Using CamGrid to model the evolution of Influenza

David Burke Antigenic Cartography Group Department of Zoology University of Cambridge

http://www.antigenic-cartography.org http://www.zoo.cam.ac.uk/zoostaff/burke.htm

dfb21@cam.ac.uk

9 September 2011

Influenza virus: pandemic and epidemic

The Influenza Virus

Annually, 'flu infects 5-15% of the global population (~600 million people)

Virus genome contains 8 RNA segments which code 11 proteins

RNA polymerase makes a single nucleotide error roughly every 13 thousand nucleotides

Nearly every new influenza virus has a mutation thus is highly antigenically variable

Over time, mutations build up and antibodies lose the ability to bind.

For this reason, the 'flu vaccine has had to be updated more than 20 times over the last 40 years.

Neuraminidase (NA)

Haemagglutinin

Protein expressed on surface of virus

The major component of the 'flu vaccine

The main focus of global 'flu surveillance

There are ~500 HA proteins on surface of virus

HA binds to sugars on the surface of the cell

What are we interested in modelling?

Antigenic Variation Genetic changes which lead to vaccine breakdown

Species Specificity

Binding preference (human/avian) and zoonotic potential

Haemagglutinin-inhibition (HI) assay data

HEM,	AGGLU	TINATION INHIBITION REACTIONS OF	INFLUENZA H3 VIRUSE	S (08/11/05)		1					_ •	· · ·	~				
		STRAIN DESIGNATION		D			0	REFERENC	E FERRET AN	TISERA	0				K		
0.000	DEMOS		000 104	Date	A	B MEL (01	C C	D CA/7	E VIC (EOO	F CNU27	G	H		J UK (4502	K	L	M NG/F
REFERENCE ANTIGENS			CDC ID#	collected	REASS	WEL/01	CA/7	REASS	VIC/500	REASS	WI/19	N1/55	REASS	HK/4593	NH/14	NEW	MS/5 NEW
1	WY	A/WYOMING/03/2003 X-147	2003715730	REASS	1280	80	160	320	320	40	80	80	40	80	320	40	160
2	NZ	A/WELLINGTON/01/2004	2004729358	1/26/04	160	1280	640	1280	640	30	160	320	160	640	640	160	640
3	CA	A/CALIFORNIA/07/04	2005705486	9/16/04	160	160	640	2560	1280	320	320	320	160	640	640	160	320
4	CA	A/CA/07/04 x PR/8 CDC	2005712034	REASS	320	320	1280	2560	2560	640	640	1280	320	1280	1280	160	1280
5	AS	A/VICTORIA/500/2004	2005707652	8/13/04	160	160	320	1280	640	80	160	160	80	320	320	80	320
6	AS	A/SINGAPORE/37/2004 IVR-140	2005707637	REASS	160	160	640	1280	640	640	1280	640	160	640	640	80	320
7	WI	A/WISCONSIN/19/2004	2005705540	11/6/04	160	320	1280	2560	640	320	1280	1280	160	640	640	160	640
8	NY	A/NEW YORK/55/2004	2005705561	11/18/04	160	160	1280	1280	1280	320	640	640	320	640	640	160	640
9	NY	A/NY/55/04 A/PR/8/34 X-157	2005711905	REASS	40	160	640	1280	640	160	160	320	640	320	640	160	1280
10	HK	A/HONG KONG/4593/04	2005710182	10/18/04	160	160	320	2560	640	320	320	320	160	640	640	160	640
11	NH	A/NEW HAMPSHIRE/14/04	2005710231	12/13/04	160	160	640	1280	640	320	640	320	160	640	640	160	640
12	HK	A/HONG KONG/2831/05	2005743649	5/25/05	160	40	320	320	80	40	80	160	160	160	640	320	160
13	MS	A/MISSISSIPPI/5/04	2005707679	12/14/04	40	80	320	640	320	80	80	160	320	160	320	160	640
TEST	ANTI	GENS	REPEATS														
14	тн	02-504942 ORIGINAL	2005707539		160	320	640	1280	2560	320	320	320	160	640	640	80	640
15	TH	02-504957 ORIGINAL	2005707540		160	160	320	1280	640	160	320	320	160	640	640	80	640
16	TH	02-505107 ORIGINAL	2005707542		160	320	640	1280	640	160	160	320	160	640	640	80	320
17	MS	05020500027 ORIGINAL	2005712779	2/1/2005	160	160	640	1280	640	320	640	640	160	640	640	160	640
18	UR	A/KHABAROVSK/9/05	2005714223	1/27/2005	320	160	640	2560	320	160	320	320	320	320	640	320	320
19	DI	2004914389	2005714244	12/17/2004	320	160	640	1280	640	320	640	320	160	640	640	160	640
20	DJ	2005900911	2005714283	1/26/2005	320	160	640	2560	640	320	640	320	160	640	640	160	640
21	DJ	2005900992	2005714289	1/29/2005	160	160	640	640	640	160	320	320	160	640	640	160	640
22	DJ	2005901307	2005714306	2/2/2005	160	320	640	1280	1280	320	320	320	160	640	640	160	320
23	DJ	2005901309	2005714307	2/4/2005	640	320	1280	2560	1280	640	640	640	160	1280	1280	160	1280
24	DJ	2005901315	2005714308	2/4/2005	640	320	1280	2560	1280	640	1280	1280	320	1280	1280	320	1280
25	DJ	2005901330	2005714309	2/4/2005	2560	640	2560	5120	5120	2560	2560	2560	640	5120	5120	640	5120
26	DJ	2005902082	2005714334	2/12/2005	320	640	1280	2560	2560	1280	1280	1280	320	2560	2560	320	2560
27	DJ	2005902100	2005714335	2/14/2005	640	320	1280	5120	2560	640	1280	2560	320	2560	1280	320	1280
28	DJ	2005902111	2005714336	2/24/2005	320	160	640	2560	2560	640	640	640	320	640	1280	160	640
29	PN	490730	2005740130	6/22/2005	320	160	640	2560	1280	640	640	1280	160	1280	640	160	640
30	PN	490728	2005740131	6/21/2005	20	80	160	640	160	80	40	80	80	80	160	160	160
31	PN	490714	2005740132	6/18/2005	320	320	1280	5120	2560	1280	1280	1280	320	1280	2560	320	1280
32	UR	A/EKATERINBURG/1/05	2005740144	1/14/2005	160	40	320	320	80	80	80	160	80	160	160	80	80
33	UR	A/YAROSLAVL/13/05	2005740147	2/1/2005	640	320	640	2560	640	1280	640	640	640	1280	2560	320	640
34	UR	A/0MSK/23/04	2005740149	1/20/2004	160	160	320	640	640	160	40	80	80	160	160	160	320
35	UR	A/VLADIMIR/37/05	2005740150	2/17/2005	160	80	320	640	320	80	320	320	160	320	320	160	320
36	UR	A/KHABAROVSK/51/05	2005740151	3/5/2005	5	5	5	5	5	5	5	5	5	5	5	5	5
37	UR	A/TOMSK/27/04	2005740153	1/7/2004	160	160	160	320	320	80	40	80	80	80	160	80	320
38	HK	A/HONG KONG/4421/05	2005740176	6/8/2005	80	20	160	160	20	40	40	160	80	80	160	160	40
39	HK	A/HONG KONG/4281/05	2005740177	6/16/2005	40	20	80	160	20	40	40	40	80	40	80	160	40
40	HK	A/HONG KONG/4241/05	2005740179	6/16/2005	80	40	320	160	80	80	80	160	160	160	320	640	80
41	HK	A/HONG KONG/4607/05	2005740181	6/14/2005	40	10	40	40	20	10	20	40	40	40	20	40	10
42	EG	2005904864	2005740677	4/20/2005	80	20	160	160	80	40	80	80	80	160	160	80	80
43	OM	2005906943	2005740704		80	20	160	160	10	20	40	80	80	160	80	80	40
44	SN	A/SINGAPORE/03/05	2005741146	2/16/2005	320	160	640	640	320	160	160	320	160	320	640	160	320
45	SN	A/SINGAPORE/07/05	2005741152	3/13/2005	80	10	80	80	20	20	40	80	80	40	80	40	20
46	SN	A/SINGAPORE/34/05	2005741162	5/31/2005	40	20	160	160	20	20	40	80	80	80	160	160	80
47	SN	A/SINGAPORE/35/05	2005741164	5/31/2005	40	10	20	40	10	10	10	20	40	20	40	80	20

"Antigenic map" of Influenza H3N2 1968-2003

- A genotype to phenotype map for HA
- Two dimensional
- Mostly linear
- Forms Clusters
- Chronologically ordered
- Equal time between clusters
- Equal distance between clusters

Northern Hemisphere October 2003

Northern Hemisphere December 2004

In silico predictions of the structure of the virus

Molecular Dynamics or

Monte Carlo simulations

Xray structure of a strain of HA

In Silico Genotype to phenotype prediction of the evolution of HA

Given the sequence (genotype) of any HA, we could predict its tertiary structure and its phenotype and position on the 'map'.

Predict which mutations would alter its phenotype.

This would aid surveillance and vaccine selection

Pre-emptive vaccination could be used to block the virus from moving in a particular direction

What are we interested in modelling?

Antigenic Variation Genetic changes which lead to vaccine breakdown

Species Specificity

Binding preference (human/avian) and zoonotic potential

Determinants of ligand specificity

Avian, Equine & Pig adapted influenza viruses Human & Pig adapted influenza viruses

In silico predictions of ligand binding

Add ligand from xray data

Sugar binding properties of H1N1 A/South Carolina/1/1918

A/South Carolina/1/1918

A/South Carolina/1/1918 + D222G

The single mutation D222G

- Gains binding to sulphated α2,3 glycans (increased mortality)
- Loses binding to α2,6 glycans (poor transmission)

How does the D222G mutation affect binding in 2009 pdm H1N1 strain?

Stevens et al. J Mol Biol. 2006 355(5):1143-55

Molecular Dynamics of A/South Carolina/1/1918 with a2,6 glycan

~1300 structures extracted from each simulation

Hydrogen binding frequencies involving ligand

A/South Carolina/1/1918 +D222G

Main interactions with sidechain of D222 and D187

D222G Reduces possible interactions

D222G strain makes fewer interactions with α 2,6 glycan than wild type.

2009 pdmH1N1 A/NL/602/2009

A/South Carolina/1/1918 PDM A/Netherlands/602/09

Genetic differences provides extra networks of interactions which stabilise intermediate binding mode

A/Netherlands/602/09

A/Netherlands/602/09+D222G

Decrease of 222 interactions compensated for by increase in interactions with E224, S183 and K130.

We would predict that, unlike A/SC/1918+D222G, A/Netherlands/602/09+D222G binds just as well as A/Netherlands/602/09

Predictions from the MD simulation

- Two distinct binding modes of the galactose sugar for SC1918
- A more continuous distribution for A/Netherlands/602/09
- A role for E224, S183, K130 in binding
- Reduction of interactions for SC1918+D222G
- Conservation of binding for A/Netherlands/602/09+D222G

Hua Yang, Paul Carney, and James Stevens.

Structure and Receptor binding properties of a pandemic H1N1 virus hemagglutinin.

PLoS Curr Influenza. 2010

2009 PDM + D222G maintains a2,6 binding

Future Work

Improvements in quantitative binding calculations

Investigate binding to α2,3 glycans

Investigate evidence for multiple binding modes

More robust docking and sampling of the glycans into the RBS

Longer simulations for benchmark set for improved statistics

University of Cambridge

Derek Smith Terry Jones Colin Russell Nicola Lewis (& AHT) Dan Horton (& VLA) Ana Mosterin Eugene Skepner David Wales (Chemistry) Kyle Sutherland-Cash (Chemistry) Chris Whittleston (Chemistry)

CamGrid sys admins

Erasmus Medical Centre

Ron Fouchier Salin Chutinimitkul Jan de Jong Bjorn Koel Miranda de Graaf Vincent Munster Guus Rimmelzwaan Walter Beyer Theo Bestebroer Ruud van Beek Ab Osterhaus Funding

NIH Director's Pioneer Award, Fogarty International Center, HFSP, IFPMA, CIDC, EU Framework 5 Novaflu, EU Framework 6 Virgil

WHO global influenza surveillance

- CDC: Nancy Cox, Sasha Klimov, Michael Shaw
- MELB: Ian Gust, Ian Barr, Aeron Hurt, Alan Hampson
- NIMR: Alan Hay, Y-P Lin, Vicky Gregory
- NIID: Tashiro Masato, Takato Odagiri
- WHO: Wenqing Zhang, Klaus Stohr
- NICs: Critical and enormously valuable

Santa Fe Institute Alan Lapedes