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Abstract

This paper studies a procedure to combine individual forecasts that achieve

theoretical optimal performance. The results apply to a wide variety of loss

functions and no conditions are imposed on the data sequences and the indi-

vidual forecasts apart from a tail condition. The theoretical results show that

the bounds are also valid in the case of time varying combination weights,

under specific conditions on the nature of time variation. Some experimental

evidence to confirm the results is provided.

Keywords: Forecast Combination, Model Selection, Multiplicative Up-
date, Non-asymptotic Bound, On-line Learning.

JEL: C53, C14.

1 Introduction

This paper considers the problem of online combination of individual forecasts to

improve the prediction error in terms of a variety of loss functions. The forecast

combination problem has attracted much attention in the econometrics literature

and the review article of Timmermann (2004) discusses the most recent advances.

The present study is directly related to Yang (2004). The combination weights

are derived using one of the recursive algorithms introduced in the machine learn-

ing literature (Kivinen and Warmuth, 1997, Cesa-Bianchi, 1999, and Herbster and
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Warmuth, 2001, and Chapter 11 in the recent monograph Cesa-Bianchi and Lugosi,

2006) and differs slightly from Yang (2004). In Yang (2004) the prediction error

is compared to the prediction error of the best individual forecast. The predic-

tion error of the present algorithm is compared to the best achievable combination

weights and this is an improvement. Yang (2004) derives bounds that hold in ex-

pectation and do not require bounded random variables, but the conditions used

are somehow restrictive. In particular, his results require the existence of the mo-

ment generating function for the forecast errors and are restricted to loss functions

that are basically quadratic (or powers of a quadratic, but imposing additional

restrictive tail conditions). The present results hold for more general data series

(e.g. the moment generating function does not need to exist) and a wide variety of

loss functions are allowed. Moreover, the optimal combination weights are allowed

to change overtime. Clearly, all these extra flexibility comes at a price: the bounds

derived are much weaker than the ones in Yang (2004, Theorem 4). Given that

also the algorithms are different, the results given here are complementary and par-

ticularly useful when the more restrictive conditions in Yang (2004) do not apply.

This paper also complements Sancetta (2006) in three ways: (1.) interest lies on

forecast combination of individual sequences (2.) the procedure is compared to the

best forecast combination with insight and not just to the best individual forecast,

(3.) the theoretical bounds are expressed in terms of probabilities and expectations

to avoid the assumption of bounded sequences.

The best combination of individual forecasts may lead to improvement over all

the single individual forecasts. Several studies have shown that combining forecasts

can be a useful hedge against structural breaks, and forecast combinations are

often more stable than single forecasts (e.g. Hendry and Clements, 2004, Stock

and Watson, 2004). Hence, it makes sense to try to approximate the best forecast

combination. Moreover, while optimal forecast combinations are often derived by

minimization of the user’s expected loss over all possible decisions (e.g. Elliott and

Timmermann, 2004), the presence of structural breaks might invalidate empirical

estimation when we replace unknown expectations with sample ones. A similar

remark applies when the noise level or persistence is quite high relatively to the

sample size. In this case, it is often suggested to shrink the weights towards the

equally weighted combination weights (e.g. Diebold and Pauly, 1990, Aiolfi and

Timmermann, 2004). The procedure discussed here does not require any stability

of the system besides a tail condition and it works in the presence of dependent

observation. Moreover, in order to account for possible breaks or instability, a

non-zero weight is retained for all individual forecasts, effectively performing some
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form of shrinkage as discussed in the above references. We show that this allow

us to track the best time varying combination weights. Hence, the combination

weights will be time varying, but there is no need to estimate changes in regime

(e.g. Deutsch et al., 1994).

In particular, Section 2 states the algorithm used and carries out a theoretical

analysis of its properties. Section 3 provides some experimental evidence for the

validity of the theoretical results. Section 4 contains some further remarks and

discussion. Proofs can be found in Section 5.

2 Online Forecast Combination

Suppose (Yt, Xt)t∈N are a sequence of random variables with values in Y×X , where
Y ⊆ R and X ⊆ RK (K > 1). We interpret Yt to be a quantity to be forecasted and

Xt to be individual forecasts of it. We do not discuss the nature of these individual

forecasts: they could be exogenous to the econometrician’s decision rule. We use

the forecasts Xt to construct the combined forecast P̂t := hwt, Xti ∈ P to predict
Yt where wt ∈ SK, and SK is the K dimensional unit simplex (h..., ...i is the
inner product). For P̂t to be a valid predictor, the weights wt should only depend

on the past and be independent of the present and future, i.e. we may only use

(Ys,Xs)s<t to construct wt. The quality of the prediction P̂t is evaluated by a loss

function l : Y × P →R, which is convex in the second argument. The cumulative
loss based on using

³
P̂t

´
t≤T

is defined by L̂T :=
PT

t=1 l
³
Yt, P̂t

´
. We shall write

lt (w) = l (Yt, hw,Xti) to stress dependence on w ∈ SK . We may use whatever

information up to time t − 1 to construct wt and we will compare the loss from

this approach to the loss incurred by infu∈SK
PT

t=1 lt (u). More generally, we will

compare our loss with the loss incurred by using arbitrary weights u1, ..., uT ∈ SK ,

i.e. LT (u1, ..., uT ) :=
PT

t=1 lt (ut) . Since u1, ..., uT are arbitrary, we may choose

them such that ut := arg infv∈SK lt (v). Clearly, in an arbitrary framework, we

cannot expect to find any algorithm that produces results nearly as good as this

choice of combination weights, but we still can do fairly well if the u1, ..., uT are not

allowed to change too often. Throughout, u1, ..., uT will denote the optimal, but

unfeasible combination weights from time 1 to T . Note that the time frame, i.e.

T , does not need to be known in advance and the analysis is carried out for any

arbitrary possibly unknown T . After all, when we carry out online estimation, we

may not know in advance for how long we will use the same individual forecasts.
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2.1 Recursive Choice of Regression Coefficients

The choice of combination weights is given by the algorithm in Exhibit 1. There, the

gradient of the loss function with respect to w is denoted by ∇lt (w) and ∇klt (w)

is its kth element. The algorithm depends on the so called learning rate ηt := ηt−α

that is a function of a coefficient η > 0 and time with exponent α ∈ (0, 1/2].
The exponent α is related to the frequency of change in u1, ..., uT . For any K

dimensional vector v, define |v|p =
³PK

k=1 |vk|p
´1/p

, (with obvious modification

when p = ∞). Under the square loss, if PT−1
t=1 |ut − ut+1|1 = O (T 1−�) � ∈ [0, 1],

α should satisfy α = �/2 (see Corollary 3).1 In both cases, the algorithm uses

a second update that shrinks (”projects”) the parameters onto a constrained set

where the unfeasible parameters u1, ..., uT are suppose to lie. This ”projection” can

be interpreted as shrinkage and allows to control the loss in case of changes in the

underlying parameters. As discussed in the Introduction, shrinkage is a commonly

used technique in econometric forecasting.

Exhibit 1.
Set

w11 = ... = w1K = 1/K;

η > 0;

α ∈ (0, 1/2];
γ ≥ 0;
L̂0 := 0;

For t = 1, ..., T

L̂t = L̂t−1 + lt (wt)

ηt = ηt−α;
w0t,k := wtk exp {−ηt∇klt (wt)} /

PK
k=1wtk exp {−ηt∇klt (wt)} ;

ψ :=
PK

k=1 I{w0t,k<γ/K}
ω :=

PK
k=1 I{w0t,k<γ/K}w

0
tk;

wt+1,k = w0tk [1− (ψγ) /K] / [1− ω] if w0tk ≥ γ/K, wt+1,k = γ/K otherwise.

The algorithm uses two updates which will be motivated in the next subsection.

The first update produces the ex post combination weight w0t,k. This is called ex
post because the update depends on the gradient of the observed loss at time t.

This ex post weight is then projected on a subset of SK in order to make sure

1For simplicity we only consider polynomial growth.
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that no weight is less than the user’s prespecified level γ/K. In particular, all

weights less than γ/K are set equal to the lower bound level γ/K. To impose the

constraint that the weights are in SK the weights that are greater than γ/K are

then shrunk towards γ/K by an amount [1− (ψγ) /K] / [1− ω] to make sure that

the constraint is satisfied. Note that setting γ = 1 produces the equally weighted

forecast combination. Below we provide motivation for these update.

2.2 Motivation

The algorithm can be motivated using the approach first suggested in Kivinen

and Warmuth (1997). Define D (u,w) :=
PK

k=1 uk ln (uk/wk), which is the relative

entropy. The ex post weight w0t is such that, under regularity conditions for w close
to wt,

arg inf
w∈SK

[D (w,wt) + ηtl (Yt, hw,Xti)]
' arg inf

w∈SK
{D (w,wt) + ηt [l (Yt, hwt, Xti) + l0 (Yt, hwt,Xti) (w − wt)]} (1)

= : w0t,

where l0 (y, p) := (∂/∂p) l (y, p) throughout. We could use some ”distance” function
other than the relative entropy, and this would produce different updates. In the

computation of w0t, the loss function l is replaced by its first order Taylor series

approximation in order to allow for simple closed form solution. The optimization

problem has two terms that act in opposite directions: the first ones requires

the ex post weight w0t to be close to the ex ante one, the second term, requires
the ex post weight to be an update of the ex ante weight such that the loss at

time t would have been minimized. The coefficient ηt > 0 controls these two

opposing aspects. When ηt is large, the update changes the weight towards the

would have been optimal weight. A small ηt implies smoother ex post updates

(i.e. more dependence on past observations). The coefficient ηt will be called

learning rate. The combination weights at time t are obtained by a further update.

We use a function Q(G,D) : int
¡SK

¢→ SK that depends on some closed convex

subset G ⊂ SK and on the ”distance” D (int
¡SK

¢
denotes the interior of SK). In

particular, Q(G,D) (w0t) = argminu∈GD (u,w
0
t) and wt = Q(G,D) (w0t) is the projection

of w0t onto
G :=

n
u ∈ SK ∩ [γ/K, 1]K

o
(2)

in terms ofD. To constrain the parameters in SK we add the constraint
PK

k=1wk =

1 and the update to w0t is obtained by simple optimization of the Lagrangian ob-
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tained from (1). The second update to wt is obtained from Q(G,D). It is easy to see
that the solution lies in G. A proof that Q(G,D) (w0t) = wt+1 as in Exhibit 1 can be

found in Herbster and Warmuth (2001).

2.3 Theoretical Performance of the Algorithms

A theoretical justification for the algorithm in Exhibit 1 is given. In particular, it

is shown that reasonable bounds hold uniformly in the time horizon. If we have a

rough idea of the frequency of breaks, we can use this extra knowledge to improve

the bound. Moreover, the bounds avoid the usual condition of bounded random

variables in favour of tails conditions. Because of this, the bound is weaker than the

ones usually derived in the machine learning literature. We shall use the following

conditions.

Condition 1 l (y, p) is convex in the second argument and has a derivative with

respect to the second argument and there exists a continuous function f such that

for any constant m > 0

max
|y|≤m,|p|≤m

|(∂/∂p) l (y, p)| ≤ f (m) .

Remark 1 Condition 1 is satisfied by any loss function l (y, p) = l (y − p) which

is convex, with continuous derivatives. Common examples are the square loss and

LinEx. However, this condition is also satisfied by discontinuous functions as long

as they are dominated by some function with continuous first derivative. A common

example are � insensitive loss functions, i.e. equal to l (y, p) = l (y − p) if |y − p| >
�, zero otherwise.

Condition 2 There are positive constants c1, c2 and c3 such that

Pr (|Yt| > x) ≤ c1 exp {−c2xc3}
Pr (|Xtk| > x) ≤ c1 exp {−c2xc3} , k = 1, ..., K.

Remark 2 In Condition 2 the exponent c3 can be arbitrarily small so that the
moment generating function does not need to exist. Moreover, the condition is in

terms of the target sequence (Yt)t∈N and the individual forecasts (Xt)t∈N and not
in terms of the forecast error, whose distribution might be more difficult to derive.

For loss functions with polynomial growth, the results are also valid for polynomial

tails, but with bounds worse than the ones to be shown. For any random variable

Z define kZkr := (E |Z|r)1/r (the Lr norm, r > 0). Then, using the square loss,
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it can be shown that error/T in Corollary 1 is o
³
T−

8−γ
2γ

´
as soon as kXtkkγ+�

and kYtkγ+� are finite for � > 0, requiring the existence of an 8 + � moment. For

the sake of simplicity the polynomial case is not considered. These details are left

to the interested reader who will be able to discover that the dependence on K, in

Theorem 1, also deteriorates from logarithmic to polynomial growth (with exponent

less than one).

Remark 3 Condition 8 in Yang (2004) requires E |R|2β exp
n
t |R|β

o
<∞, where

R is the forecast error and β > 0 is as determined in his Condition 7. His Condition

7 requires β ≥ 1, hence the forecast errors need to have a distribution with tails
that decay at least as fast as an exponential.

The bounds to be shown are of the kind

TX
t=1

[lt (wt)− lt (ut)] ≤ error

with some high probability, where error refers to a bound for the algorithm in

Exhibit 1 for any arbitrary u1, ..., uT ∈ G. Hence, note that the unfeasible weights
we compare to are also constrained to lie in (2). Besides this, they are arbitrary

and we could choose them at time T , with hindsight. This will not be mentioned

again. We will also show that these bounds hold in expectation.

Theorem 1 Define mT (τ) :=
h
1
c2
τ + 1

c2
ln (c1 (K + 1)T )

i1/c3
. Under Condition 1

and 2, with probability at least 1− e−τ

TX
t=1

[lt (wt)− lt (ut)] ≤ error

where

error :=
Tα

η

Ã
6 ln (K/γ) + [ln (K/γ) +K]

T−1X
t=1

|ut − ut+1|1
!
+
ηT 1−α

8
[f (mT (τ))mT (τ)]

2 .

The bound shows how the choice of u1, ..., uT affects the relative performance.

Note that we did not impose any dependence conditions. For loss functions that

grow polynomially (e.g. the square loss), the above bounds only grow polynomially

in τ being violated with exponentially small probability e−τ . The constant 6 in the
first term is much larger than necessary, but leads to a tidier bound. Note that

the bound depends on γ, i.e. the set G. Setting γ small would increase the set of
allowed weights, but also increase the error in the bound.
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The bounds of Theorem 1 require some further comment in order to be fully

appreciated. To this end, we use a series of corollaries to show its applications. The

first important case is when we compare to the best time invariant combination

weights with hindsight.

Corollary 1 Suppose ut = ut+1 ∀t. Using the conditions and notation of Theorem
1, with probability at least 1− e−τ ,

TX
t=1

lt (wt)− inf
u∈G

TX
t=1

lt (u) ≤ error

where

error ≤ T 1/2
∙
6 ln (K/γ) +

1

8
[f (mT (τ))mT (τ)]

2

¸
,

when we use the learning rate ηt = t−1/2.

For time invariant combination weights, the error only grows logarithmically in

the number of combination weightsK. Moreover, error/T → 0 if [f (mT (τ))mT (τ)]
2 =

o
¡
T 1/2

¢
. This depends on the loss function and on the tails of the random variables.

To avoid convoluted technical conditions, the following only gives two special simple

examples. To ease notation, dependence on K (finite and fixed) will be suppressed.

Corollary 2 Under Condition 2, with probability at least 1− e−τ ,
(i.) if l (y, p) = |y − p|2 ,

error

T
= O

³
T−1/2 [τ + lnT ]4/c3

´
;

(ii.) if l (y, p) = exp {θ (y − p)}− θ (y − p)− 1, and c3 > 1,
error

T
= o

³
ebτ

1/c3
´
,

for some finite constant b depending on θ, c2 and c3.

As a last application, we show that the algorithms discussed here allow to hedge

against changes in the regression coefficients. For simplicity, we only consider the

square loss case.

Corollary 3 Suppose
PT−1

t=1 |ut − ut+1|1 = O (T 1−�) (� ∈ [0, 1]) and l (y, p) =

|y − p|2 . Then, under Condition 2, with probability at least 1− e−τ ,

error = O
³
T 1−(�/2) [τ + lnT ]4/c3

´
,

when we choose ηt = O
¡
t−

�
2

¢
.
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The result shows that we can allow for changes in parameters as frequent as

O (T 1−�) with � > 0 (note that (lnT )4/c3 = o
¡
T �/2

¢
) and still obtain a reasonable

performance, though only asymptotically. In practice, if we believe that changes

might be somehow frequent (e.g. �→ 0), then we should choose α in Exhibit 1 to

be smaller than 1/2.

While it is quite common to state probability bounds, in econometrics, bounds

are usually stated in terms of expectations. Note that a probability bound plus

uniform integrability implies a bound in expectations. Hence, we have the following.

Corollary 4 Suppose maxt≤T kl (Yt, hwt,Xti)kr ≤ A < ∞ with r = 2. Then, all

the previous bounds hold taking expectation on the left hand side, adding 2A
√
T

and setting τ = 0 in mT (τ), i.e.

TX
t=1

E [lt (wt)− lt (ut)] ≤ error + 2A
√
T .

Clearly, square integrability of the loss function is not required. If we can only

assume a finite bound with r ∈ (1, 2) , we need to modify the definition of mT in

order to balance all the terms. This can be done by slight modification of the proof

of Corollary 4 and details are left to the interested reader.

The results in this section can be summarized as follows: (1.) recursive forecast

combination may allow us to perform almost as well as if we knew the combination

weights for the whole sample; (2.) error only grows logarithmically in the number

K of individual forecasts under suitable tail conditions when we compare to the

best time invariant combination weights.

3 Experimental Results

We consider the problem of dynamic model selection. Suppose we can use differ-

ent models to generate a conditional forecast of some series of random variables.

We suggest to use a combined forecast instead of identifying the best model using

some cross-validation procedure that estimates the prediction error. Prediction

error estimation might be unstable in some circumstances, hence, combination of

forecasts from different models might lead to more stable results. This is concep-

tually similar to the procedures studied in Breiman (1996) though he focuses on

the linear model. As shown in the theoretical results, combining forecasts may

lead to performance superior to the choice of the best individual forecast when the

loss function is convex. Our goal is to show the use of forecast combination in the
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context of model selection (the two are intimately related) using both simulated

data-sets and empirical data.

3.1 Combining Nonparametric Estimators to Approximate
Continuous Functions

The goal of this application is to approximate an unknown univariate continuous

function subject to additive noise by nonparametric estimators with different de-

grees of smoothing (estimated using past observations only). In particular we will

use nearest neighbor (NN) estimators (Cover, 1968, and Kohler et al., 2006, for

recent results and further references). These are very simple estimators and each

estimator will be identified by a different proportion of data used to construct

it. Since the performance of NN regression strongly depends on the proportion of

data used (or number of neighbors), different neighbors’ sizes lead to quite differ-

ent forecasts. These forecasts are then combined using the algorithm in Exhibit 1.

This kind of experiment is also interesting because, as the number of forecasts in-

creases, we have more past observations at our disposal so that the optimal degree

of smoothness in the NN regression decreases at each trial. These implies that the

optimal combination weights need also to be time varying, which is exactly what

we can allow for by choosing α < 1/2 in Exhibit 1.

The results of the simulation study would strongly depend on the Monte Carlo

design chosen, e.g. on the function we choose to approximate. To mitigate this

problem, it is a good idea to perform forecast prediction for many continuous

functions. Hence we will simulate a relatively large number of functions (as in

Friedman, 2001). Consider a function F : R → R that admits the following

representation

F (z) =
IX

i=1

aigi (z)

gi (z) = exp

(
−(z − bi)

2c2i

2
)
, (3)

where |ai| is a bounded real and bi, ci ∈ R, i = 1, ..., I. For I → ∞ the class of

functions parametrized by ai, bi, ci, (i = 1, ..., I) is dense in the class of continuous

bounded functions on compact subsets of R (e.g. Ripley, 1996). For the simulation
study, we shall consider I = 20, (ai)i∈{1,...,I} iid uniform in [−1, 1], and (bi)i∈{1,...,I}
iid normal with mean zero and variance one (N (0, 1)). For simplicity, ci = c

(∀i) is also N (0, 1). The scaling parameters ci are set all equal in order to avoid
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particularly irregular functions that might be very uncommon in any practical

application. One hundred functions are obtained by simulation of the coefficients

in (3) and 100 samples
³
Y
(r)
t , Z

(r)
t

´
t∈N

of size n (r = 1, ..., 100) are simulated as

follows:

Y
(r)
t = F (r)

³
Z
(r)
t

´
+ U

(r)
t

Z
(r)
t = .9Z

(r)
t−1 + ξ

(r)
t

U
(r)
t = .8U

(r)
t−1 + ε

(r)
t ,

where, for each r,
³
ξ
(r)
t

´
t∈N

and
³
ε
(r)
t

´
t∈N

are, respectively, sequences of iid N (0, 1)

and N (0, σ2). Hence, each r corresponds to a function F (r) which is identified by

the simulated parameters as, bs, cs = c in (3). Predictions are made constructing

neighbors based on a fixed proportion of past observations. At each new data

point the following proportions of sample data are used: h = 0.025, .05, .1, .2, ..., .6.

Hence, each h identifies a different nonparametric estimator, with h large implying

higher degree of smoothness so that X(r)
t :=

³
X
(r)
t1 , ...,X

(r)
tK

´
is the estimator for

different h’s constructed using
³
Y
(r)
s , Z

(r)
s

´
s<t

and evaluated at Z(r)t . For each of

these functions, results are tested on σ = .4, .8, 1.2 and sample size n = 700. We

start forecast combination from the 101 observation so that 100 observations are

available for estimation of the predictors on the first round. Clearly, as the number

of observations increases, we should decrease h in order to achieve consistency in

the limit. This should be done slowly enough with respect to the sample size. In

this example the sample size increases from 101 to 700 hence, the combination

weights should be time varying: at the beginning more weight should be given

to estimators with h fairly large. We construct the forecast combination P̂t :=

hwt, Xti, and assess its performance using the square loss l (y, p) = |y − p|2. This
exercise is of interest because the complex nonlinear structure of the data requires

a small h to deliver a good approximation, but the relatively small sample size

requires a large h to minimize the estimation error. This is the typical trade

off between bias (approximation) and variance (estimation) error. Hence, as the

sample size increases, we expect the combination weights to change, gradually

preferring forecasts based on smaller h. In order to allow for meaningful time

variation, we assume that 1 − � = 1/3 in Corollary 3 is a reasonable speed of

change. This implies that α = 1/3 in Exhibit 1. We also set γ = .05, and η = 1

for lack of better choice. (Had we chosen to work with data with ticker tails, the

theoretical results and simulations carried out by the author suggest that a small

η (< 1) would be a better choice.) We compare to the ex post best individual
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forecast (Best), the ex post least square combination constrained in G (LSC), the
ex post unconstrained least square combination (LS) and the equally weighted

(EW) forecast combination. The results are summarized in the boxplots in Figure

1. These boxplots are based on 100 average losses from samples of size n: each

average loss corresponds to a simulated target function. Overall the results are

quite promising. As the noise level σ increases, the optimal h’s tend to be in the

middle of our chosen range [.025, .6]. This improves overall performance of forecast

combination and particularly for EW. In fact, if the optimal h’s are very small (e.g.

close to or less than .025), then we have less good individual forecasts that can be

used (as we only allow the range [.025, .6]). As shown by the boxplots, this is a

big problem for EW forecasts combination. One consequence of this observation

is that choosing individual forecasts carefully is very important especially when

we use shrinkage or like to use EW forecast combinations. Similar and important

comments in relation to the use of EW forecasts can be found in the simulation
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study of Timmermann (2004).

Figure 1. Boxplots of Prediction Errors
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3.2 Which GARCH Model to Choose under the Absolute
Loss?

This example focuses on volatility estimation using different GARCH models. We

use 200 initial observations to estimate the models and a prediction is made for

observation 201, then the models are re-estimated using 201 observations and a

prediction is made for observation 202 and so on.

The experiments are carried out using the log returns on the front month

of the following financial futures: FTSE (11/10/94-22/09/06), DAX (04/01/99-

22/09/06), S&P (14/03/89-19/06/01) and Dow Jones (06/10/97-22/09/06). We

consider GARCH, PGARCH (power GARCH with power 1), TGARCH (threshold

GARCH), EGARCH (exponential GARCH), Two-Component GARCH and FI-

GARCH (fractionally integrated GARCH). In all cases, the order is (1,1) and the

conditional distributions considered are Gaussian, double exponential and Student

t. We also consider the case where the conditional mean is zero (standard case)

and when it follows an ARMA(1,1) with an intercept. For the FIGARCH the con-

ditional distribution is Gaussian. Estimation was carried out in S+FinMetricsTM

(Zivot and Wang, 2005, for details on these GARCH specifications and the imple-

mentation in S+FinMetricsTM). Considering different conditional distributions for

the errors and conditional mean functions, we end up with 34 volatility forecasts.

For sufficiently small degrees of freedom in the t-distribution, the 4th moment of

the log returns might be undefined. Since we put no restriction on the degrees

of freedom, we shall not use the square loss. The absolute loss for the difference

between squared log returns and the volatility forecasts is employed. Moreover, the

absolute loss is more robust to outliers, which might be a problem given that we

are already using squared returns. Note that Condition 2 does not allow for power

tails (e.g. a t-distribution), though Remark 2 suggests that moment conditions are

sufficient (a 4 + � would be sufficient when using the absolute loss). We do not

worry about these issues and report Results in Table 2 where we used α = 1/2

and γ = .05. Note that the in sample least square estimator of the combination

weights does not need to be optimal under the absolute loss, but it is computed

anyway due to its simplicity. This is confirmed by the results. The performance of

the algorithm in Exhibit 1 is comparable to the best ex post forecast and slightly

superior to the EW combined forecast. However, the large standard errors show

that no definite claim should be made about this last remark. In particular, given

the small variability in performance among the GARCH specification, the EW fore-

cast combination appears to be a simple and robust alternative. For the sake of
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curiosity, we mention that the choice of double exponential density for the con-

ditional distribution leads to mediocre sample performance and that TGARCH

models with conditional Gaussian and/or t-distribution received on average the

largest combination weights, i.e. produce good forecasts.

Table 2. Loss of Predictions for GARCH Predictions.
 Worst Best Exhibit1 LS EW
FTSE Mean 1.41 1.26 1.27 1.23 1.30

S.E. 0.04 0.04 0.04 0.04 0.04
DAX Mean 2.70 2.41 2.42 2.42 2.50

S.E. 0.10 0.10 0.10 0.09 0.10
SP Mean 1.15 1.08 1.09 1.11 1.10

S.E. 0.04 0.04 0.04 0.04 0.04
DJ Mean 1.48 1.31 1.33 1.34 1.38

S.E. 0.06 0.05 0.06 0.05 0.05

3.3 Choosing the Best Exponentially Weighted Average
Forecast: Combination of Many Individual Forecasts

The goal of this experiments is to use a large number (160) of individual forecasts

generated by exponential moving average. Due to the large number of forecasts,

the performance should deteriorate, but according to the theoretical results not

too much. To investigate this issue, we consider absolute values of log returns

on different financial futures. Predictability of absolute returns of stock indexes

appears to be strong (e.g. Ding et al. 1993, Ding and Granger, 1996). Note

that prediction of powers of absolute returns is a way to predict volatility, and

the use of absolute returns appears good not only because of the stronger linear

time dependence, but also because of more regularity as opposed to square returns

(Mercurio and Spokoiny, 2004).

To generate a large number of different individual forecasts, predictions based

on exponentially weighted moving averages are used. This is a simple estimator

that depends on one parameter only. Suppose (Yt)t∈N are absolute values of log
returns on some financial asset, then forecasts are constructed as

Xtk = (1− λk)
∞X
s=0

λskYt−1−s,

where λk := (mk − 1) / (mk + 1), with mk = 5 : 800 (5), (i.e. 5, 10, ..., 800), so that

we have a total of 160 individual forecasts. Taking it to the extreme (because of

our goal in this subsection), this could be the problem faced by someone trying to

estimate volatility on financial assets using exponentially weighted moving averages
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(as in RiskMetrics), but being agnostic about the smoothing parameter. The square

loss between the absolute returns and the forecasts is used to assess the performance

(e.g. Fan and Gu, 2003, p.270).

In particular, we consider log returns on the securities of the previous example.

In the case of the S&P futures we decided to use the extended period 25/03/88-

22/09/06 to investigate the behavior of the algorithm over longer time spans. (In

the previous example, a shorter period was chosen because of computational rea-

sons.) Table 2 reports the mean and standard errors after running the algorithm

with the same parameters as in the previous experiment. We also consider the

ex post worst prediction just to give an idea of the variability of the individual

forecasts performances. There is not excessive variability in performance. Hence,

most of the individual forecasts are almost redundant being strongly correlated.

The large number of forecasts and the strong collinearity require the use of gener-

alized inverses to compute the in sample least square estimator. Results show that

the algorithm achieves a performance almost similar to the best individual forecast

and the ex post least square estimator, as predicted by the theory despite the large

number of forecasts. The EW forecast also produces forecasts that are reasonably

good. This is somehow to be expected because of the strong correlation among

individual forecasts.

Table 1. Loss of Predictions for Absolute Values
 Worst Best Exhibit1 LS EW
FTSE Mean 0.57 0.48 0.49 0.48 0.53

S.E. 0.03 0.02 0.02 0.02 0.03
DAX Mean 1.09 0.91 0.92 0.90 1.00

S.E. 0.07 0.05 0.05 0.05 0.06
SP Mean 0.57 0.45 0.45 0.44 0.49

S.E. 0.03 0.02 0.03 0.03 0.03
DJ Mean 0.59 0.52 0.53 0.51 0.55

S.E. 0.03 0.03 0.04 0.03 0.04

4 Further Remarks

4.1 Related Application: Universal Portfolios

A nice application of the forecast combination problem is the case of unsuper-

vised learning, i.e. when the target is unobservable. The most notable example

is the portfolio choice problem, where there is no target sequence and the goal

is to maximize wealth. Algorithms that allow us to construct portfolios that have
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performance comparable to the best constantly rebalanced portfolio with hindsight

have attracted the attention of the mathematical finance literature. The results

of this paper allows to derive theoretical bounds for this problem. For the sake of

concreteness, let Xt := (X1, ....,XK) be a vector of relative returns (e.g. closing

price divided opening price at time t) and let − ln (p) : P → R be a loss function.
Minimization of the cumulated negative log loss is equivalent to maximization of

relative wealth (Breiman, 1961, Cover, 1991, and Samuelson, 1979, for a critique of

this criterion). Clearly, our framework works just as well with other loss functions

(i.e. any change sign of a utility function), but to better relate to the existing litera-

ture in this area, ln (p) will be used, and the problem is turned into a maximization

one. To this end, we state the following.

Theorem 2 For any sequence of relative returns (Xt)t∈N, and u1, ..., uT ∈ G, using
the algorithm in Exhibit 1,

TX
t=1

ln (hwt, Xti) ≥
TX
t=1

ln (hut, Xti)− error,

where

error <
Tα

η

Ã
6 ln (K/γ) + [ln (K/γ) +K]

T−1X
t=1

|ut − ut+1|1
!
+

ηT 1−α

8

µ
K

γ

¶2
and for the constantly rebalanced portfolio, i.e. ut = ut+1, ∀t,

error < error < 2
K

γ
(T ln (K/γ))1/2 ,

choosing η = γ
K
(48 ln (K/γ))1/2, α = 1/2. Hence, the portfolio constructed from

Exhibit 1 is universal for portfolio weights in G.

Note that this result is quite strong: no probabilistic assumption is necessary.

This result also allows for nonstatioanry portfolios (i.e. time varying rebalanced

portfolios) and extends results in the literature on universal portfolios improving

the bounds for the best constantly rebalanced case (e.g. Helmbold et al., 1998, gives

a bound O
¡
T 3/4

¢
as compared to the O

¡
T 1/2

¢
derived here, though, Cover, 1991,

gives a bound O (lnT ), using a different algorithm, which is difficult to implement

in practice). However, we require the portfolio weights to be in G and this is
restrictive. The bound in Theorem 2, is somehow loose, especially for the second

term outside the parenthesis, hence the derived η might not be the best choice. For

the sake of presentation, a tidy bound is preferred. Because of the very low signal
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to noise ratio in relative returns, the choice of learning rate seems to be crucial.

Further study seems to be required to make these algorithms usable in real trading.

Empirical results reported in the literature are very encouraging (e.g. Cover, 1991,

Helmbold et al., 1998, Györfi et al., 2006), but also very dependent on the dataset

used (e.g. Nikandrova, 2005). Empirical results carried out by the author, but not

reported here, also suggest that more work is required in the direction of practical

implementation, casting doubts on the finite sample performance. Nevertheless,

this remains an interesting application that might deserve further study.

4.2 Final Comments

The algorithm in Exhibit 1 allows us to carry out online combination of individual

forecasts. The analysis of the algorithm shows that producing forecasts by this

method leads, with high probability, to asymptotic optimal performance. However,

the experimental results show that one should be somehow cautious about the

theoretical results. The experimental performance appeared to be good, but we

were unable to perform better than the best time invariant forecast combination.

The theoretical results suggested that a bit more could have been achieved.

One short coming of the present procedure is that we do not allow for the

numberK of forecasts to change over time. This would be particularly useful in the

case of survey data (e.g. the Philadelphia’ Fed Survey of Professional Forecasters).

Nevertheless, time varying combination weights allows us to drop a forecaster and

replace it by another. While the total number of forecasts is fixed, the kind of

individual forecasts may change over time (at a rate slower than T ). Overcoming

the problem of a fixed number of forecasts should be paramount for many economic

applications. Nevertheless, the fact that the bounds are uniform in T suggests that

we could always reset the algorithm every time there is a change in K and still be

able to somehow control the cumulative error.

The current procedure uses weights in the unit simplex, hence, forecast combi-

nation can be interpreted as model averaging: instead of selecting the best model,

we average across them and this seems to lead to good empirical performance (e.g.

non-negative garotte in the case of linear regression, Breiman, 1996). However, if

forecasts are biased, it is well known that a way to improve is to allow weights to

be negative or to use an intercept (e.g. Timmermann, 2004). This means that we

would perform some kind of optimization over a set larger than the constrained unit

simplex G in (2). In theory this improves the performance. However, in practice,
optimization over a larger set leads to a larger estimation error and possibly poor
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performance. Optimizing (1) using the square loss and the Euclidean distance for

the distance function gives

w0t = wt − 2ηt (hwt,Xti− Yt)Xt (4)

wt+1 = w0t if w
0
t ∈ G2, sw0t/ |w0t|2 otherwise,

where G2 :=
©
w ∈ RK , |w|2 ≤ s

ª
, and s is a prespecified shrinkage parameter.

Therefore, the weights are possibly negative but constrained in their sum as in

ridge regression. Experimental work carried out by the author, but not reported

here, suggested that there could be considerable loss in performance using (4) rela-

tively to Exhibit 1. In particular the performance appeared to be more dependent

on the learning rate when (4) was used. Hence, it would be important to investigate

extensions that allow combination weights to lie in e.g. G2 and still lead to good
empirical performance. Interestingly, theoretical results in the statistical literature

(e.g. Duflo, 1997) suggest the learning rate to be of smaller order than the results

discussed here and in the machine learning literature. Hence, an indepth study is

required to shed light on the difference both from a theoretical and empirical point

of view.

A problem related to iterative procedures is that they do not allow for multiple

steps ahead predictions. Often interest lies in h-step ahead predictions and not

one step ahead. This does not seem to be contemplated in Exhibit 1. Clearly, we

could just change frequency so that one step ahead corresponds to h-step ahead

in the original frequency. However, this appears quite wasteful. For this reason,

overlapping predictions might be the best alternative, e.g. daily data to make a 5-

day ahead prediction on volatility. In this case, we run into problems if we want to

use a supervised learning algorithm as in Exhibit 1. We can clearly run 5 separate

weakly predictions, one for each working day of the week. This would allow us to

apply the algorithm as if we were doing it to five different data series. However,

this seems to be intuitively inefficient: why waiting a week to make a weight update

when we have data available for losses on other days of the week? This issue needs

to be carefully addressed in future research.

5 Proofs

The proof of Theorem 1 will use a few lemmas stated and proved in the next

subsection.
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Proof of Theorem 1. Note that by Condition 1,

gt := max
|y|≤mt,|p|≤mt

l0 (y, p) ≤ f (mt) (5)

With probability at least 1− �, where � := e−τ ,

TX
t=1

[lt (wt)− lt (ut)] =
TX
t=1

[lt (wt) IMt − lt (ut)]

[by Lemma 1]

≤
TX
t=1

D (ut, wt)−D (ut, w
0
t)

ηt
IMt +

η

8

TX
t=1

¯̄
gtXtI{|Xt|≤mt}

¯̄2
∞

tα

[by Lemma 2]

≤
TX
t=1

D (ut, wt)−D (ut, w
0
t)

ηt
IMt +

η

8

TX
t=1

[f (mt (τ))mt (τ)]
2

tα

[by (5) and using the constraint]

≤
TX
t=1

D (ut, wt)−D (ut, wt+1)

ηt
IMt +

η

8

TX
t=1

[f (mt (τ))mt (τ)]
2

tα

[by Lemma 3]

≤ 6
Tα

η
(1 + ln (K/γ)) + [ln (K/γ) +K]

Tα

η

TX
t=1

|ut − ut+1|1 +
η

8

TX
t=1

[f (mt)mt]
2

tα

[by Lemma 4]

≤ Tα

η

Ã
6 (1 + ln (K/γ)) +

TX
t=1

[ln (γ/K) +K] |ut − ut+1|1
!
+

η

8
[f (mT (τ))mT (τ)]

2
TX
t=1

t−α

≤ Tα

η

Ã
6 (1 + ln (K/γ)) +

T−1X
t=1

[ln (γ/K) +K] |ut − ut+1|1
!
+

ηT 1−α

8
[f (mt (τ))mt (τ)]

2

summing over t and noting that there is no prediction at time T + 1, hence we

can choose uT+1 = uT and the last term in the summation (inside the parenthesis)

drops.

The proof of the Corollaries is next.

Proof of Corollary 2. By direct computation,¯̄̄̄
∂l (y, p)

∂p

¯̄̄̄
= 2 |y − p| ≤ 2 (|y| ∨ |p|) ,

and Condition 1 applies with f (m) = 2m, so that

[f (mt (τ))mt (τ)]
2 = 4mT (τ)

4 = O
³
[τ + lnT ]4/c3

´
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and we obtain the first result by application of Corollary 1. For LinEx loss,¯̄̄̄
∂l (y, p)

∂p

¯̄̄̄
≤ 2 |θ| exp {|θ| |y − p|} ≤ 2 |θ| exp {2 |θ| (|y| ∨ |p|)}

so that, by Condition 1,

[f (mt (τ))mt (τ)]
2 = 4 |θ|2 exp {2 |θ|mT (τ)}mT (τ)

2 ≤ 4 |θ|2 exp {4 |θ|mT (τ)}

= O

Ã
exp

(
4 |θ|

"µ
τ

c2

¶1/c3
+

µ
lnT

c2

¶1/c3#)!

= o

Ã
T exp

(
4 |θ|

µ
τ

c2

¶1/c3)!
,

using the fact that 4 |θ| (lnT/c2)1/c3 = o (lnT ) for c3 > 1. The result follows by

application of Corollary 1.

Proof of Corollary 3. From the proof of Corollary 2,

[f (mt (τ))mt (τ)]
2 = O

³
[τ + lnT ]4/c3

´
.

Hence, solving Tα+(1−�) = T 1−α w.r.t. α and substituting back in Theorem 1 gives
the result.

Proof of Corollary 4. Take expectation on both sides of (6) in the proof of

Lemma 1 in the next subsection. The first term on the right hand side is bounded

by Theorem 1 and we shall only bound the second term using Holder inequality

TX
t=0

El (Yt, wtXt) IMc
t
≤ A

TX
t=0

Pr (M c
t )
1/2 .

To bound Pr (M c
t ) , note that the event {max1≤k≤K |Xtk| ≤ mt} implies the eventn¯̄̄

P̂t

¯̄̄
≤ mt

o
(see the proof of Lemma 1). Hence, by the arguments in the proof of

Lemma 1,

Pr (M c
t ) ≤ Pr (|Yt| > mt) + Pr

µ
max
1≤k≤K

|Xtk| > mt

¶
≤ (K + 1) c1 exp {−c2mc3

t }
= t−1

choosing

mt :=

∙
1

c2
ln (c1 (K + 1) t)

¸1/c3
.

Hence,

El (Yt, wtXt) IMc
t
≤ APr (M c

t )
1/2 ≤ A

√
t−1.
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Summing over t gives the result.

Proof of Theorem 2. By a sign change we can consider − ln (p), as for the
previous results. Hence, follow the proof of Theorem 1 in the following order: apply

Lemma 2 with no need to apply Lemma 1 first. Then, Lemma 2 gives a bound in

terms of |l0 (y, hw, xi) x|2∞, which, for the specific choice of loss function corresponds
to

max
k

¯̄̄̄
xtk

hwt, xti
¯̄̄̄2
≤ max

k

¯̄̄̄
xtk

(γ/K)xtk

¯̄̄̄2
≤
¯̄̄̄
K

γ

¯̄̄̄2
using the constraint. Then, the proof proceeds as for Theorem 1 and the Corollaries.

5.1 Technical Lemmas

These lemmas are used in the proof of Theorem 1.

Lemma 1 Define mt =
h
1
c2
ln
³
(K+1)c1t

�

´i1/c3
and the set

Mt :=
n
|Yt| ≤ mt,

¯̄̄
P̂t

¯̄̄
≤ mt

o
.

Under Condition 1 and 2, with probability at least 1− �,

TX
t=1

l
³
Yt, P̂t

´
=

TX
t=1

l
³
Yt, P̂t

´
IMt.

Proof. Let M c
t be the complement of Mt. Consider the following identity

TX
t=1

l
³
Yt, P̂t

´
=

TX
t=1

l
³
Yt, P̂t

´
IMt +

TX
t=1

l
³
Yt, P̂t

´
IMc

t
(6)

= I+ II.

Note that

Pr
³¯̄̄
P̂t

¯̄̄
> mt

´
≤ Pr

µ
|wt|1 max

1≤k≤K
|Xtk| > mt

¶
= Pr

µ
max
1≤k≤K

|Xtk| > mt

¶
(7)

[because wt ∈ SK ]

≤
KX
k=1

Pr (|Xtk| > mt) ,
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by the union bound, so that the event {max1≤k≤K |Xtk| ≤ mt} implies the eventn¯̄̄
P̂t

¯̄̄
≤ mt

o
. Hence,

Pr

Ã
TX
t=1

lt
³
Yt, P̂t

´
IMc

t
> 0

!
≤ Pr

µ
max
1≤t≤T

|Yt| > mt

¶
+Pr

µ
max
1≤t≤T

¯̄̄
P̂t

¯̄̄
> mt

¶

≤
TX
t=1

"
Pr (|Yt| > mt) +

KX
k=1

Pr (|Xtk| > mt)

#
[by (7) and the union bound]

≤ (K + 1) c1

TX
t=1

exp {−c2mc3
t }

[by Condition 2]

= � choosing mt =

∙
1

c2
ln

µ
(K + 1) c1t

�

¶¸1/c3
.

Hence with this choice of mt, the result holds with probability at least 1− �.

The next follows from Lemma 2 in Cesa-Bianchi (1999). A sketch of proof is

provided for the sake of completeness and also because it is a key ingredient.

Lemma 2 For any y ∈ R, x ∈ RK , and η > 0, u ∈ SK, w ∈ int
¡SK

¢
and

w0k :=
wk exp {−ηl0 (y, hw, xi)xk}PK
k=1wk exp {−ηl0 (y, hw, xi)xk}

,

the following holds

l (y, hw, xi)− l (y, hu, xi) ≤ D (u,w)−D (u,w0)
η

+ η
|l0 (y, hw, xi)x|2∞

8

Proof. Define l0 (y, p) := (∂/∂p) l (y, p) and l00 (y, p) for the second order deriv-
ative with respect to p. Hence,

l (y, hw, xi)− l (y, hu, xi) = hw − u, xi l0 (y, hw, xi)− hw − u, xi2 l00 (y, hw, xi)
≤ hw − u, xi l0 (y, hw, xi) (8)
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by convexity of l (y, p) with respect to p. Recall that D (w, u) :=
P

k wk ln (wk/uk),

and define zk := −ηl0 (y, hw, xi)xk. Then,

D (u,w)−D (u,w0) =
KX
k=1

uk ln (w
0
k/wk)

=
KX
k=1

uk

"
ln

wk exp {zk}PK
l=1wl exp {zl}

− lnwk

#

≥
KX
k=1

ukzk − ln
Ã

KX
l=1

wl exp {zl}
!

[because − lnwk is non-negative]

=
KX
k=1

(uk − wk) zk − ln
Ã

KX
l=1

wl exp

(
zl −

KX
k=1

wkzk

)!

≥
KX
k=1

(uk − wk) zk − |z|
2
∞
8

,

using Hoeffding’s inequality (e.g. Devroye et al., 1996) for the moment generating

function of bounded random variables in the last step. Substituting in (8), we

obtain

hw − u, xi l0 (y, hw, xi) ≤ D (u,w)−D (u,w0)
η

+ η
|l0 (y, hw, xi)x|2∞

8

implying the last result.

The next is Corollary 3 in Herbster and Warmuth (2001). A concise proof

for general "distance" functions can be found in Lemma 11.3 of Cesa-Bianchi and

Lugosi (2006).

Lemma 3 For any vector ut ∈ G (G as in (2)), wt+1 = argminv∈GD (v, w0t) (i.e.
wt+1 as in Exhibit 1) and w0t ∈ int

¡SK
¢
,

D (ut, w
0
t) ≥ D (ut, wt+1) .

For u ∈ SK and w ∈ interior
¡SK

¢
, define

DF (u,w) = F (u)− F (w)− h(u− w) ,∇F (w)i .
We note that when F (u) :=

PK
k=1 uk (lnuk − 1), DF (u,w) = D (u,w). In order

to remind us of the above decomposition, we will use DF (u,w) instead of D (u,w)

in the last two lemmas. Different choices of F , would lead to different ”distance”

functions and different updates via (1) (e.g. Cesa-Bianchi and Lugosi, 2006, Ch.11,

for details).
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Lemma 4 For ut ∈ SK , ηt and wt as in Exhibit 1 (t = 1, ..., T ) ,

TX
t=1

DF (ut, wt)−DF (ut, wt+1)

ηt

≤ 6
Tα

η
[1 + ln (K/γ)] + [ln (K/γ) +K]

Tα

η

TX
t=1

|ut − ut+1|1 .

Proof. To prove the Lemma we need to find a telescoping sum. To this end

DF (ut, wt)−DF (ut, wt+1)

ηt
=

DF (ut, wt)−DF (ut+1, wt+1)

ηt
− DF (ut, wt+1)−DF (ut+1, wt+1)

ηt
[adding and subtracting DF (ut+1, wt+1) ]

= I+ II.

We shall deal with the sum over t of each term separately.

Sum over I.

TX
t=1

I =
1

η1
DF (u1, w1)− 1

ηT
DF (uT+1, wT+1)−

T−1X
t=1

DF (ut+1, wt+1)

µ
1

ηt
− 1

ηt+1

¶

=
1

η
DF (u1, w1)− Tα

η
DF (uT+1, wT+1)−

T−1X
t=1

DF (ut+1, wt+1)
tα − (t+ 1)α

η

[by definition of ηt]

≤ 1

η
DF (u1, w1) + max

1≤t≤T−1
DF (ut+1, wt+1)

T−1X
t=1

(t+ 1)α − tα

η

[using the fact that DF is non-negative]

=
1

η
DF (u1, w1) + max

1≤t≤T−1
DF (ut+1, wt+1)

Tα

η

[because the sum telescopes]

≤ 2 max
1≤t≤T

DF (ut, wt)
Tα

η
.

Sum over II.
By definition of DF ,

−DF (ut, wt+1) +DF (ut+1, wt+1) = F (ut+1)− F (ut) + h(ut − ut+1) ,∇F (wt+1)i .

Hence,

II =
F (ut+1)− F (ut)

ηt
+
h(ut − ut+1) ,∇F (wt+1)i

ηt
= IV+V.
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Note that F (u) ∈ [0,−1] for u ∈ [0, 1]. Hence, summing over IV,
TX
t=1

IV = −
TX
t=1

F (ut)− F (ut+1)

ηt

= −1
η
F (u1) +

1

ηT
F (uT+1) +

T−1X
t=1

F (ut+1)
tα − (t+ 1)α

η

≤ −1
η
F (u1) + max

1≤t≤T−1
[−F (ut+1)]

T−1X
t=1

(t+ 1)α − tα

η

[because F (u) is non-positive]

≤ −1
η
F (u1) + max

1≤t≤T−1
[−F (ut+1)] T

α

η

[because the sum telescopes]

≤ 2 max
1≤t≤T

[−F (ut)] T
α

η
.

Moreover,

TX
t=1

V ≤ Tα

η

TX
t=1

|h(ut − ut+1) ,∇F (wt+1)i|

≤ Tα

η

TX
t=1

|ut − ut+1|1 |∇F (wt+1)|∞ .

Hence

TX
t=1

DF (ut, wt)−DF (ut, wt+1)

ηt

≤ 2
Tα

η
max
1≤t≤T

DF (ut, wt) + 2
Tα

η
max
1≤t≤T

[−F (ut)] + Tα

η

TX
t=1

|h(ut − ut+1) ,∇F (wt+1)i|

= 2
Tα

η
max
1≤t≤T

(F (ut)− F (wt)− h(ut − wt) ,∇F (wt)i)

+2
Tα

η
max
1≤t≤T

[−F (ut)] + Tα

η

TX
t=1

|ut − ut+1|1 |∇F (wt)|∞
[by definition of DF (ut, wt) ]

≤ 2
Tα

η
max
1≤t≤T

h(wt − ut) ,∇F (wt)i+ 2T
α

η
max
1≤t≤T

[−F (ut)]

+2
Tα

η
max
1≤t≤T

[−F (wt)] +
Tα

η

TX
t=1

|ut − ut+1|1 |∇F (wt)|∞
= : VI.
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Using Lemma 5 (stated next) the above display is bounded by

VI ≤ 2T
α

η
ln (K/γ) + 4

Tα

η
[ln (K/γ) + 1] + [ln (K/γ) +K]

Tα

η

TX
t=1

|ut − ut+1|1

hence the result.

Using the constraint G, we can derive the following bounds used above.

Lemma 5 For F (u) :=
PK

k=1 uk (lnuk − 1) and u,w ∈ G

h(wt − ut) ,∇F (wt)i ≤ ln (K/γ) ,

|ut − ut+1|1 |∇F (wt+1)|∞ ≤ [ln (K/γ) +K] |ut − ut+1|1 ,
and

F (ut) ≤ ln (γ/K)− 1

Proof. By direct calculation,

h(wt − ut) ,∇F (wt)i =
KX
k=1

(wtk − utk) [lnwtk + (K − 1)]

=
KX
k=1

(wtk − utk) lnwtk

[because the coefficients add up to one]

≤ −
KX
k=1

utk lnwtk

[because the first term is negative]

≤ − ln (γ/K) ,

using the constraint. Finally,

|ut − ut+1|1 |∇F (wt+1)|∞ ≤ [− ln (γ/K) +K − 1] |ut − ut+1|1 ,

using the constraint.
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