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Abstract 

The hybrid approach coupling Statistical Energy Analysis (SEA) and the finite element method has 

become a prominent technique for analysing structures under steady-state loads in the ‘mid-

frequency’ range where some components behave in a deterministic manner with low modal density 

and others in a statistical manner with high modal density and statistical overlap. In this paper, the 

method is extended from its current steady-state capability to provide calculation of structural 

responses under impulsive and time-varying loads. Similar to the steady-state method, a system is 

split into deterministic components that are modelled using the finite element approach and statistical 

components that are modelled as SEA subsystems.  

An evolutionary spectrum approach based on the Priestley description of random processes is applied 

to model the response of both the SEA and deterministic components which are coupled by 
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considering a power balance between the SEA subsystems. The diffuse field reciprocity relationship 

that relates the reverberant forces generated by a subsystem to the energy within it is explored under 

transient conditions where it is found that it can be important to account for the build-up of a 

reverberant field following an impulse. Results from the method are compared against finite element 

simulations for a system of plates coupled by a beam and it is found to generate predictions with the 

accuracy expected of an SEA-based method, although deterministic oscillations of the deterministic 

system at early times are not accounted for. 

Keywords: TSEA; Mid-frequency problem; Hybrid FE-SEA; Shock-induced vibration; Priestley 

description 

 

1. Introduction 

A wide range of standard modelling techniques exist for analysing the vibrational response of 

engineering structures, with the most suitable method often depending on the system, frequency 

range and loading conditions of interest. For systems containing only a few distinct modes at the 

frequencies of interest, typically true at low frequencies, the finite element method (FE) is most 

commonly employed. Whereas, when many overlapping modes are present, typically at high 

frequencies, statistical approaches become more desirable since the lengthscale of vibrations 

approaches that of any imperfections in the system and so the frequency response of a number of 

nominally identical structures can diverge. Statistical Energy Analysis [1] (SEA) is a prominent method 

for modelling such structures where a system is split into subsystems of similar properties and the 

vibrational energy within each subsystem is calculated via a power balance.  

Many structures, however, will contain components with distinct modal responses as well as 

components that behave statistically all in the same frequency range, typically in the so-called ‘mid-

frequency’ range. In order to calculate the response of such structures under steady loads, a number 

of methods have been proposed, a helpful summary of which can be found in [2] with more detail in 

[3]. Of particular interest here is the Hybrid FE-SEA method of [4] which splits the structure into 

deterministic components modelled with FE and statistical components modelled with SEA. A similar 

approach is adopted in this paper to predict the response of such structures subject to impulsive and 

time-varying loading. 

Most commonly, structures are investigated under steady loading conditions; however, in reality 

transient conditions, particularly impulsive excitation occur frequently, for example hitting a bump or 

changing speed in a car. Few techniques exist to predict the mid-frequency transient response of 
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systems and generally FE analysis is most applicable despite its computational expense. At high 

frequencies, transient SEA (TSEA) is commonly applied [1,5–12] and has recently been formalised [13] 

by using the Priestley description of random processes [14,15]. In this paper, the FE and TSEA methods 

are combined to provide the benefits of each for systems containing some components best modelled 

deterministically and others best modelled statistically. To represent the transient response of the 

structure, the Priestley description of random processes is adopted and provides evolutionary spectra 

of both the energy in the SEA components and the mean square displacements of the deterministic 

degrees of freedom.  

A key component of the steady-state hybrid method of [4] is how the FE and SEA components are 

coupled together. To enable this, the diffuse field reciprocity relationship [16,17] was developed which 

expresses the mean square reverberant forces from the subsystems on the deterministic system in 

terms of the energy of the subsystems. This allows a power balance for each subsystem to be 

calculated to yield the response variables. In the transient case investigated in this paper, a transient 

form of this relationship is required and is investigated in Section 4.1. 

In what follows, the Priestley representation is briefly introduced in Section 2 and the derivation of 

the transient Hybrid FE-SEA method is presented in Section 3 before numerical validation of the 

method using FE simulations is demonstrated in Section 4. 

 

2. The Priestley description 

Transient methods that investigate high frequency responses are concerned with both the time and 

frequency content of a structure and this requires a rigorous definition. Similar to [13], the formalism 

introduced by Priestley [14,15] to study non-stationary random vibration can be applied, where in this 

case it is applied to a random system instead of a random process. If 𝐪(𝑡) is a K-dimensional vector of 

stationary random variables, it can be related to its Fourier transform via the expression   

𝐪(𝑡) = ∫ �̂�(𝜔)ei𝜔𝑡
∞

−∞

d𝜔 (1) 

and the mean square correlation matrix of the variable then has form   

E[𝐪(𝑡)𝐪T(𝑡)] = ∫ ∫ E[�̂�(𝜔)�̂�T∗(𝜔′)]ei(𝜔−𝜔′)𝑡
∞

−∞

∞

−∞

d𝜔d𝜔′ (2) 

where E[..] represents the ensemble average. In order for Eq. (2) to be compatible with the single-

sided cross-spectrum 𝐒qq(𝜔) of 𝐪(𝑡) we must have 
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E[�̂�(𝜔)�̂�T∗(𝜔′)] =
1

2
𝐒qq(𝜔)𝛿(𝜔 − 𝜔′),         E[𝐪(𝑡)𝐪T(𝑡)] = ∫ 𝐒qq(𝜔)d𝜔

∞

0

. (3,4) 

Equation (1) can also be expressed as a so-called Stieltjes integral in the form 

𝐪(𝑡) = ∫ ei𝜔𝑡
∞

−∞

d𝐒(𝜔), (5) 

d𝐒(−𝜔) = d𝐒∗(𝜔),           E[d𝐒(𝜔)d𝐒T∗(𝜔′)] =
1

2
𝐒qq(𝜔)𝛿(𝜔 − 𝜔′)d𝜔d𝜔′. (6,7) 

Equation (5) forms the basis of Priestley’s representation of a non-stationary random process, in which 

the equation is generalized to 

𝐪(𝑡) = ∫ 𝐐(𝜔, 𝑡)ei𝜔𝑡
∞

−∞

d𝐒(𝜔), (8) 

where 𝐐(𝜔, 𝑡) is termed the evolutionary spectrum and is a deterministic 𝐾 × 𝐾 matrix with 

𝐐(−𝜔, 𝑡) = 𝐐∗(𝜔, 𝑡). (9) 

The mean square correlation matrix of 𝐪(𝑡) is then time varying with 

E[𝐪(𝑡)𝐪T(𝑡)] = ∫ 𝐐(𝜔, 𝑡)𝐐T∗(𝜔, 𝑡)𝐒qq(𝜔)
∞

0

d𝜔. (10) 

Note that without loss of generality in the Priestley description we can put         

𝐒qq(𝜔) = 𝐈, (11) 

so that  𝐐(𝜔, 𝑡) acts on a vector of independent white noise variables.  

 

3. Methodology 

3.1. Equations of motion 

This subsection derives the equations of motion for a hybrid FE-SEA system. As described in [4] for the 

steady-state hybrid approach[4], a system can be split into deterministic components with 

deterministic degrees of freedom, denoted with the vector 𝐪(𝑡), and statistical components whose 

responses are characterised by their energies, denoted with the vector 𝐄(𝑡). The deterministic 

degrees of freedom can be considered using the Priestley notation to take the form of Eq. (8) and if 

the deterministic system has mass, damping and stiffness matrices 𝐌 , 𝐂  and 𝐊  then its equation of 

motion can be written as 

𝐌�̈� + 𝐂�̇� + 𝐊𝐪 = 𝐟 (12) 
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where 𝐟  is the external force acting on the deterministic system. Using the Priestley notation for the 

response and forcing term by substituting Eq. (8) into Eq. (12) yields 

∫ [𝐌
d2

d𝑡2
(𝐐ei𝜔𝑡) + 𝐂

d 

d𝑡  
(𝐐ei𝜔𝑡) + 𝐊𝐐ei𝜔𝑡] d𝐒(𝜔)

∞

−∞

= ∫ 𝐅
∞

−∞

ei𝜔𝑡d𝐒(𝜔) (13) 

where 𝐅 = 𝐅(𝜔, 𝑡) is the evolutionary spectrum of the force vector, 𝐟, defined using Eq. (8) and the 

arguments have been omitted for brevity. Multiplying Eq. (13) by d𝐒∗T(𝜔′) then integrating over the 

entire 𝜔′ domain and taking the ensemble average yields 

𝐌
d2

d𝑡2 (𝐐ei𝜔𝑡) + 𝐂
d 

d𝑡  (𝐐ei𝜔𝑡) + 𝐊𝐐ei𝜔𝑡 = 𝐅ei𝜔𝑡. (14) 

A similar equation can be found for the connection to each subsystem, although the properties of 

each subsystem will vary over an ensemble due to variations between components. Under steady 

harmonic loading at frequency 𝜔, the equations of motion of a single realisation of the jth subsystem 

can be represented by the dynamic stiffness matrix, 𝐃(𝑗)(𝜔), of the boundary degrees of freedom 

that connect it to the deterministic system such that 

𝐃(𝑗)(𝜔)𝐪(𝜔) = 𝐟(𝑗)(𝜔). (15) 

Here 𝐟(𝑗) is the force acting on the subsystem from the deterministic system and 𝐃(𝑗) relates only to 

the degrees of freedom of 𝐪 that correspond to the coupling to the jth subsystem and is padded with 

zeros elsewhere. 

In the transient case, the dynamic stiffness approach is no longer valid and an approximate 

representation is required that describes the subsystem in terms of mass, damping and stiffness 

matrices, 𝐌(𝑗)(𝜔), 𝐂(𝑗)(𝜔) and 𝐊(𝑗)(𝜔) respectively such that 

𝐌(𝑗)(𝜔)�̈�(𝑡) + 𝐂(𝑗)(𝜔)�̇�(𝑡) + 𝐊(𝑗)(𝜔)𝐪(𝑡) = 𝐟(𝑗)(𝑡), (16) 

where −𝜔2𝐌(𝑗) + i𝜔𝐂(𝑗) + 𝐊(𝑗) = 𝐃(𝑗). Here, Eq. (16) is to be solved at a fixed frequency, such that 

it represents the time response of the deterministic system when the mass, damping and stiffness 

matrices of the subsystem are set to provide the dynamic stiffness found under harmonic excitation 

at frequency 𝜔. Provided that the response can be considered as approximately steady and harmonic, 

then Eq. (16) will provide a good approximation. This will be true when the envelope of the response 

varies slowly with time compared to the time period of the oscillations. Using the method of [18] 

which ensures that the mass matrix is related to the kinetic energy of the system, the matrices can be 

calculated as 𝐌 
(𝑗)(𝜔) = Re[d𝐃 

(𝑗)(𝜔)/d𝜔]/(−2𝜔), 𝐂 
(𝑗)(𝜔) = Im[𝐃 

(𝑗)(𝜔)/𝜔] and 𝐊 
(𝑗)(𝜔) =

Re[𝐃 
(𝑗)(𝜔)] + 𝜔2𝐌 

(𝑗)(𝜔).  
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The force from any one realisation of a subsystem can be considered as a combination of the 

subsystem’s direct field, denoted with the subscript ‘dir’, and a random reverberant force 𝐟rev
(𝑗)

 from 

the reverberant field. Following the same process as Eqs. (12)-(13) to convert to the evolutionary 

spectrum notation and using the naming convention that the evolutionary spectrum of a variable is 

denoted using the upper case, Eq. (16) can then be rewritten in the same form as Eq. (14) as 

𝐌dir
(𝑗)

(𝜔)
d2

d𝑡2 (𝐐ei𝜔𝑡) + 𝐂dir
(𝑗)

(𝜔)
d 

d𝑡  (𝐐ei𝜔𝑡) + 𝐊dir
(𝑗)

(𝜔)𝐐ei𝜔𝑡 = 𝐅(𝑗)ei𝜔𝑡 + 𝐅rev
(𝑗)

ei𝜔𝑡 (17) 

where 𝐌dir
(𝑗)

(𝜔), 𝐂dir
(𝑗)

(𝜔) and 𝐊dir
(𝑗)

(𝜔) are the direct field mass, damping and stiffness matrices of the 

subsystem. These matrices are analogous to the direct field dynamic stiffness matrix, 𝐃dir
(𝑗)

(𝜔), used 

in the steady-state hybrid FE-SEA method [4] and found by considering the subsystem extended 

infinitely without boundaries [16]. They can be calculated from 𝐃dir
(𝑗)

(𝜔) using the method described 

above and occur as frequency dependent properties within a differential equation meaning Eq. (17) 

must be evaluated over time at a given frequency.  

For some combinations of a deterministic system and SEA subsystems, for example a plate with a 

spring connection, neither the direct field response nor the deterministic system will contain a mass 

dependent term and Eq. (17) will be first order. Consequently, a first order analysis of the equations 

becomes more general and can be undertaken by setting Eq. (14) and (if applicable) (17) in state-space 

form. The deterministic system can be coupled to the SEA subsystems by combining Eqs. (14) and (17) 

and setting in state-space form producing 

𝚪tot(𝜔)
d 

d𝑡  (𝚲(ω, t)ei𝜔𝑡) + 𝐆tot(𝜔)𝚲(ω, t)ei𝜔𝑡 = 𝐔(ω, t)ei𝜔𝑡 (18) 

where if 𝑁 is the number of subsystems 

𝚪tot
 = [

𝐈 𝟎
𝟎 𝐌

] + ∑ [
𝐈 𝟎

𝟎 𝐌dir
(𝑗)]

𝑁

𝑗
,    𝐆tot(𝜔) = [

𝟎 −𝐈
𝐊 𝐂

] + ∑ [
𝟎 −𝐈

𝐊dir
(𝑗)

𝐂dir
(𝑗)] .

𝑁

𝑗
(19,20) 

The 𝚲(ω, t) and 𝐔(ω, t) variables are the evolutionary spectra terms of 𝛌(𝑡) and 𝐮(𝑡) where 

𝛌 = [
𝐪
�̇�] ,              𝐮 = [

𝟎
𝐟ext

] + ∑ [
𝟎

𝐟rev
(𝑗) ]

𝑁

𝑗
. (21,22) 

and 𝐟ext represents external forcing on the deterministic system. 

It can be shown from Eq. (18) that 

𝚲(𝜔, 𝑡) = ∫ 𝐇(𝜔, 𝑡 − 𝜏 )𝐔(𝜔, 𝜏)e−i𝜔(𝑡−𝜏)d𝜏
∞

−∞

(23) 
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where 𝐇(𝜔, 𝑡) = exp(−𝚪tot
−1𝐆tot(𝜔)𝑡)𝚪tot

−1 and the limits have been extended to infinity because 

𝐇(𝜔, 𝑡) and 𝐮(𝑡) are zero when 𝑡 < 0. Physically, 𝐇(𝜔, 𝑡) represents the impulse response of the total 

system (deterministic plus subsystem direct fields) when the mass, damping and stiffness matrices of 

the direct fields of the subsystems are set to their values found under harmonic excitation at 

frequency 𝜔. It should be noted that this first order state-space representation is not required if the 

deterministic system contains a mass term at each degree of freedom. 

3.2. Diffuse field reciprocity relationship 

Equation (23) describes the response in terms of the forcing; however, the statistically modelled 

subsystems are interested in energies and power flows, which are related to the square of the 

response and therefore forcing. To combine the deterministic degrees of freedom with the subsystem 

energies, the diffuse field reciprocity relationship [16,17] shows that under steady excitation 

conditions the cross-spectrum of the reverberant force generated by a subsystem can be related to 

the energy in that subsystem. In this subsection, this relationship is investigated for the transient case 

and modified to comply with the Priestley notation. If 𝐮rev
(𝑗)

(𝑡) and 𝐔rev
(𝑗)

(𝜔, 𝑡) are respectively the time 

varying and evolutionary spectrum terms corresponding to the reverberant force in the jth subsystem, 

then the mean square correlation matrix of the reverberant force terms can be investigated using the 

evolutionary spectrum terms since 

𝐒u,rev
(𝑗) (t) = E [𝐮rev

(𝑗) (𝑡)𝐮rev
(𝑗) (𝑡)T] = ∫ 𝐔rev

(𝑗) (𝜔, 𝑡)𝐔rev
(𝑗)∗T(𝜔, 𝑡)

∞

0

d𝜔. (24) 

By analogy to the steady-state diffuse field reciprocity relationship [17], the evolutionary spectrum 

terms can be written as  

𝐔rev
(𝑗) (𝜔, 𝑡)𝐔rev

(𝑗)∗T(𝜔, 𝑡) = 𝑑(𝑗)(𝜔, 𝑡)
2𝛼𝐸𝑗(𝜔, 𝑡)

𝜋𝑛𝑗
[
𝟎 𝟎

𝟎 𝐂dir
(𝑗)

(𝜔)
] (25) 

where 𝐸𝑗(𝜔, 𝑡) is the evolutionary spectrum of the energy in the jth subsystem, the conventional 

Im [𝐃dir
(𝑗)

(𝜔)] /𝜔 term [17] has been replaced by 𝐂dir
(𝑗)

(𝜔), 𝛼 depends on the number of connections 

to the subsystem and whether energy is lost or gained through the connection [17] and 𝑛𝑗 is the modal 

density of the jth subsystem. The function 𝑑(𝑗)(𝜔, 𝑡) is included to account for the transient build-up 

of a diffuse field within a subsystem after an impulse has been applied. It should be noted that Eq. 

(25) is a factor of two smaller than the steady-state version because the value of interest is the 

ensemble average of time variables in Eq. (24) rather than frequency variables as in the steady-state 

approach and is thus half the size. 
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The term 𝐔rev
(𝑗) (𝜔, 𝑡)𝐔rev

(𝑗)∗T(𝜔, 𝑡) in Eq. (25), when examined at a given frequency, contains a scalar 

time-varying term multiplying a matrix and as such Eq. (25) can be rewritten for the purposes of later 

use as 

𝐔rev
(𝑗) (𝜔, 𝑡)𝐔rev

(𝑗)∗T(𝜔, 𝑡) = 𝑎(𝑗)(𝜔, 𝑡)2�̅�rev
(𝑗)

(𝜔)�̅�rev
(𝑗)∗T(𝜔) (26) 

where  

𝑎(𝑗)(𝜔, 𝑡) = √𝑑(𝑗)(𝜔, 𝑡)
2𝛼𝐸𝑗(𝜔, 𝑡)

𝜋𝑛𝑗
,   �̅�rev

(𝑗)
(𝜔)�̅�rev

(𝑗)∗T(𝜔) = [
𝟎 𝟎

𝟎 𝐂dir
(𝑗)

(𝜔)
] . (27,28) 

The derivation of the diffuse field reciprocity relationship under steady conditions [16,17] assumes a 

diffuse field is present in the subsystem. However, under impulsive loading, this is not the case and 

the response of a subsystem immediately after an impulse will be largely governed by the 

deterministic direct field. As time progresses, over the ensemble of random systems, the response is 

scattered and eventually becomes diffuse. The reverberant forces will therefore show a largely 

deterministic character at low times, possibly with a time delay as waves travel from the impulse to 

the location of the connection to the deterministic system, and a diffuse character at late times at 

which Eqs. (26-28) with 𝑑(𝑗)(𝜔, 𝑡) = 1 will accurately model the response. The term 𝑑(𝑗)(𝜔, 𝑡) can be 

selected to mitigate inaccuracies due to this effect and is investigated further numerically in Section 

4.1. The accuracy of the reverberant force calculation will depend on the relative contributions of the 

direct and reverberant fields, although in SEA applications it is assumed that the reverberant field 

dominates and so the transient response is not expected to contain inaccuracies any larger than those 

found in steady-state SEA or hybrid FE-SEA models that neglect the direct field. 

A similar issue has been discussed for TSEA where instantaneous transfer of energy between 

subsystems is predicted even before waves from the source have had time to travel to a connection 

to another subsystem. It has been suggested [10,11,19] that solving the TSEA differential equation 

numerically with a time-step related to the time taken for energy to travel through a subsystem can 

account for this issue, although [13] suggests that with appropriate SEA conditions of low damping 

and weak coupling, the problem should not be significant. Viewing the issue from the perspective of 

the transient hybrid method sheds further light on the situation, where since Eq. (26) will be directly 

related to the hybrid equivalent of the SEA coupling loss factors, one method for accounting for the 

build-up of a reverberant force with time in TSEA would be to modulate the coupling loss factors with 

a time-varying term similar to 𝑑(𝑗)(𝜔, 𝑡). Whilst this should not be necessary for most SEA applications 

due to weak coupling, it may be more applicable to hybrid FE-SEA systems because coupling to the 

deterministic system could be stronger. 
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3.3. Power balance 

The equations of motion and diffuse field reciprocity relationship of the previous section can now be 

assembled to explore power flow through the system. By investigating the power transfer through 

each subsystem, a matrix equation similar to the transient SEA equation [13] is produced 

�̇�(𝜔, 𝑡) + 𝐀𝜂(𝜔)𝐄(𝜔, 𝑡) = 𝐩(𝜔, 𝑡) + 𝐩ext(𝜔, 𝑡) (29) 

where 𝐄(𝜔, 𝑡) is a vector of the evolutionary spectra of the energy in each subsystem and 𝐀𝜂 is a 

diagonal matrix accounting for internal losses in a subsystem such that  𝐴𝜂,𝑗𝑘 = 𝛿𝑗𝑘𝜔𝜂𝑗 with 𝜂𝑗 being 

the loss factor of the jth subsystem. The vectors 𝐩(𝜔, 𝑡) and 𝐩ext(𝜔, 𝑡) represent the power into each 

subsystem from the deterministic system and external forcing applied directly to the subsystems 

respectively. The power, 𝑝𝑗(𝑡), absorbed by the jth subsystem can be found by splitting Eq. (16) into 

its direct field and reverberant force components and pre-multiplying by �̇�T, to yield 

𝑝𝑗(𝑡) = E[�̇�T𝐟(𝑗)] = E [�̇�T𝐂dir
(𝑗)

�̇� − �̇�T𝐟rev
(𝑗)

] (30) 

where the reactive power absorbed by the direct field has been ignored. By noting that Eq. (30) can 

be converted into the state-space variables and the relationship between mean square correlation 

matrix and evolutionary spectra in Eq. (24), the evolutionary spectrum of the power absorbed by the 

jth subsystem, 𝑝𝑗(𝜔, 𝑡), can be calculated as 

𝑝𝑗(𝜔, 𝑡) = ∑ [
𝟎 𝟎

𝟎 𝐂dir
(𝑗)

(𝜔)
]

𝑚𝑛

{𝚲 (𝜔, 𝑡)𝚲∗T(𝜔, 𝑡)}𝑚𝑛
𝑚𝑛

− Re [∑ {𝚲(𝜔, 𝑡)𝐔rev 
(𝑗)∗T(𝜔, 𝑡)}

𝑚𝑚𝑚
] . (31) 

The evolutionary spectrum of the mean square response, 𝚲 (𝜔, 𝑡)𝚲∗T(𝜔, 𝑡), can be calculated using 

Eq. (23) and converting 𝐔(𝜔, 𝑡) into its constituents 𝐔ext(𝜔, 𝑡) + ∑ 𝐔 rev
(𝑗)

(𝜔, 𝑡)𝑁
𝑗  where 𝐔ext(𝜔, 𝑡) is 

the evolutionary spectrum of any external input excitation on the deterministic system. Noting that 

the reverberant forces from the subsystems are uncorrelated to each other and to any external input 

force and using Eq. (26) the evolutionary spectrum of mean square response becomes 

𝚲 (𝜔, 𝑡)𝚲∗T(𝜔, 𝑡) = ∑ ∫ 𝐇(𝜔, 𝑡 − 𝜏 )𝑎(𝑗)(𝜔, 𝜏)e−i𝜔(𝑡−𝜏)d𝜏
∞

−∞

𝑁

𝑗
�̅�rev

(𝑗)
(𝜔)�̅�rev

(𝑗)∗T(𝜔) × 

                            {∫ 𝐇(𝜔, 𝑡 − 𝜏 )𝑎(𝑗)(𝜔, 𝜏)e−i𝜔(𝑡−𝜏)d𝜏
∞

−∞

}

∗T

+

                        ∫ 𝐇(𝜔, 𝑡 − 𝜏 )𝐔ext(𝜔, 𝜏)e−i𝜔(𝑡−𝜏)d𝜏
∞

−∞

×

                              {∫ 𝐇(𝜔, 𝑡 − 𝜏 )𝐔ext(𝜔, 𝜏)e−i𝜔(𝑡−𝜏)d𝜏
∞

−∞

}

∗T

. (32)
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Equations (27) and (28) can then be substituted into Eq. (32) to relate the mean square response to 

the energy of each subsystem. Using a similar approach, the evolutionary cross-spectrum in the 

rightmost term in Eq. (31) can be calculated as 

𝚲(𝜔, 𝑡)𝐔rev
(𝑗)∗T(𝜔, 𝑡) = 𝑎(𝑗)(𝜔, 𝑡) ∫ 𝐇(𝜔, 𝑡 − 𝜏 )𝑎(𝑗)(𝜔, 𝜏)e−𝑖𝜔(𝑡−𝜏)d𝜏

∞

−∞

�̅�rev
(𝑗)

(𝜔)�̅�rev
(𝑗)∗T(𝜔). (33) 

By combining Eqs. (31-33) the power into each subsystem at a given time and frequency can be 

calculated. This can be substituted into Eq. (29) to generate the time derivative of the energy in each 

subsystem. The equations can then be time-integrated numerically at a fixed frequency to generate 

both the time evolution of the energy in each SEA subsystem and the mean square correlation matrix 

of the response of the deterministic degrees of freedom. It can be noted that under steady excitation 

conditions, the equations collapse to the standard steady-state equations of Shorter and Langley [4] 

as shown in the appendix. 

3.4. Impulsive excitation 

If an impulse on the system acts on an SEA subsystem, then it can be applied as an initial condition on 

the energy of the subsystem using the formula given in [13]. If, however, the impulse is applied to the 

deterministic system, a more involved procedure is required. In this case, initially after the impulse, 

the response of the deterministic system will exhibit largely deterministic behaviour that does not fit 

into the Priestley formulation adopted above. However, provided a reasonable approximation of the 

evolutionary spectrum of the power input into the subsystems from the excited deterministic system 

can be made, the method should provide accurate results. 

The average response of the deterministic system due to the impulse and not including reverberant 

forces can be calculated from the impulse response of Eq. (18) and denoted 𝐪imp(𝑡). The power 

absorbed by the jth subsystem due to the impulse response of the deterministic system, denoted 

𝑝imp
(𝑗)

(𝑡), can then be calculated using Eq. (30) where the right-hand term is zero because the 

reverberant force is uncorrelated to the motion. However, the variable, 𝐪imp(𝑡), here is a 

deterministic function of time therefore does not take the assumed Priestley form of Eq. (8) and so 

the evolutionary spectrum of the power on the left-hand side of Eq. (31) does not follow automatically. 

An evolutionary spectrum formulation will be representative provided both the time and frequency 

content of the response are captured. A reasonable approximation of the time response can be found 

by taking a smoothed version of 𝑝imp
(𝑗)

(𝑡), denoted  �̅�imp
(𝑗)

(𝑡), which can be achieved using a moving 

mean filter. The frequency profile introduced into a subsystem from the impulse can be best estimated 

from the Fourier transform of the impulse response and is therefore calculated as the frequency 
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response that would be observed under steady-state band-limited loading. This can be calculated by 

combining the first term on the right-hand side of Eq. (31) with the terms involving external forcing in 

Eq. (32) where the forcing is band-limited to the frequencies of the impulse and is constant with time. 

This is equivalent to the steady-state approach of Eq. (14) in [4] which uses dynamic stiffness matrices. 

Denoting the frequency content of the power input to the jth subsystem as 𝑃imp
(𝑗)

(𝜔), the evolutionary 

spectrum of the power absorbed from the impulse can then be approximated as 

𝑝imp
(𝑗) (𝜔, 𝑡) = �̅�imp

(𝑗)
(𝑡)

𝑃imp
(𝑗)

(𝜔)

∫ 𝑃imp
(𝑗)

(𝜔)d𝜔
𝜔𝑢

𝜔𝑙

(34) 

where the normalisation has been applied such that ∫ 𝑝imp
(𝑗) (𝜔, 𝑡)d𝜔

𝜔𝑢

𝜔𝑙
= �̅�imp

(𝑗)
(𝑡). This is sufficient to 

calculate the evolutionary spectra of the energy in the subsystems and when the mean square 

correlation matrix of the deterministic response due to the subsystem energies and any external loads 

other than the impulse is calculated using Eq. (34), the mean square values from 𝐪imp(𝑡) must be 

added to generate the total response. 

 

4. Numerical validation 

The preceding theory is validated numerically in this section by comparing transient hybrid FE-SEA 

results to finite element (FE) results of systems containing plates and beams. The Lagrange-Rayleigh-

Ritz method and commercial FE package COMSOL are used to build an ensemble containing 500 

realisations of FE models in which the SEA components are randomised by adding 10 masses each of 

1% of the subsystem mass at random locations. 

4.1. Diffuse field reciprocity relationship 

In this subsection, the transient diffuse field reciprocity relationship discussed in Section 3.2 is 

investigated via an impulsively excited single plate system with a single spring to ground as shown in 

Figure 1. The reverberant force at the spring connection point can be found using the time domain 

version of Eq. (17) such that 

𝑓rev(𝑡) = 8√𝐷𝜌ℎ�̇�(𝑡) − 𝑘𝑥(𝑡) (35) 

where 𝐷, 𝜌 and ℎ are the flexural rigidity, density and thickness of the plate respectively and 𝑥(𝑡) is 

the displacement of the plate at the spring connection. The direct field of the plate provides only 

damping at a single point with damping constant given analytically as 8√𝐷𝜌ℎ. The plate is aluminium 
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with dimensions 0.4 × 0.7 × 0.002 m, Young’s modulus 71 GPa, density 2700 kg m-3, Poisson ratio 

0.33 and with all edges pinned to allow rotation, but zero displacement. Only out-of-plane modes 

were considered and an ensemble of 500 realisations was considered with an impulse containing 

frequencies in the range 1000-2000 Hz. The impulse was applied by taking the inverse Fourier 

transform of the frequency response over the frequency range of interest. 

 

Figure 1. Single plate system. 

Using Eq. (25), the mean square reverberant force can be compared to the total energy of the 

subsystem to explore the relationship between the two possible forms of the function 𝑑(𝑗)(𝜔, 𝑡). Since 

the timescale for the build up of the reverberant field is related to the timescale for energy transfer 

across the plate, denoted 𝑇rev, a reasonable estimate of the reverberant force may be given using 

𝑑(𝑗)(𝜔, 𝑡) = 1 − exp (−
𝑡

𝑇rev
) (36) 

where 𝑇rev can be approximated as the time taken for a wave at the centre frequency of the frequency 

range of interest to travel a representative length of the plate for example the mean of the length and 

width. For the case where the plate loss factor, 𝜂, is 0.03 and the spring stiffness is 6 × 107 N m-1, the 

mean square reverberant force is compared to the prediction from Eq. (24) with 𝑑(𝑗)(𝜔, 𝑡) = 1 and 

using Eq. (36) in Figure 2 for both an impulse and steady harmonic input.  
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(a)      (b) 

Figure 2. Mean square reverberant force at the spring connection (a) after an impulse and (b) steady 

harmonic forcing from simulations (solid) and predicted using Eq. (25) with 𝑑(𝑗)(𝜔, 𝑡) = 1 (dashed) 

and Eq. (36) (dash-dot). 

 

A number of differences between the simulated and predicted results are observed. In the time 

domain there is a short time delay while waves travel out from the impulse to the spring connection 

point followed by a distinct oscillatory pattern in the reverberant force soon after the impulse. The 

oscillations then die down and at larger times the prediction from Eq. (25) becomes accurate for both 

𝑑(𝑗)(𝜔, 𝑡) functions.  

The oscillations after the impulse are a deterministic feature caused by the direct field wavefronts 

travelling out from the impulse applying a force to the connection point both directly and after 

reflections from the boundaries. Over the ensemble of random plates, the waves become more 

scattered with time and so the deterministic features become averaged out. The response from the 

direct field is investigated in Figure 3 where the spring stiffness is reduced to zero meaning that the 

reverberant force depends only on the plate velocity at the point. The velocity at a point on an infinite 

plate from an impulse is known analytically and so the reverberant force from the direct field can be 

calculated and compared to the response from the ensemble of randomised plates. A number of 

reflections from the plate boundary have also been included by assuming reflection off the pinned 

edges simply inverts the sign of the incoming wave, and the resulting reverberant force prediction is 

seen to match the oscillations of the simulated results reasonably well until the field becomes diffuse. 

A more accurate representation of the reverberant forces could be devised using a method such as 

this to include the direct field response, although this is not explored further in this paper. 
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Figure 3. Mean square reverberant force at the spring connection with zero spring force after an 

impulse. Response from simulations (solid) and predicted from only the direct field with reflections 

(dashed). 

The interaction between the direct and reverberant field is more apparent under impulsive loading, 

although the two also co-exist under steady loading. In general, steady-state SEA-based methods 

assume subsystems have low damping and so the reverberant field is considerably larger than the 

direct field which is therefore neglected. Under impulsive loading with lower damping, the time over 

which the reverberant field acts would dominate over the early times over which the direct field acts 

and so by a similar argument, the direct field responses could be neglected. Under these conditions, 

prediction of the reverberant force using 𝑑(𝑗)(𝜔, 𝑡) = 1 is expected to be reasonable and the steady-

state and transient methods are expected to yield results of comparable accuracy. By using a higher 

fidelity form of the function 𝑑(𝑗)(𝜔, 𝑡) the range of applicability of the method may be increased, 

although the exact form of the function will depend on each individual circumstance and will inevitably 

complicate the method. 

4.2. Plate and beam system 

The system illustrated in Figure 4 and based on that used to validate the steady-state FE-SEA theory 

in [4] is investigated by comparing the transient hybrid FE-SEA method of Section 3 with FE 

simulations. The system consists of two plates coupled via point connections to a beam where the 

flexural wavefields of the plates are modelled using SEA and the beam is modelled using FE. The point 

connections are constrained to move vertically such that in-plane deformation of the plates is not 

generated by the flexure of the beam thus only flexural waves need to be considered in the plates. 

The plates and beam have the same properties as the system in Section 4.1 with plate dimensions 
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0.28 × 0.35 × 0.001 m and 0.3 × 0.35 × 0.00075 m, loss factor 0.01 and further details are 

documented in detail in [4].  

 

Figure 4. Plate and beam system. 

Both the benchmark simulations where the entire system is modelled using FE and the hybrid analysis 

where only the deterministic beam is modelled with FE contain a large number of nodes and therefore 

degrees of freedom. In order to reduce the number of degrees of freedom, a modal decomposition 

was performed and the modal rather than nodal degrees of freedom were used in Eq. (12) and the 

subsequent analysis. For the benchmark simulations, the modes of the unrandomised system were 

calculated and the system was randomised to create an ensemble by projecting additional random 

masses on the plates onto the modal basis functions. The same method is used in [4] where more 

details can be found. The frequency range of interest is 1500-2500 Hz below which the entire system 

contains approximately 171 modes and so conservatively, the first 300 modes were selected for the 

analysis. Similarly, the isolated beam system used as the FE part of the hybrid analysis contains 19 

modes below 2500 Hz and so 25 modes were selected for the hybrid analysis which was also 

performed in modal coordinates. 

An impulse containing frequencies in the range 1500-2500Hz is applied to one of the plates and the 

energy of the plates and the velocity response of a point approximately in the middle and at the top 

of the beam are displayed in Figure 5 from a full FE model and hybrid FE-SEA model. The hybrid 

method has been evaluated at 50 frequencies and results are shown both when 𝑑(𝑗)(𝜔, 𝑡) is set to 

unity and when it is set using Eq, (36). The initial energy in the excited plate is calculated using the 

method of [13] which provides an overprediction of approximately 50% most likely due to the effect 

of the beam on the plate, although the decay is well predicted. Overall the predictions are reasonably 

close to the average simulated values with a relatively small difference between the results from using 

the different 𝑑(𝑗)(𝜔, 𝑡) functions. A slightly lower and slower response is predicted using Eq. (36) due 
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to its time lag, although in this example using 𝑑(𝑗)(𝜔, 𝑡) = 1 provides slightly improved results both 

in terms of rise times and peak values. 

 

(a)      (b)  

 

(c) 

Figure 5. System response when an impulse is applied to a plate from simulations (solid) and 

transient hybrid method with 𝑑(𝑗)(𝜔, 𝑡) = 1 (dashed) and using Eq. (36) (dash-dot). (a) Plate one 

energy, (b) plate two energy and (c) mean square velocity of point on the beam. 

 

The mean square response of the observation point on the beam exhibits strong deterministic 

oscillations at low times due to the deterministic effects of the direct field discussed in Section 4.1. If 

these results are time-averaged to remove the oscillations, the hybrid method would provide a 

reasonable prediction, with at worst an approximately 50% underprediction. When the oscillations 

are included, at their peak they are approximately six times larger than the hybrid prediction. The 
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forces acting on the deterministic system could potentially be modelled with an improved model of 

the reverberant field build up including the direct field in more detail, but as it stands it is a deficiency 

in the method as it cannot exhibit these deterministic effects.  

Since SEA-based methods are approximate, they are often considered reasonable if they predict the 

response within 3 dB or approximately a factor of two. The general response of the system is predicted 

to within 3 dB and so the method can be considered comparable to other SEA-based methods. 

Additionally, steady-state hybrid FE-SEA results are most commonly plotted on a logarithmic scale 

which can, due to their range, hide errors that appear obvious on a linear scale such as those presented 

here. 

The evolutionary spectra of the plate energies and mean square velocity of a point on the beam from 

the transient hybrid FE-SEA method using 𝑑(𝑗)(𝜔, 𝑡) = 1 are presented in Figure 6. These cannot be 

directly compared with FE simulations as no such spectrum is calculated and so are presented to 

illustrate the time and frequency content in the response. It is clearly seen that the broad frequency 

content of the impulsively excited plate is filtered through the beam natural frequencies such that 

only frequencies around the beam resonances are passed through to the second plate. The relative 

magnitudes of the frequencies found at the point on the beam and the plate differ because a mode 

that passes energy between the plates easily may not exhibit a significant response at the observation 

point on the beam and vice versa. 
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(a)      (b)  

 

(c) 

Figure 6. Evolutionary spectra from the transient hybrid FE-SEA method of (a) plate one energy, (b) 

plate two energy and (c) mean square velocity of a point on the beam when an impulse is applied to 

a plate. 

Alternatively, the impulse could be applied to the beam, in which case the beam would initially 

oscillate in a relatively deterministic manner and inject energy into the plates. Figure 7 displays this 

case where the impulse is applied near one end of the beam and the beam observation point response 

has been smoothed using a moving average filter to more easily compare it to the transient hybrid 

method. Here the beam velocity predicted by the hybrid method matches the benchmark very closely 

because it largely consists of the deterministic impulse response of the beam with the plates applying 

effective damping which the hybrid theory picks up very well. The energy transfer into the plates is 

also well accounted for, with both the rise and decay times and peak energies matching the FE 

simulations closely giving approximately 16 and 22% underpredictions of the peaks. Here the form of 
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function 𝑑(𝑗)(𝜔, 𝑡) is less significant since energy builds up slowly within the subsystems and is 

therefore set to unity.  

  

(a)      (b)  

 

(c) 

Figure 7. System response when an impulse is applied to the beam from simulations (solid) and 

transient hybrid method (dashed). (a) Plate one energy, (b) plate two energy and (c) mean square 

velocity of point on the beam. 

The evolutionary spectra of the responses are displayed in Figure 8 where the dominant frequencies 

of the beam that are excited by the impulse are transmitted through to the plates. As before, different 

frequencies dominate in each plate because each beam mode shape may transmit energy more 

favourably into one plate than the other. The evolutionary spectra of the beam observation point 

predominantly consists of the deterministic response which is converted into evolutionary spectrum 

form by combining the time and frequency responses. The structure of the spectrum is therefore 

naturally an approximation, although the response in the time or frequency domain is accurate. 
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(a)      (b)  

 

(c) 

Figure 8. Evolutionary spectra from the transient hybrid FE-SEA method of (a) plate one energy, (b) 

plate two energy and (c) mean square velocity of a point on the beam when an impulse is applied to 

the beam. 

The transient hybrid FE-SEA method of Section 3 can also be applied when the loading is steady (or 

slowly time-varying), but the system has not reached dynamic equilibrium. Figure 9 displays the 

system response for the case where a steady band-limited random load is applied at a point on a plate 

when the system is initially at rest. The load is applied as white noise that only acts on the modes 

within the frequency band and for the FE simulations the equations of motion are reformulated into 

the non-stationary Lyapunov equation solved with numerical integration. The constant lines on the 

figures represent the responses calculated using steady-state theory and the transient responses are 

found to asymptote towards them showing that the transient hybrid method reduces to the steady-

state one. There are slight errors in the final values due to the calculation methods used. The form of 

the time responses predicted by the hybrid method match the simulations closely, although the final 
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value can be inaccurate due to the approximations in the steady-state method. This highlights that 

the transient method can be expected to yield results of a similar accuracy as the steady-state method. 

The times taken for the hybrid and benchmark simulations were 900 s and 1.6 × 104 s respectively 

meaning that for this case, the hybrid method provides an 18 times speed improvement. The 

simulations were performed on a single core and it is expected that the hybrid method could be sped 

up significantly with optimisation. 

  

(a)      (b)  

 

(c) 

Figure 9. System response when a steady load is applied to one plate and the system is initially at 

rest from simulations (solid) and transient hybrid method (dashed). Dash-dot and dotted lines 

represent response with steady-state excitation from simulations and the hybrid method of [4] 

respectively. (a) Plate one energy, (b) plate two energy and (c) mean square velocity of point on the 

beam. 
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The evolutionary spectra from the transient hybrid method are displayed in Figure 10. At large times, 

the spectra are stationary and represent the steady-state frequency responses with peaks at the 

natural frequencies of the beam as displayed in Figure 10(d) which compares the steady-state results 

in plate two with the evolutionary spectrum at a large time. 

 

(a)      (b)  

 

(c)     (d) 

Figure 10. Evolutionary spectra from the transient hybrid FE-SEA method of (a) plate one energy, (b) 

plate two energy and (c) mean square velocity of a point on the beam when a steady load is applied 

to one plate and the system is initially at rest. (d) Frequency content of energy in plate two from 

transient hybrid (solid) and steady-state hybrid (dashed) methods.  

Figures 11 and 12 display the time responses and evolutionary spectra when steady loading is applied 

to a point on the beam and the system is initially at rest. As with excitation on the SEA subsystem, the 

results asymptote towards the steady-state results, although the steady value from the two methods 

does differ. The form of the time histories from both the transient hybrid method and simulations 
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again agrees well, particularly for the mean square beam velocity which is predominantly determined 

by deterministic effects that are modelled accurately by the FE beam model. 

 

(a)      (b)  

 

(c) 

Figure 11. System response when a steady load is applied to a point on the beam and the system is 

initially at rest from simulations (solid) and transient hybrid method (dashed). Dash-dot and dotted 

lines represent response with steady-state excitation from simulations and the hybrid method of [4] 

respectively. (a) Plate one energy, (b) plate two energy and (c) mean square velocity of point on the 

beam. 

 

 



24 
 

 

(a)      (b)  

 

(c) 

Figure 12. Evolutionary spectra from the transient hybrid FE-SEA method of (a) plate one energy, (b) 

plate two energy and (c) mean square velocity of a point on the beam when a steady load is applied 

to a point on the beam and the system is initially at rest. 

 

5. Conclusions 

The hybrid FE-SEA approach for modelling structures containing regions best characterised by both FE 

and SEA has been extended to predict the structural response under impulsive and time-varying 

excitation. Following the same approach as Shorter and Langley [4], a system can be split into 

components with only a few distinct natural frequencies, best modelled using FE analysis, and 

components with high statistical overlap, best modelled with SEA.  

The Priestley formulation that encompasses the evolutionary spectrum of a random process has been 

used to represent both the deterministic degrees of freedom modelled with FE and the energies in 
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the SEA subsystems. These two sets of variables can be related via the diffuse field reciprocity 

relationship [16,17]. However, since this result applies to structures under steady loading, an 

amended transient form that accounts for the time taken for a diffuse field to build up in a subsystem 

has been explored. It was found that the direct wavefield dominates the response at times shortly 

after an impulse, but as the field becomes more diffuse with time, the diffuse field reciprocity 

relationship begins to apply, and the subsystem reverberant forces can be accurately predicted. 

A power balance equation, similar to the transient SEA equation, that investigates the power into each 

SEA subsystem has been derived and can be time-integrated to yield the time and frequency evolution 

of the subsystem energies and deterministic response. This method has been validated using FE 

simulations of a system consisting of two plates coupled by a beam and has shown the level of 

accuracy expected of an SEA-based approach in terms of both the energy in the SEA subsystems and 

the FE degrees of freedom as well as realistic qualitative time and frequency behaviour in the 

evolutionary spectra. However, the simulated results for the deterministic system exhibited oscillatory 

behaviour shortly after an impulse that was not predicted by the hybrid method. The oscillations are 

caused by the deterministic effects of the direct field in plates that are not included in the method. If 

greater accuracy is desired, a higher fidelity approach that incorporates the effects of both the direct 

and reverberant field could be devised. 
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Appendix: Reduction to steady-state hybrid FE-SEA method 

In this appendix, the steady response from the transient hybrid FE-SEA equations is shown to reduce 

to the response predicted by the steady-state hybrid FE-SEA method of [4] when a system is subjected 

to steady-state loading. Since [4] is concerned with dynamic stiffness matrices, denoted 𝐃, the system 

mass, damping and stiffness matrices used in this paper can be combined by changing any differential 

operators to multiplications by i𝜔. When using dynamic stiffness matrices, the conversion to the state-

space form of Eq. (18) is not required and to conform to the notation of [4] is not applied here.  

The time dependence can be removed simply from the evolutionary spectrum formulation, such that 

𝐐(𝜔, 𝑡) → 𝐐(𝜔). However, since the spectrum is Hermitian and double-sided this is not immediately 

equivalent to the frequency dependent terms used in the steady-state approach, denoted 𝐪ss(𝜔), 
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that generally represent the magnitude of a harmonic at a given frequency such that 𝐪(𝑡) =

𝐪ss(𝜔) cos(𝜔𝑡 + 𝜖), where 𝜖 is some phase. The two are related by 𝐪ss(𝜔) = 2𝐐(𝜔) for 𝜔 > 0. In 

what follows, expressions for 𝐐(𝜔) will be found. Additionally, it should be noted that the 

incorporation of system and therefore response randomness is achieved in an equivalent manner 

through the ensemble averaging in both the evolutionary spectrum formulation and the steady-state 

approach. 

In the steady-state case, a number of terms in the transient equations must be converted to their 

steady-state form for comparison with the equations of [4]. The following transformations take place 

𝑑(𝑗)(𝜔, 𝑡) → 1 (A. 1) 

𝐔(𝑗)(𝜔, 𝑡)𝐔(𝑗)∗T(𝜔, 𝑡) →
4𝛼𝐸𝑗(𝜔)

𝜔𝜋𝑛𝑗
Im [𝐃dir

(𝑗)
(𝜔)] (A. 2) 

∫ 𝐇(𝜔, 𝑡 − 𝜏 )𝑎(𝑗)(𝜔, 𝜏)e−i𝜔(𝑡−𝜏)d𝜏
∞

−∞

→ i𝜔𝐃tot
−1(𝜔). (A. 3) 

where the arrow represents both the collapse to steady-state form as well as from state-space to 

nodal coordinate representation. Equations (A.1) and (A.2) result because the wave field will be diffuse 

and not change with time under steady loading. The result of Eq. (A.3) follows since the integral yields 

the frequency response of the total deterministic system and the i𝜔 term is included because the 

velocities rather than displacements are of interest in the following power balance. 

Evaluation of the power into a subsystem using Eq. (31) can now be made by combining the steady-

state versions of Eqs. (32) and (33) to yield  

𝑝𝑗(𝜔) = ∑ Im [𝐃dir
(𝑗)

]
𝑚𝑛

{∑
4𝛼𝐸𝑘

𝜋𝑛𝑘
𝐃tot

−1Im [𝐃dir
(𝑘)

] 𝐃tot
−H

𝑁

𝑘
}

𝑚𝑛𝑚𝑛
+

∑ Im [𝐃dir
(𝑗)

]
𝑚𝑛

{𝐃tot
−1S𝑓𝑓

ext𝐃tot
−H}

𝑚𝑛𝑚𝑛
−

4𝛼𝐸𝑗

𝜋𝑛𝑗
∑ Im[𝐃tot

−1 ]𝑚𝑛Im [𝐃dir
(𝑗)

]
𝑚𝑛𝑚𝑛

     (A. 4)

 

where the arguments have been dropped and the identity ∑ {𝐀𝐁T}𝑚𝑚𝑚 ≡ ∑ 𝐀𝑚𝑛𝐁𝑚𝑛𝑚𝑛  has been 

applied to the final term. The sum over the 𝑁 subsystems in the first term on the right-hand side can 

be expanded as  

∑
4𝛼𝐸𝑘

𝜋𝑛𝑘
𝐃tot

−1Im [𝐃dir
(𝑘)

] 𝐃tot
−H

𝑁

𝑘
= ∑

4𝛼𝐸𝑘

𝜋𝑛𝑘
𝐃tot

−1Im [𝐃dir
(𝑘)

] 𝐃tot
−H

𝑁

𝑘≠𝑗
+                                     

                                                            
4𝛼𝐸𝑗

𝜋𝑛𝑗
𝐃tot

−1Im [𝐃tot
 − 𝐃d

 − ∑ Im [𝐃dir
(𝑘)

]
𝑁

𝑘≠𝑗
] 𝐃tot

−H (A. 5)
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where 𝐃d
  represents the dynamic stiffness of the deterministic system and a dynamic stiffness form 

of Eqs. (19) and (20) has been applied. Substituting Eq. (A.5) into Eq. (A.4) and noting that the final 

term in Eq. (A.4) cancels with the second term of Eq. (A.5) yields 

𝑝𝑗(𝜔) = ∑ Im [𝐃dir
(𝑗)

]
𝑚𝑛

{∑
4𝛼𝐸𝑘

𝜋𝑛𝑘
𝐃tot

−1Im [𝐃dir
(𝑘)

] 𝐃tot
−H

𝑁

𝑘≠𝑗
}

𝑚𝑛𝑚𝑛
−

                ∑
4𝛼𝐸𝑗

𝜋𝑛𝑗
Im [𝐃dir

(𝑗)
]

𝑚𝑛
{∑ 𝐃tot

−1Im [𝐃dir
(𝑘)

] 𝐃tot
−H

𝑁

𝑘≠𝑗
}

𝑚𝑛𝑚𝑛
−

∑
4𝛼𝐸𝑗

𝜋𝑛𝑗
Im [𝐃dir

(𝑗)
]

𝑚𝑛
{𝐃tot

−1 Im[𝐃d
 ]𝐃tot

−H}
𝑚𝑛𝑚𝑛

+   

∑ Im [𝐃dir
(𝑗)

]
𝑚𝑛

{𝐃tot
−1 S𝑓𝑓

ext𝐃tot
−H}

𝑚𝑛𝑚𝑛
.                      (A. 6)

 

The first and second terms on the right-hand side of Eq. (A.6) represent respectively the power into 

the jth subsystem from the reverberant fields of the other subystems and power from the reverberant 

field of the jth subsystem to the other subsystems. The third term represents power lost from the 

reverberant field of the jth subsystem to the damping of the deterministic system and the fourth term 

represents the power absorbed by the jth subsystem from external excitation. These terms can be 

substituted into the power balance equation, Eq. (29), with the time derivative term set to zero and 

the result is identical to the power balance of [4] and thus the transient method has been shown to 

reduce to the steady-state method of [4]. Additionally, in the same way the steady-state hybrid 

method reduces to SEA, the transient hybrid method reduces to TSEA [13].  
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