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he  apicoplast,  an  organelle  found  in  Plasmodium  and  many  other  parasitic  apicomplexan  species,  is  a
emnant chloroplast  that  is  no  longer  able  to  carry  out  photosynthesis.  Very  little  is  known  about  primary
ranscripts and  RNA  processing  in  the  Plasmodium  apicoplast,  although  processing  in  chloroplasts  of
ome related  organisms  (chromerids  and  dinoflagellate  algae)  shows  a  number  of  unusual  features,
ncluding RNA  editing  and  the  addition  of  3′ poly(U)  tails.  Here,  we  show  that  many  apicoplast  transcripts
re polycistronic  and  that  there  is  extensive  RNA  processing,  often  involving  the  excision  of  tRNA
olecules. We  have  identified  major  RNA  processing  sites,  and  have  shown  that  these  are  associated
ith a  conserved  sequence  motif.  We  provide  the  first  evidence  for  the  presence  of  RNA  editing  in

he Plasmodium  apicoplast,  which  has  evolved  independently  from  editing  in  dinoflagellates.  We  also
resent evidence  for  long,  polycistronic  antisense  transcripts,  and  show  that  in  some  cases  these  are
rocessed at  the  same  sites  as  sense  transcripts.  Together,  this  research  has  significantly  enhanced  our

nderstanding of  the  evolution  of  chloroplast  RNA  processing  in  the  Apicomplexa  and  dinoflagellate
lgae.

 2016  The  Authors.  Published  by  Elsevier  GmbH.  This  is  an  open  access  article  under  the  CC  BY
icense (http://creativecommons.org/licenses/by/4.0/).
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ome of the  major drugs  used  for combatting
alaria,  such as the antibiotics  doxycycline  and

lindamycin,  target  gene  expression  in the api-
oplast,  an organelle found in  Plasmodium  and
ther  members  of the  Apicomplexa group  of par-
sitic  eukaryotes.  The apicoplast  is a  secondary
lastid,  resulting  from  an endosymbiosis event
etween  the ancestor  of the Apicomplexa and  a
ember  of  the red  algal  lineage  (Botté et al. 2013;

Corresponding  author;
-mail  rern2@cam.ac.uk  (R.E.R.  Nisbet).

Gardner  et  al. 1991b; Lemgruber  et al. 2013; Wilson
et  al. 1996). The  apicoplast  has lost  the ability
to  carry out photosynthesis,  yet retains  a circular
genome  of approximately  35 kbp, containing genes
for  numerous proteins,  tRNAs and rRNAs (Fig. 1).
Inhibition  of apicoplast  transcription  and  translation
is  lethal to  the parasite, as shown by  treatment by
rifampicin  (a transcription  inhibitor),  thiostrepton or
doxycycline  (translation  inhibitors)  (Goodman et al.
2007). Inhibition  of apicoplast  DNA  replication is
also  lethal (Fichera  and  Roos 1997).

Despite the  importance  of antibiotics that
target  the  apicoplast in the  control of malaria,
remarkably  little is known about transcription,
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Figure  1.  Plasmodium  falciparum  apicoplast  genome.  Purple  indicates  protein-coding  genes,  blue  indicates
tRNA genes  and  red  indicates  rRNA  genes.  Genome  drawn  using  OrganellarGenomeDRAW  (Lohse  et  al.
2013).

post-transcriptional processing  or  translation  in  the
organelle.  Northern  blots using total Plasmodium
RNA  revealed that the  transcription  of at least  some
apicoplast  genes is likely to be polycistronic, as the
bands  seen were larger than would  be  expected for
a  single-gene  RNA molecule  (Gardner et  al.  1991a,

b). RT-PCR carried  out on two regions indicated
that  some  ribosomal genes  were transcribed as
part  of a polycistronic  molecule  (Wilson et al.
1996), and all tRNA molecules have  been shown
to  be transcribed  (Preiser et al. 1995). There are
no recognisable  eubacterial  promoter elements
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upstream  of apicoplast  genes,  so it is unclear how
transcription  is initiated  (Sato  2011).

The  closest photosynthetic  relatives  of Plas-
modium  are Chromera and Vitrella,  which retain
fully  functional  chloroplasts  (Janouskovec et al.
2010). We and others  have recently  examined
transcript  processing in these organisms and
have  shown that transcripts  of many chloroplast
genes  are  polycistronic,  and those  transcripts
encoding  proteins involved  in photosynthesis  are
post-transcriptionally  modified  by the addition  of a
poly(U)  tail at the 3′ end of the transcript.  In  con-
trast,  transcripts  encoding genes  for proteins that
are  not involved  in photosynthesis are generally  not
polyuridylylated.  We have shown that Plasmodium
apicoplast  transcripts  are  also  not polyuridylylated
(Dorrell et al. 2014). Post-transcriptional  processing
in  peridinin-containing  dinoflagellates, which are a
sister  group to  the  Apicomplexa,  is complex.  There
are  a  limited  number of polycistronic  transcripts,
and  these show mutually exclusive  alternative
cleavage  pathways. Some, but not all, transcripts
receive  3′ poly(U) tails. Transcripts are edited in
some  genera,  but not  all (Barbrook  et al. 2012),
with  the  ancestral  state probably  lacking  editing.

Here,  we examine  in detail  transcripts of the
Plasmodium  apicoplast  genome,  including  regions
that  primarily  encode proteins,  and  two  regions
that  encode rRNAs and tRNAs.  We present  data
showing  that  the genome is transcribed  poly-
cistronically,  followed by cleavage to gene-specific
mRNAs.  Many  cleavage sites are  associated  with
tRNA  sequences.  Where genes  are  overlapping,
alternative  cleavage pathways occur.  We  also  find
evidence  for stage-specific RNA editing. In addi-
tion,  we show that there  are significant  levels
of  antisense transcripts, covering  protein  coding
genes,  tRNA  and  rRNA genes  as well  as intergenic
regions.  Some  antisense  transcripts are  cleaved at
the  same  sites as sense transcripts, suggesting that
these  sites  may have a role  in transcript processing.
Given  the importance  of the  apicoplast,  these
results  suggest that RNA  transcript  processing
ought  to be  a key target  in the design of new  anti-
malarial  drugs.  The  results also enhance  our overall
picture  of the evolution  of RNA  processing in the
apicomplexan  and dinoflagellate  groups.

Results

rRNAs are Co-transcribed with tRNA and
Protein Coding Sequences

We  began  by testing if  rRNA genes were  repre-
sented  in polycistronic transcripts, consistent  with

a previous  report  for  SSU rRNA  (Gardner et al.
1991a), and  if polycistronic  transcripts could also
contain  protein-coding  sequences.  The organiza-
tion  of the SSU rRNA locus, which  is  part of the
inverted  repeat  region  of the apicoplast  genome, is
shown  in Figure 2. We  carried  out cDNA  synthesis
using  a reverse primer within  the SSU sequence,
and  used the cDNA and the same  reverse primer
in  a series of PCRs with  multiple  forward primers
located  at increasing  intervals upstream  of  the
SSU  rRNA gene, at least as  far  as the  trnV
sequence.  We obtained  products  in  all  of these
PCRs,  indicating  the existence of a transcript cov-
ering  at least  the whole  of the  region between
trnV  and the SSU rRNA (transcript  a in Fig. 2),
showing  that rRNA  and tRNA sequences are
co-transcribed.

To  map  individual  transcripts from SSU in more
detail,  we carried  out RNA circularization assays

LSU-A MR
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SSU-B
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Figure  2.  Sense  transcription  of  LSU/SSU  rRNA  and
tRNA locus.  Arrows  represent  protein  coding  genes,
letters represent  tRNA  genes  named  as  per  standard
single-letter  tRNA  convention.  Note  that  tRNAs  shown
above the  line  show  genes  transcribed  in  one  strand
(i.e. left  to  right,  same  orientation  as  the  SSU-A  rRNA
gene in  the  middle  of  the  figure),  while  those  below  the
line show  those  transcribed  from  the  other  strand  (i.e.
right to  left,  same  orientation  as  the  LSU  rRNA  gene).
RNA transcripts  are  shown  in  red;  genomic  DNA  is
shown in  black.  Transcript  a shows  the  extent  of  lin-
ear RT-PCR  products  identified  with  a reverse  primer
placed within  the  5′ region  of  SSU-A  rRNA  and  forward
primers at  intervals  towards  LSU  rRNA.  Transcript  b
shows maximum  length  of  sense  transcripts  identified
by circular  RT-PCR  using  primers  within  SSU  rRNA.
Red arrows  show  major  RNA  processing  sites.  The
black arrows  within  the  transcript  indicated  the  region
from which  primers  were  designed.  Not  to  scale.  The
agarose gel  analysis  of  the  circular  RT-PCR  reaction
is shown  above.  Lane  H1:  Promega  hyperladder  1
marker, with  sizes  to  the  left.  Lane  1:  RNA  circular-
ization experiment,  lane  2:  no  reverse  transcriptase
control.
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targeting the SSU rRNA. In these assays, RNA
is  circularized using T4  RNA  ligase  and  used for
cDNA  synthesis,  the products  of which  are  then
analysed  by PCR.  Primary transcripts  in organelles
carry  a 5′ triphosphate, while processed  transcripts
carry  a 5′ monophosphate  group  (Swiatecka-
Hagenbruch  et al. 2007). As  T4  RNA  ligase
catalzyes  the  reaction between  a 5′ monophos-
phate  group  and a 3′ hydroxyl group,  it can thus
only  calatalyse  the ligation  of processed  RNA.
Thus,  these  RNA  circularization  assays allow  the
identification  of 3′ and  5′ ends  of processed RNA
transcripts.

Total  RNA  was circularized using  an  RNA ligase,
and  cDNA  synthesized.  Following RT-PCR  and
cloning  of products,  eight  clones were  found  to
contain  sequence  from the SSU rRNA  region  (Sup-
plementary  Material: supporting  data). None  of the
eight  transcripts  clones corresponded  to a poly-
cistronic  transcript,  although  two included  the full
intergenic  region  at both the 5′ and  3′ ends  of
the  SSU rRNA  gene,  extending as far as, but not
including,  the adjacent  tRNA  sequences  (Fig.  2,
transcript  b).  The remaining six clones  were  derived
from  transcripts containing  just the SSU rRNA.
However,  all were  missing  1 bp at the  5′ end of
the  gene  and either  6 bp (three clones)  or 7 bp
(three  clones)  at the 3′ end. These  results sug-
gest  that  the majority of the SSU rRNA sequences
are  monocistronic.  In addition, the annotated  5′
and 3′ ends of the  coding  sequence  may not be
correct.

We  next tested for the presence  of polycistronic
transcripts  from the  LSU  rRNA gene  concentrat-
ing  on the downstream  region to  see  if transcripts
could  contain rRNA, protein-coding and tRNA
sequences.  cDNA  was synthesized  using a series
of  reverse  primers  (Fig. 3, primers  1-3) and  the abil-
ity  of the cDNA  to generate  PCR products using
primers  within the  LSU rRNA and rps4 genes  was
tested.  cDNA generated  from all of the reverse
primers  gave products  in the  test PCR, indicat-
ing  the existence  of a polycistronic  RNA  molecule
spanning  the whole region from LSU  rRNA to
rpl23  and thus  containing  rRNA, tRNA and  protein
sequences.  (Fig. 3,  lanes  1-3). (Note  that the test
region  is the same  for each cDNA, and  thus all PCR
products  should be the same  size.) As  the major-
ity  of  LSU  rRNA transcripts  would  be expected  to
contain  just the rRNA sequence  (as  shown for the
SSU  rRNA),  we did not perform  circularized RNA
assays.  These  results  therefore  show  that both
the  SSU and LSU  rRNAs are  initially  transcribed
polycistronically,  with both tRNA  and protein-coding
sequences.

T HCLMYSDKEPrps4

sense

antisense

rpl2rpl23rpl4LSU-B

sense test 
PCR 1 2 3

rps19
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800
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antisense test PCR4
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+RT -RT

Figure  3.  Sense  and  antisense  transcription  of  the
LSU/tRNA/ribosomal  protein  locus.  Genes  are  shown
as Figure  2. Numbered  arrows  1-3  represent  anneal-
ing site  of  primers  for  cDNA  synthesis  to  identify  sense
transcripts, and  the  test  sites  for  PCRs  are  labelled
with black  dashed  lines.  The  associated  agarose  gel
is shown  above,  with  lanes  corresponding  to  the
cDNA synthesis  reactions  below.  (Some  lanes  have
been removed  for  clarity).  Note  that  the  test  PCR  is
the same  for  each  cDNA,  and  thus  all  PCR  prod-
ucts should  be  the  same  length.  Lane  H1  is Bioline
Hyperladder  1  marker,  with  sizes  of  DNA  fragments
indicated  in  bp.  Arrow  4  below  the  genes  represent  the
annealing site  of  the  primer  to  identify  antisense  trans-
cripts, and  the  test  PCR  region  is shown.  Although
representative,  the  figure  is  not  to  scale.

Transcription of Protein-coding Genes

sufB.  We  next examined  the  transcripts of sufB
(encoding  an  iron sulphur  cluster assembly pro-
tein)  using  the circular RT-PCR technique (Fig. 4).
Twenty  four clones  were  obtained using sufB
primers  on cDNA from circularized  RNA  and
sequenced  (details  in Supplementary  Materials:
supporting  data S1). These  revealed that  the
majority  of transcripts (18/24)  commenced  98 bp
upstream  of sufB, exactly consistent  with the 5′ end
of  the trnT gene,  although  a substantial  minority
of  transcripts (5/24)  commenced  25  nt upstream
of  sufB, exactly consistent with the  3′ end of the
adjacent  trnT gene  (Fig.  4, transcript  a and  Supple-
mentary  Material  Fig. S1). The  remaining transcript
commenced  104 nt  upstream.  This  would suggest
that  a long,  initial primary transcript is created,
which  is cleaved  at the 5′ and 3′ ends  of trnT, releas-
ing  both the tRNA and a sufB mRNA  with a 5′ UTR
of  25 nt.

The  downstream ends  of the sufB  transcripts
were  heterogeneous.  All transcripts extended past
sufB  into the  adjacent  orf51  gene, while the longest
included  both orf51  and  orf101  together with  a small
portion  of rpoB. Together,  these results indicate
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Figure  4.  Sense  and  antisense  transcription  of  sufB
locus. Genes  and  transcripts  are  shown  as  Figure  2.
Transcript a  shows  maximum  length  of  sense  trans-
cripts identified  by  circular  RT-PCR  using  primers
within sufB.  Arrows  show  major  processing  sites,  fur-
ther processing  sites  indicated  by  dotted  vertical  lines.
The block  within  the  transcript  indicates  the  region
from which  primers  were  designed.  Transcript  b  shows
maximum extent  of  linear  antisense  RT-PCR  products
across the  region.  Not  to  scale.  The  gel  shows  results
of circular  RT-PCR  for  sufB.  Lane  H1,  hyperladder
1 kb  (Bioline)  with  size  markers  indicated  in  bp,  lane  2,
internal (control)  sufB  PCR,  lane  3 sufB  circular  PCR,
lane 3  no  RT-control  sufB  inwards  PCR.

that there  is a transcript spanning  from at  least
trnT  into rpoB which  is cleaved  at a limited  number
of  5′ sites associated  with the tRNA.  The 3′ ends
within  protein  coding sequences  are much more
heterogeneous,  either  as a result  of exo-or endo-
nucleolytic  cleavage,  or  transcription  termination.

rps2-orf105-clpC-tufA  Region. We  also studied
the  orf105  region  (Fig.  5). (Note that orf105  has
recently  been  renamed as ycf93  (Goodman  and
McFadden  2014)). This  gene  is of particular inter-
est  as all genes upstream  of orf105  as far as the
LSU  rRNA are  located on one DNA  strand, with
the  exception  of the gene for  tRNA-Phe  (UUC),
while  those downstream  are  located on  the  oppo-
site  DNA  strand.  The  gene itself overlaps at the
5′ end  with the  trnS gene (24  bp)  and  at the 3′
end with  rps2 (in the  opposite DNA strand, 14 bp).
We  performed  circular RT-PCR and  amplified  prod-
ucts  corresponding  to transcripts  of the  orf105  gene
(Fig.  5, transcript a; Supplementary  Material:  sup-
porting  data  S1).  At  the 5′ end of orf105,  the majority
of  sequences recovered (21/28)  represented trans-
cripts  with a 5′UTR of 61-64 nt, corresponding
closely  to the  start  of the trnS gene  (at  -62  nt). This
site  is shown with  an arrow in Figure 5, transcript
a.  A  minority (6/28) of cloned transcripts  had a 5′

S
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Figure  5.  ‘Transcription  of  rps2-orf105-clpC-tufA’
locus.  Genes  and  transcripts  are  shown  as  Figure  2.
Transcripts are  shown  above  or  below  the  genome
depending  on  the  DNA  strand  from  which  they
were transcribed  (note  that  sense  and  antisense
are gene-specific,  and  genes  are  encoded  on  both
DNA strands).  Red  arrows  show  major  processing
sites; further  processing  sites  are  indicated  by  dotted
black vertical  lines.  The  black  arrows  within  each
transcript  indicates  the  region  from  which  primers
were designed.  Not  to  scale,  although  processing
sites shown  to  be  conserved  across  multiple  genes
are aligned.  The  gel  shows  results  of  circular  RT-PCR
for clpC.  Lane  H1,  hyperladder  1 kb  (Bioline)  with  size
markers indicated  in  bp,  lane  1,  internal  (control)  clpC
PCR, lane  2  clpC  circular  PCR,  lane  3  no  RT-control
clpC inwards  PCR.

UTR  between -7  (i.e. within  the orf105  gene) and +9
nt.  The other  transcript  extended into orf79.  At  the
3′ end, 21/28 clones corresponded  to transcripts
ending  at +105/106nt,  with a  further  clone corre-
sponding  to a transcript ending  at +101nt  (as shown
by  an arrow in Fig.  5, transcript  a). No  transcripts
extended  as far as rpoC2. The  results  are consis-
tent  with a  primary RNA molecule  being cleaved
upstream  of trnS and also close to  the  5′ end of
orf105  to give either orf105  or  tRNA-Ser, but not
both  (as  the  genes  overlap). The  strong 3′ terminus
within  rps2 could represent  either  a transcription
termination  site,  or  a cleavage  site.

Circular RT-PCR and amplification of  cDNA
corresponding  to rps2 (Fig. 5, transcript b; Supple-
mentary  Material:  supporting  data  S1) gave rise to
39  clones. Of these, only 11 contained  the full rps2
coding  sequence.  The rest of the clones were  miss-
ing  the first 100-250  nt  of rps2  and did  not  have a
specific  5′ end  (Fig.  5, transcript  b, labelled with
dotted  lines).  However, the vast majority (32/39) of
clones  had a 3′ end at +175-177  nt (Fig. 5,  transcript
b,  labelled with an  arrow), corresponding to a tran-
script  ending  within orf105  (which is on the opposite
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strand). No clones extended past  this  point,  sug-
gesting  that  it is a strong  cleavage or transcription
termination  site.

We next carried out  RNA  circularization and PCR
experiments  with primers  for the  adjoining  clpC and
orf79  genes (Fig.  5,  transcript c and  gel; Fig.  5,
transcript  d; Supplementary  Material:  supporting
data  S1). The majority  (19/26)  of clpC transcripts
were  polycistronic.  The longest products, which
also  contain orf79,  (8/26) ended immediately  prior
to  trnS. This  is consistent  with the  same  cleavage
site  identified  with orf105  circularization  (marked
with  an arrow in Fig. 5), suggesting  it is a major
processing  site. In contrast,  the majority (22/26)  of
orf79  transcripts were monocistronic,  and  only 1
clone  included  both orf79  and clpC.  All  the clones
ended  immediately following the stop codon  of
orf79,  indicating  a  strong  cleavage  site. Together,
these  results  would suggest that there  is a long pri-
mary,  polycistronic  transcript which is first cleaved
at  trnS, followed by further processing  to produce
monocistronic  orf79.

RNA circularization  analysis  for tufA (Fig. 5, tran-
script  e; Supplementary  Material:  supporting  data
S1)  revealed that 22/25 sequences  recovered cor-
responded  to transcripts  ending at +315/317  nt,
immediately  at the  start  of the trnQ  gene. The
remaining  three  ended  at 0, +7 and +214 nt from
the  3′ end of tufA.  No transcript extended  into trnQ.
There  were 19 different  5′ end sites  ranging  from 0
to  +739  nt.

Antisense Transcripts

Extensive polycistronic antisense  transcrip-
tion.  Antisense  transcripts of the apicoplast
genome  have been reported  for the apicomplexan
Toxoplasma,  but it is not known if they occur in
Plasmodium  as  well.  We therefore  tested  for the
presence  of antisense  transcripts in the Plasmo-
dium  apicoplast.  Note that  in this  section 5′ and 3′
are used in  accordance  with the associated  gene
(i.e.  as if the transcript were  transcribed from  the
sense  strand).

cDNA was synthesized  using either  a  forward
or  a reverse  primer  (thus specific for sense or
antisense  transcripts)  for  eight  genes (rpoB, rpoC,
clpC,  tufA, orf105,  SSU rRNA, rps2, and rpl2), and
this  was used in PCR.  For each gene,  a  band
of  the same  size was  seen  for both sense and
antisense  transcripts when analysed by agarose
gel  electrophoresis.  This  indicates  that  both sense
and  antisense  transcripts  existed  for each gene.
Figure 6 shows  results  for rps2.

AS  S AS  S

+RT -RT

H1

Figure  6.  Sense  and  antisense  transcription  of  rps2.
Agarose  gel  showing  transcription  of  both  sense  (S)
and antisense  (AS)  transcripts  from  rps2,  together
with control  reactions  with  no  reverse  transcriptase
(RT).  H1:  hyperladder  1.  All  lanes  are  from  one  gel.

Next, we wished to  determine  if antisense
transcripts  could be polycistronic. We therefore
synthesized  cDNA using a forward primer at the
extreme  3′ end of the LSU rRNA gene (the same
locus  as above),  and then tested if it was possi-
ble  to amplify  sequences  downstream of LSU rRNA
from  this cDNA by PCR. We  successfully amplified
a  region  from trnE to rps19. This  indicating  the exist-
ence  of a long, polycistronic  antisense  transcript
from  LSU rRNA to  rps19 (Fig.  3).

We also tested  the presence  and  extent of
antisense  transcripts for sufB.  Analysis  of trans-
cripts  containing the sense sequence  of sufB had
revealed  that the gene is transcribed as a poly-
cistronic  molecule,  extending  at least  as  far as
the  adjacent  trnT  gene on the upstream side,
and  downstream  through orf51  and  orf101 into
rpoB  (Fig.  4, transcript a). In  order to determine
if  there were  also antisense  transcripts spanning
this  region,  cDNA was synthesized  using a forward
primer  at the extreme 3′ end  of  the  adjacent LSU
rRNA  gene. PCR was then carried  out  on the  cDNA
using  the same forward primer but with reverse
primers  at  intervals through  the five genes (trnT,
sufB,  orf51, orf101,  rpoB). Products  of  the expected
size  were  obtained  with all the reverse  primers  (data
not  shown),  indicating  that antisense  transcripts
extend  from the 5′ end of  LSU  to at least 358 bp
into  rpoB (Fig.  4, transcript  b).  The  antisense tran-
script  thus covers at  least  four genes  in full:  trnT,
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sufB, orf51  and orf101, as with the sense  transcript
previously  identified.

Processing of antisense  transcripts.  Circu-
lar  RT-PCRs to analyse  sense  strand transcripts
had  revealed  that  many  transcripts are  formed
from  the cleavage of polycistronic transcripts  at
processing  sites associated  with tRNA  molecules.
We  therefore wished  to determine  if antisense
processing  occurs in the  same way  as sense
transcript  processing.  Circular RT-PCR was there-
fore  carried  out  to map antisense  transcripts of
tufA,  clpC, sufB,  orf129,  rpl16 and  rps2. The
same  primer  sets were  used as before, except
that  cDNA was  first  synthesized with the forward
primer  (i.e. the opposite of  that  used  in map-
ping  sense transcripts).  The majority of antisense
circularization  reactions  did not give rise  to  corre-
sponding  recognizable product  in the subsequent
PCR.  This  was presumably because  the levels of
antisense  RNA  levels were too low,  or because
transcripts  were  too long to be identified  using
the  RNA circularization  technique.  Products  were
obtained  for  tufA,  rps2 and rpl2, although  suc-
cess  rates  (in  terms of clones obtained  which
contained  recognizable  apicoplast  sequences)
were  much lower than for sense circularization
experiments.

tufA  antisense. The circularization  assay for
antisense  transcripts  of  tufA  gave rise  to six clones
(Fig.  5, transcript  f).  At the 5′ end, one clone
extended  123 nt upstream  of the gene,  four  clones
extended  78- 83 nt upstream,  and one  clone fin-
ished  +8 nt (i.e.  within  the gene). None  of these sites
corresponded  to  the 19  different  tufA sense cleav-
age  sites previously  observed.  In contrast, at the
3′ end, five of the six  antisense transcripts ended
315-317  nt after  the end  of the  gene, as did  23/25  of
the  sense transcripts. This site  maps  immediately
before  the start  of  trnQ, suggesting  that this is a
major  cleavage site  for both  sense and  antisense
transcripts.

rps2  antisense.  The  rps2 and orf105 genes  are
adjacent  genes, but on opposing strands.  They
overlap  by 14 bp  at the 3′ end.  Twenty  eight clones
generated  from rps2  antisense  transcripts  were
identified  and fully sequenced  (Fig. 5, transcript g).
None  of the sequences  covered the whole of the
gene,  and  19/28 clones corresponded  to an anti-
sense  transcript with a 3′ end 118-121  nt before
the  3′ end of the  rps2  gene  (i.e.  within  the gene).
This  exactly  corresponds  to  the 3′ end  of  the  orf105
sense  transcript at +105-106nt  (Fig. 5 transcript
a;  note that the  gene is encoded  in the  opposing
strand).  Therefore,  it  seems likely that the majority
of  rps2 antisense  transcripts  arise as a by-product

from  cleavage  of a long,  primary transcript contain-
ing  the sense  orf105 mRNA.

Cleavage of RNA

Analysis  of the results from all circular RT-PCR
experiments  had indicated the presence of twelve
major  RNA  processing  sites  (marked by arrows  in
Figs  3 and 4). Three sites are  immediately  adjacent
to  the  5′ or 3′ ends of individual  genes  (SSU  rRNA/
orf79),  two sites are  within the rps2  and orf105
genes,  at the  point  where  the orientation of genes
on  the apicoplast  genome  switches from one strand
to  the other.  The  remaining  seven processing sites
are  immediately  adjacent  to tRNA sequences. The
cleavage  sites associated  with the 3′ ends of  trnS,
trnT,  trnF, trnW, trnG all  coincided with the pres-
ence  of an adjacent UUAU motif (UUAA  for trnG),
Table 1. The  cleavage site  at the  5′ start  of trnG also
coincided  with an associated  UUAA motif, while
the  cleavage  site associated with rps2 was asso-
ciated  with a UUAG  motif, while a  UUAU  motif
was  identified  in orf105.  No such  motif  was found
near  the trnQ  cleavage  site,  which  is conserved
in  both sense and antisense transcripts.  These
observations  indicate  that RNA cleavage is usually
associated  with a specific UUAA/U/G motif.

RNA Editing

Alignments  of  sequence  data revealed the  pres-
ence  of single  point substitutions  in individual
transcripts.  Although  these could be caused by very
low  levels of RNA editing, we could  not exclude that
these  were errors in reverse transcriptase,  PCR  or
sequencing,  and so did not analyse  them further.
However,  an alignment  of circularization data  from

Table  1. Sequences  associated  with  major
processing sites.  RNA  sequences  immediately
adjacent to  the  predicted  processing  sites  are  shown
for each  gene.  Processing  sites  are  written  in  bold
type and  the  adjacent  UUAU/A  motif  is  underlined.
Note  that  trnG  has  three  major  processing  sites,  one
5′ and  two  3′ to  the  tRNA.

Gene  Sequence

Ser  (3′)  UUUAUAUU
Thr (3′)  UUUUAUUA
Trp (3′)  UUUUAUUA
Phe (3′)  CUUAUUAA
Gly (3′)  AUUUUAAA
rps2 UUAGAUUC
orf105  UUAUUUAA
Gly (5′)  UUAUAAAUUUUAAC
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rpl2 with the  corresponding  genomic  sequences
revealed  that  4/21 clones  generated  from  circu-
larized  RNA  indicated editing  of a G to an A at
position  649 within  the  gene, converting a  glycine
to  a glutamate  codon (clones marked with ** in
Supplementary  Material: supporting  data  S1).  The
clones  were of different  lengths, and therefore  rep-
resent  independent  transcripts,  making  it unlikely
that  this event was caused by reverse transcrip-
tase  or  PCR error.  The  clones containing  the  editing
event  were obtained  from multiple  independent
circular  RT-PCR experiments  using  RNA from dif-
ferent  extractions  (i.e. biological  replicates).

To confirm the genomic sequence  at this site, we
amplified  the region  from genomic  DNA by PCR,
cloned  the  products  and sequenced  20 clones. All
clones  contained  a G residue,  suggesting  that  the
presence  of an  A  in the  RT-PCR products  was
indeed  a result  of RNA editing. When  we  carried
out  RT-PCR on linear  RNA,  we did not detect  the
editing  site (0/9  clones and 0/13 clones  from  two
different  cDNA synthesis  reactions).  We  next exam-
ined  RNA-seq  data from four Plasmodium  libraries
corresponding  to four  time  points  (10hr,  20hr,  30hr,
40hr;  Siegel et al. 2014). This revealed that  edit-
ing  is stage  specific, occurring  only at 20  hours
post-infection,  as shown in Table 2. No evidence
of  editing was  found at 10, 30 or 40 hours  post-
infection.  Together these  results  suggest that RNA
editing  is stage-specific, and  only  occurs  once RNA
has  been  initially processed.  This  would  account  for
the  higher  (25%)  level  of editing seen  in the  circu-
larized  RNA,  which  is only made  up of processed
RNA,  over the lower (0-7%)  levels  observed  in the
RNA-seq  data, which consists of both  processed
and  un-processed  RNA.

We next  examined  the rpoC2  gene  which
encodes  a  subunit  of the RNA  polymerase (mis-
annotated  as rpoD,  although it does  not  encode
a  sigma  factor).  This  gene  appears to contain a
reading  frame shift at position 1570-1575,  where
five  A  nucleotides  encode either one or two lysine

Table  2. RNA  editing  in  rpl2.  RNA-seq  libraries  from
total RNA  (poly(A)-tail  enriched)  were  obtained  from
(Siegel  et  al.  2014).  ‘Total’  refers  to  the  total  number  of
reads covering  site  649  in  the  rpl2  gene,  and  ‘Edited’
refers to  the  number  of  those  reads  that  were  edited
G–>A.

10  hr  20  hr  30  hr  40  hr

Total  151  104  674  482
Edited  0 7  0  0
% 0%  6.7%  0%  0%

residues.  No transcripts covering  this region were
identified  in any of  the  four RNA-seq libraries. We
therefore  carried  out RT-PCR across this  region of
rpoC2  and  cloned  the PCR products  into  E.  coli.
All  three sequenced  clones contained  the genomic
version  of rpoC2 and  none  contained  an edited ver-
sion,  suggesting  that  this gene is not edited despite
the  presence  of a frame-shift mutation.

Discussion

We have shown  that transcripts in  the Plasmodium
remnant  chloroplast are  polycistronic,  confirming
previous  research  (Figure 7) (Gardner  et  al.  1991a,
b). The  largest  transcript we identified  spanned
15  genes (Fig.  3). Circular  RT-PCR indicated that
transcripts  covering  individual  genes  had a range of
different  sizes. Where transcript  ends were located
within  protein  coding regions,  the endpoints were
generally  heterogeneous,  as  with the 3′ ends of
sufB  transcripts,  for example (Fig.  4).  By contrast,
many  transcript ends coincided  very precisely with
the  beginning  or end  of tRNA sequences,  such as
the  5′ ends  of sufB transcripts,  of which 95% coin-
cided  exactly with the start or end of the upstream
trnT  sequence.  Similarly, 75%  of orf105 transcripts
had  a 5′ end corresponding  to the start of the adja-
cent  trnS  sequence,  and 88% of tufA  transcripts
extended  through  orf78  with a 3′ end at the  start of
trnQ.

This  suggests  a processing  pattern  very sim-
ilar  to ‘Punctuation  Processing’  first reported for
human  mitochondria,  where  polycistronic trans-
cripts  are  predominantly  cleaved  by excision of
tRNA  sequences  (Ojala  et al. 1981).  The generally
heterogeneous  location  of ends  within protein cod-
ing  sequences  may reflect non-specific processing,
cleavage  followed  by exonucleolytic degradation,
or  non-specific  transcription  termination  sites. The

DNA

transcription

cleavag e, editing

RNA

Figure  7. Summary  of  post-transcriptional
processing. Schematic  diagram.  RNA  editing
event is  indicated  with  a  star.
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fact that  transcripts  cleaved at tRNA  sequences
have  well-defined  ends, even if they no  longer  retain
the  tRNA  after  cleavage, suggests  that  levels of
artefactual  exonucleolytic  degradation  are  low in
our  assay.

There were two  consistently  observed  instances
of  transcript ends  within  coding sequences.  These
were  the 3′ ends of transcripts  containing  rps2,
which  were predominantly  located  close to a spe-
cific  position within  orf105,  and the 3′ ends of
transcripts  containing orf105,  which were predom-
inantly  located  close to a specific position within
rps2.  These  two genes mark the convergence  of
two  long transcripts, with a transition  from one
genome  strand being used for  coding  to the other.
It  is possible  that  the transcript ends correspond
to  specific  transcript termination sites, although
the  antisense  data (see  below)  suggest  that at
least  some  transcription  can proceed  through  them.
Major  cleavage sites  were associated  with an
UUAU  motif. The  mechanism  of RNA  cleavage
remains  to be elucidated.

It is striking  that  all regions  of the genome
tested  were represented by antisense  transcripts,
although  these  were  less abundant than sense
transcripts,  based on RT-PCR product  levels.
Although  there  have been previous  reports  of
extensive  antisense  transcription  of nuclear  genes
in  Plasmodium  (López-Barragán  et al. 2011), we
believe  that this  is the  first evidence  of antisense
transcripts  in the Plasmodium  apicoplast.  Anti-
sense  transcripts have previously  been  reported
for  the related  apicomplexan,  Toxoplasma, using a
microarray  tiling  system,  at 25 nt resolution,  show-
ing  that the  entire  apicoplast  genome  is present  on
sense  and antisense  transcripts (Bahl et al. 2010).

Antisense  transcripts could be generated  either
by  direct  antisense  transcription or by read-through
from  a gene located  on  the  opposite  strand. The
exact  coincidence  of the start  of the antisense tran-
script  of rps2 and the 3′ end of the  sense transcript
of  orf105  suggests  that the antisense  rps2 tran-
script  may  be generated  by cleavage  of a sense
transcript  of orf105  extending into rps2. (Consis-
tent  with this, the  existence of RNA  molecules
extending  through  the site could  be detected  by
linear  RT-PCR,  data  not shown.) Note that the
different  location  of the  5′ end of the  rps2  anti-
sense  transcript from the 3′ end of the sense
transcript  confirms that the  antisense transcript  was
not  an  artifactual  amplification  of the sense tran-
script.  Many  other  antisense  transcript processing
sites  corresponded  closely to sense  processing
sites.  For example,  both tufA  antisense  and  sense
transcripts  had a cleavage site corresponding  with

the start of the trnW gene. This may  indicate that
cleavage  in these cases  is primarily dependent on
secondary  structure rather than sequence (which
will  be different  between the sense and antisense
transcripts).

Whether  antisense transcripts  have a biolog-
ical  function in the apicoplast remains to be
seen.  It is known that  the high levels of nuclear
antisense  transcripts  seen in Plasmodium are
stage-dependent,  leading  to speculation  that these
molecules  could  be involved  in stage-specific reg-
ulation  of  gene expression  (López-Barragán  et al.
2011;  Militello  et al.  2005), and a similar process
could  be occuring in the apicoplast.

The  occurrence  of an  RNA editing  site  in rpl2,
altering  the predicted  amino  acid sequence from
a  glycine to a  glutamate,  was unexpected. Our
results  indicate  that RNA editing is stage-specific,
and  occurs after RNA  has  been  cleaved  into mRNA,
as  editing was observed  only in cDNA  derived
from  RNA  which  could  be circularized in vitro (i.e.
processed  RNA) and not in cDNA derived from lin-
ear  RNA, which includes  RNA which  has not yet
been  processed. If  correct, this interpretation would
also  suggest  that RNA which has not yet  been
processed  constitutes  a relatively large fraction of
the  RNA pool.

To our  knowledge,  RNA editing in the Plasmo-
dium  apicoplast  has not  previously  been reported.
In  plant  chloroplasts, RNA editing  is restricted to
C  to U (or the inverse, U to  C), and is gener-
ally  uncommon.  Some dinoflagellate  algal species
show  extensive RNA editing,  affecting around 5%  of
all  nucleotides  in Karenia mikimoti, although other
species  have  very low (or absent)  rates  of edit-
ing,  and the mechanism  by which editing occurs
is  unknown  (Barbrook et al. 2012;  Dang and Green
2010;  Dorrell and Howe 2012;  Zauner et al. 2004).
The  edit seen here  was G to A, which has been
reported  from  dinoflagellates,  although  A to G edit-
ing  is  more common.  Surprisingly, the editing site
occurs  in  the only conserved region  of rpl2,  in the
middle  of a  six amino  acid consensus  sequence
(HPHGGG),  as shown  in  Supplementary figure S2.
It  will be  important  to determine  if this editing site
occurs  in  other  Plasmodium and/or  Apicomplexan
species.

No  RNA editing was observed  in rpoC2, despite
the  gene apparently  requiring a frame-shift  for
translation.  It is unclear how the frameshift is
removed,  though  it is possible  that  this occurs
during  translation.  Ribosomal  frame-shifting in
chloroplasts  is not common;  to our knowledge, the
only  report  to date involves an artificially introduced
E.  coli gene  in tobacco. Translation  of this  gene
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was successful  in tobacco, suggesting  that all the
signals  necessary for  frame-shift  were present in
the  gene, and  that prokaryotic-style  70S  ribosomes
can  carry out translation  including a frameshift  (Kohl
and  Bock 2009).

The occurrence of editing in the Plasmodium  api-
coplast  is remarkable, as it  has apparently  been
acquired  independently  of editing  in dinoflagel-
lates  (given that some  dinoflagellates,  as well as
Chromera  and Vitrella, lack editing), and  only a sin-
gle  site (or a few at most) is involved.  It will be
interesting  to see if this is unique to Plasmodium
or  occurs  in  other parasitic  Apicomplexa,  such as
Toxoplasma.  The  construction of a series  of stage-
specific  RNA-seq libraries (enriched  for apicoplast
RNA,  and not  derived from polyA-tailed  RNA) could
help  answer these  questions.

Our results  show that transcription  and  post-
transcriptional  processing  in the remnant  chloro-
plast  of Plasmodium  is complex. Some  features,
such  as polycistronic  transcription  by a sin-
gle  RNA  polymerase, appear to  be  conserved
across  Plasmodium,  photosynthetic  Apicomplexa,
dinoflagellates  and the red  algae.  Other features,
such  as RNA  editing  and ribosomal  frameshifting,
may  be unique to specific  lineages, and  editing
has  apparently  been acquired  more  than once.
It  is unclear  whether  RNA  processing  at tRNAs
(Punctuation  Processing)  is an ancestral  or derived
characteristic,  as very few tRNA genes  have been
identified  in  dinoflagellate  chloroplasts  (Barbrook
et  al.  2006), and little  is known about  how  RNA is
processed  in red  algae (from which the  Plasmo-
dium  chloroplast  ultimately  derives). Punctuation
processing  is usually  carried out by RNAseP, first
identified  in  human  mitochondria (Rossmanith  et al.
1995) so if it is ancestral,  a similar  process  is likely  to
be  occurring  in the Plasmodium  apicoplast.  A better
understanding  of red  algal  chloroplast  RNA tran-
scription  and post-transcriptional processing  would
help  resolve these  issues. Nevertheless,  the  high
level  of post-transcriptional  processing  in  Plasmo-
dium  offers  important  targets  for the development
of  new antimalarial  agents.

Methods

P.  falciparum  culture:  Blood  stage  P.  falciparum  3D7  was  cul-
tured according  to  Tarr  et  al.  2012  (Tarr  et  al.,  2012).  All  work
was  carried  out  in  accordance  with  the  UK  Human  Tissue  Act
2004. The  apicoplast  genome  sequence  is  available  on  Gen-
Bank  (accession  numbers  X95275  and  X95276).

RNA extraction:  Total  RNA  was  extracted  from  P.  falciparum
according  to  Kyes  et  al.  (2000).  Asynchronous  culture  of  at  least
4% haematocrit  was  centrifuged  at  800  g  for  five  minutes  and

the  supernatant  removed.  For  every  300  �l  of  infected  red  blood
cells, 5  ml  Trizol  (Invitrogen)  was  added.  This  mixture  was  incu-
bated at  37 ◦C  for  five  minutes  with  occasional  shaking.  One-
fifth Trizol  volume  of  chloroform  (Sigma-Aldrich)  was  added  with
vigorous  shaking,  and  left  to  stand  at  room  temperature  for  three
minutes  before  centrifugation  at  1400  g  at  4 ◦C  for  30  minutes.
Three-fifths  Trizol  volume  isopropanol  (Sigma-Aldrich)  was
added  to  the  aqueous  layer.  The  mixture  was  divided  into  1.5  ml
aliquots  and  each  was  spun  at  16000  g  at  4 ◦C  for  30  minutes
and the  supernatant  discarded.  The  glassy  white  pellet  was
resuspended  in  ice-cold  75%  ethanol,  centrifuged  at  16000  g  at
4 ◦C  for  30  minutes,  and  the  supernatant  discarded.  The  pellet
was  resuspended  in  non-DEPC  treated  RNase  free  water  (Invit-
rogen) and  DNase  treated  (RQ1  RNase  free  DNase,  Promega).
RNA was  purified  using  the  Qiagen  RNeasy  mini  spin  column,
eluted in  RNase  free  water  and  stored  at  -80 ◦C  until  required.

RNA circularization:  RNA  circularization  was  carried  out
essentially  according  to  Kuhn  and  Binder  2002.  DNase  treated
RNA  was  circularized  using  T4  RNA  ligase  (Promega).  Each
reaction  contained  300-750  �g  RNA,  4  �l  10x  T4  RNA  ligase
buffer,  0.5  �l  recombinant  RNasin  (Promega),  1  �l  T4  RNA
ligase,  20  �l  40%  w/v  polyethylene  glycol  (Sigma),  and  RNAse-
free water  to  40  �l.  The  reaction  was  incubated  at  37 ◦C  or  42 ◦C
for one  hour,  and  then  overnight  at  16 ◦C.  The  circularized  RNA
was applied  to  an  RNeasy  mini  column  (Qiagen)  and  eluted  in
non-DEPC  treated  RNAse  free  water  and  stored  at  -80 ◦C  until
required.

cDNA  synthesis:  All  primers  are  listed  in  the  Supplementary
Material,  supporting  Table  S1.  For  each  experiment,  1000-5000
ng RNA  (either  linear  or  circular)  was  used,  to  which  was  added
1 �l  of  2  �M  gene-specific  reverse  primer,  1  �L  10  mM  dNTPs
(Bioline)  and  non-DEPC  treated  water  to  12.5  �l.  The  reaction
was incubated  at  65 ◦C  for  5  minutes,  and  snap  cooled  on  ice.
4 �l  Superscript  reverse  transcriptase  buffer  (Invitrogen),  2  �l
0.1 M  DTT,  0.5  �l  recombinant  RNasin  (Promega)  were  added
and the  mixture  incubated  at  37 ◦C  for  2  minutes  prior  to  the
addition of  1  �l  Superscript  II  or  III  reverse  transcriptase.  The
reaction was  incubated  at  37  or  42 ◦C  for  50  minutes  and  the
enzyme inactivated  at  70 ◦C  for  15  minutes.  A  no-RT  control
reaction  was  carried  out  for  every  cDNA  synthesis  reaction,
where  1  �l  dH2O  was  added  in  place  of  the  Superscript  reverse
transcriptase.

RNA  circularization  experiments  were  performed  in  either
duplicate  or  triplicate,  from  separate  RNA  preparations,  and  the
data aggregated.  All  linear  RT-PCR  reactions  were  performed
in triplicate,  from  separate  RNA  preparations.

PCR,  cloning  and  sequencing:  PCR  was  carried  out  on
DNA,  cDNA  (or  no-RT  control)  using  GoTaq  DNA  polymerase
(Promega).  All  primers  were  designed  with  an  annealing  tem-
perature  of  50 ◦C  –  53 ◦C  and  all  reactions  were  carried  out  with
an extension  temperature  of  60 ◦C.  Products  were  analysed  by
agarose  gel  electrophoresis,  and  sequenced  where  required.
Where  required,  PCR  products  were  cloned  into  pGEM-T-
easy  (Promega)  and  used  to  transform  chemically  competent
E. coli  TG1.  Plasmids  were  sequenced  using  Sanger  sequenc-
ing at  the  Depatment  of  Biochemistry,  University  of  Cambridge
sequencing  facility.

RNA-seq  analysis:  Libraries  containing  transcriptome  data
for 10  hr,  20hr,  30hr  and  40  hr  post-infection  were  down-
loaded  from  the  EBI.  These  correspond  to  study  accession
PRJEB3309,  libraries  ERR174301  (10  hr),  ERR185969  (20
hr), ERR185970  (30  hr),  ERR185971  (40  hr)  sequences  on
an HiSeq2000  (Illumina)  (Siegel  et  al.  2014).  Sequences  were
aligned  to  the  reference  apicoplast  genome  sequence  using
the Bowtie2  plug-in  in  Geneious  8.0.5  (Kearse  et  al.  2012;
Langmead  and  Salzberg  2012).
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