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Summary. Bidirectional changes over time in the estimated glomerular filtration rate and in urine
protein content are of interest for the treatment and management of patients with lupus nephritis.
Although these processes may be modelled by separate multistate models, the processes are
likely to be correlated within patients. Motivated by the lupus nephritis application, we develop
a new multistate modelling framework where subject-specific random effects are introduced to
account for the correlations both between the processes and within patients over time. Models
are fitted by using bespoke code in standard statistical software.A variety of forms for the random
effects are introduced and evaluated by using the data from the Systemic Lupus International
Collaborating Clinics.
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1. Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple aspects
of a person’s health, including skin condition, joint function and internal organs such as the
kidney and neuropsychiatric systems. Because lupus nephritis (LN) is a cardinal feature of SLE,
a recent study conducted by the Systemic Lupus International Collaborating Clinics (SLICC)
aimed to investigate the bidirectional change over time in estimated glomerular filtration rate
eGFR (the volume of blood that passes through the glomeruli of the kidney per minute) and
proteinuria (urine protein content) in patients diagnosed with LN (Hanly et al., 2016). Since
multistate models are well known as an approach to modelling processes with many discrete
states that change over time (Hougaard, 1999; Andersen and Keiding, 2002; Meira-Machado
et al., 2009), Hanly et al. (2016) separately modelled the eGFR and proteinuria processes in the
SLICC data with two multistate models. The results of their analyses, such as the time spent in
the different eGFR and proteinuria states, are useful in subsequent health economic analyses
to inform decisions in managing LN for SLE patients in practice (Barber et al., 2018).

However, because both eGFR and proteinuria processes reflect patients’ renal function over
time with different aspects for measurement, it is desirable to account for the within-subject
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correlation that is induced by the underlying kidney function when modelling these two pro-
cesses. In this paper, motivated by the LN study on the SLICC data, we develop a correlated
multistate model approach for multiple processes by incorporating subject level random effects
(REs) in the modelling framework. The method that is developed allows the incorporation of
REs in models where some or all states are recurrent.

RE models have been considered in survival data analysis methods, where they are commonly
known as frailty models (Hougaard, 1984, 1995; Aalen, 1988). Usually, a subject level RE is
introduced to act multiplicatively on the hazard functions in the survival models. For multistate
models, REs have also been used to account for subject level heterogeneity (Aalen, 1987; Satten,
1999; Cook et al., 2004; Sutradhar and Cook, 2008; Yen et al., 2010; O’Keeffe et al., 2011, 2013;
Joly et al., 2012). However, existing works have considered only specific and relatively simple
progressive multistate models that do not contain cycles; in other words, they are for non-
reversible processes where there is zero probability of returning to each non-absorbing state in
the model. We are not aware of works on reversible multistate models with subject level random
effects. This is partly because of the computational burden in fitting such complicated multistate
models. In this paper, we aim to address this challenge and also consider more complex models
for multiple processes.

Specifically, we develop a new class of correlated multistate models with subject level ran-
dom effects for multiple reversible processes. Assuming a gamma distribution for the subject
level random effects, the within-subject correlation over time for each of the multiple processes
is taken into account in our models, which, to some extent, relaxes the Markov assumption
that is taken in the ordinary reversible multistate models without random effects. Moreover,
we allow for the within-subject correlation across multiple processes at fixed times, which is
sensible in the LN study context because the underlying renal function induces such correla-
tion for the observed processes of eGFR and proteinuria. On the basis of the scientific context
of the LN study, we further explore different forms of the REs in modelling the eGFR and
proteinuria processes and assess these models by comparing the empirical Bayes estimates of
REs and other summary estimates (e.g. the time spent in different states in a fixed time pe-
riod). The results of our analyses are useful to the subsequent economic modelling for the LN
study.

The remainder of the paper is organized as follows. In Section 2 we describe the motivating
SLICC data. The new class of multistate models with REs is introduced in Section 3. Section 4
describes the likelihood function and estimation procedure for fitting these models. The analy-
sis results for the SLICC data are presented in Section 5 and we conclude with a discussion in
Section 6.

2. The Systemic Lupus International Collaborating Clinics data

The SLICC comprise 32 academic medical centres across 11 countries and were established
as an inception cohort for the long-term study of several outcomes in patients with SLE in
October 1999 (Isenberg and Gladman, 2001). We focus on 568 patients from the SLICC in-
ception cohort who have been diagnosed with LN and have at least two complete clinic visits
before diagnosis of end stage renal disease or death up to December 2012. The clinic visits in
the SLICC cohort are scheduled approximately annually. We calculated the mean time between
consecutive visits for each of the 568 patients (a within-patient visit time summary measure)
and the mean of these 568 within-patient values is 1.2 years with standard deviation 0.55 and
interquartile range 1.00–1.24 years. As such, the time between visits does not vary consider-
ably from patient to patient. In addition, the mean and standard deviation of the duration of
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follow-up are 5.2 and 3.1 years respectively. At each clinic visit several patient measurements
are recorded, which include prescribed medications, lupus-related variables such as American
College of Rheumatology classification criteria for SLE, the SLE disease activity index 2000,
SLEDAI-2K, and the SLICC–American College of Rheumatology damage index, together with
eGFR (in millilitres per minute per 1.73 m2) and proteinuria level PU (in grams per litre per
day).

As in Hanly et al. (2016), we are interested in the change in the eGFR and PU levels over
time for the SLICC patients. At any time point, each SLICC patient is assumed to stay in one of
three states based on clinical categorizations of their eGFR and proteinuria level (Hanly et al.,
2016). These states are numbered from 1 (the least severe category of eGFR or PU) to 3 (the
most severe category of eGFR or PU). Table 1 shows the definitions of the eGFR and PU states
and Table 2 presents some example data for eGFR and PU states recorded at clinic visits during
the SLICC LN study.

Table 3 shows the observed transition matrices for the eGFR and PU states in the SLICC
data. In general, there are fewer transitions between different states for eGFR than for PU at
two consecutive clinic visits. The numbers of patients in each state at the start of observation
are eGFR state 1, 504, eGFR state 2, 58, eGFR state 3, 6, and PU state 1, 244, PU state 2,
239, and PU state 3, 85, reflecting a range of disease severity at cohort entry across patients. We
now consider the multistate models that will be used for the modelling of these eGFR and PU
processes for the SLICC LN patient cohort.

Table 1. Clinical definitions of the eGFR and
PU states

State eGFR PU
(ml min−11.73 m−2) (g l−1 day−1)

1 > 60 < 0:25
2 30–60 0.25–3.0
3 < 30 > 3:0

Table 2. Example SLICC data for the eGFR
and PU states

ptno t (years) eGFR state PU state

001 0.00 1 2
001 1.14 1 2
001 2.17 2 2
001 3.05 2 3
:
:
:

:
:
:

:
:
:

:
:
:

002 0.00 1 1
002 1.54 1 1
002 2.97 1 2
:
:
:

:
:
:

:
:
:

:
:
:
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Table 3. Numbers of observed transitions for eGFR and PU states
between two consecutive clinic visits for the SLICC patients

From state Numbers of transitions to the following states:

eGFR state 1 eGFR state 2 eGFR state 3

eGFR state 1 2303 95 5
eGFR state 2 86 136 21
eGFR state 3 1 10 26

PU state 1 PU state 2 PU state 3

PU state 1 1167 257 20
PU state 2 355 547 56
PU state 3 45 85 59

3. Multistate models for eGFR and proteinuria

Movement by patients among the eGFR and PU states over time can be modelled by using
multistate models (Hanly et al., 2016). Fig. 1 shows a pair of multistate models for eGFR
and PU processes, with arrows showing permitted transitions between states. For each model,
transitions between states are governed by a 3×3 matrix of ‘transition intensities’ and, for each
model, the state space is {1, 2, 3} (since there are three states in each model). We define λrs.t/ and
μrs.t/ to be the state r to state s transition intensities for the eGFR and PU models respectively
(.r, s/∈{1, 2, 3}×{1, 2, 3}). Corresponding 3×3 matrices of transition intensities are denoted
Λ.t/ and M.t/ where the .r, s/ matrix entries are defined as λrs.t/ and μrs.t/ respectively.

In these multistate models, movements among eGFR and PU states are governed by under-
lying stochastic processes {XeGFR.t/} and {XPU.t/}, with corresponding filtrations FeGFR

t− and
FPU

t− on some time interval T ⊆ [0, ∞/. Then, the state r to state s transition intensities are
defined as

λrs.t|FeGFR
t− /= lim

δt↓0

1
δt

P{XeGFR.t + δt/= s|XeGFR.t/= r, FeGFR
t− }, .1/

μrs.t|FPU
t− /= lim

δt↓0

1
δt

P{XPU.t + δt/= s|XPU.t/= r, FPU
t− }: .2/

These transition intensities define the instantaneous rate of transition from eGFR or PU state
r to state s and these may depend generally on states occupied by the system in the past through
the dependence on FeGFR

t− or FPU
t− .

3.1. The Markov assumption
As in Hanly et al. (2016), we make the common assumption that eGFR or PU states represent
the states of two continuous time Markov chains. With this assumption, the future evolution of
the eGFR process depends only on the current eGFR state (and likewise for the PU process)
so that the dependences on past histories FeGFR

t− and FPU
t− may be removed from the transition

intensities (1) and (2). This allows a likelihood function to be formulated easily for model fitting
and facilitates calculations, such as times spent in states and predicted transition paths over
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(a)

(b)

Fig. 1. Diagram showing the paired multistate models for (a) the eGFR and (b) the PU processes:!, ,
possible transitions between states of the models

time. To fit the multistate models for eGFR and PU, we consider the state r to state s transition
probabilities, i.e., for some time t2 > t1, the probability that the eGFR or PU process is in state
s at time t2, conditionally on that process having been in state r at time t1, denoted

peGFR
rs .t1, t2/=P{XeGFR.t2/= s|XeGFR.t1/= r};

pPU
rs .t1, t2/=P{XPU.t2/= s|XPU.t1/= r}:

We then make an additional assumption that these Markov multistate models are time homo-
geneous, where a transition probability between times t1 and t2 depends on the length of the
time interval t2 − t1 rather than the specific time values .t1, t2/. As such, transition intensity ma-
trices may be considered constant within a given time interval. For example, in an interval [0, t/

we may define the eGFR and PU transition intensity matrices as Λ and M, with corresponding
transition intensity matrices at time t given by exp.Λt/ and exp.Mt/ respectively (Jackson, 2011).
Here ‘exp’ denotes the matrix exponential for square matrices such that, for a square matrix A,

exp.A/=
∞∑

k=0

Ak

k!
:

R packages (R Development Core Team, 2008), e.g. mstate (Putter et al., 2006) and msm
(Jackson, 2011), may be used to fit separate, uncorrelated, models for the eGFR and PU pro-
cesses. As discussed in Section 1, in this paper we aim to introduce subject level random effects
into this general multistate modelling framework, that includes reversible multistate models, to
relax the Markov assumption, to reflect patient level heterogeneity better and to account for
correlation between multiple processes.

3.2. Inclusion of random effects
We have defined two matrices that contain transition intensity parameters for each of the eGFR
and PU processes, Λ.t/ and M.t/, where the .r, s/ element of the corresponding matrix denotes
the eGFR or PU state r to state s transition intensity at time t. Assuming that there are N

subjects in the data (for the SLICC data N =568), then for each subject we define an RE Ui (for
i∈{1, : : : , N}), where Ui could be interpreted as an underlying propensity of the ith subject to
move through the states of the models over time. Here, Ui is a continuous random variable with
support on .0, ∞/.

In addition, we may define bijective functions of Ui with the form g
.j/
rs .Ui/

g.j/
rs : Ui �→ [0, ∞/, j ∈{1, 2}:
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For simplicity of notation, j = 1 refers to the eGFR model and j = 2 refers to the PU model.
Then, multiplying the .r, s/ element of Λ.t/, λrs.t/, by g

.1/
rs .Ui/, we form a set of subject-specific

transition intensities

λrs.Ui, t/=g.1/
rs .Ui/λrs.t/

such that the subject-specific transition intensity matrix for the eGFR process is

Λ.t|Ui/=
(−λ12.Ui, t/ λ12.Ui, t/ 0

λ21.Ui, t/ −λ21.Ui, t/−λ23.Ui, t/ λ23.Ui, t/

0 λ32.Ui, t/ −λ32.Ui, t/

)
:

Similarly, we can specify

μrs.Ui, t/=g.2/
rs .Ui/μrs.t/

such that the subject-specific transition intensity matrix for the PU process is

M.t|Ui/=
(−μ12.Ui, t/ μ12.Ui, t/ 0

μ21.Ui, t/ −μ21.Ui, t/−μ23.Ui, t/ μ23.Ui, t/

0 μ32.Ui, t/ −μ32.Ui, t/

)
:

g
.j/
rs .Ui/ can differ between the two processes and/or specific transitions, which enables a flexible

approach to incorporating the subject-specific RE into the transition intensities. For example, it
is probably sensible to assume that the SLICC patients who had higher deterioration transition
intensities to move into more severe eGFR states (from state 1 to 2, and from state 2 to 3)
were less likely to improve by moving from state 3 to state 2 or from state 2 to state 1. In
other words, they tended to have lower improvement transition intensities. Therefore, we could
specify g

.1/
rs .Ui/ to reflect such an inverse relationship between subject-specific deterioration and

improvement transition intensities.
Incorporation of REs Ui introduces both within-subject correlation over time for each indi-

vidual process and the within-subject correlation across the two processes at fixed time points.
This first correlation is useful to account for the remaining serial correlation after taking the
Markov assumption for individual processes, whereas the second correlation, which is arguably
more important, is reflecting the association of the eGFR and PU processes that is induced by
the underlying renal function of the patients. In addition, as with other mixed effects models,
the inclusion of REs accounts for unobserved heterogeneity between patients. This could be
important when comparing this class of models with those without REs, especially if included
explanatory variables have not truly reflected differences in the outcome processes between
patients or differences in the number of observations made per patient.

In the next section, we outline the models that will be considered for the SLICC LN data by
highlighting the different forms of g

.1/
rs .Ui/ and g

.2/
rs .Ui/ for REs. Throughout, for simplicity of

notation, we assume that the fixed effects part of the transition intensity is time homogeneous, i.e.

λrs.t/=λrs,

μrs.t/=μrs:

3.3. Different forms of random effects
3.3.1. Model without random effects
First, a multistate model without REs can be used to model the eGFR and PU processes
separately. Here we set g

.1/
rs .Ui/ = g

.2/
rs .Ui/ = 1 and transition intensities for the eGFR and PU



Correlated Multistate Models for Multiple Processes 7

processes are given by λrs.Ui/ = λrs and μrs.Ui/ = μrs respectively. As discussed earlier, this
model does not take into account the correlation between the eGFR and PU processes and the
Markov assumption might not be sufficient to account for all within-subject serial correlations
for each of the two processes.

3.3.2. Simple random-effects model
Simple REs can be incorporated such that Ui acts multiplicatively in the same manner on each
baseline transition intensity by choosing g

.1/
rs .Ui/=Ui and g

.2/
rs .Ui/=Ui. This simple RE model

can be useful to characterize the phenomenon that the patients who had higher deterioration
transition intensities would also have higher improvement intensities, i.e. patients were homo-
geneous in terms of how quickly they moved between states.

3.3.3. Inverse random-effects model
As mentioned earlier, there could be an inverse relationship between subject-specific deteriora-
tion and improvement transition intensities. Therefore, in the inverse RE model, we assume that
the RE Ui acts differently on deterioration and improvement transition intensities. Specifically,
Ui acts multiplicatively on deterioration transitions, whereas the inverse 1=Ui acts multiplica-
tively on improvement transitions, i.e. for r ∈{1, 2}

λr,r+1.Ui/=Uiλr,r+1,

λr+1,r.Ui/= 1
Ui

λr+1,r,

μr,r+1.Ui/=Uiμr,r+1,

μr+1,r.Ui/= 1
Ui

μr+1,r:

Here g
.1/
r,r+1.Ui/=Ui and g

.2/
r,r+1.Ui/=Ui, whereas g

.1/
r+1,r.Ui/=1=Ui and g

.2/
r+1,r.Ui/=1=Ui.

3.3.4. Power inverse random-effects model
It is very possible that the RE acts on the eGFR and PU processes through the same functional
forms but with different variabilities on the log-scale. Therefore, we relax the assumption in the
inverse RE model and introduce the power inverse RE model, where a power transformation
indexed by a new parameter α is applied to the RE when incorporated in the model for the PU
process. Specifically, we choose g

.1/
r,r+1.Ui/=Ui and g

.2/
r,r+1.Ui/=Uα

i , and g
.1/
r+1,r.Ui/=1=Ui and

g
.2/
r+1,r.Ui/=1=Uα

i for r ∈{1, 2}. Note that the parameter α∈R needs to be estimated.

3.3.5. Separate random-effects model
Finally, we could ignore the correlation between the eGFR and PU processes, and fit sepa-
rate inverse RE models to the two processes. Specifically, for each patient we define two in-
dependent REs U

.1/
i and U

.2/
i (i ∈ {1, : : : , N}). For r ∈ {1, 2}, we choose g

.1/
r,r+1.Ui/ = U

.1/
i and

g
.2/
r,r+1.Ui/=U

.2/
i , and g

.1/
r+1,r.Ui/=1=U

.1/
i and g

.2/
r+1,r.Ui/=1=U

.2/
i . As discussed earlier, ignoring

the correlation between the eGFR and PU processes that is introduced by the underlying renal
function may not be desirable. In Section 5, we shall compare the results from different RE mod-
els fitted to the SLICC LN data and examine the model likelihoods as well as the corresponding
empirical Bayes estimates of REs to evaluate the plausibility of different models based on the
evidence from observed data.
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4. Likelihood and estimation

4.1. Likelihood function
In the SLICC LN data, we have measurements over time on the eGFR and PU processes for
each of 568 patients. We denote ti = .ti1, : : : , tini /

T to be the discrete time points at which the
eGFR and PU states are recorded for the ith patient (with ni > 1). Let λ and μ be the vectors
of fixed baseline transition intensities for the eGFR and PU processes, where

λ= .λ12, λ21, λ23, λ32/T ,

μ= .μ12, μ21, μ23, μ32/T :

In addition, we assume that the distribution of the RE of the ith patient is parameterized
by θ with probability density function fUi.ui, θ/. In this paper, we shall assume that Ui has a
Γ.1=θ, 1=θ/ distribution for some θ > 0, which is a common choice for a frailty distribution in
survival models (Clayton, 1978; Vaupel et al., 1979; Oakes, 1982; Henderson and Shimakura,
2003). Let φ= .λ, μ/T denote the collection of parameters that need to be estimated.

For each subject, we consider the states of each multistate model in continuous time as states of
a Markov chain. The movement between states over time may be represented diagrammatically
as a transition path of the form

X
.j/
i .ti1/→: : :→X

.j/
i .tini /

where X
.j/
i .t/ is the random variable that is the state, for the ith patient in the jth multistate

model (j = 1, eGFR model; j = 2, PU model) at time t. Under the Markov assumption, the
probability of observing a particular transition path .x

.j/
i .ti1/, : : : , x

.j/
i .tini // in the jth multistate

model, for the ith subject, is

ni−1∏
k=1

P{X
.j/
i .tik+1/=x

.j/
i .tik+1/|X.j/

i .tik/=x
.j/
i .tik/, φ, ui}:

The joint likelihood for the ith patient for both the eGFR and the PU processes, given the RE
ui, can be written as

Li.φ|ti, ui/=
2∏

j=1

ni−1∏
k=1

P{X
.j/
i .tik+1/=x

.j/
i .tik+1/|X.j/

i .tik/=x
.j/
i .tik/, φ, ui}: .3/

The inclusion of ui allows a dependence between probabilities in the product (3). Integrating
over the RE distribution, the overall contribution to the model likelihood function, from the
ith patient, is

Li.φ, θ|ti/=
∫ ∞

0
Li.φ|ti, ui/fUi.ui, θ/dui: .4/

Finally, the likelihood function to be maximized for estimation is

L.φ, θ|t/=
N∏

i=1
Li.φ, θ|ti/ .5/

where t = .tT
1 , : : : , tT

N/T.

4.2. Estimation
The maximization of the likelihood function requires integration with respect to the RE ui. For
some multistate models, usually where the state space is small and all states of the model are
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transient, it may be possible to perform this integration analytically. However, in general, it is
necessary to use numerical integration to evaluate equation (4), especially in reversible multistate
models.

To compute and maximize the likelihood function (5), we used the statistical software R (R
Development Core Team, 2008). In particular, the msm package (Jackson, 2011) was used to
compute the contributions from single subjects to the model likelihood function, given the REs
ui (i.e. the expressions in equation (3)). Numerical integration in equation (4) was performed by
using the integrate command. We considered a gamma-distributed RE and, when perform-
ing numerical integration, we transformed the RE by defining vi = exp.−ui/ so that numerical
integration could be performed over .0, 1] rather than [0, ∞/, making the numerical integration
step easier to implement.

Maximum likelihood estimates for model parameters, together with a numerically derived
Hessian matrix, were obtained by using the Broyden–Fletcher–Goldfarb–Shanno optimization
method (Broyden, 1970), implemented by using the optim command. The speed of the com-
putation process is increased through the use of multicore programming via the parallel
package. An outline of the R code that was used for the maximization of the likelihood func-
tion is provided in the on-line supporting information for this paper. In the next section, we
fit previously described multistate models to the SLICC LN data and compare the inferences
concerning the eGFR and PU processes over time in the SLICC LN patients.

5. Modelling renal disease progression in systemic lupus erythematosus patients

Using the models that were described in Section 3, we analysed the SLICC LN data and examined
the bidirectional change over time in the eGFR and PU processes.

5.1. Model comparison
Table 4 summarizes estimated transition intensities as well as variance component estimates for
REs from various fitted models.

It is not surprising that the transition intensities from the marginal model without REs are all
smaller than those from the models with REs, because of the attenuation of marginal transition
intensities in a similar manner to the difference between marginal and conditional covariate
effects in the longitudinal data analysis literature (Diggle et al., 2002). There is a marked increase
in the maximized log-likelihood between the marginal model and all RE models, which suggests
that the introduction of REs into the multistate models leads to a better fit to the SLICC LN data.

Among the RE models, the inverse and power inverse RE models have the largest maximized
likelihoods (−2367:93 and −2367:46 respectively) and smallest Akaike’s information criterion
values. This suggests that the assumption of the inverse relationship between the deterioration
and improvement transition intensities is better supported by the data. Moreover, the improve-
ment of the fits of both inverse RE models compared with the separate RE model also indicates
that there is evidence of underlying correlation between the eGFR and PU processes.

The power inverse RE model is an extended version of the inverse RE model, where the RE on
the PU part of the model has the form Uα

i . In Table 4 we see that the estimate of α is 1.221 with
corresponding 95% confidence interval (0.733, 1.708), which implies that α = 1 is a plausible
value. This is also supported by the very similar maximized log-likelihoods from these two mod-
els. As a result, it is reasonable to assume that REs are not acting differently on the log-scale for
the eGFR and PU processes. The transition intensity estimates and associated 95% confidence
intervals are also very similar when comparing the inverse RE and power inverse RE models.
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Table 4. Estimated transition intensities (with corresponding 95% confidence intervals), variance component
estimates for REs, maximized likelihood and Akaike information criterion values from fitted models for the
SLICC LN data

Parameter Results for the following models:

Marginal Simple RE Inverse RE Power inverse RE Separate RE

eGFR parameters λ12 0.051 0.058 0.053 0.052 0.068
(0.041, 0.062) (0.046, 0.074) (0.042, 0.066) (0.042, 0.065) (0.041, 0.112)

λ21 0.461 0.558 0.496 0.493 0.682
(0.371, 0.573) (0.421, 0.741) (0.380, 0.649) (0.382, 0.637) (0.361, 1.288)

λ23 0.112 0.134 0.073 0.079 0.052
(0.072, 0.174) (0.082, 0.221) (0.047, 0.116) (0.049, 0.126) (0.015, 0.181)

λ32 0.346 0.456 0.453 0.436 0.775
(0.183, 0.652) (0.212, 0.981) (0.216, 0.952) (0.212, 0.893) (0.231, 2.600)

PU parameters μ12 0.272 0.332 0.468 0.464 0.498
(0.239, 0.311) (0.277, 0.398) (0.385, 0.569) (0.381, 0.567) (0.401, 0.619)

μ21 0.565 0.679 0.653 0.687 0.682
(0.504, 0.632) (0.575, 0.801) (0.551, 0.773) (0.562, 0.839) (0.572, 0.814)

μ23 0.158 0.239 0.127 0.119 0.117
(0.120, 0.208) (0.165, 0.346) (0.091, 0.176) (0.083, 0.170) (0.084, 0.162)

μ32 1.224 1.916 2.111 2.291 2.063
(0.988, 1.517) (1.363, 2.693) (1.550, 2.877) (1.601, 3.278) (1.513, 2.814)

RE variance θ 0.462 0.549 0.415
(0.309, 0.690) (0.417, 0.722) (0.217, 0.793)

θ.1/ 1.213
(0.149, 9.850)

θ.2/ 0.599
(0.433, 0.830)

Power RE model α 1.221
parameter (0.733, 1.708)

Maximized log-likelihood −2448:96 −2418:42 −2367:93 −2367:46 −2382:88
Akaike information 4913.92 4854.84 4753.86 4754.92 4785.76
criterion value

For the separate RE model, that assumes independence between the eGFR and PU processes,
the PU transition intensity estimates .μ12, μ21, μ23, μ32/ and RE variance estimate θ.2/ are very
similar to the corresponding estimates in the inverse RE model. However, this is not so for the
eGFR transition intensity estimates .λ12, λ21, λ23, λ32/, which differ substantially from corres-
ponding estimates in the inverse RE model. This can probably be explained by the different
variance component estimates for the REs in the eGFR process. In the separate RE model, the
estimate of θ.1/ is 1.213 whereas in the inverse RE model the estimate of θ is 0.549. Therefore, the
eGFR transition intensity estimates and the corresponding confidence intervals in the separate
RE model are inflated by the larger estimate of θ.1/. In contrast, the variance component estimate
for the REs in the PU process, θ.2/, is 0.599, which is close to θ=0:549 in the inverse RE model.
Thus, the PU transition intensity estimates are similar between the two models. However, note
that the variance component θ.1/ also has very wide 95% confidence interval (0.149, 9.85),
probably because fewer transitions around the model space are observed for the eGFR process
than for the PU process (see Table 3). In addition, a likelihood ratio test comparing this separate
RE model with a separate RE model where the RE variances are constrained to be the same
leads to a χ2 test statistic of 2.10 on 1 degree of freedom. Hence there is insuficient evidence to
support different variances for the two RE distributions.
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Overall, for the inverse RE model the maximized log-likelihood value is greater and the Akaike
information criterion value is smaller when compared with the corresponding values for the
separate RE models. As a result, although parameter estimates—particularly for PU transition
parameters—do not differ substantially between these models, it is reasonable to assume that
there is a level of dependence between the eGFR and PU processes and that a model with shared
REs is preferable to either a model that includes separate REs or the marginal models (without
REs) for eGFR and PU when modelling these data.

5.2. Empirical Bayes estimates of random effects
To compare different RE models further, we examined the empirical Bayes estimates of the REs
from these models. The empirical Bayes estimates of the REs are given by

ûi =E.Ui|φ̂, θ̂/

=

∫ ∞

0
uifUi.ui, θ̂/Li.φ̂; ui, ti/dui∫ ∞

0
fUi.ui, θ̂/Li.φ̂; ui, ti/dui

:

Here Li.φ̂; ui, ti/ denotes the contribution to the model likelihood function from the ith patient
in the SLICC LN data, evaluated at the corresponding model parameter estimates φ̂. Fig.
2 shows histograms of the empirical Bayes estimates of the REs from each of the RE models
(simple RE, inverse RE, power inverse RE and separate RE). Corresponding summary statistics
are given in Table 5.

From Fig. 2 and Table 5, it is clear that the empirical Bayes estimates in the simple RE model,
which assumes that REs act in the same manner on forward and backward transitions, are less
variable than those in the inverse RE model. This is expected since the estimated RE variance
(Table 4) is higher for the inverse RE model than for the simple RE model. The empirical
Bayes estimates are very similar for the inverse RE and power inverse RE models. This is also
not surprising, given the similarity of the fits of these two models in Table 4. Finally, when
considering the separate RE model, Fig. 2 shows that the empirical Bayes estimates for the REs
in the PU process are very similar to the overall empirical Bayes estimates in both the inverse
and the power inverse RE models. In contrast, the histogram of empirical Bayes estimates for
the REs in the eGFR process in the separate RE model (Fig. 2(d)) has a very different shape in
which much of the mass occurs below 1 with much more right skewness. This suggests, consistent
with estimated RE variances for these separate models, that variability between patients for the

Table 5. Summary statistics of empirical Bayes estimates of the REs from the
fitted RE models

Model Mean Median Standard Minimum Maximum
deviation

Simple RE 1.00 0.96 0.33 0.19 2.58
Inverse RE 1.00 0.82 0.55 0.22 3.78
Power inverse RE 1.00 0.85 0.48 0.27 3.39
Separate RE: eGFR 1.00 0.79 0.62 0.27 3.90
Separate RE: PU 1.00 0.81 0.56 0.29 3.89
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Fig. 2. Histograms of the empirical Bayes estimates of the REs for the various RE models fitted to the
SLICC LN data: (a) simple RE; (b) inverse RE; (c) power inverse RE; (d) separate RE, eGFR; (e) separate
RE, PU

eGFR process is higher than for the PU process. However, as indicated earlier, the observed data
also support a common level of variability because of the limited information that is available
for the eGFR process.

Examining the data more closely, we find that, for the eGFR process, 451/568 patients (79.4%)
are observed to stay in their initial eGFR state during the entire study follow-up. Conversely,
for the PU process, 189/568 patients (33.3%) are observed to stay in their initial PU state at
all clinic visits. This implies that patients tended to move frequently with respect to PU states
rather than eGFR states, which was also noted in the recent analysis of the SLICC LN data
using marginal multistate models by Hanly et al. (2016).

As a further assessment of the level of within-subject correlation between the eGFR and
PU processes, Fig. 3 shows a scatter plot of the empirical Bayes estimates of the REs for the
separate RE eGFR and PU models. The Pearson estimate of linear correlation between these
empirical Bayes estimates was calculated as 0.282. Although Fig. 3 does not show an obvious
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Fig. 3. Scatter plot of the empirical Bayes estimates of the REs for the separate RE eGFR and PU models

linear relationship between the estimated REs for all subjects, there is a clear cluster of points
where smaller eGFR empirical Bayes RE estimates (typically values below 1) seem to coexist
with smaller PU empirical Bayes RE estimates (also values below 1). We note that these models
do not contain subject level explanatory variables and it is likely that, after the inclusion of extra
variables, the variability in the empirical Bayes estimates would be reduced. Overall, it seems
likely that there is a correlation between the eGFR and PU processes, in line with other results
seen in this work and in Hanly et al. (2016).

5.3. Time spent in states in a fixed time period
Following Hanly et al. (2016), we also estimated the expected time spent in each state (for both
eGFR and PU) over a fixed time period, which can feed into the subsequent economic modelling
of the SLICC LN data.

Because the inverse RE model provides the best fit among all models that are under con-
sideration, we shall use the fitted inverse RE model to generate the expected time spent in the
eGFR and PU states in a 5-year period. For comparison, we also provide the results based on
the marginal model, which was used in the analysis in Hanly et al. (2016).

On the basis of the fitted inverse RE model, we present two versions of the estimated expected
time in states. One is by conditioning on REs Ui =1, which can be interpreted by the estimated
expected time in eGFR and PU states for a typical patient in 5 years. Let X

.1/
i .t/= r denote the

current eGFR state for a given subject at time t. Conditionally on being in state r1, at time t1,
the expected time spent in the state r over the period of time from t1 to t1 +5 for a typical patient
with Ui =1 is given by ∫ t1+5

t1

P{X
.1/
i .t/= r|X.1/

i .t1/= r1, ui =1}dt:
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The second version is obtained by calculating∫ t1+5

t1

∫ ∞

0
P{X

.1/
i .t/= r|X.1/

i .t1/= r1, ui}fUi.ui; θ̂/dui dt:

This double integration can be performed by using the adaptIntegrate command in the R
package cubature (Narasimhan and Johnson, 2013). Alternatively, it can be done as follows:

(a) sample REs from the Γ.1=θ̂, 1=θ̂/ distribution given the point estimate θ̂,
(b) estimate the expected time in eGFR states given the sampled REs and
(c) calculate the sample averages of all expected times in the eGFR states across the RE

samples.

The first version can be considered as the conditional estimates, whereas the second version
is the marginal (population-averaged) estimates by averaging over the RE distribution. In this
sense, the second version can be compared with the estimates from the marginal model without
REs. Similar calculations can be done for the PU process as well.

Table 6 shows estimated times spent in the various states for eGFR and PU, conditional on
initial states over a 5-year period, calculated by using these methods and beginning at some
arbitrary time, owing to the assumption of time homogeneity (here, for specificity, t1 = 0).
Examining Table 6, we see that, for patients who start at eGFR state 1, the marginal expected
times in different eGFR states are similar for the inverse RE model and the marginal model.
However, for patients who start at eGFR states 2 and 3, they have longer expected times in
eGFR state 1 and shorter expected times in eGFR states 2 and 3 on the basis of the inverse RE
model than for the marginal model (for initial state 2: 3.10 versus 2.66 years spent in state 1, 1.61
versus 1.94 years spent in state 2 and 0.29 versus 0.40 years spent in state 3; for initial state 3, 2.07
versus 1.19 years spent in state 1, 1.08 versus 1.23 years spent in state 2 and 1.85 versus 2.58 years
spent in state 3). For the PU process, the expected times in the states are broadly similar between
the two models, although we also note that the inverse RE model provides longer expected time
in the PU state 1 when the initial state is 3 (2.52 versus 1.94 years).

Overall, the inverse RE model estimates suggest that patients were more likely to improve
over time in terms of eGFR, compared with the estimates from the marginal model without
REs. These results will lead to different cost estimates related to the eGFR states in the subse-
quent economic modelling, which suggests the significance in characterizing the heterogeneity
between patients and accounting for correlation when modelling multiple processes of renal
disease progression in SLE as developed in this paper. Indeed, for further health economic or
cost-effectiveness analysis, including REs in multistate models to reflect heterogeneity could
be advantageous in accounting for variation that is induced by this heterogeneity when com-
pared with marginal models. This is in line with other approaches that incorporate uncertainty
and patient level heterogeneity in such multistate models, e.g. model averaging (Jackson et al.,
2009), probabilistic sensitivity analysis (Baio and Dawid, 2015) or Bayesian approaches (Baio,
2012).

Examination of the expected occupancy times for combinations of eGFR and PU states can
also be done. Let .X

.1/
i .t/, X

.2/
i .t// = .r, s/ denote the current joint eGFR and PU state for a

given subject at time t. Conditionally on being in state .r1, s1/ at time t1, the expected time spent
in the state .r, s/ over the period of time from t1 to t1 +5 is given by∫ t1+5

t1

P{X
.1/
i .t/= r|X.1/

i .t1/= r1}P{X
.2/
i .t/= s|X.2/

i .t1/= s1}dt

from the marginal model and
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Table 6. Expected times spent in each of the eGFR and PU states,
conditionally on the starting state over a 5-year period

Starting state Expected time (years) spent in the following
states:

eGFR state 1 eGFR state 2 eGFR state 3

Marginal model (without REs)
eGFR state 1 4.67 0.29 0.04
eGFR state 2 2.66 1.94 0.40
eGFR state 3 1.19 1.23 2.58

PU state 1 PU state 2 PU state 3

PU state 1 3.70 1.18 0.12
PU state 2 2.44 2.30 0.26
PU state 3 1.94 2.02 1.04

eGFR state 1 eGFR state 2 eGFR state 3

Conditional on Ui =1
eGFR state 1 4.67 0.30 0.03
eGFR state 2 2.85 1.93 0.23
eGFR state 3 1.50 1.39 2.11

PU state 1 PU state 2 PU state 3

PU state 1 3.24 1.67 0.09
PU state 2 2.33 2.53 0.14
PU state 3 2.06 2.34 0.60

eGFR state 1 eGFR state 2 eGFR state 3

Marginal—averaged over RE distribution
eGFR state 1 4.65 0.30 0.05
eGFR state 2 3.10 1.61 0.29
eGFR state 3 2.07 1.08 1.85

PU state 1 PU state 2 PU state 3

PU state 1 3.44 1.39 0.17
PU state 2 2.72 2.05 0.23
PU state 3 2.52 1.83 0.65

∫ t1+5

t1

∫ ∞

0
P{X

.1/
i .t/= r|X.1/

i .t1/= r1, ui}P{X
.2/
i .t/= s|X.2/

i .t1/= s1, ui}fUi.ui; θ̂/dui dt

from the inverse RE model. This double integration was performed by using the adaptInteg
rate command in the R package cubature (Narasimhan and Johnson, 2013).

Table 7 presents estimated expected times for the combined states based on the marginal
model and the inverse RE model. In contrast with the expected times for each process separately
(Table 6), estimating the time spent in the joint eGFR and PU state can lead to more detailed
cost comparisons when the costs can be further categorized on the basis of the joint eGFR and
PU state (Williams et al., 2017). This highlights the flexibility of our joint modelling approach
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Table 7. Expected times spent in each of the joint eGFR and PU states, conditionally on
the starting state over a 5-year period

Starting state Expected time (years) spent in the following states (r,s) over a 5-year period:

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

Marginal model (without REs)
(1, 1) 3.47 1.09 0.11 0.21 0.08 0.01 0.03 0.01 0.00
(1, 2) 2.26 2.17 0.24 0.16 0.12 0.02 0.02 0.02 0.00
(1, 3) 1.78 1.88 1.00 0.14 0.12 0.04 0.02 0.02 0.00
(2, 1) 1.88 0.71 0.08 1.54 0.37 0.03 0.29 0.10 0.01
(2, 2) 1.46 1.06 0.14 0.77 1.07 0.10 0.21 0.17 0.02
(2, 3) 1.23 1.09 0.34 0.54 0.76 0.64 0.17 0.17 0.06
(3, 1) 0.82 0.34 0.04 0.88 0.31 0.03 2.00 0.53 0.05
(3, 2) 0.69 0.43 0.06 0.65 0.51 0.07 1.10 1.35 0.13
(3, 3) 0.61 0.47 0.11 0.53 0.52 0.19 0.80 1.03 0.75

Inverse RE model (averaged over RE distribution)
(1, 1) 3.30 1.22 0.13 0.13 0.14 0.03 0.01 0.03 0.01
(1, 2) 2.60 1.87 0.19 0.11 0.16 0.03 0.01 0.03 0.01
(1, 3) 2.41 1.65 0.59 0.10 0.15 0.05 0.01 0.03 0.01
(2, 1) 2.30 0.74 0.07 1.03 0.51 0.07 0.11 0.14 0.03
(2, 2) 2.09 0.93 0.08 0.55 0.96 0.10 0.08 0.16 0.04
(2, 3) 2.01 0.94 0.15 0.43 0.74 0.43 0.07 0.15 0.06
(3, 1) 1.64 0.40 0.03 0.67 0.36 0.04 1.14 0.62 0.10
(3, 2) 1.57 0.46 0.03 0.54 0.49 0.06 0.61 1.10 0.14
(3, 3) 1.54 0.48 0.05 0.48 0.48 0.11 0.49 0.87 0.49

as expected times spent in both joint and marginal (individual) states over a given period can be
obtained to inform cost analyses. We also note that other common measures that are considered
when fitting multistate Markov models, such as expected first-passage times, expected number
of visits to a particular state within a given time period and mean sojourn times, can be easily
computed within our modelling framework.

5.4. Further examination of the eGFR and PU processes
As a further comparison and examination of the relationship between the eGFR and PU pro-
cesses, we fitted an inverse RE multistate model for the eGFR process, but with the PU state as
an explanatory variable acting on eGFR transitions. Likewise, an inverse RE multistate model
for the PU process was fitted with the eGFR state as an explanatory variable. The results from
these fitted models are shown in Table 8.

In Table 8, for the eGFR model we see that deterioration transitions (eGFR state 1 → eGFR
state 2 and eGFR state 2 → eGFR state 3) occur at a faster rate for subjects in higher PU states.
Specifically, the estimated eGFR state 1 → eGFR state 2 transition intensities are, on average,
exp.0:928/=2:53 and exp.1:556/=4:74 times higher for subjects in PU state 2 and PU state 3
respectively, when compared with those in PU state 1. Similarly, the estimated eGFR state 2
→ eGFR state 3 transition intensities are, on average, exp.1:581/=4:86 and exp.2:401/=11:03
times higher for subjects in PU state 2 and PU state 3. The estimated log-intensity ratios do not
suggest significant differences between subjects in different PU states on improvement eGFR
state transitions.

In contrast, the log-intensity ratio estimates for the effect of eGFR state on the model for
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Table 8. Estimated transition intensities, RE variance and log-intensity
explanatory variable effect estimates for eGFR and PU inverse RE multi-
state models with PU and eGFR states (respectively) acting as explanatory
variables on model transition intensities

Base transition intensity Estimate (95% confidence interval)

eGFR inverse RE model with PU states as explanatory variables
λ12 0.035 (0.024, 0.050)
λ21 0.666 (0.437, 1.014)
λ23 0.016 (0.008, 0.030)
λ32 0.383 (0.104, 1.419)

Log-intensity ratio
PU state 2 on eGFR 1 → eGFR 2 0.928 (0.493, 1.364)
PU state 3 on eGFR 1 → eGFR 2 1.556 (0.890, 2.221)
PU state 2 on eGFR 2 → eGFR 1 −0:139 (−0:682, 0.405)
PU state 3 on eGFR 2 → eGFR 1 −0:141 (−1:012, 0.730)
PU state 2 on eGFR 2 → eGFR 3 1.581 (0.885, 2.277)
PU state 3 on eGFR 2 → eGFR 3 2.401 (1.354, 3.447)
PU state 2 on eGFR 3 → eGFR 2 0.913 (−0:554, 2.379)
PU state 3 on eGFR 3 → eGFR 2 0.266 (−1:897, 2.429)

RE variance θ.1/ 0.800 (0.710, 0.901)

PU inverse RE model with eGFR states as explanatory variables
μ12 0.478 (0.383, 0.598)
μ21 0.688 (0.572, 0.827)
μ23 0.126 (0.089, 0.178)
μ32 2.121 (1.508, 2.983)

Log-intensity ratio
eGFR state 2 on PU 1 → PU 2 0.255 (−0:396, 0.905)
eGFR state 3 on PU 1 → PU 2 1.856 (−2:308, 6.019)
eGFR state 2 on PU 2 → PU 1 −0:132 (−0:665, 0.402)
eGFR state 3 on PU 2 → PU 1 1.498 (−2:683, 5.680)
eGFR state 2 on PU 2 → PU 3 −1:293 (−2:550, −0:036)
eGFR state 3 on PU 2 → PU 3 1.655 (−2:003, 5.313)
eGFR state 2 on PU 3 → PU 2 −0:215 (−0:883, 0.453)
eGFR state 3 on PU 3 → PU 2 0.114 (−3:825, 4.053)

RE variance θ.2/ 0.587 (0.428, 0.806)

PU do not suggest that the eGFR state is significantly associated with PU state transitions. We
note that the baseline PU state transition intensity estimates .μ12, μ21, μ23, μ32/T in Table 8 are
similar to those given in the separate RE model in Table 4. This may be expected since, for
most subjects, the eGFR process is less variable over time when compared with the PU process.
Therefore there are fewer changes in the eGFR state explanatory variable and less power to detect
its relationship with the PU process. In addition, in these separate models dynamic covariates
are assumed to be piecewise constant over time, which reflects a lagged relationship between the
processes, whereas, in our joint model, the common RE reflects a cross-sectional correlation.
Overall, consistent with the findings in Hanly et al. (2016), there is some evidence to suggest that
the PU and eGFR processes are associated after accounting for other patients’ heterogeneities.

6. Discussion

In this paper, motivated by the application of modelling renal disease progression in patients with
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LN, we have developed methodology using subject-specific REs for correlated multistate models
of multiple processes in continuous time. Data on related but different multiple processes are fre-
quently collected in longitudinal studies but, within the multistate model framework, relatively
little progress has been made on the use of REs to model such multiple processes, particularly
for reversible processes. Motivated by the SLICC LN data, we developed multistate models with
various forms of subject-specific REs for a pair of processes. This could be generalized to more
than two processes and also to situations where the models are of different forms and do not
contain the same numbers of states or transition patterns.

We have explored four different RE multistate models in the context of the SLICC LN data.
When possible, the choice of forms of REs should be guided by the substantive knowledge re-
garding the disease processes of interest. In addition, the evidence based on the model likelihood
and information criteria such as the Akaike information criterion and the Bayesian information
criterion can be used for model selection.

A primary motivation for our work is to provide expected times in the eGFR and PU states
in a fixed time period and to feed into subsequent economic modelling. Simple methods for
calculating expected lengths of stay in various states are not applicable when dynamic covariates
are included in the multistate modelling and, as such, much of the work in this paper was focused
on models that did not explore associations between explanatory variables and renal disease
progression, as was done in the clinical work of Hanly et al. (2016). However, in Section 5.4, we
fitted two reversible multistate models that included dynamic explanatory variables to explore
possible correlations between the eGFR and PU processes further. This also demonstrated that
patient level and time varying explanatory variables can be easily incorporated in our modelling
framework, as in standard multistate models without REs. We note that the computational time
will be significantly longer when a large number of explanatory variables are included in the
multistate models with REs. This is a common challenge which is shared by different non-linear
models with REs in the literature. For multistate models particularly, care should be taken to
ensure that the correlated models do not contain a large number of states, which introduces many
parameters to be estimated. In addition, effects of explanatory variables could be constrained
to be the same for different transitions if appropriate. We note that the numerical integration
approach that we took for estimation may make it difficult to include more than one RE per
patient, although different forms of a single RE are allowed as in this paper. In addition, the
use of one RE for each patient facilitates the fitting of correlated multistate models to many
processes by using our approach, where higher dimensional multivariate RE distributions may
be difficult to consider computationally. This computational challenge is shared by other joint
models for longitudinal data with REs (Rizopoulos, 2012).

The models that were considered in this paper can be implemented by using bespoke code run
in standard statistical software and the code could easily be extended to other longitudinal or
panel studies where multistate models accounting for subject heterogeneity are desirable given
the context.

Acknowledgements

We thank the Associate Editor and the referee for helpful comments and suggestions. LS and
VTF were supported by the Medical Research Council (Unit programme number U105261167).
We thank the SLICC group for permission to use their data.

References

Aalen, O. O. (1987) Mixing distributions on a Markov Chain. Scand. J. Statist., 14, 281–289.



Correlated Multistate Models for Multiple Processes 19

Aalen, O. O. (1988) Heterogeneity in survival analysis. Statist. Med., 7, 1121–1137.
Andersen, P. K. and Keiding, N. (2002) Multi-state models for event history analysis. Statist. Meth. Med. Res.,

11, 91–115.
Baio, G. (2012) Bayesian Methods in Health Economics, 1st edn. Boca Raton: CRC Press.
Baio, G. and Dawid, A. P. (2015) Probabilistic sensitivity analysis in health economics. Statist. Meth. Med. Res.,

24, 615–634.
Barber, M. R. W., Hanly, J. G., Su, L., Urowitz, M. B., Pierre, Y. S., Romero-Diaz, J., Gordon, C., Bae, S.-C.,

Bernatsky, S., Wallace, D. J., Isenberg, D. A., Rahman, A., Ginzler, E. M., Petri, M., Bruce, I. N., Fortin, P.
R., Gladman, D. D., Sanchez-Guerrero, J., Ramsey-Goldman, R., Khamashta, M. A., Aranow, C.., Mackay,
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