})− f∗(k1, . . . , kj ,−k∗j+1, . . . ,−k∗n;−{k}) .

(2.27)

Note that all spatial momenta (internal or external) in the second term get a minus sign,
k→ −k, while only the energies that do not that appear in the argument of Disc are ana-
lytically continued. In other words, the argument of Disc indicates the spectator energies
that are untouched by the Disc. For example, (2.26) becomes

Disc [iψn(k1, . . . , kn; {k})] = i [ψn(k1, . . . , kn; {k}) + ψ∗n(−k∗1, . . . ,−k∗n;−{k})] . (2.28)
6The original proof of the COT focused on scalar fields and restricted to contact and single exchange

diagrams. However, similar expressions hold for fields of any mass and any spin, both on external and
internal lines, as well as for more general tree diagrams with an arbitrary number of vertices [37].
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k3k2k1 k4 k5 k6

Sp1 p2

9

Figure 2. Triple exchange 6-point diagram for scalars cut into the product of two 4-point exchange
diagrams.

For general tree-level diagrams this generalises to “single-cut” rules (see figure 1) [32, 37].
Denoting by S the momentum of the internal line to be cut and by pm all other internal
momenta, we have

DiscS [iψn+m−2({k}; {p}, S; {k})] = −iP (S)DiscS [iψn(k1, . . . , kn−1, S; {p}; {k})]
×DiscS [iψm(kn, . . . , kn+m−2, S; {p}; {k})] ,

(2.29)

where in the physical domain of momenta we have

S = |S| =
∣∣∣∣m−1∑
a=1

ka
∣∣∣∣ =

∣∣∣∣m+n−2∑
b=m

kb
∣∣∣∣ . (2.30)

These expressions can be simplified for massless and conformally coupled fields, in the
absence of IR-divergences. In such cases there is no branch-cut, and so we can freely
assume that all the energies are real: −k∗a = −ka (in general the negative real axis is
always approached from the lower-half complex plane). In this paper it will be important
to go beyond single exchange diagrams and, as was elaborated on in [37], the single-cut
rules carry over to such cases. In section 5.3 we will need the Cosmological Optical Theorem
(COT) that relates a triple exchange 6-point function of a massless field to the product of
its constituent 4-point exchange sub-diagrams, see figure 2. The resulting COT reads

ψ6(k1, . . . k6; p1, S, p2) + ψ∗6(−k1, · · · − k6;−p1, S,−p2)
= P (S) [ψ4(k1, . . . , k3, S; p1) + ψ∗4(−k1, . . . ,−k3, S;−p1)]

× [ψ4(k4, . . . , k6, S; p2) + ψ∗4(−k4, . . . ,−k6, S;−p2)] , (2.31)

where for simplicity we have dropped a possible dependence on inner products. We refer
the reader to [32, 37] for more details.

3 A Manifestly Local Test (MLT) for n-point functions

In this section we introduce a manifestly local test (MLT) that must be satisfied by n-point
functions arising from manifestly local theories. We remind the reader that manifestly local

– 13 –



J
H
E
P
1
0
(
2
0
2
1
)
0
6
5

interactions do not contain any inverse Laplacians (see [29] for a recent discussion in the
context of cosmology and for additional necessary conditions for locality). For example,
σ′2∇2σ is a manifestly local interaction, whereas σ′2∇−2σ is not. As we shall see, the MLT
is a necessary condition for manifest locality, but it becomes sufficient when combined with
a sub-set of the Bootstrap Rules of [29] which we review in section 4.

In the following two subsections we present the MLT for massless mode functions given
in (2.6). Our test applies equally well to contact and exchange diagrams and to fields of
any spin. We first present an argument for the MLT based on the allowed singularity struc-
ture of consistent wavefunction coefficients in section 3.1. We then provide an alternative
derivation of the test from a purely bulk perspective in section 3.2. Finally, we extend the
MLT to massive mode functions in section 3.3.

3.1 Manifest locality from singularities

The singularity structure of tree-level wavefunction coefficients is now well understood (see
e.g. [1, 2, 13, 26, 32, 49]). The only kinematical singularities that can arise are the following:

• Total energy singularities in 1/kpT , which arise when the sum of all the (analytically
continued) energies flowing to the boundary are taken to zero. The residue of the
highest kT singularity is fixed by a corresponding amplitude, as first noticed in [13, 49]
and proven in [32]. The order p of the singularity is linearly related to the mass
dimension of the involved interactions according to a simple formula [29]. Here we
will show for the first time that also the residue of subleading kT poles is fixed by a
corresponding amplitude, as dictated by the manifestly local test.

• Partial energy singularities in the sum of (analytically continued) energies that enter
a connected subdiagram. These singularities are absent for contact diagrams, so
the simplest example is EL = k1 + k2 + |k1 + k2| = k1 + k2 + s in the s-channel
4-point exchange diagram. This can be seen explicitly in the bulk representation
of these quantities, as reviewed in appendix A. The residue of these leading-order
partial-energy singularities is fixed by factorization, as used extensively in e.g. [26].
In section 5 we will leverage the fact that all residues of leading and subleading partial-
energy singularities are fixed by the Cosmological Optical Theorem (see also [32] for
a preliminary discussion) to bootstrap 4-point exchange diagrams.

One may wonder about the possibility of singularities as one of the external or internal
energies vanishes. If the vertices of the theory are manifestly local, then it is clear that no
singularities in the external energies can appear. Indeed, no such singularities arise from
manifestly local vertices, and any poles arising from time integration correspond to a sum
of partial energies, e.g. kT , EL or ER. However, what happens when internal energies go to
zero? The bulk-to-bulk propagator (2.19) contains a factor of the power spectrum which
is indeed singular in this limit. For example, P (S) ∼ 1/S3 for massless mode functions.
Consider one of the possible bulk-bulk propagators appearing in an exchange diagram.
We have

Gφ(η, η′, S) = 2iPφ(S)[Im(Kφ(η, S))Kφ(η′, S)θ(η − η′) +
(
η ↔ η′

)
]. (3.1)
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Note that here we include the φ subscript to indicate that this discussion applies to massless
mode functions. For any finite time η we have

lim
S→0

Kφ(η, S) = 1 + 1
2(cφSη)2 + i

3(cφSη)3 +O(S4), (3.2)

lim
S→0

ImKφ(η, S) = 1
3(cφSη)3 +O(S5), (3.3)

and so any potential S = 0 singularities due to the power spectrum are cancelled by the
factors of ImKφ(η, S) and ImKφ(η′, S). Note that the final term in (2.20), which enforces
the vanishing of G on the boundary, is crucial since it is this term that ensures that each
term in (3.1) contains a factor of Im(K). One may worry about the behaviour of the
bulk integrals at η = −∞. However, this limit could only affect our argument if there
were exponential factors containing eiSη which would yield additional inverse powers of S.
However, no such exponents occur: all exponents contain a sum of energies which is finite
in the limit S → 0 as long as the other energies are kept fixed. We therefore conclude that
in manifestly local theories, exchange diagrams are not singular as an internal energy is
taken to zero.7

Let’s now consider the consequences of this result for the n-point functions that can
contribute to an exchange diagram. Consider the COT given in (2.29) which is valid for a
single-cut. The left-hand side of this equation is regular as S → 0, as we have just argued,
and so the right-hand side must be too. Given that P (S) ∼ 1/S3, this tells us that the
product[

ψn(k1, . . . , kn−1, S; {p}; {k}) + ψ∗n(−k∗1, . . . ,−k∗n−1, S;−{p};−{k})
]

(3.4)
×
[
ψm(kn, . . . , kn+m−2, S; {p}; {k}) + ψ∗m(−k∗n, . . . ,−k∗n+m−2, S;−{p};−{k})

]
,

must cancel this 1/S3 contribution from the power spectrum. Now, given that (2.29) holds
for all diagrams individually, we can take m = n and consider an exchange diagram with
the same sub-diagram on each side of the cut. For IR-finite ψn that satisfy the contact
COT, we can keep the ka real and then

ψn(k1, . . . , kn−1, S; {p}; {k}) + ψ∗n(−k∗1, . . . ,−k∗n−1, S;−{p};−{k})
= ψn(k1, . . . , kn−1, S; {p}; {k})− ψn(k1, . . . , kn−1,−S; {p}; {k}), (3.5)

by scale invariance. This is odd in S, and so must its Taylor expansion around S = 0.
Given that the square of this quantity has to cancel the S−3 pole in the power spectrum,
and that at tree-level there are only integer powers of momenta, we must require

∂

∂S
ψn(k1, . . . , kn−1, S; {p}; {k})

∣∣∣
S=0

= 0 , (3.6)

to ensure that the right-hand side of the COT is regular at S = 0. To emphasise that the
energy S is now external, after the cut, we write this constraint as

∂

∂kc
ψn(k1, . . . , kn; {p}; {k})

∣∣∣
kc=0

= 0 , (∆+ = 3, e.g. massless scalar or graviton) ,

(3.7)
7We thank Austin Joyce for discussions about the absence of such singularities.
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where c = 1, . . . n and we have relabelled S to kn. Any of the external fields in this
n-point function could be used as an internal line in an exchange diagram and so (3.6)
should hold for each external energy (as long as the corresponding field’s mode functions
are those in (2.6)). Note that here we are taking the derivative with respect to one of the
energies while keeping all other variables fixed,8 and we have used the fact that n-point
functions, arising from manifestly local theories, are finite in the soft limit of an external
energy. Wavefunction coefficients of fields with a ∆+ = 3 mode function (see (2.6)), as
for example massless scalars and gravitons, arising from unitarity, manifestly local theories
must satisfy (3.7), which we call the Manifestly Local Test (MLT).

It would be interesting to go beyond manifest locality because non-manifestly local in-
teractions appear in the presence of massless spinning fields on non-trivial backgrounds, for
example for a scalar field coupled to gravity (after solving the gravitational constraints [30]).
We leave such explorations for future work and for the rest of this paper concentrate on
manifestly local theories.

3.2 Manifest locality from the bulk representation

As outlined in appendix A, the computation of tree-level diagrams in the bulk reduces to
nested time integrals of the following form

ψn({k}; {p}; {k}) ∼
∫ ( V∏

A

dηAFA

)(
n∏
a

∂#
η Kφ(ka)

)(
I∏
m

∂#
η G(pm)

)
, (3.8)

where the FA’s collect the momentum dependence of the spatial derivatives in the V vertices
and we allowed for arbitrary time-derivative interactions denoted by ∂#

η acting on n external
bulk-to-boundary propagators K and I internal bulk-to-bulk propagators G. Now consider
the form of derivatives of Kφ(k, η),

dN

dηN
Kφ(η, k) = (ik)N (1−N − ikη)eikη . (3.9)

By direct calculation they satisfy

∂

∂k

(
dN

dηN
Kφ(η, k)

) ∣∣∣∣∣
k=0

= 0 , (3.10)

for any non-negative integer N ≥ 0. This property is inherited by ψn when this ∂ka
derivative is taken keeping all other internal and external energies and rotation-invariant
contractions fixed. This is ensured by the two following observations: (i) the time integral
does not affect this property since (3.10) is valid for all η; (ii) the vertices FA either depend
on contractions of the momenta, which are kept fixed when we take the derivative in the
MLT in (3.7) (they are independent variables), or they involve squared energies and so
∂kk

2 vanishes at k = 0. It therefore follows that (3.10) implies the MLT (3.7). So the MLT
in fact follows from a neat property of the bulk-boundary propagators of massless mode
functions (∆+ = 3) in dS space. Notice that whether a ψn satisfies the MLT or not is

8We are therefore working away from the physical configuration.
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independent of which rotation-invariant contractions we choose as variables, since all these
are kept fixed. Also, note that we have not assumed anything about the ultimate form of
the ψn. Indeed, this argument holds for IR-finite and IR-divergent n-point functions alike.

The above argument is also easily adapted to bosonic spinning fields where we also
allow for contractions with polarisation vectors in F . The mode functions for spinning
fields with the same ∆+ as given in (2.5) coincide with their scalar counterparts, the only
difference being polarisation factors required to make up the indices and symmetries of the
spinning field. If we keep the polarization factors fixed in taking the derivative in (3.7),
the behaviour of the bulk-boundary propagators is unaltered and so the MLT holds too for
spinning fields with ∆+ = 3. Importantly, this includes massless gravitons.

In section 4 we will show that the MLT allows us to bootstrap all contact 3-point
functions arising from scalar self-interactions and those arising from coupling the scalar to
an on-shell massless graviton. Then in section 5 we will show that the MLT provides a key
ingredient when bootstrapping complete 4-point exchange diagrams.

3.3 The Manifestly Local Test for massive fields

In the previous two subsections we have derived a manifestly local test for n-point functions
involving fields with massless mode functions. In this subsection we extend those arguments
to massive fields with particular attention paid to the case of conformally coupled fields.
First we follow the derivation based on singularities and the Cosmological Optical Theorem,
then we discuss the bulk perspective.

Equation (3.1) holds for any mass so again we are interested in the behaviour of
Pσ(S)ImKσ(S, η) in the limit S → 0. Given the general mode functions (2.4), one can
show that

lim
S→0+

Pσ(S, η0) ImKσ(S, η) = 1
2i lim

S→0+

(
σ+(S, η)σ−(S, η0)− σ−(S, η)σ+(S, η0)

)
= 1

4ν (η η0)3/2−ν
(
(−η0)2ν − (−η)2ν

)
, (3.11)

and therefore the bulk-to-bulk propagator remains finite when the internal energy is taken
soft. It follows that any n-point function arising due to the exchange of a massive field is
also finite in this limit. Now turning to the right-hand side of the COT (2.29), the power
spectrum of the massive field behaves as

lim
S→0+

Pσ(S, η0) = η3
0 cot(πν)

2ν − 2−2−2νπη3
0

Γ2(ν + 1) sin2(πν)(−Sη0)2ν − 22ν−2 η3
0 Γ2(ν)
π

(−Sη0)−2ν .

(3.12)

For a generic light field (m < 3
2H), the last term in (3.12) dominates in the soft limit,

and the power spectrum exhibits a non-analytic singularity around S = 0, with the two
exceptional cases of conformally coupled (ν = 1/2) and massless (ν = 3/2) mode functions,
where the power spectrum behaves as 1/S and 1/S3 respectively. Given that the right-hand
side of the COT must be regular in this limit, for m < 3H/2 we must have

lim
S→0+

[
ψn(k1, . . . , kn−1, S; {p}; {k}) + ψ∗n(−k∗1, . . . ,−k∗n−1, S;−{p};−{k})

]
= O(Sν) ,

(3.13)
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where ψn is a generic n-point function involving at least one massive field with energy S.
For heavy fields (m > 3/2H), the power spectrum is regular at S = 0, and so we have

lim
S→0+

[
ψn(k1, . . . , kn−1, S; {p}; {k}) + ψ∗n(−k∗1, . . . ,−k∗n−1, S; {p};−{k})

]
= O(S0) .

(3.14)

Recall that for massless exchange, we replaced the complex energies with real ones and used
scale invariance to arrive at the MLT (3.6). However, when a massive field is exchanged, ψn
has a branch cut at negative energies and so it is important to keep the energies complex
(or alternatively one could insert k − iε as the modified energy in ψn(−k∗1, . . . ,−k∗n, S) in
order to ensure the condition Im(−ka) < 0 is satisfied). We therefore take (3.13) and (3.14)
as the Manifestly Local Tests for n-point functions with external massive fields of generic
mass. Given a candidate n-point function due to the exchange of a massive field, one
can use these equations to check if such a wavefunction coefficient is describing the bulk
dynamics of a manifestly local theory. These conditions might provide a useful tool to
bootstrap massive exchange n-point functions, which are at the heart of the cosmological
collider physics programme [1, 50].

Among light fields, the case of a conformally coupled field (m =
√

2H) is particularly
interesting as many of the expressions simplify. In this case, IR-finite n-point functions are
analytic in all the energies and scale invariance dictates that ψϕn ∼ k3−n (in contrast to k3

for the massless fields). Therefore, for real valued energies, equation (3.13) reduces to

lim
S→0+

ψn(k1, . . . , kn, S; {p}; {k})− ψn(k1, . . . , kn,−S; {p}; {k}) = O(S1/2) , (3.15)

where we have used the contact COT (2.26). This condition is automatically satisfied for
manifestly local theories. Indeed, ψn is analytic in all external energies and so the left-
hand side of (3.15) scales as O(S), or softer. The MLT for a conformally coupled field is
therefore the simple requirement that ψn is finite as the energy of such an external field is
taken soft. This can also easily be derived from the bulk representation since, given (2.7),
we have

lim
S→0

Kϕ(S, η) = η

η0

(
1 + i S (η − η0) +O(S2)

)
, (3.16)

which does not have vanishing coefficients in the first three terms of the expansion. In
conclusion, when a conformally coupled field with momentum ka appears in ψn, we have
the following weaker version of the MLT

∂

∂ka
ψn(k1, . . . , kn; {p}; {k})

∣∣∣
ka=0

= finite , (∆+ = 2, e.g. conformally coupled scalar).

(3.17)

The existence of the O(S) term in Kϕ, which is absent for a massless field, explains why the
MLT for conformally coupled field is different to that of a massless field. In section 6, we will
show that the differing forms of the two MLTs can explain an intriguing difference between
the 4-point functions for massless and conformally coupled fields due to graviton exchange.
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4 Bootstrapping 3-point functions using the MLT

In this section we illustrate the power of the MLT by using it in combination with a
sub-set of the Bootstrap Rules of [29] to bootstrap 3-point functions of spectator scalars
and gravitons, which capture inflationary bispectra to leading order in slow-roll. We first
consider a massless scalar and concentrate on the 3-point function due to the scalar’s self-
interactions, ψφφφ. We then consider general manifestly local interactions between a scalar
and the graviton γ and bootstrap ψφφγ . Finally, we do the same for a conformally coupled
scalar and bootstrap ψϕϕγ . In all these cases we are able to bootstrap both the IR-finite,
which is η-independent, and the IR-divergent part, which depends on regulated position
of the boundary. We do not consider the cubic self-interactions for a conformally coupled
scalars since the COT ensures that the real part of ψϕϕϕ is zero [32].

Comparison with the previous literature. Before proceeding, let’s compare our
derivation with the boostless bootstrap for the bispectrum presented in [29]. Here we
will use some of the Bootstrap Rules proposed there, with the minor difference that here
we use the language of the wavefunction rather than that of correlators. We focus on the
real part of the wavefunction and briefly comment on how to bootstrap the imaginary
part of contact diagrams in section 4.1. The bootstrap rules allow us to write a simple
bootstrap Ansatz with some numerical coefficients, whose number increases as we consider
higher and higher dimension operators, just like in the Lagrangian description of EFT’s.
Our derivation presents some advantages and improvements over that in [29]:

• We will not impose any soft limits (Rule 6) or the amplitude limit (Rule 3). Instead,
we fix all the free parameters in the bootstrap Ansatz with the manifestly local
test (MLT). This means that our derivation can be straightforwardly extended to
multifield inflation, where there are no soft theorems in the most general case (but
see [51]). It should be stressed that here we calculate the n-point function of a
spectator scalar, as opposed to ζ, which differ by slow-roll suppressed terms.

• We will be able to fix all free coefficients with the MLT in all manifestly local cases.
This is contrast with the results of [29] where for the zero-derivative scalar bispectrum
only five of the six parameters in the Ansatz could be fixed with soft limits (the sixth
could be fixed with boost invariance, which we never invoke here). Furthermore, for
the scalar bispectrum to higher derivatives in [29], the constraint of a manifestly local
amplitude was given explicitly only for the amplitude corresponding to the leading
kT pole. This missed some constraints starting at four derivatives. We will show
that the MLT is able to enforce these constraints also on the amplitudes appearing
at subleading poles.

• For the scalar-scalar-graviton bispectrum, in [29] the ad hoc assumption had to be
made that the bispectrum is symmetric in all momenta, which does not follow from
Bose symmetry because the fields are distinct. In contrast, here we will see that this
property is a consequence of the MLT.
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Finally, our approach here has one shortcoming as compared to the that in [29]: since we
only discuss manifestly local theories, we miss those gravitational interactions that arise in
the off-shell description from integrating out constrained fields (the lapse and the shift in
the ADM formalism). We hope to return to this problem in the future.

4.1 Self-interactions of a massless scalar

For a single massless scalar, IR-finite 3-point functions only depend on the three external
energies k1, k2, k3. These energies appear in symmetric combinations by Bose symmetry
and so without loss of generality we apply the manifestly local test (MLT) to k3 only,
and require

∂

∂k3
ψ

(p)
3 (k1, k2, k3)

∣∣∣
k3=0

= 0 , (4.1)

where the superscript (p) denotes the degree of the leading kT pole which is equal to the
largest number of derivatives in the EFT expansion [29] (unless this vanishes by symmetry,
as e.g. in DBI [52]). We have dropped the φφφ subscript since it will be clear throughout
this section that we are considering a scalar self-interaction. We will now use the MLT to
bootstrap all 3-point functions for any p. Initially our discussion will concentrate on the
real part of the wavefunction but then we will turn to the imaginary part.

The Boostless Bootstrap Rules of [29] enforce the following properties:

• Homogeneity, isotropy and scale invariance (but no assumption about dS boosts):
this enforces

ψn =
∑

contractions

[
εh1(k1)εh2(k2)εh3(k3)kα1

1 kα2
2 kα3

3

]
ψ̃n (4.2)

=
∑

contractions
(polarization factor)× (trimmed wavefunction coefficient) . (4.3)

Note that for scalars the trimmed wavefunction ψ̃n coincides with ψn.

• ∆+ = 3 de Sitter mode functions, e.g. massless scalars and gravitons: this enforces
that the trimmed wavefunction ψ̃n is a rational function with overall momentum
scaling k3.

• The amplitude limit: this enforces the residue of the highest kT -pole to be fixed in
terms of a corresponding amplitude [13, 49] (see [32] for a derivation and an explicit
formula). As we will see, we do need to use this rule since the MLT enforces this
local amplitude limit automatically.

• Bose symmetry: this enforces invariance under permutations of the momenta of iden-
tical fields.

• Locality and the Bunch-Davies vacuum: this enforces that the only allowed poles
for contact diagrams are in the total energy, 1/kpT with p = 1 +∑

A(∆A − 4) where
the sum is over all vertices (only one for a 3-point function) and ∆A is their mass
dimension (three plus the number of derivatives for cubic bosonic interactions). This
is necessary but not sufficient for locality.
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These Bootstrap Rules allows us to write a relatively simple bootstrap Ansatz. In particular,
the part of the cubic wavefunction coefficient of three scalars that survives when we compute
the correlator must take the form

ψ
(p)
3 (k1, k2, k3) = 1

kpT

b p+3
3 c∑

n=0

b p+3−3n
2 c∑

m=0
Cmnk

3+p−2m−3n
T em2 e

n
3 , (4.4)

where e2 and e3 are the elementary symmetric polynomials in section 1.1, b. . . c is the floor
function, and Cmn are constant coefficients that are real by unitarity [32] and correspond
to linear combinations of coupling constants in the bulk. Indeed, the COT tells us that [32]

ψ3(k) + ψ3(−k)∗ = 0 , (4.5)

and in (4.4) scale invariance has ensured that ψ3(k) = −ψ3(−k) and so we need ψ3(k) =
ψ3(k)∗. Given that these couplings are real, these contributions to the wavefunction also
contribute to the correlator which is given by the real part of ψ3. The total number Nansatz
of free coefficients in the bootstrap Ansatz (4.4) is equal to the number of non-negative
integer solutions to 3 + p ≥ 2m+ 3n which is given by [53]

Nansatz(p) =
b p+3

2 c∑
q=0

(
1 +

⌊
p+ 3− 2q

3

⌋)
. (4.6)

For p = 0, ψ3 can also contain an IR-divergent logarithm which we will consider separately.
To compute all possible ψ3 we now fix the Cmn using the MLT.

Now, the MLT (4.1) imposes the following recursion relations on the Cmn:

b p+3
2 c∑

m=0
mCm0 e4−2m

1 em−1
2 +

b p+3
2 c∑

m=0
(3− 2m)Cm0 e2−2m

1 em2 +
b p2 c∑
m=0

Cm1 e−2m
1 em+1

2 = 0 ,

(4.7)

where we have used the non-vanishing partial derivatives with respect to k3

∂e1
∂k3

= 1 , ∂e2
∂k3

= e1 ,
∂e3
∂k3

= e2 , (4.8)

and have defined the elementary symmetric polynomials for the two remaining variables,

e1 = k1 + k2 , e2 = k1 k2 . (4.9)

It is simple to see that the second term in (4.7) contains all the powers of e1 that are
contained in the first and third terms, and so the total number of constraints is equal to
the number of terms in the sum ∑b p+3

2 c
m=0 (3− 2m)Cm0 e2−2m

1 em2 which is simply

Nconstraints(p) = 1 +
⌊
p+ 3

2

⌋
. (4.10)
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After imposing all constraints, the final number of IR-finite 3-point functions arising from
manifestly local theories is therefore

Ntotal(p) = Nansatz(p)−Nconstraints(p) =
b p+3

2 c∑
q=0

⌊
p+ 3− 2q

3

⌋
. (4.11)

Let’s now look at the constraints in more detail. By looking at the terms with the largest
power of e2 in (4.7) we conclude that

odd p : C p+3
2 0 = 0, (4.12)

even p : C p
2 1 = (p− 1)C p+2

2 0. (4.13)

For odd p, (4.12) tells us that the residue of the leading kT pole cannot be independent
of e3. This constraint can be understood according to the following argument [29]. The
residue of the highest kT pole is a cubic scattering amplitude A3. For this amplitude to be
manifestly local i.e. not contain any inverse powers of external energies, the numerator of
ψ3 must contain at least one power of e3. Indeed, a tree-level 3-point amplitude for a single
scalar in a boost-breaking theory is a symmetric polynomial in the energies of the external
particles [54]. A complete basis is provided by the two symmetric polynomials e2 and e3
since for scattering amplitudes energy is conserved: kT = 0. A general amplitude for a
manifestly local theory therefore takes the schematic form A3 ∼ eα2 e

β
3 where 2α+ 3β = p.

For massless fields we have [32]

lim
kT→0

Re(ψ3) ∼ e3
Re(ipA3)

kpT
, (4.14)

and so at least one power of e3 should appear on the leading kT pole of the 3-point function,
as ensured by the MLT. For even p, scale invariance guarantees that the leading kT pole
contains at least one factor of e3 and so the corresponding amplitude is guaranteed to be
manifestly local. However, there is a sub-leading kT pole of degree p− 1 whose residue is
independent of e3. If the coefficient of this term was unconstrained then one could cancel
the leading kT pole such that this sub-leading pole became leading which would in turn
yield an amplitude that could not come from a manifestly local theory. The MLT deals
with this and indeed for even p, (4.13) fixes the coefficient of the kT pole of degree p − 1
in terms of the coefficient of the leading kT pole. The remaining constraints, for both odd
and even p, are similar in nature and constrain the coefficients of the e3 independent terms.
Let’s now look at some examples to illustrate the power of the MLT.

p = 0. To begin with, consider the bootstrap Ansatz for p = 0

ψ
(0)
3 = C00k

3
T + C10kT e2 + C01e3 + log(−η0kT )

[
C̃00k

3
T + C̃10e2kT + C̃01e3

]
, (4.15)

where we allowed for a log(−kT η0), representing the liming case p → 0. The constraints
from the MLT give

C10 = −3C00 − C̃00, C̃10 = −3C̃00, C01 = 3C00 + 4C̃00, C̃01 = 3C̃00 , (4.16)
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and hence at this order there are only two allowed shapes

ψ
(0)
3 = C00(k3

T − 3kT e2 + 3e3) + C̃00
[
4e3 − e2kT + (3e3 − 3e2kT + k3

T ) log(−kT η0)
]
(4.17)

= C̃00
[
4e3 − e2kT + (3e3 − 3e2kT + k3

T ) log(−kT η0/µ)
]
. (4.18)

A few comments are in order. The first term, which is proportional to C00, is the well-known
“local” non-gaussianity [55] that arises by taking the free theory for φ(x) and performing
the local field redefinition φ(x) → φ(x) + φ2(x) to leading order. This does not alter the
S-matrix and indeed this term is finite on the total energy pole, kT → 0. Note that this
is the unique field redefinition that generates a manifestly local, and scale invariant 3-
point function from the free theory. The reason is that for any field redefinition ∆φ, scale
invariance requires us to have as many derivatives as inverse derivatives,9 but manifest
locality forbids any inverse spatial Laplacians, and so the only possibility is a zero-derivative
polynomial redefinition. For future reference we define

ψlocal
3 = k3

T − 3kT e2 + 3e3. (4.19)

The second term, which is proportional to C̃00, corresponds to the polynomial interaction10

φ3. Indeed this term is singular on the total energy pole and in fact it has a corresponding
amplitude,11 which is just a constant. In slow-roll inflation this term is present and is second
order in the slow-roll parameters; however, in the limit ε→ 0 this is the only surviving term
and it enjoys an approximated conformal invariance [21]. When using soft theorems instead
of the MLT to fix the free parameters in the bootstrap Ansatz, one of the above constraints
is missed and one needs to resort to conformal invariance [29]. Here we show that the MLT
has no trouble dealing with this interaction or with the log. Finally, we note that the
real and rational part of the wavefunction automatically satisfies the unitarity constraint
imposed by the COT. Conversely, the log term does not satisfy the COT by itself. Indeed,
the COT demands that log term always appears in the combination log(−kT η0) + iπ/2
(see [32] for a detailed discussion). One might expect the log term to come with a term of
the form γE×Poly3 where γE is Euler’s constant. From the bulk calculation one can verify
that this polynomial is precisely the local non-gaussianity in (4.19) and so it is correctly
captured by our derivation.

p = 1. The new Ansatz for p = 1 is expanded to

Ansatz: ψ(1)
3 = 1

kT

[
C00k

4
T + C10k

2
T e2 + C01kT e3 + C20e

2
2

]
, (4.20)

where we neglected to write the log because the MLT obliges it to only arises at p = 0,
and we have already discussed that case above. The MLT yields the following constraints

C20 = 0, 3C00 = C01 = −C10, (4.21)
9This is because in real space our massless scalar is a singlet under a scale transformation; only in

momentum space does it transform.
10It was noticed in [56] that the result for this interaction in (25) of [57] missed a few terms. For a

corrected and pedagogical derivation see Sec 3.3 of these lecture notes.
11In p = 0 case the amplitude limit in (4.14) is modified, as derived in [32].
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and so there are no new ψ3 allowed at this level. This is to be expected because there
exist no boost-breaking cubic amplitudes for three scalars. The only term allowed by
dimensional analysis and Bose symmetry would be kT , but this is the total energy and
vanishes for amplitudes. Equivalently, the kT factor cancels the kT pole hence reducing us
to the p = 0 case. Remarkably, the cubic scalar wavefunction generated by gravitational
interactions has precisely p = 1 [30]. Here we cannot see it because it is associated with
a non-manifestly local amplitude. This is to be expected since this interaction arises from
solving the GR constraints for the lapse and the shift, which requires inverting the Laplace
operator. For an extended discussion of this non-manifestly local contribution see [29].

p = 2. Now consider p = 2, with the Ansatz from (4.4). The MLT yields the following
constraints

C20 = C11, C10 = −3C00, C01 = −2C11 + 3C00, (4.22)

so the only new 3-point function is

ψ
(2)
3 = C11

4 ψDBI
3 + lower kT -singularity, (4.23)

where we have defined

ψDBI
3 = −k3

T + 3kT e2 − 11e3 + 4e2
2

kT
+ 4e2e3

k2
T

. (4.24)

This is the 3-point function of the DBI limit of the EFT of inflation [28, 52, 58]. As ex-
plained in [52], despite the EFT of inflation operators having three-derivatives, the leading
kT pole for the DBI limit is degree 2 due to its vanishing amplitude in the flat-space limit,
which in turn is due to the non-linearly realised ISO(1, 4) symmetry in that limit.

p = 3. Now consider p = 3. The MLT yields the following set of constraints

C30 = 0, C20 = C11, C10 = −3C00, C01 = 3C00 − 2C11. (4.25)

Hence, the new 3-point function with a non-vanishing k−3
T pole is simply

ψEFT1
3 = e2

3
k3
T

+ lower kT -singularity. (4.26)

This is the 3-point function arising from the boost-breaking φ′3 (EFT1) term in the EFT
of inflation [28]. There is a second three-derivative self-interaction for this goldstone mode,
namely φ′(∇φ)2 (EFT2). This yields a wavefunction coefficient that is a linear combination
of our p = 2 and p = 3 MLT solutions. Indeed, ψDBI

3 = 12ψEFT1
3 − ψEFT2

3 , which is the
unique combination in the EFT of inflation for which the leading kT pole is degree 2 rather
than 3.
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p = 4. As a final example consider p = 4. The MLT constraints are

C21 = 3C30, C10 = −3C00, C01 = 3C00 − 2C20, C20 = C11 + 3C30, (4.27)

and after imposing these constraints we can write

ψ
(4)
3 = C30ψ

φφ′′2

3 + lower kT -singularity, (4.28)

where we have defined

ψφφ
′′2

3 = 1
k4
T

(−3k2
T e2e3 + kT e

3
2 + 3e2

2e3). (4.29)

This is the wavefunction coefficient arising from a φφ′′2 operator in the bulk. There are
indeed other four-derivative operators one can write down at cubic order in φ, but they are
all degenerate with φφ′′2, up to the presence of lower derivative operators, after integration
by parts and use of the scalar’s equation of motion. This is made completely manifest
in our bootstrap approach since the MLT only allows for a single wavefunction coefficient
with a leading 1/k4

T pole.
We have therefore seen that a sub-set of the Bootstrap Rules of [29] combined with the

Manifestly Local Test (MLT) provides a conceptually transparent and computationally very
efficient way to derive bispectra. Not only does the MLT ensure that the leading kT poles
yield manifestly local amplitudes, it also fixes the full shapes of manifestly local 3-point
functions. For example, the highly non-trivial structure of (4.24) is completely fixed by the
MLT and any deviations from these tunings for the sub-leading kT poles would represent
a deviation from manifest locality and/or unitary time evolution in the bulk. Our results
therefore contain the full 3-point functions for the EFT of inflation up to any order in
derivatives, which captures some constraints that were missed in [29]. Furthermore, as
shown in appendix B, the number of real wavefunction coefficients is equal to the number
of amplitudes plus one,

Ntotal(p) = Namplitudes(p) + 1 = 1 +
b p+3

2 c∑
q=0

⌊
p+ 3− 2q

3

⌋
, (4.30)

to any order p in derivatives (note that here we have included the logarithmic term in the
counting). The one extra 3-point function can be traced back to the fact that the S-matrix
is invariant under perturbative field redefinitions whereas ψ3 is not. In particular, the much
studied local non-Gaussianity arises from the only scale invariant and manifestly local field
redefinition at this order: φ(x) → φ(x) + φ2(x). Each of the remaining 3-point functions
are tied to an amplitude that in turn can be derived from a manifestly local operator in
Minkowski space. This implies that each of the 3-point functions we have derived from the
MLT come from manifestly local operators in dS space.

The imaginary part. So far we concentrated on the real part of the wavefunction since
this is what contributes to the correlator.12 However, our methods can also constrain the

12This is true for parity even interactions. For parity odd interactions the correlator picks up the imag-
inary part of the wavefunction coefficient. However, parity odd interactions have more derivatives and do
not generate the imaginary IR-divergent terms that we bootstrap below.
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imaginary part of the wavefunction, where there can be inverse powers of η0. First of all,
notice that by scale invariance we have

ψ3(λk, η0λ
−1) = λ3ψ3(k, η) . (4.31)

Furthermore, the only k-dependent denominators one can have are powers of kT , due to
the choice of the Bunch-Davies vacuum, and the residues of these poles must contain an
amplitude which cannot depend on time. Therefore the most generic Bootstrap Ansatz in
the late-time limit η0 → 0 is

ψ3 =
Poly3+p
kpT

+ log(−η0kT )Poly3 + Poly2
η0

+ Poly1
η2

0
+ Poly0

η3
0

, (4.32)

where Polyn are polynomials in momenta of degree n. We have already bootstrapped the
first two terms in this Ansatz so here we concentrate on the latter three where, a priori,
these polynomials can have complex coefficients. Now the COT dictates [32]

ψ3(k) + ψ3(−k)∗ = 0 , (4.33)

and so Poly2 and Poly0 must be pure imaginary since they are invariant under k → −k,
while the Poly1 must be real. We will now constrain these polynomials using the MLT.

The numerator of the most divergent term, η−3
0 , must be a number by scale invariance,

and so it is not constrained further by the MLT. We will denote it as a. It is easy to see
that Poly1 must vanish. Indeed, there is no linear combination of the energies that can
satisfy the MLT, since the latter forbids all linear terms. Finally, the least trivial case
is that of η−1

0 where by writing down a general ansatz for Poly2 and imposing the MLT,
we find

Poly2 = ib
(
k2

1 + k2
2 + k2

3

)
= ib(k2

T − e2), (4.34)

where b is a real number. Here we have imposed Bose symmetry given that in this section
our focus is on the three-point function of identical scalars. However, if we had considered
the three-point function for three distinct fields that all satisfy (4.1), Poly1 would still have
to be set to zero, whereas for Poly2, k2

1, k2
2 and k2

3 could have arbitrary coefficients. So a
combination of the MLT and the COT tells us that for three identical scalars

lim
η0→0

ψ3 ⊃ ib
(
k2
T − e2

)
η0

+ i
a

η3
0
. (4.35)

This result means that the late-time, time-dependent part of the full ψ3 (other than the
log term) is actually purely imaginary. This ensures that the correlator does not see any of
these late-time divergences since the correlator only depends on the real part of ψ3. Notice
that, when converted to real space, both contributions above are contact terms that vanish
at separated points. This is to be expected from experience with AdS/CFT where these
contact terms are non-universal and are indeed related to non-universal divergences that
depend on how the IR limit is regulated.
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In fact, this result can quite easily be extended to any n-point functions. Indeed, with
three spatial dimensions, all n-point wavefunction coefficients satisfy

ψn(λk, η0λ
−1) = λ3ψn(k, η) , (4.36)

and so any poles at η0 = 0 take the form shown in (4.32) with the polynomials a function of
the n external energies but still with the shown degrees. Now the COT ψn(k)+ψ3(−k)∗ = 0
is valid for any n-point function [32] and so it remains true that only the 1/η2

0 term can have
real coefficients and therefore have the chance of appearing in the correlator. However, if
all external fields are subject to the MLT, which is the case if they have massless mode
functions, then the MLT ensures that no such Poly1 is allowed and therefore no η0 = 0
poles appear in the correlator.

4.2 A massless scalar coupled to gravity

We now consider the case where our massless scalar φ couples to gravity. We consider
minimal coupling to a massless graviton, and bootstrap the ψφφγ for p = 2, corresponding
to minimal coupling to gravity as in General Relativity. In contrast, note that we cannot
bootstrap ψφφφ from graviton interactions because this arises after integrating out the non-
dynamical lapse and shift in the ADM formalism [30], which leads to non-manifestly local
interactions involving inverse Laplacians. A detailed discussion of this scalar bispectrum
appeared in [29], together with other bispectra involving the graviton. In a future publi-
cation we will provide a general result for any bispectra of spinning particles to all orders
in derivatives [45].

The bootstrap rules of [29], which we reviewed earlier for scalars, apply to gravitons
too and so we only need to make a few small tweaks to our previous Ansatz. There are
two main differences compared with the scalar case. First, by little group scaling, ψφφγ
must contain a polarisation factor εhij(k3) where h = ±2 is the graviton’s helicity. Now
to form a little group invariant we need to contract these two indices with ki1 or ki2 given
that the polarisation tensor is transverse and traceless. By momentum conservation, each
of the three choices are degenerate so we write εij(k3)ki1k

j
2 as the appropriate little group

invariant without loss of generality. Second, there is no reason for this 3-point function
to be symmetric under the exchange of one of the scalar’s momentum and the graviton’s
momentum since Bose symmetry only applies to identical fields. This is an improvement
over the treatment in [29] where such symmetry needed an ad hoc assumption. We therefore
only assume symmetry under the interchange of k1 and k2. So the variables we will use to
write the boostrap Ansatz are e1, e2 (defined in (4.9)) and k3. Taking these into account
and including a possible logarithm, our general Ansatz for the real part of ψ3 up to p = 2 is

ψ
(2)
φφγ(k1, k2, k3) = εij(k3)ki1k

j
2

k2
T

[D00k
3
3 +D10k

2
3e1 +D01k3e2 +D20k3e

2
1 +D11e2e1

+D30e
3
1 + k2

T log(−kT η0)(D̃00k3 + D̃10e1)], (4.37)

where in the following we will drop the φφγ subscript. We now have to apply the Manifestly
Local Test (MLT) to one of the scalar energies and the graviton’s energy. Let’s first consider
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the scalar. Without loss of generality we consider k2 and so the MLT is

∂

∂k2
ψ

(2)
3 (k1, k2, k3)

∣∣∣
k2=0

= 0 , (4.38)

which yields the constraints

D30 = −D11, 2D11 = D01, D01 = D10 − 2D20, D10 = 2D00, D̃10 = 0.
(4.39)

Now for the graviton we have

∂

∂k3
ψ

(2)
3 (k1, k2, k3)

∣∣∣
k3=0

= 0 , (4.40)

which, after imposing (4.39), yields

D20 = −2D00, D̃00 = 0. (4.41)

After imposing all of these constraints we are left with a unique p = 2 3-point function
which turns out to be fully symmetric and can be written as

ψ
(2)
3 = D00εij(k3)ki1k

j
2

k2
T

(k3
T − kT e2 − e3), (4.42)

which is the 3-point function arising from the familiar minimal coupling γij∂iφ∂jφ.
A few comments are in order. First, notice that the MLT forces the trimmed wave-

function of ψφφγ , namely what’s left after stripping off the polarization factor εijki1k
j
2, to

be fully symmetric under permutation of all three momenta, which is not a consequence of
Bose symmetry. From the bulk point of view, this property arises from the fact that the
graviton has the same mode functions as the massless scalar and so the integral over time
of the bulk-to-boundary propagators is fully permutation invariant. It is remarkable that
the MLT enforces this property as well. This happens because we have imposed the MLT
for the graviton as well as for the scalars, which brings in the information that their mode
functions are the same. Indeed this will not be the case in next example involving two
conformally coupled scalars and a graviton. Second, the MLT teaches us that the lowest
derivative interaction has two derivatives and correspond to minimal coupling in General
Relativity. This is true even though we allow for boost breaking interactions. This is a par-
ticular case of a more general set of results obtained in [59–61], where it was also concluded
that the first boost breaking ψφφγ generated from coupling to the inflaton foliation of time
comes at three-derivatives. In that work the authors work at the level of the Lagrangian
and use field redefinitions to remove redundant couplings in the EFT of inflation. Our
on-shell approach should be able to reproduce in an efficient manner all their more general
results, including the graviton non-Gaussianities. We plan to discuss this in [45]. Finally,
we note that this 3-point function was derived in [16] using de Sitter symmetries. Here we
see that the MLT efficiently forces the result even when no assumptions about de Sitter
boosts have been made.
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In this case one can also bootstrap the imaginary part of the wavefunction. Given
that the polarisation factor already scales as k2, the only term we haven’t yet discussed
has a 1/η0 late-time singularity. The COT ensures that its coefficient is a pure imaginary
number which of course passes the MLT. Indeed, as explained in [37], the polarisation
factor appearing in this three-point function should be kept fixed on the l.h.s. of (4.33)
and so the only way to satisfy this unitarity constraint is to have an imaginary coefficient.
We therefore have

ψ3 ⊃ εij(k3)ki1k
j
2
i

η0
, (4.43)

as the only possible late-time divergent contribution to the wavefunction.

4.3 A conformally coupled scalar coupled to gravity

We now turn to interactions between a conformally coupled scalar and gravity. We consider
ψϕϕγ which, in contrast to ψϕϕϕ, can indeed have a non-vanishing real part. The bootstrap
rules of [29] were not directly applied to conformally coupled scalars but many of the
arguments presented there for massless fields also apply to conformally coupled fields.
Indeed, symmetries of the theory and the choice of a Bunch-Davies initial state still dictate
that a general IR-finite 3-point function is given by a polynomial in the three external
energies, with the appropriate symmetry as dictated by Bose statistics, divided by a power
of kT (multiplied by the appropriate little group invariants if we have spinning fields).
However, the scaling with momenta differs for conformally coupled fields. The overall
scaling of an n-point function due to scale invariance is (see e.g. [32])

ψn ∼ k3(1−n)+
∑n

a=1 ∆+
a , (4.44)

and so for two conformally coupled scalars (∆+ = 2) and one graviton (∆+ = 3), we have
ψ3 ∼ k.

Given the above discussion, let’s now bootstrap ψϕϕγ for p = 2. We leave a more
general analysis to [45]. Our general Ansatz is

ψ
(2)
3 (k1, k2, k3) = εij(k3)ki1k

j
2

k2
T η

2
0

(E00k3 + E10e1), (4.45)

where again we have dropped the ϕϕγ subscript and have add two factors of η0 in the
denominator as required by dimensional analysis. In contrast to the massless case, scale
invariance and little group scaling do not allow for a logarithm in this Ansatz. Now, as
explained in section 3.3, the MLT for a conformally coupled scalar is automatically satisfied
by the form of our Ansatz and so we only need to apply the MLT to the graviton’s energy.
We have

∂

∂k3
ψ

(2)
3 (k1, k2, k3)

∣∣∣
k3=0

= 0 , (4.46)

which fixes E00 = 2E10, and so the unique manifestly local 3-point function is

ψ
(2)
3 (k1, k2, k3) = E10εij(k3)ki1k

j
2

k2
T η

2
0

(2k3 + e1), (4.47)
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which is the wavefunction coefficient arising from the minimal coupling operator γij∂iϕ∂jϕ
in the bulk. In comparison to massless scalars, we therefore see that there cannot be
leading order kT poles of degree < 2. Also, in contrast to the case of ψφφγ , the MLT does
not force the 3-point function to be fully symmetric in the external energies, which is to
be expected since the mode function of a conformally coupled scalar is different from that
of the massless graviton. The only imaginary term we can add to this wavefunction is
also (4.43). In section 6 we will use this 3-point function to bootstrap the 4-point function
for conformally coupled scalars due to graviton exchange.

5 Bootstrapping 4-point functions using partial energy shifts

In the previous sections we exploited the Manifestly Local Test (MLT) to bootstrap contact
diagrams for various 3-point interactions. This begs the question: how do we bootstrap
exchange diagrams from their constituent contact subdiagrams? In this section we introduce
a systematic way for computing rational 4-point exchange diagrams from their constituent
3-point functions, and we expect our formalism to generalise to higher-point functions
too. We present a three-step procedure. In the Step I we leverage the analyticity of 4-
point functions by use of the Cauchy’s integral theorem, which relates the desired 4-point
function to the residues and boundary term associated with a meromorphic function ψ̃4(z)
of a single complex variable z. The function ψ̃4(z) is obtained by an appropriate shift by
z of the partial energies in the arguments of ψ4, as we discuss in the next section. All
the residues of ψ̃4(z)/z on its z poles, both leading and subleading, are completely fixed
by the Cosmological Optical Theorem (COT). The sum over the residues will generically
not satisfy the COT by itself and so in Step II a suitable boundary term will be added to
ensure that our bootstrapped 4-point function arises from unitary time evolution. Finally,
in Step III we use the 6-point MLT to fix the remaining parts of the boundary term.
After going through these three steps, the 4-point function satisfies both the COT and
the MLT. However, we still have the liberty to add any function of the kinematics that
itself satisfies (i) the COT in (5.30) and (ii) the MLT in (3.6). We expect that when
combined with a generalisation of the bootstrap rules of [29], these conditions give us an
on-shell definition of contact 4-point functions. Here we assume a rational ansatz for the
wavefunction coefficients. This is a valid assumption at tree-level for massless scalar and
tensor fields in the absence of logarithmic IR-divergences. In section 6, we work through a
number of examples where we explicitly find the local quartic operators that account for
the difference between our bootstrap procedure and bulk computations.

5.1 Step I: partial energy recursion relations

Locality implies that wavefunction coefficients can only diverge when: (i) the sum of ener-
gies entering a subdiagram vanishes, these are partial energy poles, or (ii) when the sum of
all external energies vanishes which is the total energy pole. Unitarity, in the form of the
cosmological single-cut rules [32], relates the (leading and subleading) singular behaviour
near each of the partial energy singularities to the sub-diagrams that emerge after cutting
an appropriate internal line. For concreteness, consider an s-channel 4-point diagram of a
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single massless field, represented by ψ4(k1, k2, k3, k4, s). The allowed singularities are at

EL = k1 + k2 + s = 0 , ER = k3 + k4 + s = 0 , kT = k1 + k2 + k3 + k4 = 0 . (5.1)

We take ψ4 to be symmetric in the external pairs (k1, k2) and (k3, k4), but generalisations
should be straightforward. To make the following expressions algebraically simpler, we
make the following change of variables in the arguments of the 4-point function and its
3-point subdiagrams:

ψ4 : (k1, k2, k3, k4, s)→ (EL, ER, k1k2, k3k4, s) , (5.2)
ψL3 : (k1, k2, s)→ (EL, k1k2, s) , (5.3)
ψR3 : (k3, k4, s)→ (ER, k3k4, s) . (5.4)

Notice that with this new set of variables, the total energy is not an independent quantity
but is given by kT = EL + ER − 2s. It is straightforward to verify that ψ4 and ψ3 retain
their rational format upon performing this change of variables. Now, near the EL = 0 pole,
ψ4 admits the Laurent series

ψ4 =
∑

0<n≤m

Rn(ER, k1 k2, k3 k4, s)
EnL

+O(E0
L) , (5.5)

where m is an integer that encodes the degree of the leading pole. Notice that we always
symmetrise between the left and right vertices and so the same expansion holds near the
ER = 0 pole, upon permuting EL with ER and k1k2 with k3k4. We want to prove that
unitarity fully fixes the coefficients of this expansion except for the last analytical part.
Writing the Cosmological Optical Theorem with the new kinematical variables we have

ψ4(EL, ER, k1k2, k3k4, s) + ψ∗4(−EL + 2s,−ER + 2s, k1k2, k3k4, s) = Ξ (5.6)

where for future convenience we have denoted by Ξ the right-hand side of the COT:13

Ξ = P (s) (ψ3(EL, k1k2, s)− ψ3(EL − 2s, k1k2,−s)) (5.7)
× (ψ3(ER, k3k4, s)− ψ3(ER − 2s, k3k4,−s)) .

The key observation is that the second term on the left-hand side of this expression is
analytic around EL = 0, and so can be dropped in the limits EL → 0 or ER → 0.
This implies that the right-hand side of the COT determines all of the leading and sub-
leading partial energy poles Rn of ψ4. This is more information than what is provided
by the factorization results recently employed in [26], which fix the leading singularity.
For reference, we summarise the singularities of the components of the COT in table 1.
We present the singularities that involve EL but those for ER are again the same with
appropriate change of arguments in ψ3. The COT identifies the integer m with the degree
of the total energy pole in the 3-point function i.e.

lim
EL→0

ψ3 ∝
1
EmL

, m = dimension of the vertex − 3 . (5.8)

13As compared with (2.28), here we used the contact COT to write ψ∗3(−EL + 2s, k1k2, s) = −ψ3(EL −
2s, k1k2,−s), as in [32].
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ψ4(ka, s) ψ4(−ka, s) ψ3(k1, k2, s) ψ3(k1, k2,−s)
(partial energy pole)EL = 0 X 7 X 7

(collinear pole)EL = 2s 7 X 7 X

(total energy pole)EL + ER = 2s X X 7 7

Table 1. Singularities of the elements apearing in the 4-point exchange COT. The same applies to
ER singularities as well with the substitution ψ3(k1, k2, s)→ ψ3(k3, k4, s).

Moreover, the COT gives the coefficients Rn in terms of the partial derivatives of its right-
hand side with respect to the partial energy EL as

Rn(ER, k1k2, k3k4, s) = 1
(m− n)!

∂m−n

∂Em−nL

[EmL Ξ(EL, ER, k1k2, k3k4, s)]EL=0 . (5.9)

What about the analytical part of the expansion? It might appear that it is not constrained
by unitarity at all, precluding us from bootstraping the full 4-point function. This is,
however, a rushed judgment as we have not yet used the full knowledge of the allowed
poles. Recall that ψ4 must be regular in the collinear limit, i.e. ER = 2s (or EL = 2s),
iff we keep EL (or ER) finite. However, the coefficients of its Laurent expansion will
generically inherit such spurious poles from Ξ which requires the non-singular part of ψ4
to come to the rescue and cancel these bad singularities. Let us see how this happens in a
concrete example. Consider the 4-point function of a massless scalar in flat space arising
from the cubic interaction φ3. It is given by

ψ4 = 1
ELER (EL + ER − 2s) = 1

EL

1
ER(ER − 2s) +

∑
n≥1

(−1)En−1
L

ER (ER − 2s)n+1 . (5.10)

We see that by expanding the total energy pole around EL = 0 one generates an infinite
number of terms analytic in EL that are singular at the collinear limit, and yet the full
4-point is free of the latter singularity. There is still one more property that the Laurent
expansion should satisfy: it should reproduce a similar expansion around ER = 0. Ensuring
the cancellation of spurious poles and the correct Laurent expansion around each partial
energy pole turns out to be very restrictive.

It is very natural to then seek an integrated approach in order to satisfy these properties
all at once. The most pedestrian way forward is to insert the most generic Ansatz for ψ4,
namely

ψ4 = Poly2+4m(EL, ER, k1k2, k3k4, s)
EmL EmR (EL + ER − 2s)2m−1 , (5.11)

into the COT and fix the free coefficients appearing in the polynomial in the numerator as
much as possible (here the degree of the total energy pole is fixed by the power counting
argument of [29], and Polyl is a polynomial of energy dimension l with its degree fixed by
scale invariance for external fields with massless mode functions). The downside of this
approach is the proliferation of parameters needed to write down such an Ansatz as we
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increase the degree of the singularity of the vertices. We instead take a different approach
and bootstrap ψ4 using the miracles of Cauchy’s integral theorem. The trick is to shift
the arguments of ψ4 by a single complex variable z and subsequently arrive at a shifted
four-point function ψ̃4(z) such that:

(a) ψ̃4(z = 0) = ψ4,

(b) ψ̃4(z) is an analytic function of z except for isolated poles,

(c) the residues of ψ̃4(z)/z at z 6= 0 are fixed by the Cosmological Optical Theorem.

A shift that satisfies all of these requirements is the following partial energy shift14

ψ4(EL, ER, k1k2, k3k4, s)→ ψ̃4(z) = ψ4(EL + z, ER − z, k1k2, k3k4, s) . (5.12)

Let us verify that (a) − (c) are satisfied. Condition (a) is trivial since the shift vanishes
at z = 0. Condition (b) is satisfied since ψ̃4(z) inherits the analytical properties of ψ4.
Indeed, it is an analytic function in the complex plane of z except for two isolated poles
located at

singularities of ψ̃4(z) : z = −EL and z = ER . (5.13)

The singular part of the Laurent expansion of ψ̃4 around these poles is dictated by the
right-hand side Ξ of the COT i.e.

ψ̃4(z) =
∑

0<n≤m

An(ER, EL, k1k2, k3k4, s)
(z + EL)n +O(z + EL) , (5.14)

An = 1
(m− n)!

[
∂m−nz (z + EL)m Ξ(EL + z, ER − z, k1k2, k3k4, s)

]
z=−EL . (5.15)

Notice that, in principle, the coefficients An can be expressed in terms of Rn. As a corollary
to (a) and (b), we can use the residue theorem to write,

ψ4(EL, ER, k1k2, k3k4, s) = 1
2πi

∮
C0
dz

ψ̃4(z)
z

, (5.16)

where C0 is a contour that rotates around the origin (see figure 3). We adopt the clockwise
direction for contour integration throughout. So condition (c) is also satisfied since the
Laurent expansion of ψ̃4 around z = −EL and z = ER directly follows from that of ψ4 at
EL = 0 and ER = 0 respectively which are in turn fixed by the COT in terms of lower-point
vertices, as we explained above. Using that Laurent expansion, we can straightforwardly
compute the residues of ψ̃4/z at these locations. They are given by

1
2πi

∮
CL
dz

ψ̃4(z)
z

= Res
[
ψ̃4(z)
z

]
z=−EL

= −
∑

0<n≤m

An(EL, ER, k1k2, k3k4, s)
EnL

, (5.17)

1
2πi

∮
CR
dz

ψ̃4(z)
z

= Res
[
ψ̃4(z)
z

]
z=ER

= −
∑

0<n≤m

An(ER, EL, k3k4, k1k2, s)
EnR

. (5.18)

14Energy shifts were introduced in [2] to fix the residues of simple poles. Our partial-energy shifts,
combined with the Cosmological Optical Theorem, enable us to fix the leading and all subleading partial
energy poles which is crucial for computing inflationary correlators.
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Figure 3. The countour integrals adopted for relating the value of ψ̃(z) at the origin to its residues
and an associated boundary term at infinity.

Notice that our partial energy shift was carefully chosen such that the total energy is
independent of z:

kT (z) = (EL − z) + (ER + z)− 2s = kT . (5.19)

Any shift that does not have this property will introduce additional singularities at zT
(defined via kT (zT ) = 0). The residues of ψ̃4/z at such poles cannot be fixed by the COT
since the total energy poles precisely cancel on each side of the equation, see e.g. table 1.

We now make use of the analyticity of ψ̃4(z) in order to deform the C0 contour and
arrive at

ψ4(EL, ER, k1k2, k3k4, s) = −Res
[
ψ̃4(z)
z

]
z=−EL

− Res
[
ψ̃4(z)
z

]
z=ER

+B (5.20)

= ψRes +B , (5.21)

where B is a boundary contribution at infinity i.e.

B = 1
2πi

∮
C∞

dz
ψ̃4(z)
z

, (5.22)

and

ψRes =
∑

0<n≤m

An(EL, ER, k1k2, k3k4, s)
EnL

+
∑

0<n≤m

An(ER, EL, k3k4, k1k2, s)
EnR

. (5.23)
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Notice that we could perform the integral in Cauchy’s theorem in full generality, for any
interaction at once. Using the above formula, the calculation of ψRes is reduced to the
elementary process of taking derivatives of linear combinations of lower-point functions, as
dictated by (5.15). As compared to the Feynman rules for representing ψn as integrals in
time in the bulk of de Sitter, (5.23) provides an alternative and equivalent representation of
(the singular part of) the wavefunction coefficients, where time has completely disappeared.

As we illustrate in a number of examples below, the boundary term is generically non-
vanishing and cannot be fixed by the COT alone because both shifted terms on the left-hand
side of the COT diverge as z goes to infinity. However, we know the following facts:

• B cannot have any partial energy poles15 and the Laurent expansion of ψ4(EL +
z, ER − z, . . .) around z = ∞ is analytic in EL and ER. This follows from noticing
that for any finite constant c we have B(ER, EL) = B(ER + c, EL − c), and so it
cannot have isolated EL or ER poles.

• All the partial energy singularities of ψ4 are in ψRes (since none are in B). Fur-
thermore the Laurent expansion of ψRes around each partial energy singularity only
has negative powers of that partial energy. This is because shifting ψ4 in (5.20) for
a second time and computing the contour integral at infinity should be consistent
with Equation (5.22), which cannot happen unless the shifted residue sector vanishes
at z →∞.

• The partial energy shift forces ψRes to have a total energy pole. At first glance, this
seems odd as the right-hand side Ξ of the COT — the very origin of the residue
sector— does not admit such a pole. The reason is that Ξ has a pole in the collinear
limit (ER− 2s = 0), so after shifting the kinematics and evaluating Ξ and its deriva-
tives at zL = −EL, the collinear pole transmutes into a total energy singularity for
An’s, simply because kT = EL + ER − 2s = (EL + zL) + (ER − zL)− 2s.

In summary, in Step I we determine the part ψRes of ψ4 that has any partial energy
singularities using (5.23), (5.15) and the right-hand side Ξ of the Cosmological Optical
Theorem for a given ψ3. This determines ψ4 up to the boundary term B in (5.20) that
has no partial energy singularities. The goal of the next two steps is to fix B. We identify
three contributions to the boundary term

B = BCOT +BMLT +Bcontact . (5.24)

The first contribution BCOT ensures that ψ4 satisfies the COT and is computed in Step II.
The second contribution BMLT ensures that ψ4 satisfies the MLT and is computed in Step
III. Finally, we conjecture that the last contribution Bcontact always corresponds to the ψ4
induced by a contact diagram corresponding to a (quartic) local operator. This cannot be
fixed unless further input is given about the model under consideration, in comparison to
the boundary term for scalar amplitudes in the BCFW formalism [62].

15This is very similar to BCFW for amplitudes where with a particular momentum shift, the boundary
term can in principle have a pole as one out of the three Mandelstam variables is taken to zero. This is
because for a given shift there is always a sum of two momenta that is independent of the deformation
parameter.
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5.2 Step II: back to the Cosmological Optical Theorem

In deriving ψRes in (5.14), we have only used the structure of the right-hand side of the
Cosmological Optical Theorem (COT). Therefore, in general ψRes does not satisfies the
COT. As we illustrate in a number of examples in section 6, generically one needs to
include a necessary boundary term BCOT to ensure that ψ4 is consistent with unitarity.
To see this, consider the right-hand side of the COT for a give cubic wavefunction ψ3. We
claim that the most general form of its Taylor expansion around s = 0 is

Ξ = α0 s
3 +

∑
l≥1

sl+3 fl(EL, ER, k1k2, k3k4) , (5.25)

where

α0 = 1
3!
∂

∂s
Ξ(EL, ER, s, k1k2, k3k4)

∣∣∣
s=0

. (5.26)

The reason behind this expansion is that (i) Ξ must scale as k3 by scale invariance, (ii) it
only contains odd positive powers of s (no s singularities are allowed by manifest locality)
and (iii) a linear term in s is precisely obliged to vanish by the MLT (we remind the reader
that we are working with external massless fields). Therefore, to have the right scaling
all fl’s must have denominators. Since all k(4)

T poles cancel in the COT, the fl’s must be
singular at EL = 0 and ER = 0. This is in contrast with the boundary term B in (5.20),
which we argued cannot have partial energy singularities. It follows that the COT splits
into two distinct conditions given by

ψRes(ka, s) + ψRes(−ka, s) =
∑
l≥1

sl+3 fl(EL, ER, k1k2, k3k4) , (5.27)

B(ka, s) +B(−ka, s) = α0 s
3. (5.28)

By construction ψRes should contain all the partial energy singularities, so the first equality
has to hold. The second equality has the particular solution

BCOT(ka, s) = 1
2α0 s

3 , (5.29)

and leaves the remaining terms to satisfy the homogeneous equation (the contact COT
of [32])

(B(ka, s)−BCOT(ka, s)) + (B(−ka, s)−BCOT(−ka, s)) = 0 . (5.30)

Given that B can only have a total energy pole, we can write

∆B ≡ B(ka, s)−BCOT(ka, s) = Poly2m+2(ka, s)
k2m−1
T

, (5.31)

where we have used scale invariance to fix the degree of the polynomial in the numerator.
Plugging this Ansatz into (5.30) yields

Poly2m+2(ka, s)− Poly2m+2(−ka, s) = 0 . (5.32)
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This implies that the polynomial cannot have odd powers of s. Therefore, ∆B is an analytic
function of s2 = k2

1 + k2
2 + 2k1.k2, and we can rewrite (5.30) as

∆B(ka; . . . ) + ∆B(−ka; . . . ) = 0 , (5.33)

which is precisely the COT for a contact term and we have added the . . . to allow for
rotation invariant contractions of the momenta. This equation is compatible with the
hypothesis that ∆B is a contact term, but in the next section we show that this is not
always the case. Instead, there is a part of ∆B that must necessarily be attributed to the
exchange 4-point function ψ4.

In summary, in Step II we reconstruct the part BCOT of B by demanding that the
COT is satisfied. The result is given in (5.29) with α0 defined in (5.25) in terms of the
cubic couplings.

5.3 Step III: constraining the boundary term with the Manifestly Local Test

The previous step has guaranteed that our 4-point function satisfies the Cosmological
Optical Theorem (COT) and so is consistent with unitary time evolution in the bulk. This
fixed BCOT in (5.29). However, we should also make sure that higher-point diagrams that
include our 4-point function as a sub-diagram are consistent with manifest locality and
unitarity. In particular, the 4-point diagram we are bootstraping must obey the Manifestly
Local Test (MLT) (see section 3)

∂

∂ka
ψ4({k}, s, {k})

∣∣∣
ka=0

= 0 , (5.34)

where we are reverting back to the original kinematical parameters ({k}, s) in which the
MLT takes a more compact form. The MLT ensures that the 6-point function shown in
figure 2 has the correct singularities for a manifestly local theory of massless scalars. Now,
it is not guaranteed that ψRes + BCOT satisfies the MLT. When it does not, we must add
an additional contribution BMLT to the boundary term B. In cases where

∂

∂ka
ψRes({k}, s, {k})

∣∣∣
ka=0

6= 0 , (5.35)

BMLT is found by solving

∂

∂ka
BMLT

∣∣∣
ka=0

= − ∂

∂ka
ψRes

∣∣∣
ka=0

, (5.36)

where we remind the reader that when a derivative is taken with respect to an external
energy, all other variables are kept fixed (and so BCOT does not contribute). Let us
emphasise that this is a very non-trivial constraint. Since BMLT is only allowed to have kT
poles, if we differentiate with respect to say k1, the left-hand side of (5.36) can only have
a pole at k2 + k3 + k4 = 0. This must also be the case on the right-hand side and given
that ψRes can have kT , EL and ER poles, many cancellations must occur. As always, this
equation must hold for the external energy of any field with a massless mode function and
so can in principle yield a system of constraints. For conformally coupled fields (or any
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field with ∆+ = 2) the MLT is again automatically satisfied. In section 6 we illustrate the
power of the 6-point MLT in a number of informative examples.

With all the compulsory elements added to the boundary term, we are still free to add
any correction ∆ψ4(EL, ER, k1k2, k3k4, s) which must:

• only have kT poles,

• satisfy the homogeneous Cosmological Optical Theorem (5.30),

• satisfy the 4-point Manifestly Local Test (3.7).

If ∆ψ4 contains only real couplings and has the correct momentum scaling as dictated by
scale invariance, it will always satisfy the homogeneous COT since this is equivalent to the
COT for contact terms. As for the MLT, as we discussed around equation (5.33), ∆ψ4 can
only depend on even powers of s which can in turn be written in terms of inner products
of the external momenta. So the MLT actually takes the form for a contact term i.e.

∂

∂ka
∆ψ4({k}, {k})

∣∣∣
ka=0

= 0 . (5.37)

In section 4 we saw that the Bootstrap Rules of [29] along with the MLT allows one to
bootstrap all 3-point functions arising from manifestly local theories. With an adapted
form of the Bootstrap Rules of [29], the 4-point contact MLT, and the fact that ∆ψ4 is only
permitted to have kT poles, we expect that this is enough to provide an on-shell definition
of a contact 4-point function. This will be discussed in [63]. In section 6 we consider a
number of examples where we compute the difference between our bootstrap result for an
exchange 4-point function, derived following our three-step procedure, and the result of the
bulk computation and we show that the difference is given by contact diagrams of quartic
interactions. Note that here we are bootstrapping the s-channel of an exchange process,
so when we compare our result to the bulk computation we sum over permutations to also
include the t and u channels. This ensures that any potential difference is a sum of contact
terms with the correct symmetry.

In summary, Step III of our bootstrap procedure requires one to solve for BMLT by
demanding that full the 4-point function satisfies the MLT.

5.4 Comparison to BCFW momentum shifts

The partial energy shifts we have introduced in this section are reminiscent of the BCFW
momentum shifts [43] extensively used in the S-matrix bootstrap programme, yet there
are important differences. Below we compare the two methods:

• BCFW shifts [43] are defined as complex deformations of a sub-set of the external
spinors appearing in the spinor helicity formalism used to compactly write 4-point
scattering amplitudes of massless particles (see e.g. [40–42] for reviews and [62] for a
discussion in the context of boost-breaking amplitudes). Two out of the four external
momenta are deformed in such a way that the new momenta remain on-shell and
satisfy momentum conservation. In contrast, our partial-energy shifts act on a sum
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Cubic vertex α0 BMLT Bootstrap-Bulk
φ3 in Minkowski 7 7 0

γij∂iφ∂jφ 7 Xin (6.30) 0
γij∂iϕ∂jϕ 7 7 0
φφ′2 Xin (6.37) Xin (6.38) ∆Lint in (6.40)
φ′3 7 7 ∆Lint in (6.48)

φ′(∇φ)2 Xin (6.50) Xin (6.51) ∆Lint in (6.53)

Table 2. Here we summarise the main features of various 4-point exchange functions induced by
two copies of the cubic vertex given in the first column and computed with our three-step procedure.
Unless stated otherwise, the background geometry is de Sitter.

of energies while keeping the external momenta held fixed. This allows us to isolate
the partial-energy poles of exchange diagrams without introducing branch-cuts in the
deformation parameter.

• BCFW shifts isolate two out of the three allowed poles of full 4-point amplitudes.
The allowed poles occur when one of the Mandelstam variables goes to zero, and the
residues are fixed by consistent factorisation (see also [54, 64–66]). One of the Man-
delstam variables is independent of the deformation parameter and so is analogous to
kT in the above discussion. The two deformed Mandelstam variables are analogous
to EL and ER.

• The fact that BCFW shifts isolate two of the Mandelstam variables at the same time,
means that these shifts do not rely on individual Feynman diagrams. Rather, the
shifts act on the full 4-point amplitude. This has made the shifts particularly powerful
for deriving recursion relations that fix the full tree-level S-matrix in Yang-Mills and
General Relativity in terms of their 3-point amplitudes [43, 67, 68], and is the basis
of the four-particle test of Benincasa and Cachazo [69]. In contrast, our partial-
energy shifts act diagram-by-diagram. It would be very interesting to generalise our
partial-energy shifts such that they relate the poles of different channels. This will
be particularly important for bootstrapping wavefunction coefficients with external
spinning fields.

6 Explicit examples

In this section, we use the three-step procedure outlined in the previous section to bootstrap
various tree-level 4-point exchange diagrams. For each case we summarise the main features
in table 2. We state whether boundary terms are required to satisfy the Cosmological
Optical Theorem (non-zero α0) or the Manifestly Local Test (non-zero BMLT), and state
whether our bootstrap result is equal to the bulk result, or differs by a sum of contact
4-point interactions ∆Lint.
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6.1 A flat-space warm-up

All of the results we derived so far apply mutatis mutandis to flat spacetime where the
Manifestly Local Test (MLT) is the same as for conformally coupled fields, see (3.17).
Since in Minkowksi we find only simple partial and total energy poles,16 even for derivative
interactions, this is a great place to start to demonstrate our techniques in explicit examples.
Let’s consider the following simple cubic polynomial interaction

Hint = λ
φ3

3! . (6.1)

The cubic wavefunction can be easily bootstrapped adapting the Bootstrap Rules of [29] to
Minkowksi. Since ψ3 must scale as k−1 for a dimension three interaction and it must have
a simple 1/kT pole, we must have ψ3 ∝ k−1

T . The overall coefficient follows from matching
the kT residue to the corresponding amplitude, A3 = λ. This precisely agrees with the
bulk calculation

ψ3 = i× λ

3! × 3!×
∫
dη eikT η = λ

kT
. (6.2)

It’s easy to check that this expression solves the contact Cosmological Optical Theorem
(COT) in (2.26). Following our discussion in section 5.1, we can write the tree-level,
s-channel 4-point exchange generated by the above interaction as

ψ4(EL, ER, s) =
∑

0<m≤n

(
Am(EL, ER)

EmL
+ Am(ER, EL)

EmR

)
+B , (6.3)

where

lim
z→−EL

ψ4(EL + z, ER − z) =
∑

0<m≤n

Am(EL, ER)
(z + EL)m + finite , (6.4)

lim
z→ER

ψ4(EL + z, ER − z) =
∑

0<m≤n

Am(ER, EL)
(ER − z)m + finite , (6.5)

and B is a boundary term that is non-singular when either of the partial energies vanishes,
EL = 0 or ER = 0. To compute the residues Am we use the COT

Disc [iψ4] = iP (s)Discs [iψ3(k1, k2, s)]Discs [iψ3(k3, k4, s)] , (6.6)

where P (s) = 1/2s is the Minkowski power spectrum for a massless scalar field. As outlined
in section 5.1, the second term in the definition of Disc on the left-hand side is not singular
in the EL → 0 limit. This follows from noticing that the s-channel ψ4 has only partial and

16In de Sitter, the order p of the kT pole is p = 1 +
∑

A
∆A − 4 where ∆A are the mass dimensions of all

the vertices in the diagram [29]. In the bulk representation, the factors of 1/kT arise from all the inverse
metric factors that contract derivatives bringing factors of a−1 ∼ η which are then schematically integrated
against eikT η. In contrast, in Minkowski the integrals are always exponential functions eikT t leading to
simple poles irrespectively of the number of derivatives.
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total energy poles EL, ER and kT . Upon analytic continuation of the external momenta
and energies, these singularities are moved to

ψ∗4(−ka, s) ∼
1

(−k1 − k2 + s)
1

(−k3 − k4 + s)
1
−kT

+ finite (6.7)

∼ − 1
(2s− EL)(2s− ER)kT

, (6.8)

which is finite as EL → 0 for s 6= 0. So

lim
EL→0

Disc [iψ4(ka, s)] = lim
EL→0

iψ4(ka, s) + finite . (6.9)

The right-hand side of the COT hence gives us the residues we are after

Disc [iψ3(k1, k2, s)] = iλ

k1 + k2 + s
+ iλ

−k1 − k2 + s
= iλ

[ 1
EL
− 1
EL − 2s

]
, (6.10)

Disc [iψ3(k3, k4, s)] = iλ

k3 + k4 + s
+ iλ

−k3 − k4 + s
= iλ

[ 1
ER
− 1
ER − 2s

]
. (6.11)

Using these expressions and the COT in (6.6), we find that

lim
EL→0

iψ4 = i

2s
−2isλ

ER(ER − 2s)
−2isλ

ER(ER − 2s) . (6.12)

Hence, upon shifting EL → EL + z and ER → ER − z the residue of the pole at z = −EL
is found using (5.15)

A1(EL, ER) = lim
z→−EL

(z + EL)ψ4(EL + z, ER − z, kT ) (6.13)

= λ2

(EL + ER)kT
, (6.14)

which is the same as the residue at z = ER. Notice the non-trivial appearance of kT =
k

(4)
T = k1 + k2 + k3 + k4 from a combination of cubic wavefunctions ψ3 that individually

know nothing about kT . Plugging the only non-vanishing residue we found (6.13) into (6.3)
we conclude

ψ4 = A1(EL, ER)
EL

+ A1(ER, EL)
ER

+B (6.15)

= − λ2

kTELER
+B . (6.16)

What can we say about the boundary term? Following Steps II and III of our procedure,
outlined in sections 5.2 and 5.3, we plug this expression for ψ4 back into the COT (6.6)
and find that it is satisfied with B = 0. The MLT (3.17) is also satisfied for B = 0 since in
flat-space the MLT only requires the 4-point function to be regular as one external energy
is taken soft. Therefore (6.15) with B = 0 is our final result for ψ4. This matches the
expression derived by performing the two time integrals in the bulk representation.
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6.2 Graviton exchange in de Sitter

We now turn to bootstrapping scalar 4-point functions arising due to graviton exchange
in dS space.17 This trispectrum was first computed in [44] using traditional methods. We
first consider a massless scalar then a conformally coupled scalar. For a massless scalar the
relevant 3-point function, as bootstrapped in section 4, is

ψφφγ3 = −λφ
εij(k3)ki1k

j
2

k2
T

(k3
T − kT e2 − e3), (6.17)

which matches the result of [30] from the bulk operator

Lint = λφ
2 a2(η)γij∂iφ∂jφ. (6.18)

We now follow Step I of section 5 and compute the right-hand side of the COT followed
by extracting the residues An = An(EL, ER, k1k2, k3k4, s). After summing over the he-
licities of the exchanged graviton, the right-hand side of the COT contains the overall
polarisation factor ∑

λ=±2
ελij(s)ελlm(−s)ki1k

j
2k
l
3k
m
4 , (6.19)

that does not affect the residues. Now since the kT pole of the 3-point function is degree 2,
we have An = 0 for n ≥ 3 while the remaining residues can be straightforwardly computed
according to (5.15),

A2 =
2λ2

φk1k2s

k2
T (EL + ER)2 [2k3k4 + (EL + ER)kT ], (6.20)

A1 =
λ2
φ

k3
T (EL + ER)3

4∑
n=0

ans
n, (6.21)

where we have defined

a0 = 2k1k2(EL + ER)2[(EL + ER)2 + 2k3k4], (6.22)
a1 = −4k1k2(EL + ER)[(EL + ER)2 − 2k3k4], (6.23)
a2 = −2(EL + ER)4 − 4(EL + ER)2(k1k2 + k3k4)− 16k1k2k3k4, (6.24)
a3 = 8(EL + ER)[(EL + ER)2 + k1k2 + k3k4], (6.25)
a4 = −8(EL + ER)2. (6.26)

Plugging these expressions into (5.23) yields

ψ4 = 2λ2
φ

∑
λ=±2

ελij(s)ελlm(−s)ki1k
j
2k
l
3k
m
4 fφ(ka, s) +B, (6.27)

17We will concentrate on a single diagram due to the exchange of the transverse, traceless graviton to
illustrate how our methods can fix the structure of the poles. In the full gauge theory there may also be
additional diagrams that we are omitting here.
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where

fφ(ka, s) =− s2

kTELER
+ sk1k2
kTE2

LER
+ sk3k4
kTE2

REL
+ 2sk1k2k3k4

k2
TE

2
LE

2
R

− s(k1k2 + k3k4)
k2
TELER

+ k1k2
k2
TEL

+ k3k4
k2
TER

+ 2k1k2k3k4
k3
TELER

. (6.28)

Again we notice the welcome appearance of 1/kT factors even though we have not demanded
anything about the residues of kT poles. Following Step II, we now plug this result back
into the COT and find that it is satisfied for any B satisfying (5.30) i.e. the boundary
term is not required to contain an s3 term and we can choose α0 = 0. Finally, for Step III
we apply the MLT to the full (6.33) to constrain the boundary term further. Given the
symmetries of this 4-point function, we only need to apply the MLT to one of the external
energies, say k1. We find

∂ψ4
∂k1

∣∣∣
k1=0

=
2λ2

φ

∑
λ ε

λ
ij(s)ελlm(−s)ki1k

j
2k
l
3k
m
4

(k2 + k3 + k4)2 + ∂BMLT
∂k1

∣∣∣
k1=0

, (6.29)

and so the only way to satisfy the MLT (3.6) is to set

BMLT =
2λ2

φ

∑
λ ε

λ
ij(s)ελlm(−s)ki1k

j
2k
l
3k
m
4

kT
. (6.30)

Recall that this boundary term is only defined up to the presence of terms that themselves
satisfy the homogeneous COT and the MLT, which we would naturally define as contact
terms. Our final answer for ψ4, with the inclusion of this boundary term, is exactly what
one finds by performing the bulk computation, as was done in [32] (the corresponding
trispectrum was first derived in [44]). We emphasise that in this example, our method has
fixed all the leading and sub-leading total energy and partial energy poles.

We can do the same for a conformally coupled scalar. The relevant 3-point function is

ψϕϕγ3 = −λϕ
εij(k3)ki1k

j
2

k2
T

(2k3 + e1), (6.31)

which comes from the bulk operator

Lint = λϕ
2 a2(η)γij∂iϕ∂jϕ. (6.32)

After Step I we find that the 4-point function due to graviton exchange is

ψ4 = 2λ2
ϕ

∑
λ=±2

ελij(s)ελlm(−s)ki1k
j
2k
l
3k
m
4 fϕ(ka, s) +B, (6.33)

where

fϕ(ka, s) = 2
k3
TELER

+ 1
k2
TELE

2
R

+ 1
k2
TE

2
LER

− 1
kTE2

LE
2
R

. (6.34)

We remind the reader that although the external fields are conformally coupled, the gravi-
ton is massless and so P (s) ∼ 1/s3. It is simple to see that this expression satisfies the
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COT without the need for an s3 term in B, just as in the massless case. Finally, since
all external fields in this 4-point function are conformally coupled, the MLT (3.15) simply
requires the 4-point function to be finite as one of the external energies is taken soft, and
this is trivially satisfied with B = 0. We therefore conclude that, up to contact terms,
we can fix B = 0 giving us the final form of the 4-point function which matches the bulk
expression and that derived by factorisation in [26]. Note that the structure of this final
4-point function differs from that of massless scalars in that it does not contain a regular
term at EL,R = 0. We see that this is a consequence of the MLT, which only dictates the
presence of a boundary term in the massless case.

6.3 φφ′2 self-interaction in de Sitter

Before moving to the effective field theory of inflation, let’s consider the simplest IR finite
self-interaction of a massless scalar in de Sitter, which arises at two-derivatives. We take
the interaction to be

Lint = g

2a
2(η)φφ′2. (6.35)

The 3-point function is given by

ψφφ
′2

3 = − g

k2
T

(e3e2 + kT e
2
2 − 2k2

T e3). (6.36)

Now by following Step I of our bootstrap procedure we can compute the residues An and
then ψφφ

′2

Res . The expression is somewhat complicated and so we present it in appendix C.
By taking this expression and plugging it into the Cosmological Optical Theorem we find
that a boundary is indeed required by unitarity and we need to set

αφφ
′2

0 = 2g2. (6.37)

Turning to Step III, we now plug our expression for ψφφ
′2

Res into the MLT. We find that Bφφ′2
MLT

is non-zero and is given by

Bφφ′2
MLT = −g

2s2

kT
(k2
T − s2). (6.38)

Our final expression is therefore

ψφφ
′2

4 = ψφφ
′2

Res + g2s3 +Bφφ′2
MLT . (6.39)

Lets now compare this bootstrap result to the expression one finds from the bulk compu-
tation. Following the bulk prescription reviewed in appendix A we compute the 4-point
function and find that it differs from our bootstrap result. After summing over permu-
tations i.e. adding also the t and u channels, the difference can be accounted for by the
contact diagrams of the following local operators

∆Lφφ
′2

int = 5g2

4 a2(η)φ2φ′2 − g2

2 a
2(η)φ2[φ′2 − (∇φ)2]. (6.40)

Note that the final two terms in ∆Lφφ
′2

int arise from taking the free theory and performing
the field redefintion

φ(x)→ φ(x)− g2

6 φ
3(x). (6.41)
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6.4 Effective field theory of inflation

We now turn to the self-interactions of the shift-symmetric Goldstone mode in the effective
field theory of inflation [28]. At cubic order the two self-interactions are

Lint = g1
3! a(η)φ′3 + g2

2 a(η)φ′(∇φ)2, (6.42)

and we will refer to these to operators as EFT1 and EFT2 respectively. Let’s begin by
bootstrapping the exchange diagram due to two copies of EFT1. The 3-point function is

ψEFT1
3 = −2g1e

2
3

k3
T

. (6.43)

Following Step I of section 5.1, we use (6.43) to compute the right-hand side of the COT,
and then extract the non-zero residues

A3 = −4g2
1(k1k2k3k4s)2

k3
T (EL + ER)3 [3(EL + ER)2 − 6(EL + ER)s+ 4s2], (6.44)

A2 = −48g2
1(k1k2k3k4s)2

k4
T (EL + ER)4 [(EL + ER)3 − 3(EL + ER)2s+ 4(EL + ER)s2 − 2s3], (6.45)

A1 = −24g2
1(k1k2k3k4s)2

k5
T (EL + ER)5 [5(EL + ER)4 − 20(EL + ER)3s

+ 40(EL + ER)2s2 − 40(EL + ER)s3 + 16s4], (6.46)

from which it follows that

ψEFT1
4 = − 4g2

1(k1k2k3k4s)2
[

6
k5
TELER

+ 3
k4
TELER

( 1
EL

+ 1
ER

)

+ 1
k3
TELER

( 1
EL

+ 1
ER

)2
+ 1
k2
TE

2
LE

2
R

( 1
EL

+ 1
ER

)
+ 1
kTE3

LE
3
R

]
+B. (6.47)

One can check that this expression satisfies the COT for any B and so we do not need
to add an s3 term. This expression also satisfies the Manifestly Local Test (MLT) with
B = 0 thanks to the overall factor of (k1k2k3k4)2 that ensures that the first derivative with
respect to any ka vanishes at ka = 0. We therefore set B = 0. Let’s now compare this
result to the bulk result which we compute in appendix A. We find that, after summing
over channels, the two expressions are not equivalent, but the difference can be accounted
for by the local operator18

∆LEFT1
int = −g

2
1

4! φ
′4. (6.48)

Finally, consider the 4-point function due to two copies of the EFT2 vertex. The relevant
3-point function is

ψEFT2
3 = − g2

2k3
T

(k6
T − 3k4

T e2 + 11k3
T e3 − 4k2

T e
2
2 − 4kT e2e3 + 12e2

3). (6.49)

18Note that all the scale factors drop out in this interation: there are four positive powers of a(η) from
the measure, and four negative powers due to the four derivatives.
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Due to the complexity of this 3-point function, the residues An take complicated forms
and the resulting ψEFT2

Res is a long expression, which we provide in appendix C. With this
expression in hand we can then move to Steps II and III to constrain the boundary term.
In contrast to the φ′3 self-interaction, here the COT and MLT require a non-zero boundary
term. Taking ψEFT2

Res and plugging it into the COT, with (6.49) used to compute the
right-hand side, we find that

αEFT2
0 = 25

2 g
2
2. (6.50)

Furthermore, the sum of these two components, from Step I and Step II, does not satisfy
the MLT. Indeed we are required to also add

BEFT2
MLT = −12g2

2(k2
1k

2
2 + k2

3k
2
4)s2

k3
T

+ 4g2
2s

4

kT
− 5g2

2kT s
2. (6.51)

Our final 4-point function is therefore

ψEFT2
4 = ψ EFT2

Res + 25
4 g

2
2s

3 +BEFT2
MLT . (6.52)

Let’s now compare our result to the one arising from the bulk calculation, after we have
summed over channels. Again the two expressions do not agree, but the difference can be
accounted for by the following linear combination of local operators (we remind the reader
that we are working in units with H = 1)

1
g2

2
∆LEFT2

int = −5
2φ
′4 + 2φ′2(∇φ)2 + 9a(η)φφ′3 − 17a2(η)φ2φ′2 + 17

2 a
2(η)φ2[φ′2 − (∇φ)2] ,

(6.53)

where again the final two terms arise from the field redefintion φ(x)→ φ(x) + 17
6 g

2
2φ

3(x).
The details of this expression are not so important, the main point is that in all examples
we have studied our bootstrap result recovers the bulk calculation up to a boundary term
that is a contact diagram from local operators.

7 Summary and future directions

In this paper, we have introduced two new bootstrap tools for efficiently computing wave-
function coefficients/cosmological correlators. First, in section 3, we introduced a Mani-
festly Local Test (MLT) that must be passed by wavefunction coefficients arising from man-
ifestly local interactions of fields with de Sitter mode functions. Our test, given in (3.6) for
the mode functions of a massless scalar or graviton, applies to contact and exchange n-point
functions alike. We extended the MLT to massive fields too, with particular attention paid
to conformally coupled scalars, and expect our results to provide a useful tool in the context
of cosmological collider physics [1, 50]. We have shown in section 4 that when combined
with a sub-set of the Bootstrap Rules of [29], the MLT allows us to bootstrap all 3-point
functions for a self-interacting massless scalar, improving over the results of [29], and for
minimal couplings between a graviton and a massless or conformally coupled scalar. In the
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latter two cases, we provided an on-shell proof that the leading interactions in the EFT
expansion have two-derivatives and correspond to the familiar minimal couplings between
scalars and gravitons. We also used our techniques to bootstrap contributions with 1/η0
late-time divergences and showed that a combination of the MLT and the COT ensures
that these are always imaginary and so do not contribute to the correlators.

In section 5 we then turned to bootstrapping exchange diagrams and introduced par-
tial energy recursion relations, which allow for efficient computation of 4-point exchange
diagrams given a pair of 3-point sub-diagrams. When used in conjunction with the Cos-
mological Optical Theorem (COT) [32] (see also upcoming work [36, 37]), these recursion
relations fix the residues of all leading and sub-leading partial energy poles and therefore
fix the 4-point exchange diagram up to the presence of a boundary term with only total
energy poles. The boundary term is then fixed by the MLT and the COT up to contact
contributions from quartic interactions, which can always be chosen at will. For a num-
ber of examples, including scalar 4-point functions due to graviton exchange and the cubic
self-interactions in the EFT of inflation [28], we have shown that the resulting 4-point func-
tion is equivalent to the one derived from bulk computations, up to contact contributions.
We emphasise that throughout our analysis we did not assume invariance under de Sitter
boosts, and therefore our bootstrap methods for computing exchange 4-point functions
can be applied to the very generic and potentially large interactions in the Effective Field
Theory of Inflation.

There are a number of avenues for future research:
• So far our analysis has been restricted to massless and conformally coupled external

scalars which is the simplest arena for testing new bootstrap tools. We expect our
recursion relations to also be useful when bootstrap spinning correlators but we expect
that a generalisation that does not apply diagram-by-diagram might also be required.
We plan to investigate this in future work.

• It would be interesting to investigate the extent to which our bootstrap approach can
remove redundancies in the EFT of inflation. This has been considered in [59–61] at
the level of the Lagrangian where field redefinitions were used to remove redundant
interactions. Our on-shell approach should make this process particularly simple and
transparent.

• In this paper we have restricted ourselves to meromorphic functions but it would be
very interesting to adapt our approach to situations where the analytical structure of
4- and higher-point functions is more complicated. For example, branch cuts appear
in 4-point functions due to the exchange of massive fields and such non-analytic
behaviour is the famous avatar of cosmological particle production in de Sitter [1].
One would like to bootstrap these highly non-trivial structures directly from locality
and unitarity, complementing the approach taken in [3]. Other types of non scale
invariant branch cuts stem from secular growth in de Sitter space, where our partial
energy recursion relations do not apply as formulated here. We leave the possibility
of bootstrapping IR-divergent contributions to the correlators of light fields in de
Sitter for future research.

– 47 –



J
H
E
P
1
0
(
2
0
2
1
)
0
6
5

• Positivity bounds have become a powerful tool in the S-matrix programme given
their power to constrain low-energy effective field theory couplings from some mild
assumptions about the UV, see e.g. [70–78] and references therein. Very recently
these bounds have been applied to boost-breaking amplitudes as relevant for the
sub-horizon limit of the effective field theory of inflation [79, 80]. It would be very
interesting to derive such bounds for cosmological correlators/wavefunction coeffi-
cients, away from the total-energy pole, given that such constraints can in principle
constrain the size of couplings which is not possible with the current bootstrap meth-
ods presented here and elsewhere.
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A Bulk calculations of the wavefunction of the universe

In this appendix we review the Feynman rules for computing perturbative contributions
to the wavefunction coefficients. For simplicity, we focus on tree-level diagrams of a single
scalar field theory a on de Sitter background with at most one time derivative per field.19

Consider a tree diagram with n external lines going to the boundary, V vertices and
I = V −1 internal lines. Attribute momenta ka to the external legs and momenta pm to the
internal so that momentum (but not energy) is conserved at each vertex. The expression
for the wavefunction coefficient ψn({k}, {p}, {k}) can be computed by the following recipe,

• Insert an overall factor of (−i).

• Insert the appropriate vertex accounting for the appropriate permutations, e.g. for
g

n!φ
n insert g (no factor of i).

• To each vertex assign a time integral∫ 0

−∞(1−iε)
a4+n−D(ηα)dηα α = 1, . . . V (A.1)

where D is the mass dimension and n the valency (number of legs) of the vertex.
19Any Lagrangian with more than one time derivative can be brought back to single-time-derivative form

by recursively using the equation of motion.
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• For each external line with energy ka = |ka|, insert the bulk-to-boundary propagator
K(ka, ηα)

• For each internal line with energy pm = |pm|, insert the bulk-to-bulk propagator
G(pm, ηα, ηβ)

Using these Feynman rules, below we provide the explicit expression for some of the
diagrams we encountered in section 6.

Contact terms.

ψφ′3(k1, k2, k3) = −i
∫
dη a(η)K ′(k1, η)K ′(k2, η)K ′(k3, η) , (A.2)

ψφφ′2(k1, k2, k3) = −i
∫
dη a2(η)K ′(k1, η)K ′(k2, η)K(k3, η) + 2 permutations , (A.3)

ψφ′(∂iφ)2(k1, k2, k3) = i(k2.k3)
∫
dη a(η)K ′(k1, η)K(k2, η)K(k3, η) + 2 permutations.

(A.4)

Exchange diagrams. After integrating by parts to remove the time derivatives from
the bulk-to-bulk propagator we arrive at,20

ψsφ′3×φ′3 = − i
∫
dη′ dη G(s, η, η′)

× ∂η
(
a(η)K ′(k1, η)K ′(k2, η)

)
∂η′
(
a(η′)K ′(k3, η

′)K ′(k4, η
′)
)
,

ψsφφ′2×φφ′2 = − i
∫
dη dη′G(s, η, η′)

×
[
− ∂η (a2(η)K ′(k1, η)K(k2, η))
− ∂η (a2(η)K ′(k2, η)K(k1, η))
+ a2(η)K ′(k1, η)K ′(k2, η)

]
×
[
− ∂η′ (a2(η′)K ′(k3, η

′)K(k4, η
′))

− ∂η′ (a2(η′)K ′(k4, η
′)K(k3, η

′))
+ a2(η′)K ′(k3, η

′)K ′(k4, η
′)
]
,

ψsφ′(∂iφ)2×φ′(∂iφ)2 = − i
∫
dη dη′G(s, η, η′)

×
[
k1.k2 ∂η (a(η)K(k1, η)K(k2, η))

+ a(η)(k1 + k2).k2K
′(k1, η)K(k2, η)

+ a(η)(k1 + k2).k1K
′(k2, η)K(k1, η)

]
×
[
k3.k4 ∂η′

(
a(η′)K(k3, η

′)K(k4, η
′)
)

+ a(η′)(k3 + k4).k3K
′(k3, η

′)K(k4, η
′)

+ a(η′)(k3 + k4).k3K
′(k4, η

′)K(k3, η
′)
]
,

where ψs stands for the s-channel contribution to the 4-point function.
20Notice that for vertices that have more than one internal line entering them, it is not always possible

to strip off ∂η from all the bulk-to-bulk propagators.
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B Counting wavefunction coefficients and amplitudes

In this appendix we show that for a single scalar field to any order in derivatives, the
number of independent manifestly local cubic amplitudes A3 matches the number of real
independent cubic wavefunctions ψ3 minus one. The extra 3-point function corresponds to
the only manifestly local field redefinition at this order.

If we include the unique p = 0 logarithmic term ψlog
3 we have, cf. (4.11),

Ntotal(p) = 1 +
b p+3

2 c∑
q=0

⌊
p+ 3− 2q

3

⌋
. (B.1)

It follows that as we increase the leading kT pole from degree p to p + 1, the number of
new 3-point functions is

Ntotal(p+ 1)−Ntotal(p) =
b p+4

2 c∑
q=0

⌊
p+ 4− 2q

3

⌋
−
b p+3

2 c∑
q=0

⌊
p+ 3− 2q

3

⌋
, (B.2)

which is easier to analyse for even and odd p separately. For even p we have

Ntotal(1)−Ntotal(0) = 0, (B.3)

Ntotal(p+ 1)−Ntotal(p) =
p
2−1∑
q=0

I(p+ 4− 2q), p ≥ 2, (B.4)

where

I(x) = 1 if x | 3 (B.5)
= 0 otherwise. (B.6)

Here x | 3 stands for x “divides” 3, e.g. I(2) = I(4) = 0 and I(3) = I(6) = 1. Let’s now
consider the number of amplitudes with exactly p+ 1 derivatives, Namplitudes(p+ 1), which
is simply the number of integer solutions to 2α+ 3β = p+ 1. We have Namplitudes(1) = 0,
and so as we increase the number of derivatives from p = 0 to p = 1 there are no new
amplitudes and no new 3-point functions cf. (B.3). For even p ≥ 2 we have

Namplitudes(p+ 1) =
p
2−1∑
q=0

I(p+ 1− 2q) =
p
2−1∑
q=0

I(p+ 4− 2q), (B.7)

where we have used I(x+3) = I(x). So for even p ≥ 2, the number of new 3-point functions
as we go from p to p + 1 derivatives (B.4) equals the number of new amplitudes (B.7).
Similarly, for odd p we have

Ntotal(p+ 1)−Ntotal(p) =
p+3

2∑
q=0

I(p+ 4− 2q) =
p+1

2∑
q=0

I(p+ 4− 2q), (B.8)

while the number of amplitudes is given by

Namplitudes(p+ 1) =
p+1

2∑
q=0

I(p+ 1− 2q) =
p+1

2∑
q=0

I(p+ 4− 2q). (B.9)
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So for odd p we again see that the number of new 3-point functions as we increase from
p to p + 1 derivatives (B.8) is equal to the number of new amplitudes (B.9). To compute
the final Ntotal(p) − Namplitudes(p) we therefore only need to compare the number of 3-
point functions to the number of amplitudes for p = 0. There are two 3-point functions:
ψlocal

3 and ψlog
3 for p = 0, while there is only a single p = 0 amplitude which is simply a

constant [54]. We therefore conclude that

Ntotal(p) = Namplitudes(p) + 1. (B.10)

C Expressions for ψRes

In this appendix we collect some of the longer expressions for ψRes. For an exchange
diagram due to two copies of the φφ′2 vertex, we have

ψφφ
′2

Res = − g2
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For the exchange diagram for two copies of the EFT2 vertex, φ′(∇φ)2, we have
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