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Abstract

In the Selenium and Vitamin E Cancer Prevention Trial (SELECT), selenium supplementation (causing a median 114 lg/L increase
in circulating selenium) did not lower overall prostate cancer risk, but increased risk of high-grade prostate cancer and type 2 dia-
betes. Mendelian randomization analysis uses genetic variants to proxy modifiable risk factors and can strengthen causal infer-
ence in observational studies. We constructed a genetic instrument comprising 11 single nucleotide polymorphisms robustly (P<
5�10-8) associated with circulating selenium in genome-wide association studies. In a Mendelian randomization analysis of 72
729 men in the PRACTICAL Consortium (44 825 case subjects, 27 904 control subjects), 114 lg/L higher genetically elevated circulat-
ing selenium was not associated with prostate cancer (odds ratio [OR]¼ 1.01, 95% confidence interval [CI]¼ 0.89 to 1.13). In concor-
dance with findings from SELECT, selenium was weakly associated with advanced (including high-grade) prostate cancer (OR ¼
1.21, 95% CI¼ 0.98 to 1.49) and type 2 diabetes (OR¼ 1.18, 95% CI¼ 0.97 to 1.43; in a type 2 diabetes genome-wide association study
meta-analysis with up to 49 266 case subjects and 249 906 control subjects). Our Mendelian randomization analyses do not sup-
port a role for selenium supplementation in prostate cancer prevention and suggest that supplementation could have adverse
effects on risks of advanced prostate cancer and type 2 diabetes.

The development of interventions to prevent cancer requires
robust causal knowledge, but few observational epidemiological
claims are replicated in randomized controlled trials and some
trial results are in the opposite direction to those seen observa-
tionally (ie, causing harm) (1,2). Such failures to translate obser-
vational findings into effective cancer prevention interventions
arise in part because the limitations of observational research—
confounding, reverse causation, and measurement error—
preclude confident causal inference.

Mendelian randomization (MR) uses genetic variants as
instruments (“proxies”) to assess whether a potential interven-
tion target has a causal effect on a disease outcome in a non-
experimental (observational) setting (3). The use of genetic

variants as proxies for intervention targets exploits the fact that
germline genotype is largely independent of potential environ-
mental or lifestyle factors. Further, because germline genetic
variants are fixed at conception, MR analyses are not subject to
reverse causation (Figure 1). An additional advantage of MR is
that implementation does not require access to individual-level
data or trait measurements in all samples: it can be imple-
mented using summary information on gene exposure and
gene outcome associations obtained from separate samples,
which greatly increases the scope and efficiency of the ap-
proach (“two-sample Mendelian randomization”) (4,5).

The largest ever prostate cancer prevention trial (SELECT,
clinicaltrials.gov identifier: NCT00006392, n ¼ 35 533) was
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designed to examine whether daily supplementation with sele-
nium, vitamin E, or both agents combined could prevent pros-
tate cancer (PCa) (6). It was abandoned at a cost of $114 million
because of lack of efficacy compounded by possible carcino-
genic (increased rates of high-grade [Gleason score � 7] PCa)
and adverse metabolic effects (increased rates of diabetes) of
the interventions (6,7). We investigated whether Mendelian ran-
domization could have predicted the results of the SELECT trial
observed for selenium in a two-sample MR study of 72 729 indi-
viduals of European descent from the Prostate Cancer
Association Group to Investigate Cancer Associated Alterations
in the Genome (PRACTICAL) Consortium (8).

We obtained summary genome-wide association study
(GWAS) statistics from analyses on 44 825 PCa case subjects and
27 904 control subjects from 108 studies in PRACTICAL. Summary
statistics were also obtained from analyses on 6263 advanced PCa
case subjects (Gleason � 8, prostate-specific antigen > 100 ng/mL,
metastatic disease [M1], or death from prostate cancer) and 27 235
control subjects. Written informed consent was obtained from all
participants, and all studies in PRACTICAL have the relevant
Institutional Review Board approval from each country, in accor-
dance with the Declaration of Helsinki. Genotyping of PRACTICAL
samples was performed using the Infinium OncoArray-500K, the
details of which have been described previously (9).

To analyze the effect of selenium on type 2 diabetes (T2D), we
used summary GWAS statistics from analyses in up to 49 266 T2D
case subjects and 249 906 control subjects of European descent
from a meta-analysis of the DIAbetes Genetics Replication And
Meta-analysis (10), EPIC-InterAct (11), and UK Biobank (12). Methods
for this meta-analysis have been published previously (13).

A genetic instrument to proxy for selenium was constructed
by identifying single nucleotide polymorphisms (SNPs) robustly
(P < 5�10-8) associated with selenium concentrations in a meta-
analysis of blood and toenail selenium GWAS (14,15). Of 12 SNPs
identified, one (rs558133) was not available in PRACTICAL, and
thus 11 SNPs were used for both PCa analyses. As sensitivity
analyses, we also constructed a restricted instrument using
only SNPs robustly (P < 5�10-8) associated with selenium in a
GWAS of blood selenium that were replicated (P < .05) in subse-
quent independent studies (14–16). For these analyses, of the
five selenium SNPs initially identified, one (rs6859667) was not
available in PRACTICAL, and thus four SNPs were used as
instruments for both PCa analyses. All SNPs utilized and their
corresponding ENSEMBL-mapped genes (17) are presented in
the Supplementary Methods (available online).

We generated estimates of the proportion of variance in cir-
culating selenium explained by our primary and restricted ge-
netic instruments (R2) and F-statistics to examine the strength
of our instruments, as outlined in the Supplementary Methods
(available online), using methods previously described (18).
Given that some of our SNPs were in mild linkage disequilib-
rium (LD) with each other, the ranges represent approximations
of the total variance explained for our multi-allelic instruments
calculated by summing the variance explained from lead SNPs
at independent loci (using two different LD thresholds: R2 � .01
and R2 � .05) and thus may represent an underestimate of the
variance explained of our instruments. The effect of our instru-
ment on PCa (overall and advanced) and T2D was examined us-
ing a maximum-likelihood approach that adjusts for moderate
correlation between variants (19). To compare the odds ratios

Randomized Controlled Trial (SELECT) Mendelian Randomization
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Figure 1. Schematic comparison of a randomized controlled trial (RCT; Selenium and Vitamin E Cancer Prevention Trial [SELECT]) to a Mendelian randomization analy-

sis. In an RCT, individuals are randomly allocated to an intervention or control group (In SELECT, 200 lg/d selenium [114 lg/L increase in blood selenium] or placebo). If

the trial is adequately sized, random assignment should ensure that intervention and control groups are comparable in all respects (eg, approximately equal distribu-

tion of potential confounding factors) except for the intervention being tested. In an intention-to-treat analysis, any observed differences in outcomes between inter-

vention and control groups can then be attributed to the trial arm to which they were allocated. In a Mendelian randomization (MR) analysis, alleles that influence

levels of a trait of interest are randomly allocated at conception. (In MR, the additive effects of selenium-raising alleles on 11 single nucleotide polymorphisms were

scaled to mirror a 114 lg/L increase in blood selenium.) Groups defined by genotype should be comparable in all respects (eg, distribution of both genetic and environ-

mental confounding factors) except for their exposure to a trait of interest. Any observed differences in outcomes between groups defined by genotype can then be at-

tributed to differences in lifelong exposure to the trait of interest under study. Mendelian randomization is an application of the technique of instrumental variable

(IV) analysis. In order for a genetic variant (or a multi-allelic instrument) to be used as an IV, three key assumptions must be met: 1) the instrument must be reliably as-

sociated with the exposure of interest, 2) the instrument should be independent of other factors affecting the outcome (confounders), and 3) the instrument should

only affect the outcome through the exposure of interest (known as the exclusion restriction criterion). CI ¼ confidence interval; HR ¼ hazard ratio; SELECT ¼ Selenium

and Vitamin E Cancer Prevention Trial.
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from MR with the hazard ratios from SELECT, we estimated the
odds ratios per 114 lg/L increase in circulating selenium to
match measured pre- vs postintervention blood selenium dif-
ferences between supplementation and control arms in SELECT
(6). All statistical tests were two-sided. All statistical analyses
were performed using R3.0.2.

Our primary genetic instrument (12 SNPs) explained from
2.5% to 5.0% of the variance in circulating selenium, and our re-
stricted genetic instrument (five SNPs) explained from 2.1% to
3.3% of this variance. The corresponding F-statistic ranges for
these instruments were 11.8–24.2 and 23.9–37.8, respectively,
suggesting that our instruments were unlikely to suffer from
weak instrument bias.

In Mendelian randomization analyses, a 114 lg/L increase in
blood selenium was not associated with overall PCa risk (odds
ratio [OR] ¼ 1.01, 95% confidence interval [CI] ¼ 0.89 to 1.13, z-
test P ¼ .93) (Table 1). Elevated selenium was weakly associated
with advanced PCa (OR ¼ 1.21, 95% CI ¼ 0.98 to 1.49, P ¼ .07) and
T2D (OR ¼ 1.18, 95% CI ¼ 0.97 to 1.43, P ¼ .11). Odds ratios for
overall PCa, advanced PCa, and T2D were robust to sensitivity
analyses, employing a restricted instrument (OR ¼ 0.95, 95% CI
¼ 0.80 to 1.14; OR ¼ 1.09, 95% CI ¼ 0.81 to 1.47; and OR ¼ 1.23,
95% CI ¼ 0.99 to 1.53; respectively).

The strengths of our analysis include the use of a multi-
allelic score for circulating selenium (allowing us to increase the
proportion of variance explained in circulating selenium) and
the use of summary genetic association data from several large
GWAS meta-analyses, which allowed us to increase the statisti-
cal power and precision of our analyses (20). Limitations of our
analysis include that we were only able to directly examine the
effect of selenium on advanced PCa and not high-grade PCa per
se (summary estimates from PRACTICAL were available only for
a composite “advanced” disease classification), thus preventing
direct comparison with SELECT results. Additionally, our sele-
nium SNPs were also associated with betaine, a putative risk
factor for T2D (21), which could introduce horizontal pleiotropy
into our analyses and violate MR assumptions (see the Figure 1
legend). Though we suspect that the association of these SNPs
with selenium and betaine reflects the effect of selenium on be-
taine in the methionine cycle (22,23), and consequently that se-
lenium and betaine likely influence T2D through the same
biological pathway, we cannot rule out the possibility that at
least part of a putative effect of selenium SNPs on T2D is
through an alternate biological pathway involving betaine.

We conclude that, in contrast to findings from some pro-
spective studies (24–29), our Mendelian randomization analysis
using publicly available GWAS data did not find evidence for a

causal effect of selenium on overall prostate cancer. Consistent
with SELECT, we found weak evidence of a positive effect of se-
lenium on advanced prostate cancer and type 2 diabetes risk.
The alignment of MR with SELECT estimates mirrors the concor-
dance of MR findings with other large, phase III trials, including
adverse effects of elevated low-density lipoprotein cholesterol
on coronary heart disease (30,31) and statins on T2D (32,33), as
well as null effects of secretory phospholipase A(2)-IIA with
cardiovascular disease (34–36) and high-density lipoprotein
cholesterol on myocardial infarction (37–40). Mendelian ran-
domization may serve as an important time-efficient and inex-
pensive first step in predicting both the efficacy and possible
adverse effects of an intervention prior to the design of a ran-
domized controlled trial.
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