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Abstract

This paper examines the oscillatory behavior of complex viscoelastic systems with power law like relaxation behavior. Specifically, we use the

fractional Maxwell model, consisting of a spring and fractional dashpot in series, which produces a power-law creep behavior and a relaxation

law following the Mittag-Leffler function. The fractional dashpot is characterized by a parameter b, continuously moving from the pure viscous

behavior when b¼ 1 to the purely elastic response when b¼ 0. In this work, we study the general response function and focus on the oscillatory

behavior of a fractional Maxwell system in four regimes: Stress impulse, strain impulse, step stress, and driven oscillations. The solutions are pre-

sented in a format analogous to the classical oscillator, showing how the fractional nature of relaxation changes the long-time equilibrium behav-

ior and the short-time transient solutions. We specifically test the critical damping conditions in the fractional regime, since these have a

particular relevance in biomechanics. VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1122/1.4973957]

I. INTRODUCTION

The damping of free oscillations is a subject with a long

and rich history. However, there is less work available look-

ing at how the damping of oscillations depends specifically on

the viscoelasticity of a system, and in particular, the types of

viscoelasticity seen in biological tissues and complex com-

posite materials. The relaxation function in many such sys-

tems is distinctly nonexponential, which often referred to as a

distribution or spectrum of internal relaxation times. An alter-

native way to describe such complex viscoelasticity is via a

viscoelastic element characterized by a fractional time deriva-

tive. In this work, we examine the oscillatory behavior of a

viscoelastic element characterized by a fractional Maxwell

model [1–3]. The fractional Maxwell model is a generaliza-

tion of the classical model (based on the elastic and damping

elements in series) and successfully describes the relaxation

function of polymeric materials [4–7], biological tissues

[8–10], cells [11,12], and foods [13–15] over a large range of

time scales. It is readily generalized to a fractional Zener

model [16,17] for the description of viscoelastic solids (since

the Maxwell model ultimately produces a plastic flow in

response to a constant force). It is useful to be able to relate

the well-understood characteristics of viscoelastic behavior to

how a system dissipates energy in free oscillations. This in

particular can give insight into the role biological tissues have

in dissipating energy from their relaxation function.

This work draws from the rich field of fractional oscilla-

tors, with earlier rigorous work of Rossikhin and Shitikova

looking at its applications in viscoelasticity [18,19].

Fractional dynamics involves taking the integer order differ-

ential operators and replacing them with operators of a frac-

tional order [20,21]; however, in many papers which use

fractional dynamics there is no direct physical justification

for this. This is particularly true for harmonic oscillators

where the inertial term is taken as fractional (with arguably

unclear physical foundations). Here, we retain a standard

inertia effects, but include the fractional-Maxwell relaxation

function that models realistic viscoelasticity, and use it as

the origin of elasticity and damping to derive oscillatory

response as a result to several representative initial

conditions.

In this paper, we first review the linear viscoelasticity and

the corresponding relaxation function to establish a reference

point, and then justify the use of the fractional Maxwell model

and where it might apply. We then derive the general response

function of a viscoelastic element characterized by a given

relaxation function, G(t). Sections III A–C discuss the

response of the fractional Maxwell model to a stress impulse,

strain impulse, step stress, and driven oscillations, while draw-

ing an analogy to the classical case. Sections IV and V discuss

the frequency and decay of free oscillations for the fractional

Maxwell model. The interest here is to give insight into the

damping of oscillations in biological materials, which typi-

cally do have a more complicated viscoelasticity of a frac-

tional type. One example would be a tendon, an essential

mechanical element of large organisms, which should have

low damping and respond in a similar way to all frequencies

of oscillation to fulfill its biological function. On the other

hand, for other soft connective tissues it would be preferable

to be positioned close to critical damping conditions to pre-

vent injury by efficiently dissipating any excess mechanical

energy from impacts that could not be fully absorbed by mus-

cle (such as in running or landing from a jump).

II. VISCOELASTIC MODELS

In this section, we briefly review basic viscoelasticity

and examine relaxation functions. We also demonstrate the
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crossover between some of the phenomenological models

and how often it can be difficult to distinguish among them.

In linear viscoelasticity, the stress r arising in response to

some arbitrary strain, eðtÞ, is determined by the Boltzmann

superposition integral [22]

rðtÞ ¼
ðt

�1
Gðt� t0Þ_eðt0Þdt0; (1)

where G(t) is the characteristic linear response function of

the material, often called the relaxation function. We can see

that G(t) is measured by the system response to a step strain,

where _eðtÞ ¼ De � dðt0Þ and Eq. (1) becomes rðtÞ ¼ GðtÞ � De.
The Boltzmann superposition integral itself is the limit sum

over infinitesimal step strains determined by de ¼ ðde=dsÞds.

Figure 1(a) shows a schematic of typical relaxation curve,

which includes the key features of: (a) The instantaneous

response to step strain is often called the glass modulus; (b)

the modulus relaxes over some characteristic time, s, to an

equilibrium modulus Ge; (c) the amount of modulus relaxa-

tion is labeled as Gr.

The relaxation time s is only clearly defined in the case of

simple exponential relaxation GðtÞ ¼ Ge þ Gre
�t=s. However,

it is very rare that a practical material can be described with a

single exponential relaxation, except in the cases of transient

networks with a single rate of crosslink breaking [23]. The

attempts to rationalize a more complex relaxation response

often apply a “brute force” fit with multiple relaxation times,

the so called generalized Maxwell model. Another common

relaxation function that fits well with materials with a fractal

or hierarchical structure is the power law. This is often called

scale-free rheology as there is no end to relaxation that fol-

lows At�b at all probed time scales, with only the magnitude

A changing. An issue with power law relaxation is that there

is no finite modulus at t¼ 0, an issue usually avoided by using

the asymptotic power law 1=ð1þ AtbÞ.
Viscoelasticity is often described through phenomenolog-

ical models built of springs and dashpot elements of the basic

Maxwell model; the simplest alternatives being the

Kelvin–Voigt model where the spring and dashpot are con-

nected in parallel and the Zener model where there is one

additional elastic element in series with the Voigt frame.

However, to fit realistic relaxation functions a great many

dashpots and springs are often required, and with the number

of parameters increasing the basic physical sense rapidly dis-

sipates. The ideas of fractional viscoelasticity have been

developed to address the power-law relaxation observations

while retaining a fixed small number of fitting parameters. In

the words of [2], it achieves a “mimicry of memory.” In this

case, the dashpots are replaced with fractional dashpots

(sometimes called Scott-Blair elements), which on their own

follow power-law relaxation [24]. The use of fractional dash-

pot changes the constitutive equation from r ¼ gde=dt to

r ¼ gbdbe=dtb, where the fractional derivative is a formal

generalization of a derivative to noninteger order (which in

practice is only meaningful in the reciprocal representation

of Fourier or Laplace transformations). Sometimes, the frac-

tional Maxwell model is presented as two fractional dashpots

in series, which gives an extra fitting parameter; however,

for simplicity we focus on the case with just one fractional

dashpot. For a good introduction to fractional derivatives in

viscoelasticity, see [3,25], while the general matters of frac-

tional calculus can be reviewed in [26].

Table I shows several model viscoelastic relaxation func-

tions and their Laplace transforms. The fractional Maxwell

model is useful to model a variety of relaxation processes by

adding only one additional parameter, b. This is opposed to

more complicated models, such as multirelaxation models

which may need a great many parameters before a good fit is

found. It also differs from other relaxation functions, such as

the stretched-exponential and nonasymptotic power law,

which do not have phenomenological models to underpin the

empirical expressions. The step strain response of an isolated

fractional dashpot element is simply a power law of the form

At�b=C½1� b�, where C is gamma function. When b¼ 0 the

fractional dashpot acts as a perfectly elastic solid; as b
increases, the element becomes more viscous, until the point

of b¼ 1 is reached, when ðAt�1=C½0�Þ ¼ AdðtÞ becomes the

relaxation of a pure Newtonian fluid.

The fractional Maxwell model has its relaxation described

by the Mittag-Leffler function, Eb½�ðt=sÞb� (see Appendix A

for details), which behaves very similarly to the nonasymp-

totic power law, 1=ð1þ ðt=sÞbÞ, being equal to one at t¼ 0

and converging on the power law at long times. For small b,

the Mittag-Leffler function is fitted exceptionally well by the

asymptotic power law, which is also roughly equivalent to

the stretched exponential with 1=2 exp½1� ðt=sÞb=2�. In

many situations, these functions are equivalent, or practically

indistinguishable over typical experimental time scales [27],

as shown in Fig. 2.

FIG. 1. (a) Scheme of a typical stress relaxation curve, where Gr þGe is the

instantaneous (glass) response to a step strain. (b) Scheme of the Maxwell

model with the two elements in series, with an inertial element (mass)

attached to one end. When b¼ 1, the fractional dashpot becomes a regular

damping element of the classical Maxwell model. The variable x0eðtÞ is the

distance of the mass from the wall, where x0 is the rest length of the system.

TABLE I. An example of several relaxation (response) functions and their

corresponding Laplace transforms. Eb½z� is the Mittag-Leffler function of

rank b, see text.

Model Response, G(t) (Pa) ~GðsÞ (Pa s)

Kelvin–Voigt gdðtÞ þ Ge gþ Ge

s

Maxwell Gr expð�t=sÞ Gr
1

sþ 1=s

Fractional Maxwell GrEb½�ðt=sÞb� Gr
sb�1

sb þ ð1=sÞb

Fractional dashpot
A

C½1� b� t
�b A sb�1
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It is clear that in a great many situations the Mittag-

Leffler function is as good a fit, if not better, than the power-

law, asymptotic power law, or a stretched exponential. It has

the key benefits of a finite value at zero time, having few

parameters, and having a compact Laplace transform which

is useful for any analytical calculations. The Mittag-Leffler

function is frequently used to fit the relaxation in polymeric

materials [28]. In particular, in biological tissues [29–31]

and cells [32–34], the stress relaxation often exhibits low

power laws, which lend themselves being fit to the Mittag-

Leffler function. For example, the Mittag-Leffler function

has been used to fit human breast tissue cells relaxation func-

tion with b � 0:5 [35].

The following sections examine the oscillatory response

of the fractional Maxwell model in response to an impulse,

impulses strain, step strain, and driven oscillations. In each

case, we first solve the classical Maxwell model to highlight

the differences and similarities.

III. GENERAL SOLUTION

Let us examine the simple model of a mass attached to a

generic viscoelastic element, with the other end fixed, and

derive the general solution for its motion, see Fig. 1(b). The

position of the mass is governed by its inertia, an external

force it is subjected to, F(t), and the relaxation function of

the viscoelastic material, G(t). Thus, the equation of motion

takes the form

m
d2x tð Þ

dt2
¼ �A

ðt

�1
G t� sð Þ de

ds
dsþ F tð Þ; (2)

where x ¼ x0eðtÞ is the position of the mass, A is the cross-

section area, and e the strain in the viscoelastic element. This

is a balance between inertial forces, the stress in the visco-

elastic element given through the Boltzmann superposition

integral, and the external force. As dx=dt ¼ x0de=dt, Eq. (2)

can be written in terms of stress and strain

d2e tð Þ
dt2

¼ � 1

l

ðt

�1
G t� sð Þ de

ds
dsþ 1

l
r tð Þ; (3)

where l ¼ mx0=A is the reduced mass and rðtÞ ¼ FðtÞ=A is

the external stress, respectively. The Laplace transformation

of Eq. (3) gives a general relation

s2~e sð Þ � se 0ð Þ � _e 0ð Þ þ
~G sð Þ
l

s~e sð Þ � e 0ð Þ
� �

¼ ~r sð Þ
l

: (4)

We assume that until t¼ 0 the mass was stationary, such that

eðtÞ ¼ 0 and _eðtÞ ¼ 0 (no infinite acceleration is allowed).

The nontrivial initial condition that initiates motion is that at

t¼ 0 a stress rðtÞ is applied. Under these conditions, we can

write the general solution in Laplace space

~e sð Þ ¼
~r sð Þ

ls2 þ s ~G sð Þ
: (5)

To find the strain response as a function of time, we must

first substitute into Eq. (5) the Laplace transform of the

external stress, which reflects the specific mode of dynamic

experiment, and also the specific viscoelastic relaxation

function, which reflects the physical nature of the material.

After this, the inverse Laplace transformation has to be per-

formed. Table II shows the four characteristic experiments,

which produce initial conditions on the externally applied

stress that we look at in this paper, along with their Laplace

transforms. The characteristic of an impact is a “stress

impulse” (this solution is also called the transfer function).

In this case, the external condition is a step-function change

in momentum (or velocity) centered at t¼ 0, which manifests

itself as a delta-function stress. A step stress is equivalent to

having a weight suddenly attached, allowing the system to

FIG. 2. (a) The Mittag-Leffler function for small b compared with tradition-

ally used relaxation functions, illustrating how difficult it could be to distin-

guish between them in practice. (b) The Mittag-Leffler function for a much

higher b ¼ 0:5 compared to the nonasymptotic power and power law, again

highlighting the similarity at long times.

TABLE II. Four external stress conditions and their corresponding Laplace

transforms. The first three cases arise from a discontinuity that occurs

between the ambient state before t¼ 0 and the solutions for t> 0.

Initial condition rðtÞ ðPaÞ ~rðsÞ ðPa sÞ

Impulse stress R0dðtÞ R0

Step stress r0 r0=s

Impulse strain lDeðddðtÞ=dtÞ lDe
Driven oscillation r0 sinðxtÞ r0x=ðx2 þ s2Þ
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find a new equilibrium position. The strain impulse is the act

of “plucking” the mass, that is, moving it instantaneously

from zero strain to some finite strain and then releasing: The

stress function used in this initial condition may seem

strange, but the same general solution in Laplace space can

be found by having no initial stress and setting eð0Þ to De. In

this case, an instantaneous change in strain is reflected by a

step-function change in position at t¼ 0, which corresponds

to the derivative of the delta function in force. The final ini-

tial condition is the response to driven oscillations, which is

another focus of this paper.

In each case, before solving for the fractional Maxwell

model for each case of the initial condition, we first solve for

the classical Voigt and Maxwell models. The Voigt model

has the same solutions as the linear damped oscillator, which

we use to remind the reader of the familiar classical results.

The solution of the classical Maxwell model (b¼ 1) allows

to draw a useful analogy and highlight the origin of the dif-

ferent terms in the fractional Maxwell solutions. For clarity,

Table III lists the general solutions in Laplace space, for the

initial conditions and models looked at in this paper. The

expressions in this table use shorthand notations, which are

important to list here to avoid ambiguity, as they will be fre-

quently used below. In the Voigt model, x2 ¼ x2
eq � k2,

with k ¼ g=2l, and x2
eq ¼ Ge=l. In the Maxwell models, the

commonly used parameters take the form: x2 ¼ x2
1 � k2,

with k ¼ 1=2s ¼ Gr=2g, and x2
1 ¼ Gr=l.

A. Response to a stress impulse

In this case, the momentum is instantaneously changed at

t¼ 0 from 0 to some finite value, i.e., from stationary the

mass is given an initial velocity via impact. The initial stress

condition can be written as rðtÞ ¼ R0dðtÞ where R0 has units

of kg m�1 s�1. The equation of motion is Laplace space is

then

~e sð Þ ¼
R0

ls2 þ s ~G sð Þ
: (6)

The classical case of damped oscillations is equivalent to

using the Voigt model, where an elastic restoring force and a

viscous damping force act in parallel (viscous dissipation

could either be due to internal or external friction). Taking the

inverse Laplace transform of the solution in Table III gives

the three modes of response depending on whether x is zero,

real, or imaginary. These modes are shown in Table IV.

These three solutions correspond to the classical cases of

under-damped, over-damped, and critically damped

oscillation, respectively. The response in this case of a Voigt

model, as expected, settles to an equilibrium at zero strain, and

has no long-term memory of it being subjected to an impulse.

Now looking at the Maxwell model, and taking the

inverse Laplace transformation of the solution listed in Table

III, we obtain

e tð Þ ¼ 2kR0

lx2
1

1� x2
1

2kx
cos xtþ /ð Þexp �ktð Þ

� �
; (7)

see Appendix B for derivation. At t¼ 0, the terms in the

bracket cancel exactly, as we would expect. At long times,

the oscillatory part decays and the strain settles at the equi-

librium position e1 ¼ R0=g [after simplifying the prefactor

in Eq. (7)]. This is the unrecoverable deformation that hap-

pened through the dashpot creep in a Maxwell model. As

with the Voigt model, we can identify three distinct regimes

of underdamped oscillations for x1 > k, slow overdamped

relaxation for x1 < k, and the fastest approach to equilib-

rium for x1 ¼ k (critical damping).

Now turning to the factional Maxwell model, taking the

inverse Laplace transformation of the corresponding solution

in Table III is more difficult due to noninteger powers; the

full derivation is discussed in Appendix C. Once solved, the

response of this viscoelastic system to a stress impulse takes

the form

e tð Þ ¼ R0

lsx2
1

�
tb�1

sb�1C b½ � � A cos xtþ /½ �exp �ktð Þ

� sin pb½ �
p

ð1
0

q xð Þx�b exp �xt=sð Þdx

�
; (8)

where the values of shorthand parameters A, /, and the func-

tion qðxÞ are listed in Appendix C. The values of x and k are

determined by the roots of s2 þ s�1s2�b þ x2
1 ¼ 0, because

for the inverse Laplace transformation of a function with sim-

ple poles, the only time dependent part is the exponential, i.e.,

the locations of the poles directly determine the frequency

and decay rate of the oscillations. When b¼ 1, we recover the

classical Maxwell model. The integral term vanishes quickly

and is mainly responsible for stabilizing the behavior at short

times, in particular the asymptotic behavior of the power law

as t! 0. Equation (8) actually proves a conjecture made in

[36], referring to a criterion for the crossover between liquid-

and solidlike behavior of a viscoelastic system.

There is a small technical point to be made here. In gen-

eral, the integral with qðxÞ in Eq. (8) cannot be evaluated

TABLE III. General solutions for the strain in Laplace space, ~eðsÞ, obtained from Eq. (5) and Tables I and II. The notations for x, x1, and k in each case are

detailed in the text.

Model ~eðsÞ: Impulse stress ~eðsÞ: Impulse strain ~eðsÞ: Step stress

Kelvin–Voigt
R0

lx
x

ðsþ kÞ2 þ x2
De

s

ðsþ kÞ2 þ x2

r0

l
s�1

ðsþ kÞ2 þ x2

Maxwell
R0

l
1þ 2ks�1

ðsþ kÞ2 þx2
De

sþ 2k

ðs� kÞ2 þ x2

r0

l
s�1 þ 2ks�2

ðsþ kÞ2 þ x2

Fractional Maxwell
R0

l
1þ s�bs�b

s2 þ s�bs2�b þ x2
1

De
sþ s�bs1�b

s2 þ s�bs2�b þ x2
1

r0

l
s�1 þ s�bs�1�b

s2 þ s�bs2�b þ x2
1
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analytically. In most cases, it converges well and can easily

be found numerically, and the dependence on key parameters

extracted explicitly. However, in some cases (usually when

xs� 1) the convergence is poor and the result could be less

clear. To address this issue, here and in similar expressions

below, we deliberately isolate the integral part to play as

small a role as possible, bringing out the explicit long-time

contributions which can be solved exactly.

Figure 3 shows how the oscillatory behavior changes

with the index b, reminding that at small fraction b the

damping element is close to an elastic unit in its response

(hence the significant oscillations are retained). In this plot,

the parameters are chosen such that x1 ¼ 1=2s, corre-

sponding to the critical damping regime. Hence when b is

close to one, the relaxation to the equilibrium strain is fast.

The power-law determines the long time behavior and the

equilibrium strain, with the decaying oscillations happening

about this value. At short times, all solutions for a given b
converge, as all start with the same velocity and have the

same spring constant, Gr. The system differs from the clas-

sical case in two key ways, first it has a long time memory

of the impact owing to the power-law creep, whereas in the

classical case the system is at rest as soon as the oscillations

decay. The second difference is the system will always

oscillate and there is no critical damping or overdamped sit-

uation in the strict sense, a consequence of there being no

purely real solutions to s2 þ s�1s2�b þ x2
1 ¼ 0 when

0 < b < 1. However, there are still values of x2
1 and s

which give the fastest decay of oscillations; this is discussed

in more detail in Sec. V.

B. Response to strain impulse

This regime practically is analogous to plucking a string

or a suspended mass, and is perhaps less common in standard

rheological testing. The inverse Laplace transformation of

the Voigt model solution illustrated in Table III is given by

the standard decaying oscillation

e tð Þ
De
¼ xeq

x
cos xtþ /ð Þexp �ktð Þ; (9)

where / ¼ cos�1ðx=xeqÞ, and as before: k ¼ 2g=l;
x2

eq ¼ Ge=l, and x2 ¼ x2
eq � k2. Here, we will once again

have the underdamped, overdamped, and critical damped

regimes when x is real, imaginary, and zero, respectively.

The strain rate can be simplified to a compact expression

1

De
de tð Þ

dt
¼ �

x2
eq

x
sin xt½ �exp �ktð Þ: (10)

There is a subtle point here that the rate is not exactly out

of phase with the strain, which is a direct consequence of the

damping; as k! 0, then cos�1/! 0 and they become

properly 90� out of phase.

For the classical Maxwell model, the strain response is again

e tð Þ
De
¼ x1

x
cos xtþ /ð Þexp �ktð Þ: (11)

Here, / ¼ cos�1ðx=x1Þ, and k ¼ 1=2s; x2
1 ¼ Gr=l, and

x2 ¼ x2
1 � k2. The expressions have the same form as in

the Voigt model, although the k term has a different origin.

It is clear why the Voigt model settles to zero strain in equi-

librium, as there will always be a restoring force with the

spring and dashpot in parallel. In this specific case of strain

impulse, the dashpot of the Maxwell model does not extend

in response to the initial instant deformation, which is taken

by the spring; the system will then oscillate about zero strain,

dissipating energy evenly above and below zero strain, even-

tually settling at zero strain.

The solution of the fractional Maxwell model is

e tð Þ
De
¼ A cos xtþ /½ �exp �ktð Þ

� sin pb½ �
p

ð1
0

q xð Þexp �xt=sð Þdx; (12)

where the detailed derivation, solutions for x and k, and the

expressions for parameters A, /, and qðxÞ are given in

Appendix D. As with the classical Maxwell model, the solu-

tion returns to zero strain at equilibrium for the same funda-

mental reason of specific response to the strain impulse. In

this case, the integral term has to decay slowly enough that it

forces the strain remain below De at early times, countering

the larger than one amplitude of the oscillations. However,

as in the earlier case of stress impulse, this term must decay

more quickly than oscillations themselves, leaving the

decaying oscillations the only relevant response at longer

times. Figure 4 shows that at b close to one, that is, for

an almost Newtonian dashpot, the response is close to the

FIG. 3. The normalized response to a stress impulse, plotted as a function of

scaled time t=s, for b ¼ 0:1; b ¼ 0:5, and b ¼ 0:9. Parameters are chosen

such that x1 ¼ 1=2s, corresponding to the critical damping condition for

the classical Maxwell model. The dashed lines show eðtÞ / tb�1, which

becomes the equilibrium strain at long times. Note that all systems follow

the same linear-growth response to an impact at t < s.

TABLE IV. The cases of underdamping, overdamping, and critical damping

in the Voigt model, corresponding to the classical damped oscillator. The
notations for x and k are detailed in the text.

x real
R0

lx
sinðxtÞe�kt

x imaginary
R0

ljxj sinhðjxjtÞe�kt � R0

2lk
e�

lx2
eq

2k t

x¼ 0
R0

l
te�kt
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critical damping. Whereas at small b the fractional element

is closer to an elastic unit by its nature, and the response is

only a weakly decaying oscillation.

C. Response to step stress

This represents one of the common rheological experi-

ments or situations, often called the creep compliance test.

Taking the straightforward inverse Laplace transformation of

the Voigt model solution for this initial condition (Table III),

we obtain the decaying oscillation with respect to the equi-

librium elastic deformation

e tð Þ ¼ r0

Ge

� �
1� xeq

x
cos xtþ /ð Þexp �ktð Þ

� �
; (13)

where the parameters are the same as in the earlier cases of

the Voigt model.

The solution to the classical Maxwell model reflects the

equilibrium creep under constant stress

e tð Þ ¼ _ertþ er 1� 1

x2
1s2

� �
� erx1

x
cos xtþ/½ �e�t=2s: (14)

Again, the parameters are the same as in the earlier examples

of Maxwell model. The characteristic relaxation time after

the onset of stress is s ¼ g=Gr; er ¼ r0=Gr is the extension

of the spring element in the Maxwell model, and _er ¼ r0=g
is the extension rate of the dashpot element in this creep

experiment. As we might expect, the transient regime has

damped oscillations on top of the standard creep behavior of

the Maxwell model.

Now examining the fractional case of the step stress

response of a material, whose intrinsic relaxation is

described by the Mittag-Leffler function, the solution for the

time-dependent deformation is

e tð Þ ¼ er

�
tb

sbC 1þ b½ � �
1

x2
1s2

t2 b�1ð Þ

s2 b�1ð ÞC 2b� 1½ � þ 1

�A cos xtþ /½ �e�kt � sin pb½ �
p

ð1
0

q xð Þe�xt=sdx

�
:

(15)

As usual, the details of derivation, expressions for x and k,

as well as A, /, and qðxÞ are given in the corresponding

Appendix E. As in Eq. (8), we evaluate the integral contain-

ing qðxÞ numerically. To address a possibility of poor con-

vergence, we isolate this integral part to play as small a role

as possible, bringing out the explicit long-time contributions

which can be solved exactly.

Using the analogy with the classical case, we denote er ¼
r0=Gr to be the constant contribution to strain from the

extension of the spring under constant stress. Figure 5 illus-

trates the role of the fractional dashpot. Rather than linear

(Newtonian) creep, we now find the power-law growth of

deformation under the constant stress, following the tb law at

long times. The second power-law term in Eq. (15), propor-

tional to t2ðb�1Þ, represents a transient decay (since b < 1).

This term, together with the integral term of qðxÞ, controls

the initial regime and account for the time it takes for the

mass to accelerate until the baseline creep reaches the equilib-

rium regime. As with the classical case, this is a more signifi-

cant effect when the mass is large and the viscosity is low, as

it takes a long time to accelerate to the equilibrium velocity;

however, this is only relevant when b is close to one. The

response of a material with low b is closer to a purely elastic

element, with oscillations taking a very long time to decay.

This type of oscillatory behavior is commonly seen in creep

experiments where the instrument inertia cannot be avoided,

and has been observed in materials with fractional Maxwell

behavior [13,15], where they fit the oscillations with a numer-

ical model.

IV. RESPONSE TO DRIVEN OSCILLATIONS

In this section, we look at the response of our model vis-

coelastic materials to driven oscillations. As is typical in this

case, we will focus on the equilibrium response, rather than

transient solutions. At equilibrium, the solution for

the amplitude of oscillations driven by an external stress

r0 sinðxtÞ takes the form

FIG. 4. The normalized response to a strain impulse as a function of scaled

time, t=s, for b ¼ 0:1; b ¼ 0:5, and b ¼ 0:9. The parameters are chosen

such that x1 ¼ 1=2s, corresponding to the critical damping regime of the

classical Maxwell model.

FIG. 5. The normalized response of the fractional Maxwell model to the

step stress, plotted as a function of scaled time, t=s, for b ¼ 0:1; b ¼ 0:5,

and b ¼ 0:9. As before, we choose x1 ¼ 1=2s, corresponding to critical

damping in the classical Maxwell model. The dashed lines show the com-

bined power-law terms in Eq. (15), settling for the equilibrium creep at long

times. Note that, as in Figs. 3 and 4, the response at short times (t < s) is the

same for all systems, in this case a parabolic constant-acceleration profile.
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e tð Þ ¼ r0

lx2
1

A sin xtþ /½ � ¼ erA sin xtþ /½ �; (16)

with

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xcð Þ2b þ 2 xcð Þb cos

pb
2

� �

x4 þ xcð Þ2b x2 � 1ð Þ2 þ 2 x2 � 1ð Þ xcð Þbx2 cos
pb
2

� �
vuuuuut ;

/ ¼ tan�1

xcð Þb sin
pb
2

� �

x2 þ x2 � 1ð Þx2b þ xcð Þb 2x2 � 1ð Þcos
pb
2

� �
0
BBB@

1
CCCA:

As in other sections of this paper, we use notations: x ¼
x=x1 and c ¼ x1s ¼ g=

ffiffiffiffiffiffiffiffi
Grl
p

. Figure 6 shows the normal-

ized strain oscillation amplitude, A, as a function of scaled

frequency, x=x1 for different values of fraction b. Plots (a)

and (b) show the result for c ¼ 0:01 and c¼ 100, respec-

tively. One could think of low c meaning low viscosity, but

high mass and/or relaxation modulus; high c represents low

inertia spring and high viscosity situation. However, such

interpretation is only strictly valid when b¼ 1.

For small c, the dashpot is relatively weak and extends

very easily, and as the spring and fractional dashpot are in

series this means the spring plays a minor role in the oscilla-

tions. When b is close to one, with lower frequency the

amplitude gets much larger as the dashpot can flow much

further for a given stress in with a longer period of

oscillation. This is essentially the power law response of a

fluid. Consequently, as frequency tends to zero the amplitude

will tend to infinity, just as we would expect for constant

stress on the classical Maxwell model [see Eq. (14)]. This is

different in the Voigt model, or any model with a spring in

parallel to the dashpot, where the amplitude would tend to

the value of the spring with no damping elements. As b gets

lower, a resonance peak starts to rise, as both the value cb

gets larger and the dashpot becomes a weak solid contribut-

ing to the elasticity, which also allows the spring to play a

greater role as the magnitudes become comparable. As we

have a quasispring and an ordinary spring in series, their

elastic contributions will also add in series, so the effective

spring constant will be lower than the contribution of the

weakest element, which in this case is the fractional dashpot

due to the small c. As b decreases and cb increases, the dash-

pot becomes more solid and the resonant frequency will

increase, converging when b¼ 0. At b¼ 0, the fractional

dashpot becomes a spring with modulus Gr, and the resonant

frequency becomes x1=
ffiffiffi
2
p

and the amplitude is double that

of a single spring on its own.

In the case when c is large and b is close to one, the dash-

pot will play relatively less role when compared to the spring

and we see a typical spring resonance curve centered at x1.

However, for very low frequencies, the amplitude still

becomes large as even though the dashpot has a high viscos-

ity—it is still free to extend given enough time. As b
decreases, so will cb, and the fractional dashpot will become

more comparable to the spring element, that is, contributing

elastically. So we see both a lowering of the resonance peak

due to greater movement of dashpot and higher damping, as

well as a lowering of the resonant frequency. Once again, as

b tends to zero the fractional dashpot will become a spring

of modulus Gr and the resonant frequency is x1=
ffiffiffi
2
p

.

The shift of resonant frequency with b is shown in greater

detail in Fig. 7. Here, we plot the resonance frequency

(defined as a position of the peak amplitude) as a continuous

function of b for several values of c. In all cases, as b tends

to zero, the resonant frequency becomes x1=
ffiffiffi
2
p

, here cb ¼
1 and we left with two springs of the same modulus in series,

irrespective of the value of viscosity g. For c close to, or

below the critical damping condition (c ¼ 1=2), there is no

FIG. 6. The normalized amplitude of driven oscillation, A, plotted as a func-

tion of the scaled frequency, x=x1, for several values of b labeled in the

graph: (a) For c ¼ 0:01, and (b) for c¼ 100.

FIG. 7. The resonance frequency, x�=x1, plotted as a function of b for

four values of c ¼ x1s. The red crosses indicate where the resonance peaks

cease to exist.
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resonant peak for large b, that is, when the viscous element

in series is sufficiently small (perhaps counter-intuitively, in

the Maxwell model higher viscosity means less damping,

due to the series assembly). The value of b needed to pro-

duce a resonant peak becomes smaller with c, as the frac-

tional dashpot needs to become more elastic before the

spring in series can start storing energy, rather than energy

simply being dissipating through the fractional dashpot.

V. CRITICAL DAMPING

In contrast to the case of steady driven oscillation above,

in this section we discuss the frequency and decay rate of

oscillations during the transient regime. We specifically

focus on how much damping occurs in different viscoelastic

models in comparable conditions. All initial conditions for

the imposed stress give essentially the same transient

response in terms of oscillation frequency and damping rate.

What differs between each case is the amplitude and phase

difference of the oscillations, as well as the equilibrium

strain. The oscillation frequency and the damping rate are

determined by the location of the poles on the complex

plane of the Laplace transformation (i.e., the solutions of

s2 þ s�bs2�b þ x2
1 ¼ 0): There are always two solutions,

which are complex conjugates of each other. The real part,

�k, determines the decay rate of oscillations, while the

imaginary part of these solutions, x, determines the fre-

quency of the transient oscillations (see Appendix C for

details). Figure 8 shows the plots of the dimensionless decay

rate, jkj=x1, and the dimensionless frequency, x=x1, as a

function of the dimensionless variable c ¼ x1s. We have

seen in Sec. IV that c essentially measures the relative

“strength” of the dissipative element compared to the inertial

spring element of the mechanical model.

The two plots in Fig. 8 show how, for a given natural fre-

quency x1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Gr=l

p
, the decay rate and oscillation fre-

quency change with changing the relaxation time s for a

given b. Remember that in terms of the fractional Maxwell

model, s ¼ ðb=GrÞ1=b (see Appendix A for details). For the

classical Maxwell model, when b¼ 1, the peak decay rate is

reached exactly at c ¼ 1=2 (i.e., the viscosity 2g ¼
ffiffiffiffiffiffiffiffi
Grl
p

).

The value of the peak decay rate is k ¼ x1, meaning that

transient oscillations decay over the half-period of the natu-

ral frequency. For c < 1=2, the oscillation frequency is zero,

and there are no oscillations with an increasingly long steady

decay rate (the classically overdamped regime). Conversely,

for c > 1=2, the oscillation frequency rapidly converges to

x1 with an increasingly longer decay rate, corresponding to

the classically underdamped regime.

However, these intuitive benchmarks become more

obscure in the fractional relaxation case. On decreasing b,

the decay rate has a much less defined peak, which becomes

lower but also more spread out. This means that even though

the maximum decay rate is lower, the significant damping

occurs over a broad range of parameters (e.g., for systems

with a different effective mass). As with the classical

Maxwell case, the oscillation frequency increases with

increasing c; however, with b 6¼ 1 there is no classical

overdamped region—there always is a residual oscillation in

a fractional viscoelastic system.

Figure 9 shows the critical damping factor c� ¼ s�x1, at

which there is a peak in the largest decay rate jkj in Fig. 8(a).

In the classical case, this point also corresponds to the sharp

transition between the overdamped and underdamped

regimes. As b decreases, the damping peak moves to lower

c. In the limiting case below b � 0:1 the peak is at very low

FIG. 8. The normalized decay constant, jkj=x1, plot (a), and the normal-

ized frequency of transient oscillations, x=x1, plot (b), as functions of

dimensionless variable c ¼ x1s for several values of b labeled in the

graphs. Classically, the regime c < 1=2 is overdamped, while at c > 1=2

one finds underdamped oscillations; fractional nature of complex viscoelas-

ticity makes this distinction blurred.

FIG. 9. The value of c at which the “critical damping” occurs: c� ¼ s�x1,

i.e., the position of peaks in Fig. 8(a), plotted as a function of continuously

changing fraction b. Note that at low b the damping peaks become so diffuse

that the whole notion of critical damping becomes ill defined.
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values of c, with a simple scaling relationship of

c� ’ ð1=2Þ1=b. In general, for low b the peak value of damp-

ing becomes irrelevant, as the system acts primarily elasti-

cally with light damping that changes little over a broad

range of xs.

The interesting behavior occurs for the intermediate range

of fractionality, 0:1 < b < 0:9, where we still have signifi-

cant damping but over a broader range of parameters. A vis-

coelastic material following the classical Maxwell relaxation

behavior would be quite limited in terms of damping oscilla-

tions, as for a given s and Gr, the reduced mass, l, would

have be tuned very carefully to give significant damping (the

peak around the critical damping point is very sharp). In the

fractional Maxwell model, for a given s, Gr, and b, the

requirements on reduced mass are much less stringent for

significant damping of oscillations to be present. This argu-

ment could be tuned to any other parameter from the relevant

set, e.g., for a range of Gr values for a fixed mass. This

behavior is useful where the reduced mass (i.e., mass, area,

and initial length of the construction) can change in the pro-

cess, but damping is still required at a similar level.

A good example would be in the case of biological con-

nective tissues, such as ligaments, tendons, or fascia. Each of

these tissues has their own specific role and associated visco-

elastic properties. For instance, tendon exhibits a low-

exponent power-law relaxation behavior [37], and as such

fits well with fractional Maxwell with a low b < 0:05. This

agrees with the perceived biological function of a tendon,

which is to passively store elastic energy allowing the mus-

cle and soft tissues to dissipate energy at their own preferred

rate without over-stretching [38,39]. It would be detrimental

for a tendon function to have b much greater than 0.1: It

needs to act as an almost purely elastic element for a whole

range of parameters (reduced mass, modulus, viscosity, rate

of deformation), and that would be difficult to achieve in a

construct made of inherently dissipative soft-matter materi-

als. But by making b very low, it can remain in this univer-

sally nondamping mode.

In contrast, soft tissues (such as fascia) have relaxation

functions with higher values of b 	 0:2� 0:4, meaning that

they can damp significantly over a relatively broad range of

reduced mass, without the need to directly alter their

mechanical properties. This is useful in running or in

response to impact, where oscillations after a stress impulse

must be rapidly dissipated in soft tissue (e.g., before the next

stride) to avoid resonance and reinforcement of oscillation

amplitude [40]. Similarly, natural rubber typically has a

power-law decay of relaxation function with b 	 0:6, and

not surprisingly it is widely used in broad impact or vibration

damping situations (from earthquake protection of buildings

and resonance-proofing of bridges to vibration-insulation of

cooling fans on circuit boards).

VI. CONCLUSIONS

Fractional viscoelasticity is a relatively established field,

driven by the practical need to describe materials with com-

plex rheological response in a universal manner, using as

few fitting parameters as possible [3,25]. We were especially

motivated by the work of Rossikhin and Shitikova [18,19],

who pioneered many steps that we had to follow in this

work. Specifically, they have correctly solved the problem of

stress impulse [obtaining the transfer function in Eq. (8) and

Appendix C]. We reproduced their solution here with a par-

ticular focus on underlying physical processes, separating

oscillating and nonoscillating parts, and highlighting relevant

regimes. Several other types of rheological experiment (ini-

tial conditions) studied here, and the analysis of driven oscil-

lation and critical damping is new in this field. Each of these

problems has relevance in a different experimental setting,

and these were discussed in the respective sections above.

In this paper, we focused on one specific aspect of com-

plex viscoelasticity, which involves inertial effects and

damping; in particular, it was having qualitative and signifi-

cant effects in damping of oscillations. There are several

other areas where the fractional calculus (and specifically—

Maxwell model) plays a big role, for instance in the prob-

lems of anomalous diffusion in such media [41,42] and in

associated approach to ageing [43].

One may ask why we have paid relatively less attention to

the versions of Kelvin–Voigt model, which many would

associate with a basic viscoelastic solid (as opposed to the

classical Maxwell model that inherently shows plastic flow

at long times). First of all, such intuitive understanding of

Maxwell model representing viscoelastic creep is no longer

valid once b < 1: We have seen how the fractional visco-

elastic element effectively represents the internal elasticity

of the system. There is also a subtle and little known issue

with Voigt model in the fractional case, as both Naber [20]

and Rossikhin [18] have noticed: Once a fractional damping

element is inserted, there is a very abrupt transition in behav-

ior (between b¼ 1 and b ¼ 0:99). In the nominally over-

damped regime, one expects [and indeed finds in the

Maxwell model, cf. Fig. 8(a)] the rate of decay to be slow.

However, as soon as the small fractionality is added to the

Voigt model, the rate of decay becomes increasingly faster

as one increases the magnitude of g relative to
ffiffiffiffiffiffiffiffi
Grl
p

. At the

same time, the fractional Voigt model is entirely valid and

well-behaved (and thus corresponds to relevant experiments)

in the underdamped regime. Our main point is that in

fractional-relaxation systems, the Maxwell model is ade-

quate for viscoelastic solids and predicts physically correct

effects in oscillation and energy damping.
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APPENDIX A: RELAXATION FUNCTION OF THE
FRACTIONAL MAXWELL MODEL

The relationship between stress and strain in the fractional

Maxwell model arises from the series combination of the

elastic element governed by r1 ¼ Gre1, and the fractional
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dashpot element governed by r2 ¼ bdbe2=dtb. As the ele-

ments are in series e ¼ e1 þ e2 and r ¼ r1 ¼ r2 in equilib-

rium, giving the stress strain relationship of

r tð Þ þ sb dbr tð Þ
dtb

¼ sbGr
dbe tð Þ

dtb
; (A1)

where sb ¼ b=Gr. The dimensionality of the parameter b
must be a function of index b for the units to balance. The

relaxation function is the stress response to a step strain, and

it can be shown either through Laplace transform or directly

through the analysis of fractional derivatives [25] that this is

given by

GðtÞ ¼ GrEb½�ðt=sÞb�; (A2)

where s ¼ ðb=GrÞ1=b is the characteristic relaxation time

scale and Eb½z� is the Mittag-Leffler function named in honor

of the Swedish mathematician G€osta M. Mittag-Leffler. The

function is defined as the series expansion, which is conver-

gent for the whole of the complex plane

Eb z½ � :¼
X1
n¼0

zn

C bnþ 1ð Þ : (A3)

This is a generalization of the basic exponential function,

since when b¼ 1 one recovers Cðnþ 1Þ ¼ n! For a more

detailed discussion, see Appendix E in the textbook [25].

APPENDIX B: IMPACT IN A MAXWELL MODEL:
INVERSE LAPLACE SOLUTION

“Impact” is the condition that we referred to as stress

impulse above. Starting from the equation of motion in

Laplace space we first rearrange it to isolate singularities in

denominator. The first step is

~e sð Þ ¼ R0

l
1þ 2ks�1

sþ kð Þ2 þ x2


 R0

l
1

x
x

sþ kð Þ2 þ x2
þ 2k

s sþ kð Þ2 þ x2

� �
0
@

1
A: (B1)

The second term can be split further

1

s sþ kð Þ2 þ x2

� � 
 1

x2 � k2ð Þs
þ 1

x2 � k2

�s� 2k

sþ kð Þ2 þ x2


 1

x2
1

 
1

s
� sþ k

sþ kð Þ2 þ x2

� k
x

x

sþ kð Þ2 þ x2

!
: (B2)

Finally, we obtain the equation in a form where we can eas-

ily look up standard Laplace transforms

~e sð Þ ¼
2kR0

lx2
1

 
1

s
� sþ k

sþ kð Þ2 þ x2

� k
x

1� x2
1

2k2

� �
x

sþ kð Þ2 þ x2

!
: (B3)

The three terms above correspond to the following parts in

the equation of motion in time:

e tð Þ ¼ 2kR0

lx2
1

 
1� cos xtð Þexp �ktð Þ

� k
x

1� x2
1

2k2

� �
sin xtð Þexp �ktð Þ

!
; (B4)

which can be assembled in compact form by joining the

oscillating functions

e tð Þ ¼ 2kR0

lx2
1

1� x2
1

2kx
cos xtþ /ð Þexp �ktð Þ

� �
; (B5)

where / ¼ cos�1ð2kx=x2
1Þ.

APPENDIX C: IMPACT IN A FRACTIONAL
MAXWELL MODEL: INVERSE LAPLACE SOLUTION

Here, we consider the stress impulse situation again.

The equation of motion in Laplace space can be manipulated

into a form with isolated dimensionless singularities in

denominator

~e sð Þ ¼ R0

l
1þ s�bs�b

s2 þ s�bs2�b þ x2
1

¼ R0

x2
1l

1

zb
� 1þ zbð Þz2 1�bð Þ � c2

z2 þ z2�b þ c2

( )
; (C1)

where 0 � b � 1; z ¼ ss and c ¼ x1s. The solution can

then be written as the sum of two functions

e tð Þ ¼ R0

x2
1l

� �
f1 tð Þ � f2 fð Þ
	 


; (C2)

each representing the inverse Laplace transform of a term in

Eq. (C1). For both functions, the inverse Laplace transform

is part of the contour integral shown in Fig. 10, which due to

the Cauchy theorem must be equivalent to the sum of

enclosed residues. The paths along the negative real axis are

branch cuts which account for the fractional power in the

functions. The transformation involves calculating the fol-

lowing contour integrals:

f1 tð Þ ¼ 1

2p i

ðcþi1

c�i1
~f1 zð Þexp zt=sð Þd z=sð Þ

¼ 1

s

X
Residues�

X
Branch cuts

� �
: (C3)

It can be shown that the function ~f 1ðsÞ has no residues, so

only the branch cuts contribute. The branch cuts are the

two path integrals from �1 to 0 and 0 to �1, where we
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substitute in z! �z ¼ z expðipÞ for the first integral and

z! �z ¼ z expð�ipÞ for the second integral

f1 tð Þ ¼ 1

2psi

ð1
0

~f1 ze�ipð Þexp �zt=sð Þdz

� 1

2psi

ð1
0

~f1 zeipð Þexp �zt=sð Þdz

¼ 1

2psi

ð1
0

e�zt=s

zbe�ipb
� e�zt=s

zbeipb

� �
dz

¼ 1

2psi

ð1
0

e�zt=s

zb
eipb � e�ipbð Þdz

¼ sin pb½ �
ps

ð1
0

z�be�zt=sdz ¼ sin pb½ �tb�1

psb

ð1
0

x�bexdx

¼ tb�1

sb

sin pb½ �C 1� b½ �
p

¼ tb�1

sbC b½ � ; (C4)

where we used the substitution x ¼ zt=s, and the identities

C½a� ¼
Ð1

0
xa�1e�xdx and p=sin½ap� ¼ C½1� a�C½a�. It can

be quickly checked that a Laplace transform of this result

gives 1=zb.

The second part of the inverse Laplace transform of ~f2ðzÞ
has complicated residues and branch cuts and requires careful

analysis. As before, the branch cuts are given by substituting

z ¼ �z ¼ z expðipÞ to the integral from �1 to 0 and z ¼
�z ¼ z expð�ipÞ to the integral from 0 to �1 such thatX

Branchcuts¼ 1

2pi

ð1
0

~f2 zeipð Þe�zt=sd z=sð Þ

� 1

2psi

ð1
0

~f2 ze�ipð Þe�zt=sd z=sð Þ

¼ 1

2psi

ð1
0

"
1þzbeipbð Þz2 1�bð Þe2ip 1�bð Þ�c2

z2þz2�beip 2�bð Þþc2

� 1þzbe�ipbð Þz2 1�bð Þe�2ip 1�bð Þ�c2

z2þz2�be�ip 2�bð Þþc2

#
e�zt=sdz

¼� sin pb½ �
sp

ð1
0

q xð Þx�be�xt=sdx: (C5)

We are left with a purely real integral over x, with a function

in the integrand given by

q xð Þ ¼ x4�2b þ x2 2c2 þ x2
� �

þ 2x2�b c2 þ x2
� �

cos pb½ �
c4 þ x4�2b þ x2 2c2 þ x2ð Þ þ 2x2�b c2 þ x2ð Þcos pb½ � :

(C6)

Changing variables gives

X
Branch cuts ¼ � sin pb½ �tb�1

psb

ð1
0

q
ys
t

� �
y�be�ydy ;

(C7)

multiplying the numerator and denominator of q ys
t

� �
by t4.

Note that as t! 0, the function takes a limit q! 1 and the

branch cuts simplify to �tb�1=ðsbC½b�Þ canceling the identi-

cal term in f1ðtÞ. This is a delicate but important point that

prevents an unphysical divergence of inverse power-law sol-

utions at t! 0. As t increases, the value of q will decrease

for any given y, and due to the exp½�y�, this results in the

integrand getting small rapidly. When x > c or y > x1s2=t,
q will once again tend to 1 owing to the y4 term dominating

over c. However, by this time exp½�y� will be very small. In

summary, the role of the branch cuts here is to counter the

large value of f1ðtÞ at early times, but then it quickly van-

ishes and has no influence on the equilibrium position or rel-

evant regime of damped oscillations.

To calculate the residues, we must first find the location

of the poles by solving z2 þ z2�b þ c2 ¼ 0. This is most eas-

ily done by substituting in polar form z ¼ reih and separating

into real and imaginary parts

r2 cos½2h� þ r2�b cos½ð2� bÞh� þ c2 ¼ 0;

r2 sin½2h� þ r2�b sin½ð2� bÞh� ¼ 0: (C8)

These equations can only be simultaneously be satisfied if

the solution is to the left of the imaginary axis, and there are

clearly two solutions which are complex conjugates of each

other (i.e., at h and �h). The pair of simultaneous equations,

for ðr; hÞ, are more usefully represented as

c2 ¼ sin bh½ �Þ
sin 2� bð Þh½ � �

sin 2� bð Þh½ �
sin 2h½ �

� �2=b

(C9)

and

r ¼ � sin 2� bð Þh½ �
sin 2h½ �

� �1=b

: (C10)

In the region of p=2 < h < p; sin½bh� is always positive and

sin½2h� is always negative, hence Eq. (C9) is only satisfied if

p=2 < h < p=ð2� bÞ where sin½ð2� bÞh� will be positive.

The poles can be found to be first solving Eq. (C9) for the

argument, h, for given values of b, s, and c, this can then be

substituted in Eq. (C10) to find the absolute value.

With the two poles (z1 and z2) known, the residues can

now be calculated, as these are simple poles. The result is

FIG. 10. The path for the contour integral of inverse Laplace transformation.
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X
Residues ¼ lim

z!z1

z� z1ð Þ
1þ zbð Þz2 1�bð Þ � c2

z2 þ z2�b þ c2

ezt=s

s

( )
þ lim

z!z2

z� z2ð Þ
1þ zbð Þz2 1�bð Þ � c2

z2 þ z2�b þ c2

ezt=s

s

( )
: (C11)

Taylor expanding each denominator about the pole and taking the limits leaves

X
Residues ¼

c2 � z
2 1�bð Þ
1 1þ zb

1

� �
2z1 þ 2� bð Þz1�b

1

ez1t=s

s
þ

c2 � z
2 1�bð Þ
2 1þ zb

2

� �
2z2 þ 2� bð Þz1�b

2

ez2t=s

s

¼ c2 � z�b
1 z2

1 þ z2�b
� �

2z1 þ 2� bð Þz1�b
1

ez1t=s

s
þ

c2 � z�b
2 z2

2 þ z2�b
2

� �
2z2 þ 2� bð Þz1�b

2

ez2t=s

s

¼ c2 1þ z�b
1

2z1 þ 2� bð Þz1�b
1

ez1t=s

s
þ c2 1þ z�b

2

2z2 þ 2� bð Þz1�b
2

ez2t=s

s

¼ c2

s
zb

1 þ 1

2zbþ1
1 þ 2� bð Þz1

ez1t=s þ c2

s
zb

2 þ 1

2zbþ1
2 þ 2� bð Þz2

ez2t=s; (C12)

where we have used the relation z2
1;2 þ z2�b

1;2 þ c2 ¼ 0. As z1 ¼ z�2, and z1 ¼ reip ¼ sð�kþ ixÞ, this can be simplified toX
Residues ¼ A cos½xtþ /� expð�ktÞ: (C13)

This gives the full solution as

e tð Þ ¼ R0

lx2
1s

tb�1

sb�1C b½ � �
sin pb½ �

p

ð1
0

q xð Þx�b exp �xt=sð Þdx� A cos xtþ /½ �exp �ktð Þ
 !

; (C14)

where the last term, containing most of the relevant information about the response, has the shorthand parameters

A ¼ c2 1þ r2b þ 2rb cos bh½ �
r2b þ r2 1� b=2ð Þ2 þ r1þb 2� bð Þcos 1� bð Þh½ �

 !1=2

(C15)

and

/ ¼ tan�1 � 2� bð Þr sin h½ � � rb 2 sin bh½ � þ 2� bð Þr sin 1� bð Þh½ �ð Þ
2r2b þ 2� bð Þr cos h½ � þ rb 2 cos bh½ � þ 2� bð Þr cos 1� bð Þh½ �ð Þ

 !
: (C16)

When b¼ 1, the decay integral vanishes, the power-law becomes a constant, and the solution is that of the classical Maxwell

model. From examining the integrand, it becomes apparent that if c is small, then qðxÞ � 1: If this is the case, the integral will

be equivalent to the power-law decay term, canceling it out and leaving only the oscillating part. For anything other than very

small c, the integral term will vanish relatively quickly. The power-law relaxation characterizes the long-term response of the

system to the impulse, determining the equilibrium point about which any oscillations occur. It also implies that for b < 1, the

system will eventually return to the original zero-strain value. That is, for any b < 1 the fractional Maxwell model retains a

degree of elasticity, although this relaxation could take a very long time for larger b.

APPENDIX D: STRAIN IMPULSE IN THE FRACTIONAL MAXWELL MODEL: INVERSE LAPLACE SOLUTION

The equation of motion for the Mittag-Leffler model in response to a strain impulse in Laplace space is given by

~e sð Þ
De
¼ sþ s�bs1�b

s2 þ s�bs2�b þ x1

 s

zþ z1�b

z2 þ z2�b þ c2
; (D1)

where x2
1 ¼ Gr=l; z ¼ ss, and c ¼ x1s. As the numerator is always finite for 0 � b � 1, there are only two poles occurring

when the denominator is zero. Then, as with Appendix C, the solution is given by

1

2pi

ðcþi1

c�i1

~e sð Þ
De

exp stð Þds ¼ 1

2psi

ðc0þi1

c0�i1

~e zð Þ
De

exp zt=sð Þdz ¼
X

Residues�
X

Branchcuts: (D2)

The branchcuts are given by
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X
Branchcuts ¼ 1

2psi

ð1
0

~e zeipð Þ
De

� ~e ze�ipð Þ
De

� �
e�zt=sdz ¼ sin pb½ �

p

ð1
0

q xð Þe�xt=sdx; (D3)

where

q xð Þ ¼ c2x1�b

c4 þ x4�2b þ x2 2c2 þ x2ð Þ þ 2x2�b c2 þ x2ð Þcos pbð Þ : (D4)

The poles are in the same location as those in Appendix C and determined by Eqs. (C9) and (C10). So,

X
Residues ¼ z1 þ z1�b

1

2z1 þ 2� bð Þz1�b
1

ez1t=s þ z2 þ z1�b
2

2z2 þ 2� bð Þz1�b
2

ez2t=s; (D5)

as z1 ¼ z�2; z1 ¼ reip ¼ sð�kþ ixÞ, and a cos½xt� þ b sin½xt� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

cos½xtþ tan�1ð�b=aÞ� this can be simplified to

X
Residues ¼ A cos½xtþ /� expð�ktÞ; (D6)

where

A ¼ 1� 1� b=4ð Þ þ rb cos bh½ �
1þ r2b þ 2rb cos bh½ �

 !�1=2

; and / ¼ tan�1 � brb sin bh½ �
2� bþ 2rb þ 4� bð Þrb cos bh½ �

 !
;

giving the full equation of motion as

e tð Þ
De
¼ A cos xtþ /½ �exp �ktð Þ � sin pb½ �

p

ð1
0

q xð Þexp �xt=sð Þdx: (D7)

APPENDIX E: STEP STRESS IN THE CLASSICAL AND FRACTIONAL MAXWELL MODELS:
INVERSE LAPLACE SOLUTION

The solution to the Maxwell mode is given by

~e sð Þ ¼
r0

l

� �
s�1

s2 þ s ~G sð Þ=l
¼ r0

l

� �
1þ 2ks�1

s sþ kð Þ2 þ x2

� �

¼ r0

lx2
1

2k
s2
þ 1� 4k2

x2
1

 !
1

s
� sþ k

sþ kð Þ2 þ x2

 !
þ k

x
4k2

x2
1
� 3

 !
x

sþ kð Þ2 þ x2

0
@

1
A

¼ _e1
s2
þ e1 1� _e1

sx2
1

� �
1

s
� sþ k

sþ kð Þ2 þ x2
� k

x
x

sþ kð Þ2 þ x2

 !
� 2k

x
x

sþ kð Þ2 þ x2

 !

¼ _er

s2
þ er 1� 1

x2
1s2

� �
1

s
� sþ k

sþ kð Þ2 þ x2

 !
� 1

xs
3� 1

x2
1s2

� �
x

sþ kð Þ2 þ x2

 !
; (E1)

where k ¼ 1=2s; x2 ¼ x2
1 � k2; x2

1 ¼ Gr=l, and s ¼ g=Gr . er ¼ r0=Gr and is the extension of the spring element in the

Maxwell model in a creep experiment, and _er ¼ r0=g and is the extension rate of the dashpot element in a creep experiment.

The inverse is given by

e tð Þ ¼ _ertþ er 1� 1

x2
1s2

� �
1� cos xt½ �e�t=2s
� �

� 1

xs
3� 1

x2
1s2

� �
sin xt½ �e�t=2s

� �

¼ _ertþ er 1� 1

x2
1s2

� �
� erx1

x
cos xtþ /½ �e�t=2s; (E2)

where
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/ ¼ tan�1 1

2sx
1� x2

1s2

1þ x2
1s2

 !" #
¼ cos�1 x

x1
1� 1

x2
1s2

� �� �
: (E3)

The equation of motion for the fractional Maxwell model is given by the Laplace transform of Mittag-Leffler function. The

response to a step stress in Laplace space is given by

~e sð Þ
r0=lð Þ ¼

s�1�b sb þ s�bð Þ
s2 þ s�bs2�b þ x1


 s3 1þ zb

z1þb z2 þ z2�b þ c2ð Þ ; (E4)

where x2
1 ¼ Gr=l; z ¼ ss, and c ¼ x1s. With further rearranging, we get

~e zð Þ
r0=s3lð Þ ¼

1

z z2 þ z2�b þ c2ð Þ þ
1

z1þb z2 þ z2�b þ c2ð Þ

¼ 1

c2

1

z
þ 1

z1þb
� zþ 2z1�b þ z1�2b

z2 þ z2�b þ c2

 !

¼ 1

c2

1

z
þ 1

z1þb
� 1

c2

1

z2b�1
� 1

c2

zþ 2z1�bð Þc2 � z3�2b � z3�3b

z2 þ z2�b þ c2

 !
:

The inverse Laplace transformation is then composed of four distinct terms

e tð Þ ¼ r0s
x2
1l

f1 tð Þ þ f2 tð Þ � f3 tð Þ � f4 tð Þ
	 


; (E5)

with

f1 tð Þ ¼ L�1 1

z


 �
tð Þ; f2 tð Þ ¼ L�1 1

z1þb


 �
tð Þ; f3 tð Þ ¼ L�1 1

c2

1

z2b�1


 �
tð Þ; f4 tð Þ ¼ L�1 1

c2

zþ 2z1�bð Þc2� z3�2b� z3�3b

z2þ z2�bþ c2

( )
tð Þ:

The first function, f1ðtÞ, is simply a constant

f1 tð Þ ¼ L�1 1

z


 �
tð Þ ¼ L�1 1

ss


 �
¼ 1

s
; (E6)

and will correspond to the equilibrium strain in the spring part of the fractional Maxwell model. For f2, the integral can be split

into two parts, the first is the branch cuts and the second is small circular path integral about the origin. The circular path inte-

gral can be written as

1

2pi

þ
c

ezt

z1þb
dz ¼ 1

2pi

ð�p

p

etqeih

q1þbeih 1þbð Þ iqeihdh; (E7)

this does not vanish as q! 0 so there is a problem here. However, with analogy to Eq. (C4) we can trial the solution

f2 tð Þ ¼ tb

sbþ1C 1þ b½ � ; (E8)

and see if we recover the Laplace transform

~f 2 sð Þ ¼
ð1

0

tb

s1þbC 1þ b½ � e
�stdt ¼

ð1
0

xb

s1þbs1þbC 1þ b½ � e
�xdx; ~f 2 zð Þ ¼

1

z1þb

1

C a½ �

ð1
0

xa�1e�xdx ¼ 1

z1þb
;

which is what we expected. By analogy, we can use a similar trial solution for f3ðtÞ

f3 tð Þ ¼ 1

c2s2b�1

t2b�2

C 2b� 1½ � ; (E9)

which again we can check via the Laplace transform
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~f 3 sð Þ ¼
ð1

0

t2b�2

c2s2b�1C 2b� 1½ � e
�stdt ¼ s1�2b

c2s2b�1C 2b� 1½ �

ð1
0

x2b�2e�xdx; ~f 3 zð Þ ¼ 1

c2z2b�1C a½ �

ð1
0

xa�1e�xdx ¼ 1

c2z2b�1
:

Looking at ~f 4ðzÞ, we have

Branch cuts ¼ 1

2pisc2

ð0

�1

zþ 2z1�bð Þc2 � z3�2b � z3�3b

z2 þ z2�b þ c2
ezt=sdzþ

ð�1
0

zþ 2z1�bð Þc2 � z3�2b � z3�3b

z2 þ z2�b þ c2
ezt=sdz

 !

¼ 1

2pisc2

 ð0

�1

�zþ 2z1�beip 1�bð Þð Þc2 � z3�2beip 3�2bð Þ � z3�3beip 3�3bð Þ

z2 þ z2�beip 2�bð Þ þ c2
e�zt=sdz

þ
ð�1

0

�zþ 2z1�be�ip 1�bð Þð Þc2 � z3�2be�ip 3�2bð Þ � z3�3b

z2 þ z2�be�ip 2�bð Þ þ c2
e�zt=sdz

!

¼ sin pb½ �
psc2

ð1
0

q xð Þe�tx=sdx;

where

q xð Þ ¼ x2 c2 þ 2 cos 2pb½ � c2 þ x2
� �

þ 2x2
� �

þ 2x3 cos pb½ � c2 þ x2�2b þ x2
� �

� c2xbþ1 2c2 þ x2
� �

x4 þ x2b c2 þ x2ð Þ2 þ 2xbþ2 c2 þ x2ð Þcos pb½ �
; (E10)

and as before made the change of variable from z! �z ¼ zeip for the upper integral and z! �z ¼ ze�ip for the lower inte-

gral, which after rearranging results in a solely real integral.

Next, we need to look at the part contributed by the residues, as with the previous solution we have simple poles which are

complex conjugates of each other

X
Residues¼ 1

sc2

X
i¼1;2

ziþ 2z1�b
i

� �
c2� z3�2b

i � z3�3b
i

2ziþ 2� bð Þz1�b
i

ezit=s ¼ 1

sc2

X
i¼1;2

zb
i z2

i þ z2�b
i þ z2�b

i

� �
c2� z2�b z2

i þ z2�b
� �

z1þb 2ziþ 2� bð Þz1�b
i

� � ezit=s

¼ 1

sc2

X
i¼1;2

zb
i �c2þ z2�b

i

� �
c2þ z2�bc2

z1þb 2ziþ 2� bð Þz1�b
i

� � ezit=s ¼ 1

s

X
i¼1;2

z2
i þ z2�b � c2zb

i

z1þb 2ziþ 2� bð Þz1�b
i

� � ezit=s

¼� c2

s

X
i¼1;2

1þ zb
i

z1þb 2ziþ 2� bð Þz1�b
i

� � ezit=s; (E11)

where we have used the relation z2
1;2 þ z2�b

1;2 þ c2 ¼ 0. As z1 ¼ z�2; z1 ¼ reip ¼ sð�kþ ixÞ, and a cos½xt� þ b sin½xt�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

cos½xtþ tan�1ð�b=aÞ�, this can be simplified to

X
Residues ¼ � c2

s
A cos xtþ /½ �exp �ktð Þ; (E12)

where

A ¼ 1

r2
1� b

1� b=4ð Þ þ rb cos bh½ �
1þ r2b þ 2rb cos bh½ �

 !�1=2

;

and

/ ¼ tan�1 � 2þ 2r2b � b
� �

sin 2h½ � þ rb 2� bð Þsin 2� bð Þh½ � þ 2rb sin 2þ bð Þh½ �
2þ 2r2b � bð Þcos 2h½ � þ rb 2� bð Þcos 2� bð Þh½ � þ 2rb cos 2þ bð Þh½ �

 !
;

so we find that

f4 tð Þ ¼ � c2

s
A cos xtþ /½ �exp �ktð Þ � sin pb½ �

ps

ð1
0

q xð Þe�tx=sdx : (E13)

Combining all the elements together has the full solution in the form
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e tð Þ ¼ r0s
x2
1l

�
1

s
þ tb

sbþ1C 1þ b½ � þ
1

c2s2b�1

t2b�2

C 2b� 1½ �

þ c2

s
A cos xtþ /½ �e�kt þ sin pb½ �

ps

ð1
0

q xð Þe�tx=sdx

�
:

(E14)

APPENDIX F: DRIVEN OSCILLATIONS

The general oscillating solution in response to the driving

force r0 sin½xt� takes the form in Laplace space

~e sð Þ ¼ r0

l
x

s2 þ x2ð Þ
s�1

s2 þ s ~G sð Þ=l
: (F1)

With the application of fractional Maxwell model, this

becomes

~e sð Þ ¼
r0

l
x

s2 þ x2ð Þ
1þ s�bs�b

s2 þ s�bs2�b þ x2
1

� � ; (F2)

and using the substitutions of z ¼ ss; c2 ¼ s2x2
1, and

a ¼ xs, we get

~e zð Þ ¼ r0s3a
l

1

zþ iað Þ z� iað Þ
1þ z�b

z2 þ z2�b þ c2
: (F3)

We are interested in the equilibrium response rather than the

transient response, which comes about from the poles caused

by z ¼ 6ia. The branch cuts will vanish as t!1, as will

the other two residues as these poles will always have a neg-

ative real part. So keeping only the parts that do not vanish

at t ¼ 1, the solution becomes

e t!1ð Þ ¼ 1

s

X
i¼1;2

lim
z!zi

z� zið Þ~e zð Þezt=s
h i

¼ r0s2a
l

X
i¼1;2

1

2zi

1þ z�b
i

z2
i þ z2�b

i þ c2
ezi=s; (F4)

As z1 ¼ z�2; z1 ¼ eip=2 ¼ isx, and a cos½xt� þ b sin½xt�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

sin½xtþ tan�1ðb=aÞ�, this can be simplified to

e tð Þ ¼ r0

l
A sin xtþ /½ �; (F5)

where

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xcð Þ2b þ 2 xcð Þb cos

pb
2

� �

x4 þ xcð Þ2b x2 � 1ð Þ2 þ 2 x2 � 1ð Þ xcð Þbx2 cos
pb
2

� �
vuuuuut ;

and

/ ¼ tan�1
xcð Þb sin

pb
2

� �

x2 þ x2 � 1ð Þx2b þ xcð Þb 2x2 � 1ð Þcos
pb
2

� �
0
BBB@

1
CCCA;

where x ¼ x=x1 and c ¼ x1s ¼ g=
ffiffiffiffiffiffiffiffi
Grl
p

.
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