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Abstract

Topography on a wet rocky exoplanet could raise land above its sea level. Although land elevation is the product of
many complex processes, the large-scale topographic features on any geodynamically active planet are the
expression of the convecting mantle beneath the surface. This so-called “dynamic topography” exists regardless of
a planet’s tectonic regime or volcanism; its amplitude, with a few assumptions, can be estimated via numerical
simulations of convection as a function of the mantle Rayleigh number. We develop new scaling relationships for
dynamic topography on stagnant lid planets using 2D convection models with temperature-dependent viscosity.
These scalings are applied to 1D thermal history models to explore how dynamic topography varies with
exoplanetary observables over a wide parameter space. Dynamic topography amplitudes are converted to an ocean
basin capacity, the minimum water volume required to flood the entire surface. Basin capacity increases less
steeply with planet mass than does the amount of water itself, assuming a water inventory that is a constant
planetary mass fraction. We find that dynamically supported topography alone could be sufficient to maintain
subaerial land on Earth-size stagnant lid planets with surface water inventories of up to approximately 10~ times
their mass, in the most favorable thermal states. By considering only dynamic topography, which has ~1 km
amplitudes on Earth, these results represent a lower limit to the true ocean basin capacity. Our work indicates that

deterministic geophysical modeling could inform the variability of land propensity on low-mass planets.

Unified Astronomy Thesaurus concepts: Exoplanet evolution (491); Exoplanet surface variability (2023);
Exoplanet surface composition (2022); Extrasolar rocky planets (511); Ocean planets (1151); Habitable

planets (695)

1. Introduction

The concurrence of land and water on a planet’s surface will
affect its climate state (Turbet et al. 2016; Del Genio et al.
2019; Rushby et al. 2019; Graham & Pierrehumbert 2020;
Zhao et al. 2021), the planetary context of potential
biosignatures (Schwieterman et al. 2018; Glaser et al. 2020;
Lisse et al. 2020; Krissansen-Totton et al. 2021), and perhaps
its likelihood to host the prebiotic chemistry that leads to the
origin of life (Patel et al. 2015; Rimmer et al. 2018; Rosas &
Korenaga 2021; Van Kranendonk et al. 2021). Planetary land/
ocean fractions emerge in a compromise between water’s total
budget and distribution between surface and interior reservoirs
and the size of the basins carved out by topography (e.g.,
Simpson 2017). The resulting ocean mass from the former is
largely stochastic: coded within it are the histories of volatile
delivery during accretion (Raymond et al. 2006; Morbidelli
et al. 2012), interior degassing from the magma ocean and
succeeding mantle (Elkins-Tanton 2008; Schaefer & Fegley
2017; Katyal et al. 2020; Ortenzi et al. 2020; Barth et al. 2021;
Bower et al. 2021; Guimond et al. 2021; Lichtenberg et al.
2021), atmospheric erosion by impacts (Zahnle & Catling 2017;
Schlichting & Mukhopadhyay 2018; Howe et al. 2020), and
photodissociative atmospheric escape (Tian & Ida 2015;
Zahnle et al. 2019; Gronoff et al. 2020), along with the surface
temperature and pressure. In contrast, large-scale aspects of
planetary topography may lend themselves to deterministic
relationships with observable planetary bulk properties.

Original content from this work may be used under the terms
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Although substantial water budgets of a few wt.% would
inevitably produce waterworlds (e.g., Simpson 2017), at
smaller water mass fractions the outcome is sensitive to the
planet’s topography; even a tiny ocean mass would inundate an
atopographic body. Early constraints on exoplanet land
propensity might therefore start with topography.

This first investigation will limit itself to forms of
topography that could exist without moving plates. Whether
or not a given planet manifests plate tectonics appears to be
hysteretic and largely unanswerable by modeling from state
variables (Lenardic & Crowley 2012; Lenardic 2018; Weller &
Lenardic 2018). Consequentially, this paper adopts the working
hypothesis that a stagnant lid describes a temperate rocky
planet’s most natural regime (Stern et al. 2018). Here the cool
outermost rock layer does not experience enough stress to
trigger its breaking into plates by brittle failure.

Of the types of topography on planets, so-called dynamic
topography—the surface deformation from convective upwel-
lings and downwellings in the mantle—can create significant
elevation differences without requiring plate tectonics.
Although dynamic topography is not independent of plate
movement on Earth, where mantle convection beneath
divergent and convergent plate boundaries has built ridges
higher than sea level and trenches deeper than Mount Everest,
respectively, and although we expect dynamic topography to be
muted in the absence of plate tectonics, mantle convection
would retain an inevitable influence on the low-order shape of
the stagnant lid surface. That is, dynamic topography is
everywhere: a planet exhibits this phenomenon so long as its
interior convects. Bodies in our solar system do boast high
peaks by other means: massive lava flows (e.g., Olympus
Mons) or impact cratering (e.g., Rheasilvia on Vesta). Yet if we
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Figure 1. The four major endogenic sources of topography on a stagnant lid planet. (a) The component of dynamic topography due to flow-induced traction on the
lithosphere. (b) Tectonic crustal thickening caused by tension over cold downwellings. (c) The component of dynamic topography due to thermal isostasy over thinned
lithosphere. (d) Magmatic crustal thickening caused by melting of upwelling plumes.

are interested in whether a planet’s topography could be higher
than its sea level regardless of volcanism, cratering, and other
processes contingent on a planet’s specific geological history,
then we might begin with dynamic topography as the most
endogenously universal of relief mechanisms.

On long length scales of relief, additional support comes
from the density contrast between the heavier mantle and
lighter crust, which buoys topography at an equilibrium height.
This isostatically compensated topography can be higher in part
because the maximum stress underneath the load is shifted to
shallower, cooler depths, where the lithosphere is stronger.
Parameterizations of isostatic equilibria, however, depend only
on the density contrast and thickness of the crust and so are
sensitive to the planet’s specific petrologic history. This could
be daunting if we consider that the emergence of thick granitic
continents on Earth still lacks a consistent explanation but is
probably entwined with its geodynamic history (Lenardic et al.
2005; Korenaga 2018; Honing et al. 2019). Predicting isostatic
elevations would require information that may always be model
dependent. Purely dynamic topography, meanwhile, both
originates from and is supported by the sole process of thermal
convection. It is directly obtained from any numerical
convection model (e.g., McKenzie 1977; Kiefer & Hager 1992;
Kiefer & Kellogg 1998; Huang et al. 2013; Arnould et al. 2018;
Lees et al. 2020); its prediction requires less prior knowledge.

Note that stagnant lid convection can lead to other forms of
topography, beyond just that supported dynamically by
convection (Figure 1). The melting associated with hot
upwelling mantle can form thick, low-density crust as in

Figure 1(d) (Stofan et al. 1995); further, tension above
downwelling plumes can also thicken the crust tectonically as
in Figure 1(b) (Kiefer & Hager 1991; Pysklywec &
Shahnas 2003; Zampa et al. 2018). Both phenomena would
induce compositional isostasy, resulting in altitudes unrepre-
sentative of pure dynamic support. Neither, however, will be
included in the groundwork we perform here. There is also a
distinction to be made for thermal isostasy, in which thermal
expansion of the lithospheric mantle creates the density
difference, rather than compositional separation related to
melting (Figure 1(c)). Hot upwelling mantle will induce
thermal isostasy. By convention, we do include thermal
isostasy within the full dynamic topography (see Molnar
et al. 2015; Hoggard et al. 2021). Overall, the elevations we
model here should represent conservative lower limits on a
stagnant lid planet’s static topography.

In summary, among the large-scale mechanisms sculpting
the surface of an active planet, dynamic topography alone has
the advantage of being (i) inevitably present, regardless of
tectonic mode, and (ii) a direct result, quantitatively, of a
tractable process (mantle convection). From a modeling
perspective, all of these factors help define a simplified and
tractable problem: how does dynamic topography scale with
parameters that dictate how a planet will convect—Ilike the
depth of the mantle, the thermal state, or the rheology? In
principle, this scaling relationship can be extracted from
numerical simulations of convection. From there, cheaper 1D
parameterized convection models can use this scaling to
explore how the amplitude of dynamic topography changes



THE PLANETARY SCIENCE JOURNAL, 3:66 (23pp), 2022 March

over a wide range of planetary bulk properties. Because the
scaling itself may be sensitive to a planet’s tectonic mode, our
convection simulations neglect the possibility of plates.

1.1. Dynamic Topography Scaling Relationships

Limited by computing power, early constructions of a
scaling function for dynamic topography have used a constant
viscosity for the convecting region (Parsons & Daly 1983;
Kiefer & Hager 1992). Under this isoviscous paradigm, a
single dimensionless parameter, the Rayleigh number,
describes the convective vigor of the system:

apgATd?
kno

Ra = ey

where « is the thermal expansivity of the material in K™, p is its
density in kgm >, g is the surface gravity in ms 2, AT is the
temperature contrast across the layer in K, d is the depth of the
convecting region in m, & is the thermal diffusivity in m*s ', and
7 is the dynamic viscosity in Pa s—in isoviscous convection these
parameters are all constant. The Ra number can act as a useful
independent scaling variable for many convection phenomena
because the vast majority of temperature variations in a
convecting cell occur in its boundary layers (McKenzie et al.
1974). Boundary layer theory justifies a power-law relationship
between Ra and the thickness of the upper thermal boundary
layer. Hence, these previous works on isoviscous dynamic
topography supposed scaling relationships of the form
h/(aATd) ~Ra" (the «ATd term ensures that both sides of the
proportionality are dimensionless and » is uniquely defined).

In rocky planets, however, 1 changes with temperature (Karato
& Wu 1993); steep viscosity gradients across the mantle are a
defining trait of natural stagnant lid convection in that the cold
surface is too viscous to flow (Davaille & Jaupart 1993;
Solomatov 1995). Scalings based on Equation (1) defined using
constant viscosity will not necessarily provide an optimal fit to the
topography of stagnant lid bodies (Sembroni et al. 2017; Bodur &
Rey 2019). In identifying a convecting system whose viscosity
decreases quickly with temperature, we need a second dimension-
less parameter in addition to a Rayleigh number: the viscosity
contrast across the layer, An=1j/n;, where 1) is the viscosity at
the top and 7, the viscosity at the bottom. A nonuniform viscosity
profile implies many possible thermal Rayleigh numbers. Here
Ra; denotes Equation (1) evaluated at 17 = 1. In simple numerical
models, viscosity is often assumed to follow an exponential law,
n(T) = n, exp(—=bT), where the temperature prefactor
b = In(An) is a constant (Solomatov 1995).

Further, any Ra scaling function will only apply to its
intended convection regime. Canonical studies of temperature-
dependent viscosity convection distinguish between at least
two series of regimes. These regimes have their own transitions
in Ra;-An space, which would manifest as discontinuities in
the scaling function. A first series concerns the mobility of the
surface: as An increases, a convecting system will move from a
small viscosity contrast regime (similar to the isoviscous case)
to a stagnant lid regime, via an intermediate regime of a
sluggish lid (Moresi & Solomatov 1995; Solomatov 1995;
Kameyama & Ogawa 2000). In a second series of transitions,
the so-called stationarity of convection changes. As Ra;
increases, the system will move roughly from a steady-state
regime to a chaotic time-dependent regime, again through a
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transitional regime (Dumoulin et al. 1999; Solomatov &
Moresi 2000). For either series, the regime boundaries are not
sharp in Ra;-An space but depend on this parameter space in a
complex way via the aspect ratio of convection and the initial
conditions. While ascribing Ra; presumes a bottom-heated
convection cell, different modes of heating may also affect
dynamic topography scaling relationships in ways we do not
yet understand.

A waypoint objective of this work is therefore to develop a
preliminary dynamic topography scaling relationship for the
stagnant lid regime. While the topography of stagnant lid
bodies has indeed been modeled numerically before (Moresi &
Parsons 1995; Solomatov & Moresi 1996; Vezolainen et al.
2003, 2004; Orth & Solomatov 2011; Golle et al. 2012; Huang
et al. 2013), the majority of this literature is directed at
producing geoid-to-topography ratios to invert for interior
properties of Venus or Mars, as opposed to fully exploring
parameter space with forward models. As such, we are aware of
no published scalings as explicit functions of the relevant
convective parameters. Given the scope of our work here, we
do not attempt to characterize the scaling behavior near the
regime discontinuities (which would require a much finer grid
of models in Ra;-An space). Instead, we restrict ourselves to
the chaotic time-dependent stagnant lid regime located in
Moresi & Solomatov (1995) and Orth & Solomatov (2011) and
simulated previously with Venus- and Mars-like parameters
(Solomatov & Moresi 2000; Hauck 2002; Reese et al. 2005;
Orth & Solomatov 2011). As such, we are assuming that
chaotic stagnant lid convection will apply to most geodynami-
cally active rocky planets—an assumption that may be tested in
the future when detailed characterization of rocky exoplanets
becomes possible.

1.2. The Harmonic Structure of Planetary Surface Relief

In the second part of this study, we convert scaled dynamic
topographies into the corresponding volumes of the largest
possible ocean basin. The key product here is a spherical
harmonic expansion of this scaled topography onto a Cartesian
grid, as a synthetic elevation map. Yet all that our stagnant lid
convection scaling law provides is a scalar height value. With
some convenient assumptions about dynamic topography’s
spectral properties, it is in fact straightforward to find a power
spectrum that is consistent with both the scalar height we have
and some set of spherical harmonic coefficients we need.

Initial observations of Venus’s, Earth’s, and Mars’s (total)
topographies suggested a remarkably loglinear relationship
between the 1D power spectral density, ZSD in m’, and the
wavenumber, k in m™~'. From spherical harmonic degree [ =5
to at least /=100, the available spectra appeared consistent
with a slope dlogdyZSD/dlog k ~ —2 (Turcotte 1987; Rapp 1989;
Balmino 1993). This precise slope value was predicted earlier
still by Vening Meinesz (1951) and appears to be physically
motivated (Sayles & Thomas 1978; Lovejoy et al. 1995)—
perhaps emerging from sediment transport laws (Pelle-
tier 1997, 1999; Roberts et al. 2019), although we will not be
considering topography’s modification by erosion explicitly.
Statistically, a slope of —2 corresponds to red noise, the noise
associated with a random walk process.

The convenient consequence of a loglinear spectral model—
with a predetermined slope—is that it would let us approximate
the shape of any planetary surface given just one free parameter,
i.e., the y-intercept of qSl;SD (k). As for dynamic topography in
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particular, models and Earth observations have indicated a
shallower spectral slope roughly consistent with pink noise
k™!, up to [~ 30 (Hoggard et al. 2016, 2017; Davies et al.
2019). However, there is no evidence that this spectral structure
should characterize dynamic topography under all tectonic
regimes. Hence, we extract the spectral structure of our own
numerically modeled stagnant lid topography profiles. We will
see that our rudimentary analysis again produces constant
dloquZSD /dlogk values, albeit ones more strongly negative than
—2. Observations of real stagnant lid bodies in the solar system
could then suggest an empirical modification of this purely
dynamic spectral model.

1.3. Study Outline

Our methods are described in Section 2. The approach we
take is outlined as follows: We begin by extracting scaling
relationships for the rms amplitude of dynamic topography
from 2D numerical mantle convection simulations with
temperature-dependent viscosity (Section 3.1.1). Second, we
embed these scaling relationships in a suite of 1D parameter-
ized convection models, allowing us to explore the sense of
change of rms dynamic topography across a wide model
parameter space and planet age distribution (Section 3.2.2). For
this parameter study we focus on the planet mass, age,
radiogenic element abundance, and core mass fraction, all
relevant to the cooling history and Rayleigh number of a planet.
We focus on these four parameters because they may be
amenable to being observationally constrained for exoplanets,
at least in principle. Third, we synthesize 2D maps from the
projected rms amplitudes to see how the maximum capacity of
ocean basins, and hence the minimum elevation gain needed
for dry land, might trade off with planet size (Section 3.3). We
end with a discussion of the study’s limitations and applic-
ability (Section 4).

2. Methods
2.1. Numerical Convection Model

Numerical computations were performed using the ASPECT
code version 2.2.0 (Kronbichler et al. 2012; Heister et al. 2017,
Bangerth et al. 2020). For each case we systematically varied
two key input parameters: Ra; and An. Although we originally
explored Ra, varying from 1 x 107 to 3 x 10%, we found that
simulations below Ra; = 1 x 10® were not in the chaotic time-
dependent regime and showed characteristically different
topography scaling behavior. Because the present study was
not designed to precisely locate these transitions, we focused
only on the chaotic time-dependent regime. Simulations above
Ra; =3 x 10® were found to be computationally impractical.

Our ASPECT implementation results in dimensionless
temperature and velocity fields, denoted by the prime symbol.
These and their derivative quantities can be dimensionalized
as, e.g.,

T=ATT + T,
K !
u=—u,
(x, y)=d ', y",
6I‘h == d 6i‘h’
S1ia = d b1igs
h=aATd W, (2)
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Table 1
Numerical Model Setup

Case Ra; An Mesh Size Initial Temperature Profile
1 1x10% 1x10° 512 x 64 Sinusoid
2 2x 108 1x10° 1024 x 128 Sinusoid
3 3 x 108 1x10° 1024 x 128 Sinusoid
4 1x10%  1x107 512 x 64 Sinusoid
5 2x 108 1x107 1024 x 128 Case 4
6 3x 108 1x107 1024 x 128 Case 4
7 1x10% 1x10° 1024 x 128 Case 4
8 2x 108 1x10% 1024 x 128 Case 4
9 3 x 108 1x10% 1024 x 128 Case 4
10 Ix 108  1x10° 1024 x 128 Case 4
11 2 x 108 1x10° 1024 x 128 Case 4
12 3x 108 1x10° 1024 x 128 Case 4

where T’ is the dimensionless temperature, u’ is the horizontal
component of the dimensionless velocity, &/, is the dimension-
less thickness of the upper thermal boundary layer, 6} is the
dimensionless thickness of the stagnant lid, A’ is the
dimensionless height of topography, 7, is the dimensional
surface temperature, AT is the dimensional temperature
difference from bottom to surface, and the other (dimensional)
parameters are defined under Equation (1) above.

All simulations involve a 2D rectangular box with fixed top
and bottom temperatures, Ty = 0 and 7] = 1, respectively, and
no internal heating. Free-slip boundary conditions are ascribed
to the top and bottom surfaces, while reflecting boundary
conditions are ascribed to the sides. We use a wide box with a
nondimensional depth Y’ of unity and a nondimensional width
of X’ = 8Y’ to minimize the influence of the side walls. We
assume an incompressible, infinite-Prandtl-number fluid and
use the Boussinesq approximation. Viscosity is Newtonian and
varies with temperature according to an exponential theology
law, n’ = exp(—b T"), where b = In(An). We use the coarsest
mesh size still able to resolve the lower thermal boundary layer;
this varies for different Ra,. Table 1 lists the relevant details of
the model setup.

Each experiment is deemed to have reached quasi-steady-
state when both its rms velocity stabilizes to within 0.002% and
its top and bottom heat fluxes converge. All time steps prior to
this point are discarded, and the models are then allowed to run
for long enough such that the distribution of rms dynamic
topography is well characterized. All cases are confirmed to be
in the stagnant lid mode of convection based on the surface
mobility criterion, S = (8y)’uy < 1, where 8y = &jiq + O, is
the dimensionless thickness of the lithosphere and u is the
dimensionless surface velocity (Solomatov & Moresi 1997).

2.1.1. Extraction of Parameters From the Temperature and Velocity
Profiles

The average thickness of the stagnant lid, &}y, is found using
the graphical method of Solomatov & Moresi (2000). We first
fit a smoothing spline of degree 4 to the horizontally averaged,
time-averaged velocity magnitude profile. To ensure that we
are detecting the lid, we find the inflection point associated with
the greatest velocity magnitude and ignore the region down-
ward of this point. We then find the maximum gradient of the
remaining spline. The intersection of the depth (y’) axis with
the tangent to the maximum gradient locates the base of the lid,
Vig» 50 Olia = ¥ = iy
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Another degree 4 spline fit to the temperature profile, also
horizontally averaged and then time-averaged, tells us the lid
basal temperature Tllid, being the value of the spline at ylg 34 The
temperature of the nearly isothermal interior, 77, is defined by
Solomatov & Moresi (2000) as the local maximum horizontally
averaged temperature in the convecting layer. Here, we
systematically interpret this local maximum as the uppermost
inflection point in the temperature spline.

Immediately below the stagnant lid is the upper thermal
boundary layer. Unlike the cold lid, this thinner layer is
dynamically unstable and does interact with the rest of the
convection cell; cold downwellings form locally where its
thickness exceeds a critical value. Its thickness is given by
8l = (T — Ty /F,), where F} is the total dimensionless heat
flux out of the upper boundary divided by X’ (Thiriet et al.
2019). The drop from T/ to Tj4 defines AT}, the temperature
contrast across the upper thermal boundary layer. The
commonplace subscript denotes “rheological” because AT},
is tied to the rate of change of In(n) with temperature; in
exponential viscosity models this is always a constant and
proportional to b.

2.1.2. Fitting a Topography Scaling Relationship

The ASPECT code calculates the horizontal profile of the
surface dynamic topography via a stress balance at the center of
each cell on the top boundary,

Oyy = —pgh, 3)

where o, is the vertical component of the stress imparted by
convection, g is the gravity, and p is the mantle density.
Equation (3) assumes mechanical equilibrium between the
surface topography and the interior density structure, a safe
assumption for the long timescales of convection (e.g.,
Ricard 2015). At each time step, we first normalize the
dimensionless topography profile to ensure that its mean is
zero, and then we find its rms value, /.

We choose the rms amplitude of topography as the
representative scalar quantity to fit, rather than the peak
amplitude. This choice is based on the reasoning that the rms
value may be less sensitive to the model geometry—crucial for
inferring 3D behavior from 2D models, as we will be doing. As
such, we ran preliminary isoviscous convection simulations to
confirm that neither Cartesian nor cylindrical 2D geometries
show the same peak topographies as the equivalent 3D
spherical experiments from Lees et al. (2020), whereas, for
all three setups, the rms topographies align well. That the same
result holds for non-isoviscous simulations is an outstanding
caveat of this study.

Earlier in Section 1.1, we motivated the need for two
parameters, a Rayleigh number and viscosity contrast, to fully
describe stagnant lid convection. These will serve as the
independent variables in the scaling function. We define an
interior Rayleigh number,

3
apgATd® Ray n(Th) ,
wn (T n(T)
that is, evaluating Equation (1) using the “interior” viscosity at
T! (Solomatov & Moresi 2000). This formulation of the

Rayleigh number is easily transferable to 1D convection
models that predict a single mantle temperature and sidesteps

Ra; = “)
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any problems with predicting lower mantle viscosities (where
pressure effects are important). Also with an eye toward 1D
model integration, we use the exponential temperature
prefactor b = In(An) as the second variable. We anticipate a
power-law relationship and thus fit a linear model to b,
log(Ra,), and log(h,,,), with an interaction term between b and
log(Ra;):

loghns = A + Bb + ClogRa, + D(blogRa,), 5)

where T/ in Equation (4) is determined from the horizontally
and time-averaged temperature profile as per Section 2.1.1, 1/,

rms
is taken as the mean of the rms value over all time steps, and
the log notation refers to the base-10 logarithm here and
throughout. Thus, each experiment provides one (b, Ra;, hr/ms)
coordinate. While these data have some distribution due to the
chaotic time dependence of convection, we found that
including the standard error of the mean of logh,, has
negligible effect on the regression results (for simplicity we do
not consider the uncertainty on Ra,).

Coefficients A, B, C, D, and their covariance matrix are
estimated using orthogonal distance regression. The interaction
term, D (b log Ra;), accounts for cross-effects between b and
Ra;. Although including the interaction term adds an extra
parameter, we will see that we need this term to properly
capture the observed effect of Ra; on &1,,, which has magnitude
and direction depending strongly on b as the data will show;
the presence of the fourth term decreases the residual variance
of the fit threefold compared to its absence.

2.2. Parameterized Thermal History Model

In a fraction of the CPU time of a full dynamical convection
simulation, parameterized convection models can result in
similar temperatures to numerical models by tracking heat
fluxes across the two thermal boundary layers (Thiriet et al.
2019). Parameterized convection can also produce a thermal
history of the planet, from which we can extract a self-
consistent evolution of dynamic topography. Further, such low-
cost models invite parameter studies, which naturally we
conduct in this segment. Important caveats are discussed in
Section 4.

We will be exploring how topography changes with planet
age, 7, mass, M,, core mass fraction, CMF, and radiogenic
heating expressed as an abundance of U and Th relative to the
Sun, X;.q- As such, these four parameters are independently and
systematically varied between experiments. Meanwhile, we
anticipate that some of the biggest uncertainties lie in the
unknown mantle rheology. To see how these uncertainties
would propagate, rather than testing their effect on /iy,
explicitly, we will treat the parameters in the viscosity law as
uniform random variables. In addition to the viscosity
parameters, we also account for model uncertainty by drawing
the topography scaling coefficients in Equation (5) from a
multivariate normal distribution whose mean and covariance
are given by the results of the regression from Section 2.1.2.
Table 2 lists all dimensional input parameters used in the 1D
model, which the remainder of this section describes.

2.2.1. Governing Energy Balances

The approach outlined here closely follows that of Thiriet
et al. (2019). The mantle and core temperatures are governed
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Table 2
Dimensional Parameters Used in the 1D Thermal History Model
Symbol Description Value Units Reference
Constant Bulk Properties for All Planets
Pm Mantle density 3500 kg m3 Thiriet et al. (2019)
Cm Mantle specific heat 1142 Tkg 'K! Thiriet et al. (2019)
Ce Core specific heat 840 Tkg 'K™! Thiriet et al. (2019)
k,, Mantle thermal conductivity 4 Wm ! K! Thiriet et al. (2019)
Qa,, Mantle thermal expansivity 2.5 % 107° K™! Thiriet et al. (2019)
Fom Mantle thermal diffusivity 1x10°° m?s! Thiriet et al. (2019)
Rag; Critical Rayleigh number 450 Thiriet et al. (2019)
g, Viscosity temperature scale coefficient 2.44 Thiriet et al. (2019)
I} Heat flow scaling exponent 1/3 Solomatov (1995)
T, Surface temperature 273 K
Variables Tested in the Parameter Study
T Planet age 2-4.5, baseline: 4.5 Gyr
M, Planet mass 0.1-5.0, baseline: 1.0 Mg, Rogers (2015); Zeng et al. (2016)
CMF Core mass fraction 0-0.4, baseline: 0.3 Zeng et al. (2016)
Xrad U and Th budget relative to solar 0.3-3.0, baseline: 1.0 Nimmo et al. (2020)
Unknown Random Variables
E, Viscosity activation energy U200, 300) kJ mol ! Karato & Wu (1993); Zhang et al. (2017)
o Viscosity prefactor UR.6 x 10'°, 53 x 10'3) Pa s See Section 2.2.3 in text
A, B,C,D Topography scaling coefficients Nup, 2)* This work

Notes. The top section lists parameters that are constant in all runs. The middle section lists those parameters that are systematically varied in certain sections of the
study and held constant at the baseline value where noted. The bottom section lists the unknowns, treated here as random variables distributed as given, such that a

distribution of output parameters is obtained.

? With mean g and covariance 3 given by the results of the linear regression (see Section 2.1.2 and Table 3).

by the 1D energy balances,

d7,
M, Cmd_tm =4, Ay + 9rad M, + q. Ac,

M, Cc% =—(q. A, (6)
where ¢ is time in s, M,, is the mass of the convecting part of the
mantle in kg, ¢, is the mantle specific heat capacity in
Jkg 'K, gaq is the radiogenic heat flux in W kg™, g,, is the
heat flux out of the top of the convecting region in W m ™2, and
A, is the surface area of the top of the convecting region in m>.
The subscript u denotes the upper boundary layer; the
analogous notation with subscript ¢ applies to the core. M, is
found through the core mass fraction. Just as in the 2D models,
we explicitly include a mechanical stagnant lid, sitting atop the
upper thermal boundary layer, never participating in convec-
tion.” Our choice of initial conditions for the governing
equations is explained in Section 2.2.5.

Note also that we assume a perfectly spherical planet. For
simplicity, and for consistency with our assumption of
incompressibility in the 2D models, we treat c,, and other
thermodynamic quantities as constant throughout the mantle
(i.e., always equal to their reference values at the top of the
convecting mantle); in reality these would vary with the
adiabatic profile. This assumption would be a greater source of
error for more massive planets with higher pressures at the base

3 Note that this study does not make a compositional distinction (e.g., in

density or heat-producing element concentration) between the convecting
mantle and the lid. In reality, this mechanical boundary layer would partially
overlap with the planetary crust, the latter being the product of bulk mantle that
partially melted, generated magmas that rose buoyantly to the surface, and
recrystallized as a lower-density rock.

of the lithosphere. Although Equation (6) simplifies the
problem by omitting other heat fluxes like volcanism (see
Section 4.4.3), it will suffice in capturing the essential behavior
of a cooling convective planet (Jaupart et al. 2015).

2.2.2. Interior Structure

The radius of the planet, R,, is based on the physically
motivated mass—radius relation in Zeng et al. (2016),

R 1/3.7
R_” = (1.07 — 0.21 CMF)(—”) , (M

52 52

while the radius of the core, R, is from Zeng & Jacobsen
(2017),

R. = R, CMF%>, ®)

We use a surface gravity g, consistent with M,, and R,. Note
that Table 2 suggests that the mantle density, p,,, is a constant,
but Equations (7) and (8) assume that density decreases radially
outward such that gravity is constant through the mantle. Our
box model can be said to treat p,, as a near-surface value, apt
for the upper thermal boundary layer typically found at
r =~ 0.99R,,. Note that Equations (7) and (8) entail extrapolating
equations of state to pressures beyond their validity range,
which could lead to errors in R, and R., compared to more
accurate high-pressure equations of state such as in Hakim
et al. (2018). Even at 5 M, however, the radius predicted by
Equation (7) is 1.2% smaller than that from Hakim et al. (2018)
for an Earth-like core size. This radius error has no effect on
rms dynamic topography but decreases ocean basin sizes by
8%. Significant errors in dynamic topography predictions
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would come with R, overinflations of more than 20%. In detail,
accurate mass—radius relations will require tailoring to specific
bulk compositions.

In the parameter study, we vary CMF from 0.0 to 0.4, the
quoted range for which Equation (7) is valid. Neglecting any
potential silicate mass loss after planet differentiation, oxida-
tion chemistry predicts a theoretical upper CMF of 0.34 (Dyck
et al. 2021). We consider values of M, ranging from 0.1 to
5 My, corresponding to a Mars-sized body and to an equivalent
radius slightly below the accustomed upper limit for rocky
planets at 1.6 Ry (Rogers 2015) based on Equation (7) with a
CMF of 0.33.

2.2.3. Mantle Rheology

The rheology of rocky mantles is thought to obey an
Arrhenius law (Karato & Wu 1993). The Arrhenius functional
form yields exceedingly large viscosity contrasts over the cold
lithosphere—spawning numerical issues in 2D models that
preclude its use there. We exploit the Arrhenius form in the 1D
model, but to maintain consistency between our 1D and 2D
models, we ignore any pressure dependence and non-New-
tonian behavior. We adopt a canonical law for diffusion creep
as a function of temperature,

E,
n(T) = nyexp (m) 9)

where 7 is the dynamic viscosity in Pas, R, = 8.314 is the gas
constant in J mol ' K™, E, is the activation energy in J mol ',
and 7, is a prefactor with the same units as 7. Note that our
definition of 7, does not act as a “reference viscosity”
sometimes employed; it just encompasses all pre-exponential
terms. In natural systems, the mantle viscosity will also depend
on pressure; this caveat is discussed in Section 4.2.

In testing variations of 7, and E,, we shall try to capture the
uncertainty imparted by unconstrained exoplanet rheologies.
Strain rates brought on by the diffusion creep of silicate mantle
rock would be strongly affected by both the water content and
the bulk mineralogy. For olivine, Karato & Wu (1993) give the
canonical wet (water-saturated) and dry (water-free) flow laws:
E, from 240 kJ mol ™! in the former to 300 kJ mol ™~ in the latter;
water weakens the rock. For the pre-exponential coefficient 7,
the same canonical laws correspond to 1.6 x 10'" and 2.6 x 10"!
Pas, which produces a dry olivine viscosity of ~10?' Pas at
1600 K.

We also expect to find overall higher viscosities inside
planets that have mantles with lower Mg/Si compared to
Earth’s value of ~1.3 (Pagano et al. 2015; Spaargaren et al.
2020; Ballmer & Noack 2021). At Mg/Si <1, the upper mantle
composition would be dominated by orthopyroxene; at Mg/Si
near 2 it would approach pure olivine. Our coarse treatment
considers some empirical end members. We have laws for
olivine; Zhang et al. (2017) give an Arrhenius flow law for the
diffusion creep of enstatite. They find that E, =200 kJ mol ',
that wet enstatite is approximately 10 times more viscous than
wet olivine at depth, and that virtually dry enstatite is about 100
times more viscous than wet enstatite.

So far, this simple mineralogical paradigm would imply that
water-saturated regions of Earth’s upper mantle would exhibit
the weakest-possible diffusion creep among rocky planets. To be
conservative, we set a minimum 1)y of 2.6 x 10'° Pas, an order
of magnitude weaker than wet olivine (Karato & Wu 1993).
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The maximum 7, is set at 5.3 x 10'® Pas, approximating a dry
enstatite rtheology (Zhang et al. 2017). We test E,, between 200
and 300kJmol '. Both E, and 1o are drawn from random
uniform distributions. By varying these parameters indepen-
dently, we are likely overestimating the true uncertainty if they
are in fact correlated. Note that we do not self-consistently adapt
other bulk properties to account for the unknown mineralogy (an
invaluable endeavor, but outside the scope of the current
manuscript).

2.2.4. Heat Fluxes

Internal heating.—The radiogenic heat flux at 7 is

4
Qrad = z Xicihi exXp [(T - t) 2 ]a

T /2,i
i—1 /2

L Xrad 1fl>2 10
X {1 otherwise’ (19)

where we are summing over the heat-producing isotopes *’K,
238U, 235 U, and 232Th; ¢; is the present-day bulk silicate Earth
concentration of the ith isotope in kgkg™'; h; is the heating
contribution in Wkgfl; and 7y /»; is the half-life in the same
units as 7. Values for these parameters are taken from Table 1 in
O’Neill et al. (2020). Further, for the refractory elements U and
Th, we multiply the summand by a common factor y,q to
reflect potentially extraterrestrial variations in the abundances
of these r-process elements. As surveyed in Nimmo et al.
(2020), U and Th abundances are conservatively expected to
vary across Sun-like stars from between 30% to 300% of the
solar value, which—assuming that relative mantle concentra-
tions directly reflect relative stellar abundances (Thiabaud et al.
2015; Hinkel & Unterborn 2018; Putirka & Rarick 2019;
Adibekyan et al. 2021)—translates to a range in ¢ of
2.22-14.34 pWkg ' at 4.5Gyr, with the baseline value
equivalent to 5.36 x 107'?Wkg~'. (We ignore the uncon-
strained variations in *°K, a volatile isotope that in any case
contributes less heating with age than refractory U and Th.)
Although we do not account for the galactic chemical evolution
of U and Th abundances as a function of stellar age (Frank
et al. 2014), some of this variation is captured in X.q
regardless.

Thermal boundary layers.—Across the upper and lower
thermal boundary layers, heat fluxes are conductive:

ATu,c

Gue = ke (1)
th

where k,, is the mantle thermal conductivity in Wm 'K,
AT" (respectively AT*) is the temperature contrast across the
upper (lower) boundary layer in K, and &}, (65,) is the thickness
in m.

The thermal boundary layer thicknesses are controlled by
their local Rayleigh numbers:

T

u,c
A

Ra%: )’
5r}’1 = (Ria — R,) R— > (12)

u,c u,c L 3
Ra?ﬁ" — apg AT (Rlld Rc) , (13)
k0 (T*€)
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where Ral;¢ is the local Rayleigh number, Ray is the critical
Rayleigh number for convection, and (3 is a constant that can be
obtained from either experiments or theory. For both thermal
boundary layers we take 3= 1/3, such that ¢, is independent
of d; the boundary layers are assumed to be in a state of
marginal stability (e.g., Solomatov 1995). The value of 3 is tied
physically to the planet’s dominant cooling mechanism, which
strongly depends on the tectonic mode (Lenardic 2018; Seales
& Lenardic 2020). The choice made here is appropriate for
chaotically time-dependent, stagnant lid convection with
temperature-dependent viscosity (Solomatov 1995; Solomatov
& Moresi 2000). Other fitting choices do not significantly
change our results (Thiriet et al. 2019).

For the upper thermal boundary layer, we have AT =T,, —
Tiia» n(T") = 1(T,,)), and g" = g,, and we fix Raly, at 450. For
the lower layer, this becomes AT =T.—T,, n(T)=
(T, + T,,)/2], g€ the gravity at R., and after Deschamps &
Sotin  (2000), Rag..=0.28Ral?!, with Ra; the interior
Rayleigh number defined for 1D convection in Equation (17).
Although Ra; . can be tricky to parameterize, 7, tends to
equilibriate with T,, fairly quickly under this setup; hence,
qe < qu-

Finally, the temperature Tj;4 at the base of the lid in K
(identically, at the top of the convecting region) is obtained for
parameterized convection in a similar way to numerical
models. The temperature drop between T,, and Tjq is
proportional to the so-called viscous temperature scale, AT,
(Davaille & Jaupart 1993):

Tia =T — ATy = T,y — an AT, (14)
() RT,
dn/dT)z, E,

v (15)
The coefficient a,y, is empirically determined; we adopt a value
of 2.44 for 3=1/3 based on the fits of Thiriet et al. (2019) to
3D spherical convection simulations. The radius Rjq of this
temperature coordinate is described in the next section.

2.2.5. Stagnant Lid Thickness and the Final Governing Equation

The lid does not instantly grow or shrink in response to a
change in the heat flux coming from the upper thermal
boundary layer. Rather, there is a lag in which 8;;4 adjusts such
that the difference between the flux out of the top of the lid and
the flux into the base of the lid is minimized:

dt pmcm(Tm - ’Iiid) ’

where the heat flux profile of the lid, gq(r) in Wm 2 is
obtained by solving the steady-state conductive heat transfer
equation in spherical geometry with boundary conditions (Ryjq,
Thiq) and (R,,, T;) where Ty, is the surface temperature in K, and
with internal heating equal to the mantle g4 (in reality, we
might anticipate higher concentrations of lithophiles U, Th, and
K in the lid). This steady-state formulation ignores the time
dependence of heat conduction in the lid, leading to errors
compared to a time-dependent model in the surface heat flux of
<5mW m 2 for a Mars-sized planet. A smaller error is expected
for larger planets with thinner lids (Thiriet et al. 2019).

We account for the mass of the convecting region changing
with &4 by subtracting the lid mass, p,,47/3(R) — Ry}y), from

déia _ Gualrie — 9 (16)
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the fixed quantity M,(1 — CMF). At each time step we also
update Rjjq = R, — 6jig. Thus, Equation (16) presents a third
differential equation that must be solved simultaneously with
Equation (6). We solve this system of equations using the
explicit Runge—Kutta method of order 5. The initial conditions
Tpno, Teo, and 6jq,0 reflect the unknown formation history of
the planet—the leftover gravitational energy of accretion and
core segregation, and the crystallization of the primordial
magma ocean(s). To bypass this uncertainty, we only consider
simulations that have converged to a memoryless state. That is,
we prime each experiment by running it forward from = —5
to 0Gyr and using the solution at OGyr as the initial
conditions. Then, Equations (6) and (16) are solved again
from t=0to 7.

2.2.6. Dynamic Topography

Once we have a solution for the planet’s thermal history, we
combine these results with Equation (5) to find 2/,,.. Since we
have b and Ra; forming the basis of the topography scaling
from 2D experiments, applying Equation (5) to 1D thermal
histories requires writing 1D-appropriate analogs of these two
variables. An analog of Ra; is quite straightforward; for
parameterized convection this variable is defined a posteriori as

Ay pmgyAT(Rp - Rc)3
KmM (L)

where AT =T, — T.. This equation is the same as Equation (4)
using the dimensional parameters for the mantle in Table 2 and
simply letting the interior viscosity 7(7;) = n(T,,). For our runs,
T.~ T,,. Note also that Ra; differs from Ra, (Equation (13)) in
that the latter excludes the stagnant lid from its domain.

Meanwhile, b as defined in the exponential viscosity law
must be related to Arrhenius law parameters, since in 1D
viscosity is modeled with the latter, more realistic law. Moresi
& Solomatov (1995) demonstrate such an exponential approx-
imation to an Arrhenius law. The approximation comes from
the idea that in the stagnant lid regime it is the local rheological
gradient over the upper thermal boundary layer that propels
temperature-dependent viscosity convection, rather than the
total domain viscosity contrast, An (Davaille & Jaupart 1993).
One can therefore write n(T) ~ exp [(AT/AT,)T], where the
viscous temperature scale AT, is rescaled by AT to make the
temperature prefactor dimensionless. From Equation (15) this
implies

Ra; = (17)

AT

b= —— 18
RbTr%/Ea ( )

In 2D applications, setting 7, at the interior temperature just
below the upper thermal boundary layer would create a
viscosity profile that is most closely aligned to the Arrhenius
profile, especially over the key region of the upper thermal
boundary layer (Moresi & Solomatov 1995).

Finally, the dimensionless £, resulting from Equations (18),
(17), and (5) is scaled by «,,ATd (Equation (2)) to get the
dimensional %,,s. To clarify, we do consider the whole domain
in the dimensionalization, so d = R, — R, and again AT =T, —
T,; the fact that several of these constituents evolve with time
means that /s is a function of the age of the planet.

These calculations so far have assumed subaerial topogra-
phy. Water-loaded topography would be higher by a factor of
P/ (Pm — pw) =~ 1.5, where p,, is the density of water.
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Figure 2. Snapshot from a single time step of the dimensionless temperature field (bottom), surface dynamic topography, /4’ (top), and temperature profile, 7’ (right),
for chaotically time-dependent convection in the stagnant lid regime. This example shows Ra; = 1 x 10% and A =1 x 10%. The dimensionless temperatures range
from 0O (cold; blue) to 1 (hot; red). The gray box in the temperature profile shows the instantaneous location and thickness of the upper thermal boundary layer. The

vertical scale of // is exaggerated.

It is worth mentioning at this point that the dependence in
several places on Ty—inside the definition of b in particular—
means that there is a certain sensitivity of A, to this free
parameter. For example, all else held constant at the baseline
value (Table 2), increasing T from 273 to 373 K is associated
with a 30% decrease in h.,s. However, because this study is
only concerned with temperate planets that have a narrow range
in Ty, we do not consider its effect on topography.

2.3. Expansion to Maps and the Volume of Ocean Basins

We have based our scaling relationship on %,,,s (Section 2.1.2),
yet it is the peak topography, /e, that controls how much water
a planet’s surface reservoirs can hold at the maximum capacity.
Therefore we require the peak topography associated with an rms
value in a 3D spherical geometry, given assumptions about
topography’s distribution.

Appendix A explains the relevant spherical harmonics
method in more detail. Suppose we have a loglinear power
spectrum, which fiducially describes dynamic topography
amplitudes on a sphere. Essentially, for each run of 1D thermal
evolution, we transpose the power spectrum vertically such that
its frequency-domain rms value matches the spatial-domain
rms value expected from the /,,5(Ra;, b) scaling function. The
transposed spectrum is expanded onto a 2D map, h(x, y), which
has its own /e = max(h). The volumetric ocean basin
capacity in cubic meters—the main intended application of our
topography modeling—is estimated as

Vcap = p—mf[hpeak — h(x, y)]
Pm — Pw
_Pm

Pm — Pw

ds = 4R hpea, (19)

where the integral is over the surface S and the 2D map is
multiplied by the density ratio term to account for water-loaded
topography (our purpose here entails that the whole map is
underwater, save for the single grid point corresponding to
hpeax). The actual basin capacities of Venus, Earth, and Mars
defined this way are 3.4, 3.3, and 2.9 Earth oceans, respectively
—we expect to find lower values by considering only dynamic
topography.

Robust models of dynamic topography power spectra are not
available at this time. Instead, for the spectrum needed above,
we explore three hypothetical scenarios. The first and simplest
model is that all topography behaves like red noise, as per the
historical paradigm introduced in Section 1.2 (e.g., Tur-
cotte 1987). The second option is to represent empirical
dynamic topography with the observed shape of Venus—

although broad regions of Venus’s highlands indicate isostatic
support, so the resulting spectral distribution should reflect a
mix of support mechanisms (e.g., Kiefer et al. 1986; Arkani-
Hamed 1996; Simons et al. 1997; Yang et al. 2016); further,
Venus may not be a perfectly archetypal stagnant lid planet and
be better described instead by a plutonic-squishy lid regime
(Lourengo et al. 2020). Option three is to be consistent with the
pure dynamic topography we already produced to feed our
scaling functions: we derive time-averaged power spectral
densities from the numerical topography profiles, to which we
fit a generic model.

Although the present study only considers dynamic
topography, this same framework could be applied to any kind
of topography on a planet as long as we can infer its spectral
distribution.

3. Results
3.1. Numerical Modeling Results

The products of numerically modeled chaotic stagnant lid
convection include time-dependent, dimensionless temperature
fields and surface dynamic topography profiles (Figure 2). For
each case, temporally and horizontally averaged temperature
fields are used to calculate T,-’, Ra;, and other convective
parameters; full outputs can be found in Table Bl in
Appendix B. Average T’ profiles hardly vary in time; hence,
neither does 7/ nor the average position of the upper thermal
boundary layer’s base. Stepping up Ra; thins 8/, and lowers the
rms height of topography in the regime we explore numeri-
cally. Increasing An thickens the stagnant lid because high
viscosities are reached at lower depths; this is also associated
with a slight increase in &,.

3.1.1. Fit to rms Height of Topography

Figure 3 shows the four-parameter linear fit between log
(b)), log(Ra;), and In(An), using the functional form in
Equation (5). Best-fit parameter values and standard deviations
are given in Table 3. The residual variance of this fit is
o2, ~ 1073, equal to the sum of squares error divided by the
degrees of freedom. Because the fitted data correspond to
averages over model time, the standard errors of the mean
independent and dependent variables are all small and do not
impact the regression.

The key piece of information from this section is that chaotic
convection with temperature-dependent viscosity does not lend
itself to constant power-law scalings of /., with Ra; (or Ray).
The value of An is effectively altering the slope of log(h,)
with log(Ra;). Smaller viscosity contrasts of 10’ (b=16) and
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Figure 3. Fitted scaling relationship for dimensionless rms dynamic
topography, h/., from 2D numerical convection simulations (n = 11).
Topography is given by a four-parameter linear model, which depends on
the interior Rayleigh number, Ra;, and the viscosity temperature prefactor,
b = In(An). Markers represent individual cases (see Table 1) and are colored
according to An. The uncertainties on k., taken to be the standard errors of
the mean, are smaller than the marker size. Dashed lines represent the best-fit
parameter combination at discrete In(An). Swaths span one standard deviation
of the response variable, propagated from the covariance matrix of the fit.

below are associated with strongly negative slopes. With
increasing An, the slope grows systematically shallower, until
it changes sign between An=10° (b=18) and An=10’
(b =20). Conversely, the effect of Ra; on An is such that at
higher Ra; above ~6 x 10, large viscosity contrasts favor high
rms topography, while at lower Ra; below ~6 x 107, small
viscosity contrasts favor high rms topography. At Ra;~ 6 x
10, these slopes “cross over” and the effect of An disappears.

Evidently this behavior is governed by a complex, chaotic
system; extracting a general mechanistic understanding is
compromised by the limited number of runs performed here.
The effect of An to increase k., may be related to thermal
isostatic uplift within the stagnant lid (Kucinskas & Tur-
cotte 1994; Moore & Schubert 1995; Orth & Solomatov 2011).
We include thermal isostasy as part of the full dynamic
topography. Under a swell, hot, low-density upwelling material
extends to shallower depths. To compensate, the cold, dense
overlying lithosphere grows thinner, and it is buoyed upward. It
can be shown that the maximum amount of thinning is directly
proportional to the average lithospheric thickness. Hence,
higher-viscosity-contrast convection, with its deeper lid bases,
will enable a greater magnitude of thermal thinning. Mean-
while, smaller Ra; are associated with thicker &, to which
dynamic topography should be proportional (Parsons &
Daly 1983). (For a constant A7, lowering Ra; also slightly
increases 0j;q and thus the potential for thermal thinning.) We
speculate that there is a trade-off whereby the An effect
dominates when stagnant lids are already thick and when
convection is too vigorous to support high topography in its
thin thermal boundary layers. Conversely, for lids that are not
particularly thick, Ra; (and 6,;,) becomes more relevant.

A corollary of this is that at the still-higher values of Ra;
expected for realistic rocky planets (up to several orders of
magnitude beyond the range amenable to numerics; see
discussion in Section 4.4.2), the sensitivity of k. to the
viscosity scale becomes quite high indeed. If the absolute
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Table 3
Topography Scaling Coefficients and Their Errors Obtained from Fitting a
Multiple Linear Regression Model with an Interaction Term to Equation (5)

A B C D
Best fit 9.581 —0.5818 —1.510 0.07536
Standard deviation 3.298 0.1859 0.4220 0.02379

o2, = 1584 x 1073

res

Note. The bottom row reports the residual variance, o2, of the fit.

res>

viscosity follows an exponential law, n(T) ~ exp(—bT), high
b is associated with low 1) for the same 7, implying low &/ ..

3.2. Parameterized Modeling Results
3.2.1. Thermal Evolution

Underlying thermal histories are sampled in Figure 4.
Because all test planets are initialized at quasi-equilibriated
temperatures and stagnant lid thickness, their evolutionary
paths reflect secular cooling alone, which track roughly parallel
at around —100K Gyr '. Radiogenic heating inevitably
declines with age, with surface heat losses lagging behind
slightly; the present-day Urey ratios are ~0.65 depending on
planet mass.

Interior temperatures and Ra; increase with M, as anticipated
from simple scaling laws. We expect the heat flux ¢, to
increase linearly with planet radius for a fixed internal heat
generation rate. This implies that g, o< M;,/ 3, ignoring com-
pression. We can rewrite Equations (11)—(15) as

_ Pu8"uknan AT)

M (20)

3 u
Km qu Racril

Thus, we have n, o« M, L Equation (17) leads to Ra; le for
approximately the same temperature difference. A five times
more massive planet has a 25 times larger Ra; (see also
Stevenson 2003; Kite et al. 2009).

Figure 4 illustrates how uncertainty in the viscosity law
parameters E, and ) affects the spread and mean behavior of
the dimensional A, and its physical constituents over time.
Temperature-dependent viscosity exhibits self-regulating beha-
vior: a slight increase in temperature lowers the viscosity,
hence more vigorous convection via Equation (1). This leads to
more efficient heat loss out of the top of the convecting cell,
lowering temperatures in turn. This positive feedback is not
visible in a single run (which are already at quasi-steady-state
in our case), but we do see the effect at play over the entire
ensemble: its range of 7,,(f) is always less than an order of
magnitude, despite a three-order range in 7. Meanwhile, 7, is
adjusting such that g, approaches a balanced state for a given
graq and surface-area-to-volume ratio. Hence, the rheological
uncertainty manifests itself in 7,

We note that these calculated Ra; values are on average
higher for a given M,, than those commonly associated with
Venus or Mars. The thermal Rayleigh numbers of real planets
require some dexterity to extract, but the few constraints
available suggest a value on the order of 10° for Mars
(Kiefer 2003; Samuel et al. 2019). Constraints for Venus are
even more scarce, but previous work emplogfs Ra at upper
mantle temperatures on the order of 10’-10° (Huang et al.
2013; King 2018). This discrepancy is partly explained by the
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Figure 4. Thermal evolutions sampled from the 1D model ensemble, as a function of time in Gyr. From top to bottom: mantle temperature, 7,, in K, mantle viscosity,
Nm in Pa s, dimensionless inverse viscous temperature scale, b, interior Rayleigh number, Ra;, topography dimensionalization factor, dATq,, in m, and rms dynamic
topography, /s in m. Columns compare planet masses from 0.1 M, (left), through 1 M, (middle), to 5 M., (right). Each thin black line (n = 500) represents a single
evolution, drawing random values of the unknown viscosity activation energy and prefactor, hence an evolutionary spread. Green lines follow the ensemble mean (for
Ra;, which is lognormally distributed, this is the lognormal mean). All runs use baseline values of the core mass fraction and radioisotope budget. Parameter values and
random variable distributions are given in Table 2.
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Figure 5. Variations of the rms dynamic topography based on 1D thermal histories, as a function of select exoplanetary properties that might be constrained in the
future: from left to right these are the planet age in Gyr, mass in M, core mass fraction, and abundance of radioactive U and Th relative to the solar value. Solid lines
show the ensemble mean of 10,000 test planets with uniformly random viscosity activation energies and prefactors, and with normally random topography scaling
coefficients. Swaths span one standard deviation from the mean. These calculations show subaerial topography; water-loaded topography would be ~1.5 x higher.

Parameter values and random variable distributions are given in Table 2.

more viscous mantles we permit in this exoplanet study.
Further caveats to our Ra; estimates are discussed in
Section 4.4.3.

The dimensional 4, reflects a trade-off between b, Ra;, and
the dimensionalization factor dATq,, through Equations (2)
and (5). Extrapolating Figure 3 would imply that, in the b-Ra;
regime of the 1D models, high A, is favored with high b and
low Ra;. Thus, deep, hot, weak mantles are doubly inhibited
from having any remarkable topography. It is clear from
Figurel 4 that deeper mantles are not enough to make up for
lost hp,..

Ultimately, the thermal state plays a main role in limiting the
amplitude of dynamic topography. Hotter mantles necessitate
lower viscosities, more vigorous convection, and thinner
thermal boundary layers. Within these thinner boundary layers,
there may be less scope for density variations related to thermal
expansion. If we know some property of a planet to have a
strong effect on its interior temperatures, then we might expect
it to also impact its dynamic topography.

3.2.2. Dynamic Topography as a Function of Bulk Exoplanetary
Properties

We now test the topographic reaction to planet age, mass,
CMF, and radioisotope budget (Figure 5). We find &, to
decrease with M,, and x,,q and increase with age and CMF.
Assuming that the x-axes in this figure cover the limits within
which we expect to find most rocky exoplanets, then it is
plausible that the resulting y range marks the variability of pure
dynamic topography that nature could manifest, if our scaling
relationship indeed applies. The fact that h., drops by
the largest absolute amounts over M, and x4 reflects
the geodynamic significance of these parameters, as well as
the spread over which we would expect to find rocky planets.
The senses of change of 4y, with M), and x,,q are predictable
from their known effects on 7, That is, hotter interiors are
expected for massive, U- and Th-rich planets, hence lower /.
Uncertainty in A, predictions is tied to uncertainty around the
underlying thermal histories—yet another clue to the immea-
surable usefulness of characterizing this uncertainty more
rigorously (e.g., Seales & Lenardic 2020).

The raw values of A, predicted by our scaling relationship
are on the order of hundreds of meters, while the hottest planets
can exhibit mere tens of meters of dynamic topography. In fact,
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due to inherent self-regulation, it is difficult to achieve
significantly higher topographies in our 1D model while
keeping to Earth-like values of the free parameters. This result
may seem very low when compared to the heights of typical
topographic features seen across the solar system. However, a
fair comparison requires isolating an rms height of just the
dynamic component of topography; this is not model
independent, as we will discuss (Section 4.3.4).

3.3. Ocean Basin Capacity Scalings

We have tested three fiducial spectral models to find a
relationship between the rms and peak value of dynamic
topography. The theoretical red-noise model, the empirical
Venus model, and the numerical dynamic topography model all
produce an h,eq that is, on average, some constant scalar
multiple of A,s. For both numerical dynamic topography and
the total Venus topography, hpea ~ 3.5hms, and for red-noise
topography, Apcax = 3.9k, (For a pink noise structure similar
to Earth’s observed dynamic topography, Zpeak ~ 4.0hy.)

We use our /i, estimations to derive the ocean basin
volume capacity V.., as a function of planet mass (Figure 6).
This quantity represents the smallest volume of surface liquid
water that would entirely inundate a planet. The actual land
fraction requires knowing the ocean mass. We leave sea level
as an unknown quantity and simply consider fiducial surface
water budget scenarios. Specifically, we treat the amount of
surface water as a constant mass fraction of M,. This
parameterization brackets the planet’s total water budget with
its volatile partitioning between the interior and exterior—in
reality the amount of water stored in the mantle would affect
the planet’s thermal evolution through its rheology (and
melting history, which is not modeled).

As the basin volume capacity changes with M), so too does
the water volume corresponding to this mass fraction (we
assume a density of 1000 kg m™>; salt water is slightly denser).
Figure 6 can be read as follows: for a given surface water
budget, the planet mass where this contour intersects the basin
capacity gives the most massive planet that could sustain land
with dynamic topography alone. For example, a 1 M, 4.5 Gyr
old planet endowed with solar U and Th could hold about 0.3
Earth oceans on its surface. The internal heating rate has a
strong influence on V.
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Figure 6. The competition between the ocean basin capacity and the surface water budget with increasing planet mass, expressed in terms of Earth ocean volumes.
The three panels are based on, from left to right, the Ist percentile value, solar value, and 99th percentile value of expected mantle heat production across rocky
exoplanets (Nimmo et al. 2020). Basin capacities as a function of planet mass are calculated from either the pure dynamic topography spectral model (dashed purple
lines) or the red-noise model (dotted red lines). The empirical Venus model overlaps the pure dynamic topography and is not shown. Random rheological parameters
propagate through the model; the resulting 1o variation is represented by the swaths. In the background, the solid contours follow lines of constant surface water as a
fraction of planet mass (note a modern Earth value of ~200 ppm). Thermal histories refer to a 4.5 Gyr planet with a core mass fraction of 0.33.

Figure 6 compares different assumptions about the spectral
distribution of topography, which would affect the relationship
between the peak and rms topography. The dynamic
topography and Venus models overlap identically, and the
red-noise spectrum results in only slightly larger Vi,
seemingly because they are very similar in the low-degree
regions where most of their power is concentrated. The basin
volume corresponding to an infinitesimally small but nonzero
land area is insensitive to the distribution of topography at high
frequencies.

We can formulate these results in terms of a simple
scaling analysis. Equation (19) can be written as M, =
47rR§ Loy Pn / (B — Py hpeak>, Where M, is the ozcean basin
capacity in kg. For Earth’s ocean mass (1.4 x 10%' kg), this
means that a peak topography /e, less than 2.7 km leads to a
waterworld. If Ap., were independent of planet mass, we
would expect My, le/ 3 owing to the increase in surface
area alone (the mass—radius relation in Equation (7) gives a
slightly shallower power owing to compression). However, we
have hpe, strongly decreasing with increasing mass. For dry
olivine and solar U and Th abundances, hpcax ¢ fiyms o< M b 03,
From Equation (19), M., Rghpeak, 80 Meqp X M[9'04 using
Equation (7). Warmer, less viscous interiors decrease this
exponent, so the most massive rocky planets have the smallest
basin capacities even though they have the largest surface
areas. If the pressure of a topographic load is balanced only by
a constant compressive strength of the crust rock, we have
Npeak X ¢!, and the resulting proportionality Mp M;,)'OS is
also quite flat (though the overall basin capacity would be
higher). We are being conservative about how likely planets are
to have dry land by considering only dynamic topography.

It is important to emphasize that the basin capacities shown
in Figure 6, based on dynamic topography alone, are likely
underestimating the true value. The observed topographies of
Venus, Earth, and Mars produce basin capacities of 3.4, 3.3,
and 2.9 Earth oceans, respectively, whereas the model produces
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basin capacities of <1 Earth ocean. The peak and rms
elevations of our terrestrial planets are much higher than those
predicted by the dynamic topography scaling here. Other
mechanisms contribute to supporting higher topography on
planets. Also, our model may underpredict dynamic topogra-
phy for a given planet mass, as we will discuss in the next
section.

4. Discussion
4.1. Expanding rms Topography

Figure 6 suggests that reasonable changes to the spectral
distribution of topography have no strong effect on how peak
dynamic topography scales with planet mass, and hence on the
volume of water that could be contained below this highest
point. Our concern with topography’s characteristic harmonic
structures might thus seem somewhat tangential to (or in the
worst case, distracting from) the basic problem that this study
purports to address. However, these details would become
more of a concern if the field can mature—and especially if we
hope, someday, to use informed topography distributions as a
boundary condition in exoplanet climate models (e.g., Turbet
et al. 2016; Rushby et al. 2019). For example, the volume
calculated in Equation (19) represents the amount of water that
would flood a planet exactly, leaving just an island with
infinitesimally small area. Yet in principle one could also
calculate the maximum basin size associated with any arbitrary
land fraction. These intermediate land fractions may be much
more sensitive to spectral complexities, such as wide plains or
anisotropic mountain ranges.

The initial questions here have justified simplified harmonic
structures of topography as such. Specifically, we have
presumed a loglinear model of the power spectral density,
which is to say that the variance of elevation is a power-law
function of the horizontal distance scale, and that this
relationship is constant over the whole planet (as proposed
in, e.g., Turcotte 1987). Contemporary workers now know the
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behavior to be much more nuanced. Local estimates of
topography’s spectral slope can appear notably inconstant—
the surface roughness is heterogeneous—but these differences
are entwined by further power laws of other statistical
moments, out to virtually infinite order, all culminating neatly
in a mathematical model with three scale-invariant parameters
(e.g., Pelletier 1999; Gagnon et al. 2006; Lovejoy &
Schertzer 2007; Ali Saberi 2013; Liucci & Melelli 2017; Rak
et al. 2018; Landais et al. 2019a; Keylock et al. 2020). Landais
et al. (2019b) have demonstrated the use of such a descriptive
model for synthesizing surface relief of arbitrary rocky planets.
Thus, the framework exists for representing full global
topography layouts to a high degree of statistical realism and
with few parameters. The hitch is that these parameters are
empirical on a case-by-case basis: the gain in descriptive
accuracy may not translate to predictive power for distant
exoplanets. At present there is no theory tying the pattern to the
(geophysical) process. If this gap could be bridged with more
work based on Earth and solar system bodies, then these
realistic mathematical models could be applied, and higher-
order insight about the topographies of exoplanets might not
necessarily be a fantasy.

4.2. The Role of Rheology and Its Uncertainties

Any deterministic prediction of /.,s will be hindered by the
unknown mantle rheology. Increasing the activation energy of
viscosity from 240 to 300kJ mol~! will double Ay, for an
Earth-mass planet, all else being equal. This uncertainty
propagation is built into our model via the scaling functional
form in Equation (5). E, enters this equation twice, in both b
and Ra; (via 7,,). Particularly in the high-Ra; regime, small
changes in the viscosity contrast parameter b create large
changes in A, (Figure 3).

We have attempted to capture some of the rheological
uncertainty by varying E, and 7, the free parameters in the
Arrhenius viscosity law (Equation (9)). However, we cannot
claim that our results are propagating nature’s true variability.
First, the underlying covariance of these parameters is not
known. The prior range employed by our study covers only
pure olivine and pure orthopyroxene, and roughly so at that.
Spaargaren et al. (2020) also parameterize the mineralogical
control on viscosity with an extra prefactor that increases over
three orders of magnitude, calibrated between ferropericlase-
rich (high Mg/Si) and stishovite-rich (low Mg/Si) lower
mantle compositions (Ballmer et al. 2017; Xu et al. 2017).
Relating the rheological parameters to the lower or upper
mantle composition in a realistic way requires not only a
complex thermodynamic model predicting these mineral
compositions but also a data set of strain rates from
experiments and ab initio mineral physics. The actual strain
rate of an olivine-orthopyroxene aggregate is certainly not a
simple combination of diffusion creep flow laws. Further, in
practice, real mantle viscosities will be strongly sensitive to
their water content, unlikely to ever be known for a given
exoplanet.

The second reason why we are not capturing the true
variation is that our fixed rheological model ignores structural
uncertainty by design. We have only considered diffusion creep
with no pressure dependence, but the creep mechanism
depends on shear stress and is not known a priori. Including
pressure dependence in the parameterization (with adiabatic
profiles from an interior structure model, for example) would
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lead to higher viscosities and sluggish flow in the lower mantle.
Importantly, and in particular for more massive planets, this
fact could render the viscosity self-regulation less efficient
(Stamenkovi¢ et al. 2012), meaning that internal temperatures
for evolved planets become much more sensitive to initial
temperature conditions, and the resulting /s scatters more
widely (overall, retaining a hotter mantle at older ages will
reduce h.,s). Uncertainty would grow severer still if one
allowed for complex rheological features such as a low-
viscosity asthenosphere (Bodur & Rey 2019), which manifests
in smaller-scale dynamic topography on Earth (Hoggard et al.
2016). Finally, technically, the lithosphere itself obeys a
distinct viscoelastic rheology, and coupling these dynamics to
a convection model would also modify its topography
amplitudes (Patocka et al. 2017)—we have ignored elastic
effects in this attempt (Section 4.3.3).

All this rheological uncertainty is worth discussing because
dynamic topography is apparently sensitive to both viscosity’s
absolute value and how it changes over the boundary layers
(Hager et al. 1989). Low viscosities imply higher temperatures
and low convective stresses. For the isoviscous case, the
association of low viscosity with low topography can be seen
clearly in Table 2 of Lees et al. (2020), from which we get a
numerical scaling of &) oc 709, with interior temperature
and lithospheric thickness fixed. If we have two isoviscous
layers with a stiffer top layer (i.e., approximating a cool viscous
lithosphere), then there is an analytical solution for the surface
normal stress induced by a spherical density anomaly at some
depth (Equation (34) in Morgan 1965). In this solution, the
effect of relative viscosity is strongest when density anomalies
are nearer the surface.

4.3. Caveats to Topography Predictions from Numerical
Convection

In determining a scaling relationship for the rms and peak
amplitudes of dynamic topography from numerical convection,
we have assumed that details of our methodology can produce
generalizable results. This section discusses some important
caveats.

4.3.1. Low-order Power

The contribution to the total power drops off quickly with
spherical harmonic degree for the spectral slopes used here.
Consequently, the overall rms amplitude is unaffected by the
high-frequency power, while the low-frequency power has a
disproportionately large influence. Our simulations show a
flattening out of the topography power spectra as we go to
wavelengths larger than twice the layer depth. Yet topography
on Venus clearly exhibits long-wavelength features
(Figure Al). On Earth, the dynamic topography power is
largely concentrated at degree 2 (Hoggard et al. 2016; Yang &
Yang 2021). The relatively simple rheologies in our model
cannot produce these features. Long-wavelength mantle flow
on Earth may be deeply entwined with the presence of an
asthenosphere and tectonic plates, themselves entwined further
(Lenardic et al. 2019).

Mars provides a case that’s different still. Its topography is
dominated by a degree 1 signal; that is, Mars shows an
asymmetry where the southern hemisphere sits higher than the
northern, and the volcanically constructed Tharsis plateau
dominates the east side of the former. While this pattern is
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thought to be related to degree 1 mantle convection, as of yet
there is no fully endogenous mechanism consistent with all the
observables (Roberts 2021). Regardless, the processes we
model will never lead to such a convection pattern. The
possibility of degree 1 convection could further complicate our
preliminary scaling relationship between h,,s and Ra.

4.3.2. Geometry and Heating Mode Effects

Our numerical convection simulations were performed
exclusively in a bottom-heated 2D box. For 2D isoviscous
models, rms topography appears consistent across Cartesian
and cylindrical geometry, with a scaling exponent on Ra close
to —1/3 as expected from theory (McKenzie et al. 1974;
Parsons & Daly 1983). However, in the non-isoviscous settings
we study here, this scaling is not necessarily insensitive to the
model geometry. It remains to be seen how higher spatial
dimensions, or cylindrical or spherical geometry, would
explicitly affect h.,. Internally heated convection—best
described with an altogether different formulation of the
Rayleigh number—tends to result in different convective
planforms and may also show different patterns with respect
to dynamic topography (e.g., Orth & Solomatov 2011). This
distinction between heating modes would be especially relevant
for young planets with high radioisotope concentrations.

4.3.3. Filtering in the Lithosphere

In reality, the peak amplitude of dynamic topography is
modulated by the flexure of the elastic lithosphere, which
depends on the lithosphere’s effective elastic thickness. Thin
elastic lithospheres (expected for hot stagnant lid planets such
as Venus) could bring a <5% reduction in dynamic topography
(Golle et al. 2012; Dumoulin et al. 2013; Patoc¢ka et al. 2019).
Here we omit this filtering for simplicity and instead predict an
upper limit of dynamic topography.

In addition to these elastic effects, the lithosphere can deform
plastically in response to convective stress, as illustrated by the
crustal thickening example in Figure 1(b) (Kiefer &
Hager 1991; Pysklywec & Shahnas 2003; Zampa et al.
2018). We have not considered higher-order effects from the
formation of a crust, whose marginally lower density with
respect to mantle rock would buoy topography slightly higher.

4.3.4. Paucity of Ground Truths

Ultimately, making accurate predictions of dynamic topo-
graphy amplitudes is meaningless without accurately measur-
ing them somewhere. It is not trivial to isolate the dynamically
supported component of the cumulative topography we
observe. Serious efforts at separating out the isostatic
component on Venus rely on knowing the associated
admittances, simulated or inferred from a crustal thickness
estimate (McKenzie 1994; Pauer et al. 2006; Wei et al. 2014,
Yang et al. 2016), to leave a result that is not model
independent.

For Earth, meanwhile, estimates of oceanic bathymetry less
its age-depth cooling pattern can been used to navigate this
impasse, revealing dynamic topography peak amplitudes of
~1km (Hoggard et al. 2016, 2017). Although this result
happens to align with our Earth-mass planet predictions, a
direct comparison demands caution because we have been
modeling stagnant lid planets—modern Earth is evidently
outside this regime. Sections 4.2 and 4.3.1 have mentioned
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how the pattern of Earth’s dynamic topography is a
consequence of its experiencing convection under plates. Any
plate behavior is not captured in our numeric simulations.
Indeed, dynamic topography observed on the only known
planet with plate tectonics seems to reflect both deeper mantle
flow and shallower lithospheric and aesthenospheric structure,
as well as the coupling between them (Davies et al. 2019). Nor
is our 1D thermal history model strictly applicable: the thick,
insulating lids imposed by the stagnant lid regime would lead
to underestimated surface heat flow for a plate tectonics regime.
Note further that this /Apeax~1 km estimate for Earth
purposefully excludes the thermal bathymetry of mid-ocean
ridges, a plate-scale topographic expression that could
technically fall under dynamic support.

4.4. Caveats to Using Scaling Relationships
4.4.1. Sensitivity to Functional Form

A scaling law will never be more than a mathematical
shortcut: a tool to preempt heavy model running for any
imaginable parameter combination. This work has adopted a
loglinear scaling for dynamic topography in terms of the
Rayleigh number and rheological temperature scale of convec-
tion. While this choice of independent parameters is indeed
physically justified, it is not unique in being justifiable.
We emphasize that the result of this study—that dynamic
topography becomes essentially negligible with hotter
(younger, deeper more radioactive) mantles—is fundamentally
a consequence of our scaling functional form.

The interaction between An and Ra; in our scaling somewhat
complicates a comparison with previous power-law relation-
ships for isoviscous convection—recall that constant-viscosity
convection is described by a single value of the Rayleigh
number. Boundary layer theory suggests that A’ ~ R&
(McKenzie et al. 1974; Parsons & Daly 1983) with y=—1/
3, while more recent 3D Cartesian simulations of Lees et al.
(2020) have < ranging from —0.289 to —0.342. Under our
scaling function, an equivalent exponent to ~ —1/3 on Ra; is
met at high values of b ~ —23.7, at which A/ . could be said to
scale similarly to the isoviscous case.

4.4.2. Extrapolation across Rayleigh Numbers

For Ra; much greater than 3 x 10®, the highest value
considered in our experiments, one may be waiting prohibi-
tively long for numerical convection models to converge. Yet
the thermal histories we have produced in 1D tend to deliver
these very large, out-of-range Rayleigh numbers (Figure 4).
Wielding the numerical scaling to estimate ., thus necessi-
tates an extrapolation over up to four orders of magnitude in
Ra;. (Meanwhile, values of the 1D b analogs are indeed
accessed in 2D.) This projection into high-Ra; space has
unproven fidelity and brings a heavy caveat to our results.
Namely, extrapolating scaling functions for convection relies
on there being no regime change or otherwise discontinuous
effects in the region to which we are blind. Yet the fitted
function (Figure 3) indicates complex interactions between Ra;,
b, and h/., which we cannot claim to have predicted in the
moderate-Ra; regime and cannot expect to predict elsewhere.
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4.4.3. Accuracy of Interior Rayleigh Number Estimates

With the above said, our Ra; results seem unrealistically
high. The parameterized convection model necessitates large
Ra; through its relatively hot T, and weak 7,,, which viscosity
self-regulation makes difficult to avoid. By comparison, mantle
Rayleigh numbers used to reproduce Venus are often on the
order of ~10’ (e.g., Kiefer & Hager 1992; Kiefer &
Kellogg 1998; Vezolainen et al. 2003, 2004; Pauer et al.
2006; Noack et al. 2012; Smrekar & Sotin 2012; Huang et al.
2013), implying that the extrapolation issue in Section 4.4.2
could in fact fix itself, if Ra; could only naturally settle down to
a level a few orders of magnitude lower. However, these
literature quotes come from different model setups that set Ra
a priori, e.g., to obtain desired, Earth-like average viscosities
around ~10%' Pas. This theme of other works adopting lower
Ra and higher viscosities might largely explain why our /A,
predictions appear lower (e.g., Kiefer & Hager 1992; Huang
et al. 2013).

Thermal models of stagnant lid planets are notorious for
producing infernal mantles because their heat escape is limited
by slow conduction through thick outer shells (e.g., Driscoll &
Bercovici 2014). Hence, they evolve toward low viscosities
and vigorous convection to aid heat loss. A parameterized
model could slip into cooler temperatures by including the
energetics of melting and transport of magma: likely major
mantle heat sinks for stagnant lid planets (Moore et al. 2017;
Lourenco et al. 2018). Melting would also help to regulate
mantle temperatures and viscosity because melting leads to
geochemical depletion, which hinders further melting until
upwelling replenishes the melt zone. Ideally, stagnant lid
convection models should include melting processes. We note
that melting itself also could be an important source of
constructional surface topography on these planets.

4.4.4. Model Validity at High Planet Mass

Rocky planets more massive than Earth can reach interior
pressures high enough for perovskite to transition to post-
perovskite. This phase transition, in addition to weakening the
viscosity locally, could stratify the convection in the lower
mantle (Karato 2011; Umemoto & Wentzcovitch 2011;
Tackley et al. 2013; Umemoto et al. 2017; Ritterbex et al.
2018; Shahnas et al. 2018; van den Berg et al. 2019). Although
single-layer parameterized convection models have been
applied previously to massive rocky planets (e.g., Kite et al.
2009; Tosi et al. 2017), our model likely fails to capture the
heat flow of a multilayered system (van Thienen 2007), with
potentially important implications for topography. Indeed,
lower-pressure phase transitions in Earth’s mantle influence
its convective dynamics (Christensen 1995), and including the
410 km exothermic phase change has been explicitly shown to
raise dynamic topography amplitudes in convection simula-
tions (Yang & Yang 2021).

4.5. A Crustal Strength Limit and the Inundation of the
TRAPPIST-1 System

Agol et al. (2021) give preliminary constraints on the surface
water content of the TRAPPIST-1 planetary system, for
different values of the CMF and assuming that all water exists
as a condensed surface layer. Although the problem is
degenerate, planets e—g appear consistent with water layers
deeper than Earth’s, on the order of at least 0.1% of the planet
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mass. Other independent estimates have produced similar
results (Acufia et al. 2021). This water budget would place
TRAPPIST-1e to g well above the upper water mass limit for
maintaining land with dynamic topography. Note, however,
that the high rates of tidal heating inferred for some of these
planets (Barr et al. 2018) would reduce dynamic topography
beyond what is modeled here.

As we have previously emphasized, however, the true limit to
elevation differences on a planet will be higher than that suggested
by purely dynamic topography. To estimate a planet’s total scope
for land, we can calculate the minimum value of /e required for
an instance of land on a planet with a given radius and surface
water content. We find that any instance of land on TRAPPIST-1e
would require a peak topographic amplitude of ~40km (a
minimum rms topography of ~10km), given 0.3 wt.% surface
water (Agol et al. 2021 estimate for a CMF of 0.25). Then, one
could compare this minimum to a rough estimate of the overall
maximum elevation.

In Section 1 we motivated a crustal strength limit: for a
surface load of pgh, somewhere in the crust below, at a depth of
about 1/4 times the load width, a minimum stress difference ¥
of 1/2 to 1/3 pgh is sustained (Jeffreys 1929). This result
assumes a flat earth model of elastic stress distributions and
holds for various load configurations of horizontal scale less
than a few hundred kilometers. Melosh (2011) illustrates that
the force balance given by

Y ~ 0.5p,.8h, 21
with a crust density p.=2700 kgm > and Y set at an effective
crustal strength on the order of 100 MPa, will roughly reproduce
the maximum elevations of Venus, Earth, and Mars (Figure 7).
While this estimate is certainly an oversimplification, a more
rigorous effort will naturally become very complicated, due not
least to the difficulty in predicting, from planetary bulk
properties, a value of Y corresponding to the maximum #A.

In typical crustal strength models, the strength increases with
depth (lithostatic pressure) according to the rock’s resistance to
frictional sliding in the relatively cool, shallow part—the brittle
regime—until viscosity is low enough to favor ductile deforma-
tion instead, and strength starts to decrease with depth
(temperature). Thus, the strongest part of the crust is near this
brittle—ductile transition. However, the resulting strength
maxima of ~500MPa or more for Earth-like conditions
(Katayama 2021) would imply ~40 km of peak topography
using Equation (21); it is a limit not necessarily reached in
practice. Further complicating the application of Equation (21),
crustal strength profiles are strongly sensitive to the temperature
profile and porosity of the crust—generating these profiles for
arbitrary exoplanets must attend to assumptions on these facets
(Byme et al. 2021)—and surface gravity has a nonlinear effect
on brittle strength through its influence on porosity and fracture
density (Heap et al. 2017). For example, doubling the thermal
gradient will approximately halve the maximum Y—and thus &
—in a dry case, and including hydrostatic pore fluid pressure
shows a similar decrease (Katayama 2021).

A parallel approach to estimating maximum elevation
differences from crustal concerns comes from isostasy. The
height of a topographic feature above a plain is /14 = (tg — tayg)
(pm — pc)/ pe> Where fy is the thickness of the crust below the
feature and ,,, is the average crustal thickness of the plain. For
a basaltic crust (the primary crust formed from an Earth-like
bulk composition), the maximum value of #5 is set by the phase
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Figure 7. Various scalings for the maximum surface water capacity set by a planet’s peak elevation, expressed as a fraction of the total planet mass. The yellow lines
show the peak topography balanced by crustal rock strength alone, which scales approximately with M 1;0'9; line widths correspond to different assumptions about the
maximum strength with a fixed crust density of 2700 kg m—>. The thick green line shows pure dynamic topography with the coolest mantles considered, given a dry
olivine rheology (oM, 0-8). The thin green line is the same for the hottest mantles (oM 3 12y Scalings assume the mass—radius relation in Equation (7) and a red-noise-
like topographic spectral structure. Points with error bars are estimates of the surface water inventories of planets e-g in the TRAPPIST-1 system from Agol et al.
(2021), for different possible values of the core mass fraction (CMF). Note that their analysis suggests cores most likely smaller than the Earth-like CMF of 33%. Our
thermal evolution model does not include tidal heating, which would push the TRAPPIST-1 planets toward higher mantle temperatures. For context, the labeled blue
stars show the maximum ocean masses that could be contained on Venus, Earth, and Mars, plus Earth’s actual ocean mass.

transition from basalt to denser and unstable eclogite: the crust
cannot be much thicker than the depth of this transition. This
fact limits the peak isostatic /14 to about 15 km for a Venus-like
case (Jull & Arkani-Hamed 1995). However, the depth of this
phase transition depends sensitively on the crust thermal
structure, and estimating /4 in practice requires knowing f,ye.

Finally, the height limits of volcanoes in particular must follow
tighter rules. Magma will only rise to the top of a vent—and
contribute to a growing pile of lava—so long as the vertical
pressure gradient across the system is positive. Castruccio et al.
(2017) write this limit as hmax = (Ap/p,)H + AP/(p,,8), where
Ap is the density contrast between the crust and the magma, H is
the depth from the surface to the magma chamber, and Ap; is the
critical overpressure to trigger an eruption (the pressure that would
crack the magma chamber roof, related to the tensile strength of the
crust and tellurically on the order of ~20 MPa). Although a narrow
range of H can be argued for on Earth, related to the magma water
content and crustal rheology (Huber et al. 2019), this concept has
not yet been expanded to comparative planetology.

In light of the above complexities, it is difficult to find a
middle ground between the oversimplification of Equation (21)
using a universal crustal strength estimate and a careful case-
by-case application (Barton & Shen 2018). We will employ the
former for the present purpose of comparing peak dynamic
topography to peak total topography. We consider ¥ =100
MPa, ostensibly representing the compressive strength of
granite—the difference in compressive strength between an
average granite and average basalt seems to be smaller than the
spread seen across individual basalt samples in various
laboratory conditions (Heap et al. 2017)—but also include
scalings for half and double this strength value.

Figure 7 plots the containable ocean mass fraction scalings
corresponding to both this crust strength limit and the dynamic
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topography limits calculated previously. For a given scaling
relationship, points above the line would be waterworlds. We
see that planet e may have coexisting land and water if its crust
could withstand around 200 MPa of normal stress. Although
these strengths can be achieved on Earth, it is not immediately
obvious that they would be available at the right loci. Note that
it is very difficult in practice to put a lower limit on these water
budgets. Nevertheless, according to Agol et al. (2021),
TRAPPIST-1e through g could easily be wet enough that
estimating their land propensities may seem moot. However,
our growing catalog of planets may soon present a case study
closer to the waterworld—land world transition.

Another takeaway from Figure 7 is that for the most massive
rocky planets amplitudes of dynamic topography in the most
favorable case seem to approach the overall limit. Scalings for
different internal heating scenarios have different slopes
because, as surface heat fluxes increase with the surface-area-
to-volume ratio, larger planets are penalized such that any extra
radiogenic heat would escape less easily. Thus, more internal
heating per unit volume in more massive planets will have a
more drastic effect on topography.

At the moment, it is not guaranteed that constraints on these
or any rocky exoplanet water budgets could be tightened much
in the future. With current Bayesian inference methods,
uncertainties on retrieved water mass fractions may be capped
at around o~ 10 wt.%, independent of the observational
uncertainty on the planet mass itself (Otegi et al. 2020).
Meanwhile, topography can avert waterworlds only for water
mass fractions of <1 wt.%. Therefore, with respect to
predictions about a given exoplanet, any topographic contrib-
ution to land coverage could be washed out by the uncertainty
on the inferred water budget.
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4.6. Constraints from Astrophysical Data

In Figure 5, we predicted how dynamic topography might vary
as a function of several properties broadly deemed observable.
None of these properties will be perfectly known, or even
necessarily constrained well enough such that they are not the
dominant source of uncertainty, but we will leave a more detailed
assessment of this uncertainty to future work.

In any case, an obvious fact emerging from our scaling law
application is that there is a pivotal future role to be filled for
any constraints on rocky planet compositions. This study
provides yet another example of how higher-order properties of
planetary interiors govern their surface character. Namely,
mantle viscosities, radiogenic heating rates, and core mass
fractions all relate to planetary ratios of certain major elements:
viscosities decrease with Mg/Si, radiogenic heating rates
increase with U/Si and Th/Si, and core mass fractions increase
with Fe/O. Exoplanet compositional parameters are not
completely inaccessible because refractory element ratios are
expected to generally preserve themselves between a star and
its planets (Thiabaud et al. 2015; Hinkel & Unterborn 2018;
Putirka & Rarick 2019; Adibekyan et al. 2021). Although pilot
work is surely needed, this useful fact means that element
abundances from stellar spectra offer a promising constraint on
planetary interior dynamics. Additionally, measurements of the
same element ratios in polluted white dwarf spectra could
inform the underlying natural distributions of bulk rocky planet
composition across nearby star systems (Bonsor et al. 2021).

Observables for exoplanetary topography itself would be buried
quite deep. McTier & Kipping (2018) proposed that extreme
topographic features could induce scatter in an exoplanet’s transit
photometry, but the associated signal would not be detectable with
realistic photometric precision. Proposed next-generation direct
imaging missions might be capable of enough precision for the
exo-cartography of small planets—solving the inverse problem of
2D albedo distributions from time-resolved light curves—which
might discriminate between land and ocean surfaces (Cowan &
Fujii 2018; Farr et al. 2018; Lustig-Yaeger et al. 2018; Aizawa
et al. 2020; Kawahara 2020). Interpretations of the data may
remain highly model dependent and burdened by cloud removal,
however (Paradise et al. 2021; Teinturier et al. 2022). Ocean
fractions might also be discerned from near-infrared polarimetric
observations (Takahashi et al. 2021). A land fraction between zero
and unity would necessitate some surface roughness, leading to an
upper limit on the water budget given some inferences about
topographic propensity.

5. Conclusions

This work has predicted scaling relationships for the rms
amplitude of dynamically supported topography on stagnant lid
planets, which we propose to be a deterministically tractable
aspect of rocky exoplanet surface character. We find rms
topography to decrease strongly with higher interior temperatures
and lower mantle viscosities. Planets near the upper mass limit of
rockiness would thus have inconsequential dynamic topography,
as would planets with radioisotope abundances several times that
of Earth. For planets less than about twice the mass of Earth, our
thermal history model predicts rms dynamic topography on the
order of hundreds of meters. This result emphasizes that modeling
purely dynamic topography will underestimate a planet’s true rms
elevation. A robust upper limit to total topography may be limited
by our ability to predict crustal thicknesses.
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Considering that dynamic topography is guaranteed to exist on
active planets, however, the model can be used to infer, with
strong caveats, whether subaerial land exists on a planet for a
given surface water budget. We define the ocean basin capacity as
the volume of water that could be contained below the highest
elevation. As planet size increases, interior temperatures and
surface gravity increase and topography shrinks, but the available
storage of the ocean basins expands with the surface area. These
effects nearly cancel out at Earth-like radiogenic heating rates,
leading to a constant ocean basin capacity of about 0.3 Earth
oceans if topography is dynamically supported alone. For a 1 M,
planet this translates to a maximum surface water mass fraction of
~60 ppm before the planet has no land above sea level. The same
water budget would flood more massive planets. In reality,
volcanic construction would lead to higher surface relief than that
from dynamic topography alone—in modeling only the latter, we
are providing a lower limit, or “worst-case scenario,” of the true
ocean basin capacity. To avert waterworlds on high-mass planets,
other sources of topography would be vital.

A useful waypoint from this work is a naive scaling relationship
of rms dynamic topography in terms of the mantle Rayleigh
number and viscosity contrast, for chaotic time-dependent convec-
tion with large viscosity contrasts. Our results suggest a weaker Ra
dependence and overall higher topography amplitudes compared to
the isoviscous convection scalings previously reported.

Segments of the general approach here might guide other
mysteries about rocky planet surface architecture—which seems,
at the time of writing, an unpopulated but fertile field of research.
We conceive of a framework into which new geophysical or
geomorphological models could easily slide. Particularly, the
method of gauging whole surface layouts via the rms amplitude
extends to other ways of generating large-scale topography, so
long as—and this step is nontrivial—one could write process-
based scaling laws for how its rms value changes with planetary
bulk properties. Reasonable assumptions about the power spectral
distribution of topography give peak amplitudes between 3.5 and
3.9 times the rms value, consistent across different ways of
supporting loads. With that said, care should be taken to not
overemphasize the general feasibility of such applications, given
that decades of examination into our own planet’s topography
have not yet reached any steadfast deterministic rules. To push the
marriage between these sciences further (Shorttle et al. 2021),
then, finding tighter links between pattern and process on the
surface of Earth will be paramount to understanding how
landscapes manifest on billions of rocky planets in the universe.
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Appendix A
Spherical Harmonic Methods for Topography

A.l. A Baseline Power Spectrum

We choose our Case 4 simulation (Table 1) from which to
extract a scalable model spectrum of the surface dynamic
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topography, since its temporal distribution of h.. is the
narrowest. A type-2 orthonormalized discrete cosine transform
of this profile produces a Fourier representation,

N—1
2n + 1)
1 .
—, ifp=0
4
y=1' (A1)

1 .
A N otherwise,

from which we can find a 1D power spectral density,

o = 2Ax'(f,)2, (A2)

Guimond, Rudge, & Shorttle
as a function of dimensionless wavenumber,

k=2

=P (A3)

where £, is the height of dynamic topography at sample point
n, N is the number of sample points in the spatial profile (fixed
by the mesh size), p =[0,...,N — 1], L' = 8 is the dimensionless
box width, and Ax’ = L'/N. We calculate qbz)D at every model
time step and use the average for our baseline spectrum. This
spectrum has an rms amplitude hr'ms’ 0-

There is an upper wavenumber limit, k.., at around the
equivalent wavelength of the upper thermal boundary layer
thickness, 6, where features narrower than this are not
meaningful for the dynamic topography. We also observe all

Spherical harmonic degree, [

100
10!

10!

102

10° 4

1071_

—&— Model dynamic topography

100
100

10!

10!
102

Normalised power spectral density (m?)

1073_

—&— Model dynamic topography
Venus (Wieczorek 2015)

—e— Red noise, k2

100

10

Nondimensional wavenumber, kd

Figure A1l. Top: dimensionless 1D power spectral densities of dynamic topography from 2D numerical convection simulations, normalized to an rms power of unity.
In purple triangles is the model dynamic topography spectrum obtained from a loglinear fit to the Ra; = 10®, A = 10 case. Bottom: the model dynamic topography
spectrum shown with the observed overall topography of Venus (yellow triangles; Wieczorek 2015) and a theoretical spectrum with a power-law dependence ok 2

(red circles), corresponding to red noise.
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spectra roughly rolling off to a constant value at wavenumbers
below around twice the convection cell depth, so we set

[;in = 2d. In log-log space, ¢})D is approximately linear from
ko to ko . Therefore, we approximate the power spectra by
two line segments. We fit a constant slope between k,,, and
kpax and assign a value of gbz)D (ki) Wherever k' < k... This
fit is done to the average power spectral density over all time
steps for the given simulation. We interpolate this fitted
function such that it has a discrete value at each integer
spherical harmonic degree /, where [ = k’R,; — 0.5, froml=1
to the nearest degree to k., . That is, we do not scale k...
While realistically k., would increase with Ra;, the effect on
h!.s is small (less than one part in a thousand) because these
high wavenumber bands hold such little relative power. For this
generic spectrum we assume a dimensionless planet radius
R;, = 2 (a core radius fraction of 0.5 for a dimensionless mantle

depth of 1; varying RIQ has negligible effects on the results).

Figure Al shows the 1D power spectral densities (bZSD of
dynamic topography computed from our 2D numerical
modeling experiments, normalized as a percentage of the total
power. Between k.. and k..., the loglinear slopes of the
topography spectra are roughly similar within the noise for all
Ra;, An cases. Due to our limited number of 2D runs, however,
we cannot really make a compelling case for this statement, and
we would not back our interim result outside of its intended,
rather inconsequential usage here. For example, we might
expect more vigorous, higher-Ra convection to exhibit more
smaller-scale drips from the upper thermal boundary layer,
leading to slightly more topographic power at high wavenum-
bers—although the total power would be virtually unaffected
by these high-frequency features. Note also that because the
spatial domain topography is 1D, data paucity will always
entail a certain amount of noise, compared to a 2D grid of
topography from a 3D convection simulation.

Also in Figure Al is the observed topography spectrum of
Venus from Wieczorek (2015). On Venus, elastic and
compositional sources of topography are superimposed on
dynamic topography. Venus’s spectrum thus provides an
empirical modification of the pure dynamic topography. As a
third and final spectral model, we have the theoretical red-noise
spectrum given by the power law QSESD o k=2 and a roll-off
wavenumber the same as the numerical spectrum. Compared to
the numerical dynamic topography, Venusian topography and
red-noise topography both have a shallower slope and retain
more power at higher wavenumbers—as expected from the
high-frequency nature of topography created by impact
cratering and volcanism. The Venus spectrum additionally
shows a peak at degree /=3. Note that these (normalized)
spectra represent different geophysical and geomorphologic
processes and are therefore not expected to have the same
absolute rms value.

A.2. Generating Random Maps

We use the pyshtools.SHCoeffs.from_random ()
function to obtain a set of spherical harmonic coefficients
consistent with qb:)D (Wieczorek & Meschede 2018). This
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function requires a power per ! (dimensional units m?), so we
apply a conversion from qSlOD (dimensional units m” m). First,
we find the effective 2D power spectral density assuming radial
symmetry, (bizf; (dimensional units m”m?), which would
correspond to our 1D spectrum:

1
o = 790 (Ad)
The power per [ is
o221+ 1)
vt o

14
With these normalizations, the total power per coefficient,

Si

Sim = s
21 + 1

(A6)

is proportional to ¢i2£ . In converting our spectra into 2D

equivalents, we are presupposing that 2D Cartesian and 3D
spherical models result in approximately similar topography
power spectra with consistent /... Using the output from Lees
et al. (2020), we have verified that constant-viscosity convec-
tion in Cartesian geometry indeed produces similar spectra
between 2D and 3D, but the assumption remains a caveat until
dedicated 3D spherical realizations can test it. Nevertheless, we
already know that it is incorrect to try fitting a scaling function
to 2D numerical hpey directly—this quantity is certainly
sensitive to details of the model setup, as we have mentioned in
Section 2.1.2.

If we are seeking a spatial map of a hypothetical spectrum
other than gb})D (i.e., different rms value), we take advantage of
the fact that numerical dynamic topography spectra will appear
to have roughly consistent slopes between k. and k., , and
hence scale S, appropriately,

(A7)

where hr'ms’l refers to the desired rms of the new spectrum.

We can now obtain our set of coefficients via pyshtools:
random spherical harmonic coefficients are generated from a
normal distribution with unit variance, subject to the strong
assumption of no correlation between wavenumbers.

Then, we again use pyshtools to expand the random
spherical harmonic coefficients onto a Gauss-Legendre
quadrature grid. At this stage we can dimensionalize the
spatial domain topography with Equation (2), given the
results of the parameterized convection model. A sample
elevation map is shown in Figure A2. Because the randomly
generated spherical harmonic coefficients are not unique for a
given power spectrum, we reduce the noise by generating 500
sets of coefficients and taking the average of the resulting
peak elevation values.
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Figure A2. A synthetic topography map, obtained from a random power spectrum (/max = 53) consistent with the numerically modeled “baseline” dynamic
topography spectrum (see text for details on randomization). This map has a peak elevation of 820 m and an rms elevation of 190 m. The nominal planet has a mass of
1 M, dry olivine rheology, and a solar radiogenic heating budget.

Table B1 provides additional numerical output. See Section 2.1
for definitions of these quantities. Nu is the Nusselt number,
the ratio of convective to conductive heat transfer at the

240 270 300
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360
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the dimensionless box height, F} is the total surface dimensionless
heat flux divided by the dimensionless box width, k' = 1 is the
dimensionless thermal conductivity, and 7] and T are the
dimensionless temperatures at the bottom and top boundaries,

surface, calculated as Nu = Y'F}/[k'(T] — T;)], where Y’ is respectively.
Table B1
Selected Time-averaged Results of the Numerical Model

Case Ra An Ra; Tia ih T Tiq AT}, Nu Pimg peak
2 2 x 108 1 x 10° 7.20 x 107 0.133 0.0248 0.926 0.785 0.141 6.17 0.00716 0.0152
3 3% 10% 1 x10° 1.07 x 108 0.118 0.0218 0.925 0.790 0.135 6.97 0.00667 0.0130
4 1x 108 1 x 107 3.62 x 107 0.199 0.0370 0.937 0.794 0.143 4.10 0.00893 0.0214
5 2 % 10® 1 x 107 7.08 x 107 0.165 0.0238 0.936 0.816 0.120 5.12 0.00610 0.0159
6 3 x 108 1 x 107 1.07 x 108 0.148 0.0215 0.936 0.816 0.120 5.70 0.00673 0.0145
7 1x 108 1 x 108 3.60 x 107 0.235 0.0394 0.945 0.806 0.138 3.50 0.00907 0.0243
8 2% 10® 1 x 108 7.24 x 107 0.199 0.0295 0.945 0.821 0.124 423 0.00765 0.0174
9 3% 10% 1x10® 1.08 x 10° 0.179 0.0253 0.945 0.826 0.118 475 0.00788 0.0179
10 1 x 10® 1 x 10° 3.57 x 107 0.274 0.0427 0.950 0.819 0.131 3.03 0.00815 0.0252
11 2 x 10® 1x10° 7.20 x 107 0.232 0.0329 0.951 0.831 0.120 3.65 0.00878 0.0250
12 3 x 108 1 x 10° 1.11 x 108 0.213 0.0262 0.952 0.846 0.105 4.07 0.00876 0.0180

Note. Symbols are defined in the text.
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