
Design Techniques for Efficient
Sparse Regression Codes

Adam Greig

Selwyn College
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

September 2017

2

Design Techniques for Efficient Sparse Regression Codes
Adam Greig

Summary

Sparse regression codes (SPARCs) are a recently introduced coding scheme for the additive
white Gaussian noise channel, for which polynomial time decoding algorithms have been pro-
posed which provably achieve the Shannon channel capacity. One such algorithm is the ap-
proximate message passing (AMP) decoder. However, directly implementing these decoders
does not yield good empirical performance at practical block lengths. This thesis develops tech-
niques for improving both the error rate performance, and the time and memory complexity,
of the AMPdecoder. It focuses on practical and efficient implementations for both single- and
multi-user scenarios.

A key design parameter for SPARCs is the power allocation, which is a vector of coeffi-
cients which determines how codewords are constructed. In this thesis, novel power allocation
schemes are proposed which result in several orders of magnitude improvement to error rate
compared to previous designs. Further improvements to error rate come from investigating
the role of other SPARC construction parameters, and from performing an online estimation
of a key AMP parameter instead of using a pre-computed value.

Another significant improvement to error rates comes from a novel three-stage decoder
which combines SPARCs with an outer code based on low-density parity-check codes. This
construction protects only vulnerable sections of the SPARC codeword with the outer code,
minimising the impact to the code rate. The combination provides a sharpwaterfall in bit error
rates and very low overall codeword error rates.

Two changes to the basic SPARC structure are proposed to reduce computational and
memory complexity. First, the design matrix is replaced with an efficient in-place transform
based on Hadamard matrices, which dramatically reduces the overall decoder time and mem-
ory complexity with no impact on error rate. Second, an alternative SPARC design is devel-
oped, called Modulated SPARCs. These are shown to also achieve the Shannon channel ca-
pacity, while obtaining similar empirical error rates to the original SPARC, and permitting a
further reduction in time and memory complexity.

Finally, SPARCs are implemented for the broadcast and multiple access channels, and for
themultiple description andWyner-Ziv source codingmodels. Designs for appropriate power
allocations and decoding strategies are proposed and are found to give good empirical results,
demonstrating that SPARCs are also well suited to these multi-user settings.

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as declared in the Preface and specified in the text.

It is not substantially the same as any that I have submitted, or, is being concurrently sub-
mitted for a degree or diploma or other qualification at the University of Cambridge or any
other University or similar institution except as declared in the Preface and specified in the
text. I further state that no substantial part of my dissertation has already been submitted, or,
is being concurrently submitted for any such degree, diploma or other qualification at theUni-
versity of Cambridge or any other University of similar institution except as declared in the
Preface and specified in the text.

It does not exceed the prescribed word limit of 65,000 words inclusive of appendices, bib-
liography, footnotes, tables, and equations, and has fewer than 150 figures.

Adam Greig
September 2017

5

6

Acknowledgements

This work was generously funded by a Doctoral Training Award from the Engineering and
Physical Sciences Research Council.

My sincere gratitude is owed to Dr. Ramji Venkataramanan, first for offering to take me on
as a student, and then for four years of patient, dedicated, and careful supervision and guid-
ance. His enthusiasm and support fostered the ideas herein, while his tireless attention to de-
tail caught my countless missteps along the way.

My thanks also go to my colleagues in the Signal Processing and Communications Laboratory
for their camaraderie, and especially to Dr. Jossy Sayir for always having my back.

Thanks finally to friends and family. To friends who left Cambridge: thank you for showing it
can be done, and for offering support from the world outside. To Rob and David, for sharing
in the graduate experience, and especially David, for also suffering sharing a house for most of
it. To Hannah, for their constant encouragement, for putting up with the late nights, and for
everything else besides. Last but not least, to my parents and sister, for their unwavering and
enduring support over this and all other endeavours.

7

8

Preface

Material from Chapters 1 and 2 represents work undertaken in collaboration with Dr. Ramji
Venkataramanan and Dr. Cynthia Rush, and has been previously published in [1].

Material from Chapters 3, 4, 5, and 6 represents work undertaken in collaboration with Dr.
Ramji Venkataramanan. The author of this thesis was the principal contributor.

Material from Chapters 3 and 4 has been published in [2].

9

10

Contents

1 Introduction 13
1.1 Channel Coding . 13
1.2 Source Coding . 16
1.3 Multiuser Communication . 18
1.4 The Sparse Superposition Code . 18

1.4.1 Construction and Encoding . 19
1.4.2 Decoders . 20
1.4.3 SPARCs for Source Coding . 23

1.5 Notation . 23
1.6 Contributions of this Thesis . 24

2 ApproximateMessage Passing for SPARCs 25
2.1 The AMP Channel Decoder . 26
2.2 Background and Derivation . 27
2.3 State Evolution . 35
2.4 Asymptotic State Evolution . 38

3 Design Techniques to Improve Finite Length Performance 41
3.1 Introduction . 41
3.2 Reducing Decoding Complexity via Random Hadamard Design Matrices . . 43
3.3 Numerical Regularisation in ηti . 49
3.4 Power Allocation . 51

3.4.1 Modified Exponential Power Allocation 54
3.4.2 Iterative Power Allocation . 56

3.5 Error Concentration Trade-offs . 58
3.5.1 Effect ofL andM on Concentration 59
3.5.2 Effect of Power Allocation on Concentration 61

3.6 Online Computation of τ 2t and Early Termination 64
3.7 Predicting Esec, Eber, and Ecw . 66

11

4 Outer Codes for SPARCs 73
4.1 Comparison with Coded Modulation . 74
4.2 AMP with Partial Outer Codes . 76

4.2.1 Decoding SPARCs with LDPC outer codes 79
4.2.2 Simulation Results . 81
4.2.3 Outer Code Design Choices . 83

5 Modulated SPARCs 85
5.1 Encoding Modulated SPARCs . 86
5.2 AMP for Modulated SPARCs . 87

5.2.1 State Evolution for AMP Decoded Binary Modulated SPARCs . . . 89
5.2.2 Proof of Achieving Capacity with AMP Decoder 91
5.2.3 Proof of Lemma 5.1 . 93

5.3 Implementation and Simulation Results . 100
5.4 Derivation of AMP for Modulated SPARCs 102

5.4.1 Derivation of ηti . 102
5.4.2 Derivation of update rules . 104

6 SPARCs forMultiuser Channel and Source CodingModels 111
6.1 Gaussian Broadcast Channel . 112

6.1.1 SPARCs for the Gaussian Broadcast Channel 114
6.1.2 Implementation and Results . 116

6.2 Gaussian Multiple Access Channel . 118
6.2.1 SPARCs for the Gaussian Multiple Access Channel 119
6.2.2 Implementation and Results . 124

6.3 Multiple Description Source Coding . 127
6.3.1 Gram-Schmidt based Multiple Descriptions 129
6.3.2 SPARCs for Multiple Description 132

6.4 Wyner-Ziv Distributed Source Coding . 133
6.4.1 SPARCs for Wyner-Ziv Distributed Coding 136

7 Conclusions 139

12

Chapter 1

Introduction

Claude Shannon’s seminal 1948 paper [3] introduced the concepts of channel and source cod-
ing, and at the same time presented sharp limits on the possible performance of these tech-
niques. Since then, much work has gone into finding computationally efficient techniques for
achieving these bounds. This thesis presents research into the design and implementation of
sparse regression codes, which offer efficient solutions to these problems for Gaussian models.

1.1 Channel Coding

p(y|x)x y

x∈X

X∼PX(x)

y∈YChannel

Figure 1.1: A memoryless communications channel

A memoryless communications channel, depicted in Figure 1.1, maps a symbol x from
the input alphabet X to a symbol y from the output alphabet Y , and is defined by its transi-
tion probability p(y|x). The capacity is defined as the maximum mutual information between
X and Y over all possible input distributions: C = sup

P (x)

I(X;Y) [4]. The channel may be

discrete, in which case X and Y are finite alphabets, or it may be continuous, such as with
X = Y = R. The memoryless property requires that p(y|x) depends only on the current x
and not previous channel inputs or outputs [4]. This channel model is a useful representation
of many physical communication mediums where we would like to achieve reliable commu-

13

nication (that is, with arbitrarily low probability Pe of an erroneous message being received).
The channel is used by transmitting a symbol x to a receiver who obtains the symbol y. We
define the channel rate R to be the information communicated per channel use: if it takes n
channel uses to communicateB bits of information, thenR = B

n
.

Shannon gave a proof [3] that for any ϵ > 0 and R < C, it is possible to achieve Pe ≤
ϵ, and conversely for R > C the probability of error can not be made arbitrarily small. A
stronger version of this important result was later proven for the discrete memoryless channel
by Feinstein [5].

AdditiveWhite Gaussian Noise Channel

Amore specific channel whichwill be of particular interest is the additivewhiteGaussian noise
(AWGN) channel. The channel generates output sequence y from input x according to

y = x+ w (1.1)

where the independent noise w is a Gaussian random variable with zero mean and variance
σ2. There is an average power constraint P on the input x: if x1, . . . , xn are transmitted over
n uses of the channel, then we require that 1

n

∑n
i=1 x

2
i ≤ P . The signal-to-noise ratio P

σ2 is
denoted by snr. The capacity of this channel is C = 1

2
log(1 + snr). The AWGN channel is

important both because it is amenable to analysis, and because it is an accuratemodel formany
practical communication channels.

Channel Codes

m Encoder p(y|x) Decoder m̂
Message

x

Channel

y

Received Message

Figure 1.2: The standard channel coding set-up

To achieve these capacity limits, we typically use some form of channel code. The gen-
eral set up is illustrated in Figure 1.2. Some messagem is encoded to a codeword x which is
transmitted through the channel, which produces the output y. The decoder must estimate m̂
from y. A common form of channel code is the block code, which may be viewed as a code-
book of codewords, any of which may be selected for transmission over the channel, and the

14

index of the chosen codeword represents the message to be communicated. The codewords
are sequences (of length n) of symbols from the channel input alphabet, and so each message
communicates nR bits.

A simple way to construct these codebooks is the Shannon-style random codebook, where
codewords are randomly selected sequences from the input alphabet, drawn according to the
input distribution P (x). For the AWGN channel described above, we generate codewords as
i.i.d. Gaussian random variates, with each codeword entry distributed asN (0, P). To decode,
we selectwhichever codewordhas the highest likelihood of having being transmitted, given the
channel output sequence y. This decoder is called the maximum likelihood decoder and while
it is the optimal decoder for this problem [6], it has been largely avoided in practice due to
the high decoding complexity. The number of possible codewords is exponential in the block
size n, and we require exhaustive search to determine the codeword which is closest to y. This
is typically impractical, so in practice alternative code structures are used which permit lower
complexity decoding.

Practical Channel Codes

Current state of the art codes can come very close to the Shannon capacity, both theoretically
under certain channelmodels, and in practice in real world communication systems. One such
example is low density parity check codes, first invented by Gallager in 1962 [7] and later in-
dependently rediscovered by MacKay and Neal in 1993 [8]. LDPC codes have been shown
to achieve capacity for the binary erasure channel [9]. These codes work very well on channels
withdiscrete input alphabets, particularly thosewithbinary input. Other examples of capacity-
achieving codes for discrete-input channels are turbo codes [10, 11], and polar codes [12, 13].

However, physical communications channels have continuous valued inputs, such as the
additive white Gaussian noise (AWGN) channel. To employ an LDPC or Turbo code on such
a channel requires the addition of a modulation scheme, such as Phase Shift Keying (PSK) or
Quadrature Amplitude Modulation (QAM). This combination of a binary error-correcting
code with a standard modulation scheme is known as coded modulation [14, 15]. Though
codedmodulation schemes have good empirical performance, they have not been proven to be
capacity-achieving for the AWGN channel. A survey of progress on coded modulation tech-
niques by Costello and Forney can be found in [16].

Finding an efficient code which achieves capacity while directly using the AWGN chan-
nel without a modulation step is a problem for which sparse superposition codes were in-

15

troduced by Barron and Joseph in [17, 18]. Sparse superposition codes, or sparse regression
codes (SPARCs), have been shown to be asymptotically capacity achievingwith an appropriate
polynomial-time decoder [18]. They combine the encoding andmodulation steps into a single
process, similar to the Shannon random codebooks, but permit an efficient, low-complexity
encoder and decoder, making them promising as an alternative to coded modulation. The
SPARC construction is discussed in more detail in Section 1.4.

Existing lattice codes can also be used to code directly on the AWGN channel, but require
infeasible computation at the very high dimensions required to come close to capacity [19,20].

1.2 Source Coding

Source coding is the complementary problem to channel coding: rather than attempting to
add redundancy to a message so that it may be recovered after sustaining an error, we wish to
remove the redundancy already present in some source. This may be performed such that we
may still perfectly recover the source at a later date, known as lossless compression, for example
when a text document is compressed on a computer; or we may introduce errors, known as
lossy compression, typically with a continuous source such as MP3 encoding an audio file.

The latter case is described by rate distortion theory, introduced by Shannon in [3] and
developed further in [21]. As in the channel coding situation, we replace the actual sourcewith
a codeword selected from a set which is known in advance to both the encoder and decoder.
The selected codeword does not perfectly represent the real source, and the error is called the
distortion. For a source x and our approximation of it x̂, the distortion is d(x, x̂) for some
metric d(·, ·). One metric commonly used for distortion is the squared error,

d(x, x̂) = (x− x̂)2. (1.2)

For a vector source and suitable distortion metric we define the distortion as

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i). (1.3)

Rate distortion theory is concerned with the minimum level of distortion obtainable for a
given rateR used to encode a sample. For a specified distortion metric, a rate-distortion pair
(R,D) is called achievable if a code exists for the rate R that gives an average distortion less

16

than or equal toD. The set of all such achievable rate-distortion pairs is called the achievable
region, and the function that maps a target distortion to the required rate is the rate-distortion
functionR(D).

For a vector source with n elements, the index of each codeword will be represented by
nR bits. Such a code is called a (2nR, n) rate distortion code. Given an input alphabetX , our
encoder and decoder are therefore mappings

fn : X n → {1, 2, . . . , 2nR}

gn : {1, 2, . . . , 2nR} → X n, (1.4)

and the distortion associated with this code is

D = E[d(Xn, gn(fn(X
n)))] =

∑
xn

p(xn)d(xn, gn(fn(x
n))). (1.5)

A useful result is the rate distortion theory for a Gaussian source, as these will be of par-
ticular interest in the rest of this thesis. Shannon [21] showed that for a Gaussian source with
variance σ2, andD ≤ σ2,

R(D) =
1

2
log

σ2

D
. (1.6)

For the caseD > σ2, the distortion is trivially achievable by encoding all zeros, and no rate
is required, R(D) = 0. As with the channel codes described previously, one conceptually
simple way to achieve this bound is using Shannon-style random codebooks. For a rateR, we
construct a codebook by drawing 2nR samples from the input source distribution, and then to
encode we select whichever entry has the lowest distortion for the source. The index of that
entry is transmitted, requiring nR bits, and the decoder looks up that index to find the ap-
proximation to the source. This technique is not practical in reality as the codebook size grows
exponentially in n, so alternative techniques must be found. SPARCs provide one option, dis-
cussed in more detail in Section 1.4.

Another way to view source coding in the rate-distortion framework is as a process called
quantisation. The sourceX is quantised to some representation X̂ , where all possible X̂ are
known in advance. The resulting error is called the quantisation noise. We can model the pro-
cess as

X = X̂ + Z, (1.7)

17

which is known as the test channel, and is very similar to the AWGN channel described above,
except that the sourceX is the output of this channel. This quantisation view is especially useful
for designing techniques to solve the multiple description problem described in Section 6.3.

1.3 Multiuser Communication

The source and channel coding scenarios described above involve simple point-to-point prob-
lems, with a single encoder and decoder. However, there exist many problems involving multi-
ple encoders or decoders, and the study of these problems is called network information theory.
Many practical communications problems involve multiple parties, such as multiple mobile
telephones connected to the same base station, or submarine communications cables which
require amplifiers along their length.

Often for these more complicated problems the general capacity region is not known, and
therefore no techniques are known which can achieve capacity. For some specific channels,
a capacity region or a bound on the capacity region may be known, and it may then be pos-
sible to find techniques to achieve these regions. In many cases, capacity regions are known
for Gaussian channels, which often leads to techniques to achieve them based on the same
Shannon-style random codebooks discussed previously, which are infeasible for practical pur-
poses.

1.4 The Sparse Superposition Code

Sparse superposition codes, or sparse regression codes (SPARCs) are a recent development,
initially proposed by Barron and Joseph [17, 18] for use on the AWGN channel. Unlike with
coded modulation, SPARCs directly map the message to be encoded onto a codeword for the
AWGN channel. They are similar in essence to Shannon random codebooks: codewords are
sequences of normally distributed random variates, but instead of being selected from an un-
structured codebook of 2nR such codewords, they are found as a linear combination of code-
words from many smaller codebooks. Specifically, they are formed as sparse linear combina-
tions of the columns of a design matrix. This key difference introduces structure to the codes,
which enables much lower complexity decoders. SPARCs can be used for both channel and
source coding operations: the underlying design matrix and codeword structure is the same,
but different encoders and decoders are used.

18

β:
T

0,
√
nP1, 0,

√
nP2, 0,

√
nPL, 0, , 00,

M columns M columnsM columns
Section 1 Section 2 Section L

A:

Figure 1.3: A is the n× LM design matrix, β is anML× 1 sparse vector with one non-zero
in each of theL sections. The length-n codeword isAβ. Themessage determines the locations
of the non-zeros in β, while P1, . . . , PL are fixed a priori. This figure is reproduced from [1].

1.4.1 Construction and Encoding

A SPARC is defined in terms of a design matrixA of dimension n×ML. Here n is the block
length, andM,L are integers which are specified below in terms ofn and the rateR. As shown
in Fig. 1.3, the design matrixA hasL sections withM columns each. In the original construc-
tion of [17,18] and in the theoretical analysis in [1,22–24], the entries ofA are assumed to be
i.i.d. Gaussian∼ N (0, 1/n).

Codewords are constructed as sparse linear combinations of the columns ofA. In partic-
ular, a codeword is of the form Aβ, where β is an ML × 1 vector (β1, . . . , βML) with the
property that there is exactly one non-zero βj for the section 1 ≤ j ≤M , one non-zero βj for
the sectionM +1 ≤ j ≤ 2M , and so forth. The non-zero value of β in each section ℓ is set to
√
nPℓ, where P1, . . . , PL are pre-specified positive constants that satisfy

∑L
ℓ=1 Pℓ = P , the

average symbol power allowed.
BothA and the power allocation{P1, . . . , PL} are known toboth the encoder anddecoder

in advance. The choice of power allocation plays a crucial role in determining the error perfor-
mance of the decoder. Without loss of generality, we will assume that the power allocation is
non-increasing across sections. Two examples of power allocation are:

• Flat power allocation, where Pℓ =
P
L

for all ℓ. This choice was used in [17] to analyse
the error performance with optimal (least-squares) decoding.

19

• Exponentially decaying power allocation, where Pℓ ∝ 2−2Cℓ/L. This choice was used
for the asymptotically capacity-achieving decoders proposed in [1, 18, 23].

Rate: As each of the L sections contains M columns, the total number of codewords is
ML. With the block length being n, the rate of the code is given by

R =
log(ML)

n
=
L logM

n
. (1.8)

In other words, a SPARC codeword corresponding to L logM input bits is transmitted in n
channel uses.

Encoding

The input bitstream is split into chunks of logM bits. A chunk of logM input bits can be used
to index the location of the non-zero entry in one section of β. Hence L successive chunks
determine the message vector β, with the ℓth chunk of logM input bits determining the non-
zero location in section ℓ, for 1 ≤ ℓ ≤ L. The codeword to be transmitted is thenAβ.

1.4.2 Decoders

Having received the channel output sequence y = Aβ+w, the decodermust form an estimate
of β, denoted by β̂. We first consider the decoder figures of merit.

Error Rate

We measure the section error rate Esec as

Esec =
1

L

L∑
ℓ=1

1
{
β̂ℓ ̸= βℓ

}
, (1.9)

where βℓ represents the entries in β associated with section ℓ of the SPARC. Assuming a uni-
form mapping between the input bitstream and the non-zero locations in each section, each
section error will cause approximately half of the bits it represents to be incorrect, leading to
a bit error rate Eber ≈ 1

2
Esec. This bit error rate can also be measured empirically by counting

bits that are different between the input bitstream and the decoded output bitstream.

20

Another figure of merit is the codeword error rate Ecw, which estimates the probability
P(β̂ ̸= β). If the SPARC is used to transmit a large number of messages (each via a length
n codeword), Ecw measures the fraction of codewords that are decoded with one or more sec-
tion errors. The codeword error rate is insensitive to where and how many section errors occur
within a codeword when it is decoded incorrectly.

As suggested in [18], having selected a SPARC code and decoder, we can construct a con-
catenated code using an outer block code such as aReed-Solomon (RS) code [25]. By choosing
M to be a prime power, an RS code defined over a finite field of orderM gives a one-to-one
mapping between each symbol of the RS code and each section of the SPARC, simplifying
concatenation. If the inner SPARC code has rate R and the outer code has a rate (1 − 2ϵ)

then the concatenated code will have rateR(1− 2ϵ), with decoding complexity that remains
polynomial in n, and obtains exactly the transmitted codeword whenever the SPARC section
error rate is less than ϵ. This allows trading some rate loss for the ability to clean up any small
residual section error rate from the SPARC code.

Optimal Decoding

Assuming all codewords are equally likely, the optimal decoder is

β̂opt = argmin
β̂

∥y − Aβ̂∥2, (1.10)

where the minimum is over all possible message vectors β̂.
For rates R < C, this optimal decoder achieves exponential decay of error probability

with growing block length n [17]. This important result shows that under optimal decod-
ing, SPARCs are essentially as good as Shannon random codebooks for the AWGN channel.
However, as with the maximum likelihood decoder for the Shannon random codebook, the
computational complexity is exponential in n, and so this decoder is not feasible in practice.

Feasible Decoders

To give some insight into the operation of feasible decoders, first consider the exponential
power allocation described above. With this power allocation, the first section is allocated
the highest power, and we might hope to decode it first, by simply finding the column ofA in
that first sectionwhich is best alignedwith y. Having found the column for the first section, we

21

subtract it from y to form a residual and repeat the process with the second section, etc. This
iterative scheme is similar to successive cancellation decoding, which is a common technique
for decoding on the Multiple Access Channel [26].

Unfortunately, this strategy performs poorly with SPARCs. As the number of columns per
section grows, we become increasingly likely tomake amistake, andwhenwedo, all subsequent
sections are likely to decode in error. Nevertheless, the intuition of successively decoding sec-
tions and removing their contribution to the received signal is relevant to the operation of the
feasible decoders discussed below.

The first feasible decoder for SPARCs was proposed by Barron and Joseph in [18], called
“adaptive successive decoding”. Rather than starting with the first section and decoding in
strict order, they first compute an inner product of every column in A with the normalised
channel output y/∥y∥. Columnswhere this inner product exceeds a pre-determined threshold
are considered to have been transmitted, and used to form a first estimate β̂1. Subsequently,
a residual is generated as r1 = y − Aβ̂1, and the operation repeated using r1/∥r1∥ rather
than y/∥y∥. This continues until either a pre-determined number of iterations is reached, or
all sections are decoded, or no further inner products exceed the required threshold.

Barron and Joseph showed [18] that this decoder, when using the exponential power al-
location, achieves near-exponential decay of error probability with growing block length, for
any fixed rateR < C. However, in practice for feasible block lengths the section error rates are
found to be high for rates near capacity.

Subsequently, an adaptive soft-decision successive decoder was proposed by Cho and Bar-
ron in [22, 23], which iteratively updates a posterior probability of each entry in β being the
true non-zero entry for its section. Since this decoder no longer makes hard decisions at each
iteration, it is able to refine its estimates of the posterior probabilities until they converge, at
which point final hard decisions are made by selecting the most likely entry in each section.
This decoder has also been shown to achieve near-exponential decay of error probability for
R < C, and additionally demonstrates improved section error rates compared to the adaptive
successive decoder.

ApproximateMessage Passing Decoding

Approximate Message Passing (AMP) algorithms are a class of algorithms [27–30] which ap-
proximate loopy belief propagation on dense factor graphs, where belief propagation would
usually be infeasible. An AMP decoder for SPARCs was proposed in [1] and is the focus of

22

Chapter 2. It is similar in operation to the adaptive soft-decision successive decoder of [22,23],
but has simpler update rules to generate its posterior probabilities, leading to faster and easier
implementations. As with the preceding decoders, it has been shown to achieve the channel
capacity, and obtains excellent section error rates.

AnotherAMPdecoder for SPARCs has also been proposed in [31], which takes advantage
of spatial coupling to achieve good section error rates, but will not be discussed in this thesis.

1.4.3 SPARCs for Source Coding

The same underlying SPARC structure and encoder may also be used for source coding [32–
34]. An encoder determines which choice of β will give a SPARC codewordAβ which repre-
sents the sourceX with the lowest possible distortion, the encoded form of the source is the
choice of non-zero positions in each section of β, and the decoder simply computes X̂ = Aβ.

In principle this is a similar operation to channel coding, where we search for the SPARC
codeword which was most likely to have been transmitted given the noisy codeword we re-
ceived. We can view the error between the true source X and our selected codeword X̂ as
similar to the channel noise which corrupts the channel codeword.

A simple and efficient SPARC source encoder was presented in [32]. It creates an initial
residue equal to the source, and proceeds section by section, greedily selecting whichever col-
umn in that section ismost correlatedwith the current residue. With a suitable choice of power
allocation, it is shown that this encoder is able to asymptotically achieve the rate-distortion re-
gion for Gaussian sources.

1.5 Notation

Before proceeding, we establish some notation which will be used throughout this thesis. We
use log to denote logarithms with base 2, and ln to denote natural logarithms. For a positive
integerN , we use [N] to denote the set {1, . . . , N}. The transpose of amatrixA is denoted by
A∗. The indicator of an event E is denoted by 1{E}. The ℓ2-norm of a vector x is denoted by
∥x∥. Rate ismeasured in bits. We use secℓ to denote the set of indices in section ℓ, e.g., j ∈ secℓ
corresponds to j ∈ {(ℓ− 1)M +1, . . . , ℓM}where ℓ ∈ [L]. We use sec(i) to denote the set
of indices in the section containing i, e.g., j ∈ sec(i) corresponds to j ∈ secℓ where ℓ is such
that i ∈ secℓ.

23

1.6 Contributions of thisThesis

This thesis focuses on design techniques and efficient decoding algorithms for practical sparse
regression codes. We seek to obtain performance close to the Shannon limitswhile using realis-
tic block lengths andwith low computational complexity. In particular, we propose techniques
to reduce the decoding complexity, outline new power allocations which give significantly im-
proved performance, and extend the basic SPARC structurewith new construction techniques
and applications to various multiuser models.

The remaining chapters are organised as follows.

• Chapter 2 describes in detail the approximate message passing decoder for SPARCs,
discussing its design, giving some intuition into its operation, and summarises the main
results.

• Chapter 3 discusses a variety of improvements to the basic AMP design which yield
decreased computational complexity and improved error rates at practical block lengths.
These include: using Hadamard-based design matrices, new power allocation routines
for better finite length performance, and an investigation into how the choice of L and
M affects the error performance.

• Chapter 4 investigates the use of outer codes for SPARCs. We demonstrate that apply-
ing LDPC outer codes to SPARCs with a new decoding technique can obtain excellent
codeword error rates and significantly increased falloff in bit error rate as snr increases.

• Chapter 5 considers a modification to the basic SPARC structure, where multiple pos-
sible values are permitted as the non-zero entry in β, which we callModulated SPARCs.
We derive a new AMP where the non-zero values are chosen from a symmetricK-ary
constellation, and prove that the modulated SPARC withK = 2 achieves the AWGN
capacity. We also evaluate the empirical performance of these modified SPARCs.

• Chapter 6 implements SPARCs with the AMP decoder for multi-user channels such
as the broadcast and multiple access channels, and for multi-user source coding models
such as multiple description and Wyner-Ziv. The empirical performance is evaluated.

• Finally, Chapter 7 presents conclusions and directions for future work.

24

Chapter 2

ApproximateMessage Passing for SPARCs

When a channel code with equally likely codewords is used over a noisy channel, the optimum
decoder is themaximumlikelihooddecoder, which selectswhichever codewordwasmost likely
to have been transmitted given the channel outputs. For SPARCs over the AWGN channel
described inChapter 1, finding the likelihoodof anymessage vector β̂ given the channel output
sequence y is straightforward. From the SPARC encoding and the definition of the AWGN,
we have

y = Aβ + w, (2.1)

wherew = {wi}i∈[n] andwi ∼ N (0, σ2) is additive white Gaussian noise. The likelihood of
a particular β̂ being the transmitted β is

L(β = β̂ | y) ∝ P(y | β = β̂) (2.2)

=
n∏

i=1

1√
2πσ2

exp

(
−(yi − (Aβ̂)i)

2

2σ2

)
. (2.3)

This likelihood ismaximised byminimising ∥y−Aβ̂∥2, and so themaximum likelihood code-
word is the solution to

argmin
β̂

∥y − Aβ̂∥2. (2.4)

However, we cannot hope to compute this over all possible β̂, and so we must find a compu-
tationally feasible decoding algorithm instead. Computationally feasible decoders were first
proposed in [17, 18]. In this chapter, we describe the AMP algorithm proposed in [1].

25

We will first describe the AMP decoder in Section 2.1, then describe its background and
outline the derivation in Section 2.2. State evolution is an important concept for predicting
the behaviour of theAMPdecoder and is described in Section 2.3. Finally, we outline the proof
that this decoder can achieve the channel capacity in the large system limit in Section 2.4.

2.1 The AMPChannel Decoder

Given the channel output y = Aβ + w, the AMP decoder generates successive estimates of
the message vector, denoted {βt}, βt ∈ RLM , for t = 1, 2,

Initialise β0 = 0, then compute

zt = y − Aβt +
zt−1

τ 2t−1

(
P − ∥β

t∥2

n

)
, (2.5)

βt+1
i = ηti(β

t + A∗zt), for i = 1, . . . ,ML, (2.6)

where quantities with negative indices are set equal to zero. The constants {τt} and the esti-
mation functions ηti(.) are defined as follows. First, define

τ 20 = σ2 + P, τ 2t+1 = σ2 + P (1− xt−1), t ≥ 0, (2.7)

where
xt−1 := x(τt−1), (2.8)

and

x(τ) :=
L∑

ℓ=1

Pℓ

P
E

 exp
(√

nPℓ

τ

(
U ℓ
1 +

√
nPℓ

τ

))
exp
(√

nPℓ

τ

(
U ℓ
1 +

√
nPℓ

τ

))
+
∑M

j=2 exp
(√

nPℓ

τ
U ℓ
j

)
 . (2.9)

In (2.9), {U ℓ
j} are i.i.d.N (0, 1) random variables for j ∈ [M], ℓ ∈ [L]. The equations (2.7)

and (2.9) are together called the state evolution, and are discussed inmore detail in Section 2.3.

For i ∈ secℓ, define

ηti(s) =
√
nPℓ

exp
(
si

√
nPℓ

τ2t

)
∑

j∈sec(i) exp
(
sj

√
nPℓ

τ2t

) , 1 ≤ i ≤ML. (2.10)

26

Note that ηti(s) depends on all components of s in sec(i). For brevity, we will write s =

A∗zt + βt, with the understanding that only the components in the section containing i are
used to compute βt

i .
Finally, after T iterations, the decoded message vector β̂ is produced by setting the maxi-

mum value in section ℓ of βT to
√
nPℓ and the remaining entries to zero, for 1 ≤ ℓ ≤ L.

We view the quantity zt in (2.5) as a modified residual, tracking what remains of the orig-
inal channel output y after the current estimate of the codewordAβt has been removed. Our
residual also contains an extra term based on the previous value of the residual, which is dis-
cussed in Section 2.2. This extra term is a key part of the approximate message passing algo-
rithm.

Once the residual has been found, it is used to form a new estimate βt in (2.6), using the
equation for ηti in (2.10). This function ηti is in fact the Bayes-optimal estimator of βi given
A∗zt + βt = s, under the assumption that the test statistic s can be expressed as the sum
of β and an independent Gaussian noise vector of variance τ 2t . This estimator ηti finds the
posterior probabilities of each column i ∈ secℓ being the one transmitted in section ℓ ∈ [L],
and so βt may also be viewed as containing, for each section, the probability distribution over
its columns, weighted by

√
nPℓ.

By iterating these two update rules, the AMP decoder provides excellent empirical perfor-
mance and provably achieves the channel capacity in the large system limit. This large system
limit is defined as the dictionary size going to∞, i.e., L,M, n → ∞, while maintaining the
relationship of (1.8) (nR = L logM), and definingM = La for some constant a > 0.

2.2 Background andDerivation

Message passing, also known as belief propagation, has been used to decode channel codes
such as LDPC codes [9], as well as to solve various problems in machine learning and sta-
tistical physics [35]. This class of algorithms perform inference on a factor graph, which is a
bipartite graph which represents a factorisation of a function, typically a posterior probabil-
ity distribution. In belief propagation, each node computes a message to be sent to nodes it is
connected to, based on the messages which that node receives. Variable nodes send messages
to factors containing a probability distribution over that variable based on messages received
from all other connected factors. Factors send messages to variables containing a probability
distribution over that variable based on the factor itself and the messages received from the

27

y1 · · · yn

Figure 2.1: An example of a small LDPC factor graph. Factors represent one row of the parity
check matrix, while variables represent elements of a codeword. Each variable connected to a
parity check is involved in the computation of that parity check. Due to the low density nature
of the codes, there are few edges, and so message passing decoding is feasible.

other variables involved in that factor. Note that messages to a given node are always based
on all the messages received previously excluding any from the node in question. On factor
graphs which are trees (i.e., do not contain any loops), this algorithm yields exact marginal dis-
tributions for each variable, starting with the leaf nodes and progressing upwards to the root
of the tree. In this situation the exclusion mentioned above is immaterial, as nodes will never
receive amessage from a node they need to send amessage to. Refer to [9] for amore thorough
treatment of standard belief propagation.

On more general bipartite graphs with loops the same algorithm may be used, but it is no
longer guaranteed to terminate, or to provide the exact solution. However, in many circum-
stances it is found to perform well and eventually converge to the correct solution. This is the
case with typical LDPC decoding, where each factor represents a parity check: all variables
involved in that factor must sum, mod 2, to 0. Each variable represents one symbol of the
codeword. Variables start out with a probability of being 0 or 1 based on the channel out-
puts, and update this probability based on messages received from the parity checks they are
involved in. For example, if one variable had a 0.6 probability of being 1, but was involved in
a parity check where all other variables had high probabilities of being 0, the message from the
parity check would suggest that this variable is also likely to be a 0, and so the variable lowers
its probability of being 1 accordingly in messages sent to other factors. Figure 2.1 shows an
example factor graph for a very small LDPC code; since there are few edges themessages along
each edge are readily computable.

Unfortunately, this is not the case for SPARCs. We have LM variables, representing each
entry in β, and n constraints, representing each row of the SPARC design matrixA. Consider

28

β1 · · · βLM

Figure 2.2: The factor graph for a small SPARC code. The factors represent each of the n rows
ofA, while the variables are theLM elements of β. Each column inAmay, depending on the
location of the non-zero elements of β, contribute to each element of the codeword, and so
the graph is fully connected. Running message passing on a full size SPARC graph would be
infeasible as the number of edges isLMn.

the first symbol in a SPARC codewordAβ:

(Aβ)1 = A11β1 + A12β2 + · · ·+ A1,LMβLM . (2.11)

Clearly every variable node is involved in every constraint. The factor graph is dense, as illus-
trated in Figure 2.2, and running the normal message passing algorithm described above is not
feasible. However, by writing down this message passing algorithm as a starting point, it is
possible to perform approximations which lead to a computationally efficient algorithm.

Similar relaxations of belief propagation for dense factor graphs were first considered for
CDMA multiuser detection [36–38]. Subsequently, approximate message passing algorithms
of the formused in this thesiswere introduced in the context of compressed sensing byDonoho
et al [27–29]. Variants of AMP for problems related to compressed sending were proposed
in [30, 31, 39]. In this thesis, we will discuss AMP only in the context of SPARCs.

To obtain the AMP described in Equations (2.5) and (2.6), we start by considering a mes-
sage passing algorithm for decoding SPARCs, which iteratively estimates β from the channel
outputs y. Use the indices a, b to denote factor nodes, and i, j to denote variable nodes. For
i ∈ [N] and a ∈ [n], initialise β0

j→a = 0, and iteratively compute the following messages for
t ≥ 0:

zta→i = ya −
∑

j∈[N]\i

Aajβ
t
j→a, (2.12)

βt+1
i→a = ηti(si→a), (2.13)

29

where ηti(.) is given in (2.10), and, for i ∈ secℓ, the entries of the test statistic si→a ∈ RM are

(si→a)i =
∑

b∈[n]\a

Abiz
t
b→i (2.14)

(si→a)j =
∑
b∈[n]

Abjz
t
b→j, j ∈ secℓ \i. (2.15)

Thismessage passing algorithmwould produce good estimates ofβ, but because everymes-
sage is unique and there are 2LMnmessages, it is not feasible to run. If we could approximate
the message za→i to not involve i, giving a single za, and similarly approximate βi→a to not
involve a, then we would only have to computeLM + nmessages per iteration, which would
be feasible.

The messages’ dependence on i and a respectively comes from a single excluded term; in
the case of za→i we excludeAaiβi→a from the sum, while with βi→a we excludeAaiza→i from
the argument. If we simply neglected to exclude these terms, we would recover the following
simple set of update rules:

zt = y − Aβt, (2.16)

βt+1
i = ηti(β

t + A∗zt), for i = 1, . . . ,ML. (2.17)

The update rule for zt can be seen as forming a residual from the current estimate βt, then
using it to form a new estimate, and iterating. While simple to implement, these rules do not
perform well, and have an error which does not vanish in the large system limit. The nature of
this error is discussed further at the end of this section.

Instead, [1, Appendix A] finds a less coarse approximation. First we make the dependency
on i and amore explicit by writing

zta→i = zta + δzta→i and βt+1
i→a = βt+1

i + δβt+1
i→a. (2.18)

We can now use (2.12) to write

zta = ya −
∑
j∈[N]

Aaj(β
t
j + δβt

j→a), δzta→i = Aai(β
t
j + δβt

i→a). (2.19)

30

Toobtain δβt
i→a, weperformaTaylor expansionofηti around the argument

{∑
b∈[n]Abjz

t
b→j

}
j∈sec(i)

,

which does not depend on a. This expansion yields

βt+1
i→a ≈ ηti

({∑
b∈[n]

Abjz
t
b→j

}
j∈sec(i)

)
−Aaiz

t
a→i ∂iη

t
i

({∑
b∈[n]

Abjz
t
b→j

}
j∈sec(i)

)
, (2.20)

where ∂iηti(.) is the partial derivative of ηti with respect to the component of the argument
corresponding to index i. This partial derivative is

∂iη
t
i(s) = ηti(s)∂i ln η

t
i(s) (2.21)

= ηti(s)

√nPℓ

τ 2t
−
√
nPℓ

τ 2t

e
si
√

nPℓ

τ2t∑
j∈sec(i) e

sj
√

nPℓ

τ2t

 (2.22)

=
ηti(s)

τ 2t

(√
nPℓ − ηti(s)

)
, (2.23)

which gives

βt+1
i→a ≈ ηti

({∑
b∈[n]

Abjz
t
b→j

}
j∈sec(i)

)

− Aaiz
t
a

τ 2t
ηti

({∑
b∈[n]

Abjz
t
b→j

}
j∈sec(i)

)√nPℓ − ηti

({∑
b∈[n]

Abjz
t
b→j

}
j∈sec(i)

) .
(2.24)

The term Aaiz
t
a→i in (2.20) has been replaced by Aaiz

t
a as the difference Aaiδz

t
a→i is

O(
√

logn/n), and we are only keeping terms greater thanO(1√
n
).

Since only the second term of (2.24) depends on a, we can write

βt+1
i = ηti

{∑
b∈[n]

Abj(z
t
b + δztb→j)

}
j∈sec(i)

 , (2.25)

31

δβt+1
i→a = −

Aaiz
t
a

τ 2t
ηti

{∑
b∈[n]

Abj(z
t
b + δztb→j)

}
j∈sec(i)

·

√nPℓ − ηti

{∑
b∈[n]

Abj(z
t
b + δztb→j)

}
j∈sec(i)

 .
(2.26)

Note that δβt+1
i→a = O(logn/

√
n), and therefore Aaiδβ

t
i→a = O(logn/n), so we can

write
δzta→i = Aaiβ

t
i . (2.27)

This gives

βt+1
i = ηti

({∑
b∈[n]

Abjz
t
b + A2

bjβ
t
j

}
j∈sec(i)

)
(2.28)

(a)
= ηti

({
(A∗zt + βt)j

}
j∈sec(i)

)
, (2.29)

where (a) is because
∑

bA
2
bj → 1 as n→∞, giving the final update rule for βt+1

i , as in (2.6).
For zt, we use (2.27) in (2.26) to find

δβt+1
i→a =

−Aaiz
t
a

τ 2t
ηti

({∑
b∈[n]

(A∗zt + βt)j

}
j∈sec(i)

)

·

√nPℓ − ηti
({∑

b∈[n]

(A∗zt + βt)j

}
j∈sec(i)

) , (2.30)

and by substituting into (2.19), we can write

32

zta = ya −
∑
k∈[N]

Aak(β
t
k + δβt

k→a)

= ya −
∑
k∈[N]

Aak η
t−1
k

(
A∗zt−1 + βt−1

)
+
A2

akz
t−1
a

τ 2t−1

ηt−1
k

(
A∗zt−1 + βt−1

)
·
[√

nPsec(k) − ηt−1
k

(
A∗zt−1 + βt−1

)]
(b)
= ya − (Aβt)a +

zt−1
a

nτ 2t−1

(nP − ∥βt∥2), (2.31)

where (b) is obtained from noting thatA2
ak ≈ 1

n
, and from (2.10) that

∑
k∈[N]

√
nPsec(k) η

t
k(s) =

L∑
ℓ=1

nPℓ = nP,

and finally from (2.29) that∑
k

(ηt−1
k

(
A∗zt−1 + βt−1

)
)2 =

∑
k

(βt
k)

2 = ∥βt∥2.

This yields the zt update rule (2.5).

The extra term compared to (2.16) is called theOnsager reaction term. The role of this term
is to ensure that asymptotically, the test statistic st = βt + A∗zt is distributed as β + τtZ ,
whereZ is an i.i.d. N (0, 1) vector independent of β— so that st is an observation of the true
β in whiteGaussian noise. This property is key to the performance of theAMPdecoder, where
we can show that τ 2t will tend to σ2 such that st tends to an observation of β in noise just of
power σ2, and is discussed in more detail in Section 2.3.

To illustrate the necessity of the Onsager reaction term, consider the iteration without it,

33

described in (2.16), where zt = y − Aβt. Expanding st, we obtain:

st = A∗zt + βt (2.32)

= A∗(y − Aβt) + βt (2.33)

= A∗(Aβ + w − Aβt) + βt (2.34)

= A∗Aβ + A∗w − A∗Aβt + βt (2.35)

= β + A∗w + (I − A∗A)(βt − β) (2.36)

We would like st to be asymptotically distributed as β + τtZ . Recall that

τ 2t+1 = σ2 + P (1− xt),

and use
1− xt+1 =

1

nP
E
[
∥β − βt+1∥2

]
from (2.43) to obtain

τ 2t+1 = σ2 +
1

n
∥βt − β∥2. (2.37)

In the expansion of st above, the termA∗w is a vector of i.i.d. normal variates with variance
1
n
∥w∥2, which is asymptoticallyσ2, and canbe shown tobe independent of (I−A∗A)(βt−β).

The matrix (I − A∗A) has normal entries with variance 1
n
; therefore if βt is independent

of (I − A∗A) the term (I − A∗A)(βt − β) will be a vector of normal variates with variance
1
n
∥βt − β∥2, and consequently st itself is distributed as β + τtZ , as desired.

However, the iteration introduces correlations between A and βt, and consequently the
above derivation does not hold and st will not have the desired asymptotic distribution. The
addition of the Onsager term serves to asymptotically cancel out these correlations, leading to
the desired distribution of st. For more intuition about the role of the Onsager reaction term
in AMP, refer to [40].

The asymptotic distribution of st is also responsible for the formof ηti(st) in (2.10). Specif-

34

ically, ηti is derived in [1] as the Bayes-optimal estimate of β given the observation st:

βt+1
i = ηti(s

t = βt + A∗zt) (2.38)

= E [β | β + τtz] (2.39)

=
√
nPℓ

exp
(
si

√
nPℓ

τ2t

)
∑

j∈sec(i) exp
(
sj

√
nPℓ

τ2t

) , 1 ≤ i ≤ML. (2.40)

2.3 State Evolution

TheAMPdecoder defined by (2.5) and (2.6) require a set of {τt} coefficients to operate. These
coefficients can be found offline by a process known as state evolution. The state evolution
equations (2.7) and (2.9) are repeated here for convenience:

τ 20 = σ2 + P, τ 2t+1 = σ2 + P (1− xt−1), t ≥ 0, (2.41)

with

x(τ) :=
L∑

ℓ=1

Pℓ

P
E

 exp
(√

nPℓ

τ

(
U ℓ
1 +

√
nPℓ

τ

))
exp
(√

nPℓ

τ

(
U ℓ
1 +

√
nPℓ

τ

))
+
∑M

j=2 exp
(√

nPℓ

τ
U ℓ
j

)
 , (2.42)

where {U ℓ
j} are i.i.d.N (0, 1) random variables for j ∈ [M], ℓ ∈ [L].

These constants have a physical interpretation in the context of the AMP decoder. We
first address τ 2t . As mentioned at the end of Section 2.2, the test statistic st = βt + A∗zt is
asymptotically distributed asβ+τtZ , whereZ ∼ N (0, 1). See Section 2.4 and [1] for further
details. This means that (in the large system limit) τ 2t is the variance of the Gaussian noise in
which, asymptotically, our test statistic observes β. We see from its definition above that this
noise starts out with power σ2 + P , which reflects the initial condition of s0 = A∗z0 = A∗y

having variance equal to σ2 + P . That is, the initial test statistic is corrupted by not only
the full channel noise σ2, but also by the entire message power P . Since the codeword Aβ is
made up of one column ofA from each section ℓ ∈ [L] weighted by a power Pℓ, we can view
each of these unknown columns as contributing Pℓ power to the noise, totalling P . From the
successive cancellation decoding viewpoint described in Chapter 1, we have not yet decoded
any sections, and so the interfering power is at the maximum.

35

As decoding progresses, some of these columns are decodable with high probability, and
we can imagine removing their contribution to the noise power. This is done in the update
rule for zt. As a result, τ 2t will decrease. We can see this in (2.41) for τ 2t , which decreases as xt
increases from its initial condition of x0 = 0. If decoding is completely successful, xt reaches
a value of 1, or, equivalently, τ 2t reaches a value of σ2. Figure 2.3 shows this trajectory for τ 2t .

0 5 10 15 20 25 30 35
t

0

2

4

6

8

10

12

14

16

τ
2

τ2
t from State Evolution
σ2

Figure 2.3: The state evolution predicted trajectory for τ 2t , with σ2 = 1 and P = 15.

Theparameterxt represents (again, in the large system limit) the power-weighted expected
fraction of sections decoded correctly at time t, or in other words, the expected fraction of the
message power which has now been successfully decoded. This interpretation is made clear
from the following relationship, established in [1], which leads to the definition of xt in (2.9):

1− xt+1 =
1

nP
E
[
∥β − βt+1∥2

]
(2.43)

This quantity, and its non-power-weighted equivalent, are useful predictive tools to esti-
mate the performance of an AMP decoder in advance. Since the state evolution equations do
not depend on the actual message or channel realisation, they can be computed offline for any
given set-up, and the resulting τ 2t and xt used to predict the performance of the AMP decoder.
We find that the state evolution very accurately predicts the empirical behaviour of the AMP.
For example, Figure 2.4 shows in black the value 1−xt, and in green, the actual value of 1−xt

36

for 200 empirical trials. This empirical value is found by computing the quantity 1 − β∗βt

nP
at

each iteration t, where β is the true message vector used to create the message.

0 2 4 6 8 10 12 14
t

10-3

10-2

10-1

100

1−x̄t
1−xt from State Evolution

Empirical 1−β ∗ β t

nP

Average 1−β ∗ β t

nP
 of 200 runs

Figure 2.4: Comparison of state evolution predictions to empirical AMP performance. The
SPARC parameters areM = 512, L = 1024, snr = 15,R = 0.7C, and Pℓ ∝ 2−2Cℓ/L. The
average of the 200 trials (green curves) is the dashed red curve, which is almost indistinguish-
able from the state evolution prediction (black curve).

It is clear from the figure that the actual AMP decoder closely tracks the state evolution
prediction. In particular, xt closely tracks the performance metric β∗βt

nP
. This allows us to use

the state evolution to make predictions about the behaviour of the AMP, such as estimating
the error rate or deciding how many iterations to run the decoder for. More importantly, by
showing that the AMP decoder follows the state evolution asymptotically, we will be able to
prove that the AMP decoder asymptotically achieves the channel capacity. To investigate this
effect, we first consider the asymptotic state evolution.

37

2.4 Asymptotic State Evolution

We are interested in the behaviour of τ 2t and xt asymptotically. First, we write

x̄(τ) := limx(τ), (2.44)

where lim is understood to mean the large system limit, where L,M, n → ∞ while main-
taining (1.8) (nR = L logM), and with M = La for some constant a > 0. We then
consider [1, Lemma 1], which is reproduced here as Lemma 2.1.

Lemma 2.1. [1, Lemma 1] For any power allocation {Pℓ}ℓ=1,...,L that is non-increasing with
ℓ, we have

x̄(τ) = lim
⌊ξ∗(τ)L⌋∑

ℓ=1

Pℓ

P
, (2.45)

where ξ∗(τ) is the supremum of all ξ ∈ (0, 1] that satisfy

limLP⌊ξL⌋ > 2(ln 2)Rτ 2.

If limLP⌊ξL⌋ ≤ 2(ln 2)Rτ 2 for all ξ > 0, then x̄(τ) = 0.

Proof. See [1, Appendix B].

Note that since the entries ofA are i.i.d, the assumption over {Pℓ} is made without loss of
generality: the {Pℓ} coefficients could simply be reordered to meet this assumption.

We can interpret this lemma as follows: in the large system limit, all sections ℓ where ℓ ≤
⌊ξ∗(τt)L⌋will be correctly decoded in step (t+1), while all sections where this is not the case
will not be decodable. Consequently, ξ∗(τt) tracks the overall proportion of sections which
will be decoded at time (t+1). This represents a key measure of the performance of the AMP
decoder.

We now specify a specific power allocation. Set

Pℓ = P · 2
2C/L − 1

1− 2−2C · 2
−2Cℓ/L, ℓ ∈ [L]. (2.46)

We can now find the limiting value of LPℓ as

limLP⌊ξL⌋ = σ2(1 + snr)1−ξ ln(1 + snr). (2.47)

38

We can combine this with Lemma 2.1 to find an expression for x̄, in Lemma 2.2.

Lemma 2.2. [1, Lemma 2] For the power allocation {Pℓ} given in (2.46), we have for t =

0, 1, . . .:

x̄t := limxt =
(1 + snr)− (1 + snr)1−ξt−1

snr , (2.48)

τ̄ 2t := lim τ 2t = σ2 + P (1− x̄t) = σ2 (1 + snr)1−ξt−1 (2.49)

where ξ−1 = 0, and for t ≥ 0,

ξt = min
{(

1

2C
log
(
C
R

)
+ ξt−1

)
, 1

}
. (2.50)

Proof. See [1, Appendix C].

This lemma has a useful interpretation: ξt increases at each iteration by 1
2C log

(C
R

)
until

it reaches 1, which means that the state evolution, for this power allocation, and so long as
log
(C
R

)
> 0 (i.e., so long asR < C), predicts that all sections will eventually become decod-

able. Furthermore, the number of steps until this happens is given by

T ∗ =

⌈
2C

log(C/R)

⌉
. (2.51)

We have established that, with the exponentially decaying power allocation in (2.46), the
asymptotic state evolution describes a process where all sections are decoded in a finite number
of iterations. The final step is to show that the AMP decoder itself follows this state evolution,
which is stated in the following theorem.

Theorem 2.1. [1, Theorem 1] Fix any rate R < C, and a > 0. Consider a sequence of rate
R SPARCs {Sn} indexed by block length n, with design matrix parameters L andM = La

determined according to nR = L logL, and an exponentially decaying power allocation given
by (2.46). Then the section error rate of the AMP decoder (described in (2.5)–(2.6), and run for
T ∗ steps) converges to zero almost surely, i.e., for any ϵ > 0,

lim
n0→∞

P (Esec(Sn) < ϵ, ∀n ≥ n0) = 1. (2.52)

39

Proof. See [1, Section V].

This strong theoretical result shows that the AMP decoder asymptotically achieves the
channel capacity with the exponentially decaying power allocation in (2.46). In fact, the the-
orem shows that for a given R < C, any power allocation for which x̄t converges to 1 in a
finite number of iterations will enable reliable decoding in the large system limit, i.e., for any
ϵ > 0, the probabilityP(Esec > ϵ)will go to zero. A result converting the asymptotic result of
Theorem 2.1 to a large deviations bound that shows how the probability of error decays with
L,M, n is given in [24, 41].

Despite these strong theoretical guarantees for very large block lengths, we will see that
the exponential power allocation does not yield very small section error rates (e.g., better than
10−3) at rates with practical block lengths on the order of a few thousands. We will see in the
next chapter that a judicious choice of power allocation can yield several orders of magnitude
improvement in the section error rates at such finite block lengths.

40

Chapter 3

DesignTechniques to Improve Finite Length

Performance

3.1 Introduction

TheAMPdecoder for SPARCswas introduced inChapter 2, but the focus of that chapter was
on performance in the limit of large block length. In this chapter, we instead focus on design
techniques for improved finite length performance. Two main objectives are decreased com-
putational complexity, so that the AMP decoder might be feasibly implemented for practical
block lengths, and a small section error rate Esec. We focus on section error rate instead of the
codeword error rate Ecw because if a good Esec can be achieved, a high-rate outer code could be
used to give good Ecw, as described in Chapter 4. This chapter is organised as follows:

• We first consider, in Section 3.2, the use of Hadamard design matrices. These replace
the normally distributed and i.i.d. matrices of the original design with a construction
based on deterministic Hadamard matrices, as the Hadamard matrix product may be
computed using a fast transform, similar to the Fast Fourier Transform. This provides a
substantial reduction in time and memory complexity, with no impact on error rates.

• In Section 3.3 we briefly discuss an implementation challenge associated with the large
exponentials involved in computing ηti , and suggest a solutionwhich preserves sufficient
accuracy while being efficient to compute.

• In Section 3.4 we investigate alternative power allocations to the simple exponential

41

allocation used to prove that the AMP decoder is capacity-achieving. While the expo-
nential allocation is optimal in the large system limit, at finite block lengths it does not
give a sharp reduction in error rates as we back off the rate from capacity. Two alterna-
tives are proposed, which obtain greatly improved error performance for practical block
lengths.

• In Section 3.5 we analyse some further effects of the power allocation on the concen-
tration of error performance. Some power allocations often give excellent performance,
with many trials showing no errors at all, but at the cost of very rare high-error decodes.
Other choices of power allocation instead give worse average performance, but do not
exhibit occasional high-error-count decodes. This permits a trade-off between Ecw and
Esec. We also investigate a similar effect based on the choice of the design matrix param-
etersL andM . This analysis leads to strategies to find optimum choices ofL,M for low
section error rates.

• In Section 3.6 we describe an online estimator of the key SE parameter τ 2t , which im-
proves error performance and allows an early-stopping criterion which can often lead
to dramatic reductions in computational time required to decode a codeword. Further-
more, this estimator enables us to accurately estimate the actual section error rate at the
end of the decoding process.

• Finally, in Section 3.7, we derive simple expressions to estimate Esec and Ecw without
requiring the full SE recursions. These new expressions accurately track the empirical
performance as long as a good concentration is obtained, but are not able to capture the
effects of poor concentration on the error performance.

Taken together, these improvements represent multiple orders of magnitude reduction in
computational time and memory complexity, while providing orders of magnitude improve-
ment in error performance at rates moderately away from capacity. Table 3.1 shows the cumu-
lative improvement for a typical operating point.

42

Category Before After
CPU Time 12 600 s 4.21 s
Memory 25.7GB <0.01GB
Bit Error Rate 1.11× 10−2 4.52× 10−7

Table 3.1: Comparison of naïve SPARC-AMP (before) with the improvements described in
this chapter (after). The SPARC parameters are L = 1024,M = 512,R = 1.4, n = 6583,
P = 15, σ2 = 1.

3.2 ReducingDecodingComplexity viaRandomHadamardDe-

signMatrices

In theoretical analyses of sparse regression codes, the design matrix A is chosen to have zero-
mean i.i.d. entries, either Gaussian ∼ N (0, 1

n
) as in [1, 22, 42], or Bernoulli entries drawn

uniformly from ± 1√
n

[43]. With such matrices, the computational complexity of the AMP
decoder in (2.5)–(2.10) is O(LMn) when the matrix-vector multiplications Aβ and A∗zt

are performed in the usual way. Additionally, storing A requires O(LMn) memory, which
is prohibitive for reasonable code lengths. For example, L = 1024, M = 512, n = 9216

(R = 1 bit) requires 18 gigabytes of memory using a 4-byte floating point representation, all
of which must be accessed twice per iteration.

To reducedecoding complexity, we replace the i.i.d. designmatrixwith a structuredHadamard-
based design matrix, which we denote in this section byAH. WithAH, the key matrix-vector
multiplications canbeperformedvia a fastWalsh-HadamardTransform(FWHT) [44]. More-
over,AH can be implicitly defined which greatly reduces the memory required.

Construction ofAH

We first consider the underlying Hadamard matrixH which is defined as follows. LetN be a
power of 2, and letm = log2N . WithH0 = 1, recursively define theN ×N matrixHm as

Hm =

(
Hm−1 Hm−1

Hm−1 −Hm−1

)
. (3.1)

This matrix is square, with±1 entries and mutually orthogonal rows. It can be viewed as
an analogue of the Fourier matrix, with each row and column representing a basis vector at a
different digital frequency. The first row and column are all+1, a complication which we will

43

need to account for. All other rows and columns have equal counts of 1 and −1 entries, and
consequently a mean of 0 and a norm ofN . We have defined anHm which is 2m × 2m, but
we require an n × LM matrix for AH. Additionally we require that AH is random and each
column has norm 1. One option to form AH is to setm = ⌈log2(max(LM + 1, n + 1))⌉,
and select n truncated rows uniformly at random from the 2m× 2m Hadamard matrixHm to
defineAH. To avoid the all-1 initial row, we avoid ever selecting the first rowwhendefiningAH.
By truncating the left side of the rows, we avoid ever including entries from the first column.
These two measures ensure all columns of AH will have zero mean. Finally we consider each
entry to be divided by

√
n to give each column a normof 1. In practice, this division is omitted,

and all equations involvingA are modified accordingly, which often removes a few additional
computational steps. See Figure 3.1 for an illustration.

+1 +1 +1 +1 +1 +1 +1 +1

+1 −1 +1 −1 +1 −1 +1 −1

+1 +1 −1 −1 +1 +1 −1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 +1 +1 −1 −1 −1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 +1 −1 +1 +1 −1

Hm: 2m × 2m

−1 −1 +1 +1 −1 −1

+1 −1 +1 −1 +1 −1

−1 −1 −1 −1 +1 +1

√
nAH: n× LM

Figure 3.1: The first strategy for forming AH from the Hadamard matrixHm. Here we use a
singleHm and selectAH as random truncated rows, excluding the first row as it is all+1. Note
that by truncating on the left hand side we also avoid including entries from the first column
ofHm, which is also all+1.

44

Computation ofAHβ andA∗
Hz

Asmentioned above, we donot actually formAH explicitly. Instead, to computeAHβ, we form
the 2m long vector β̃ by prepending 0 to β; evaluateHmβ̃ using the FWHT; and then select
the same rows from the 2m-long result as were used to defineAH. Finally we divide each entry
by
√
n to provide forAH having a column norm of 1. This gives an n-long result, as required,

which is equal toAHβ. Figure 3.2 demonstrates this strategy.

+1 +1 +1 +1 +1 +1 +1 +1

+1 −1 +1 −1 +1 −1 +1 −1

+1 +1 −1 −1 +1 +1 −1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 +1 +1 −1 −1 −1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 +1 −1 +1 +1 −1

Hm

0

0

β1

β2

β3

β4

β5

β6

β̃

=

·

·

·

·

·

·

·

·

Hmβ̃

·

·

·

√
nAHβ

Figure 3.2: FindingAHβ using the FWHT rather than explicit computation.
Hmβ̃ is computed as FWHT(β̃).

Taking a similar approach for A∗
Hz, we first embed z into an 2m-long vector z̃ by setting

the entries in z̃ which correspond to the rows used to defineAH to the respective entries in z,
and set the remaining entries to 0. Thenwe computeH∗

mz̃ using the FWHT, divide each entry
by
√
n, and select the finalLM entries to findA∗

Hz. This is illustrated in Figure 3.3. Note that
by prepending the 0s for AHβ, and then taking the final entries when finding A∗

Hz, we avoid
any entries which involve the first column ofHm, reflecting the construction ofAH. Note also
that sinceHm is symmetric, we findH∗

mz̃ by simply taking the regular FWHT of z̃.

Improved Construction ofAH

A downside to the simple construction ofAH fromHm is that sinceA is typically much wider
than it is tall (i.e., LM ≫ n), the requiredHm contains many more rows than are required,

45

+1 +1 +1 +1 +1 +1 +1 +1

+1 −1 +1 −1 +1 −1 +1 −1

+1 +1 −1 −1 +1 +1 −1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 +1 +1 −1 −1 −1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 +1 −1 +1 +1 −1

H∗
m

0

z2

0

0

z1

0

z3

0

z̃

=

·

·

·

·

·

·

·

·

H∗
mz̃

·

·

·

·

·

·

√
nA∗

Hz

Figure 3.3: FindingA∗
Hz using the FWHT rather than explicit computation.

H∗
mz̃ is computed as FWHT(z̃).

and so the FWHT computations are larger than necessary and most of the result is discarded
each time. To improve on this, we can split the definition ofAH into many smaller Hadamard
matrices, and compute the relevant products by combining many smaller FWHT operations.
This is done as follows.

Take k = ⌈log2(max(n+ 1,M + 1))⌉. Each section ofAH is constructed independently
by choosing a permutation of n distinct rows fromHk uniformly at random. We do not pick
the first row ofHk as it is all-ones. The n + 1 in the definition of k ensures that we still have
enough rows left to pick n at random after removing the first, all-one, row; theM +1 ensures
that we can always have one leading 0 when embedding β so that the first, all-one, column is
also never picked.

The multiplicationsAHβ andA∗
Hz are performed by computingAHℓβℓ andA∗

Hℓz, for ℓ ∈
[L], where the n×M matrixAHℓ is the ℓth section ofAH, and βℓ ∈ RM is the ℓth section of
β. Each section is computed in the same way as before: to computeAHℓβℓ, zero-prepend βℓ to
length 2k, perform the FWHT, then choose n entries corresponding to the rows inAHℓ. Sum
the n-length result from each section to obtain AHβ. Note that we prepend with 0 because
the first column ofHk must always be ignored as it is always all-ones. ForA∗

Hℓz, embed entries
from z into a 2k long vector again corresponding to the rows inAH, with all other entries set
to zero, perform the FWHT, and return the lastM entries. Concatenate the result from each

46

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

Hk

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

Hk

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

Hk

−1 −1 −1 +1 −1 +1

+1 −1 +1 −1 −1 −1

−1 +1 −1 −1 +1 −1

ℓ = 1 ℓ = 2 ℓ = 3

√
nAH

Figure 3.4: The improved strategy for formingAH frommany smallerHadamardmatricesHk.
We use a different set of random rows for each section ℓ ∈ [L] of AH, all drawn from the
same smaller Hk, again excluding the first row and truncating the rows to exclude the first
column. Note that in this very small example there are only three usable rows, so the available
permutations are limited, but in practical situations there are thousands of rows available.

section to formA∗
Hz.

It would be possible to extend this concept even further, by constructing each section of
AH out of multiple even smaller Hadamard matrices, with k = ⌈log2(M + 1)⌉ and using
⌈ n
2k
⌉ such matrices. The same techniques to perform the required multiplications apply, and

this technique is even more efficient computationally. However, it introduces additional im-
plementation complexity, and caremust be taken that the smallerHadamardmatrices still have
a sufficient number of row permutations so that the columns ofAH remain independent.

TheFastWalsh-Hadamard Transform

The FWHT, described in [44], is similar to the Fast Fourier Transform [45], and amenable
to similar efficient implementations in software and in hardware. However, unlike the Fast
Fourier Transform, no multiplications are required, and no twiddle factors are necessary to
re-index the input at each stage, permitting the efficient Algorithm 3.1 to be used.

47

Algorithm 3.1 In-place Fast Walsh-Hadamard Transform
Require: A length-N vector x, whereN = 2m, which will be transformed in-place.

for i = 2m−1, 2m−2, …, 20 do
for k = 0, 2i, . . . , N do
for j = k, k + 1, . . . , k + i do
u← xj
v ← xi|j
xj ← xj + v
xi|j ← u− v

end for
end for

end for
return x

In the above algorithm i|j is taken to mean “the bit-wise logical OR of the binary repre-
sentations of i and j”.

Performance ofAH

SPARC codewords should have entries which are well described by a Gaussian distribution.
To verify that this remains the case when AH is used, an n = 8192 codeword was generated
using both a full GaussianAmatrix and using the Fast Walsh-Hadamard Transform described
above. Figure 3.5 shows a probability plot for the entries of each codeword. Both are extremely
well matched to a Guassian distribution and there is nothing to discern the Hadamard-based
codeword from the full Gaussian. This similarly and goodness of fit remains true even for
atypically small values of L andM such asL = 32,M = 16.

The error rate performance of the AMP decoder withAH constructed as described above
is likewise indistinguishable from the full i.i.d. ∼ N (0, 1

n
) matrix, once max(n + 1,M +

1) exceed a small threshold. This has been verified across numerous simulations, where the
resulting difference in performance between the two matrices is smaller than the difference
between successive random trials. The use of Hadamard matrices therefore does not come at
any cost to error performance.

The computational complexity of the decoder is reduced toO(Ln logn) (in the common
case where n > M , otherwise, it is O(LM logM)). The memory requirements are reduced
toO(LM), typically a few megabytes. In comparison, for i.i.d. design matrices, the complex-
ity and memory requirements scale asO(LMn). For reasonable code lengths, this represents

48

4 3 2 1 0 1 2 3 4
Theoretical Quantiles

400

300

200

100

0

100

200

300

400

Sa
m

pl
e

Va
lu

es

R 2 = 0. 9999

Gaussian A

4 3 2 1 0 1 2 3 4
Theoretical Quantiles

R 2 = 0. 9999

Hadamard A

Figure 3.5: Probability plot comparison of codeword entries from full GaussianA-matrix compared to
the HadamardAH matrix. Ideal Gaussian variates would lie on the straight black lines. The correlation
coefficient for the straight-line fit is also plotted. For this codeword,L = 1024,M = 512, n = 8192.

around a thousandfold improvement in both time and memory. Furthermore, the easily par-
allelised structure would enable a hardware implementation to trade off between a slower and
smaller series implementation and a faster though larger parallel implementation, potentially
leading to significant practical speedups.

3.3 Numerical Regularisation in ηti
The AMP decoder is defined by two recursions, (2.5) for zt and (2.6) for βt+1

i , which must be
computed at each iteration. The expression for βt+1

i requires the computation of ηti , given in
(2.10), and repeated here for convenience:

ηti(s = A∗zt + βt) =
√
nPℓ

exp
(
si

√
nPℓ

τ2t

)
∑

j∈sec(i) exp
(
sj

√
nPℓ

τ2t

) , 1 ≤ i ≤ML. (3.2)

Thequantities {si}i∈[ML] may be as large as
√
nPℓ towards the end of decoding. The expo-

nentials in (3.2)may therefore be as large as nPℓ

τ2t
, which is unbounded. Using a typical IEEE754

49

double precision floating point representation, the largest integer x such that exp(x) is rep-
resentable is 709. Values of si

√
nPℓ

τ2t
which exceed this are often encountered when running

numerical AMP simulations. If unhandled, this may either cause an error in the simulation
implementation, or may generate a unrepresentable value which propagates through the rest
of the simulation.

One possible solution is to use higher precision floating point representations, which per-
mit an extended range of exponents, but come at a cost of significantly reduced simulation
throughput and are often non-standard implementations. Another option is to saturate the
arguments to exp, assuming that whenever one si in a section would require saturating, the
remaining sj for that same section will all be small, thus the saturation would have minimal
impact on accuracy. Since the elements of each section represent a probability distribution,
this will generally be the case. The computational cost of performing this saturation depends
on the target architecture, and if the cost is low, this may be an acceptable method.

Algorithm 3.2Non-Overflowing Computation of ηti(s) for section ℓ

Require: Input vector {sj}j∈secℓ
Initialise S to 0
for j = 1, . . . ,M do
uj ← sj

√
nPℓ

τ2t

S← max(S, uj)
end for
Initialise eΣ to 0
for j = 1, . . . ,M do

ej ← exp(uj − S)
eΣ ← eΣ + ej

end for
for j = 1, . . . ,M do
ηtj ←

√
nPℓ · ej/eΣ

end for
return {ηtj}j∈secℓ

A third option is to rewrite (3.2) so that the arguments to exp never exceed 0. We do this
as follows. First, compute

S = max
j∈sec(i)

sj

√
nPℓ

τ 2t
, (3.3)

50

and then use ex = ex−SeS to write (3.2) as

ηti(s = A∗zt + βt) =

√
nPℓ exp(S) exp

(
si

√
nPℓ

τ2t
− S
)

exp(S)
∑

j∈sec(i) exp
(
sj

√
nPℓ

τ2t
− S
) , 1 ≤ i ≤ML, (3.4)

noting that the eS terms cancel out. Any arguments which were previously very small com-
pared to S will become too small to represent after exponentiation and be rounded to 0. Since
those terms were much smaller than S to begin with, this loss of accuracy does not impact
the result. Effectively, we have saturated the lower range instead of the upper range discussed
above, which maintains better accuracy around the larger arguments. Furthermore, note that
the denominator is the sum of all the numerators for each sj in that section. These terms can
be computed once per section to further reduce computation time. Our resulting algorithm
to compute ηt(s) for each section ℓ ∈ [L] is given in Algorithm 3.2.

3.4 Power Allocation

Figure 3.6 shows the section error rate for the AMP decoder using the exponential power al-
location given in (2.46). This allocation achieves the channel capacity asymptotically, but for
finite block lengths the error rates decrease very slowly as the rate backs off from capacity, and
the overall error rate performance is poor. We would like to find better power allocations for
rates away from capacity, for example aroundR = 0.7C.

Before introducing the power allocation scheme, we briefly give a reminder of some in-
tuition about the AMP update rules (2.5)–(2.10), and the SE recursion in (2.7)–(2.9). The
update step (2.6) to generate each estimate of β is underpinned by the following key property:
after step t, the “effective observation” βt + A∗zt is approximately distributed as β + τtZ ,
where Z is a standard normal random vector independent of β. Thus τ 2t is the effective noise
variance at the end of step t.

We see from (2.7) that the effective noise variance τ 2t is the sum of two terms. The first
is the channel noise variance σ2. The other term P (1 − x(τt−1)) can be interpreted as the
interference due to the undecoded sections in βt. Equivalently, x(τt−1) is the expected power-
weighted fraction of sections which are correctly decodable at the end of step t.

The starting point for our power allocation design is the following result from [24], which
gives analytic upper and lower bounds for x(τ) of (2.7).

51

0.65 0.70 0.75 0.80 0.85 0.90 0.95
R/C

10-3

10-2

10-1

100

A
ve

ra
g
e

S
ec

ti
o
n
 E

rr
o
r

R
at

e

Exponential PA

Figure 3.6: AMP section error rate Esec vsR/C at snr = 15, C = 2 bits. The SPARC parameters are
M = 512, L = 1024. The black curve shows the Esec with Pℓ ∝ 2−2Cℓ/L.

Lemma 3.1. [24, Lemma 1(b)] Let νℓ := LPℓ

Rτ2 ln 2 . For sufficiently largeM , and for any δ ∈
(0, 1

2
),

x(τ) ≤
L∑

ℓ=1

Pℓ

P
1 {νℓ > 2− δ}+M−κ1δ2

L∑
ℓ=1

Pℓ

P
1 {νℓ ≤ 2− δ} , (3.5)

x(τ) ≥

(
1− M−κ2δ2

δ
√

lnM

)
L∑

ℓ=1

Pℓ

P
1 {νℓ > 2 + δ} . (3.6)

where κ1, κ2 are universal positive constants.

We note that when in the large system limit, as M → ∞, Lemma 3.1 reduces to the
asymptotic result Lemma2.1. As the constantsκ1, κ2 in (3.5)–(3.6) are not precisely specified,
for designing power allocation schemes, we use the following approximation for x(τ):

x(τ) ≈
L∑

ℓ=1

Pℓ

P
1
{
LPℓ > 2Rτ 2 ln 2

}
. (3.7)

This approximate version, which is increasingly accurate as L,M grow large, is useful for

52

gaining intuition about suitable power allocations. If the effective noise variance after step t is
τ 2t , then (3.7) says that any section ℓwhose normalised powerLPℓ is larger than the threshold
2Rτ 2t ln 2 is likely to be decodable correctly in step (t + 1), i.e., in βt+1, the probability mass
within the section will be concentrated on the correct non-zero entry. For a given power allo-
cation, we can iteratively estimate the SE parameters (τ 2t , x(τ 2t)) for each t using the approxi-
mation in (3.7). This provides a way to quickly check whether or not a given power allocation
will lead to reliable decoding in the large system limit. For reliable decoding at a given rateR,
the effective noise variance given by τ 2t = σ2+P (1−x(τt−1)) should decrease with t until it
reaches a value close to σ2 in a finite number of iterations. Equivalently, x(τt) in (3.7) should
increase to a value very close to 1.

For a rate R < C, there are infinitely many power allocations for which (3.7) predicts
successful decoding in the large system limit. However, as illustrated below, their finite length
error performance may differ significantly. Thus the key question addressed in this section is:
how do we choose a power allocation that gives the lowest section error rate?

Let us first consider the exponentially-decaying power allocation given by

Pℓ =
P (22C/L − 1)

1− 2−2C 2−2Cℓ/L, ℓ ∈ [L], (3.8)

This power allocation was proven in [1] to be asymptotically capacity-achieving in the large
system limit, i.e., it was shown that the section error rate Esec of the AMP decoder converges
almost surely to 0 as n → ∞, for anyR < C. However, it does not perform well at practical
block lengths, which motivated the search for alternatives. We now evaluate it in the context
of (3.7) to better explain the development of a new power allocation scheme.

Given a power allocation, using (3.7) one can compute the minimum required power for
any section ℓ ∈ [L] to decode, assuming that the sections with higher power have decoded
correctly. The dashed lines in Figure 3.7 shows the minimum power required for each section
to decode (assuming the exponential allocation of (3.8) for the previous sections), forR = C
and R = 0.7C. The figure shows that the power allocation in (3.8) matches (up to order 1

L

terms) with the minimum required power whenR = C. However, forR = 0.7C, we see that
the exponentially-decaying allocation allocates significantly more power to the earlier sections
than the minimum required, compared to later sections. This leads to relatively high section
error rates, as shown in Figure 3.6.

Figure 3.7 also shows that the total power allocated by the minimal power allocation at

53

`

P
`

Original allocation P` ∝2−2C`/L

Required power at R=C
Required power at R=0.7C

Figure 3.7: The dashed lines show the minimum required power in section for successful decoding
whenR = C (upper), andR = 0.7C (lower), whereC = 2 bits. The solid line shows the exponentially-
decaying power allocation in (3.8).

R = 0.7C is significantly less than the available power P . Therefore, the key question is:
how do we balance the allocation of available power between the various sections to minimise
the section error rate? Allocating excessive power to the earlier sections ensures they decode
reliably early on, but then there will not be sufficient power left to ensure reliable decoding in
the final sections. This is the reason for the poor finite lengthperformance of the exponentially-
decaying allocation. Conversely, if the power is spread too evenly then no section particularly
stands out against the noise, so it is hard for the decoding to get started, and early errors can
cause cascading failures as subsequent sections are also decoded in error.

3.4.1 Modified Exponential Power Allocation

This trade-off motivated the following modified exponential power allocation, originally pro-
posed in [1]. We set

Pℓ =

κ · 2−2aCℓ/L 1 ≤ ℓ ≤ fL,

κ · 2−2aCf fL+ 1 ≤ ℓ ≤ L,
(3.9)

where the normalizing constant κ, chosen to ensure that
∑L

ℓ=1 Pℓ = P , is

κ =
P
(
22aC/L − 1

)
1− 2−2aCf (1− L(1− f)(22aC/L − 1))

. (3.10)

In (3.9), the parameter a controls the steepness of the exponential allocation, while the

54

parameter f flattens the allocation after the first fraction f of the sections. Smaller choices of
a lead to less power allocated to the initial sections, making a larger amount available to the
later sections. Similarly, smaller values of f lead to more power allocated to the final sections,
while preventing the final few sections from having negligible power. See Figure 3.8 for an
illustration.

In order to run the SPARC AMP decoder with this power allocation, closed-form esti-
mates for τ 2t can be obtained using Lemma 2.1. Using the definition of xt = x(τt) from (3.7),
initialise τ 20 = σ2 + P , and for t ≥ 0 we have:

τ 2t+1 = σ2 + P (1− xt+1), xt+1 =
1− 2−2aCξt

1 + 2−2aCf (2 ln 2aC(1− f)− 1)
, (3.11)

where

ξt =
1

2aC
log2

(
22aCf · aCP

Rτ 2t (2
2aCf + (1− f)(2aC ln 2)− 1)

)
. (3.12)

While this allocation improves the section error rate by up to a few orders of magnitude
(see Figure 3.11), it requires costly numerical optimization of a and f . A good starting point
is to use a = f = R/C, but further optimization is generally necessary. This motivates the
need for a fast power allocation algorithm with fewer tuning parameters.

`

P
`

Original allocation P` ∝2−2C`/L

Modified a=.7 f=.7 allocation

Required power at R=0.7C

Figure 3.8: The modified power allocation with a = f = 0.7 results in slightly more than the min-
imum power required for the first 70% of sections; the remaining available power is allocated equally
among the last 30% of sections. The original allocation with Pℓ ∝ 2−2Cℓ/L is also shown for compari-
son.

55

`

P
`

Step 1

`

P
`

Step 2

`

P
`

Step 3

`

P
`

Step 4

`

P
`

Step 5

Figure 3.9: Example illustrating the iterative power allocation algorithmwithB = 5. In each step, the
height of the blue region represents the allocation that distributes the remaining power equally over all
the remaining sections. The dashed red line indicates the minimum power required for decoding the
current block of sections. The green bars represent the power that has been allocated at the beginning
of the current step.

3.4.2 Iterative Power Allocation

Wenow describe a simple parameter-free iterative algorithm to design a power allocation. The
L sections of the SPARC are divided intoB blocks ofL/B sections each. Each section within
a block is allocated the same power. For example, with L = 512 and B = 32, there are 32
blocks with 16 sections per block. The algorithm sequentially allocates power to each of theB
blocks as follows. Allocate the minimum power to the first block of sections so that they can
be decoded in the first iteration when τ 20 = σ2 + P . Using (3.7), we set the power in each
section of the first block to

Pℓ =
2Rτ 20 ln 2

L
, 1 ≤ ℓ ≤ L

B
.

Using (3.7) and (2.7), we then estimate τ 21 = σ2 + (P −BP1). Using this value, allocate the
minimum required power for the second block of sections to decode, i.e., Pℓ = 2 ln 2Rτ 21 /L
for L

B
+1 ≤ ℓ ≤ 2L

B
. If we sequentially allocate power in this manner to each of theB blocks,

then the total power allocated by this scheme will be strictly less thanP wheneverR < C. We
therefore modify the scheme as follows.

For1 ≤ b ≤ B, to allocate power to the bth block of sections assuming that the first (b−1)
blocks have been allocated, we compare the two options and choose the one that allocates
higher power to the block: i) allocating the minimum required power (computed as above)
for the bth block of sections to decode; ii) allocating the remaining available power equally
to sections in blocks b, . . . , B, and terminating the algorithm. This gives a flattening in the
final blocks similar to the allocation in (3.9), but without requiring a specific parameter that
determines where the flattening begins. The iterative power allocation routine is described in
Algorithm 3.3.

56

`

P
`

Original Allocation P` ∝2−2C`/L

Iterative Allocation at RPA=0.7C
Required power at R=0.7C

Figure 3.10: Iterative allocation, with L = 512, and B = 16 blocks. Flattening occurs at the 11th
block.

Algorithm 3.3 Iterative power allocation routine

Require: L,B, σ2, P ,R such thatB dividesL.
Initialise k ← L

B

for b = 0 toB − 1 do
Premain ← P −

∑bk
ℓ=1 Pℓ

τ 2 ← σ2 + Premain

Pblock ← 2 ln(2)Rτ 2/L
if Premain/(L− bk) > Pblock then
Pbk+1, . . . , PL ← Premain/(L− bk)
break

else
Pbk+1, . . . , P(b+1)k ← Pblock

end if
end for
return P1, . . . , PL

Figure 3.9 shows a toy example building up the power allocation forB = 5, where flatten-
ing is seen to occur in step 4. Figure 3.10 shows a more realistic example with L = 512 and
R = 0.7C.

ChoosingB: By construction, the iterative power allocation scheme specifies the number of
iterations of the AMP decoder in the large system limit. This is given by the number of blocks
with distinct powers; in particular the number of iterations (in the large system limit) is of the
order of B. For finite code lengths, we find that it is better to use a termination criterion for
the decoder based on the estimates generated by the algorithm. This criterion is described in
Section 3.6. This data-driven termination criterion allows us to choose the number of blocksB

57

0.65 0.70 0.75 0.80 0.85 0.90 0.95
R/C

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

A
ve

ra
g
e

S
ec

ti
o
n
 E

rr
o
r

R
at

e

a=0.75, f=0.59

a=0.76, f=0.66

a=0.91, f=0.70

a=0.95, f=0.76

a=1.02, f=0.85

Original PA
Optimised (a, f) PA

Iterative PA

Figure 3.11: AMP section error rate Esec vsR/C at snr = 15, C = 2 bits. The SPARC parameters are
M = 512, L = 1024. The top curve shows the Esec with Pℓ ∝ 2−2Cℓ/L, reproduced from Figure 3.6.
Themiddle curve shows Esec with the power allocation in (3.9) with the optimised (a, f) values shown.
The bottom curve shows Esec for the iterative power allocation.

to be as large asL. We found that choosingB = L, together with the termination criterion in
Section 3.6, consistently gives a small improvement in error performance (compared to other
choices ofB), with no additional time or memory cost.

Figure 3.11 compares the error performance of the three power allocation schemes dis-
cussed above for different values of R/C at snr = 15. The values of (a, f) for the modified
exponential allocation in (3.9) were found via numerical optimization. We observe that the
empirical section error performance with the iterative power allocation is the same or better
than the optimised (a, f) scheme.

3.5 Error Concentration Trade-offs

In this section, we discuss how the choice of SPARCdesign parameters can influence the trade-
off between the ‘typical’ value of section error rate and concentration of actual error rates
around the typical values. The typical section error rate refers to that predicted by state evo-
lution (SE). Using the SE equations (2.7)–(2.9), we iterate until convergence at iteration T ,

58

obtaining a final value of τT . The value of x(τt) represents the power-weighted fraction of sec-
tions expected to have decoded correctly at iteration t; by removing the power-weighting Pℓ

P

and using τT we can instead estimate the overall fraction of sections to have decoded correctly
at time T as:

ESEsec := 1− 1

L

L∑
ℓ=1

E

 exp
(√

nPℓ

τT
(U ℓ

1 +
√
nPℓ

τT
)
)

exp
(√

nPℓ

τT
(U ℓ

1 +
√
nPℓ

τT
)
)
+
∑M

j=2 exp
(√

nPℓ

τT
U ℓ
j

)
 . (3.13)

The concentration refers to how tightly distributed around the SE prediction ESEsec the observed
section error rates are.

As we describe below, the choice of SPARC parameters (L,M) and the power allocation
both determine a trade-off between obtaining a low value for ESEsec, and concentration of the
actual section error rate around ESEsec. This trade-off is of particular interest when applying an
outer code to the SPARC, as considered in Section 4.2, which may be able to reliably handle
only a small number of section errors.

3.5.1 Effect ofL andM on Concentration

Recall from (1.8) that the code length n at a given rateR is determined by the choice ofL and
M according to the relationship nR = L logM . In general,L andM may be chosen freely to
meet a desired rate and code length.

To understand the effect of increasingM , consider Figure 3.12 which shows the error per-
formance of a SPARC withR = 1.5, L = 1024, as we increase the value ofM . From (1.8),
the code length n increases logarithmically with M . We observe that the section error rate
(averaged over 200 trials) decreases withM up toM = 29, and then starts increasing. This is
in sharp contrast to the SE prediction (3.13) which keeps decreasing asM is increased, plotted
using a dashed line in Figure 3.12.

This divergence between the actual section error rate and the SE prediction for largeM is
due to large fluctuations in the number of section errors across trials. Recent work on the error
exponent of SPARCswith AMP decoding shows that the concentration of error rates near the
SE prediction is strongly dependent on both L andM . For R < C, [24, Theorem 1] shows

59

that for any ϵ > 0, the section error rate Esec satisfies

P
(
Esec > ESEsec + ϵ

)
≤ KT exp

{
−κTL

(logM)2T−1

(
ϵσ2 ln(1 + snr)

4
− τ 20 f(M)

)2
}
,

(3.14)

where T is the number of iterations until state evolution convergence, κT , KT are constants
depending on T , and f(M) = M−κ2δ

2

δ
√
lnM

is a quantity that tends to zero with growingM . For
any power allocation, T increases asR approachesC . For example, T ∝ 1/ log(C/R) for the
exponential power allocation. We observe that the deviation probability bound on the RHS
of (3.14) depends on the ratioL/(logM)2T−1.

In our experiments,T is generally on the order of a few tens. Therefore, keepingL constant,
the probability of large deviations from the SE prediction ESEsec increases with M . This leads
to the situation shown in Figure 3.12, which shows that the SE prediction ESEsec continues to
decrease with M , but beyond a certain value of M , the observed average section error rate
becomes progressively worse due to loss of concentration. This is caused by a small number of
trials with a very large number of section errors, even as the majority of trials experience lower
and lower error rates asM is increased. This effect can be clearly seen in Figure 3.13, which
compares the histogram of section error rates over 200 trials forM = 64 andM = 4096. The
distribution of errors is clearly different, but both cases have the same average section error rate
due to the poorer concentration forM = 4096.

To summarise, given R, snr, and L, there is an optimal M that minimises the empirical
section error rate. Beyond this value ofM , the benefit from any further increase is outweighed
by the loss of concentration. For a givenR, values ofM close toL are a good starting point for
optimizing the empirical section error rate, but obtaining closed-form estimates of the optimal
M for a givenL is still an open question.

For fixed L,R, the optimal value ofM increases with snr. This effect can be seen in the
results of Figure 4.1, where there is an inversion in the order of best-performingM values as
Eb/N0 increases. This is because as snr increases, the number of iterationsT for SE to converge
decreases. A smaller T mitigates the effect of largerM in the large deviations bound of (3.14).
In other words, a larger snr leads to better error rate concentration around the SE prediction,
so larger values ofM are permissible before the performance starts degrading.

60

23 24 25 26 27 28 29 210 211 212 213 214 215

M

10-4

10-3

10-2

10-1

A
ve

ra
g
e

S
ec

ti
o
n
 E

rr
o
r

R
at

e

Experimental Results

State Evolution ESEsec

Ēsec

Figure 3.12: AMP error performance with increasingM , forL = 1024,R = 1.5, and Eb
N0

= 5.7 dB
(2 dB from Shannon limit). See Section 3.7 for details of Ēsec.

3.5.2 Effect of Power Allocation on Concentration

The non-asymptotic bounds on x(τ) in Lemma 3.1 indicate that at finite lengths, the mini-
mum power required for a section ℓ to decode in an iteration may be slightly different than
that indicated by the approximation in (3.7). Recall that the iterative power allocation algo-
rithm in Section 3.4.2 was designed based on (3.7). We can compensate for the difference
between the approximation and the actual value of x(τ) by running the iterative power allo-
cation in Algorithm 3.3 using a modified rate RPA which may be slightly different from the
communication rate R. The choice of RPA directly affects the error concentration. We now
discuss the mechanism for this effect and give guidelines for choosingRPA as a function ofR.

If we run the power allocation algorithm withRPA > R, from (3.7) we see that additional
power is allocated to the initial blocks, at the cost of less power for the final blocks (where the
allocation is flat). Consequently, it is less likely that one of the initial sections will decode in
error, butmore likely that some number of the later sections will instead. Figure 3.14 (bottom)
shows the effect of choosing a largeRPA = 1.06R: out of a total of 1000 trials, there were no
trials withmore than 7 sections decoded in error (the number of sectionsL = 1024); however,
relatively few trials (29%) have zero section errors.

61

0 5 10 15 20
0

20

40

60

80

100

20 100 200 300 400 500 600 700
0

1

2

3
M=64

0 5 10 15 20
0

20

40

60

80

100

20 100 200 300 400 500 600 700
0

1

2

3
M=4096

N
u
m

b
er

 o
f

T
ri
al

s

Number of Section Errors

Figure 3.13: Histogram of AMP section errors over 200 trials, M = 64 (top) and M = 4096
(bottom), with L = 1024, R = 1.5, Eb

N0
= 5.7dB. The left panels highlight distribution of errors

around low section error counts, while the right panels show the distribution around high-error-count
events. As shown in Figure 3.12, both cases have an average section error rate of around 10−2, but the
lowerM gives better concentration at a higher expected error rate, while the largerM has many more
trials with zero errors, but also more trials with a large number of errors.

Conversely, choosing RPA < R allocates less power to the initial blocks, and increases
the power in the final sections which have a flat allocation. This increases the likelihood of
the initial section being decoded in error; in a trial when this happens, there will be a large
number of section errors. However, if the initial sections are decoded correctly, the additional
power in the final sections increases the probability of the trial being completely error-free.
Thus choosingRPA < Rmakes completely error-free trials more likely, but also increases the
likelihood of having trials with a large number of sections in error. In Figure 3.14 (top), the
smallerRPA = 0.98R gives zero or one section errors in the majority (81%) of cases, but the
remaining trials typically have a large number of sections in error.

To summarise, the larger the RPA, the better the concentration of section error rates of
individual trials around the overall average. However, increasing RPA beyond a point just
increases the average section error rate because of too little power being allocated to the final
sections.

For different values of the communication rateR, we empirically determined anRPA that

62

0 1 2 3 4 5 6 7 8
0

200

400

600

8 200 400 600 800 1000
0
2
4
6
8

10
12
14
16

RPA=0.98R

0 1 2 3 4 5 6 7 8
0

200

400

600

8 200 400 600 800 1000
0
2
4
6
8

10
12
14
16

RPA=1.06R

N
u
m

b
er

 o
f

T
ri
al

s

Number of Section Errors

Figure 3.14: Histogram of AMP section errors over 1000 trials for RPA = 0.98R (top) and RPA =
1.06R (bottom). The SPARC parameters are L = 1024, M = 512, R = 1.6 and snr = 15.
The left panels highlight distribution of trials with low section error counts (up to 8); the right panels
indicate the distribution of infrequent but high-error-count trials. At lowerRPA, manymore trials have
no section errors, but those that do often have hundreds. At higherRPA, at most 7 section errors were
seen, but many fewer trials had zero section errors.

gives the lowest average section error rate, by starting atRPA = R and searching the neighbor-
hood in steps of 0.02R. Exceptionally, at low rates (forR ≤ 1), the optimalRPA is found to
be 0, leading to a completely flat power allocation with Pℓ =

P
L

for all ℓ. We note from (3.7)
that for 1 ≥ R > P

2τ20 ln 2 , the large system limit theory does not predict that we can decode
any of theL sections— this is because no section is above the threshold in the first iteration of
decoding. However, in practice, we observe that some sections will decode initially (due to the
correct column being aligned favorably with the noise vector), and this reduces the threshold
enough to allow subsequent decoding to continue in most cases. ForR ≤ 1, whenRPA closer
toR is used, the lower power in later sections hinders the finite length decoding performance.

We found that the value of RPA

R
thatminimises the average section error rate increases with

R. In particular, the optimal RPA

R
was 0 forR ≤ 1; the optimal RPA

R
forR = 1.5was close to

1, and forR = 2, the optimal RPA

R
was between 1.05 and 1.1. Though this provides a useful

design guideline, a deeper theoretical analysis of the role ofRPA in optimizing the finite length
performance is an open question.

63

Finally, a word of caution when empirically optimizing RPA to minimise the average sec-
tion error rate. Due to the loss of concentration as RPA is decreased below R, care must be
taken to run sufficient trials to ensure that a rare unseen trial with many section errors will
not catastrophically impact the overall average section error rate. For example, in one scenario
with L = 1024,M = 512, snr = 15, R = 1.4, RPA = 1.316, we observed 192 trials with
errors out of 407756 trials, but only 4 of these trials had more than one error, with between
400 to 600 section errors in those 4 cases. The average section error rate was 5.6× 10−6. With
fewer trials, it is possible that no trials with a large number of section errors would be observed,
leading to an estimated error rate an order of magnitude better, at around 4.6× 10−7.

3.6 Online Computation of τ 2t and Early Termination

Recall that the update step (2.10) of the AMP decoder requires the SE coefficients τ 2t , for
t ∈ [T]. In the standard implementation [1], these coefficients are computed in advance using
the SE equations (2.7)–(2.9). The total number of iterationsT is also determined in advance by
computing the number of iterations required by the SE to converge to its fixed point (towithin
a specified tolerance). This technique produced effective results, but advance computation is
slow as each of theL expectations in (2.9) needs to be computed numerically viaMonte-Carlo
simulation, for each t. A faster approach is to compute the τ 2t coefficients using the asymptotic
expression for x(τ) given in (3.7). This gives error performance nearly identical to the earlier
approach with significant time savings, but still requires advance computation. Both these
methods are referred to as “offline” as the τ 2t values are computed a priori.

A simple way to estimate τ 2t online during the decoding process is as follows. In each step
t, after producing zt as in (2.5), we estimate

τ̂ 2t =
∥zt∥2

n
=

1

n

n∑
i=1

z2i . (3.15)

The justification for this estimate comes from the analysis of theAMPdecoder in [1,24], which
shows that for large n, τ̂ 2t is close to τ 2t in (2.7) with high probability. In particular, [24] pro-
vides a concentration inequality for τ̂ 2t similar to (3.14). A similar online estimate has been
used previously in various AMP and GAMP algorithms [31, 39, 46, 47]. The online estimator
τ̂ 2t provides multiple advantages beyond avoiding advance computation.

64

0 5 10 15 20 25 30 35
t

0

2

4

6

8

10

12

14

16

18
τ

2

Precomputed τ2
t

Online τ̂2
t , all sections correct

Online τ̂2
t , 57% sections correct

Figure 3.15: Comparison between offline and online trajectories of the effective noise variance, at
L = 1024,M = 512, P = 15, σ2 = 1, R = 1.6. The dashed line represents the pre-computed SE
trajectory of τ2t . The plot shows 15 successful runs, and one uncommon run with many section errors.
The true value of Var[st − β] during decoding tracks τ̂2t too precisely to distinguish on this plot.

First, the error performance with the online estimator was observed to consistently be the
same or better than the offline methods. Another attractive feature of online estimation is
that τ̂ 2t can be used to track decoding progress. Recall from the discussion at the beginning of
Section 3.4 that in each step, we have

st := βt + A∗zt ≈ β + τtZ, (3.16)

where Z is a standard normal random vector independent of β. Starting from τ 20 = σ2 + P ,
a judicious choice of power allocation ensures that the SE parameter τ 2t decreases with t, until
it converges at τ 2T = σ2 in a finite number of iterations T .

However, at finite lengths there are deviations from this trajectory of τ 2t predicted by SE,
i.e., the variance of the effective noise vector (st−β)maydeviate from τ 2t . Theonline estimator
τ̂ 2t is found to track Var(st − β) = ∥st − β∥2/n very accurately. This effect can be seen
in Figure 3.15, where 16 independent decoder runs are plotted and compared with the SE
trajectory for τ 2t (dashed line). For the 15 successful runs, the empirical variance Var(st − β)
approaches σ2 = 1 along different trajectories depending on how the decoding is progressing.

65

In the unsuccessful run, Var(st − β) converges to a value much larger than σ2.
In all the runs, τ̂ 2t is indistinguishable from Var(st − β). This indicates that we can use

the final value τ̂ 2T to accurately estimate the power of the undecoded sections — and thus the
number of sections decoded correctly— at runtime. Indeed, (τ̂ 2T −σ2) is an accurate estimate
of the total power in the incorrectly decoded sections. This, combined with the fact that the
power allocation is non-increasing, allows the decoder to estimate the number of incorrectly
decoded sections.

Furthermore, we canuse the change in τ̂ 2t between iterations to terminate the decoder early.
If the value τ̂ 2t hasnot changedbetween successive iterations, or the change iswithin some small
threshold, then the decoder has stalled and no further iterations are worthwhile. Empirically
we find that a stopping criterion with a small threshold (e.g., stop when |τ̂ 2t − τ̂ 2t−1| < PL)
leads to no additional errors compared to running the decoder for the full iteration count,
while giving a significant speedup in most trials. Allowing a larger threshold for the stopping
criterion gives even better running time improvements. This early termination criterion based
on τ̂ 2t gives us flexibility in choosing the number of blocksB in the iterative power allocation
algorithm of Section 3.4.2. This is because the number of AMP iterations is no longer tied to
B, henceB can be chosen as large as desired.

To summarise, the online estimator τ̂ 2t provides an estimate of the noise variance in each
AMP iteration that accurately reflects how the decoding is progressing in that trial. It thereby
enables the decoder to effectively adapt to deviations from the τ 2t values predicted by SE. This
explains the improved performance compared to the offline methods of computing τ 2t . More
importantly, it provides an early termination criterion for the AMP decoder as well as a way to
track decoding progress and predict the number of section errors at runtime.

3.7 Predicting Esec, Eber, and Ecw
For a givenpower allocation{Pℓ}ℓ∈[L] and reasonably large SPARCparameters (n,M,L), it is
desirable to have a quickway to estimate the section error rate and codeword error rate, without
resorting to simulations. Without loss of generality, we assume that the power allocation is
asymptotically good, i.e., the large system limit SE parameters (computed using (3.7)) predict
reliable decoding, i.e., the SE converges to xT = 1 and τ 2T = σ2 in the large system limit. The
goal is to estimate the finite length section error rate Esec.

One way to estimate Esec is via the state evolution prediction (3.13), using τT = σ. How-

66

ever, ESEsec in computing (3.13) requires computing L expectations, each involving a function
ofM independent standard normal random variables. The following result provides estimates
of Esec and Ecw that are as accurate as the SE-based estimates, but much simpler to compute.

Proposition 3.1. Let the power allocation {Pℓ} be such that the state evolution iteration using
the asymptotic approximation (3.7) converges to τ 2T = σ2. Then, under the idealised assumption
that βT +A∗zT = β + τTZ (whereZ is a standard normal random vector independent of β),
we have the following. The probability of a section (chosen uniformly at random) being incorrectly
decoded is

Ēsec = 1− 1

L

L∑
ℓ=1

EU

[
Φ

(√
nPℓ

σ
+ U

)]M−1

. (3.17)

The probability of the codeword being incorrectly decoded is

Ēcw = 1−
L∏

ℓ=1

EU

[
Φ

(√
nPℓ

σ
+ U

)]M−1

. (3.18)

In both expressions above, U is a standard normal random variable, and Φ(.) is the standard
normal cumulative distribution function.

Proof. As τ 2T = σ2, the effective observation in the final iteration has the representation β +

σZ . The denoising function ηT generates a final estimate based on this effective observation,
and the index of the largest entry in each section is chosen to form the decodedmessage vector
β̂. Consider the decoding of section ℓ of β. Without loss of generality, we can assume that the
first entry of the section is the non-zero one. Using the notation βℓ,j to denote the jth entry of
the section βℓ, we therefore have βℓ,1 =

√
nPℓ, and βℓ,j = 0 for 2 ≤ j ≤M . As the effective

observation for section ℓ has the representation (βT + A∗zT)ℓ = βℓ + σZℓ, the section will
be incorrectly decoded if and only if the following event occurs:{√

nPℓ + σZℓ,1 ≤ σZℓ,2

}
∪ . . . ∪

{√
nPℓ + σZℓ,1 ≤ σZℓ,M

}
.

67

Therefore, the probability that the ℓth section is decoded in error can be computed as

Perr,ℓ = 1− P
(√

nPℓ + σZℓ,1 > σZℓ,j, 2 ≤ j ≤M
)

= 1−
∫
R

M∏
j=2

P
(
Zℓ,j <

√
nPℓ

σ
+ u

∣∣∣Zℓ,1 = u

)
ϕ(u)du

= 1− EU

[
Φ

(√
nPℓ

σ
+ U

)]M−1

,

(3.19)

where ϕ and Φ denote the density and the cumulative distribution function of the standard
normal distribution, respectively. In the second line of (3.19), we condition on Zℓ,1 and then
use the fact thatZℓ,1, . . . , Zℓ,M are i.i.d. ∼ N (0, 1).

The probability of a section chosen uniformly at random being incorrectly decoded is

1

L

L∑
ℓ=1

Perr,ℓ.

Theprobability of codeword error is oneminus the probability that no section is in error, which
is given by

1−
L∏

ℓ=1

(1− Perr,ℓ).

Substituting for Perr,ℓ from (3.19) yields the expressions in (3.17) and (3.18).

The section error rate and codeword error rate can be estimated using the idealised expres-
sions in (3.17) and (3.18). This still requires computing L expectations, but each expectation
is now a function of a single Gaussian random variable, rather than theM independent ones
in the SE estimate. Thus we reduce the complexity by a factor of M over the SE approach;
evaluations of Ēsec and Ēcw typically complete within a second.

Figure 3.12 shows Ēsec alongside the SE estimate ESEsec for L = 1024, and various values of
M . We see that both these estimates match the simulation results closely up to a certain value
ofM . Beyond this point, the simulation results diverge from theoretical estimates due to lack
of concentration in section error rates across trials, as described in Sec. 3.5.1. Figure 3.16 com-
pares the idealised codeword error probability in (3.18) with that obtained from simulations.
Here, there is a good match between the estimate and the simulation results as the concentra-
tion of section error rates across trials plays no role — any trial with one or more section errors

68

23 24 25 26 27 28 29 210 211 212 213 214 215

M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C
o
d
ew

o
rd

 E
rr

o
r

R
at

e

AMP Simulation

Ēsec

Figure 3.16: Comparison of codeword error rate between simulation results and Perr-based analysis,
for Ecw with varyingM . L = 1024,R = 1.5,Eb/N0 = 5.7dB. Results are well matched even when
concentration is poor.

corresponds to one codeword error.

It is further possible to find an upper bound for Ēsec, eliminating computation of the ex-
pectation entirely. For brevity, let a =

√
nPℓ

σ
. To find an upper bound for Ēsec we first find a

lower bound on the inner expectation EU [Φ(a+ U)]. Recall that U ∼ N (0, 1) and using
the Chernoff inequality

1− Φ(x) = Q(x) ≤ e
−x2

2

for x > 0, we obtain
Φ(x) ≥ 1− e

−x2

2 . (3.20)

Split the expectation into two parts conditioned on the event U > −a to ensure the
argument toΦ(.) remains positive. We can bound this quantity by discarding the second term;
since a is large (of order logM), the event U ≤ −a is unlikely and so the second term does
not significantly affect the bound. Use the inequality of (3.20) twice to obtain

69

EU [Φ(a+ U)] = E [Φ(a+ U) | U > −a]P (U > −a) (3.21)

+ E [Φ(a+ U) | U ≤ −a]P (U ≤ −a) (3.22)

≥ E
[
1− e−(a+U)2/2 | U > −a

]
(1− Φ(−a)) (3.23)

=
(
1− E

[
e−

a2

2
−aU−U2

2 | U > −a
])

Φ(a) (3.24)

≥
(
1− E

[
e−

a2

2
−aU−U2

2 | U > −a
])(

1− e−
a2

2

)
(3.25)

Computing the expectation by integration,

E
[
e−

a2

2
−aU−U2

2 | U > −a
]
=

∫ ∞

−a

e−
a2

2
−au−u2

2
1

P (u > −a)
1√
2π
e−

u2

2 du (3.26)

=
1

Φ(a)
√
2π
e−

a2

2

∫ ∞

−a

e
a2

4
−(u+a

2
)2du (3.27)

=
1

Φ(a)
√
2π
e−

a2

4

∫ ∞

−a

e−(u+a
2
)2du (3.28)

Use the substitution v(u) = u+ a
2
, dv = du,

E
[
e−

a2

2
−aU−U2

2 | U > −a
]
=

1

Φ(a)
√
2π
e−

a2

4

∫ ∞

−a/2

e−v2dv (3.29)

=
1

Φ(a)
√
2π
e−

a2

4

(∫ ∞

0

e−v2dv +

∫ 0

−a
2

e−v2dv

)
(3.30)

=
1

Φ(a)
√
2π
e−

a2

4

(√
π

2
erf(∞) +

√
π

2
erf
(a
2

))
(3.31)

≥ 1

1− e−a2

2

1

2
√
2
e−

a2

4 , (3.32)

noting in the final step that a ≥ 0 and erf(x) ≥ 0whenx ≥ 0, and erf(∞) = 1 by definition.

70

2 3 4 5 6 7 8 9 10
Eb/N0 (dB)

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

SE
R

Approximation 1− (1− e−snr)M− 1

Upper Bound 1− 1
L
(L− L

2
√

2
e
−n. snr

4 − e−n. snr2)M− 1

Ēsec

SPARC AMP L=1024, M=512, n=6144

Figure 3.17: Comparison of predicted error rate Ēsec with upper bound, approximation based on snr,
and SPARC AMP simulation results for L = 1024, M = 512, n = 6144, R = 1.5, σ2 = 1.0. The
SPARC AMP data is repeated in Figure 4.2.

Use this bound in (3.25) and expand a to obtain

EU [Φ(a+ U)] ≥

(
1− 1

1− e−a2

2

1

2
√
2
e−

a2

4

)(
1− e−

a2

2

)
(3.33)

= 1− 1

2
√
2
e

−nPℓ
4σ2 − e

−nPℓ
2σ2 . (3.34)

Finally use (3.34) in (3.17) to obtain

Ēsec ≤ 1− 1

L

L∑
ℓ=1

(
1− 1

2
√
2
e

−nPℓ
4σ2 − e

−nPℓ
2σ2

)M−1

. (3.35)

To investigate the effect of snr on error rate, we can approximate (3.35). Note that for a
given power allocation algorithm, Pℓ ∝ P , and so to a rough approximation,

Ēsec ≈ 1− (1− e−snr)M−1. (3.36)

Figure 3.17 compares the predicted error rates, the upper bound derived above, and the

71

approximation based on snr to error rates obtained using the AMP decoder. There is a good
correspondence in the regionwhere AMP results are available, andwe can further see expected
behaviour in higher snr regimes which are impractical to simulate due to extremely low error
rates. The apparently straight-line (on a log-log plot) behaviour of the SPARCAMPerror rates
is instead revealed to be a curve which falls off more quickly at higher snr.

72

Chapter 4

OuterCodes for SPARCs

In Chapter 3 we considered various techniques to improve the section error rate Esec of the
AMP decoder. While substantial improvements in Esec were possible, the rate at which Esec
decreases as the rate backs off from capacity does not exhibit the steep “waterfall” effect com-
mon to other channel codes. In this chapter we first compare the performance of the AMP
decoder to a codedmodulation schemewith a state of the art LDPC code. The codedmodula-
tion scheme obtains a steep reduction in error rate at some threshold rate away from capacity,
while the SPARC does not. We then describe how LDPC outer codes can be used in conjunc-
tion with the AMP decoder to obtain such a reduction. Importantly, we are able to use the
soft information present in the AMP estimate βT prior to conversion to β̂ to provide a better
input to the LDPC decoder. Additionally we can use our knowledge of the power allocation
to only use the LDPC outer code over sections that are likely to suffer errors, reducing the rate
overhead associated with the outer code.

To combine SPARCs with an outer code, user data is first encoded with the outer code,
forming a new codeword that is typically only a little longer than the original user data. This
new codeword is then encoded using the inner code (in our case, the SPARC), transmitted,
received, and decoded, all as usual. The decoder output is now an estimated codeword for
the outer code. We then run a second decoder, for the outer code, to attempt to correct any
remaining errors. If the inner code can be designed to reliably leave only a very small number
of sections in error, then a high rate outer code can reliably correct these errors, leading to an
excellent codeword error rate Ecw in addition to the improved Esec.

73

4.1 Comparison with CodedModulation

LDPC codes may be used in a bit-interleaved codedmodulation (BICM) system, with a mod-
ulation technique such as binary phase-shift keying (BPSK) or quadrature amplitude modu-
lation (QAM). In such a setup, their performance can be directly compared to SPARCs with
AMP decoding, operating at the same rate and over the same channel. This is helpful both to
evaluate the performance of the AMP decoder relative to a state of the art BICM system, and
to inform the design of subsequent outer codes for the SPARC.

In this sectionwe compare theperformanceofAMP-decodedSPARCsagainst codedmod-
ulation with LDPC codes. Specifically, we compare with two instances of coded modulation
with LDPCcodes from theWiMax standard IEEE802.16e: 1)A 16-QAMconstellationwith
a rate 1

2
LDPC code for an overall rate R = 1 bit/channel use/real dimension, and 2) A 64-

QAMconstellationwith a rate 1
2
LDPCcode for an overall rateR = 1.5 bits/channel use/real

dimension. (The spectral efficiency is 2R bits/s/Hz.) The codedmodulation results, shown in
dashed lines in Figures 4.1 and 4.2, are obtained using the CML toolkit [48] with LDPC code
lengths n = 576 and n = 2304.

Each figure compares the BER of the coded modulation schemes with various SPARCs of
the same rate, including a SPARCwith amatching code length ofn = 2304. We plot bit error
rate (BER) against Eb/N0 as it is a more common figure of merit for BICM systems. BER is
measured directly for the SPARCsby counting the number of bits of outputwhich are different
to the input bits. Using P = EbR and σ2 = N0

2
, the signal-to-noise ratio of the SPARC can

be expressed as P
σ2 = 2REb

N0
. The SPARCs are implemented using Hadamard-based design

matrices, power allocation designed using the iterative algorithm in Sec. 3.4.2 with B = L,
and online τ̂ 2t parameters with the early termination criterion (Sec. 3.6).

Figure 4.1 shows that for L = 1024, the best value of M among those considered in-
creases fromM = 29 at lower snr values toM = 213 at higher snr values. This is due to the
effect discussed in Section 3.5.1, where larger snr values can support larger values ofM , before
performance starts degrading due to loss of concentration.

At both R = 1 and R = 1.5, the SPARCs outperform the LDPC coded modulation
at Eb/N0 values close to the Shannon limit, but the error rate does not drop off as quickly
at higher values of Eb/N0. In the next section, we consider using outer codes to improve the
SPARC error rate at higherEb/N0.

74

1 2 3 4 5 6
Eb/N0 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E
R

Shannon Limit
QAM-16 with rate ½ LDPC n=576
QAM-16 with rate ½ LDPC n=2304
SPARC L=1024, M=512, n=9216
SPARC L=1024, M=2048, n=11274
SPARC L=1024, M=8192, n=13312
SPARC L=256 M=512 n=2304

Figure 4.1: Comparison with LDPC coded modulation atR = 1

3 4 5 6 7 8
Eb/N0 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E
R

Shannon Limit
QAM-64 with rate ½ LDPC n=2304
SPARC L=384, M=512, n=2304
SPARC L=1024, M=512, n=6144
SPARC L=1024, M=8192, n=8874

Figure 4.2: Comparison with LDPC coded modulation atR = 1.5

75

4.2 AMPwith Partial Outer Codes

Figures 4.1 and 4.2 show that for block lengths of the order of a few thousands, AMP-decoded
SPARCs do not exhibit a steep waterfall in section error rate. Even at highEb/N0 values, it is
still common to observe a small number of section errors. If these could be corrected, we could
hope to obtain a sharp waterfall behaviour similar to the LDPC codes.

In the simulations of the AMP decoder described in Section 3.5, when M and RPA are
chosen such that the average error rates are well-concentrated around the state evolution pre-
diction, the number of section errors observed is similar across trials. Furthermore, we observe
that the majority of sections decoded incorrectly are those in the flat region of the power allo-
cation, i.e., those with the lowest allocated power. This suggests we could use a high-rate outer
code to protect just these sections, sacrificing some rate, but less than if we naïvely protected all
sections. We call the sections covered by the outer code protected sections, and conversely the
earlier sections which are not covered by the outer code are unprotected. In [17], it was shown
that aReed-Solomonouter code (that covered all the sections) could be used to obtain a bound
on the probability of codeword error from a bound on the probability of excess section error
rate.

Encoding with an outer code (e.g., LDPC or Reed-Solomon code) is straightforward: just
replace the message bits corresponding to the protected sections with coded bits generated us-
ing the usual encoder for the chosen outer code. To decode, we would like to obtain bit-wise
posterior probabilities for each codeword bit of the outer code, and use them as inputs to a soft-
information decoder, such as a sum-product ormin-sumdecoder for LDPC codes. The output
of the AMP decoding algorithm permits this: it yields βT , which contains weighted column-
wise posterior probabilities; we can directly transform these into bit-wise posterior probabili-
ties. See Algorithm 4.1 for details.

Moreover, in addition to correcting AMP decoding errors in the protected sections, suc-
cessfully decoding the outer code also provides a way to correct remaining errors in the un-
protected sections of the SPARC codeword. After decoding the outer code we can subtract
the contribution of the protected sections from the channel output sequence y, and re-run the
AMP decoder on just the unprotected sections. The key point is that subtracting the contri-
bution of the later (protected) sections eliminates the interference due to these sections; then
running the AMP decoder on the unprotected sections is akin to operating at a much lower
rate, and so it is able to correctly decode unprotected sections which were not previously de-

76

β : · · · · · · · · ·
T

L sections

Luser Lparity

Lunprotected Lprotected

LLDPC

Figure 4.3: Division of theL sections of β for an outer LDPC code

coded correctly.

Thus thedecodingprocedurehas three stages: i) first roundofAMPdecoding, ii) decoding
the outer code using soft outputs from the AMP, and iii) subtracting the contribution of the
sections protected by the outer code, and running the AMPdecoder again for the unprotected
sections. We find that the final stage, i.e., running the AMP decoder again after the outer code
recovers errors in the protected sections of the SPARC, provides a significant advantage over a
standard application of an outer code, i.e., decoding the final codeword after the second stage.

We describe this combination of SPARCs with outer codes below, using an LDPC outer
code. The resulting error rate curves exhibit sharp waterfalls in final error rates, even when the
LDPC code only covers a minority of the SPARC sections.

We use a binary LDPC outer code with rate RLDPC , block length nLDPC and code di-
mension kLDPC , so that kLDPC/nLDPC = RLDPC . For clarity of exposition we assume that
both nLDPC and kLDPC are multiples of logM (and consequently thatM is a power of two).
As each section of the SPARC corresponds to logM bits, if logM is an integer, then nLDPC

and kLDPC bits represent an integer number of SPARC sections, denoted by

LLDPC =
nLDPC

logM
and Lprotected =

kLDPC

logM
,

respectively. The assumption that kLDPC and nLDPC are multiples of logM is not necessary
in practice; the general case is discussed at the end of the next subsection.

We partition theL sections of the SPARC codeword as shown in Fig 4.3. There areLuser

sections corresponding to the user (information) bits; these sections are divided into unpro-
tected and protected sections, with only the latter being covered by the outer LDPC code. The
parity bits of the LDPC codeword index the last Lparity sections of the SPARC. For conve-

77

nience, the protected sections and the parity sections together are referred to as theLDPC sec-
tions.

For a numerical example, consider the case where L = 1024, M = 256. There are
logM = 8 bits per SPARC section. For a (5120, 4096) LDPC code (RLDPC = 4/5) we
obtain the following relationships between the number of the sections of each kind:

Lparity =
nLDPC − kLDPC

logM
=

(5120− 4096)

8
= 128,

Luser = L− Lparity = 1024− 128 = 896,

Lprotected =
kLDPC

logM
=

4096

8
= 512,

LLDPC = Lprotected + Lparity = 512 + 128 = 640,

Lunprotected = Luser − Lprotected = L− LLDPC = 384.

There are Luser logM = 7168 user bits, of which the final kLDPC = 4096 are encoded
to a systematic nLDPC = 5120-bit LDPC codeword. The resulting L logM = 8192 bits
(including both the user bits and the LDPC parity bits) are encoded to a SPARC codeword
using the SPARC encoder and power allocation described in previous sections.

We continue to use R to denote the overall user rate, and n to denote the SPARC code
length so that nR = Luser logM . The underlying SPARC rate (including the overhead
due to the outer code) is denoted by RSPARC . We note that nRSPARC = L logM , hence
RSPARC > R. For example, withR = 1 and L,M and the outer code parameters as chosen
above, n = Luser(logM)/R = 7168, soRSPARC = 1.143.

78

Algorithm 4.1 Weighted position posteriors βℓ to bit posteriors p0, . . . , plogM−1 for section
ℓ ∈ [L]

Require: βℓ = [βℓ,1, . . . , βℓ,M], forM a power of 2
Initialise bit posteriors p0, . . . , plogM−1 ← 0

Initialise normalization constant c←
∑M

i=1 βℓ,i
for log i = 0, 1, . . . , logM − 1 do
b← logM − log i− 1
k ← i
while k < M do
for j = k + 1, k + 2, . . . , k + i do
pb ← pb + βℓ,j/c

end for
k ← k + 2i

end while
end for
return p0, . . . , plogM−1

4.2.1 Decoding SPARCs with LDPC outer codes

At the receiver, we decode as follows:

1. Run the AMP decoder to obtain βT . Recall that entry j within section ℓ of βT is pro-
portional to the posterior probability of the column j being the transmitted one for
section ℓ. Thus the AMP decoder gives section-wise posterior probabilities for each sec-
tion ℓ ∈ [L].

2. Convert the section-wise posterior probabilities to bit-wise posterior probabilities using
Algorithm4.1, for each of theLLDPC sections. This requiresO(LLDPCM logM) time
complexity, of the same order as one iteration of AMP.

3. Run the LDPC decoder using the bit-wise posterior probabilities obtained in Step 2 as
inputs.

4. If theLDPCdecoder fails to produce a validLDPCcodeword, terminate decodinghere,
using βT to produce β̂ by selecting the maximum value in each section (as per usual
AMP decoding).

5. If the LDPC decoder succeeds in finding a valid codeword, we use it to re-run AMP

79

decoding on the unprotected sections. For this, first convert the LDPC codeword bits
to a partial β̂LDPC as follows, using a method similar to the original SPARC encoding:

(a) Set the firstLunprotectedM entries of β̂LDPC to zero,

(b) The remaining LLDPC sections (withM entries per section) of β̂LDPC will have
exactly one-non zero entry per section, with theLDPCcodeword determining the
location of the non-zero in each section. Noting that nLDPC = LLDPC logM ,
we consider the LDPC codeword as a concatenation of LLDPC blocks of logM
bits each, so that each block of bits indexes the location of the non-zero entry in
one section of β̂LDPC . The value of the non-zero in section ℓ is set to

√
nPℓ, ac-

cording to the power allocation.

Now subtract the codeword corresponding to β̂LDPC from the original channel output
y, to obtain y′ = y − Aβ̂LDPC .

6. Run theAMPdecoder again, with input y′, and operating only over the firstLunprotected

sections. As this operation is effectively at amuch lower rate than the first decoder (since
the interference contribution from all the protected sections is removed), it is more
likely that the unprotected bits are decoded correctly than in the first AMP decoder.

Wenote that instead of generating y′, one could run theAMPdecoder directly on y, but
enforcing that in each AMP iteration, each of the LLDPC sections has all its non-zero
mass on the entry determined by β̂LDPC , i.e., consistent with Step 5.b).

7. Finishdecoding, using theoutput of thefinalAMPdecoder tofind thefirstLunprotectedM

elements of β̂, and using β̂LDPC for the remainingLLDPCM elements.

In the case where nLDPC and kLDPC are not multiples of logM , the values LLDPC =

nLDPC/ logM and Lprotected = kLDPC/ logM will not be integers. Therefore one section
at the boundary of Lunprotected and Lprotected will consist of some unprotected bits and some
protected bits. Encoding is not affected in this situation, as the LDPC encoding happens prior
to SPARCcodeword encoding. Whendecoding, conversion to bit-wise posterior probabilities
is performed for all sections containing LDPC bits (including the intermediate section at the
boundary) and only thenLDPC bit posteriors corresponding to the LDPCcodeword are given
to the LDPC decoder. When forming β̂LDPC , the simplest option is to treat the intermediate
section as though it were unprotected and set it to zero. It is also possible to compute column

80

posterior probabilities which correspond to the fixed LDPCbits and probabilities arising from
y, though doing so is not detailed here.

4.2.2 Simulation Results

The combined AMP and outer LDPC setup described above was simulated using the (5120,
4096) LDPC code (RLDPC = 4/5) specified in [49] with a min-sum decoder. Bit error rates
were measured only over the user bits, ignoring any bit errors in the LDPC parity bits.

Figure 4.4 plots results at overall rate R = 4
5
, where the underlying LDPC code (mod-

ulated with BPSK) can be compared to the SPARC with LDPC outer code, and to a plain
SPARC with rate 4

5
. In this case RPA = 0, giving a flat power allocation. Figure 4.5 plots

results at overall rateR = 1.5, where we can compare to the QAM-64 WiMAX LDPC code,
and to the plain SPARC with rate 1.5 of Figure 4.2.

1 2 3 4 5 6 7 8
Eb/N0 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E
R

Shannon Limit
SPARC with outer code: AMP only
SPARC with outer code: after LDPC
SPARC with outer code: after final AMP
CCSDS R=4/5 LDPC with BPSK
SPARC AMP without outer code, R=4/5

Figure 4.4: Comparison to plain AMP and to BPSK-modulated LDPC at overall rateR = 0.8. The
SPARCs are both L = 768, M = 512. The underlying SPARC rate when the outer code is included
is RSPARC = 0.94. The BPSK-modulated LDPC is the same CCSDS LDPC code [49] used for
the outer code. For this configuration, Luser = 654.2, Lparity = 113.8, Lunprotected = 199.1,
Lprotected = 455.1, and LLDPC = 568.9. The SPARC with outer code has n = 7360 while the
plain SPARC has n = 8640 and the raw LDPC code has n = 5120.

The plots show that protecting a fraction of sections with an outer code does provide a

81

4 5 6 7 8 9 10
Eb/N0 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E
R

Shannon Limit
SPARC with outer code: AMP only
SPARC with outer code: after LDPC
SPARC with outer code: after final AMP
WiMAX R=1/2 LDPC with QAM-64
SPARC AMP without outer code, R=1.5

Figure 4.5: Comparison to plain AMP and to the QAM-64 WiMAX LDPC of Section 4.1 at overall
rate R = 1.5 The SPARCs are both L = 1024, M = 512. The underlying SPARC rate includ-
ing the outer code is RSPARC = 1.69. For this configuration, Luser = 910.2, Lparity = 113.8,
Lunprotected = 455.1, Lprotected = 455.1, and LLDPC = 455.1. The SPARC with outer code has
n = 5461 while the plain SPARC has n = 6144 and the raw LDPC code has n = 2304.

steep waterfall above a threshold value of Eb

N0
. Below this threshold, the combined SPARC +

outer code has worse performance than the plain rateR SPARC without the outer code. This
can be explained as follows. The combined code has a higher SPARC rate RSPARC > R,
which leads to a larger section error rate for the first AMP decoder, and consequently, to worse
bit-wise posteriors at the input of the LDPC decoder. For Eb

N0
below the threshold, the noise

level at the input of the LDPC decoder is beyond than the error-correcting capability of the
LDPC code, so the LDPC code effectively does not correct any section errors. Therefore the
overall performance is worse than the performance without the outer code.

Above the threshold, we observe that the second AMP decoder (after subtracting the con-
tribution of the LDPC-protected sections) is successful at decoding the unprotected sections
that were initially decoded incorrectly. This is especially apparent in the R = 4

5
case (Figure

4.4), where the section errors are uniformly distributed over all sections due to the flat power
allocation; errors are just as likely in the unprotected sections as in the protected sections.

82

4.2.3 Outer Code Design Choices

In addition to the various SPARC parameters discussed in the previous chapter, performance
with an outer code is sensitive to what fraction of sections are protected by the outer code.
When more sections are protected by the outer code, the overhead of using the outer code is
also higher, drivingRSPARC higher for the same overall user rateR. This leads to worse per-
formance in the initial AMP decoder, which has to operate at the higher rateRSPARC . As dis-
cussed above, ifRSPARC is increased toomuch, the bit-wise posteriors input to the LDPCde-
coder are degraded beyond its ability to successfully decode, giving poor overall performance.

Since thenumberof sections coveredby theouter codedependsonboth logM andnLDPC ,
various trade-offs are possible. For example, given nLDPC , choosing a larger value of logM
corresponds to fewer sections being covered by the outer code. This results in smaller rate
overhead, but increasing logM may also affect concentration of the error rates around the SE
predictions, as discussed in Section 3.5.1. We conclude this chapter with two remarks about
the choice of parameters for the SPARC and the outer code:

1. When using an outer code, it is highly beneficial to have good concentration of the sec-
tion error rates for the initial AMP decoder. This is because a small number of errors in
a single trial can usually be fully corrected by the outer code, while occasional trials with
a very large number of errors cannot.

2. Due to the second AMP decoder operation, it is not necessary for all sections with low
power to be protected by the outer code. For example, in Figure 4.4, all sections have
equal power, and around 30% are not protected by the outer code. These sections are
consequently often not decoded correctly by the first decoder. Only once the protected
sections are removed is the second decoder able to correctly decode these unprotected
sections. In general the aim should be to cover all or most of the sections in the flat
region of the power allocation, but experimentation is necessary to determine the best
trade-off.

83

84

Chapter 5

Modulated SPARCs

When encoding with the standard SPARCs considered thus far, recall that one entry out of
M in each section ℓ ∈ [L] of β is selected, and is set to a fixed value

√
nPℓ. This choice of

column communicates logM bits of information per section, thereby communicating a total
ofL logM = nR bits inn uses of the channel. The decoder always knowswhat the fixed value
will be, and need only decide which column was selected.

To increase the information communicated per section, we could instead choose from a set
of values to assign to the selected column. For example, instead of always assigning

√
nPℓ, we

might communicate one additional bit of information by choosing either+
√
nPℓ or−

√
nPℓ.

In general, if the non-zero entry in each section is chosen from aK-ary constellation, we obtain
log(KM) bits per section. The decoder must now determine which of the possible values
was transmitted, in addition to which column was selected. The new rate is found as nR =

L logKM .

We call this technique Modulated SPARCs, referring to modulation of the non-zero en-
tries in β, similar to pulse amplitudemodulation (PAM) in baseband communications. In this
chapter we derive an AMP decoder for this new structure, and for the simple case K = 2

(binary modulation), find its corresponding state evolution and show it remains possible to
achieve the channel capacity in the large system limit asL,M , and n→∞. This new decoder
is implemented and empirical results obtained.

85

5.1 EncodingModulated SPARCs

To encode unmodulated SPARCs, theL logM input bits are split intoL groups of logM bits,
and each group converted to an integer in [M]. These integers map to a choice of entry in each
section ℓ inβ, and that corresponding entry is set to

√
nPℓ, with all other entries in that section

set to zero. {Pℓ}ℓ∈[L] are power allocation coefficients, fixed a priori, such that
∑

ℓ∈[L] Pℓ = P .

To illustrate, consider a very small scenario where L = 4 and M = 4. There will be
L logM = 8 input bits. Consider the input bits 01 10 00 10. The resulting β is:

β =
[
0,
√
nP1, 0, 0 | 0, 0,

√
nP2, 0 |

√
nP3, 0, 0, 0 | 0, 0,

√
nP3, 0

]
where | is used to clearly delimit sections visually.

For modulated SPARCs, we instead have L logKM input bits, which are again split into
L groups of logKM bits each. This time each group is further split into logM bits which
will determine a choice of column as before, and logK bits which will determine the choice of
modulating value.

For example, withK = 2, the modulating values are±
√
nPℓ. Note that the power allo-

cation coefficients Pℓ are the same as in the unmodulated case; the only difference is that the
non-zero entry in β may be negative as well as positive. In our illustrative example, we will still
have 8 input bits, but can now setM = 2 and use the first bit from each group for the sign,
and the second bit for the position. With the same input bits 01 10 00 10 we now obtain:

β =
[
0,−

√
nP1 |

√
nP2, 0 | −

√
nP3, 0 |

√
nP3, 0

]
ForK > 2, the set of possible values is slightly more complicated. We require that they

are evenly spaced and symmetric around 0, and furthermore that the average power in section
ℓ remains nPℓ. We also require thatK is even, as otherwise one constellation point would be
at 0, leading to sections that selected the 0 point being allocated no power.

First we can findK evenly-spaced points between−1 and 1 as:{
±2r − 1

K − 1

}
1≤r≤K

2

. (5.1)

These have an average power of

86

2

K

K
2
−1∑

r=0

(
2r + 1

K − 1

)2

=
2

K(K − 1)2
(
12 + 32 + · · ·+ (K − 1)2

)
=

K + 1

3(K − 1)
.

(5.2)

To obtain evenly spaced symbols ±ar for r = 1, . . . , K
2
, with average power

√
nPℓ, we

use:

ar =
√
nPℓ

√
3(K − 1)

K + 1

2r − 1

K − 1

=

√
3nPℓ

K2 − 1
(2r − 1). (5.3)

Note that whenK = 2, a1 =
√
nPℓ, as expected for binary modulation.

5.2 AMP forModulated SPARCs

The update rules for an AMP with modulated SPARCs are derived in Section 5.4. For the
binary case whereK = 2, they are:

βt+1
i = ηti(A

∗zt + βt = s) =

√
nPℓ sinh

(
si
√
nPℓ

τ2t

)
∑

k∈sec(i)
cosh

(
sk

√
nPℓ

τ2t

) , i ∈ [ML] (5.4)

zt = y − Aβt +
zt−1

τ 2t−1

(
P − ∥β

t∥2

n

)
. (5.5)

In the generalK-ary case, with the symbol set described in (5.3), the update rules are:

87

βt+1
i = ηti(A

∗zt + βt = s) =

∑K/2
r=1 are

−a2r
2τ2t sinh

(
siar
τ2t

)
∑

k∈sec(i)
∑K/2

r=1 e
−a2r
2τ2t cosh

(
skar
τ2t

) (5.6)

zt = y − Aβt +
zt−1

τ 2t−1n

∑
ℓ∈[L]

∑K/2
r=1 a

2
re

−a2r
2τ2t

∑
k∈secℓ cosh

(
skar
τ2t

)
∑

j∈sec(k)
∑K/2

q=1 e
−a2q

2τ2t cosh
(

sjaq
τ2t

) − ∥βt∥2

 . (5.7)

Note that forK = 2, these reduce to (5.4) and (5.5).
The required τt coefficients may be generated using the state evolution described in (5.8),

or generated online as described in Section 3.6, using τ̂ 2t = ∥zt∥
n

. Initialise with β0 = 0 and
z0 = y.

AfterT iterations, the decoder yieldsβT . The decoded codeword, β̂, is obtained by finding
the entry with the maximum absolute value in each section ℓ, and quantising its value to the
nearest constellation point ±ar. In the binary modulation case, we set the magnitude of the
entry with the maximum absolute value to

√
nPℓ, while preserving its sign. All other entries

in the section are set to 0.

88

5.2.1 State Evolution for AMPDecoded BinaryModulated SPARCs

We can use the decoder in (5.4) and (5.5) to further derive a new state evolution for the binary
modulated SPARCs, which will in turn permit a proof that the AMP decoder achieves the
channel capacity in the large system limit.

The state evolution equations are:

τ 20 = σ2 + P, τ 2t = σ2 + P (1− xt), (5.8)

where

xt+1 =
L∑

ℓ=1

Pℓ

P
E

 sinh
(

nPℓ

τ2t
+

√
nPℓ

τt
U ℓ
1

)
cosh

(
nPℓ

τ2t
+

√
nPℓ

τt
U ℓ
1

)
+
∑M

j=2 cosh
(√

nPℓ

τt
U ℓ
j

)
 , (5.9)

and {U ℓ
j}j∈[M],ℓ∈[L] are i.i.d. N (0, 1) random variables.

xt tracks the expected power-weighted fraction of sectionswhichwill be decoded correctly
at iteration t, while τ 2t represents the combined power of the channel noise and the undecoded
sections. This interpretation is justified by the following result:

Proposition5.1. Under the assumption thatst = β+τtZ , whereZ ∈ RML is i.i.d. ∼ N (0, 1)

and independent of β, the quantity xt+1 defined in (5.9) satisfies:

xt+1 =
1

nP
E[ββt+1], 1− xt+1 =

1

nP
E[∥β − βt+1∥2], (5.10)

and consequently, τ 2t+1 = σ2 + P (1− xt) = σ2 + 1
n
E[∥β − βt+1∥2].

Proof. As in the unmodulated case, we relabel {Zk}k∈[ML] as {U ℓ
j}j∈[M],ℓ∈[L], where U ℓ

j =

Z(ℓ−1)M+j , so that U ℓ represents the length M vector {U ℓ
j}j∈[M] and U is the length ML

vector {U ℓ}ℓ∈[L] = Z .

89

We have

1

nP
E[ββt+1] =

1

nP
E[βηt(β + τtU)]

(a)
=

1

nP

L∑
ℓ=1

M∑
i=1

1

M

(
1

2
E
[√

nPℓ η
t
i(βℓ + τtU

ℓ)
∣∣∣βℓi =√nPℓ

]
+

1

2
E
[
−
√
nPℓ η

t
i(βℓ + τtU

ℓ)
∣∣∣βℓi = −√nPℓ

])

(b)
=

1

nP

L∑
ℓ=1

M∑
i=1

1

2M

(
E

 √
nPℓ ·

√
nPℓ sinh

(√
nPℓ

τt

(√
nPℓ + τtU

ℓ
i

))
cosh

(√
nPℓ

τt

(√
nPℓ + τtU ℓ

i

))
+
∑M

j=2 cosh
(√

nPℓ

τt
U ℓ
j

)

+ E

 −
√
nPℓ ·

√
nPℓ sinh

(√
nPℓ

τt

(
−
√
nPℓ + τtU

ℓ
i

))
cosh

(√
nPℓ

τt

(
−
√
nPℓ + τtU ℓ

i

))
+
∑

j∈secℓ \i cosh
(√

nPℓ

τt
U ℓ
j

)
)

(c)
=

1

nP

L∑
ℓ=1

1

2

(
E

 nPℓ sinh
(

nPℓ

τ2t
+

√
nPℓ

τt
U ℓ
1

)
cosh

(
nPℓ

τ2t
+

√
nPℓ

τt
U ℓ
1

)
+
∑M

j=2 cosh
(√

nPℓ

τt
U ℓ
j

)

+ E

 −nPℓ sinh
(
−nPℓ

τ2t
−

√
nPℓ

τt
U ℓ
1

)
cosh

(
−nPℓ

τ2t
−

√
nPℓ

τt
U ℓ
1

)
+
∑M

j=2 cosh
(√

nPℓ

τt
U ℓ
j

)
)

(d)
=

L∑
ℓ=1

Pℓ

P
E

 sinh
(

nPℓ

τ2t
+

√
nPℓ

τt
U ℓ
1

)
cosh

(
nPℓ

τ2t
+

√
nPℓ

τt
U ℓ
1

)
+
∑M

j=2 cosh
(√

nPℓ

τt
U ℓ
j

)
 = xt+1. (5.11)

In the above, (a) is found by splitting the expectation into a sum of equally probable lo-
cations for the nonzero column i and into both possibilities of nonzero value +

√
nPℓ and

−
√
nPℓ, then noting that βℓβt+1 will be zero for all entries except the ith, where it takes the

value shown. (b) is found by then substituting in the expression for ηi in (5.4). (c) is found
by eliminating i; since U is i.i.d., we can fix i = 1, and as the Gaussian density is symmetric
around 0, we can replace U with −U in the second expectation. (d) is found by noting that
sinh(−x) = − sinh(x) and cosh(−x) = cosh(x), and therefore combining the two expecta-
tions into one.

For 1− xt+1, the proof is identical to the unmodulated case given in [1]:

90

1

nP
E[∥β − βt+1∥2] = 1 +

E[∥βt+1∥2]− 2E[ββt+1]

nP
(5.12)

Under the assumption st = β + τtZ , and with βt+1 = E[β | st], we have:

E[∥βt+1∥2] = E[∥E[β | st]∥2] = E[(E[β | st]− β + β) · E[β | st]]
(a)
= E[βE[β | st]] = E[ββt+1],

(5.13)

where (a) follows due to orthogonality. This gives

1

nP
E[∥β − βt+1∥2] = 1− E[ββt+1]

nP
= 1− xt+1. (5.14)

Having established the state evolutionof theAMPdecoderwithbinarymodulatedSPARCs,
we can use these expressions to prove that the decoder achieves the channel capacity in the large
system limit.

5.2.2 Proof of Achieving Capacity with AMPDecoder

Toprove that theAMPdecoder achieves the channel capacitywithbinarymodulated SPARCs,
we will show that for any rateR < C, the expected fraction of sections which are correctly de-
coded, x(τ), tends to 1 in a finite number of iterations. This leads toTheorem5.1, which states
that these expected values track the performance of the AMP decoder with high probability,
so that the section error rate in the large system limit will converge to zero almost surely.

We will require the same exponential power allocation used in the original unmodulated
proof, described in [1], and many of the steps will be similar. The main technical difference
is in the proof of Lemma 5.1, due to the new form of x(τ). Otherwise the statement of both
Lemmas is the same as in [1].

Lemma5.1. For any power allocation {Pℓ}ℓ∈[L] that is non-increasing with ℓ, andwith the state
evolution equations given by (5.8) and (5.9), we have

x̄(τ) := limx(τ) = lim
⌊ξ∗(τ)L⌋∑

ℓ=1

Pℓ

P
, (5.15)

91

where ξ∗(τ) is the supremum of all ξ ∈ (0, 1] that satisfy

limLP⌊ξL⌋ > 2Rτ 2 ln 2. (5.16)

Proof. In Section 5.2.3.

Furthermore, when using the exponential power allocation

Pℓ = P · 2
2C/L − 1

1− 2−2C · 2
−2Cℓ/L, ℓ ∈ [L], (5.17)

we will obtain Lemma 5.2:

Lemma 5.2. For the power allocation (5.17), we have for t = 0, 1, . . .:

x̄t := limxt =
(1 + snr)− (1 + snr)1−ξt−1

snr , (5.18)

τ̄ 2t := lim τ 2t = σ2 + P (1− x̄t) = σ2(1 + snr)1−ξt−1 , (5.19)

where ξ−1 = 0, and for t > 0,

ξt = min
{(

1

2C
log
(
C
R

)
+ ξt−1

)
, 1

}
. (5.20)

Proof. As the asymptotic state evolution equations in Lemma 5.1 are the same as those for
the unmodulated SPARC, the original proof for the unmodulated SPARC [1, Appendix C]
applies unchanged.

From Lemma 5.2 we see that ξt increases monotonically to 1, in steps of size 1
2C log

(C
R

)
.

Therefore after
T ∗ =

⌈
2C

log(C/R)

⌉
, (5.21)

iterations, the decoder converges, with every section expected to decode correctly.
Finally we use the proof from [1, Theorem 1] to show that the AMP decoder tracks this

expected behaviour in the large system limit, such that when the expected section error rate

92

converges to zero, shown by Lemma 5.2, then so too will the actual section error rate of the
AMP decoder. This gives Theorem 5.1, completing the proof.

Theorem 5.1. Fix any rate R < C. Consider a sequence of rate R binary modulated SPARCs
{Sn}, indexed by block lengthn, with designmatrix parametersL andM = La for some a > 0

such thatnR = L log 2M , and using the exponential power allocation given in (5.17). Consider
the AMP decoder defined by (5.4) and (5.5), with τt given by τ̄t from Lemma 5.2. After T ∗

iterations, the decoder yields βT ∗ , which is decoded to an estimated codeword β̂.

Defining the section error rate as

Esec :=
1

L

L∑
ℓ=1

1
{
β̂ℓ ̸= βℓ

}
, (5.22)

then Esec converges to zero almost surely, i.e., for any ϵ > 0,

lim
n0→∞

P (Esec(Sn) < ϵ, ∀n ≥ n0) = 1. (5.23)

Proof. As the asymptotic state evolution equations in Lemma 5.2, for the exponential power
allocation in (5.17), are the same as those for the unmodulated SPARC, the original proof for
the unmodulated SPARC [1, Section V] applies unchanged.

5.2.3 Proof of Lemma 5.1

We consider xt+1 = x(τt), where the function x(τ) is:

x(τ) :=
L∑

ℓ=1

Pℓ

P
E

 sinh
(√

nPℓ

τt

(√
nPℓ

τt
+ U ℓ

1

))
cosh

(√
nPℓ

τt

(√
nPℓ

τt
+ U ℓ

1

))
+
∑M

j=2 cosh
(√

nPℓ

τt
U ℓ
j

)
 . (5.24)

We will show that asymptotically this expression can be written as

x̄(τ) := limx(τ) = lim
⌊ξ∗(τ)L⌋∑

ℓ=1

Pℓ

P
, (5.25)

93

where ξ∗(τ) is the supremum of all ξ ∈ (0, 1] which satisfy

limLP⌊ξL⌋ > 2Rτ 2 ln 2.

This can be viewed as summing over all sections where the power allocated to that section
exceeds some threshold which leads to correct decoding asymptotically. As the power alloca-
tion is non-increasing, once some Pℓ value does not exceed the threshold, no subsequent Pℓ

for some larger ℓ will either.

First, write x(τ) as:

x(τ) =
L∑

ℓ=1

Pℓ

P
Eℓ(τ), (5.26)

where

Eℓ(τ) := E

 sinh
(√

nPℓ

τ

(
U1 +

√
nPℓ

τ

))
cosh

(√
nPℓ

τ

(
U1 +

√
nPℓ

τ

))
+
∑M

j=2 cosh
(√

nPℓ

τ
Uj

)
 . (5.27)

We will show that for ℓ = ⌊ξL⌋ such that limLP⌊ξL⌋ > 2Rτ 2 ln 2, Eℓ(τ) will tend to
1, ensuring that the respective section decodes in the large system limit. We will then upper
bound the absolute value of Eℓ(τ) for limLP⌊ξL⌋ < 2Rτ 2 ln 2 and show that it tends to 0, as
it could otherwise become large and negative. Together this gives a lower bound on decoder
performance.

Case 1

We now show that lim Eℓ = 1 when limLPℓ > 2 ln(2)Rτ 2.

Let νℓ = LPℓ

Rτ2 ln 2 ; then, using n = L log(2M)
R

, we obtain nPℓ

τ2
= νℓ ln(2M), then for brevity

write:

94

∆ =
√
νℓ ln(2M) (5.28)

V = exp (∆ (U1 +∆)) (5.29)

X =
M∑
j=2

(exp (∆Uj) + exp (−∆Uj)) . (5.30)

We can now write (5.27) in a simpler form:

Eℓ(τ) = E
[

V − V −1

V + V −1 +X

]
. (5.31)

We can rewrite the expectation as follows by first conditioning onU1:

Eℓ(τ) = EU1EX

[
V − V −1

V + V −1 +X

∣∣∣∣U1

]
. (5.32)

Noting that V is a function of U1, if V < 1 then Eℓ(τ) will be negative, which occurs if
U1 < −∆. We therefore split the expectation into one integral over the range U1 ≤ −

√
∆,

where V ≤ 1, and a second integral where U1 > −
√
∆, giving some slack in the inequality.

Note that since νℓ is an order 1 quantity,∆ >> 1 for largeM . We have

Eℓ(τ) =
∫

U1≤−
√
∆

p(u1)EX

[
V − V −1

V + V −1 +X

∣∣∣∣U1 = u1

]
du1

+

∫
U1>−

√
∆

p(u1)EX

[
V − V −1

V + V −1 +X

∣∣∣∣U1 = u1

]
du1

= I1 + I2.

We first find a lower bound on I1. Note from the definition of Eℓ in (5.27) that

Eℓ =
sinh(.)

cosh(.) +
∑

cosh(.)
∈ [−1, 1], (5.33)

95

and therefore
min

U1≤−
√
∆
Eℓ = −1, (5.34)

giving

I1 ≥
∫

U1≤−
√
∆

−p(u1)du1 (5.35)

= −Q(
√
∆), (5.36)

whereQ(.) is the tail probability of the standardnormal distribution,Q(x) = 1
2π

∫∞
x
e−x2/2dx.

Applying the Chernoff bound ofQ(x) ≤ e−
x2

2 for x > 0 gives

I1 ≥ e−
∆
2 . (5.37)

For I2, whereU1 > −
√
∆, (V − V −1) is always positive, and so

V − V −1

V + V −1 +X

is a convex function ofX . We may therefore use Jensen’s inequality to write

I2 ≥
∫

U1>−
√
∆

p(u1)
V − V −1

V + V −1 + EX
du1, (5.38)

where

EX =
M∑
j=2

(
Ee∆Uj + Ee−∆Uj

)
. (5.39)

Using theGaussianmoment generating functionEetX = e
t2

2 , and recalling∆ =
√
νℓ ln(2M),

EX = (M − 1)2eνℓ(ln 2M)/2 ≤ (2M)1+νℓ/2, (5.40)

giving

I2 ≥
∫

U1>−
√
∆

p(u1)
V − V −1

V + V −1 + (2M)1+νℓ/2
du1. (5.41)

96

By writing

V − V −1

V + V −1 + (2M)1+νℓ/2
=

sinh(∆(U1 +∆))

cosh(∆(U1 +∆)) + (2M)1+νℓ/2

=
1

coth(∆(U1 +∆)) + csch(∆(U1 +∆))(2M)1+νℓ/2
,

(5.42)

we see that the RHS of (5.42) increases withU1 forU1 > −
√
∆, and therefore

argmin
U1≥−

√
∆

V − V −1

V + V −1 + (2M)1+νℓ/2
= −
√
∆, (5.43)

and therefore we bound the integral of (5.41):

I2 ≥
∫
U1>−

√
∆

p(u1)
sinh(∆(−

√
∆+∆))

cosh(∆(−
√
∆+∆)) + (2M)1+νℓ/2

du1

=
Q(−
√
∆) sinh(∆2 −∆3/2)

cosh(∆2 −∆3/2) + (2M)1+νℓ/2
.

(5.44)

Finally we recombine I1 and I2 to obtain

Eℓ(τ) ≥ e−∆/2 +
Q(−
√
∆) sinh(∆2 −∆3/2)

cosh(∆2 −∆3/2) + (2M)1+νℓ/2
. (5.45)

Taking the limit asM →∞, recalling that∆ =
√
νℓ ln(2M), and noting that

Q(−
√
∆) = 1−Q(

√
∆) ≥ 1− e−∆/2 → 1 as M →∞, (5.46)

97

we obtain

lim Eℓ(τ) ≥ 0 + lim
1 sinh(∆2)

cosh(∆2) + (2M)1+νℓ/2
(5.47)

= lim
eνℓ ln 2M − e−νℓ ln 2M

eνℓ ln 2M + e−νℓ ln 2M + (2M)1+νℓ/2
(5.48)

= lim
(2M)νℓ

(2M)νℓ + (2M)1+νℓ/2
, (5.49)

= 1 for νℓ > 2. (5.50)

We therefore have that Eℓ → 1 when νℓ > 2.

Case 2

Next, we show that Eℓ → 0 when νℓ < 2. Using ∆ =
√
νℓ ln 2M , we note that V =

e∆(U1+∆) = (2M)νℓe∆U1 . We have that

Eℓ(τ) = E
[

V − V −1

V + V −1 +X

]
therefore,

|Eℓ(τ)| ≤ E
[

V + V −1

V + V −1 +X

]
= E

[(
1 +

X

V + V −1

)−1
]

= E

(1 + ∑M
j=2 e

∆Uj + e−∆Uj

(2M)νℓe∆U1 + (2M)−νℓe−∆U1

)−1

≤ E

1 +

max
2≤j≤M

e∆Uj + e−∆Uj

(2M)νℓe∆U1 + (2M)−νℓe−∆U1

−1 (5.51)

LetF be the event where:

1. For a small ϵ > 0, max
2≤j≤M

|Uj| ≥
√
2 lnM(1− ϵ), and

2. −
√
∆ ≤ U1 ≤

√
∆.

98

WhenF holds, we have:

max
2≤j≤M

e∆Uj + e−∆Uj

(2M)νℓe∆U1 + (2M)−νℓe−∆U1
≥ (2M)−νℓe∆

√
2 lnM(1−ϵ)

e∆
√
∆ + (2M)−2νℓe∆

√
∆

(5.52)

≥ 2−νℓM
√
2νℓ(1−ϵ)−νℓ

(1 + (2M)−2νℓ) exp
(
(νℓ ln 2M)

3
4

) (5.53)

For small ϵ and νℓ < 2, there exists some positive constant δ such that

√
2νℓ(1− ϵ)− νℓ > δ, (5.54)

and so continuing from (5.53),

2−νℓM
√
2νℓ(1−ϵ)−νℓ

(1 + (2M)−2νℓ)e(νℓ ln 2M)
3
4

≥ 2−νℓM δ

2e(νℓ ln 2M)
3
4

=
2−νℓeδ lnM

2e(νℓ ln 2M)
3
4

→∞ as M →∞.

(5.55)

By using (5.55) in (5.51), and noting |Eℓ(τ)| < 1, we have:

|Eℓ(τ)| ≤ P(F c) · 1 + P(F) · 2e
(νℓ ln 2M)

3
4

2−νℓM δ
, (5.56)

and using standard bounds for the standard normal distribution,

P (F c) ≤ P
(

max
2≤j≤M

|Uj| <
√
2 lnM(1− ϵ)

)
+ P

(
|U1| > (νℓ ln 2M)

1
4

)
→ 0 as M →∞,

(5.57)

therefore for νℓ < 2, |Eℓ(τ)| → 0 asM →∞. This completes the proof for Lemma 5.1.

An interesting direction for future work is to derive the state evolution equations for gen-
eralK-ary modulated SPARCs, which may lead to a similar proof of achieving capacity in the
K-ary case.

99

5.3 Implementation and Simulation Results

Implementing the binary modulated SPARCs requires only minormodifications compared to
the unmodulated SPARCs. The most significant numerical detail comes in regularising the
exponent terms in η, which otherwise quickly exceed the available numerical range and lead to
overflow.

In the unmodulated case, detailed in Chapter 3, we find S = max
j∈sec(i)

sj
√
nPℓ

τ2t
and factor

out a common eS from each term. The common factors cancel, and the resulting terms in the
exponents are all less than or equal to zero, preventing any overflow. For the new η in (5.4), the
sj termsmay now be negative, so we instead constrain themaximum absolute value, redefining
S = max

j∈sec(i)
| sj

√
nPℓ

τ2t
|. By subtracting S from each exponent before computing the exponential

function, we are likewise able to prevent overflow.
The simulation must also now encode one message bit into the sign for each section, in

addition to logM bits of column choice, and this must also be reflected in the decoder and
error counter. Besides these two modifications, the rest of the AMP routine, including the z
update, the early termination, and the online estimation of τ , all remain unchanged.

Figure 5.1 shows the results of simulations run to compare the binary modulated SPARC
performance to the standard SPARCs considered for comparison with LDPC codes, at rates
R = 0.8, 1.0, 1.5. The reference unmodulated SPARC simulations are the same results shown
in Figures 4.1, 4.2, and 4.4, all withM = 512. The binary modulated SPARCs have the same
L, but haveM = 512 andM = 256 for comparison. All the SPARCs have the same power
allocation.

Weobserve almost indistinguishable results between theunmodulatedSPARCswithM =

512 and the binary modulated SPARCs withM = 256. Since nR = L log(2M) for the bi-
nary modulated SPARCs, whenMmodulated =Munmodulated/2 thennwill be identical between
the two. Achieving the same error performance at the same block length and rate but for a
factor of two reduction inM allows computational complexity benefits, and demonstrates the
feasibility of the modulated SPARC design presented in this chapter.

For the binary modulated SPARCs withM = 512, we see improved performance in the
R ≤ 1.0 experiments, while atR = 1.5 the largerM has a detrimental effect of approximately
the same magnitude. This is likely due to the concentration effects discussed in Chapter 3, but
more refined non-asymptotic analysis would be required to estimate the scaling with M for
modulated SPARCs. In practice, numerical optimisation would be required to find the best

100

1 2 3 4 5 6
Eb/N0 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E
R

Shannon Limit
Unmodulated SPARC, M=512
Binary modulated SPARC, M=256
Binary modulated SPARC, M=512

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Eb/N0 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E
R

Shannon Limit
Unmodulated SPARC, M=512
Binary modulated SPARC, M=256
Binary modulated SPARC, M=512

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Eb/N0 (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E
R

Shannon Limit
Unmodulated SPARC, M=512
Binary modulated SPARC, M=256
Binary modulated SPARC, M=512

Figure 5.1: Bit error rates for binary modulated and unmodulated SPARCs.
Top: R = 0.8,L = 768,RPA = 0, centre: R = 1.0,L = 1024,RPA = 0,
bottom: R = 1.5,L = 1024,RPA = 1.53.

101

value ofM in a particular channel, as with the unmodulated SPARCs.

An interesting direction for future work is to investigate the performance of the general
K-ary modulated SPARCs, and the tradeoff between performance and decoder complexity
with increasingK .

5.4 Derivation of AMP forModulated SPARCs

In this section we derive the update rules for zta and βt+1
i required for an AMP decoder using

modulated SPARCs. We consider the general case of aK-ary modulated SPARC, where for
each section ℓ ∈ [L] of β, there areM entries, one of which is non-zero and takes one of a set
ofK possible values {±ar}r∈[K/2], withK even.

The values for ar were found in (5.3) to be:

ar =

√
3nPℓ

K2 − 1
(2r − 1), 1 ≤ r ≤ K

2
.

This choice of ar gives an average power of nPℓ. When K = 2 we recover the simpler
binary modulation case, where the non-zero values are either +

√
nPℓ or−

√
nPℓ. Therefore

this derivation will be used for both the simpler binary case which has been analysed in more
detail, and for the general PAM case.

First we will obtain a new form for ηti which is used to determine βt+1
i , and then we will

use this new ηti to derive the AMP and thus an update rule for zta.

5.4.1 Derivation of ηti

As with the unmodulated AMP in [1], we start by using the property that the test statistic
st := βt + A∗zt is asymptotically (as n → ∞) distributed as β + τtZ , where Z is an i.i.d.
N (0, 1) random vector independent of β.

Given this property, we would like to find βt+1(st) as a Bayes optimal estimate of β given
s = st, a noisy observation of β:

102

βt+1
i = ηti(s) = E [βi | β + τtZ = s]

= E
[
βi | {βj + τtZj = sj}j∈sec(i)

]
=

K/2∑
r=1

arP(βi = ar | {sj}j∈sec(i))− arP(βi = −ar | {sj}j∈sec(i)) (5.58)

Use Bayes’ rule to expand P(βi = a | {sj}j∈sec(i)), we have

P(βi = a | {sj}j∈sec(i)) =
P({sj}j∈sec(i) | βi = a)P(βi = a)

P({sj}j∈sec(i))
, (5.59)

where

P({sj}j∈sec(i) | βi = a) ∝ e
−(si−a)2

2τ2t

∏
j∈sec(i)\i

e
−s2j

2τ2t

= e
2sia−a2

2τ2t

∏
j∈sec(i)

e
−s2j

2τ2t , (5.60)

P(βi = a) =
1

KM
, (5.61)

P({sj}j∈sec(i)) =
∑

k∈sec(i)

K/2∑
r=1

[
P({sj}j∈sec(i) | βk = ar)P(βk = ar)

+P({sj}j∈sec(i) | βk = −ar)P(βk = −ar)
]

=
1

KM

∑
k∈sec(i)

K/2∑
r=1

(
e

2skar−a2r
2τ2t + e

−2skar−a2r
2τ2t

) ∏
j∈sec(i)

e
−s2j

2τ2t

(5.62)

Substituting these expressions into (5.58) and cancelling the common terms yields:

103

ηti(s) =

∑K/2
r=1 are

−a2r
2τ2t

[
e

siar

τ2t − e
−siar

τ2t

]
∑

k∈sec(i)
∑K/2

r=1 e
−a2r
2τ2t

[
e

skar

τ2t + e
−skar

τ2t

]

=

∑K/2
r=1 are

−a2r
2τ2t sinh

(
siar
τ2t

)
∑

k∈sec(i)
∑K/2

r=1 e
−a2r
2τ2t cosh

(
skar
τ2t

) (5.63)

For the special case whereK = 2, there is only a single term in each summation and the
exponential terms cancel:

ηti(s) =

√
nPℓ sinh

(
si
√
nPℓ

τ2t

)
∑

k∈sec(i)
cosh

(
sk

√
nPℓ

τ2t

) (5.64)

Having found these expressions for ηti we now proceed to use them to derive the full AMP
update rules for the modulated SPARCs.

5.4.2 Derivation of update rules

We start from the same message-passing algorithm as in the unmodulated case [1, (22) and
(23)]:

zta→i = ya −
∑

j∈[ML]\i

Aajβ
t
j→a (5.65)

βt+1
i→a = ηti(si→a), (5.66)

where ηti(.) is the new estimator defined in (5.63), and the test statistic sti→a is the same as
in [1], namely that for i ∈ secℓ, sti→a ∈ RM is defined as

104

(sti→a)i =
∑

b∈[n]\a

Abiz
t
b→i (5.67)

(sti→a)j =
∑
b∈[n]

Abjz
t
b→j, j ∈ secℓ \i. (5.68)

We set zta→i = zta + δzta→i and β
t+1
i→a = βt+1

i + δβt+1
i→a and see that

zta = ya −
∑

j∈[ML]

Aajβ
t
j→a (5.69)

δzta→i = Aaiβ
t
i→a. (5.70)

Todetermine δβt
i→a weexpandηti in afirst orderTaylor series around the argument

{∑
b∈[n]Abjz

t
b→j

}
j∈sec(i)

.

We obtain

βt+1
i→a ≈ηti

∑

b∈[n]

Abjz
t
b→j

j∈sec(i)

− Aaiz

t
a→i∂η

t
i

∑

b∈[n]

Abjz
t
b→j

j∈sec(i)

 ,

(5.71)

where ∂iηti is the partial derivative of ηti from (5.63) with respect to the ith component of the
argument:

105

∂iηi =
∂

∂si
ηi({sj}j∈sec(i)) = ηi∂i ln ηi (5.72)

= ηi

∂i ln
K/2∑

r=1

are
−a2r
2τ2t sinh

(
siar
τ 2t

)
−∂i ln

 ∑
j∈sec(i)

K/2∑
r=1

e
−a2r
2τ2t cosh

(
sjar
τ 2t

) (5.73)

= ηi

∑K/2

r=1 are
−a2r
2τ2t

ar
τ2t

cosh
(

siar
τ2t

)
∑K/2

q=1 aqe
−a2q

2τ2t sinh
(

siaq
τ2t

)

−

∑K/2
r=1 e

−a2r
2τ2t

ar
τ2t

sinh
(

siar
τ2t

)
∑

j∈sec(i)
∑K/2

q=1 aqe
−a2q

2τ2t cosh
(

siaq
τ2t

)
 (5.74)

=
ηi
τ 2t

∑K/2

r=1 a
2
re

−a2r
2τ2t cosh

(
siar
τ2t

)
∑K/2

q=1 aqe
−a2q

2τ2t sinh
(

siaq
τ2t

) − ηi
 (5.75)

Using (5.75) in (5.71), and for brevity letting

s = {sj}j∈sec(i) =

∑
b∈[n]

Abjz
t
b→j

j∈sec(i)

, (5.76)

we obtain:

βt+1
i→a = ηti(s)−

Aaiz
t
a

τ 2t
ηti(s)

∑K/2

r=1 a
2
re

−a2r
2τ2t cosh

(
siar
τ2t

)
∑K/2

q=1 aqe
−a2q

2τ2t sinh
(

siaq
τ2t

) − ηi(s)
 . (5.77)

106

We can write (5.77) as βt+1
i + δβt+1

i→a, giving the update rule for βt:

βt+1
i = ηti(s), (5.78)

and letting δβt+1
i→a be the second term. Furthermore, from (5.69) and (5.70), we can split the

ztb→j in vi into

ztb→j = ztb + δztb→j

= ztb + Abjβ
t
j→b

= ztb + Abjβ
t
j + Abjδβ

t
j→b. (5.79)

and asAbjδβ
t
j→b = O(logn/n), we neglect that term andwrite δztb→j = Abjβ

t
j , giving a new

s:

s =

∑
b∈[n]

Abjz
t
b + A2

bjβ
t
j

j∈sec(i)

=
{(
A∗zt + βt

)
j

}
j∈sec(i)

, (5.80)

where we have used
∑

b∈[n]A
2
bj → 1 as n → ∞. Combining (5.77) and (5.80) with (5.69)

we obtain:

zta = ya−
∑

k∈[ML]

Aakη
t−1
k (s)− A

2
akz

t−1
a

τ 2t
ηt−1
k (s)

∑K/2

r=1 a
2
re

−a2r
2τ2t cosh

(
skar
τ2t

)
∑K/2

q=1 aqe
−a2q

2τ2t sinh
(

skaq
τ2t

) − ηk(s)
 .

(5.81)

By expanding ηt−1
k (sk) we can cancel its numerator:

107

ηt−1
k (s)

∑K/2
r=1 a

2
re

−a2r
2τ2t cosh

(
skar
τ2t

)
∑K/2

q=1 aqe
−a2q

2τ2t sinh
(

skaq
τ2t

)

=

∑K/2
r=1 are

−a2r
2τ2t sinh

(
skar
τ2t

)
∑

j∈sec(k)
∑K/2

q=1 e
−a2q

2τ2t cosh
(

sjaq
τ2t

) ·
∑K/2

r=1 a
2
re

−a2r
2τ2t cosh

(
skar
τ2t

)
∑K/2

q=1 aqe
−a2q

2τ2t sinh
(

skaq
τ2t

)

=

∑K/2
r=1 a

2
re

−a2r
2τ2t cosh

(
skar
τ2t

)
∑

j∈sec(k)
∑K/2

q=1 e
−a2q

2τ2t cosh
(

sjaq
τ2t

) .

(5.82)

Using (5.82) in (5.81):

zta = ya−
∑

k∈[ML]

Aakη
t−1
k (sk)−

A2
akz

t−1
a

τ 2t

∑K/2

r=1 a
2
re

−a2r
2τ2t cosh

(
skar
τ2t

)
∑

j∈sec(k)
∑K/2

q=1 e
−a2q

2τ2t cosh
(

sjaq
τ2t

) − ηk(s)2
 .

(5.83)

Finally, by noting that

A2
ak ≈

1

n
, and (5.84)∑

k∈[ML]

ηtk(s)
2 =

∑
(βt

k)
2 = ∥βt∥2, (5.85)

and splitting the sum of k ∈ [ML] intoL sums of k ∈ [M], we obtain:

zta = ya−(Aβt)a+
zt−1
a

τ 2t−1n

∑
ℓ∈[L]

∑K/2
r=1 a

2
re

−a2r
2τ2t

∑
k∈secℓ cosh

(
skar
τ2t

)
∑K/2

q=1 e
−a2q

2τ2t

∑
j∈secℓ cosh

(
sjaq
τ2t

) − ∥βt∥2

 . (5.86)

For the special case of K = 2, where a1 =
√
nPℓ, the sums over r and q collapse to a

108

single term, permitting cancellation:

zta = ya − (Aβt)a +
zt−1
a

τ 2t−1n

∑
ℓ∈[L]

nPℓ

∑
k∈secℓ cosh

(
sk

√
nPℓ

τ2t

)
∑

j∈secℓ cosh
(

sj
√
nPℓ

τ2t

) − ∥βt∥2

= ya − (Aβt)a +
zt−1
a

τ 2t−1

(
P − ∥β

t∥2

n

)
(5.87)

This is the zt update rule for theK = 2modulated case, and is also the same as the update
rule for the unmodulated case. For larger values ofK , computing zt update requires additional
calculations each iteration, but note that the cosh terms are already computed for finding η, so
may be re-used in this calculation as well.

109

110

Chapter 6

SPARCs forMultiuserChannel and Source

CodingModels

The previous chapters have considered SPARCs with AMP decoding for the point-to-point
channel, where a single transmitter communicates to a single receiver. The same ideas can be
extended to a range of more complicated channels, permitting practical implementations of
capacity-achieving codes. Using SPARCs for multi-user models was first considered in [50],
where it is shown that SPARCs under minimum distance decoding can achieve the capac-
ity region for various multi-user AWGN models. We focus on practical implementations for
SPARCs, using the various techniques discussed earlier in this thesis.

In this chapter, two such multi-user channels are studied first and in the most detail: the
broadcast channel (BC) in Section 6.1, where a single transmitter communicates to multiple
receivers; and the multiple access channel (MAC) in Section 6.2, where many transmitters
communicate to a single receiver. In both cases extensions to the point-to-point encoding and
decoding schemes permit operation on thesemultiuser channels. We consider implementation
challenges and evaluate empirical performance.

SPARCs have also been considered for use as rate-distortion codes for source coding [32].
In this role the same code structure is used with different encoding algorithms to compress
a source at some information rate, with a goal of achieving a certain distortion as a function
of that rate. In addition to encoding a source into a single message, SPARCs can be used in
a multiple description (MD) [51] role, whereby multiple messages are created from the same
source. A receiver with any one message can reconstruct the source, but with more messages, a

111

higher quality reconstruction is possible. This has roles in situations where somemessages may
not reach the receiver, for example packet networks where packets may be lost. In Section 6.3
we implement such an encoder and evaluate its performance.

Source encoders using SPARCs can also be used in combinationwith the channel decoders
discussed previously to design systems for channels such as dirty paper coding (DPC) [52,
53] and for source coding problems such as Wyner-Ziv distributed source coding (WZ) [54].
In DPC a transmitter with some knowledge of the channel state can adapt its encoding to
best take advantage of this knowledge, improving the effective snr at the receiver. In WZ,
we consider a source present at the encoder which is also present corrupted by noise at the
receiver. The encoder must communicate some information to the receiver to help it obtain a
lower-noise reconstruction of the source. In Section 6.4, we implement a Wyner-Ziv encoder
and decoder using a combination of the source encoder and the channel decoder, and evaluate
its performance.

A common challenge for all of the multiuser models discussed in this chapter is the choice
of a suitable power allocation, as each channel has unique constraints on, and tensions between,
the various possible choices. Typically a power allocation that is suitable for one user will be
poor for the other, so finding a suitable optimum between these two can be challenging. This
point is considered in detail for each channel.

6.1 Gaussian Broadcast Channel

The K-user Gaussian broadcast channel [26] has a single input sequence X = {xj}j∈[n]
and K output sequences, one for each user. The output sequence of user i is denoted by
Yi = {yij}j∈[n], where each output is an observation of the input corrupted by independent
Gaussian white noise Zi = {zij}j∈[n], zij ∼ N (0, σ2

i). This setup is illustrated in Figure 6.1
for two users. One practical example of this channel is a shared radio medium with a single
transmitter communicating to multiple receivers. In the general case, the transmitter wishes
to communicate distinct messages to each receiver — the medium is common, but the mes-
sages to be communicated are not.

Wewill consider the two-output scenario for simplicity, although the techniques presented
here could be extended to an arbitrary number of receivers. Without loss of generality, we
assume σ2

1 ≤ σ2
2 , i.e., the noise affecting the first user has a lower variance than the noise

affecting the second user.

112

X

+

Z1 ∼ N (0, σ2
1)

Y1 = X + Z1

+

Z2 ∼ N (0, σ2
2)

Y2 = X + Z2

Figure 6.1: The Gaussian broadcast channel, shown with two receivers.

The channel outputs for an inputX are:

Y1 = X + Z1, (6.1)

Y2 = X + Z2. (6.2)

The corresponding capacity region [26] is the union of all rate pairs (R1, R2) over α ∈
[0, 1] which satisfy

R1 ≤
1

2
log
(
1 +

αP

σ2
1

)
, (6.3)

R2 ≤
1

2
log
(
1 +

(1− α)P
αP + σ2

2

)
. (6.4)

The transmitter sendsX with average power constraint
∑n

j=0 x
2
j ≤ P , allocating αP of

that power to the first receiver and (1 − α)P to the second receiver, with 0 ≤ α ≤ 1 and
P1 = αP , P2 = (1 − α)P . The choice of α is arbitrary and permits a trade-off between the
rates for each user,R1 andR2.

One scheme to communicate over this channel is time sharing, where theusers are allocated
time periods proportional to their share of the overall rate, and each communicates exclusively
inside their time period. However, this scheme does not achieve the entire capacity region.
Instead, it is possible to communicate to both receivers simultaneously while achieving the
capacity region by using an appropriate code.

113

A = A2 A1

LM columns

L2M columns L1M columns

Figure 6.2: Division of the SPARC design matrix A for two users in the Gaussian broad-
cast channel. The second user is allocated the first L2M columns (or L2 sections, each ofM
columns), and the first user is allocated the remainingL1M columns.

One theoretical coding schemewhichwill help elucidate the capacity boundsuses Shannon
random codebooks, and is presented in [26]. At the transmitter, random codebooks are used
to select codewordsX1 andX2 for each receiver, andX = X1 +X2 is transmitted.

At receiver 2, the desired messageX2 is corrupted by the noise Z2, but also suffers inter-
ference due to the other messageX1. The total adversarial power is thus σ2

2 +αP , which gives
an effective snr of (1−αP)

σ2
2+αP

, leading to the constraint onR2 seen in the capacity region. The re-
ceiver simply attempts to decodeX2 in the presence of this noise, as though it were operating
on a point-to-point link with the same effective snr.

At receiver 1, since σ2
1 ≤ σ2

2 , the rateR2 ofX2 will always be below this receiver’s effective
capacity, and so it is always possible to initially decode the second receiver’s codeword. The
receiver then subtracts it from Y1 to leave just X1 + Z1, the desired codeword observed in
noise of power σ2

1 , giving the capacity bound forR1.

6.1.1 SPARCs for the Gaussian Broadcast Channel

We implement a coding scheme for the Gaussian broadcast channel using Sparse Regression
Codes (SPARCs), as described in [50].

We view the combined message to be transmitted,X , as a single SPARC codeword, with
the first L2 sections allocated to the second receiver, and the remaining L1 sections allocated
to the first receiver, such that L1 + L2 = L. In effect this means each receiver has a separate
SPARC design matrixA1 andA2, withA = [A2A1]. This division is illustrated in Figure 6.2.

Instead of a single power allocation over all L sections, we use two separate power alloca-

114

tions, {P1,ℓ} and {P2,ℓ}, for ℓ ∈ [L]. Each receiver’s power allocation is determined using that
receiver’s Li, σ2

i , Ri, and Pi, for i ∈ {1, 2}, in the same way as for a point-to-point SPARC,
for example using the iterative allocation described in Chapter 3.

With this division of sections, we obtain the following rate equalities for each user:

nR1 = L1 logM, (6.5)

nR2 = L2 logM. (6.6)

Encoding

To encode, we take the messagemi for receiver i, consisting ofLi integers each between 1 and
M , and encode it to aLi-long βi by setting the entries indexed bymi in each section ℓ of β to√
nPi,ℓ. We then form the SPARC codewords for each receiver asXi = Aiβi and finally add

them to obtain the combined codeword,X = X1 +X2.
In effect, the message for each user is encoded using their split of the design matrix A in

exactly the same way as for the point-to-point setup.
X is transmitted and each receiver observes Yi = X + Zi.

Decoding

Receiver 2, with the higher noise variance, decodes by running a normal SPARC AMP decod-
ing routine, using A2 (the first L2 columns in A) as the design matrix, attempting to recover
X2 and thusm2. This is identical to the standard point-to-point setup.

Receiver 1 wishes to decode X2 first, and then subsequently obtain its own messageX1.
A simple approach would be to run two successive AMP decoders, first to extractX2 exactly
as per receiver 2, and then subtracting X2 from Y and running a new AMP to decode X1.
However, this requires two separate AMP decoders, and may not perform as well as a single
decoder pass, since only hard information onX2 is exchanged between the two decoders.

Instead, we concatenate the two power allocations, forming an overall {Pℓ} for ℓ ∈ [L],
where

Pℓ =

P2,ℓ ℓ ≤ L2

P1,ℓ ℓ > L2,
(6.7)

115

and run the AMP decoder on the full design matrix A, with the combined power allocation
{Pℓ}. The recovered β̂ contains bothmessages, so after decoding completes we discard the first
L2 sections andkeeponly the latterL1 sections, representingm1. Thismethod avoids having to
actually findX2 and subtract it from Y ; instead the AMP decoder will find the entire message
X .

6.1.2 Implementation and Results

The physical channel is specified in advance by P , σ2
1 , and σ2

2 . The SPARC design matrix is
specified by a fixedM and n, and the power allocations for each user are designed in the same
way as for a point-to-point channel. The operating point is set as follows: fixα ∈ [0, 1], which
specifies the balance of power allocation between the two receivers. Then find C1 = 1

2
log(1+

αP
σ2
1
) and C2 = 1

2
log(1+ 1−α

αP+σ2
2
). Fix γ ∈ [0, 1] and setR1 = γC1 andR2 = γC2. γ therefore

determines the back-off fromtheboundary point (C1, C2)of the capacity region. Finally set the
remaining SPARC design matrix parametersL1 = nR1/ log(M) andL2 = nR2/ log(M).

The encoding and decoding operations are then performed as described above. Section
error rate is measured separately for each receiver, recording the number of sections in error
for just their own message after decoding finishes. We can then also investigate the worst-case
section error rate for either receiver at any operating point. Figure 6.3 shows the performance
for a setup with P = 63, σ2

1 = 1, and σ2
2 = 2. The resulting capacity region is shown on the

charts. The fixed SPARC parameters wereM = 512 and n = 4095, with L1 and L2 varying
depending on the choice of α. The first and second charts show the bit error rate performance
achieved when only considering the first and second receiver, while the third chart shows the
worst case of those two. Additionally, a contour is plotted showing the boundaries of regions
where the bit error rate is found to be below 1× 10−3.

When considering each receiver independently, we observe that bit error rates are reason-
ably good when that receiver’s rate is above 0.5, which is in accordance with the results from
point-to-point channels. However, because each receiver suffers badly once its rate goes below
0.5, the worst-case error is only better than 1× 10−3 in a small number of cases, relatively far
from the capacity boundary and only near equal power balance where α = 0.5.

Poor performance at low rates has been observed in the simpler point-to-point case, but
in this multiuser setup there is an additional factor contributing to the performance. For the
experimental setup as described, M is fixed to the same value for both users. As we saw in

116

0.0 0.5 1.0 1.5 2.0 2.5 3.0
R1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
2

Receiver 1 BER
Capacity Region
BER<1E-3 Threshold

6.4

5.6

4.8

4.0

3.2

2.4

1.6

0.8

0.0

-lo
g1

0(
BE

R)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
R1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
2

Receiver 2 BER
Capacity Region
BER<1E-3 Threshold

6.4

5.6

4.8

4.0

3.2

2.4

1.6

0.8

0.0

-lo
g1

0(
BE

R)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
R1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
2

Worst Case BER
Capacity Region
BER<1E-3 Threshold

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

-lo
g1

0(
BE

R)

Figure 6.3: Bit error rates for broadcast channel simulations, with contour indicating the
boundary of the regions where the error rate is below 1× 10−3. Each displayed point is the
average of approximately 3000 trials. P = 63, σ2

1 = 1.0, σ2
2 = 2.0,M = 512, n = 4095.

117

Chapter 3, for a particular channel set-up, there is an optimalM , above and below which per-
formance can rapidly decrease. Therefore, when the rates for the two receivers in the BC setup
differ substantially, so too will the optimalM . The gap between each receiver’s optimumM

and the fixed value will lead to performance degradation, as observed. It is conceptually pos-
sible to run the AMP decoder with differing values forM in different sections, which would
allow each receiver to operate on an optimalM , but this has not been explored.

6.2 GaussianMultiple Access Channel

The K-user Gaussian multiple access channel [26] has K transmitters and a single receiver.
The input sequence of user i is denotedXi = {xij}j∈[n], while the output sequence is denoted
Y = {yj}i∈[n], which is an observation of the sum of all the inputs, corrupted by independent
Gaussian white noise Z = {zj}j∈[n], zj ∼ N (0, σ2). This setup is illustrated in Figure 6.4.
A practical example of this channel is a shared radio medium with multiple transmitters com-
municating simultaneously to a single receiver. The receiver must determine the message from
each transmitter.

X1

X2

+ +

Z ∼ N (0, σ2)

Y = X1 +X2 + Z

Figure 6.4: The Gaussian multiple access channel, shown with two transmitters.

We will consider the two-input scenario for simplicity, although the techniques presented
here could be extended to an arbitrary number of transmitters.

The channel output for inputsX1 andX2 is

Y = X1 +X2 + Z (6.8)

where
Z ∼ N (0, σ2). (6.9)

The two transmitters each send a codeword and the receiver observes the sum in noise.

118

Each transmitter i ∈ 1, 2has an average power constraint
∑n

j=0 xi,j ≤ Pi. The corresponding
capacity region is the set of rate pairs (R1, R2) which satisfy [26]

R1 ≤
1

2
log
(
1 +

P1

σ2

)
, (6.10)

R2 ≤
1

2
log
(
1 +

P2

σ2

)
, (6.11)

R = R1 +R2 ≤
1

2
log
(
1 +

P1 + P2

σ2

)
. (6.12)

This capacity region can be seen as the combination of the two independent point-to-point
capacity constraints with an additional constraint on the sum rate which is controlled by the
sum power. This third constraint will tend to be the one which affects practical multi-user
operating points, where no rates are close to zero.

As with the broadcast channel, one scheme to communicate over this channel is time shar-
ing, where the users are each allocated time periods proportional to their share of the overall
rate, and each user transmits exclusively within their time period. However, this scheme can-
not achieve the full capacity region given above, as it is limited by each transmitter’s point-to-
point constraint. For example, if both transmitters had the same power P1 = P2 = 15, and
shared time equally, they could each transmitR1 = R2 = 0.5 × 1

2
log(1 + 15) = 1 bit, but

R1 = R2 = 1.238 would still be inside the capacity region and represents a higher possible
throughput.

It is possible to achieve the full capacity region by using an appropriate code. Similarly to
the broadcast channel, Shannon random codebooks present one method for achieving capac-
ity, as described in [26]. Each user generates their own independent random codebook and
transmits one codeword, and the receiver performs joint decoding. In effect, the receiver has
a codebook containing all possible combinations of messages from the transmitters. This is
viewed as a codebookwith the sum rateR = R1+R2, and since the total power from the two
users is P = P1 +P2, we require thatR < 1

2
log(1 + P

σ2) for successful decoding — which is
precisely the sum constraint given above. However, this scheme is computational infeasible.

6.2.1 SPARCs for the GaussianMultiple Access Channel

We implement a coding scheme for the Gaussian multiple access channel using SPARCs, as
described in [50].

119

Each user has an independent SPARC design matrix and encodes one codeword from it
in the usual way for point-to-point operation. Each user then transmits their codeword si-
multaneously. Since SPARC codewords are weighted sums of many columns from the design
matrix, we can view the sum of two SPARC codewords as a single codeword from a wide ma-
trix formed by combining the individual designmatrices, and therefore decode it with the same
AMP decoder developed for the point-to-point channel.

Given a rateRi for transmitter i, i ∈ {1, 2}, and SPARC design parametersM and n, we
can find the number of SPARC sections Li required for each transmitter as Li =

nRi

logM . Each
transmitter’s designmatrixAi is of sizeLiM×n, together forming a largerA = [A1A2], with
L = L1 + L2 sections in total. This is the same setup as for the broadcast channel, illustrated
in Figure 6.2, with the order of the two users swapped.

Denote by {Pℓ}ℓ∈[L] the overall power allocation, designed with L = L1 + L2 andR =

R1 +R2. The allocation is designed using the same techniques described in Chapter 3, so will
also be non-increasing, with a flat section of equal power at the end.

The power allocation over this design matrix is critical for good performance. As there is
a single combined decoder, we wish to use a single power allocation, which can be designed
in advance using the same iterative techniques as for point-to-point channels. However, it
must also be partitioned between the two transmitters, whichmust each know their respective
power allocations in advance.

Thispartitioning is challenging: transmitter imustbe allocatedpreciselyLi sections, which
must sum to no more than total power Pi. Additionally, we would like for errors to be fairly
distributed between transmitters, so that each transmitter experiences approximately the same
error rate. We know from Chapter 3 that the majority of errors occur in sections towards the
end of the power allocation, where section power is lower and many sections share the same
power (the flat region). Therefore wewould like each user to have the same proportion of their
allocation be flat. To summarise, the requirements for the power allocation are:

1. Of the L = L1 + L2 sections, we must allocate any L1 sections to user 1, and the
remainingL2 to user 2.

2. The sections allocated to user 1 must sum to no more than P1, and those for user 2 to
no more than P2.

3. Once the previous conditions are met, choose the solution which divides any equal
power sections equally between the two users.

120

Our strategy for partitioning the power allocation is given in Algorithm 6.1. In brief, we
locate a bracket of size eitherL1 orL2 sections inside {Pℓ}ℓ∈[L] such that its sum is as close as
possible to, without exceeding, P1 or P2 respectively, and allocate the coefficients within the
bracket to transmitter 1 or transmitter 2 as appropriate, and the remaining sections on either
side of the bracket are allocated to the other transmitter. The choice of bracket size (and thus
of which transmitter is allocated the bracketed coefficients) is determined by which option
gives the closest to optimal division of the coefficients from the flat section. This strategy is
illustrated graphically in Figure 6.5.

121

Algorithm 6.1MAC Power Allocation Partitioning Routine

Require: A power allocation Pℓ for 1 ≤ ℓ ≤ L such that
∑L

ℓ=1 = P
Require: A target power PTi

> 0 for each user i ∈ 1, 2
Require: A required section countLi for each user i where 0 < Li < L

Find ℓf , the first ℓ where Pℓ = Pℓ+1, or set ℓf = L if no such ℓ exists
for each user i ∈ 1, 2 do

Make a bracketB = [ℓa, ℓb] such that ℓf ∈ B and ℓb − ℓa = LTi

Denote PB =
∑

ℓ∈B Pℓ the power in the bracket
While the gap from PTi exceeds than the change from by shifting the bracket by one:
while |PB − PTi| > Pℓa do
if PB > PTi then

Power inside bracket is too large, so move bracket right:
B ← [ℓa + 1, ℓb + 1]

else
Power inside bracket is too small, so move bracket left:
B ← [ℓa − 1, ℓb − 1]

end if
if ℓa < 1 or ℓb > L then

The bracket is at the edge of the power allocation, so it is now impossible to include
any more or less power while maintaining a contiguous bracket
Abort search for this user, no bracket can be found

end if
end while
End search for this user successfully.

end for
if only one bracket was found then

Assign the user whose bracket we found the power allocation inside that bracket
Assign the other user all remaining sections of the power allocation

else if a bracket was found for both users then
Select the bracket where the proportion of flat sections is closest to that of the original
power allocation
Assign that bracket to its corresponding user, and all remaining sections to the other user

else
No bracket could be found, cannot proceed for this set of parameters

end if

122

Le Lf

Lf/Le = f= 0. 4

(a) The overall power allocation to partition.
The ratio of exponential to flat sections is denoted f , here with f = 0.4.

L1

∑
P` <P1

L1

f= 0. 22

∑
P` =P1

(b) We first consider a bracket of sizeL1, shown in blue. Our first attempt (on the left)
contains too little power, so we move it leftwards until the contained power reaches P1,

shown on the right. At this position, f = 0.22.

L2

∑
P` >P2

L2

f= 0. 73

∑
P` =P2

(c) Next we consider a bracket of sizeL2, shown in green. The first attempt contains too
much power, so we move it rightwards until the contained power is P2. In this position

f = 0.73. Since theL1 bracket has an f closer to that of the original allocation, we use that
bracket for partitioning.

Figure 6.5: Example of the power allocation partitioning strategy. Sections highlighted in blue
are considered for user 1, and those in green for user 2.

It is possible that no suitable partition can be found, for example where the smallestL1 co-
efficients from the design {Pℓ}ℓ∈[L] will sum to a power greater thanP1. In general this occurs
only for cases very near the edge of the capacity region, for example where one transmitter has
non-zero power but zero or close-to-zero rate. It would be possible to accommodate these sce-
narios by allowingM to vary for each transmitter; then the number of sectionsLi required can

123

be varied to accommodate the power requirement (since Li depends onM). In the extreme
case,Mi = 0would allow any number of sections to be allocated without consuming any rate.
However, allowing M to vary per transmitter adds implementation complexity and has not
been explored.

After partitioning the power allocation, encoding and decoding proceeds as follows:

1. Each transmitter has been assigned a set of power allocation coefficients, which are
sorted in descending order, giving Pℓ,1 and Pℓ,2.

2. Each transmitter encodes their individual message using their power allocation and the
respectiveAi, in the same way as a point-to-point SPARC, obtaining xi.

3. The channel observation is y = x1 + x2 + z, where z ∼ N (0, σ2).

4. Thedecoderuses the combinedA = [A1A2] and a combinedpower allocation [Pℓ,1Pℓ,2]

and performs regular AMP decoding of y, giving β̂.

5. After decoding, the firstL1 sections of β̂ contain the message from the first transmitter,
and the remainingL2 sections contain the message from the second transmitter.

6.2.2 Implementation and Results

The physical channel is specified in advance by P1, P2, and σ2. The SPARC design matrix is
specified by a fixed M and n, with L1 and L2 found as follows. We find the sum-rate limit
Csum = 1

2
log(1 + P1+P2

σ2). We fix γ ∈ [0, 1] and then set R1 + R2 = R = γCsum. We
therefore have γ representing the backoff from the sum rate limit. Next, fix α ∈ [0, 1] which
sets the share of this sum rate for each transmitter,R1 = αR andR2 = (1−α)R. Finally we
findL1 = nR1/ log(M) andL2 = nR2/ log(M), andL = L1 + L2.

A power allocation is then designed usingR andL, and partitioned according to the strat-
egy described in Algorithm 6.1. Encoding and decoding is then performed as described above.
After decoding, the number of sections decoded in error is counted separately for the first L1

and then the last L2 sections, and used to report section error rates for each transmitter. We
also report the worst case section error rate between the two users. Since a design goal of the
power allocation partition is that users experience similar error rates, the worst case perfor-
mance should be similar to either user.

124

Figure 6.6 shows the resulting section error rates for one channel with P1 = 15, P2 =

15, σ2 = 1. The capacity region for this channel is also shown.
As the experimental set-up is equivalent to a single point-to-point channel with the same

sum power and sum rate and power allocation, we expect to obtain similar bit error perfor-
mance to that scenario. The results support this, with good bit error rates even reasonably close
to capacity at all points in the rate region. The worst case BER is also close to each individual
user’s BER, showing that the power allocation partition is generally successful at ensuring equal
error rates between users.

No results are found for rate pairs where either rate is close to 0 due to the difficulties in
finding a valid power allocation partition described above.

125

0.0 0.5 1.0 1.5 2.0
R1

0.0

0.5

1.0

1.5

2.0

R
2

Transmitter 1 BER
Capacity Region

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

-lo
g1

0(
BE

R)
0.0 0.5 1.0 1.5 2.0

R1

0.0

0.5

1.0

1.5

2.0

R
2

Transmitter 2 BER
Capacity Region

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

-lo
g1

0(
BE

R)

0.0 0.5 1.0 1.5 2.0
R1

0.0

0.5

1.0

1.5

2.0

R
2

Worst Case BER
Capacity Region

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

-lo
g1

0(
BE

R)

Figure 6.6: Bit error rates for multiple access channel simulations.
Each displayed point is the average of approximately 30000 trials.
P1 = 15, P2 = 15, σ2 = 1,M = 512, n = 4095.

126

6.3 Multiple Description Source Coding

Source coding, introduced in Section 1.2, is the process of encoding a source vector to a code-
word at a predetermined rate. In the simple point-to-point case there is a single encoderwhich,
given a source sequence, selects a codeword. Thedecoder receives the codeword index and sim-
ply produces the codeword as its estimate the source sequence. In contrast to channel coding,
the encoder is more complex than the decoder, since it must select the best codeword for a
given source sequence from all possible codewords, while the decoder only reconstructs the
source estimate using the provided codeword index. In fact, there is a formal duality relation-
ship between point-to-point source coding and channel coding, where the source encoder is
the dual of the channel decoder [55]. In addition to the point-to-point case, there are several
multi-terminal scenarios which involve source coding. Wewill consider using SPARCs to con-
struct efficient algorithms for twoof these: multiple description source coding, andWyner-Ziv
distributed source coding.

Themultiple description problem is a network information theorymodelwherewewish to
formmultiple descriptions of a source such that if some subset of those descriptions is received,
a target distortion for that subset is achieved at reconstruction. Theproblemwas introduced by
Witsenhausen in in [51] with subsequent results in [26, 56, 57]. For a practical example, if an
audio signal was transmitted over a packet-switched communication networkwhichmay drop
packets, we could imagine sending several descriptions of the audio, oneper packet, and arrange
that if only one description is received then a certain (high) level of distortion is realised, but
for each additional packet receivedwe recover a lower level of distortion. This provides graceful
handling of missing packets, while maintaining a low distortion when all packets are received
correctly. It is less wasteful than simply transmitting the same representation multiple times,
where receiving multiple packets would be of no benefit.

In this model we have one encoder which generates k descriptionsmi, i ∈ [k], of a Gaus-
sian sourceX ∼ N (0, σ2

X), each at rateRi (whichmay all be the same in the symmetric case).
Some distinct subset of these descriptions reaches the receiver, which has effectively 2k dis-
tinct decoders, one for each possible combination of received descriptions. The trivial case of
receiving no descriptions is generally discounted (optimally we estimate all zeros and obtain a
distortion equal to the source variance σ2

X). We refer to the decoders that take a single descrip-
tion as the side decoders, and the decoder that takes every description as the central decoder.
Decoders output X̂j for j ∈ [2k − 1], their estimate of the source, which has an associated

127

distortionDj . Figure 6.7 illustrates this for the k = 2 case.

X Encoder

m1

m2

Decoder 1

Decoder 2

Decoder 3

X̂1

X̂3

X̂2

Figure 6.7: Multiple Description channel with k = 2. A sourceX is encoded into two mes-
sagesmi at corresponding ratesRi for i ∈ {1, 2}, and we obtain a different reconstruction X̂j

and corresponding distortionDj for j ∈ {1, 2, 3}, depending onwhichmessages are available
at the receiver.

The achievable region is the set of rate-distortion tuples (R1, . . . , Rk, D1, . . . , D2k−1)

which are achievable, i.e., the specified distortions can bemet at the specified rates. This region
is not known for the general case, but for the two-description problem with Gaussian sources
and squared-error distortion metrics, the El Gamal-Cover achievable region [57] is optimal.
This is called thequadraticGaussian case, andhere the rate-distortion tuple (R1, R2, D1, D2, D3)

is achievable if and only if

R1 ≥
1

2
log

σ2
X

D1

,

R2 ≥
1

2
log

σ2
X

D2

,

Rs = R1 +R2 ≥
1

2
log

σ2
X

D3

+
1

2
logψ(D1, D2, D3, σ

2
X), (6.13)

where

ψ(D1, D2, D3, σ
2
X) =

1, D3 < D1 +D2 − σ2

X

σ2
XD3

D1D2
, D3 >

(
1
D1

+ 1
D2
− 1

σ2
X

)−1

(σ2
X−D3)2

(σ2
X−D3)2−

(√
(σ2

X−D1)(σ2
X−D2)−

√
(D1−D3)(D2−D3)

)2 , otherwise.

(6.14)

128

The cases D3 < D1 + D2 − σ2
X and D3 > (1

D1
+ 1

D2
− 1

σ2
X
)−1 are degenerate, as in

either case there exists an achievable rate-distortion tuple with lower distortions at the same
rates [58]. We therefore only consider the third case, with (1

D1
+ 1

D2
− 1

σ2
X
)−1 ≥ D3 ≥

D1 +D2 − σ2
X .

Note that compared to the rate-distortion limit for the point-to-point case, our sum rate
requires some excess rate 1

2
logψ(D1, D2, D3, σ

2
X) beyond the rate required to achieve D3

normally. This excess ratemay be split betweenR1 andR2, or wemay allocate the entire excess
to eitherR1 orR2.

To encode in this two-description caseweneed to formtwodescriptions thatmeet a certain
correlation structure. The two descriptions should be individually good, and therefore highly
correlated with the original source, but must also refine each other, and therefore have low
correlation with each other. These two requirements are in conflict and balancing them is key
to a successful multiple description implementation.

6.3.1 Gram-Schmidt basedMultiple Descriptions

In [58] it is shown that a construction based on Gram-Schmidt orthogonalisation can achieve
the distortion region for the two-description quadratic Gaussian case. The key feature of this
construction is that it achieves the multiple description rate-distortion region using separate
point-to-point source encoders, without requiring a joint encoder. It is therefore amendable to
implementation using the point-to-point SPARC source encoder of [32]. While the method-
ology discussed in [58] centres around the use of entropy coded dithered lattices for quanti-
sation (ECDQ), the underlying technique is applicable to a range of quantisers, including the
SPARC source encoder. We will focus only on applying this methodology to SPARCs.

One method to find suitable descriptions with the desired correlation properties is using
Shannon-style random codebooks in a successive quantisation scheme. This is the scheme used
originally in [57]. Two random codebooks are generated, the first large enough to quantise the
source with the requiredD1 using rateR1, as in the normal source coding setup. The second
codebookmust bemuch larger, to encompass not only the source space but instead the product
of the source and first codebook space, so that a second codeword U2 may be found which
is jointly typical with both the source and the first codeword U1. This much larger second
codebook is an impediment to practical multiple description. In [58] it is demonstrated that if
some f(X,U1) = V can be found such that (X,U1)→ V → U2 form a Markov chain, then

129

the second encoder need only cover the V -space, as anyU2 jointly typical with V will likely be
jointly typical with (X,U1). This observation is key to the application of the Gram-Schmidt
orthogonalisation argument.

The main result of [58] is then as follows. First, with a similar construction to [51] and
[26], we represent the quantised source descriptionsU1 andU2 as

U1 = X + T0 + T1, (6.15)

U2 = X + T0 + T2, (6.16)

where T0, T1, T2 are jointly Gaussian random variables representing the quantisation noise,
with a specific correlation structure as follows. We require that

E[T1T2] = −σT1σT2 , (6.17)

and thatX , T0, (T1, T2) are all independent.

GivenU1 andU2, the decoding functions are then

X̂1 = E[X | U1] = α1U1, (6.18)

X̂2 = E[X | U2] = α2U2, (6.19)

X̂3 = E[X | U1, U2] = β1U1 + β2U2, (6.20)

with the coefficients αi and βi defined as

αi =
σ2
X

σ2
X + σ2

T0
+ σ2

Ti

, i ∈ 1, 2, (6.21)

β1 =
σ2
XσT2

(σT1 + σT2)(σ
2
X + σ2

T0
)
, (6.22)

β2 =
σ2
XσT1

(σT1 + σT2)(σ
2
X + σ2

T0
)
, (6.23)

130

where

σ2
T0

=
D3σ

2
X

σ2
X −D3

, (6.24)

σ2
Ti
=

Diσ
2
X

σ2
X −Di

, i ∈ 1, 2. (6.25)

Thequestion is thenhow toobtain codewords jointly distributed according to the joint dis-
tribution of (U1, U2). In [58], they are represented using basis vectors from a Gram-Schmidt
orthogonalisation process on the source.

The basis vectors are constructed as

B1 = X, (6.26)

B2 = U1 − E(U1|X) = U1 −X, (6.27)

B3 = U2 − E(U2|X,U1) = U2 − (a1X + a2U1), (6.28)

where

a1 =
σ2
T1

+ σT1σT2

σ2
T0

+ σ2
T1

, (6.29)

a2 =
σ2
T0
− σT1σT2

σ2
T0

+ σ2
T1

. (6.30)

Rearranging,

U1 = X +B2, (6.31)

U2 = (a1X + a2U1) +B3, (6.32)

suggests the interpretation thatB2 andB3 are quantisation noises, withU1 andU2 formed by
successively quantisingX and (a1X+a2U1) respectively. Finally we can see that a1X+a2U1

is a suitable V , since U2 = E[U2|X,U1] + B3, with B3 independent of (X,U1), therefore
(X,U1)→ E[U2|X,U1]→ U2 form a Markov chain. It is then possible to demonstrate that
this setup provides the required correlation structure betweenX ,U1 andU2 [58].

131

Having found this relationship, the basic quantisation algorithm is straightforward:

1. The first description is obtained by encodingX toU1 at rateR1.

2. The second description is obtained by encoding a1X + a2U1 toU2 at rateR2.

3. Decoding to X̂i is per (6.20).

6.3.2 SPARCs forMultiple Description

We may use the SPARC successive cancellation source encoding scheme described in [32]
to perform the two quantisations described above. We set the first side rate R1 to the rate-
distortion function result

R1 =
1

2
log
(
σ2
X

D1

)
. (6.33)

The sum rate is set to

Rs =
1

2
log
(
σ2
X

D3

)
+

1

2
logψ(D1, D2, D3, σ

2
X), (6.34)

and all the required excess rate is then assigned to the second side encoder,

R2 = Rs −R1. (6.35)

It is possible to allocate this excess rate to either side encoder or to split it between the two,
though splitting ismore complex. For these simulations, only allocating to a single side encoder
is considered.

Todetermine the SPARCparameters, the section sizeM and thenumber of sectionsL1 for
the first encoder is specified, and from this the n parameter (which must be common to both
encoders as it is the size of the source block) is determined asn = L1 logM

R1
. FinallyL2 =

logM
nR2

.
Figure 6.8 shows the results obtained from this implementation. Here the target single-

message distortions D∗
1 and D∗

2 are both set to 0.25, and the target central distortion D∗
3 is

varied between 0.001 and 0.14. Above D∗
3 = 0.14, the rate-distortion tuple becomes de-

generate as no excess rate is required for the central reconstruction, so there is no benefit to
targeting a higherD∗

3 .
We see that the side distortionsD1 andD2 are reasonably close to their targetD∗

1 = D∗
2 =

0.25 and do not change significantly asD∗
3 is changed, despite the excess rate being allocated

132

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
D ∗

3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
is

to
rt

io
n

D ∗
1 =D ∗

2 D ∗
3 D1 D2 D3

Figure 6.8: Distortions obtained from 2-description MD using the SPARC source encoder,
with demandedD∗

1 andD∗
2 of 0.25 and demandedD∗

3 being varied

to the second encoding increasing. This suggests the desired correlation structure is achieved
in practice. Furthermore, the central distortionD3 tracks the targetD∗

3 well. These results are
encouraging: the SPARC implementation efficiently produces the two codewords, and the
excess rate assigned to one of them is successfully used to give a lower central distortion which
comes close to the theoretical limits.

6.4 Wyner-Ziv Distributed Source Coding

Wyner-Ziv distributed source coding, introduced by Wyner and Ziv in [54] and also known
as source coding with decoder side-information, considers a model where the source X ∼
N (0, σ2) must be compressed with distortionD, and in addition to the nR bits of informa-
tion from the encoder, the decoder also has available side-information in the form of a noisy
observation Y = X + Z where Z ∼ N (0, N) is independent of X . If Y were available
to the encoder, a very simple optimal strategy is for the encoder to simply encode the noise
Z = Y − X , which the decoder can then subtract from Y . This would require a minimum
rate of 1

2
log(Var(X|Y)

D
). It is shown in [54] that this rate is achievable even when Y is only

available at the decoder and not at the encoder.

133

The coding strategy from [54] is as follows. First define an auxiliary random variableU =

X + V , where V ∼ N (0, Q) is also independent of X. We view this as a test channel, with
U the distribution of a codeword produced by the source encoder and V is the distribution of
the corresponding quantisation noise. Using Shannon-style random codebooks, we generate
at least 2nI(U ;X) codewords i.i.d. according to P (U), ensuring that the encoder will be able to
find a codeword with quantisation variance close toQ.

Then, instead of transmitting the index corresponding to the codeword directly to the en-
coder, we divide the codebook into 2nR bins, and send only the index of the bin that con-
tained the codeword. This requires nR bits be communicated to the decoder, lower than the
nI(U ;X) that would be required to transmit the index of the codeword in its entirety.

The decoder must recover the index of the codeword using the bin index from the encoder
and the side-information Y . We use the bin index to construct a codebook consisting of just
that bin, which must contain the codeword. This is then a channel decoding problem with
Y = X + Z = U + V + Z , so we are observing the codeword in noise of powerN + Q.
As long as the number of codewords is exponentially less than 2nI(U ;Y) then decoding should
succeed. Combining this requirement with theminimum size of the source codebook, we find
that the number of bins must satisfy

2nR >
2nI(U ;X)

2nI(U ;Y)
. (6.36)

Finally, after recovering the codeword, the decoder then finds X̂ as an MMSE estimate ofX
given both the recovered codeword and Y .

134

X
Quantise toU ′

at rateR1

Indices
ofU ′ Binning

at rateR
Bins Channel decode Y to Û ′

using binned codebook
at rateR2 = R1 −R

Estimate X̂
from Y and Û ′

+
Û ′

Z ∼ N (0, N)

Y = X + Z

X̂

Encoder
Decoder

Figure 6.9: TheWyner-Ziv distributed source codingmodel. The sourceX ∼ N (0, σ2) is first
quantised to a codeword, then only the bin indices for that codeword are transmitted at rateR
to the decoder. The decoder observes Y = X + Z and performs channel decoding using the
codebook corresponding to the received bin indices. With Shannon random codebooks there
is only a single bin; with SPARCs there areL bins, one per section.

A =

ℓ :

bin:

M M ′

1 2

…

…

…

L

1 2 3 1 2 3 1 2 3

Figure 6.10: SPARC binning. The columns in A corresponding to the non-zero entries in β
are highlighted. Instead of transmitting their indices directly, which requiresL logM bits, we
partition each section into bins of sizeM ′ columns, and transmit only the bin indices (under-
lined) inL log M

M ′ bits. The decoder then forms a new design matrixA′ from only the selected
bins, which will still contain the selected columns.

135

6.4.1 SPARCs forWyner-Ziv Distributed Coding

The scheme described above can be implemented using SPARCs, as described in [50].
At the encoder, we perform a regular SPARC source encoding at rateR1 to find a SPARC

codewordU ′ close to the sourceX . By reversing the test channel described above, we canwrite
X = U ′ + V ′, where V ′ ∼ N (0, σ2Q

σ2+Q
). Instead of transmitting the nR1 bits of the posi-

tions of the selected columns in the SPARC design matrix A which represent this codeword,
requiring a high overall rate, we will split each section ofA into bins ofM ′ columns each, and
transmit just the indices of the bins which contain the codeword’s columns. This process is
called binning, and requires only nR = L log(M

M ′) bits to communicate the bins. This con-
cept is illustrated in Figure 6.10.

At the decoder, we can reconstruct a smaller codebook A′ from the bins selected at the
encoder. We also observeY = X+Z , a noisy version ofX . We then run the SPARC channel
decoder on the design matrix formed only from the received bins, which attempts to decode
X from Y as though X were itself a SPARC codeword. We know that U ′ = X + V ′ is a
codeword, so we are attempting to decode U ′ in noise of V ′ + Z . This gives us an snr of

snr = σ4

σ2Q+ (σ2 +Q)N
, (6.37)

whereQ = Var[X|Y]D
Var[X|Y]−D

. So long asR2 <
1
2
(1+snr)we expect decoding to succeed, producing

Û ′ = U ′. Finally we estimate X̂ as a weighted linear combination ofU ′ and Y ,

X̂ =

(
1

Q
+

1

σ2
+

1

N

)−1
(
Û ′

Q
+
Y

N

)
. (6.38)

We can tolerate relatively large section error rates from the channel decoder, assuming er-
rors predominantly occur in sectionswith low allocated power, as those sectionswill have small
contributions to the distortion in the final estimate X̂ .

136

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
R

0.00

0.02

0.04

0.06

0.08

0.10
D

(X
,X̂

)

Simulation Points
Edge of Achievable Region

Figure 6.11: Empirical results for SPARCWyner-Ziv coding. Hereσ2 = 1 andN = 0.1. The
green line indicates the achievable region, while each bluemark is a single trial at different rates
R and target distortionsD. There is a distinct gap from the achievable region, visible between
the lowest-distortion blue marks and the green line.

0.00 0.02 0.04 0.06 0.08 0.10

Source Encoder D(X,aU)

10-2

10-1

100

C
h
an

n
el

 D
ec

o
d
er

 S
ec

ti
o
n
 E

rr
o
r

R
at

e

Figure 6.12: The results from Figure 6.11, plotted as the channel decoder section error rate
against the source encoder distortion. Results with good source distortion tend to have poor
channel error rates, and vice versa. Ideally all points would be concentrated in the lower-left,
representing good section error rates and good source encoder distortion.

137

Figure 6.11 presents the results obtained from implementing the setup described above,
using the SPARC source encoder from [50] and the channel decoder from Chapter 2. The
green line indicates the boundary of the achievable region, and each blue mark represents the
distortion obtained at a single trial. For each trial, a random target D was selected below
Var[X | Y], a random R2 was selected below 1

2
log(1 + snr), and the power allocation pa-

rameters (a, f) ∈ (0, 1) were chosen randomly.
There is some gap from the achievable region. We find that for trials where the source

encoder performs well, the channel decoder often has high error rates, and vice versa. This is
illustrated in Figure 6.12, which plots the channel decoder section error rate against the source
encoder distortion. Ideally, all points would cluster in the lower left, where we obtain good
performance from both algorithms. Instead, points with good section error rate had generally
poor source distortion, or vice versa.

The main reason for this conflict appears to be the choice of power allocation. Power al-
locations which performed well for source encoding are steeper exponentials, similar to the
optimal source encoding power allocation from [32]. However, we have already seen in Chap-
ter 3 that these allocations do not performwell for the channel decoder. Finding a good power
allocation which balances the needs of both source and channel decoders is an open question.

138

Chapter 7

Conclusions

Contributions

The overall aim of this research was to develop novel techniques and algorithms for the use of
sparse regression codes, with a focus on practical and efficient implementations in single- and
multi-user settings. In Chapters 3 and 4, several improvements to the previous state of the art
have been made concerning the practical implementation of the approximate message passing
channel decoder for SPARCs, including

• Theuse ofHadamard-based designmatrices to providemuch lower computational com-
plexity in the decoder, reducing complexity fromO(LMn) toO(Ln logn),

• Improved power allocation designs which yield error rates often orders of magnitude
lower than previously,

• Online computationof τ 2t , yielding slightly improvedperformance but crucially offering
an early-termination criteria which can reduce decoding time, and

• A novel three-stage decoder combining an inner SPARC with an outer LDPC code to
provide a sharp waterfall in bit error rates and very low overall codeword error rates.

Taken together, these improvements give the AMP decoder state of the art error correcting
performance which is competitive with modern LDPC-based coded modulation schemes,
while dramatically decreasing the decoder time andmemory complexity, compared to previous
SPARC implementations, to levels that are practical to implement.

139

In Chapter 5, the SPARC construction was extended by allowing the non-zero value in
each section to be chosen from a fixed constellation. An AMP decoder for this new con-
struction was developed and analysed. It was shown that with this decoder, binary modu-
lated SPARCs provably achieve the channel capacity, with empirical performance that is near-
identical while halving the size of the design matrix.

In Chapter 6, designs for SPARCs on multi-user channels which were previously only the-
oretical were efficiently implemented and simulated, obtaining good empirical performance
on the broadcast and multiple access channels. New algorithms to find power allocations for
these challenging scenarios were proposed and gave good results. We further implemented
SPARCs for the multiple description and Wyner-Ziv source coding problems, obtaining good
empirical performance with multiple descriptions and investigating the challenges involved in
combining source and channel algorithms in the Wyner-Ziv scenario.

In addition to these advancements in SPARCs and the AMP decoder, this research has
produced helpful heuristics into the behaviour of the AMP decoder under various conditions.
These include the effect of the SPARC design parameters on the error concentration, the un-
derstanding of which is critical to obtaining good section error rate performance and was pre-
viously unexplored.

Limitations

There are a few design issues which remain unresolved. Given a power allocation or a choice of
L,M , it is still not clear if one can theoretically predict how well concentrated the empirical
section error rate will be around the state evolution prediction. Not having a theoretical pre-
diction not only hinders predicting performance for a specific scenario, but is an impediment
in designing a power allocation. The final iterative power allocation algorithm proposed in
this thesis therefore still requires numerical optimisation of one parameter, via full AMP de-
coder simulation. Similarly, obtaining the optimal SPARCdesign parameters for a given setup
requires extensive simulation with only heuristic guidance.

The AMP decoder does not currently perform well at low rates R < 1, where the best
known power allocation becomes completely flat. There might be superior power allocations
or other tweaks to the decoder algorithm to improve performance in this regime, which would
also beneficial to the multi-user scenarios where one user has a low rate.

Time and resource limits prevented further simulationof themodulatedSPARCandmulti-
user SPARC scenarios, and so the simulation results are limited in their applicability. While

140

they provide evidence of good performance in the specific setup considered for simulation,
more investigation is needed to determine how well the SPARC performs over a wider range
of channel parameters.

FutureWork

This research leaves several open ends which would benefit from further investigation. Ad-
dressing the limitations discussed above is of obvious benefit, with the ability to accurately pre-
dict concentration-based results being especially useful for practical SPARC AMP decoders.
Further directions include:

• The Hadamard based design matrices are very efficient, but could be taken one step fur-
ther: instead of using n×n sized Hadamard matrices for each section ofA, it would be
possible to use ⌈ n

M
⌉Hadamardmatrices of sizeM ×M , which would provide a further

efficiency improvement.

• SPARCs have been considered for use in a spatially coupled framework [31, 39, 46],
where the design matrix is modified to provide coupling between blocks, which can
improve decoder performance. While this is interesting in its own right, recent un-
published work by K. Hsieh suggests that combining spatial coupling with the power
allocations discussed in Chapter 3 yields results superior to either technique alone.

• Many interesting questions remain open for the modulated SPARCs, especially in re-
gards toK > 2, where the number of possible modulation values increases. Does the
modifiedAMPachieve the channel capacity for larger values ofK? This couldbeproven
by extending the existing proofwhereK = 2 along similar lines. IncreasingK allowsM
to decreasewhile holding everything else constant: what is the optimal tradeoff between
M andK , for either lowest computational complexity or best error performance?

• Another interesting direction formodulated SPARCs is to consider the use of a complex
modulation pattern, along the lines of traditionalQAMandPSKmodulations. The cur-
rently real-valued non-zero values in β would be extended to allow complex values. This
would require an update to theAMPdecoder, butmay beworthwile as it provides a nat-
ural extension of SPARCs to complex channels, which are in widespread use in modern
radio systems. PSK especially would allow equal power for each section, independent
of the modulation symbol chosen, while still permitting arbitrarily highK .

141

• There also remain open questions for SPARCs on the multiuser channels. We have cov-
ered the broadcast and multiple access channel for two users, but they extend naturally
to many users, and it would be interesting to evaluate how well SPARCs perform as the
number of users increases. Finding good power allocations for more than two users may
be a particular challenge.

• Furthermore theremaybe applications ofmultiuser SPARCs toMIMOchannels, where
multiple transmit and/or receive antennas are used to improve channel capacity. Be-
yond treating each antenna path as a user in a multiuser channel, there may be further
applications of the underlying sparse estimation inherent in SPARCs to better infer
MIMO channel characteristics or perform channel coding.

• There is currentlynoproof that SPARCscan achieve themultiple description rate-distortion
region. It is likely that a proof could be found along similar lines to the one given in [58]
for ECDQ, by showing that the SPARC source encoder output follows the required
distribution for both the first and second quantisations.

• For Wyner-Ziv source coding, the power allocation required tradeoffs between the op-
timal choice for the source encoder and channel decoder. Further work on novel power
allocations for this model could yield much improved results.

• The empirical performance on both multiple descriptions and Wyner-Ziv seems to be
limited by the source encoder performance: perhaps we could find a different source
encoder, such as a modified AMP algorithm, which would yield better performance.
Some tentative work on using the AMP for source encoding resulted in poor empirical
performance. It appears that since there are many good solutions to the source coding
problem, the AMP is less able to select a single good solution. There may be similarities
to using low-density generatormatrices for source encoding [59–61], where decimation
and other techniques are used.

• The dirty paper coding problem [53] is a dual to the Wyner-Ziv channel and SPARCs
may be expected to perform well there too. A design for using SPARCs on this channel
was given in [50], but work would be required to design suitable power allocations and
to implement the algorithms.

142

• All of the numerical results presented in this thesis are the outcome of computer sim-
ulations with software decoders. It would be interesting to implement many of these
ideas in a practical decoder designed for operating on physical channels. There would
likely be many new challenges, including operating the decoder at line rate, recovering
the symbol clock from the received data (which does not have well defined transitions
unlike the codedmodulation setup), and handling uncertain channel gain. Therewould
likely also be opportunities for further optimisations in the decoder when implemented
in hardware, including efficient parallel hardware FWHT. Some work on hardware im-
plementations of the original AMPdecoder for SPARCs has been published in [62,63].

143

144

Bibliography

[1] C. Rush, A. Greig, and R. Venkataramanan, “Capacity-achieving sparse superposition
codes via approximate message passing decoding,” IEEE Transactions on Information
Theory, vol. 63, no. 3, pp. 1476–1500, March 2017.

[2] A. Greig and R. Venkataramanan, “Techniques for improving the finite length perfor-
mance of sparse superposition codes,” IEEE Transactions on Communications, vol. 66,
no. 3, pp. 905–917, March 2018.

[3] C. E. Shannon, “AMathematicalTheory ofCommunication,”Bell SystemTechnical Jour-
nal, vol. 27, no. 3, pp. 379–423, Jul. 1948.

[4] T. M. Cover and J. A. Thomas, Elements of InformationTheory. Wiley, 1991.

[5] A. Feinstein, A new basic theorem of information theory. Research Laboratory of Elec-
tronics, Massachusetts Institute of Technology, 1954, no. 282.

[6] R. G. Gallager, Information theory and reliable communication. Springer, 1968.

[7] R. Gallager, “Low-density parity-check codes,” IRE Transactions on InformationTheory,
vol. 8, no. 1, pp. 21–28, January 1962.

[8] D. MacKay and R. Neal, “Good codes based on very sparse matrices,” in Cryptography
and Coding, ser. Lecture Notes in Computer Science, C. Boyd, Ed. Springer Berlin
Heidelberg, 1995, vol. 1025, pp. 100–111.

[9] D. MacKay, Information theory, inference, and learning algorithms. Cambridge Uni-
versity Press, 2003.

145

[10] C. Berrou, A.Glavieux, and P.Thitimajshima, “Near shannon limit error-correcting cod-
ing and decoding: Turbo-codes,” in Communications, 1993. ICC ’93 Geneva. Technical
Program, Conference Record, IEEE International Conference on, vol. 2, May 1993, pp.
1064–1070 vol.2.

[11] C. Berrou and A. Glavieux, “Turbo codes,” Encyclopedia of Telecommunications, 2003.

[12] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes
for symmetric binary-input memoryless channels,” IEEE Transactions on Information
Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[13] E. Şaşoğlu et al., “Polarization and polar codes,” Foundations and Trends® in Communi-
cations and InformationTheory, vol. 8, no. 4, pp. 259–381, 2012.

[14] A. Guillén i Fàbregas, A. Martinez, and G. Caire, Bit-interleaved coded modulation.
Now Publishers Inc, 2008.

[15] G.D. Forney andG.Ungerboeck, “Modulation and coding for linear gaussian channels,”
IEEE Transactions on InformationTheory, vol. 44, no. 6, pp. 2384–2415, 1998.

[16] D. J. Costello and G. D. Forney, “Channel coding: The road to channel capacity,” Pro-
ceedings of the IEEE, vol. 95, no. 6, pp. 1150–1177, 2007.

[17] A. Barron and A. Joseph, “Least squares superposition codes of moderate dictionary size
are reliable at rates up to capacity,” IEEE Transactions on Information Theory, vol. 58,
no. 5, pp. 2541–2557, Feb 2012.

[18] A. Joseph andA. R. Barron, “Fast sparse superposition codes have near exponential error
probability for R < C,” IEEE Transactions on Information Theory, vol. 60, no. 2, pp.
919–942, Feb. 2014.

[19] U. Erez and R. Zamir, “Achieving 1/2 log (1+snr) on the awgn channel with lattice en-
coding and decoding,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp.
2293–2314, Oct 2004.

[20] R. Zamir, Lattice Coding for Signals and Networks: A Structured Coding Approach to
Quantization, Modulation, andMultiuser InformationTheory. Cambridge University
Press, 2014.

146

[21] C. E. Shannon, Coding theorems for a discrete source with fidelity criterion. McGraw-
Hill, 1960, pp. 93–126.

[22] A. R. Barron and S. Cho, “High-rate sparse superposition codes with iteratively optimal
estimates,” in Proc. IEEE Int. Symp. Inf. Theory, 2012.

[23] S.Cho andA.Barron, “Approximate iterativeBayes optimal estimates for high-rate sparse
superposition codes,” in SixthWorkshop on Information-TheoreticMethods in Science and
Engineering, 2013.

[24] C. Rush and R. Venkataramanan, “The error exponent of sparse regression codes with
AMP decoding,” in Proc. IEEE Int. Symp. Inf. Theory, 2017.

[25] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the
society for industrial and applied mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[26] A. El Gamal and Y.-H. Kim,Network InformationTheory. Cambridge, 2011.

[27] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for com-
pressed sensing,” Proceedings of the National Academy of Sciences, vol. 106, no. 45, pp.
18 914–18 919, 2009.

[28] A.Montanari, “Graphical models concepts in compressed sensing,”Compressed Sensing:
Theory and Applications, pp. 394–438, 2012.

[29] M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs, with
applications to compressed sensing,” IEEETransactions on InformationTheory, pp. 764–
785, 2011.

[30] S. Rangan, “Generalized approximatemessage passing for estimationwith random linear
mixing,” in Proc. IEEE Int. Symp. Inf. Theory, 2011, pp. 2168–2172.

[31] J. Barbier andF.Krzakala, “Approximatemessage-passingdecoder and capacity-achieving
sparse superposition codes,” IEEETransactions on InformationTheory, vol. 63, no. 8, pp.
4894–4927, 2017.

[32] R. Venkataramanan, T. Sarkar, and S. Tatikonda, “Lossy compression via sparse linear
regression: Computationally efficient encoding and decoding,” IEEE Transactions on
InformationTheory, vol. 60, no. 6, pp. 3265–3278, 2014.

147

[33] R. Venkataramanan, A. Joseph, and S. Tatikonda, “Lossy compression via sparse linear
regression: Performance under minimum-distance encoding,” IEEE Transactions on In-
formationTheory, vol. 60, no. 6, pp. 3254–3264, 2014.

[34] R. Venkataramanan and S. Tatikonda, “The rate-distortion function and excess-
distortion exponent of sparse regression codes with optimal encoding,” IEEE Transac-
tions on InformationTheory, vol. 63, no. 8, pp. 5228–5243, 2017.

[35] M. Mezard and A. Montanari, Information, physics, and computation. Oxford Univer-
sity Press, 2009.

[36] J. Boutros and G. Caire, “Iterative multiuser joint decoding: Unified framework and
asymptotic analysis,” IEEETransactions on InformationTheory, vol. 48, no. 7, pp. 1772–
1793, 2002.

[37] M. Yoshida and T. Tanaka, “Analysis of sparsely-spread cdma via statistical mechanics,”
in Proc. IEEE Int. Symp. Inf. Theory. IEEE, 2006, pp. 2378–2382.

[38] D. Guo and C.-C. Wang, “Multiuser detection of sparsely spread cdma,” IEEE journal
on selected areas in communications, vol. 26, no. 3, pp. 421–431, 2008.

[39] J. Barbier, C. Schülke, and F. Krzakala, “Approximatemessage-passing with spatially cou-
pled structured operators, with applications to compressed sensing and sparse superpo-
sition codes,” Journal of Statistical Mechanics: Theory and Experiment, no. 5, 2015.

[40] M. Bayati and A.Montanari, “TheDynamics ofMessage Passing onDense Graphs, with
Applications toCompressed Sensing,” IEEETransactions on InformationTheory, vol. 57,
no. 2, pp. 764–785, Feb. 2011.

[41] C. Rush and R. Venkataramanan, “Finite sample analysis of approximate message pass-
ing,” Proc. IEEE Int. Symp. Inf. Theory, 2015, full version: https://arxiv.org/abs/1606.
01800.

[42] A. Joseph andA. R. Barron, “Fast sparse superposition codes have near exponential error
probability for R < C,” IEEE Transactions on Information Theory, vol. 60, no. 2, pp.
919–942, Feb. 2014.

148

https://arxiv.org/abs/1606.01800
https://arxiv.org/abs/1606.01800

[43] Y. Takeishi, M. Kawakita, and J. Takeuchi, “Least squares superposition codes with
Bernoulli dictionary are still reliable at rates up to capacity,” IEEE Transactions on In-
formationTheory, vol. 60, pp. 2737–2750, May 2014.

[44] J. L. Shanks, “Computation of the Fast Walsh-Fourier transform,” IEEE Transactions on
Computers, vol. 18, no. 5, pp. 457–459, May 1969.

[45] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex
fourier series,”Mathematics of computation, vol. 19, no. 90, pp. 297–301, 1965.

[46] J. Barbier and F. Krzakala, “Replica analysis and approximate message passing decoder
for superposition codes,” in Proc. IEEE Int. Symp. Inf. Theory, 2014, pp. 1494–1498.

[47] S. Rangan, “Generalized approximatemessage passing for estimationwith random linear
mixing,” in Proc. IEEE Int. Symp. Inf. Theory, 2011, pp. 2168–2172.

[48] (2008) The coded modulation library. [Online]. Available: http://www.
iterativesolutions.com/Matlab.htm

[49] 131.0-B-2 TM Synchonization and Channel Coding, CCSDS, August 2011. [Online].
Available: https://public.ccsds.org/Pubs/131x0b2ec1.pdf

[50] R. Venkataramanan and S. Tatikonda, “Sparse regression codes formulti-terminal source
and channel coding,” inCommunication, Control, and Computing (Allerton), 2012 50th
Annual Allerton Conference on. IEEE, 2012, pp. 1966–1974.

[51] H. S. Witsenhausen, “On source networks with minimal breakdown degradation,” Bell
System Technical Journal, vol. 59, no. 6, pp. 1083–1087, 1980.

[52] S. Gel’fand and M. Pinsker, “Coding for channel with random parameters,” in Problems
of Control and InformationTheory, 01 1980, vol. 9.

[53] M.Costa, “Writing on dirty paper (corresp.),” IEEETransactions on InformationTheory,
vol. 29, no. 3, pp. 439–441, 1983.

[54] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side informa-
tion at the decoder,” IEEE Transactions on InformationTheory, vol. 22, no. 1, pp. 1–10,
1976.

149

http://www.iterativesolutions.com/Matlab.htm
http://www.iterativesolutions.com/Matlab.htm
https://public.ccsds.org/Pubs/131x0b2ec1.pdf

[55] S. S. Pradhan, J. Chou, andK. Ramchandran, “Duality between source coding and chan-
nel coding and its extension to the side information case,” IEEE Transactions on Infor-
mationTheory, vol. 49, no. 5, pp. 1181–1203, 2003.

[56] J.Wolf, A.Wyner, and J. Ziv, “Source coding formultiple descriptions,”Bell SystemTech-
nical Journal, vol. 59, no. 8, pp. 1417–1426, 1980.

[57] A. E. Gamal and T. M. Cover, “Achievable rates for multiple descriptions,” IEEE Trans-
actions on InformationTheory, vol. 28, no. 6, pp. 851–857, Nov. 1982.

[58] J. Chen, C. Tian, T. Berger, and S. S. Hemami, “Multiple description quantization via
gram–schmidt orthogonalization,” IEEE Transactions on Information Theory, vol. 52,
no. 12, pp. 5197–5217, 2006.

[59] M. J. Wainwright and E. Martinian, “Low-density graph codes that are optimal for
binning and coding with side information,” IEEE Transactions on Information Theory,
vol. 55, no. 3, pp. 1061–1079, 2009.

[60] M. J. Wainwright and E. Maneva, “Lossy source encoding via message-passing and deci-
mation over generalized codewords of ldgm codes,” in Proc. IEEE Int. Symp. Inf.Theory.
IEEE, 2005, pp. 1493–1497.

[61] V. Aref, N. Macris, and M. Vuffray, “Approaching the rate-distortion limit with spatial
coupling, belief propagation, and decimation,” IEEE Transactions on Information The-
ory, vol. 61, no. 7, pp. 3954–3979, 2015.

[62] C. Condo and W. J. Gross, “Sparse superposition codes: A practical approach,” in IEEE
Workshop on Signal Processing Systems (SiPS). IEEE, 2015, pp. 1–6.

[63] ——, “Implementation of sparse superposition codes,” IEEETransactions on Signal Pro-
cessing, vol. 65, no. 9, pp. 2421–2427, 2017.

150

	Introduction
	Channel Coding
	Source Coding
	Multiuser Communication
	The Sparse Superposition Code
	Construction and Encoding
	Decoders
	SPARCs for Source Coding

	Notation
	Contributions of this Thesis

	Approximate Message Passing for SPARCs
	The AMP Channel Decoder
	Background and Derivation
	State Evolution
	Asymptotic State Evolution

	Design Techniques to Improve Finite Length Performance
	Introduction
	Reducing Decoding Complexity via Random Hadamard Design Matrices
	Numerical Regularisation in it
	Power Allocation
	Modified Exponential Power Allocation
	Iterative Power Allocation

	Error Concentration Trade-offs
	Effect of L and M on Concentration
	Effect of Power Allocation on Concentration

	Online Computation of t2 and Early Termination
	Predicting Esec, Eber, and Ecw

	Outer Codes for SPARCs
	Comparison with Coded Modulation
	AMP with Partial Outer Codes
	Decoding SPARCs with LDPC outer codes
	Simulation Results
	Outer Code Design Choices

	Modulated SPARCs
	Encoding Modulated SPARCs
	AMP for Modulated SPARCs
	State Evolution for AMP Decoded Binary Modulated SPARCs
	Proof of Achieving Capacity with AMP Decoder
	Proof of Lemma 5.1

	Implementation and Simulation Results
	Derivation of AMP for Modulated SPARCs
	Derivation of it
	Derivation of update rules

	SPARCs for Multiuser Channel and Source Coding Models
	Gaussian Broadcast Channel
	SPARCs for the Gaussian Broadcast Channel
	Implementation and Results

	Gaussian Multiple Access Channel
	SPARCs for the Gaussian Multiple Access Channel
	Implementation and Results

	Multiple Description Source Coding
	Gram-Schmidt based Multiple Descriptions
	SPARCs for Multiple Description

	Wyner-Ziv Distributed Source Coding
	SPARCs for Wyner-Ziv Distributed Coding

	Conclusions

