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Abstract Electric Vehicles (EVs) are still a maturing technology. Barriers to their
adoption include price and range anxiety. EV batteries are significant in determining
both EV prices and costs. In this work, we focus on the impact of a high-capacity
battery and EV rebates on an EV ecosystem. Using survey data from Los Angeles,
California, we simulate different cases of battery costs and prices by means of an
agent-based EV ecosystem model. We find that even in Los Angeles, a geographically
spread out city, the price of EVs is a more significant barrier to adoption than EV
range. In fact, even a quintupling of battery size at no additional costs improves EV
adoption by only 5%. Therefore, policy makers should focus more on affordability
than range in promoting EV adoption.

Keywords FElectric vehicles, Agent-based modeling, Electric vehicle adoption,
Range anxiety

1 Introduction

It is well known that several barriers exist to the widespread adoption of EVs. These
barriers include high purchase costs, range anxiety, and lack of widespread charging
infrastructure [6]. In this paper we focus on limited driving range, due to the limited
capacity of electric batteries, as a barrier to EV adoption. One way to increase driving
range is to increase the size of the battery. However, batteries are expensive, therefore
making EVs less cost-competitive with conventional vehicles. For example, the Tesla
Model S has a 85 kWh battery but costs about $80,000; the Nissan Leaf has a 24
kWh battery and costs only about $29,000. It is clear that today, increasing battery
size comes at a high additional cost.

There are research efforts under way on improving battery technology for EVs,
including IBM’s work on a Li-500 125 kWh battery [16] that is expected to increase
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the driving range of a typical EV to 500 miles at no additional cost. Such a battery
is expected to make EVs range-competitive with conventional vehicles, also called
Internal Combustion Engine Vehicles (ICEVs). As a result, we study how such a bat-
tery can change an existing EV ecosystem. Our expectation is that increasing driving
range would greatly increase EV adoption.

To study the effect of increased driving range on EV adoption, we build on the
EV ecosystem model described in our prior work [2]. This model is an Agent-Based
Model (ABM) with individuals as agents, exhibiting behaviours such as purchasing
vehicles, driving EVs and charging EVs. The adoption model extends the EV adop-
tion model discussed by Eppstein et al. [15]. The outputs of this model spatially
and temporally represent EV adoption by agents, public charging station usage, and
charging loads on the grid. These outputs can be useful for policymakers, charging
station planners, utility operators, and EV manufacturers.

In prior work, we used the EV ecosystem model to study the impact of differ-
ent policies and battery sizes on the EV ecosystem in San Francisco, a city with a
dense urban core [2]. These policies include varying EV rebates, improving public
awareness on the low operational costs of EVs, and encouraging workplace charging
stations. Several of the results obtained were found to be dependent on the length of
daily driving distances. For example, we found that the number of EVs adopted did
not increase significantly as the size of the EV batteries were increased because most
trips were short. Here, we study EV adoption in Los Angeles, which also has a high
penetration of EVs but is less spatially compact than San Francisco. Using survey and
environmental data from Los Angeles, we study the impact of a 125 kWh high-end
battery technology on the adoption and usage of EVs within the area.

Our expectation was that, due to the greater spatial extent of the city, an increase
in EV range would boost adoption. In fact, as we discuss below, we found that even
in a city as spread out as LA, cost is a greater barrier to adoption than vehicle range.
Therefore, policy makers should focus more on affordability than range in promoting
EV adoption.

2 Literature Review

In this section, we discuss existing literature relevant to modeling EV adoption and
usage.

2.1 EV Adoption Models

In existing literature, there are three common approaches to modeling EV adoption:
consumer choice models, diffusion rate models, and ABMs [3]. A review of the dif-
ferent EV adoption models has been carried out by Al-Alawi and Bradley [3]. Here,
we discuss agent-based EV adoption models.

Pellon et al. [25] and Eppstein et al. [15] model the adoption of Internal Com-
bustion Engine Vehicles (ICEVs), Hybrid EVs (HEVs), and Plug-in Hybrid EVs
(PHEVs), using an agent-based approach. Here, agents are people who choose to
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buy a certain type of vehicle from the aforementioned alternatives. This model in-
corporates the perceived utility of a vehicle as well as social influence in the vehicle
purchase decision process. Agent properties such as income, home location, trip dis-
tances, and desired vehicle longevity are included as part of the vehicle purchase
decision process. In this work, it is assumed that vehicles are charged once daily. In
addition, the Eppstein et al. model includes spatial orientation in the model. We add
to this model by modeling BEV adoption and EV usage. The Eppstein et al. model
forms the core of our EV ecosystem model and it is further discussed in Section 3.1.

Al-Alawi and Bradley identify the work Sullivan et al. [29] as one of the most
comprehensive ABMs focused on EV adoption. Sullivan et al. focus on PHEV adop-
tion, and specify the budget of an agent a critical factor in vehicle purchase. In addi-
tion, this work models vehicle owners, fuel producers, fuel producers, and the gov-
ernment as agents. While this study incorporates these additional agents, it does not
enable the modeler to evaluate the potential impact of modeler-defined government
policies. We design our model to evaluate EV-related policies by making policymak-
ers and vehicle designers exogenous.

Wolf et al. [33] develop an ABM focused on EV adoption and influencing peo-
ple’s perspectives of EVs. They use an artificial neural network to model agent deci-
sions, where each agent decides based on security, comfort, costs, image, etc. They
also execute a case study on Berlin, Germany, estimating how different policies such
as vehicle purchase subsidies and tax exemptions could influence EV adoption in the
region. Wolf et al. focus on the factors that may affect EV adoption. Our work models
EV adoption, as well as EV driving and charging by potential EV adopters.

Using a mixed logit model in an ABM, Brown [7] focuses on the adoption of
HEVs, PHEVs, and BEVs, and studies the impact of vehicle range and financial in-
centives on EV adoption. Shafiei et al. [28] use a willingness-to-pay method to model
agent EV adoption decisions in their ABM. The authors study scenarios with differ-
ent EV and gas prices, forecasting the changes in EV adoption. Also, this work uses
a refuelling effect variable [27] to incorporate the effect of charging infrastructure
availability. Similar to Brown, Shiafei et al. focus only on EV adoption. Our work
goes further to model EV usage.

Sweda and Klabjan [30] focus on using an ABM to solve the problem of charging
station deployment. This is based on forecasting EV adoption and estimating where
charging stations are required the most. Factors that determine an agent’s vehicle pur-
chase decision include vehicle price, fuel cost, the agent’s greenness, social influence,
an infrastructure penalty, and a distance penalty. However, the quantification of these
parameters was not clearly stated in the paper. We present a detailed EV adoption and
usage model that can be used not only EV charging station planners, but by utility
operators and policymakers.

In summary, our model extends these models, adopting an EV ecosystem ap-
proach — EV adoption, driving, and charging — to better understand the immediate
and cascading impact of EVs in different scenarios.
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2.2 EV Usage Models

Using Victoria, Australia, as a case study, Paevere et al. [24] study the spatial and
temporal impact of EV charging on the electric grid. They study different EV adop-
tion and rebate scenarios and discuss the changes in EV charging load. Similarly,
Arellano et. al [5] and Pellon et al. [25] investigate how differnet adoption and EV
charging scenarios change the temporal load distribution.

Achaet al. [1] integrate EV driving and charging with power flow analysis, which
is a level of detail greater than used in our work. However, they do not model EV
adoption since their work is focused on the impact of EVs on the grid. Cui et al. [11]
use a Nested Multinomial Logit model to estimate PHEV adoption, and investigate
the resulting changes in the grid such as power line congestion and transformer over-
load. They study how charging schemes could be used to avoid these problems. How-
ever, this study focuses only on PHEVs. We include BEVs in our study and study load
impacts and charging infrastructure requirements.

Neubauer and Wood [22] study the utility of a BEV over it’s lifetime by simulat-
ing BEV trips using real-world data, while considering the impact of range anxiety
and availability of charging infrastructure on the said trips. They outline that range
anxiety can be reduced by increased availability of charging infrastructure — home,
workplace, and public charging stations. Here, range anxiety is assumed to be syn-
onymous to the minimum range margin desired by the driver. Our work differs from
this study by incorporating EV adoption and different EV types.

Kim and Rahimi [20] estimate the impact of EV adoption on the electric grid
in Los Angeles. Using the Bass diffusion model, they focus on three adoption sce-
narios, and highlight the increased EV charging loads and the resulting changes in
greenhouse gas (GHG) emissions. The results of this study are useful for peak de-
mand management and electricity generation planning in Los Angeles. This study
does not forecast EV adoption but only details the impact of EVs on the grid in pos-
sible scenarios.

3 EV Ecosystem

In this section, we describe our EV ecosystem model'. Our model is an EV ecosys-
tem model because it goes beyond EV adoption and incorporates EV usage, that is,
both driving and charging. This provides a more complete model for estimating the
impacts of EVs within a socio-technical system. For example, our model can fore-
cast the number of EVs bought each year to allow electric grid operators to gauge
the increases in electrical load at different parts of the grid corresponding to home
and work locations. In addition, our model takes an agent-based approach, where the
agents are people who decide whether to buy EVs or not, and use the EVs according
to their driving needs.

Agents have three behaviours in our model: vehicle purchase, EV driving, and EV
charging. Generally speaking, we have tried to make the agent behaviour as realistic

! The EV ecosystem model is also described in greater detail in our prior work [2]. Here, we sketch the
model for the sake of making this paper self-contained.
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Table 1: Agent Variables (DS = Dataset; E = Estimated; I = Independent)

Variable Source
DS Description

Age X Each resident in surveyed households is listed in an age
bracket, within which we uniformly assign a particular age.

Income X Each household is listed in an income bracket, within which
we uniformly assign a particular income. We divide the income
among each household’s working residents, if necessary.

Work days X These are the days of the week that a person goes to work.
In cases where it is not specified in the data, we assume work
days of Monday - Friday.

Home location The household location of each respondent is anonymized but
listed as a zip code. Even though zip codes are not areas, we
uniformly assign locations close to the centers of these zip
codes within a 1 km radius, by obtaining the central geograph-
ical coordinates of each zip code.

Work location The work location is obtained similarly to the home location.

Vehicle fuel type X Each surveyed household has a list of vehicles already in use,

and age with details such as the model year and fuel type assigned.

‘Workday and X The drive cycles are based on expected trips to and from home

non-workday locations, work locations, and random locations of interest.

drive cycles See Table 4.

Desired vehicle X This is assumed to be the highest vehicle efficiency available

fuel efficiency in the market today [32]. See Table 3.

Cost  sensitivity G is correlated with income with some noise included.

G

Social threshold T is the fraction of an agent’s social network that must own

T EVs in order for that agent to buy an EV.

Social network Each agent’s social network is selected from other agents with
similar ages(+5 years), incomes(4+$10,000), and residential
locations (2 km). Each agent has a social network that is
randomly selected, with a minimum and maximum sizes of
1 and 15 respectively.

Ability to esti- This is a binary variable that determines if an agent can esti-

mate TCO mate the TCO of a vehicle. This is used to evaluate the impact
of a policy to educate people on EVs and TCO.

Option to charge This is a binary variable that determines if an agent has a charg-

at work ing terminal available at the work place.

Desired  vehicle X This is the number of years an agent decides to use a vehicle

longevity

before selling it off. For each agent, this variable is obtained
from a normal distribution with an average of 11 years [19]
and a standard deviation of 1 year.

as possible by relying on comprehensive surveys, large datasets, and published val-
ues for environmental variables such as gasoline prices and EV battery sizes. Table
1 highlights the agent variables such as age, income, home and work locations, drive
cycles, preferred vehicle preferences, etc. These variables are used to define specific
agent behaviours. For example, each agent has a social network that comprises other
agents with similar income, age, and home location. Similarly, the start time of an
agent’s trip and the trip duration is dependent on home and work locations. In ad-
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Table 2: EV Ecosystem Variables (DS = Dataset; E = Estimated; I = Independent)

Variable Source
DS E 1 Description
Cost of gas X This is the equivalent cost in $/kWh obtained from the cost

in $/gallon [8] and the energy content of gasoline: 1 gallon of
gasoline contains 33.7 kWh of energy [4].
Cost of electricity X This is the average cost of electricity in Los Angeles [8].
Existing rebates X X This is a reduction in the effective cost of an EV, based on
federal and state policies [9,31].

Charging stations X X Real-world map and specifications of charging stations [26].
This includes level 2 and 3 charging stations, scaled according
to the number of agents in the simulation.

Vehicle types and X See Table 3 [32].

specifications

Trip duration and X We use MapQuest Route Matrix to obtain driving distance and
distance duration [21].

Discount rate X This is useful for TCO estimation. Typical discount rates fall

between 2% and 10% [14]. We set this variable at 8%.

dition, Table 1 shows the variables obtained from data, estimation, and independent
distribution.

Table 2 highlights the environment variables such as cost of electricity, cost of
gas, existing EV rebates, etc. These variables also play significant roles in agent be-
haviours. We next describe how we model the purchase and usage of EVs by an
agent.

3.1 EV Adoption

Our EV adoption model is based on the work done by Eppstein et. al [15], which
is focused on Plug-in Hybrid EV (PHEV) and Hybrid EV (HEV) adoption. The two
specific additions we make are to model the adoption of BEVs, and to incorporate
vehicle range and fuel economy as attributes that affect agent purchase choices.

For each agent, the vehicle purchase process is summarized as follows:

1. Determine which vehicles on the market the agent can afford: we assume that an
agent cannot spend more than 20% of its annual income on purchasing a vehicle
[15].

2. Determine which BEVs can meet the agent’s daily trip requirements, such that
the agent would not get stranded in transit with a fully-discharged EV (this check
is required for BEVs only).

3. Rank the affordable vehicles according to desirability. Desirability is a function
of benefits and costs of different alternatives (discussed in more detail below).

4. Buy the most desirable vehicle.

5. If, for any reason, no suitable vehicle to purchase is found, keep using the existing
vehicle.
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6. Overall, if the EV-owning fraction of an agent’s social network is less than the
agent’s social threshold 7', then the agent does not buy an EV.

In our model, vehicle purchases are executed quarterly, and an agent chooses
from three different vehicle types: ICEV, Plug-in Hybrid EV (PHEV), and Battery EV
(BEV). For each agent, the relative desirability D of each pair of vehicles is obtained
based on their utility (i.e., the benefit expected from the purchase) and cost [15],
where these depend on the agent’s cost sensitivity G (0 < G < 1) and social threshold
T (0 < T < 1), described next (also see Figure 1).

G is used to model the degree to which an agent values a vehicle’s benefits such
as a long driving range and high fuel efficiency, over its costs. For example, if an
agent has G = 0, then that agent would rank a vehicle’s desirability based only
on its costs, but if G = 1, the agent would rank a vehicle’s desirability based only
in its benefits regardless of its costs. The relative desirability D is computed as the
weighted difference between the relative benefit RB and relative cost RC of each
pair of vehicle choices, scaled by the agent’s cost sensitivity G. The computation of
RC and RB is discussed below.

T determines the degree to which an agent is an early adopter and is used to model
social influence on vehicle purchase decisions. For example, if an agent has 7" = 0.1,
the agent will buy an EV only if at least 10% of its social network already owns EVs.
An agent with 7" = 0 is considered to be an early adopter, since it can buy an EV
regardless of the EV-owning proportion of its social network. The distribution of G
among agents determines how many agents buy EVs, and T determines when EVs
are bought based on EV penetration in the agent population. The social threshold is
included in the model in order to determine the impact of social networks on agent
decisions. This is similar to the work by He et al. [17] that incorporates social network
influence in a discrete choice model with a case study on HEV adoption in California.

The desirability of a vehicle j over i, D;;, is a function of the relative cost RC;;
and relative benefit RB;; [15]. Specifically, the relative desirability of two vehicles
is given by:

The most desirable vehicle is purchased by the agent.
The relative cost is given by:

2

where C; is the cost of car i. C is either the sticker price or TCO of a vehicle, be-
cause, according to Boulanger et al. [6] and EPRI [14], not all vehicle purchasers
fully consider the expected lower operational costs of EVs. For estimating the TCO,
we use the Net Present Value (NPV), which is given by:

NPV = i iﬁ 3)
e (d+1)
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Fig. 1: Derivation of Desirability

where NN is the number of years, C} is the net cost in year ¢, and d is the discount
rate. In the current version of our model, the recurring costs consist, solely, of fuel
costs. Also, the sticker price of a vehicle is the only initial cost. However, the model
provides room for a more detailed cost estimation process if desired. Our model does
not consider financing options as part of the vehicle purchase process.

The relative benefit RB;; is given by:

U, — U,

J

“)

where U, is the utility of car ¢. Utility, in turn, is dependent on two attributes:
range and fuel economy. For estimating the fuel economy of PHEVs, the fuel effi-
ciency of the electrical and combustion engines in a PHEV are scaled with respect to
the ratio of the charge-sustaining and charge-depleting distances traveled during an
agent’s typical drive cycle. The utility of a vehicle, then, is given by [27]:

2

_ ., lprefi—wi
U_1—2;( p— ) ()

where pref; is the agent’s preference for attribute ¢, and v; is the value of the
vehicle’s attribute . Figure 1 shows the relationship between all the variables used to
define desirability D.

We model only two attributes: vehicle range and fuel economy — details can be
found in [2]. This is a deviation from the EV adoption model in [15] where a vehicle’s
electric range is used as the only vehicle attribute.
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While comparing driving range of vehicles, we incorporate the non-linearity of
the relationship between driving range and customer vehicle valuation [12]; this
study is based on a survey focused on vehicle purchase decisions, with respondents
from California. As a result, each agent’s range preference is represented by the
agent’s Willingness To Pay (WTP) for a vehicle with a particular range. According
to Daziano [12], the WTP per unit distance has a non-linear relationship with vehicle
range. Therefore, an agent’s valuation of a vehicle’s range is given by:

WTP = WTPper unit distance (range) X range (6)

We use the average values in the fixed parameter logit analysis from the work by
Daziano [12] to model the agents in our simulations.

3.2 EV Driving and Charging

To model EV usage, each agent carries out workday and non-workday drive cycles
that model daily trips. Table 4 shows an example of a workday drivecycle. The drive
cycles were created to realistically represent a person’s daily trips. The workday drive
cycle includes a home-to-work trip and a trip back home at the end of the day, and
on non-workdays, an agent makes trips to places of interests not far from its home
location. In addition, our model incorporates a spatial orientation for home, work,
and charging station locations. We split the modeled geographical area into cells and
use the MapQuest API [21] to estimate the real-world length and duration of each
trip between these cells.

As for EV charging, an agent can charge its EV at home, workplace, or public
charging stations. An agent charges its EV in the following cases:

— At the end of each trip, an agent charges its EV if a charging terminal is available
at the trip destination. This could be at home or at work.

— If an agent cannot meet a trip due to insufficient charge, it makes a trip to a public
charging station, before continuing with its drive cycle for that simulation day. It
should be noted that in our model, only agents with BEVs visit public charging
stations because PHEVs are unlikely to wish to spend time charging at a public
location when they can use their gasoline engine.

4 Experiment

We carry out a case study to forecast the impact of EV rebates and EV battery tech-
nology improvements on patterns of EV adoption and EV usage. Agents are initial-
ized based on a transportation survey of residents in Los Angeles with a focus on
transportation. Next, we describe the Los Angeles Li-500 case study in more detail.
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4.1 Data

We focus on Los Angeles in this study due to its overall spatial sparseness (though it is
known to have a dense urban core) and high-penetration of EVs [23]. The data used to
populate the ABM model in this study was obtained from a survey conducted by the
National Renewable Energy Laboratory’s (NREL’s) secure transportation data project
[10]. For each household surveyed, the data provides home and work zip codes (i.e.
coarse-grained geographical locations), work days, and vehicle specifications of the
residents, as well as total household incomes.

The ratio of the actual population of Los Angeles population in reality, to the
number of participants in the survey is about 1:789. In order to have adequately de-
tailed EV ecosystem dynamics, but without having to simulate the entire population
of the city, we duplicated each agent 10 times. This enables us to achieve finer and
more detailed simulation results. Therefore, the magnitudes of EV adoption and load
values obtained in this study are at a scale of about 1:80 to reality. This scaling is also
reflected in the number of public charging stations and their locations (i.e., we scaled
down the true number of charging stations and the number of charging points at these
stations by a factor of 80).

4.2 Parameter Tuning

The agents are initialized with different properties that determine agent behaviour, as
highlighted in Table 1. However, we could not obtain data to determine the appropri-
ate values for G and T. Instead, we study a range of plausible values for (G,T) pairs
and choose the one that creates an EV adoption curve that best matches the historical
record. Specifically, we tuned G and T in order to match the simulated EV adoption to
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historical EV adoption. Specifically, following Eppstein et. al [15], we first correlate
G with each agent’s income. We obtain this by:

G; = (m + w) x (income; — min. income) (7

where income; is the agent’s income, min. income is the lowest recorded agent

income, m is the slope of the G and income axes [15], and w is a random variable

drawn from a uniform distribution. Eq. 7 is defined such that agents with low incomes

are more focused on costs than utility. However, some variability is included so that

even agents with high income can still be more concerned about costs while choosing
a vehicle.

Next, we assumed that EV adoption in Los Angeles follows the same trend as EV
adoption in the US [13]. Then, to find the distributions of G and T that result in the
simulated adoption trend for EVs to match historical EV adoption, we conducted sev-
eral hundred simulations, each varying the means of both distributions and found the
combination that resulted in the least squared errors between the actual and predicted
adoption trend. Specifically, each possible combination of G and T distribution means
was simulated nine times and the squared errors of EV adoption were averaged. Fig-
ure 5 shows a heatmap of the errors associated with different G and T distributions;
the cell with the lowest errors corresponds to the distributions used in the scenario
simulations, and is shown in Figures 4a and 4b. In addition, the tuned EV adoption
result is shown in Figure 3: it is noteworthy that all the results have been averaged
over 20 simulation runs and each data point shows the 95% confidence interval.

4.3 Experimental Design

Here we discuss the initialization of other agent and environment variables. Table
3 shows a list of the vehicles used in the simulations. The vehicles are chosen to
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be representative of the different available vehicle fuel types, as of 2014. Figure 6
shows the typical daily driving distances of the agents, based on the trip database
described in Table 4. Also, the full set of charging stations within the Los Angeles
area were obtained from [26], and the number of stations was scaled down eight-fold
as discussed earlier. Furthermore, we assume that 20% of agents can charge EVs at
work and 20% of agents can estimate the Total Cost of Ownership (TCO) of EVs.
These assumptions were not changed in the different scenarios, since the focus in this
study is on the impact of price and driving range.

We studied four scenarios in addition to the base case:
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Table 3: Vehicle Models

Vehicle Combustion Electrical Battery Electric Existing  Sticker Vehicle
Type Engine Ef- Efficiency  Capacity = Range Rebate Price Make
ficiency (km/kWh)  (kWh) (km) ® ©)] (2013)
(km/kWh
eq.)
ICE 1.4 - - 0 0 16,230 Toyota
Corolla
PHEV 234 5.55 6.7 107 4,500 32,000 Toyota
Prius
BEV - 5.55 24 30 7,500 28,800 Nissan Leaf
BEV - 4.60 60 221 10,000 69,900 Tesla Model
S

— Case 1: Li-500 battery technology is supposed to improve the energy density
of the batteries, approximately, by a factor of 5 [18]. Therefore, we increase the
battery sizes of all EVs in Table 3 by a factor of 5 but without increasing the EV

price.

— Case 2: The existing EV rebates are increased by $2,000. We execute this sce-
nario in order to compare the impacts of reductions in price and improved batter-

1€8.

— Case 3: The existing EV rebates are increased by $4,000.

— Case 4: The EV batteries are increased by a factor of 5 and the existing rebates
are increased by $2,000.
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Table 4: Example of a Drive Cycle

Trip Number Start Time Trip Destination Stay (hours)

1 8:00 AM Work 8
2 - Mall 1
3 - Home -

5 Simulation Results

Here, we look at the temporal and spatial changes in EV adoption, electrical load,
and charging station activity in the different simulated scenarios.

5.1 EV Adoption: Range vs. Price

The adoption of EVs is influenced by the costs and utility associated with each EV.
Figure 7 shows EV adoption over the simulated period of 5 years across the four sim-
ulation scenarios. We see that the additional rebate of $4,000 results in the highest
EV adoption. Surprisingly, increasing the battery size alone does not result in a sig-
nificant improvement in EV adoption. Factors that lead to this insignificant change in
EV adoption include the large proportion of agents that cannot afford EVs, and the
parameter tuning process that found that, historically, most agents have focused more
on vehicle costs than benefits (Figure 4a).

However, reducing the EV price by means of a $2,000 rebate and increasing bat-
tery size shows a significant increase in EV adoption; in the base case about 7% of
the population own EVs at the end of the simulation, whereas, about 9% of the pop-
ulation own EVs when batteries are better and the rebate is higher. This suggests that
for increasing EV adoption in Los Angeles, improved batteries should not be at the
expense of increased EV costs.

To get more insight into our results, compare the electric range of each EV in
Table 3 with the driving distances seen in Figure 6. We can see that, surprisingly,
even for a spatially spread-out city like Los Angeles, current EV technology can
already meet existing daily driving distances. This is because most of the wealthy
people in LA, who can afford EVs, live and work in the downtown core. A relatively
inexpensive EV such as the Nissan Leaf can meet the driving requirements of about
70% of the agents. Considering that Los Angeles already has a high penetration of
EVs compared to the rest of the US, we can draw the conclusion that improved range
alone cannot bring about significant improvements in EV adoption: improvements in
battery technology are better used to reduce costs rather than increase range.

Figure 9 shows the spatial adoption of EVs based on the home locations of agents
in three different cases. The difference in EV adoption between scenarios can be seen
spatially as the battery size and EV rebates are increased. Also, more EVs are adopted
in the central area, where wealth is concentrated (see Figure 8); this informs charging
station planners of the locations that may require public charging stations and the
number of charging stations required.
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Fig. 8: Spatial Distribution of Income

5.2 Electrical Load

EV adoption will add to the overall electrical load. We now study the areas in LA that
could be affected due to EV adoption. Figure 10 shows the electrical load growth from
EV charging over the simulated years. Increased batteries result in more electrical
load over time, especially due to PHEVs using more electricity and less gasoline.
Comparing Figures 7 and 10, larger batteries would have more significant impacts on
EV charging than on EV adoption, as expected.
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Fig. 10: Charging Loads

Figure 11 shows the total EV charging load profile from charging at home, work,
and public charging stations. For all cases, the peak charging loads are proportional to
the number of EVs. The larger batteries in Case 1 also result in higher electrical loads.
The evening charging load peak would help utilities to know how much additional
load to plan for, and the locations of these loads. If the time of the existing daily load
peak in a particular location coincides with the time of the charging load peak, utility
operators might have to improve the existing distribution infrastructure. It should be
noted that the daily charging profile shown in Figure 11 is dependent on the trip
structure (Table 4).

Figure 12 shows the spatial distribution of EV charging load in three different
cases. The variations in load between the different scenarios are more evident at the
central areas of the map. This indicates that changes in EV adoption from rebates
and batteries could result in a need for grid infrastructure upgrades. Also, the load
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Fig. 12: Spatial Loads in Last Simulation Year

increase in the simulated cases see here is consistent with the annual load increase
(Figure 10) and the spatial distribution of EV adoption (Figure 9).

Figure 13 shows the number of EV arrivals at public charging stations in the last
simulated month. There is no significant change in public charging station activity in
the different scenarios. Figure 14 shows the change in public charging station activity
over the years, and a slight decrease in charging station arrivals can be seen. It should
be noted that in the EV ecosystem model, only BEVs visit public charging stations,
therefore, Figure 14 represents the expected minimum charging station activity for
each scenario.
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Fig. 14: EV Arrivals at Public Charging Stations

6 Conclusion

In this work, we have studied the impact of a high capacity battery on EV adoption
and usage, using Los Angeles as a case study. This has been done using the agent-
based EV ecosystem model: EV adoption is based on vehicle costs and utility, and
EV usage — driving and charging — is dependent on an agent’s daily drive cycle.
The results show that a high capacity battery would increase EV adoption slightly,
but EVs are still too expensive for a significant increase in adoption. Increasing EV
rebates shows significant improvements in EV adoption. In order to encourage EV
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adoption, EV costs should be reduced in addition to battery improvements. We show
that existing EV battery technology is sufficient to meet range requirements of a
large number of Los Angeles residents. With an increase in battery size, there is a
proportional increase in electrical load on the grid over time: this is due to PHEVs
using more electricity because of larger batteries and the adoption of more EVs.

We find that the cost-competitiveness of EVs is a more significant barrier to EV
adoption than range anxiety. Since there is already a high penetration of EVs in Los
Angeles, the need for joint EV cost and battery improvements can be generalized. In
the future, we plan to study the impact of distributed generation on EV adoption and
usage.

In summary, the contributions of our work are:

1. the use of an ABM to study the impact of vehicle range and affordability on EV
adoption in Los Angeles;

2. studying the impact of EV penetration on the electricity grid in Los Angeles; and

3. the surprising conclusion that vehicle affordability is a greater determinant of EV
adoption than range, even in a geographically dispersed city such as Los Angeles.
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