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We explore the emergence of nonequilibrium collective motion in disordered non-thermal active
matter when persistent motion and crowding effects compete, using simulations of a two-dimensional
model of size polydisperse self-propelled particles. In stark contrast with monodisperse systems, we
find that polydispersity stabilizes a homogeneous active liquid at arbitrary large persistence times,
characterized by remarkable velocity correlations and irregular turbulent flows. For all persistence
values, the active fluid undergoes a nonequilibrium glass transition at large density. This is accom-
panied by collective motion, whose nature evolves from near-equilibrium spatially heterogeneous
dynamics at small persistence, to a qualitatively different intermittent dynamics when persistence
is large. This latter regime involves a complex time evolution of the correlated displacement field.

Active matter constitutes a prominent class of nonequi-
librium systems [1]. Examples in biological systems range
from tissues [2] to bird flocks [3] and human crowds [4].
Synthetic active systems include robot swarms [5] and
self-catalytic colloids, which have inspired numerous the-
oretical studies. In particular, self-propelled particles are
paradigmatic models for active matter, where varying a
few parameters leads to rich collective behaviour [6].

This work focuses on the interplay of motility and
crowding in such models, which is relevant in both syn-
thetic [7] and living systems [2]. For systems with align-
ing interactions or non-spherical particles, collective mo-
tion occurs at large density [8, 9], as predicted theo-
retically [10] and observed in experiments [2, 11] and
simulations [12, 13]. For isotropic particles, it is well-
known that persistent motility can trigger phase separa-
tion (MIPS) [14]; it also leads to nonequilibrium veloc-
ity correlations [15], possibly connected to active turbu-
lence [16, 17]. A different set of phenomena are associated
with crowding effects in systems with modest persistence
times: they undergo nonequilibrium glass transitions at
high density [18, 19]. This transition shares many fea-
tures with its equilibrium counterpart [20], such as two-
step relaxation dynamics and slow, spatially correlated
motion. It has been thoroughly studied using theory [21–
23], simulations [18, 24–26], and experiments [7, 27].

In the following we present numerical simulations
of isotropic particles that unify this active glass phe-
nomenology with the effects of crowding at much larger
persistence times, where recent exploratory works have
suggested the emergence of intermittent plasticity [16],
analogies to yielding transitions [28–30], and a break-
down of equipartition in the disordered solid [31, 32]. We
intentionally introduce size polydispersity, to ensure the
stability of disordered states in crowded systems. Hence,
our results (e.g. Fig. 1) parallel the similar programme
that was recently completed for monodisperse particles,

which display ordered phases at large density [33–37].
At large persistence, we find that polydispersity sta-

bilizes a homogeneous liquid [38, 39] which solidifies
into a disordered glass at large packing fraction (see
Fig. 1). This liquid displays inherently active character-
istics, including correlated velocities and displacements,
with similarities to active turbulence. Close to dynamic
arrest, its relaxation is intermittent, characterized by
rapid rearrangements between transient mechanical equi-
libria [40, 41]. This behavior is distinct from active
glasses at lower persistence, which tend to resemble pas-
sive glasses [18, 19].

We simulate N athermal self-propelled particles in a
square box of linear size L with periodic boundary con-
ditions, with overdamped dynamics:

ξṙi = −
∑

j 6=i

∇iU(rij) + pi, (1)

where ri is the position of particle i, rij = |ri − rj |, ξ a
viscous damping, and pi the propulsion force. Particles
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FIG. 1. Disordered active states when packing fraction φ and
persistence time τp are varied at constant D0 = 1. The MIPS
region, enclosed by red circles, corresponds to phase separa-
tion. The homogeneous active liquid experiences a nonequilib-
rium glass transition at large packing fraction (blue squares).
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FIG. 2. (a, b) Mean squared displacements for different packing fractions φ, at persistence time (a) τp = 10−2 and (b) τp = 102,
for N = 1024. (c) Density evolution of the scaled diffusion constant D/D0 for different persistence times τp. Dashed lines
correspond to algebraic fits.

interact via a repulsive Weeks-Chandler-Andersen poten-
tial U = 4ε

[
(σij/rij)

12 − (σij/rij)
6 + 1/4

]
Θ(21/6σij −

rij), where Θ is the Heaviside function, σij = 1
2 (σi +

σj), and σi the diameter of particle i. Diameters are
drawn from a uniform distribution of mean σ = σi
and polydispersity 20%. The packing fraction is φ =
21/3πNσ2

i /(4L
2), σ sets the unit length, ε the unit en-

ergy, and ξσ2/ε the unit time. We measure the positions
ri and velocities vi in the center-of-mass frame.

Different self-propulsion models differ by the dynam-
ics of pi. For active Brownian and run-and-tumble par-
ticles [42], |pi| is fixed. We consider active Ornstein-
Uhlenbeck particles [43, 44]:

τpṗi = −pi +
√

2D0ηi, (2)

with ηi a Gaussian white noise of zero mean and vari-
ance 〈ηi(t)ηj(0)〉 = 1 δij δ(t), and τp the persistence
time. The amplitude and correlation time of pi can be
varied independently so there are three control parame-
ters (φ,D0, τp). The parameter space reduces to (φ, τp)
for self-propelled hard disks [24], while adding a thermal
noise in Eq. (1) would instead make the phase diagram
four-dimensional [39]. From Eqs. (1, 2), we see that D0 is
the diffusion constant of a free particle, the typical ampli-
tude of the propulsion is

√
〈|pi|2〉 =

√
2D0/τp ≡ v0, and

the persistence length `p =
√
D0τp. When τp → 0, equi-

librium Brownian dynamics at temperature Teff = D0 is
recovered. We have numerically explored the full three-
dimensional phase diagram of the model and found that
its main features are understood by keeping D0 constant
and varying the persistence time τp. We show results for
D0 = 1, so that equilibrium at Teff = 1 is recovered when
τp = 0, but the system is out of equilibrium in the entire
(τp, φ) phase diagram in Fig. 1.

Figure 1 shows the three disordered phases of poly-
disperse self-propelled disks. The homogeneous fluid ap-
pears for intermediate packing fraction and persistence
time τp <∼ 102; it phase separates in the MIPS region at
larger persistence. The MIPS boundaries (red circles in
Fig. 1) were established by locating the two peaks of the

probability distribution function of the local packing frac-
tion [34]. We only sketch the critical point of MIPS, its
precise characterisation requiring a more detailed analy-
sis [45]. Unlike monodisperse particles, whose relaxation
relies on the movement of defects [46], the dense phase of
MIPS is fully disordered and flows easily: it corresponds
to an active liquid phase which exists up to arbitrarily
large persistence in between MIPS and dynamic arrest.

For all τp, the active liquid undergoes dynamic arrest
at large φ and transforms into an active glass [18]. To
characterize the liquid-glass boundary, in Fig. 2 we ana-
lyze the mean-squared displacement (MSD)

∆r2(t) =
1

N

∑

i

〈
|ri(t)− ri(0)|2

〉
, (3)

where brackets indicate an ensemble average. In the liq-
uid, the MSD is ballistic at short times, ∆r2 ∼ (vt)2, and
diffusive at long times, ∆r2 ∼ 4Dt. These limits define
the mean-squared velocity, v2(φ) ≡

〈
|vi|2

〉
, and the self-

diffusion constant, D(φ), which respectively reduce to v2
0

and D0 in the dilute limit, φ→ 0.
In Figs. 2(a,b), we contrast the φ-dependent MSDs at

small and large τp. In both cases, D(φ) decreases by
several orders of magnitude when φ varies over a mod-
est range, see Fig. 2(c). As in equilibrium systems, the
determination of a critical packing fraction for dynamic
arrest is ambiguous [47]: we fit D(φ) to an algebraic form
inspired by mode-coupling theory, D ∼ (φc − φ)γ , to es-
timate a liquid-glass boundary φc(τp) (blue squares in
Fig. 1). The MSD data in Figs. 2(a,b) both show the
emergence at large φ of a two-step relaxation process
separated by a subdiffusive plateau. Despite these simi-
larities, the remainder of this work demonstrates several
important differences between the highly-persistent case
and weakly persistent or equilibrium glasses.

In equilibrium systems, velocities are spatially uncor-
related and obey the Maxwell distribution with a mean-
squared velocity v2 independent of φ. The situation
is very different in persistent systems, where v2(φ) de-
creases sharply with φ, see Fig. 2(b). This already signals
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FIG. 3. (a) Velocity distribution P (vx,y) for different packing fractions φ measured along the x and y direc-
tions. The dashed line corresponds to the Maxwell distribution. (b) Spatial correlations of the velocities Cvv(r) =
〈vi(0) · vj(0)δ(r − rij)〉 /v(φ)2 〈δ(r − rij)〉 with rij = |ri(0) − rj(0)|. (c) Example of a velocity field for N = 4096, τp = 103,
φ = 0.84. (d) Time autocorrelations of the velocity Cvv(t) = 〈vi(t) · vi(0)〉 /v(φ)2. (e) Mean-squared displacements for τp = 103

and N = 4096 with ballistic, superdiffusive, and diffusive behaviours indicated. (f) Displacement field after a time t = 0.11τp
(the MSD is ∆r2(t) = 0.16σ2) starting from the velocity field shown in (c) at t = 0.

the importance of nonequilibrium effects on the velocities
of interacting self-propelled particles [6, 32, 48].

In Fig. 3, we analyze particle dynamics in a highly
persistent liquid (τp = 103) whose density φ is between
MIPS and dynamic arrest. The velocity distributions in
Fig. 3(a) are strongly non-Maxwellian with much broader
tails. Since a Gaussian distribution is expected both for
interacting equilibrium particles and for non-interacting
Ornstein-Uhlenbeck particles, the measured distributions
reveal the non-trivial influence of many-body interactions
in persistent liquids [32, 48].

Even more interestingly, persistent propulsions in the
homogeneous liquid produce spatial velocity correla-
tions [15, 25, 31, 36, 37, 49], which we quantify in
Fig. 3(b) via the velocity correlation Cvv(r). The data
clearly reveal the existence of correlations extending over
a length scale which grows with φ and τp. The corre-
sponding real-space correlations extend over several par-
ticle diameters, as illustrated in Fig. 3(c). Such corre-
lated velocity patterns have no equilibrium analog. They
can be rationalised via the coupling of collective elastic
modes and highly-persistent active forces [31]. Excita-
tion of these modes by thermal fluctuations affects dis-
placements in passive glasses [50, 51]: the Supplemental
Material (SM) [52] shows that their effects are weak here.

We use the velocity autocorrelation function Cvv(t)

to characterize time fluctuations. Fig. 3(d) shows that
these decay over a timescale that depends strongly on
the persistence time τp (see also SM [52] Fig. S2), and
weakly on φ. Because particle motion is not hindered
by crowding in the active liquid, large particle displace-
ments easily occur along the spatially correlated velocity
field, which maintains its structure over long timescales
∼ τp � 1. This is confirmed in Fig. 3(e) which shows
that the MSD is superdiffusive for times up to τp, corre-
sponding in real space to a spatially correlated displace-
ment field [Fig. 3(f)] which resembles the velocity field
at t = 0. The many vortices and abrupt changes of this
velocity field, alongside its large-scale correlations, bear
strong similarities with the family of active systems de-
scribed as ‘turbulent’ [11, 53–55] (see SuppMovie1.mov

and SuppMovie2.mov [52]): remarkably, this occurs here
in an active liquid without explicit aligning interactions.

On increasing density, the system becomes crowded,
and diffusive motion sets in over a large timescale τα(φ) ∝
D−1 that increases rapidly with φ. At equilibrium, par-
ticle dynamics is triggered by infrequent thermally acti-
vated relaxation events characterized by a broad distri-
bution of energy barriers, reflecting a rugged energy land-
scape [20]. This physical picture survives for modest val-
ues of the persistence times, as in Fig. 2(a), except that
activated dynamics is now driven by a nonequilibrium
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FIG. 4. (a) Time series of the kinetic energy
∑

i |vi(t)|2 =
|∇Ueff(t)|2 rescaled by its time average, with N = 1024 for
two dense systems at τp = 10−2, 102. (b) Non-Gaussian pa-
rameter α2(t) for τp = 102, N = 1024 and different pack-
ing fractions. (c) Velocity field for N = 4096, τp = 102,
φ = 0.8825. (d) Displacement field after a time t = 200τp
(The MSD is ∆r2(t) = 0.13σ2) starting from the velocity field
shown in (a) at t = 0 (e) Dynamical susceptibility χ4(t, a)
with N = 1024, τp = 102, φ = 0.88. (f) Dynamical suscepti-
bility χ4(t, a) with N = 1024, τp = 10−2, φ = 1.055.

colored noise, as recently studied in simpler active situa-
tions [56, 57]. Therefore, glassy dynamics for weak per-
sistence qualitatively resembles passive systems [18, 25].

The physics is radically different when the persistence
time is large, see Fig. 4. Since particles are always in
contact at these high densities, the natural time scale
for relaxation is ξσ2/ε = 1. This opens a time win-
dow, 1 � t � τp, where particle dynamics is nearly
arrested and |vi| � |pi|, see Fig. 2(b). The forces stem-
ming from particle interactions then nearly balance the
self-propulsion forces, and the system is close to me-
chanical equilibrium. Such configurations correspond to

local minima of an effective potential energy [40, 41],
Ueff(r;p) ≡ U(r)−∑i pi·ri, which depends on both posi-
tions and propulsions. Because Ueff evolves slowly over a
timescale τp � 1, a mechanical equilibrium at time t may
be unstable at time t+ τp, because the propulsion forces
will have significantly evolved via Eq. (2). The loss of
mechanical equilibrium triggers fast particle rearrange-
ments [16] (on a timescale ∼ 1), as the system relaxes
towards a new minimum of Ueff . This effect is illustrated
in Fig. 4(a), which shows the squared gradient of Ueff as
a function of time. The succession of spikes correspond
to rearrangement events. These results demonstrate the
intermittent dynamics at large τp, which differs qualita-
tively from the low-persistence case.

Intermittent dynamics between mechanical equilibria
superficially resembles plasticity in slowly sheared amor-
phous solids [58]. In this regime, the spatially corre-
lated velocity field at t = 0 does not dictate the dis-
placements associated with structural relaxation. To see
this, note the weak correlations between Figs. 4(c,d);
these snapshots should be contrasted with Figs. 3(c,f)
for the persistent liquid, where velocities and displace-
ments are strongly correlated. (The time scales were
chosen such that the MSD is similar in both cases.) In
fact, the displacement field in the glassy case [Fig. 4(d)]
results from the accumulation of smaller particle rear-
rangements. This mechanism is distinct from the turbu-
lent flows seen in the persistent liquid, and from activated
relaxation events at weak persistence.

While it might be desirable to analyze relaxation
events individually, τp is finite in our simulations, so
changes in Ueff are not quasistatic. This makes individual
rearrangements hard to characterize, a problem which is
familiar from equilibrium supercooled liquids [59]. Hence
we analyze the dynamics using tools from that context,
and start with the non-Gaussian parameter [60, 61]

α2(t) =
N−1

∑
i

〈
|ri(t)− ri(0)|4

〉

2(∆r2(t))2
− 1, (4)

which is zero when the distribution of particle displace-
ments is Gaussian. In the persistent liquid (φ <∼ 0.87)
the dominant sources of heterogeneity are the correlated
velocities which decay on the time scale τp. Hence α2(t)
decays monotonically from the non-Gaussian velocity dis-
tribution at t = 0 to the Gaussian diffusive limit at
t � τp. For larger φ, α2(t) starts off similar to the ac-
tive liquid, but it increases again for t > τp, leading to a
maximum at a much longer timescale τα � τp. This peak
shows that the slow dynamics are strongly non-Gaussian,
supporting the picture of intermittent transitions [62] be-
tween minima of Ueff .

To quantify the collective nature of the dynamics we
study the dynamic susceptibility [59]

χ4(t, a) = N
[
〈Q2(t, a)〉 − 〈Q(t, a)〉2

]
, (5)
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whereQ(t, a) = N−1
∑
i Θ(a−|ri(t)−ri(0)|) is a dynamic

overlap and a a length scale, see Fig. 4(e). In dense
passive systems, χ4(t, a) is only sizeable if t ∼ τα and
a close to the typical cage size [63], thus capturing the
cooperative nature of activated relaxation. Here, χ4(t, a)
is large at all times up to τα, and is maximized for a given
t for a ∼

√
∆r2(t). These data quantitatively confirm

that particle displacements are spatially correlated over
a broad range of time scales in very persistent glassy
systems. This contrasts with results at low persistence
[Fig. 4(f)], where the short-time correlations are absent,
similar to the passive case.

We showed that strongly persistent systems support
active liquid states with turbulent nonequilibrium flows
and superdiffusive motion and that at high density, the
dynamic arrest of these liquids is accompanied by com-
plex spatio-temporal correlations, spanning a range of
length and time scales, whose origin differs qualitatively
from active glasses analysed so far. While slow dynamics
are ubiquitous in crowded systems (both active and pas-
sive), a simple replacement of thermal noises by highly-
persistent propulsions dramatically changes the mecha-
nisms by which a liquid explores its energy landscape.
The resulting dynamical processes are unusual and raise
several questions for fiture work. Can the intermittent
dynamics of the persistent active glass be understood by
analysing the idealised limit of large τp [41]? How general
are active turbulent states in systems without explicit
aligning interactions [16, 17]? Can existing theories of
velocity correlations be extended to such states [15, 64]?
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