
Defining and Quantifying Frustration in the Energy Landscape: Applications to 1

Atomic and Molecular Clusters, Biomolecules, Jammed and Glassy Systems 2

V. K. de Souza,1 J. D. Stevenson,1 S. P. Niblett,1 J. D. Farrell,1 and D. J. Wales1, a) 3

University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, 4

UK 5

(Dated: 15 February 2017) 6

The emergence of observable properties from the organisation of the underlying 7

potential energy landscape is analysed, spanning a full range of complexity from 8

self-organising to glassy and jammed systems. The examples include atomic and 9

molecular clusters, a β-barrel protein, the GNNQQNY peptide dimer, and models 10

of condensed matter that exhibit structural glass formation and jamming. We have 11

considered measures based on several different properties, namely the Shannon en- 12

tropy, an equilibrium thermodynamic measure that uses a sample of local minima, 13

and indices that require additional information about the connections between local 14

minima in the form of transition states. A frustration index is defined that correlates 15

directly with key properties that distinguish relaxation behaviour within this diverse 16

set. The index uses the ratio of the energy barrier to the energy difference with refer- 17

ence to the global minimum. The contributions for each local minimum are weighted 18

by the equilibrium occupation probabilities. Hence we obtain fundamental insight 19

into the connections and distinctions between systems that cover the continuum from 20

efficient structure-seekers, to landscapes that exhibit broken ergodicity and rare event 21

dynamics. 22

a)dw34@cam.ac.uk

1



The potential energy landscape approach can provide both novel insight and computa-23

tional methodology in molecular and condensed matter science.1 Some of the most powerful24

tools in the theory of energy landscapes and the associated numerical methodology are based25

upon descriptions of structure, dynamics and thermodynamics formulated in terms of lo-26

cal minima on the landscape, and the transition states and pathways that connect them.127

Disconnectivity graphs2,3 (see Section IA) can provide an insightful representation of many-28

dimensional landscapes and are constructed using information about minima and transition29

states, preserving the potential (or free) energy barriers between minima. In particular, such30

graphs have enabled us to identify characteristic patterns of organisation in the underlying31

potential energy surface,3 which result in efficient self-organisation at one end of the spec-32

trum, and glassy behaviour at the other extreme.4,5 These are systems with different levels33

of frustration. Self-organising systems have low levels of frustration and undergo efficient34

relaxation to the lowest-energy minimum whereas systems that are highly frustrated may35

never find this minimum-energy structure.36

There is a qualitative difference in the landscapes for systems with different degrees37

of frustration. All the landscapes visualised for good structure-seekers, including ‘magic38

number’ clusters such as buckminsterfullerene, C60, naturally occurring proteins, bulk rep-39

resentations of crystalline materials, and self-assembling mesoscopic shell structures, have a40

unique low-lying free energy minimum, with no competing morphologies separated by high41

barriers.3 The appearance of the corresponding disconnectivity graphs has been likened to a42

multilevel palm tree, where local minima are separated from the global minimum by small43

barriers.3 The resulting ‘funnelled’ landscape effectively guides relaxation to the global mini-44

mum. An example of a palm tree disconnectivity graph is shown for a Lennard-Jones cluster45

of 13 atoms (LJ13) in the first panel of Figure 1. At the other extreme, the landscape for46

structural glass formers supports an exponentially large number of amorphous minima, sep-47

arated by high barriers.5 An example of a glassy tree can be seen in Fig. 3.48

The folding of naturally occurring proteins has been associated with a ‘principle of min-49

imal frustration’.6 These proteins fold easily and as they fold, their energy decreases more50

than would be expected by chance. There is a strong energetic bias toward the native state.51

This bias overcomes the unfavourable entropy change and also any kinetic traps contained52

within the structure of the landscape. Geometrical frustration, for example associated with53

the fact that locally favoured structures such as icosahedrons cannot tile space, is considered54
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to play a key role in the glass transition.7 Between the limits of efficient self-organisation and 55

glassy behaviour lies a continuous range of complexity. Of particular interest are systems 56

characterised by two competing low-energy structures with a large interconversion barrier. 57

Such ‘double funnel’ landscapes may exhibit a separation of relaxation time scales and 58

heat capacity features associated with a low temperature transition between the alternative 59

morphologies.3 Such competition between structures has been termed ‘frustration’,8,9 and a 60

number of examples have been analysed in detail, as benchmarks for global optimisation, 61

enhanced thermodynamic sampling designed to overcome broken ergodicity, and rare event 62

dynamics.3,10–15 63

A variety of disconnectivity graphs for contrasting energy landscapes will be presented in 64

the following sections. Our aim is to show how the global organisation of the landscape can 65

be described in a quantitative manner, by considering various indices that reflect different 66

measures of the complexity or frustration. One particular frustration index is found to be 67

particularly suitable for this purpose. 68

I. THE POTENTIAL ENERGY LANDSCAPE 69

The potential energy landscape (PEL) is a function of all the relevant atomic or molecular 70

coordinates, which we represent by the components of a vector X. Here we coarse-grain by 71

considering stationary points, where the energy gradient vanishes, using second derivatives to 72

classify minima, transition states, and higher-index saddles. The PEL is then characterised 73

by three quantities: the potential energy V (X); g(X), the first derivative of the potential 74

energy; and the second derivative matrix H(X). The elements of the Hessian H(X) define 75

the curvature of the landscape. 76

Stationary points have a physical meaning. Local minima have no negative Hessian eigen- 77

values, and a small displacement in any of the internal coordinates increases the energy. Even 78

apparently simple systems can support large numbers of local minima on the PEL; the low- 79

est is the global minimum. Transition states are defined geometrically in the present work, 80

as stationary points with a single negative Hessian eigenvalue. Most transition states con- 81

nect two minima, which are identified by calculating (approximate) steepest-descent paths 82

leaving parallel and antiparallel to the eigenvector corresponding to the negative eigenvalue; 83

such a minimum—transition state—minimum triplet can be considered as an elementary 84
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rearrangement.85

Knowledge of all the stationary points in the system would in principle provide insight86

into a variety of interesting properties. However, larger systems possess a huge number of87

stationary points, and so some method of sampling the landscape to obtain a representative88

selection is required. There are a number of possible approaches to this problem and the89

most appropriate method will generally depend on the properties of interest. Although the90

landscape was explored in different ways for the different systems considered in this paper,91

in all cases the same geometry optimisation tools were employed for locating minima and92

transition states, and for characterising pathways. The OPTIM program was used for all93

these calculations.94

Local minima were found by minimising the potential energy using the limited memory95

Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm,16 which has proved to be particu-96

larly efficient.17 Transition states were located using the doubly-nudged18 elastic band19,20
97

(DNEB) method. Local maxima in the chain of states corresponding to the DNEB inter-98

polation were taken as candidate transition states (TS), which were refined using hybrid99

eigenvector-following.21 To identify the two minima connected by each TS, a small step was100

taken both parallel and antiparallel to the eigenvector corresponding to the unique negative101

Hessian eigenvalue. LBFGS minimisation was then applied to each set of displaced coordi-102

nates to find the two connected minima. If a complete pathway of elementary arrangements103

between the two original minima was not found, a modified Dijkstra algorithm22 was used104

to choose a pair of intermediate minima to connect next, with the aim of completing the105

pathway using the smallest number of connection attempts.106

For most of the systems studied in the present work, the PATHSAMPLE program was107

used as a driver for OPTIM to expand the stationary point databases. The discrete path108

sampling (DPS) approach13 implemented in PATHSAMPLE is a coarse-grained analogue109

of the transition path sampling method.23 PATHSAMPLE can systematically generate sets110

of discrete paths from an initial connected path between two end points, creating a kinetic111

transition network. These discrete paths are connected sequences of minima and intervening112

transition states.1,13 The PELE24 package, a python library for finding global minima and113

connecting minima, was also used for some of the systems. Further details are provided114

below.115
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A. Disconnectivity Graphs 116

To construct a disconnectivity graph, we group minima that are mutually accessible at a 117

given total energy, E. These minima are connected by single- or multi-step pathways where 118

the energy never exceeds E. Minima are placed in a different group if the path between them 119

contains a transition state that lies above the threshold energy, E. These groups can then be 120

connected at a higher energy. Each group (or superbasin) is represented by a point, or node, 121

on the horizontal axis, and the vertical axis corresponds to increasing energy. Nodes are 122

joined at higher energy if they belong to the same superbasin and nodes continue down to 123

the level of each single local minimum. The horizontal axis is usually arbitrary and the order 124

and spacings between nodes can be chosen for clarity. The superbasin analysis is performed 125

at a discrete series of total energies, E. There remains an adjustable parameter in the 126

spacing between energy levels. If the spacing is too large, little topographical information 127

is left, but if it is too small, any coarse-grained structure may be hidden. We emphasise 128

that disconnectivity graphs are simply employed as a visualisation tool to provide insight 129

into the organisation of the potential or free energy landscape. When thermodynamic or 130

kinetic properties are required, we utilise additional information. Connected databases of 131

minima and transition states define kinetic transition networks, which can be constructed 132

systematically using the discrete path sampling (DPS) framework.13 Information from the 133

underlying kinetic transition network, specifically the local densities of states, allows us to 134

estimate occupation probabilities, free energies and minimum-to-minimum rate constants. 135

II. SYSTEMS 136

A. Atomic Clusters 137

Many small atomic clusters exhibit efficient relaxation to the global minimum. However, 138

clusters of particular sizes can exhibit two (or more) competing morphologies, distinct struc- 139

tures with similar energy to the global minimum, leading to a frustrated landscape.8,9 The 140

interatomic potential considered is the pairwise additive, isotropic Lennard-Jones (LJ) form: 141

V = 4ǫ
∑

i<j

[(
σ

rij

)12

−

(
σ

rij

)6
]
, (1) 142

5



where ǫ and 21/6σ are the pair equilibrium well depth and separation, respectively, and we143

employ reduced units of energy and distance defined by ǫ and σ.144

Disconnectivity graphs for five different cluster sizes are shown in Figure 1. For clusters145

with 13 and 55 atoms, denoted LJ13 and LJ55, the global minimum is a complete Mackay146

icosahedron, and the landscapes have a single funnel ‘palm tree’ form, with no competing147

alternative low energy morphologies.3 In contrast, for each of LJ31, LJ38 and LJ75 there is a148

double funnel structure. For LJ31, the competing funnel is characterised by an alternative149

surface structure. For LJ38 and LJ75, structures in the competing funnels have fundamen-150

tally different packing schemes, separated from higher energy incomplete icosahedral minima151

by relatively large barriers.3,10 The aim of this paper is to find a useful measure of this frus-152

tration, which should identify the LJ31, LJ38 and LJ75 double-funnel systems as significantly153

more frustrated than LJ13 and LJ55. When searching for the global minimum, the mean first154

encounter time is significantly longer for systems with a double funnel structure.1,25 Hence,155

these double funnel landscapes provide important benchmarks for global optimisation, en-156

hanced sampling schemes, and rare event methods.11–15157

Stationary point databases were all obtained by initially connecting low-lying minima158

encountered in basin-hopping global optimisation runs.26,27 Further refinement was based on159

locating kinetically relevant discrete paths between competing morphologies for the double-160

funnel systems, or increasing the number of connections per minimum for LJ13 and LJ55. In161

each case the database was also enlarged using a scheme to remove artificial frustration.28162

Aside from LJ13, the samples obtained are necessarily incomplete. These databases were163

therefore extended until the appearance of the low-energy region of the landscape appeared164

to have converged, as judged by inspection of the disconnectivity graphs. The convergence165

of the various measures of frustration defined in Section III for the lower temperature range166

of interest was also monitored.167

B. (H2O)20168

The energy landscape of the ‘nanodroplet’ cluster (H2O)20 displays signatures of hier-169

archical organisation.3 This complexity has been associated with the additional rotational170

degrees of freedom for the water molecule, which lead to a wide range of energies and barrier171

heights separating structures with similar arrangements of the oxygen atoms, but alternative172
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FIG. 1. Disconnectivity graphs for five Lennard-Jones clusters. The graphs are arranged in order

of increasing frustration from left to right and top to bottom: LJ13, LJ55, LJ38, LJ75 and LJ31.

The global minimum is shown in black, and branches leading to every other minimum are coloured

according to their contribution to the f̃(T ) frustration index at the melting temperature of the

system. The scalebar for each graph defines the energy spacing.

hydrogen-bonding patterns.3 Understanding how these effects result in qualitative differences 173

from the atomic clusters considered above is of great interest in view of the central role of 174

water in solvation of biomolecular systems. 175

For the TIP4P rigid molecule pair potential29 the global potential energy minimum can 176

be described in terms of three pentagonal prisms sharing approximately square faces.30,31 177

There are two other morphologies with competing low energy minima based on face-sharing 178
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cuboids (‘box-kite’ structure32) and three stacked pentagonal prisms sharing pentagonal179

faces.31 Minima based on dodecahedral structures generally lie rather higher in energy.31180

The landscape for this system was explored as follows. Four low-energy structures corre-181

sponding to the different morphologies were connected and then the pathway between the182

two lowest structures was further refined using a short-cutting procedure.28,33 The resulting183

disconnectivity graph is shown in Fig. 2.184

(H2O)20 20 ǫ BLN69 5 ǫ GNNQQNY 10 ǫ

FIG. 2. Disconnectivity graphs for (H2O)20, the 69-residue BLN model protein, and the heptapep-

tide GNNQQNY. The global minimum for each system is shown in black and branches leading to

every other minimum are coloured according to their contribution to the f̃(T ) frustration index

at the melting temperature of the system. The colour scale is identical to that used in Figure 1,

where minima corresponding to red branches make the largest contribution to frustration. The

scalebar for each graph defines the energy spacing.

C. A Model β-Barrel Protein185

Here we considered a coarse-grained BLN model for a 69-residue protein,34 where each186

amino acid is represented by a hydrophobic (B), hydrophilic (L) or neutral (N) bead. Stiff187

harmonic springs were employed to restrain the bond lengths.35 The global minimum of188

the sequence B9N3(LB)4N3B9N3(LB)4 (BLN69) is a six-stranded β-barrel, with three chains189

forming a hydrophobic core. However, we have previously shown that there are a num-190
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ber of low-lying minima with alternative arrangements of the β-strands, separated by high 191

barriers.36 192

Figure 2 shows a disconnectivity graph for BLN69. The database was again produced by 193

initially connecting low-lying minima obtained using basin-hopping global optimisation,26,27 194

and then refining to locate kinetically relevant paths between alternative morphologies and 195

remove artificial frustration caused by undersampling. 196

D. The Amyloidogenic GNNQQNY Peptide Dimer 197

The polar amyloidogenic heptapeptide GNNQQNY is a key component of the N-terminal 198

prion-determining domain of the yeast protein Sup35. This peptide is noteworthy for its 199

individual stability,37 and a crystal structure has been characterised, where the monomers 200

align to give in-register parallel β-sheets.38 Here we employ a DPS database created for the 201

GNNQQNY dimer, which we previously found to support four competing conformations, 202

one that is intermediate between compact and extended structures, and three β-sheets corre- 203

sponding to in-register parallel, off-register parallel, and antiparallel arrangements.28 These 204

results were obtained with the CHARMM1939 potential and EEF1 implicit solvent.40 The 205

corresponding potential energy landscape might be expected to exhibit an intermediate level 206

of frustration, and this intuition is consistent with the new results reported below. The time 207

scale for interconversion between the four low-lying structures was estimated as hours or 208

longer at 298K.28 Replica exchange molecular dynamics41 (REMD) was used for an initial 209

exploration of the conformational space. The resulting database of minima and transition 210

states was then grown using DPS with the focus on the paths making the largest contribu- 211

tions to the steady state rate constants between the alternative morphologies. Shortcutting 212

procedures28,33 were followed by the removal of artificial traps.28 A disconnectivity graph for 213

this system is shown in Fig. 2. 214

E. Binary Structural Glass Formers 215

Binary Lennard-Jones (BLJ) potentials are extensively used in studies of structural glass 216

phenomenology,42–45 since with suitable parameterisations they do not crystallise on time 217

scales usually accessible to molecular dynamics. Here we consider BLJ systems modelled 218
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using periodic boundary conditions containing two types of atom, A and B, in the ratio219

80:20, which was originally proposed to model the metallic glass Ni0.8P0.2.
46 Although this220

model possesses mixed and phase separated crystalline structures,47,48 these can easily be ex-221

cluded from the structural databases employed for landscape analysis. The parameterisation222

employed was σAA = 1, σAB = 0.8, σBB = 0.88, ǫAA = 1, ǫAB = 1.5, and ǫBB = 0.5.42 The re-223

sulting disconnectivity graphs5 exhibit many low-lying minima corresponding to amorphous224

structures, separated by high barriers of order 30kBTg, where Tg corresponds to a glass tran-225

sition temperature. Grouping local minima according to whether they can be interconverted226

without a cage-breaking rearrangement, which would be necessary for diffusion, has revealed227

a higher order structure in the energy landscape,5 which may yield a useful way to define228

‘metabasins’.49,50229

To avoid finite-size effects, the system must not be too small, and 60 atoms was found230

to be a good compromise in previous work.43 Our results are for a 60-atom BLJ mixture231

of 48 type A and 12 type B particles (BLJ60) and a 256-atom mixture of 204 A and 52 B232

particles (BLJ256). Both systems have a number density of 1.3 in reduced units of σ−3
AA (used233

throughout) and were simulated with periodic boundary conditions. Full details are given in234

Ref. 51 and disconnectivity graphs for BLJ60 and BLJ256 are shown in Figure 3. The BLJ60235

database contains over 11000 minima, while the database for BLJ256 has 2500. The PELs236

for both systems show typical glassy organisation, with many minima of similar energies237

separated by high barriers, and a hierarchical structure. For both BLJ systems, initial238

samples of minima were obtained from locally ergodic canonical MD trajectories.51 Local239

minimisation was applied for each configuration of the trajectory, producing a sequential240

series of minima. Adjacent minima were then connected, giving a single kinetically relevant241

discrete path.5,52 We expect to find lower frustration for such a connected path of minima242

and transition states, compared to a more extensive search for a particular region of the243

energy landscape, as discussed below.244
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FIG. 3. Disconnectivity graphs for BLJ60 (top) and BLJ256 (bottom). The colour scale shows the contributions to the frustration index

f̃(T ) at the melting temperature, and the energy scale bar defines the spacing.
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F. Soft Spheres: Landscapes for Jamming245

Jamming corresponds to a transition to rigidity in disordered matter. In the jammed246

state, materials respond essentially elastically to small applied shear stresses. However, such247

systems can easily be unjammed and made to flow by tuning various control parameters. The248

jamming transition can be induced by varying thermodynamic variables, such as temperature249

or density, and also by mechanical variables, such as applied stress.53250

Packings of soft repulsive spheres at zero temperature exhibit a sharp jamming transition251

in the thermodynamic limit. The transition is induced by applied pressure or enforced pack-252

ing fraction, causing deformation of the particles. When deformations vanish, the system253

loses rigidity. At low packing fraction, no particles interact, a state described as an un-254

jammed ‘mechanical vacuum’. As the packing fraction is increased, there is a transition to255

a jammed, rigid structure. Such frictionless spheres with finite-range repulsions have been256

studied extensively.53–55257

The two systems considered here consist of N = 60 and N = 256 spheres of equal mass,258

M , and variable radii, Ri, with periodic boundary conditions. The radii are distributed259

evenly within the range 0.416 to 0.583. When they overlap, the spheres interact via a260

hertzian soft sphere potential. Denoting the centre-to-centre distance as rij, a dimensionless261

overlap parameter, δij, can be defined as262

δij = 1−
rij

Ri +Rj

. (2)263

The interaction potential is zero unless δij > 0 and then has the form264

Vij = ǫijδ
2.5
ij . (3)265

For the soft sphere systems, a particular region of the potential energy landscape was266

explored in detail using PELE. Basin-hopping steps were taken from an initial starting267

minimum to find further minima, and then pathways were obtained using DNEB. The268

resulting database was refined with the untrapping method designed to remove artificial269

frustration, as for some of the other models discussed above.28 The untrapping scheme was270

designed to locate missing lower energy pathways in the low energy part of the landscape.271

However, for soft spheres, it also results in significant further exploration, finding many more272

minima with similar energies, which contribute to the frustration. As this sampling method273
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may overestimate frustration, for comparison we have performed an identical analysis for 274

BLJ256. Disconnectivity graphs are shown in Fig. 4 for the 60 and 256 sphere systems and 275

in Fig. 5 for BLJ256. 276
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FIG. 4. Disconnectivity graphs for 60 (top) and 256 (bottom) soft spheres. The colour scale shows the contributions to the frustration index

f̃(T ) at the melting temperature, and the scalebar defines the energy spacing.
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FIG. 5. Disconnectivity graph corresponding to extensive exploration of a local region for BLJ256. The colour scale shows the contributions

to the frustration index f̃(T ) at the melting temperature, and the scalebar defines the energy spacing.
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III. QUANTIFYING FRUSTRATION IN THE LANDSCAPE277

We have considered various different indices to analyse the degree of frustration in differ-278

ent systems. Firstly, the Shannon entropy56,57, s(T ), depends upon equilibrium thermody-279

namic properties, and therefore only requires information about local minima.280

s(T ) = −

∑

α

peqα (T ) ln peqα (T ), (4)281

where T is the temperature and peqα (T ) is the equilibrium occupation probability of minimum282

α, calculated using harmonic vibrational densities of states.58 If information about transition283

states is not available, this index can provide a useful measure of frustration, as shown in284

Figure 6. To compare results for very different systems we have used a dimensionless tem-285

perature, obtained using an estimate for the melting temperature, Tm. This estimate comes286

from the temperature at the corresponding heat capacity maximum, obtained consistently287

within the harmonic superposition approximation.58288

The three indices defined below require databases where the connectivity of the local289

minima is defined by transition states.290

N(T ) =
m∑

α=1

∑

γ<α

[
peqα (T ) + peqγ (T )

]
nαγ(T ),291

K(T ) =
m∑

α=1

∑

γ<α

[
peqα (T )kγα(T ) + peqγ (T )kαγ(T )

]
292

f(T ) =
∑

α 6=gmin

peqα (T )

(
V †
α − Vgmin

Vα − Vgmin

)
(5)293

N(T ) uses nαγ , the number of steps (transition states) in the fastest path between min-294

ima γ and α, and K(T ) uses kαγ , the rate constant for transitions between minima γ and α.295

nαγ and kαγ were both obtained from Dijkstra shortest path analysis59, with edge weights of296

− lnPαγ , where Pαγ is the branching probability of stepping to minimum α from among the297

direct connections of minimum γ. The branching probabilities and minimum-to-minimum298

rate constants kαγ were estimated from transition state theory,60–62 using harmonic vibra-299

tional densities of states. In contrast, f(T ) uses information about the potential energy300

of the minima, Vα, and transition states. Vgmin signifies the potential energy of the lowest301

minimum in the database and V †
α is the potential energy of the highest transition state on302

the lowest energy path between minimum α and the lowest minimum. The lowest minimum303
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is the global minimum for most of the databases considered, except for the condensed matter 304

systems, where the crystalline region of configuration space is intentionally excluded. 305

 0.01

 0.1

 1

 10

s(
T
)

T/Tm

LJ13

LJ55

LJ38

LJ75

LJ31

BLJ60

BLJ256

BLN69

SS60

SS256

(H2O)20
GNNQQNY

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6. The shannon entropy, s(T ), for all the models considered.

The most insightful quantity was found to be f(T ), which employs barrier thresholds V †
α 306

in the same way as a scheme that we introduced in earlier work to help refine databases to 307

remove artificial frustration.28 This approach was, in turn, derived from an analogous index 308

based on free energies that we used earlier,63 which extends measures based on stability64 309

and energy gaps65,66 by including explicit barrier information. A further advantage of f(T ) 310

over the other measures that include connectivity, N(T ) andK(T ), is that it does not require 311

additional characterisation of discrete paths or rate information and hence, it is quick and 312

easy to calculate. 313

We calculated V †
α in tandem with the superbasin analysis2 that yields the disconnectivity 314

graphs, identifying the energy threshold below which the lowest minimum is no longer ac- 315

cessible from minimum α. Results for f(T ), which we will refer to as the frustration index , 316

are shown in Figure 7. 317
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FIG. 7. The frustration index, f(T ), is shown for all the models considered.

Analogous indices s̃(T ), Ñ(T ), K̃(T ), and f̃(T ) were calculated from the probabilities318

p̃eqα = peqα /(1 − peqgmin). These quantities reflect the renormalised relative populations of319

the minima when the temperature dependence of the global minimum is removed. As the320

temperature decreases, the equilibrium occupation probability of the global minimum can321

become very large. As the global minimum does not itself contribute to frustration, this322

high occupation probability causes the frustration measures to decrease rapidly at low tem-323

perature. This decrease is an erroneous effect as relaxation to the global minimum becomes324

more difficult and hence frustration increases at low temperature. The renormalisation is325

shown for LJ38 in Figure 8, where f(T ) and f̃(T ) are compared. Full results for f̃(T ) are326

shown in Figure 9.327
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FIG. 8. f(T ) and f̃(T ) for LJ38.

The classification of systems is probably clearest for f̃(T ), which provides a relatively 328

stable index over quite a wide range of temperature, thanks to removal of the temperature 329

dependence of the lowest minimum. We see that for most of the range 0 < T/Tm < 1 330

structure-seekers have f̃(T ) < 1, frustrated landscapes including structural glasses have 331

1 > f̃(T ) > 50, and jammed systems have f̃(T ) > 100. We would not wish to overinterpret 332

smaller differences in f̃(T ); it is the order of magnitude differences that are really significant 333

here. 334

A. Comparison of Sampling Protocol 335

For most of the models compared here, the underlying kinetic transition networks cor- 336

respond to samples of stationary points designed to describe the dynamics associated with 337

specific pathways or regions of the landscape. The degree of frustration could therefore 338

exhibit some degree of sample dependence, and we have therefore provided details of the 339

landscape exploration methods for each system in Section II. However, if all the landscapes 340

were sampled in the same way, we expect the key trends to be unaffected. A representative 341

sample should provide us with occupation probabilities and barrier heights that provide a 342

converged value for the chosen measure of frustration, f̃(T ). The most frustrated systems 343

we have considered here are the soft sphere packings, which were explored through a more 344
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FIG. 9. The frustration index calculated from renormalised probabilities, f̃(T ), for each of the

models considered.

extensive local search. The same local exploration was therefore repeated for the binary345

Lennard-Jones system of 256 particles and continued until we obtained the same number346

of minima as for the soft sphere example. Fig. 10 shows that the results for this scheme347

with around 40000 minima are very similar to those obtained for a single kinetically relevant348

discrete path of around 3600 minima, based upon an initial molecular dynamics trajectory.349

The frustration index is still significantly lower than for the soft sphere systems. In fact,350

the more extensive local searches may produce lower frustration measures as they do not351

encounter many of the alternative low-energy minima separated by high barriers that are352

present in the landscape.353
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FIG. 10. f̃(T ) for a 256-atom binary Lennard-Jones mixture, where the energy landscape has been

explored by two different schemes. In the first approach, the sample is based on a pathway through

the landscape corresponding to a locally-ergodic molecular dynamics trajectory. In contrast, the

second scheme employs a more extensive local exploration, as for the 256-atom soft sphere system.

IV. DISCUSSION AND CONCLUSIONS 354

We have explored measures to quantify the global organisation of the potential energy 355

landscape. A frustration index, f̃(T ), including renormalised approximate equilibrium occu- 356

pation probabilities and barrier information is found to be particularly useful. If transition 357

state information is not available, the Shannon entropy, based on equilibrium occupation 358

probabilities, can also provide a measure of frustration, albeit without allowing for dynamical 359

effects. 360

We studied a number of different systems and found soft sphere packings to be the most 361

frustrated, followed by binary Lennard-Jones models of supercooled liquids and a 69-residue 362
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model β-barrel protein. In all these very frustrated systems, there are a number of low-363

energy competing structures close in energy to the global minimum. Lower frustration is364

found for systems with a well-defined global minimum. LJ31 is the most frustrated Lennard-365

Jones cluster, while the amyloidogenic GNNQQNY heptapeptide and the (H2O)20 cluster366

exhibit comparable values for f̃(T ). The least frustrated systems we compared are the LJ13367

and LJ55 clusters, where the landscapes have a single funnel with no competing low-energy368

structures.369

The frustration index provides a quantity to characterise aspects of the potential energy370

landscape that have previously been described more qualitatively. It is easy to calculate,371

and we have shown that it reliably distinguishes different degrees of frustration for a variety372

of systems. The key features are also relatively robust in terms of how the underlying373

landscape has been explored. These results should provide a useful tool for quantifying374

frustration across very different systems of interest, potentially providing new insight into375

our understanding of emergent properties.376
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