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Abstract

Recent technical developments in microbiology have led to new
discoveries on the within-host dynamics of bacterial infections in lab-
oratory animals. In particular, they have highlighted the importance
of stochastic bottlenecks at the onset of invasive disease.

A number of approaches exist for bottleneck-size estimation with
respect to within-host bacterial infections; however, some are more ap-
propriate than others under certain circumstances. A Bayesian com-
parison of several approaches is made in terms of the availability of
isogenic multitype bacteria (e.g., WITS), knowledge of post-bottleneck
dynamics, and the suitability of dilution with monotype bacteria. A
sampling approach to bottleneck-size estimation is also introduced.

The results are summarised by a guiding flowchart, which we hope
will promote the use of quantitative models in microbiology to refine
the analysis of animal experiment data.
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1 Introduction

The outcome of an infection process is usually underlain by a fine balance
between the virulence mechanisms of the pathogen and the resistance of the
host. The presence of physical, immunological or therapeutic barriers poses
constraints to the ability of bacteria to divide and disseminate within the host
organism. Suppose that we have a population P0 of bacteria. When a subset
of P0 is inactivated by an antibiotic or an immune response, or subject to an
anatomical barrier to transmission, this can result in a substantially smaller
population P1 (commonly known as a bottleneck) and, after the occurrence
of the bottleneck, the bacteria of P1 can grow to form a new population P2.

Understanding the site, nature and size of bottlenecks in infectious dis-
ease processes is important to rationally design prevention strategies and
treatments to control the spread of the infection within a given host. In
fact, classes of vaccines and therapeutic compounds differ significantly in
how they restrain an infection process with respect to the control, for exam-
ple, of microbial killing or division rates and the spread within and between
organs.

The inability to monitor bacterial dynamics in real time within a liv-
ing host hindered the detection of bottlenecks (and more generally, a proper
quantification of infection dynamics) throughout the 20th century (Smith,
2000). This has changed dramatically with the development of genetic en-
gineering technology allowing the identification of multiple sub-populations
of bacteria in the last 15 years. In particular, bottlenecks have been the
focus of a number of articles, and Abel et al. (2015) provide a biologically
motivated introduction to bottlenecks. Specific experimental studies that
have shown bottlenecks using isogenic tagged strains include Grant et al.
(2008) in the early stage of salmonellosis in mice, Schwartz et al. (2011) in
urinary tract Escherichia coli infection in mice, Lowe et al. (2013) during
Bacillus anthracis colonisation in mice, Kaiser et al. (2014) with Salmonella

Typhimurium crossing the intestinal barrier in mice, Lim et al. (2014) also
with Salmonella, Gerlini et al. (2014) and Kono et al. (2016) with invasive
Streptococcus pneumoniae, and Abel et al. (2015) with Vibrio cholerae in the
intestinal tract. However, in spite of the number of studies that have been
conducted involving within-host bacterial bottlenecks, there has not been a
unified study of the various analytical methods used for tagged/multitype
experimental studies, which is the motivation of this study.

Table 1 lists the symbols used in this article, and Figure 2 provides an
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overview of the various methods described.

[Table 1 about here.]

2 Monotype populations

2.1 Posterior bottleneck distributions

Of interest is estimating the size of a bottleneck given observations made
after the bottleneck, and possibly also before it, in a Bayesian framework.
This can be expressed as the posterior probabilities

p(bottleneck size|observation after bottleneck) (1)

and

p(bottleneck size|observation before bottleneck &

observation after bottleneck) . (2)

The benefit of taking the Bayesian approach of using posterior probability
distributions is that such distributions not only give estimates for the most
probable bottleneck sizes (in terms of the modes of the distribution) but they
also express the uncertainty through the variance of the distributions.

[Figure 1 about here.]

Abel et al. (2015) estimated bottleneck size with respect to multitype
populations by equating it to the effective population size as estimated by
Krimbas and Tsakas (1971), which uses the standardised covariance of allele
frequency due to a bottleneck. Although Abel et al. found this approach
successful in the context of the within-host dynamics of Vibro cholera, both
Pamilo and Varvio-Aho (1980) and Sourdis and Krimbas (1980) caution that
bottleneck-size estimation by the Krimbas-Tsakas method can be unreliable
unless sample size is sufficiently large.

Let n1 be the size of a bottleneck P1 and n2 the size of a post-bottleneck
population P2 after it (Figure 1). For the posterior distribution p(n1|n2),
Bayes’ theorem gives

p(n1|n2) ∝ p(n1)p(n2|n1) ,
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and if we assume that the priors p(n1) are equally likely we then have the
expression

p(n1|n2) =
p(n2|n1)∑
n1
p(n2|n1)

. (3)

Consider p(n2|n1) for (3). Suppose that we can simulate the occurrence of
n2 resulting stochastically from n1 after time interval ∆t (Figure 1) according
to a set of parameters θ for the dynamics; for example, in the context of the
birth-death-migration process shown in Figure 5 (Grant et al., 2008; Kaiser
et al., 2014; Coward et al., 2014; Dybowski et al., 2015). Such a simulation
can be achieved by a Gillespie stochastic simulation algorithm (Gillespie,
1997). If we obtain a finite number of such simulations,

(n2)1, (n2)2, . . . , (n2)m
i.i.d
∼ Gillespie(n1,∆t, θ) ,

our task is then to estimate the probability mass function p(n2|n1, θ) from
{(n2)1, (n2)2, . . . , (n2)m}, which can then be used for (3).

Estimating p(n2|·, ·) from the sparse sample {(n2)1, (n2)2, . . . , (n2)m} can
be attempted using local polynomial smoothing (Simonoff, 1996). A recent
development in this area is the local polynomial smoothing proposed by Jacob
and Oliveira (2011), which is effective for small sample sizes.

Let ω = {(n2)1, (n2)2, . . . , (n2)m}, and let the values of ω be placed in k
successive cells C1, . . . , Ck, with all occurrences of min(ω) being placed in cell
C1, all occurrences of min(ω)+1 in cell C2, ..., and all occurrences of max(ω)
in Ck. The aim is to estimate the true cell probability πl for each cell Cl based
on the finite observations ω. A straightforward estimator of πl is, of course,
the relative frequency Nl/m, where Nl is the number of values occupying cell
Cl; however, using local polynomials of degree d, a more accurate estimation
due to smoothing is provided by Jacob and Oliveira (2011):

π̂l(d) =
1

kh

k∑

j=1

Ll,d

(
xj − xl
h

)
Nj

m
, (4)

where Ll,d(·) is the local d-degree polynomial estimator for the probability of
cell Cl, and xj = (j−1/2)/k for j = 1, . . . , k. Based on the work by Ruppert
and Wand (1994) on locally weighted regression, Aerts et al. (1997a, 1997b)
express Ll,d(·) by

Ll,d(u) =

∣∣Ml,d(u)
∣∣

∣∣Nl,d

∣∣ K(u) ,
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where | · | is the determinant, with Nl,d the (d+ 1)× (d + 1)-matrix having
the (r, s) entry given by

(Nl,d)r,s =
1

kh

k∑

i=1

(
xi − xl
h

)r+s−2

K

(
xi − xl
h

)
.

The matrix Ml,d(u) is the same as Nl,d, but with the first column replaced
by (1, u, . . . , ud)T . The width of density function K(·) is controlled by h.

Both this technique for local polynomial smoothing and Gillespie sim-
ulation were used in Algorithm 1 for the estimation of p(n1|n2), and the
relationship between this approach and the other strategies we describe is
shown by Box A of Figure 2. Note that the implementation of Algorithm
1 assumes that the values within θ are the same across all the bacteria of a
bottleneck.

[Figure 2 about here.]

Algorithm 1 Estimation of p(n1|n2).

Input: Post-bottleneck population size n2, and Gillespie simulation param-
eters ∆t and θ.

Output: An estimate of p(n1|n2) for n1 = 1, . . . , n
max

(n
max
≤ n2).

1: posts← [ ]
2: for n1 ∈ {1, . . . , nmax

} do

3: {(n2)j}j=1,...,100
i.i.d
∼ Gillespie(n1,∆t, θ)

4: get estimate p̂(n2|n1) from {(n2)j}j=1,...,100 ⊲ using (4)
5: append p̂(n2|n1) to array posts

6: end for

7:
[
p̂(n1 = 1|n2), . . . , p̂(n1 = n

max
|n2)

]
← posts/sum(posts)

return array
[
p̂(n1 = 1|n2), . . . , p̂(n1 = n

max
|n2)

]

[Figure 3 about here.]

[Figure 4 about here.]
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2.2 Example

Salmonella enterica is the main cause of salmonellosis, and its pathogenesis
is under extensive research thanks to well established murine experimental
models (Dougan & Baker, 2014). When S. enterica enters the bloodstream
of a host, bacteria spread to a number of organs including the liver and the
spleen (Figure 5). In researching this process using a mouse model, Grant et
al. (2008) estimated the division, death, clearance and immigration rates of
the bacterium at different times in the absence of medical treatment.

[Figure 5 about here.]

Here we build on previous models by introducing a hypothetical bottle-
neck caused by a dose of antibiotics. To demonstrate the efficacy of Algo-
rithm 1 to detect bottlenecks of size n⋆1 = 1, 2, 4, 8, 80, 800 and 1600 in an
organ such as the liver of a mouse, a value n⋆2 for n2 was first derived from
n⋆1 and then the posterior distribution p(n1|n

⋆
2) was estimated from n⋆2 using

Algorithm 1 as follows:

1: Choose a target bottleneck size n⋆1 ∈ {1, 2, 4, 8, 80, 800, 1600}

2: {(n2)j}j=1,...,101
i.i.d
∼ Gillespie(n⋆1,∆t, θ) ⊲ 101 n2 values derived from n⋆1

3: Set n⋆2 to the median of {(n2)j}j=1,...,101

4: Obtain p̂(n1|n
⋆
2) using Algorithm 1

5: Compare p̂(n1|n
⋆
2) with target n⋆1

The 101 Gillespie simulations were conducted assuming an inoculum of
1000 bacteria injected intravenously at t = 0 (equivalent to using 101 mice).
An infection was allowed to progress to t = 24 hours according to θ using
the parameter values published by Grant et al. (2008) (i.e., time-varying
per capita division, death, emigration and immigration rates estimated by
iteratively fitting rate equations to observed data), but at t = 24 hours,
the number of bacteria in the liver was changed to n1 within the Gillespie
simulation. The growth period ∆t was set to 12 hours to allow sufficient
time for significant growth of the bacteria before infection can be detected
and treatment applied. Estimates of p(n2|n1, θ) for (3) were provided by
(4) using local polynomial smoothing with an Epanechnikov kernel density
function and local polynomials of degree d = 1.
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Figure 3 presents the resulting estimated posterior probabilities, and Ta-
ble 2 shows that the medians of the posteriors agreed within 1% of the true
bottleneck sizes.

[Table 2 about here.]

2.3 Inclusion of a pre-bottleneck population

What if the size n0 of the pre-bottleneck population P0 is also available to
us, or is assumed? The posterior distribution for n1 becomes

p(n1|n0, n2) ∝ p(n1|n0)p(n2|n0, n1)

= p(n1|n0)p(n2|n1) ,

where p(n2|n1) is estimated as before.
Bacteria are either killed by an antibiotic or not; therefore, with regard to

p(n1|n0), a simple assumption is that this probability is given by the binomial
probability distribution

p(n1|n0; π) =

(
n0

n1

)
πn1(1− π)n0−n1 (5)

where π is the probability that a bacterium will be included in the bottleneck;
however, π is not known a priori. Furthermore, (5) implies that the expected
size n1 of the bottleneck is a linear function of n0 for all n0,

E[n1|n0; π] = n0π ,

but Abel et al. (2015) warn that alternative scenarios could exist. One alter-
native scenario suggested by Abel et al. (an “absolute bottleneck”) is when
the bottleneck reaches a plateau with respect to inoculum size; another (a
“cooperative bottleneck”) is when bacteria cannot pass into a bottleneck un-
less a sufficient number of organisms are present; however, data are currently
lacking to validate those scenarios.

3 Multitype populations

A multitype population of bacteria is possible by using phenotypically iden-
tical bacterial strains where each strain carries a different DNA signature tag
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in the same noncoding region of the chromosome (Crimmins & Isberg, 2012).
An example of this is the use of wild-type isogenic tagged strains (WITS)
(Grant et al., 2008) which we will consider herein.

Suppose now that bacterial pre-bottleneck population P0 is composed of
eight WITS: w

[1]
0 , . . . , w

[8]
0 , where w

[i]
0 ≥ 0 is the number of bacteria tagged

with the i -th WITS tag at t = 0. The population is reduced to bottleneck
P1 with WITS distribution w

[1]
1 , . . . , w

[8]
1 , and population P2 resulting from

the growth of P1 has WITS distribution w
[1]
2 , . . . , w

[8]
2 . As shown in Figure

6, the distribution of WITS in P2 can be very different to that present in
P0 because of the stochastic variation of P1 (Abel et al., 2015), and possibly
also from P1 to P2.

Given the WITS distribution w
[1]
2 , . . . , w

[8]
2 of a post-bottleneck popula-

tion, estimated posterior distributions p̂(w
[1]
1 |w

[1]
2 ), . . . , p̂(w

[8]
1 |w

[8]
2 ) can be ob-

tained for each of the WITS independently of each other using Algorithm 1,
with w

[j]
1 being used in the algorithm place of n1, and w

[j]
2 in place of n2.

The total size n1 of a bottleneck composed of WITS is given by the sum
w

[1]
1 + · · · + w

[8]
1 . There are two approaches to estimating n1: (a) use the

sum w
[1]
2 + · · · + w

[8]
2 for n2, ignore the WITS tags and estimate p(n1|n2)

using Algorithm 1; (b) determine the posterior mass function for the sum

n1 = w
[1]
1 + · · ·+ w

[8]
1 by applying convolution successively to the individual

WITS posterior distributions p̂(w
[1]
1 |w

[1]
2 ), . . . , p̂(w

[8]
1 |w

[8]
2 ).

If X1 and X2 are two independent integer-valued random variables with
distribution functions p1 = p(X1) and p2 = p(X2), and Z = X1 + X2, the
distribution function p(Z) is given by

p(Z = z) = (p1 ⊗ p2)(z) =
∑

x

p(X1 = x)p(X2 = z − x) ,

where ⊗ is the convolution operator.
Because the convolution operator is commutative, we can extend its use

to sums of more than two random variables, Z = X1 + X2 + · · · + Xm, by
repeatedly applying the operator:

p(Z = z) = (p1 ⊗ p2 ⊗ · · · ⊗ pm)(z)

= ((· · · (p1 ⊗ p2)(z)⊗ · · · )⊗ pm)(z)

To examine the effect of using convolution, we used target value n⋆1 = 800

with w
[1]⋆
1 = 100, . . . , w

[8]⋆
1 = 100. Convolution was applied to the es-

timated posteriors p̂(w
[1]
1 |w

[1]⋆
2 ), . . . , p̂(w

[8]
1 |w

[8]⋆
2 ) via Fourier transformation,
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but the resulting estimated posterior p̂(n1|w
[1]⋆
2 , . . . , w

[8]⋆
2 ) = p̂(w

[1]
1 + · · · +

w
[8]
1 |w

[1]⋆
2 , . . . , w

[8]⋆
2 ) was no better than the posterior p̂(n1|n2) obtained by

ignoring the WITS other than being smoother (Figure 4). However, the con-

volutional approach used eight estimated posterior probabilities p̂(w
[i]
1 |w

[i]⋆
2 )

(i = 1, . . . , 8); in contrast, the non-convolutional approach would use only
one estimated posterior, p̂(n1|n2). This suggests that the convolutional ap-
proach is potentially more prone to error.

3.1 Inclusion of a multitype pre-bottleneck population

Suppose that we know, or are able to assume, the compositionw0 = {w
[1]
0 , . . . , w

[8]
0 }

of a pre-bottleneck multitype population as well as that (w2) of a post-
bottleneck population. In this case, the posterior of the bottleneck size is
p(n1|w0,w2).

[Figure 6 about here.]

Now,

p(n1|w0,w2) = p(
∨

w1
s.t. sum(w1)=n1

w1 |w0,w2)

=
∑

w1
s.t. sum(w1)=n1

p(w1|w0,w2),

where ∨ denotes logical disjunction and sum(w1) =
∑

i w
[i]
1 . From Bayes’

theorem,

p(w1|w0,w2) =
p(w1|w0)p(w2|w1,w0)∑

w1

p(w1|w0)p(w2|w1,w0)

=
p(w1|w0)p(w2|w1)∑

w1

p(w1|w0)p(w2|w1)
; (6)
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thus

p(n1|w0,w2) =

∑
w1

s.t. sum(w1)=n1

p(w1|w0)p(w2|w1)

∑
w1

p(w1|w0)p(w2|w1)

=

∑
w1

s.t. sum(w1)=n1

p(w1|w0)p(w2|w1)

∑
n1

∑
w1

s.t. sum(w1)=n1

p(w1|w0)p(w2|w1)
. (7)

If the WITS are phenotypically identical, each bacterium has the same
probability of surviving an antibiotic. Under this assumption, a distribution
w1 of n1 WITS in a bottleneck P1 can be regarded as a sample resulting
from a random selection (without replacement) of n1 WITS from the pre-
bottleneck population P0 with distribution w0. The probability of selecting
w1 from w0 without replacement such that sum(w1) = n1 is given by the
multivariate hypergeometric probability distribution:

p(w1|w0, sum(w1) = n1) =

(
w

[1]
0

w
[1]
1

)(
w

[2]
0

w
[2]
1

)
· · ·

(
w

[8]
0

w
[8]
1

)

(
w

[1]
0 + w

[2]
0 + · · ·+ w

[8]
0

w
[1]
1 + w

[2]
1 + · · ·+ w

[8]
1

) . (8)

As for p(w2|w1), the independence between the WITS enables us to fac-
torise p(w2|w1, θ) as follows:

p(w2|w1, θ) =
∏

i

p(w
[i]
2 |w1, θ) =

∏

i

p(w
[i]
2 |w

[i]
1 , θ) , (9)

and estimation of p(w
[i]
2 |w

[i]
1 , θ) for (9) can be performed in the same manner

as described for p(n2|n1, θ) using Algorithm 1.
See Box B in Figure 2 for the relationship between this approach and

the others we describe.

3.2 On assuming proportionality

What if we make the simplifying assumption that the distribution of the
frequencies of w2 are proportional to those of w1 by the same amount ψ?
That is, w2 = ψw1. where ψ is a positive integer.
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Through Bayes’ theorem, we have

p(n1|π0,w2) ∝ p(n1|π0)p(w2|n1,π0)

= p(n1)p(w2|n1,π0) ,

where the elements of π0 are those of w0 expressed as relative frequencies.
Moreover, if we assume p(n1) to be equiprobable for all n1 then

p(n1|π0,w2) ∝ p(w2|n1,π0) . (10)

Suppose we make the further assumption that the elements of w2 devel-
oped proportionality from those in w1: w2 = ψw1 for some positive integer
ψ. This assumption implies that ψn1 = sum(w2) and, as sum(w2) is con-
stant for a given w2, it follows that w2 can be derived from w1 using a
range of ψ values such that ψ = sum(w2)/n1. But is one ψ more likely than
another?

If p(w2|n1,π0) is defined by a multinomial distribution then

p(w2|n1,π0) = p(〈w
[1]
2 , w

[2]
2 , . . . , w

[8]
2 〉|n1, 〈π

[1]
0 , π

[2]
0 , . . . , π

[8]
0 〉)

=

(
w

[1]
2 + w

[2]
2 + · · ·+ w

[8]
2

w
[1]
2 , w

[2]
2 , . . . , w

[8]
2

) 8∏

i=1

(
π
[i]
0

)w[i]
2

,

where
(

α

β1,...,βm

)
is the multinomial coefficient α!

β1!···βm!
; however,

(
ψw

[1]
1 + ψw

[2]
1 + · · ·+ ψw

[8]
1

ψw
[1]
1 , ψw

[2]
1 , . . . , ψw

[8]
1

) 8∏

i=1

(
π
[i]
0

)ψw[i]
1

<

(
w

[1]
1 + w

[2]
1 + · · ·+ w

[8]
1

w
[1]
1 , w

[2]
1 , . . . , w

[8]
1

) 8∏

i=1

(
π
[i]
0

)w[i]
1

for any positive integer ψ (note that π
[i]
0 is the same on both sides of the

inequality), thus

p(ψw1|n1 = ψsum(w1),π0) < p(w1|n1 = sum(w1),π0) .

Consequently, if w2 = ψw1 then sum(w1) is the most probable value for n1.
Put another way, if proportionality is assumed then the most probable value
for n1 is sum(w2) divided by the highest common factor for the elements of
w2.
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3.3 A sampling approach

In the previous section, we have shown how to obtain values for p(w1|w0)
and p(w2|w1) that are required for (7), but (7) also requires us to deter-

mine the summands for every possible w1 such that
∑

i w
[i]
1 = n1. The

problem with this is that the number of possible w1 for a given value of
n1 grows super-exponentially with n1 (Charalambides, 2002, p.138); for ex-
ample, the number of possible w1 when selecting 100 microbes from w0 =
〈1000[1], 1000[2], . . . , 1000[8]〉 is more than 26 thousand million. As this is com-
binatorially (and thus computationally) challenging, an alternative approach
is required.

To circumvent the combinatorial issue, one could consider restricting the
summations of (7) to the more probable configurations of w1, such as the
modes of w1. An algorithm for the generation of all the modes of a multivari-
ate hypergeometric distribution has been proposed by Requena and Cludad
(2003), but a simpler approach is to randomly sample points w1, say 1000
times, from p(w1|w0) as a multivariate hypergeometric distribution, given
that most of these points would be expected to be in the vicinity of the
modes. With multiple modes, sampling takes place proportionally across the
modes.

Our implementation of the sampling approach is shown in Algorithm 2,
and its efficacy was tested using the following steps of a toy experiment:

1: Set w0 to 〈600[1], 600[2], . . . , 600[8]〉
2: Choose a target bottleneck size n⋆1 ∈ {80, 800, 1600}
3: In order to choose a w1 associated with target n⋆1, select a mode w⋆

1

from the multivariate hypergeometric distribution associated with ran-
dom samples of size n⋆1 taken from w0 (Requena & Cludad, 2003)

4: In order to choose a w2 resulting from w⋆
1, first do

{(w2)j}j=1,...,101
i.i.d
∼ Gillespie(w⋆

1,∆t, θ),
5: then set w⋆

2 to the median of {(w2)j}j=1,...,101

6: Obtain p̂(n1|w0,w
⋆
2) using Algorithm 2

7: Compare p̂(n1|w0,w
⋆
2) with target n⋆1

Figure 7 displays the resulting posterior distributions, which have median
accuracies similar to those shown for the estimation of p(n1|n2) derived by
Algorithm 1.

[Figure 7 about here.]
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4 Patterns of missing WITS

An assumption made when estimating p(n2|n1, θ) via Gillespie simulation is
that parameters θ are known and are not influenced by the presence of an
antibiotic, but this is not necessarily always the case (Kaiser et al., 2014).
Consequently, how can we estimate bottleneck size when θ is not known to
us?

Consider (7) written as

p(n1|w0,w2) ∝
∑

w1
s.t. sum(w1)=n1

p(w1|w0)p(w2|w1)
′ (11)

and suppose we replace w2 with a vector ξ2 denoting which WITS in w2 are
missing, then p(w2|w1), in turn, becomes replaced by p(ξ2|w1). Furthermore,
if we assume that missingness pattern ξ2 is equal to the missingness pattern
ξ1 of w1 then ξ2 is implied by w1 and there is no need to consider post-
bottleneck dynamics. Using this approach, (11) simplifies to

p(n1|w0, ξ2) ∝
∑

w1
s.t. sum(w1)=n1

p(w1|w0) 1(w1 ⇒ ξ2) , (12)

where 1(·) is the indicator function. However, the assumption that ξ2 = ξ1,
and thus that w1 ⇒ ξ2, may not hold if a few WITS are randomly lost soon
after a bottleneck due to (a) a small bottleneck, (b) a large number of WITS,
or (c) high post-bottleneck replication and death rates, or any combination
of these three.

In order to compare the estimate provided by (12) with the correct value
given by (11), an experiment was used based on the following scenario. A
bottleneck WITS population w1 of size n1 is assumed to have been sampled
from w1 = 〈4[1], 4[2], . . . , 4[8]〉 without replacement. Each element w

[i]
1 of

w1 then gives rise to an element w
[i]
2 of w2 by sampling from a Poisson

distribution with Poisson parameter λ = 10w
[i]
1 . This scenario is the basis

for the following toy experiment:

1: Set w0 to 〈4[1], 4[2], . . . , 4[8]〉
2: Choose a target bottleneck size n⋆1 ∈ {3, 7, 20}
3: In order to choose a w1 associated with target n⋆1, select a mode w⋆

1

from the multivariate hypergeometric distribution associated with ran-
dom samples of size n⋆1 taken from w0
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4: For w2, use w⋆
2 = 10w⋆

1 (i.e., vector of expected values from the Poisson
distributions)

5: Get missingness pattern ξ2 corresponding to w⋆
2

6: Obtain p(n1|w0,w
⋆
2) using (11)

7: Compare p(n1|w0,w
⋆
2) with target n⋆1

8: Obtain p(n1|w0, ξ2) using (12)
9: Compare p(n1|w0, ξ2) with target n⋆1

The results of the experiment are shown in Figures 9 and 10. In the case of
the probability mass functions for p(n1|w0,w

⋆
2), the modes coincided exactly

with the target values, but this was not the case for p(n1|w0, ξ2). When at
least one WITS was missing, the mode for p(n1|w0, ξ2) was greater than the
target value. This is associated with the observation that the mean value of
p(w2|w1) as encountered in (11) tended to be less than the mean value for
1(w1 ⇒ ξ2) in (12), which is equal to p(w1 ⇒ ξ2). When no WITS were
missing, the resulting probability mass function for p(n1|w0, ξ2) exhibited a
plateau as n1 increased. This can be explained as follows: it is increasingly
unlikely that no WITS are missing as n1 decreases; on the other hand, the
absence of missing WITS can be explained by the occurrence of large n1

values up to and including the complete absence of a bottleneck.
When p(n1|w0,w2) has a plateau, a lower bound for n1 can be set equal

to the lower bound of the 95% highest density interval with respect to
p(n1|w0,w2), which is a type of one-sided credible interval.

Note that the above toy experiment uses Equation (12) exactly so as to
display the resulting distributions. In reality, the inoculum size would be
far greater than 4 × 8 and, in such circumstances, the sampling approach
of Section 3.3 would be used instead. Figure 8 shows the result of using
sampling when ξ2 is used in place of w2, with n1 = 600× 8. Note also that,
in order to use patterns of missing WITS, it is not necessary for the isotypes
to be in equal amounts in the pre-bottleneck population.

As seen by comparing Figures 9 with 10, although the use of missingness
patterns decreases model complexity and computation time (no Gillespie
simulations required), accuracy is also decreased.

The relationship between using missingness patterns (without dilution)
and the other methods we describe is shown by Box C in Figure 2.

[Figure 8 about here.]
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4.1 Dilution of WITS with monotypes

In Figure 10 (c), the bottleneck of size 20 could not be estimated because
of the presence of a plateau instead of a mode. This issue can be overcome
by diluting the WITS with untagged (i.e., monotype) isogenic bacteria. The
justification for this is that, for a fixed n1, the probability of at least one
WITS being missing increases as the pre-bottleneck population w0 becomes
more dilute.

Let w+
0 represent w0 augmented with u untagged bacteria. For exam-

ple, if we add 10 untagged bacteria to w0 = 〈4[1], . . . , 4[8]〉 then w+
0 =

〈4[1], . . . , 4[8], 10〉. Upon using w+
0 in place of w0, expression (12) becomes

p(n1|w
+
0 , ξ2) ∝

∑

w
+
1

s.t. sum(w+
1 )=n1

p(w+
1 |w

+
0 ) 1(w

+
1 ⇒ ξ2) , (13)

where w+
1 allows for the possibility that untagged bacteria can be present in

the bottleneck. The implication that w+
1 ⇒ ξ2 in (13) is based only on the

WITS component of w+
1 ; the untagged bacteria in w+

1 are ignored. See Box

D in Figure 2.
By way of example, suppose that we add u = 13 untagged bacteria to

w0 = 〈4
[1], . . . , 4[8]〉 in order to perform the following toy experiment:

1: Set w+
0 to 〈4[1], 4[2], . . . , 4[8], u〉

2: Set number of untagged bacteria u = 13
3: Set target bottleneck size n⋆1 = 20
4: In order to choose a w+

1 associated with target n⋆1, first select a mode
w⋆

1 from the multivariate hypergeometric distribution associated with
random samples of size n⋆1−u taken from 〈4[1], 4[2], . . . , 4[8]〉, and then set
w+⋆

1 = 〈w⋆
1, u〉

5: For w2, use w⋆
2 = 10w+⋆

1

6: Get missingness pattern ξ2 corresponding to w⋆
2

7: Obtain p(n1|w
+
0 , ξ2) using (13)

Figure 11 shows that dilution with untagged bacteria has allowed an estimate
of the bottleneck size to be performed. But a note of caution is due. Using
u = 13 allowed the bottleneck size to be estimated as 18 (whereas u = 12
gave a plateau), but the position of the mode for p(n1|w

+
0 , ξ2) is influenced

by the choice of u, with the mode decreasing as u increases. For example,
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the mode was 13 when u = 14 and 10 when u = 15. A similar behaviour
has been observed when using other target values for n1. This suggests that
the best approach to estimating bottleneck size via this method is to use
the smallest possible value for u that permits a mode to appear instead of a
plateau.

The above WITS dilution technique was used by Maier et al. (2014) to
estimate the size of gut luminal bottlenecks during Salmonella Typhimurium
colitis. The inoculum consisted of seven WITS in equal proportions, which
was increasingly diluted with an untagged isogenic wild-type strain until a
loss of at least one WITS was first detected in a post-bottleneck population.
This point occurred at a dilution of 1:7000. The size of a bottleneck was
then estimated using a likelihood function based on binomial selection.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

Lim et al. (2014) also developed a method to estimate the size of a bot-
tleneck from an observation of missing WITS, but their approach was more
granular in that it was restricted to just those cases where at least one WITS
was missing but without considering the precise the number of missing WITS.
Let ζ ∈ {true , false} denote the state that at least one WITS is missing from
w2 (and thus assumably from w1). In this context, the posterior for bot-
tleneck size is p(n1|w0, ζ). The computational approach used by Lim et al.
differed from (12) in that they derived a plot of p̂(ζ |n1,w0) as a function of
n1 using computer simulations and then assumed that

p(n1|w0, ζ) ∝ p(ζ |n1,w0) .

4.2 On increasing the number of WITS

All the examples shown so far have been based on the use of eight WITS,
but what if a larger number of WITS are used? Intuitively, if we keep the
bottleneck size n1 constant but increase the number |W| of WITS available
then the number of missing WITS is expected to increase. Furthermore, the
rate of change in the number of missing WITS as n1 decreases is expected to
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Algorithm 2 Estimation of p(n1|w0,w2).

Input: Pre-bottleneck population w0, post-bottleneck population w2, and
Gillespie simulation parameters ∆t and θ.

Output: An estimate of p(n1|w0,w2) for n1 = 1, . . . , nmax.

1: posts← [ ]
2: for n1 ∈ {1, . . . , nmax} do
3: sum2← 0
4: loop 1000 times
5: w1 ∼ MultivariateHypergeometric(n1,w0)
6: a← p(w1|w0) ⊲ according to (8)
7: b← 1
8: for w

[i]
1 ∈ w1 do

9: if w
[i]
1 = 0 then

10: if w
[i]
2 = 0 then

11: p← 1
12: else

13: p← 0

14: else

15: {(w
[i]
2 )j}j=1,...,100

i.i.d
∼ Gillespie(w

[i]
1 ,∆t, θ)

16: get estimate p̂(w
[i]
2 |w

[i]
1 ) from {(w

[i]
2 )j}j=1,...,100

17: p← p̂(w
[i]
2 |w

[i]
1 )

18: b← b× p ⊲ final b is p̂(w2|w1)
19: end for

20: sum2← sum2+ a× b ⊲ final sum2 is approx numerator of (7)
21: append sum2 to array posts

22: end loop

23: end for

24:
[
p̂(n1 = 1|w0,w2), . . . , p̂(n1 = nmax|w0,w2)

]
← posts/sum(sum1)

return array
[
p̂(n1 = 1|w0,w2), . . . , p̂(n1 = nmax|w0,w2)

]

increase as |W| increases. This suggests that accuracy in the estimation of n1

from missingness patterns ξ2 should improve with larger |W|. This argument
is supported by the results of the computer simulations conducted by Lim et
al. (2014) using different values for |W| in which a significant improvement
occurs on going from |W| = 10 to |W| = 40.
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As a further demonstration, the posterior distribution p(n1|w0, ξ2) shown
in Figure 10 when n1 = 7, which is based on 8 WITS, was recalculated using
12 WITS resulting in a decrease in variance (Figure 12).

[Figure 12 about here.]

5 Discussion

We describe Bayesian approaches to estimating the size of bacterial bottle-
necks given observation of a post-bottleneck population (either monotype or
multitype), but size estimation with respect to monotypes is possible only
when post-bottleneck dynamics are known (or assumed). Unlike previous
studies which were tailored to single experiments, we demonstrated how this
framework can be applied to a variety of situations. In particular, we pre-
sented analyses inspired by several published studies on Salmonella enterica

in mice, covering a range of bottleneck sizes, bacterial dynamic regimes and
technical constraints.

The use of multitype isogenic bacteria in the form of WITS allows the
composition of pre-bottleneck populations to be included in the analysis.
Furthermore, the use of WITS enables bottleneck sizes to be estimated when
post-bottleneck dynamics is not known. This is done through observation
of patterns of missing WITS; however, this can require dilution of an in-
oculum with isogenic untagged bacteria. Figure 2 provides a flowchart that
summarises these observations.

In our analysis, we have assumed that θ is homogeneous across all the
bacteria in a bottleneck population P1, but this may not be the case for
some species of bacteria. Indeed, recent experimental studies have shown
that, following inoculation into mice, genetically identical S. enterica bacteria
segregate into heterogeneous subpopulations with different division rates and
sensitivities to antibiotics (Claudi et al., 2014; Helaine & Kugelberg, 2014).
If we can differentiate between the subpopulations having different θ, and if
the dynamics of the individual subpopulations are known, then the posterior
probability distribution of n1 can be determined separately – using either
interpolation or extrapolation as stated in Figure 2 – and combined. On the
other hand, if only a single θ is available, and its values are incorrect for P1

then the estimated bottleneck size will be incorrect. In this case, the use of
missingness patterns with dilution should be considered but using the largest
number of WITS possible in order to maximise accuracy.
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Our work has focused on intrahost bacterial bottlenecks, but a further line
of enquiry is to extend the framework to the assessment of other pathogens
(e.g., viruses) or types of bottlenecks (e.g., transmission bottlenecks). Models
for viruses already exist, but they rely on naturally occurring genetic diversity
through mutations in RNA viruses; for example, the case with influenza
(Sobel Leonard et al., 2017).
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Claudi, B., Spröte, P., Chirkova, A., Personnic, N., Zankl, J., Schürmann, N.,
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Figure 1: Diagrammatic representation of a bottleneck.
The bottleneck is derived from a pre-bottleneck pop-
ulation by random sampling without replacement. A
post-bottleneck population arises after time ∆t accord-
ing to a defined growth mechanism. n1 is the size of the
bottleneck, n0 the size of the pre-bottleneck population,
and n2 the size of the post-bottleneck population.
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Figure 2: Flowchart summarizing alternative strate-
gies to bottleneck-size estimation depending on circum-
stances. The box labels enable relevant parts of the main
text to be linked to this flowchart.
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(a) (b)

(c)

Figure 3: Posterior bottleneck-size distributions
p(n1|n2) estimated using Algorithm 1. Bottlenecks of
size (a) n1 = 80, (b) n1 = 800, and (c) n1 = 1600, were
artificially induced.
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Figure 4: Posterior bottleneck-size distribution esti-
mated using convolution of eight posterior distributions
associated with the eight WITS. Target n1 = 800. Sum-
mary statistics are mode 793, mean 793.8, median 795
and variance 980.1. See Section 3 for details.
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Figure 5: Schematic representation of the spread of S.
enterica from the blood and between the liver and the
spleen. The dynamics is governed by a set of parameters
θ; namely, the per capita division rates (αL, αS), death
rates (µL, µS), immigration rates (cL, cS) and clearance
rates (eL, eS).
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Figure 6: Diagrammatic representation of a bottleneck
and its propensity to stochastic variability in terms of
both its size (n1) and the composition of its popula-
tion (w1). The array of numbers below each population
states the number of tagged bacteria present in that pop-
ulation.
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(a) (b)

(c)

Figure 7: Posterior bottleneck-size distributions
p(n1|w0,w2) estimated using Algorithm 2. Target bot-
tlenecks of size (a) n1 = 80, (b) n1 = 800, and (c)
n1 = 1600, were artificially induced. See Section 3.3 for
details.
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(a) (b)

Figure 8: Posterior bottleneck-size distributions ob-
tained (a) exactly using equation (12) with w0 =
〈4[1], 4[2], . . . , 4[8]〉, and (b) estimated using 1000 samples
with w0 = 〈600

[1], 600[2], . . . , 600[8]〉. Target is n1 = 7 in
both cases.
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(a) (b)

(c)

Figure 9: Posterior bottleneck-size distributions
p(n1|w0,w2) determined accurately using (11). Target
bottlenecks of size (a) n1 = 3, (b) n1 = 7, and (c)
n1 = 20, were used. See Section 4 for details.
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(a) (b)

(c)

Figure 10: Posterior bottleneck-size distributions
p(n1|w0, ξ2) determined using (12). Target bottlenecks
of size (a) n1 = 3, (b) n1 = 7, and (c) n1 = 20, were
used. See Section 4 for details.
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(a) (b)

Figure 11: Posterior bottleneck-size distributions (a)
without dilution and (b) with dilution. Distributions
p(n1|w0, ξ2) and p(n1|w

+
0 , ξ2) were determined using

(12) and (13), respectively. The target bottleneck size
was n1 = 20 in both cases. For the dilution, u = 13
untagged bacteria were present in w+

0 . See Section 4.1
for details.
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(a) (b)

Figure 12: Posterior bottleneck-size distributions ob-
tained (a) with 8 WITS and (b) with 12 WITS. Note
the decrease in variance.
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Table 1: Symbols used in this article.

Symbol(s) Meaning

P1 Bottleneck population.

n1 Size of P1.

P0 and P1 Pre- and post-bottleneck populations.

n0 and n2 Sizes of P0 and P2.

∆t Time period from P1 and P2.

αL and µL Per capita division and death rates in liver.

cL and eL Per capita immigration and clearance rates in liver.

αS and µS Per capita division and death rates in spleen.

cS and eS Per capita immigration and clearance rates in spleen.

θ Parameter set {αL, µL, cL, eL, αS, µS, cS, eS} for P1.

w
[i]
j Number of bacteria in Pj with the i-th WITS tag.

wj The set {w
[1]
j , . . . , w

[8]
j }.

π
[i]
0 Probability of an i-th tagged bacterium in P0 continuing into P1.

π0 The set {π
[1]
0 , . . . , π

[8]
0 }.

ξ2 Vector indication of which WITS in w2 are missing.

37



Table 2: The accuracy of Algorithm 1 in terms of sum-
mary statistics for the estimated posterior distribution
p̂(n1|n

⋆
2). See Section 2.2 for details.

Target n⋆1 n⋆2 Mode Mean Median SD

1 3 1 1.9 1 1.1

2 8 2 2.7 2 1.4

4 17 4 4.5 4 1.9

8 35 7 8.4 8 3.2

80 376 76 79.2 81 9.5

800 3731 782 794.9 794 30.8

1600 7507 1587 1595.1 1597 42.3
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